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ABSTRACT 

Renewed interest in metabolic research over the last two decades has inspired an explosion of 

technological developments for studying metabolism. At the forefront of methodological innovation is an 

approach referred to as "untargeted" or "discovery" metabolomics. We are referring KEGG data base to 

get the pathways information as an input which  is present in the in XML format. Main aim is to calculate 

the rate of the reaction which are present in the reaction which is a simulation of the real world reactions. 

The algorithm platform developed for integration of KEGG data with a method to find the rate of the 

reaction of all the reaction occurring in the pathways. In this algorithm we are using the Stoichiomatric 

matrix to find the rate, which can be further use to decide which reaction to be eliminated or which 

product to be added to get better the results. 
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CHAPTER 1 

Introduction 

1.1 Literature Studied and Code development 

1.1.1 Metabolic Networks 

The function of cells is based on complex networks of interacting chemical reactions carefully 

organized in space and time. These biochemical reaction networks produce observable cellular 

functions. Network re-construction is the process of identifying all the reactions that comprise a 

network. The reconstruction process for metabolic networks has been developed and 

implemented for a number of organisms. The main features of metabolic network reconstruction 

are described in this chapter. We briefly review the key properties of metabolic networks and 

introduce the hierarchical thinking that goes into the interpretation of complex network 

functions. A true genome-scale reconstruction of cellular functions necessitates accounting for all 

cellular networks simultaneously. Such a comprehensive network reconstruction has yet to be 

established therefore, here, we focus on metabolism and address the reconstruction of 

transcriptional regulatory and signaling net-works. 

 

1.1.2 Flux balance analysis 

Flux balance analysis (FBA) is a mathematical method for simulating metabolism in genome 

scale reconstructions of metabolic networks. In comparison to traditional methods of modeling, 

FBA is less intensive in terms of the input data required for constructing the model. Simulations 

performed using FBA are computationally inexpensive and can calculate steady-state metabolic 

fluxes for large models (over 2000 reactions) in a few seconds on modern personal computers. 

 

The results of FBA on a prepared metabolic network of the top six reactions of glycolysis. The 

predicted flux through each reaction is proportional to the width of the line. Objective function in 

red, constraints on alpha-D-Glucose and beta-D-Glucose import represented as red bars.[citation 

needed] 

FBA finds applications in bioprocess engineering to systematically identify modifications to the 
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metabolic networks of microbes used in fermentation processes that improve product yields of 

industrially-important chemicals such as ethanol and succinic acid.  It has also been used to 

identify putative drug targets in cancer and pathogens,  rational design of culture media, and 

more recently host–pathogen interactions have been studied using FBA. The results of FBA can 

be visualized using flux maps like the image on the right which illustrates the steady-state fluxes 

carried by reactions in glycolysis. The thickness of the arrows is proportional to the flux through 

the reaction. 

 

1.1.3 Metabolic Pathways  

A metabolic pathway is a series of chemical reactions occurring within a cell. In a pathway, the 

initial chemical (metabolite) is modified by a sequence of chemical reactions. These reactions are 

catalyzed by enzymes, where the product of one enzyme acts as the substrate for the next. These 

enzymes often require dietary minerals, vitamins, and other cofactors to function. 

Pathways are required for the maintenance of homeostasis within an organism and the flux of 

metabolites through a pathway is regulated depending on the needs of the cell and the 

availability of the substrate. The end product of a pathway may be used immediately, initiate 

another metabolic pathway or be stored for later use. The metabolism of a cell consists of an 

elaborate network of interconnected pathways that enable the synthesis and breakdown of 

molecules (anabolism and catabolism). 

 

1.1.4 Basic Features  

Intermediary metabolism can be viewed as a chemical ―engine‖ that converts available raw 

materials into energy as well as the building blocks needed to produce biological structures, 

maintain cells, and carry out various cellular functions.  

 

This chemical engine is highly dynamic, obeys the laws of physics and chemistry, and is thus 

limited by various physicochemical constraints. It also has an elaborate regulatory structure that 

allows it to respond to a variety of external perturbations. Metabolic imbalance is involved in 

major human diseases, such as diabetes, obesity, cancer, and heart disease.  

 

Metabolism comprises two types of chemical transformations: catabolic pathways that break 
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down various substrates into common metabolites and anabolic pathways that collectively 

synthesis amino acids fatty 'Kids nucleic acids and other needed building blocks. During these 

processes, an intricate exchange of various chemical groups and reduction oxidation (redox) 

potentials takes place through a set of carrier molecules.  

These carrier molecules and the properties that they transfer thus tie the metabolic network 

tightly together. Intermediary metabolism can be described at several levels of complexity 

1.1.5 Hierarchy in function of metabolic networks  

Genome-scale reconstructions of metabolic networks contain hundreds of *metabolites and 

sometimes over a thousand reactions (see Table 3.6). The functions of such networks are hard for 

the human mind to comprehend. We thus need mathematical models for the study of their 

properties and simulation of their function.  

 

We can think of network properties in a hierarchical fashion to simplify the conceptualization of 

network functions. Such hierarchy can be based on manmade concepts, as discussed later, or can 

be the result of a nonbiased mathematical analysis of the stoichiometric matrix.  In what follows, 

we briefly describe the traditional view of the hierarchical decomposition of the functions of 

metabolic networks  

 

Level I:  

Cellular inputs and outputs. Overall, intermediary metabolism comprises the enzymatic reactions 

pertaining to the transformation of substrate molecules into the essential building blocks of 

macromolecules and other vital products for growth and maintenance.  

 

A coarse-grained description of the overall activity of metabolism thus involves substrates as 

inputs and biomass and metabolic by-products as outputs. For industrial fermentation processes. 

a description of cells at this level has sufficed for many purposes.  

 

The description comprises a simple set of coupled mass and energy balances, with various 

empirically determined yield coefficients that describe partitioning of the consumed substrate. 

Growth kinetics are given in terms of simple phenomenological models such as the Monod 

growth model. 
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 Models of this type are useful for a limited set of specific conditions. The yield coefficients are 

not constants: they change with the physiological state of the cell.  

 

Level 2: Sectors.  

A bit finer grained look at intermediary metabolism reveals that it can be divided into two basic 

sectors. Catabolism carries out the degradation of substrates via a series of con-verging pathways 

that lead to a set of 11 metabolites of central importance, called the biosynthetic precursors.  

 

Anabolism is a set of diverging pathways that originate from these central metabolites to form 

monomers or building blocks for macromolecular biosynthesis. Genetically engineered bacteria 

used for bioprocessing, for instance, can be described at this level of complexity since it is 

appropriate for assessing host-plasmid interactions. 

  

Level 3: Pathways. 

A still finer resolution reveals a situation in which path-ways, and segments thereof, serve a 

definite role. For instance, catabolism of the major classes of biomolecules follows the same 

pattern; first substrates are picked up by the cell, hydrolyze if necessary, activated by as cofactor, 

and then degraded to yield energy and other properties stored on the carrier molecules. At this 

level of description, the essential features of metabolism begin to depend on basic chemical 

principles such as stoichiometric structure and kinetic regulation.  

 

Key metabolic pools, such as the energy charge, dominate the description, and key regulatory 

enzymes influence the motion of these pools and how mass and energy is distributed among 

them. There is currently much interest in the pathway level characterization of reconstructed 

biochemical reaction networks. 

 

Level 4: Individual reactions 

 At the finest level of description one considers all the biochemical transformations that take 

place in a cell. Available high-throughput data allows us to generate the information needed to 

describe cells at this resolution.  
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It is at this level where this book is focused. We can now reconstruct genome-scale 

stoichiometric matrices of organisms and study them. The dimensions of these matrices are on 

the order of hundreds of metabolites and sometimes over a thousand chemical reactions 

reflecting the complexity of a fully functional metabolic network. Biochemical transformations 

fall into a few major categories. Some examples include transamination, phosphorylation, 

isomerization, dehydration, and dismutation. 

 

 Thus, there are chemical "rules" that dictate what kind of links can exist in metabolic networks. 

As described later, bio-chemists have devised nomenclature that classifies these types of 

transformations and an Enzyme Commission (E.C.) number is associated with each 

enzymatically catalyzed metabolic reaction.  

 

Furthermore, there are thermodynamic restrictions associated with these transformations that 

dictate the energetic feasibility of a reaction and its equilibrium state. Thus, even though 

metabolic networks may appear complex, there are underlying physicochemical restrictions on 

their topological structure and network states. 

 

1.1.6 Anabolic pathway 

Anabolism is the set of metabolic pathways that construct molecules from smaller units. These 

reactions require energy. One way of categorizing metabolic processes, whether at the cellular, 

organ or organism level is as "anabolic" or as "catabolic", which is the opposite. Anabolism is 

powered by catabolism, where large molecules are broken down into smaller parts and then used 

up in respiration. Many anabolic processes are powered by the hydrolysis of adenosine 

triphosphate (ATP). 

Anabolic processes tend toward "building up" organs and tissues. These processes produce 

growth and differentiation of cells and increase in body size, a process that involves synthesis of 

complex molecules. Examples of anabolic processes include the growth and mineralization of 

bone and increases in muscle mass. Endocrinologists have traditionally classified hormones as 

anabolic or catabolic, depending on which part of metabolism they stimulate. The classic 

anabolic hormones are the anabolic steroids, which stimulate protein synthesis and muscle 
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growth, and insulin. The balance between anabolism and catabolism is also regulated by 

circadian rhythms, with processes such as glucose metabolism fluctuating to match an animal's 

normal periods of activity throughout the day. 

 

1.1.7Catabolic pathway 

Catabolism (from Greek κάτω kato, "downward" and βάλλειν ballein, "to throw") is the set of 

metabolic pathways that breaks down molecules into smaller units to release energy.[1] 

Catabolism breaks down large molecules (such as polysaccharides, lipids, nucleic acids and 

proteins) into smaller units (such as monosaccharides, fatty acids, nucleotides, and amino acids, 

respectively). As molecules such as polysaccharides, proteins, and nucleic acids comprise long 

chains of these small monomer units (mono = one + mer = part), the large molecules are called 

polymers (poly = many). 

Cells use the monomers released from breaking down polymers to either construct new polymer 

molecules, or degrade the monomers further to simple waste products, releasing energy. Cellular 

wastes include lactic acid, acetic acid, carbon dioxide, ammonia, and urea. The creation of these 

wastes is usually an oxidation process involving a release of chemical free energy, some of 

which is lost as heat, but the rest of which is used to drive the synthesis of adenosine 

triphosphate (ATP). This molecule acts as a way for the cell to transfer the energy released by 

catabolism to the energy-requiring reactions that make up anabolism. (Catabolism is seen as 

destructive metabolism and anabolism as constructive metabolism). Catabolism therefore 

provides the chemical energy necessary for the maintenance and growth of cells. Examples of 

catabolic processes include glycolysis, the citric acid cycle, the breakdown of muscle protein in 

order to use amino acids as substrates for gluconeogenesis, the breakdown of fat in adipose tissue 

to fatty acids, and oxidative deamination of neurotransmitters by monoamine oxidase. 

 

An example of catabolic reaction 
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FIG1. Diagrammatic representation of a catabolic reaction  

 

 

1.1.8 Glycolysis  

Glycolysis is the metabolic pathway that converts glucose, into pyruvate. The free energy 

released in this process is used to form the high-energy compounds ATP (adenosine triphosphate) 

and NADH (reduced nicotinamide adenine dinucleotide). 

Glycolysis is a determined sequence of ten enzyme-catalyzed reactions. The intermediates 

provide entry points to glycolysis. For example, most monosaccharides, such as fructose and 

galactose, can be converted to one of these intermediates. The intermediates may also be directly 

useful. For example, the intermediate dihydroxyacetone phosphate (DHAP) is a source of the 

glycerol that combines with fatty acids to form fat. 

 

Glycolysis occurs, with variations, in nearly all organisms, both aerobic and anaerobic. The wide 

occurrence of glycolysis indicates that it is one of the most ancient metabolic pathways. Indeed, 

the reactions that constitute glycolysis and its parallel pathway, the pentose phosphate pathway, 

occur metal-catalyzed under conditions of the Archean ocean also in the absence of enzymes. 

Glycolysis could thus have originated from chemical constraints of the prebiotic world. 
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Glycolysis occurs in most organisms in the cytosol of the cell. The most common type of 

glycolysis is the Embden–Meyerhof–Parnas (EMP pathway), which was discovered by Gustav 

Embden, Otto Meyerhof, and Jakub Karol Parnas. Glycolysis also refers to other pathways, such 

as the Entner–Doudoroff pathway and various heterofermentative and homofermentative 

pathways. However, the discussion here will be limited to the Embden–Meyerhof–Parnas 

pathway. 

 

FIG2. Diagrammatic representation of anabolic reaction(glycolysis) 

1.1.9Stoichiometric matrix 

In complex reactions, stoichiometries are often represented in a more compact form called the 

stoichiometry matrix. The stoichiometry matrix is denoted by the symbol N. 

If a reaction network has n reactions and m participating molecular species then the 

stoichiometry matrix will have correspondingm  rows and  n columns. 

For example, consider the system of reactions shown below: 

S1 → S2 

5 S3 + S2 → 4 S3 + 2 S2 

S3 → S4 

S4 → S5. 
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This systems comprises four reactions and five different molecular species. The stoichiometry 

matrix for this system can be written as: 

 

 

 

 

 

Where the rows correspond to S1, S2, S3, S4 and S5, respectively. Note that the process of 

converting a reaction scheme into a stoichiometry matrix can be a lossy transformation, for 

example, the stoichiometries in the second reaction simplify when included in the matrix. This 

means that it is not always possible to recover the original reaction scheme from a stoichiometry 

matrix. 

Often the stoichiometry matrix is combined with the rate vectorv, and the species vector, S to 

form a compact equation describing the rates of change of the molecular species: 

 

 

 

1.2 Languages  

1.2.1    R 

R is a programming language and software environment for statistical computing and graphics. 

The R language is widely used among statisticians and data miners for developing statistical 

software and data analysis.  

1.2.2 SBML 

The Systems Biology Markup Language (SBML) is a representation format, based on XML, for 
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communicating and storing computational models of biological processes. It is a free and open 

standard with widespread software support and a community of users and developers. SBML can 

represent many different classes of biological phenomena, including metabolic networks, cell 

signaling pathways, regulatory networks, infectious diseases, and many others. It is the de facto 

standard for representing computational models in systems biology today. 

1.2.3 PHP 

PHP is a server-side scripting language designed for web development but also used as a general-

purpose programming language. As of January 2013, PHP was installed on more than 240 

million websites (39% of those sampled) and 2.1 million web servers. Originally created by 

Rasmus Lerdorf in 1994, the reference implementation of PHP (powered by the Zend Engine) is 

now produced by The PHP Group. While PHP originally stood for Personal Home Page, it now 

stands for PHP: Hypertext Preprocessor, which is a recursive backronym. 

 

1.3 Linkage of R with SBML  

R is a language which is widely used by bioinformaticians all over the world because is it very 

user friendly easy and full of functions. On the other hand SBML is a language which is 

specially made for the people working on System biology in which we deal with pathways, cell 

its functions working etc. There are many ways to use SBML one them is to integrate with R. 

To integrate R with SBML we need to download R console, platform on which R runs. So there 

is a special Library of SBML (LibSBML) should be incorporated with R console version2.15 

Because LibSBML is not compatible with newer version of R console. 

 

1.4 Calculation of rate of the reaction. 

In case of stoichiometric matric main aim is to find the rate of the reaction in the metabolic 

pathway this is how we calculate the rate of the reactio 
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This method is transformed into Matrix, which is as shown bellow  
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FIG3. Stoichiomatric matrix 

 

1.6 The steady-state assumption  

The assumption of equilibrium between E and ES is unnecessarily restrictive. Briggs and 

Haldane showed in 1926 that an equation formally similar to equation may be derived without 

this assumption. They assumed instead a steady state, i.e. that the  

 

Concentrations of E and ES remained effectively constant over the period of the rate 

measurement. According to the equilibrium assumption, the rate of formation of ES from E and 

S equals its rate of dissociation to E and S. The steady state assumption requires only that the 

rate of formation of ES should equal its rate of breakdown in any direction, including product 

formation, which need not be slow relative to the back-dissociation to E and S. A useful physical 

analogy is that of a large jug pouring water at a steady rate into a funnel. At first the rate of 

inflow greatly exceeds the rate of outflow, but this makes the water level in the funnel (cf. [ES]) 

rise. The rate of outflow (product formation) therefore increases until it exactly matches the 

inflow. Thereafter the level of waterin the funnel and the rate of flow remain constant until the 

jug is emptied. The analogy is not perfect. The rate of formation of ES decreases as the steady 

state is established, because ES is formed at the expense of E. The jug's pouring rate, by contrast, 

is independent of the height of the water in the funnel. There is also no counterpart to the 
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dissociation of ES to E and S: the water does not jump back from the funnel into the jug. This 

perhaps serves to emphasize the nature of a steady state as opposed to an equilibrium. The steady 

state is still an assumption, albeit less restrictive than the equilibrium assumption, and its validity 

has been the subject of recurrent debate. The steady state may, however, sometimes be directly 

demonstrated, provided that the enzyme-substrate complexes differ appreciably from free 

enzyme in physical properties that can be conveniently measured on a millisecond timescale. 

After very rapid mixing of a concentrated solution of enzyme with its substrate(s), e.g. in a 

'stopped-flow' apparatus, the build-up and decay of enzyme-substrate complexes is directly 

observed and recorded. The duration of the steady state, for a fixed enzyme concentration, is a 

function of the substrate concentration and the turnover capacity of the enzyme. To return to our 

analogy, if there is not much water in the jug it may all flow through before thelevel in the funnel 

has a chance to reach its steady state: Likewise if the neck of the funnel is very wide. It seems 

likely, therefore, that the steady state assumption is justified under the conditions of most 

experiments in which the enzyme concentration is low (in molar terms) and the substrate 

concentration is relatively high. Empirically, the assumption has been justified by its success in 

explaining and predicting kinetic patterns for many enzymes. As we shall see, it is also often 

possible to make independent checks on the validity of kinetic deductions. Turning now to the 

mathematical consequences of the steady-state treatment, we have from Fig bellow 
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Since kl , k2 and k3 are all constants, this equation once again may be re-written as equation , but 

the value of Km, the Michaelis constant, is no longer the same. Whereas the Michaelis—Menten 

treatment leads to an equation in which K. = k2lki, in the Briggs—Haldane treatment Km = (k2 

+ k3 )/k, Thus effectively the difference between the two treatments lies in the relative values of 

k2 and k3. These two constants determine the fate of ES. Either it can return whence it came, 

releasing S at a rate determined by k2, or it can proceed to form product at a rate determined by 

k3. If k3 is very much smaller than k2, so that the chances of reaction to yield P are small for any 

given molecule of ES compared to the chances of dissociation back to S, then k2 + k3 will 

approximate to k2, E and ES will be virtually at equilibrium, and the product-forming step will 

be, as it were, a small leak out of that equilibrium system. Thus, if K2 k3, the Briggs—Haldane 

equation reduces to the Michaelis—Menten equation. Equally plausible, however, is the 

alternative extreme assumption that k3 K2, so that Km becomes k3/k, this exposes the dubious 

nature of the frequent assertion that Km reflects an enzyme's affinity for its substrate, a low Km 

representing high affinity and vice versa. This is valid when the Michaelis—Menten assumption 

holds and Km = since k2/k, is the dissociation constant for ES. Clearly, however, if k3 K2, Km is 

bound to be much larger than the dissociation constant. The ideal procedure would be to test the 

Michaelis—Menten assumption by measuring the Km and the dissociation constant for S 

separately and comparing them. Unfortunately, for a one-substrate enzyme, thiscannot be done, 

since one cannot mix E and S without a reaction occurring.. In summary, therefore, in the 

absence of other evidence, K. should be regarded simply as an empirical constant equal to the 

substrate concentration that gives 11/,,,a„ under defined experimental conditions. 

 

1.7 Pseudo steady state 

The assumption of a pseudo-steady state can simplify a wide variety of kinetic 

problems. The most elementary application of this assumption yields the 

Michaelis—Menten equation (10a) that is a keystone of theoretical biochemistry. 

For both of these reasons it is worth carefully working out the conditions under 

which the pseudo-steady state assumption (7) is expected to be valid. The key 

concept here is that of 'time scale', the order of magnitude of time that 
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characterizes the duration of a process or subprocess. For example, what is the time 

scale of the fast transient process during which the complex concentration changes 

from its initial value of zero to a pseudo-state condition? Does it take 

microseconds, milliseconds or seconds? To estimate the duration of this period we 

can make the approximation S = So in (6c). This transforms (6c) into a linear 

equation, with the solution 

 

 

 

 

 

The numerator of above equation is approximately S0. Assuming the validity of 

steady state assumption that denominator is given by above equation. 

 

 

 

One necessary criterion for the validity of the pseudo-steady state assump-tion is 

that the 'fast transient' is indeed brief compared to the time during which the 

substrate changes appreciably. This criterion is tc <C is or, from above equations. 

 

 

 

1.8 S as a Connectivity Matrix 
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A network can be visually represented as a map. Each node in the map corresponds to a row in a 

connectivity matrix, and each column corresponds to a link in the map.  

 

 

1.8.1 The maps of S 

The reaction map S represents a map where a compound is a node and the reactions connect 

(link) the compounds.This map is the reaction map (also called reaction-centered map) and is the 

standard way of viewing metabolic reactions and pathways in biochemistry textbooks.  

 

1.8.2 The compound map 

The negative of the transpose of the stoichiometric matrix, -ST, also represents a map which we 

will call the compound map (also referred to as the metabolite-centered map). The map that —

ST represents has the reactions (now the rows in —ST) as the nodes in the network and the 

compounds (now the columns of —ST) as the connections, or the links. This representation of a 

biochemical reaction network is unconventional, but useful in many circumstances.  

 

Examples: 

The compound map for glycolysis is shown in Figure bellow. The compound map can be 

complicated notably by highly connected co-factor molecules.  

 

1.8.3 Biological quantities displayed on maps 

 It is worth examining the columns (si^v) and rows of S a bit more closely. Let's examine a 

reaction: 

 

 

With the corresponding column of S, = (-1, -1, 1, 1) T. This vector is in the column space of S. 

Moving along this vector is like carrying out this reaction. Note that motion along this vector 

will conserve the sum x1 + x2 + x3 + x4. Thus, a column in S represents a 'tie' between the 

compounds participating in a particular reaction. If these compounds participate in other 

reactions, there will be interactions between the motions along the columns of S. These vectors, 
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'if', span the column space of S and thus give a conceptually useful basis for the column space of 

S. As we will see, certain combinations of the column vectors form pathways through the 

reaction map. 

 

Similar observations apply to the rows of S (or the columns of —ST). A column in—ST will 'tie' 

together, or connect, all the reactions in which a metabolite participates. These connections, 

however, do not imply any particular relationship among reac-tions, and therefore are not 

considered 'hard' connections. As will be further discussed in Chapter 11, metabolite pools form, 

which are the linear combinations of metabolite concentrations. These pools represent a 

conservation among metabolites that is mediated by specific reactions, and therefore represents a 

more meaningful relationship among reactions in which the metabolites participate. Note that the 

columns of S, in contrast, create a 'hard' connection between the metabolites, as a reaction will 

simultaneously use and produce the participating compounds. Conversely, the connectivity’s 

created between the reactions are 'soft,' as the reactions in which a compound participates can 

have varying flux levels that may not have fixed ratios. These ratios are determined by the 

kinetic properties of the reactions. 
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FIG4. Stoichiomatric matrix of 3 reactions. 

 



~ xxv ~ 

 

FIG5. Diagram of direction of pathway  

 

 

 

 

1.8.4 The column and left null spaces 

The time derivative is in the column space of S (denoted by Col(S)), as can be seen from the 

expansion of Sv:  

dx = at + S2 V2 + • " Snl'n  

(6.7)  

wher si• are the reaction vectias that form the columns of S. Col(S) is there-fore spanned by the 

reaction vectors si. The,reactionkaora_ are struciuLal feat1..i..u.si.,s14he network and are fixed. 

However, the fluxes IT; are scalar quantities and represent the flux through reaction i. The fluxes 

are vari-ables. We do note that each flux has a maximal value, v  < ; VA.max and this limits the 

size of the time derivatives. Thus, only a portion of the column space is explored, that is, we can 

cap the size of the column space of S. The vectors in the left null space (1i) of S are orthogonal 

to the column space, that is, (li si) = 0. The vectors represent a mass conservation. 
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1.8.5 The row and null spaces  

The flux vector can be decomposed into a dynamic component and a steady-state component:  

V = Vdvn Vss  

The steady state component satisfies Svss =  

And v, is thus in the null space of S (see Chapter 9). The dynamic component of the flux vector, 

vdy„, is orthogonal to the null space and consequently it is in the row space of S. Each pair of 

subspaces in the domain and codomain of the dynamic mass balance equation therefore form 

orthogonal sets to each other, and their dimensions sum up to the dimension of their 

corresponding vectors, that is, dim(Null(S) + dim(Row(S)) = n and dim(Left null(S)) + 

dim(Col(S)) = m. These are introductory observations about S and its fundamental sub-spaces. In 

Chapters 8 through 11, we will study the individual fundamental subspaces in more detail. 

 

 

FIG6. Diagram of stoichiomatrix roes and cllumn 
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FIG6. Diagram of stoichiomatrix roes and cllumn 
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CHAPTER 2 

Objective 

 

Development of Generic System/Synthetic Biology simulation network using Metabolic 

Flux Balance Analysis 

 

Now a days, in biological world we are trying to make simulation of every process whether it is a 

drug action to a target or to refine any protein molecule, we are making tool to solve complex 

processes through different programs. Metabolic flux balance analysis is one of those complex 

processes in the biological world. In this project, I aim to find the rate of the reaction of all the 

metabolic pathway flux in the body, which could be helpful for the wet lab people so that they 

can find the utilization and production of the compounds. 
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CHAPTER 3 

Methodology 

I have gone through KEGG (Kyoto Encyclopedia of Genes and Genomes), because it contain the 

information about the pathways and other information about metabolic pathways. I have  also 

looked into some other databases also like Biocyc and Metacyc. To see what type of metabolic 

pathway tools they have. 

 

3.1 Data retrieval 

The Glycolytic pathway is most common pathway of all, which is used to produce energy in all 

organisms. Retrieval of Glycolytic pathway XML file was from KEGG (Kyoto Encyclopedia of 

Genes and Genomes) subdivision KEGG Pathway. It is one of the best metabolic pathway 

database in the world.  

 

3.2 Retrieve information  

The retrieved reaction ID, substrate ID and product ID were collected from the XML file, which 

was taken from KEGG Pathways. This information was retrieved form the help of the code 

which is shown 7
th 

section of this thesis. All the replicating reactions were removed. The 

information is stored in the Excel file with attributed like Reaction ID, Reaction Type, Substrate 

ID and Product ID. 

 

3.3 Getting Reaction Rate of the metabolic pathways 

To get the reaction rate of all the reactions of the metabolic pathways we construct the 

Stoichiometric Matrix. Which contain the data that in which reaction which compound is 

consumed and which compound is produced. After getting all the information about the 

metabolic pathway, we have to deduce the reaction rate of all the reactions for that we multiply 

the inverse stoichiometric matrix with the differential of all the reactions. 
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Network selection from KEGG in Systems Biology 

Markup Language (SBML) file  format 

Construct the Stoichiometric matrix for the 

reactions in the network  
 

Calculating metabolic fluxes of the reaction in the 

network through Metabolic Flux Balance 

Analysis(MFBA) 
 

Development of application for generic models 

construction and simulation 
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CHAPETR 4 

Tools & Techniques 

4.1 Tools  

a) KEGG: KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of 

databases dealing with genomes, biological pathways, diseases, drugs, and chemical 

substances. KEGG is utilized for bioinformatics research and education, including data 

analysis in genomics, metagenomics, metabolomics and other omics studies, modeling 

and simulation in systems biology, and translational research in drug development. 

b) BioCyc:The BioCyc database collection is an assortment of organism specific Pathway/ 

Genome Databases (PGDBs). They provide reference to genome and metabolic pathways 

of few thousand organisms. As of June 23, 2014, there are 3563 databases within BioCyc. 

The list of databases can be found here. SRI International, based in Menlo Park, 

California, maintains the BioCyc database family. 

c) PubMed:PubMed is a free search engine accessing primarily the MEDLINE database of 

references and abstracts on life sciences and biomedical topics. The United States 

National Library of Medicine (NLM) at the National Institutes of Health maintains the 

database as part of the Entrez system of information retrieval. 

4.2 Techniques 

a) R: R is a programming language and software environment for statistical computing and 

graphics. The R language is widely used among statisticians and data miners for 

developing statistical software and data analysis. Polls, surveys of data miners, and 
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studies of scholarly literature databases show that R's popularity has increased 

substantially in recent years. 

 

 

 

 

 

Example 

 

 

 

b) SBML: The Systems Biology Markup Language (SBML) is a representation format, 

based on XML, for communicating and storing computational models of biological 

processes. It is a free and open standard with widespread software support and a 

community of users and developers. SBML can represent many different classes of 

biological phenomena, including metabolic networks, cell signaling pathways, regulatory 

networks, infectious diseases, and many others. It is the de facto standard for representing 
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computational models in systems biology today. 

c) LibSBML: LibSBML is an open-source software library that provides an application 

programming interface (API) for the SBML (Systems Biology Markup Language) 

format. The libSBML library can be embedded in a software application or used in a web 

servlet (such as one that might be served by Apache Tomcat) as part of the application or 

servlet's implementation of support for reading, writing, and manipulating SBML 

documents and data streams. The core of libSBML is written in ISO standard C++; the 

library provides API for many programming languages via interfaces generated with the 

help of SWIG. 

Example for SBML 
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 The libSBML library is free software released under the terms of the GNU Lesser 

 General Public License as published by the Free Software Foundation; either version 

 2.1 of the License, or any later version. LibSBML was developed thanks to funding 

 from many agencies, particularly the National Institute of General Medical Sciences 

 (NIGMS, USA) as well as the Defense Advanced Research Projects Agency (DARPA, 

 USA) under the Bio-SPICE program. 

d) PHP: PHP is a server-side scripting language designed for web development but also 

used as a general-purpose programming language. While PHP originally stood for 

Personal Home Page, it now stands for PHP: Hypertext Preprocessor, which is a recursive 

backronym. PHP code can be simply mixed with HTML code, or it can be used in 

combination with various templating engines and web frameworks. PHP code is usually 

processed by a PHP interpreter, which is usually implemented as a web server's native 

module or a Common Gateway Interface (CGI) executable.  

 

 

Example 
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CHAPTER 5 

Code Used in the Project 

5.1 Code to get the Basic Information of the Metabolic Pathways: 

 
library(libSBML) 
filename = args[1]; 
d  = readSBML(abc.xml); 
errors   = SBMLDocument_getNumErrors(d); 
SBMLDocument_printErrors(d); 
m = SBMLDocument_getModel(d); 
level   = SBase_getLevel  (d); 
version = SBase_getVersion(d); 
cat("\n"); 
cat("File: ",abc.xml," (Level ",level,", version ",version,")\n"); 
if (errors > 0) { 
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   stop("No model present.");   
 
  } 
cat("         "); 
cat("  model id: ", ifelse(Model_isSetId(m), Model_getId(m) ,"(empty)"),"\n"); 
cat( "functionDefinitions: ", Model_getNumFunctionDefinitions(m) ,"\n" ); 
cat( "    unitDefinitions: ", Model_getNumUnitDefinitions    (m) ,"\n" ); 
cat( "   compartmentTypes: ", Model_getNumCompartmentTypes   (m) ,"\n" ); 
cat( "        specieTypes: ", Model_getNumSpeciesTypes       (m) ,"\n" ); 
cat( "       compartments: ", Model_getNumCompartments       (m) ,"\n" ); 
cat( "            species: ", Model_getNumSpecies            (m) ,"\n" ); 
cat( "         parameters: ", Model_getNumParameters         (m) ,"\n" ); 
cat( " initialAssignments: ", Model_getNumInitialAssignments (m) ,"\n" ); 
cat( "              rules: ", Model_getNumRules              (m) ,"\n" ); 
cat( "        constraints: ", Model_getNumConstraints        (m) ,"\n" ); 
cat( "          reactions: ", Model_getNumReactions          (m) ,"\n" ); 
cat( "             events: ", Model_getNumEvents             (m) ,"\n" ); 
cat( "\n" );  
q(status=0); 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Code to get the information like reaction ID, reaction type, substrate ID and product 

ID. 

 

<?php 

$f=fopen("hsa00010.xml","r"); 

$f2=fopen("result.csv","w"); 

fwrite($f2,"id,type,substrateid,substratename,productid,productname\n"); 

while($line=fgets($f)) 

 { 

  if(strstr($line,"<reaction id=")) 
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   { 

    $data=explode('"',$line); 

    $id=$data[1]; 

    $type=$data[5]; 

    $line=fgets($f); 

    $data=explode('"',$line); 

    $substrateid=$data[1]; 

    $substratename=$data[3]; 

    $line=fgets($f); 

    $data=explode('"',$line); 

    $productid=$data[1]; 

    $productname=$data[3]; 

 

 fwrite($f2,$id.",".$type.",".$substrateid.",".$substratename.",".$productid.",".$product 

name."\n"); 

 

 } 

} 

fclose($f); 

fclose($f2); 

?> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

File taken as Input in .XML Format is Present in Appendix. 

 

5.3 Code to get the reaction rate of the reactions 

function invert($A, $debug = FALSE) 

{ 

 /// @todo check rows = columns 
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 $n = count($A); 

 

 // get and append identity matrix 

 $I = identity_matrix($n); 

 for ($i = 0; $i < $n; ++ $i) { 

  $A[$i] = array_merge($A[$i], $I[$i]); 

 } 

 

 if ($debug) { 

  echo "\nStarting matrix: "; 

  print_matrix($A); 

 } 

 

 // forward run 

 for ($j = 0; $j < $n-1; ++ $j) { 

  // for all remaining rows (diagonally) 

  for ($i = $j+1; $i < $n; ++ $i) { 

   // if the value is not already 0 

   if ($A[$i][$j] !== 0) { 

    // adjust scale to pivot row 

    // subtract pivot row from current 

    $scalar = $A[$j][$j] / $A[$i][$j]; 

    for ($jj = $j; $jj < $n*2; ++ $jj) { 

     $A[$i][$jj] *= $scalar; 

     $A[$i][$jj] -= $A[$j][$jj]; 

    } 

   } 

  } 

  if ($debug) { 

   echo "\nForward iteration $j: "; 

   print_matrix($A); 

  } 

 } 

 

 // reverse run 

 for ($j = $n-1; $j > 0; -- $j) { 

  for ($i = $j-1; $i >= 0; -- $i) { 

   if ($A[$i][$j] !== 0) { 

    $scalar = $A[$j][$j] / $A[$i][$j]; 

    for ($jj = $i; $jj < $n*2; ++ $jj) { 

     $A[$i][$jj] *= $scalar; 

     $A[$i][$jj] -= $A[$j][$jj]; 

    } 

   } 

  } 

  if ($debug) { 
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   echo "\nReverse iteration $j: "; 

   print_matrix($A); 

  } 

 } 

 

 // last run to make all diagonal 1s 

 /// @note this can be done in last iteration (i.e. reverse run) too! 

 for ($j = 0; $j < $n; ++ $j) { 

  if ($A[$j][$j] !== 1) { 

   $scalar = 1 / $A[$j][$j]; 

   for ($jj = $j; $jj < $n*2; ++ $jj) { 

    $A[$j][$jj] *= $scalar; 

   } 

  } 

  if ($debug) { 

   echo "\n1-out iteration $j: "; 

   print_matrix($A); 

  } 

 } 

 

 // take out the matrix inverse to return 

 $Inv = array(); 

 for ($i = 0; $i < $n; ++ $i) { 

  $Inv[$i] = array_slice($A[$i], $n); 

 } 

 

 return $Inv; 

} 
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5.4  Code to get the rates of the reactions 

function invert($A, $debug = FALSE) 

{ 

 /// @todo check rows = columns 

 

 $n = count($A); 

 

 // get and append identity matrix 

 $I = identity_matrix($n); 

 for ($i = 0; $i < $n; ++ $i) { 

  $A[$i] = array_merge($A[$i], $I[$i]); 

 } 

 

 if ($debug) { 

  echo "\nStarting matrix: "; 

  print_matrix($A); 

 } 

 

 // forward run 

 for ($j = 0; $j < $n-1; ++ $j) { 

  // for all remaining rows (diagonally) 

  for ($i = $j+1; $i < $n; ++ $i) { 

   // if the value is not already 0 

   if ($A[$i][$j] !== 0) { 

    // adjust scale to pivot row 

    // subtract pivot row from current 

    $scalar = $A[$j][$j] / $A[$i][$j]; 

    for ($jj = $j; $jj < $n*2; ++ $jj) { 

     $A[$i][$jj] *= $scalar; 

     $A[$i][$jj] -= $A[$j][$jj]; 

    } 

   } 

  } 

  if ($debug) { 

   echo "\nForward iteration $j: "; 

   print_matrix($A); 

  } 

 } 

 

 // reverse run 

 for ($j = $n-1; $j > 0; -- $j) { 

  for ($i = $j-1; $i >= 0; -- $i) { 

   if ($A[$i][$j] !== 0) { 

    $scalar = $A[$j][$j] / $A[$i][$j]; 

    for ($jj = $i; $jj < $n*2; ++ $jj) { 
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     $A[$i][$jj] *= $scalar; 

     $A[$i][$jj] -= $A[$j][$jj]; 

    } 

   } 

  } 

  if ($debug) { 

   echo "\nReverse iteration $j: "; 

   print_matrix($A); 

  } 

 } 

 

 // last run to make all diagonal 1s 

 /// @note this can be done in last iteration (i.e. reverse run) too! 

 for ($j = 0; $j < $n; ++ $j) { 

  if ($A[$j][$j] !== 1) { 

   $scalar = 1 / $A[$j][$j]; 

   for ($jj = $j; $jj < $n*2; ++ $jj) { 

    $A[$j][$jj] *= $scalar; 

   } 

  } 

  if ($debug) { 

   echo "\n1-out iteration $j: "; 

   print_matrix($A); 

  } 

 } 

 

 // take out the matrix inverse to return 

 $Inv = array(); 

 for ($i = 0; $i < $n; ++ $i) { 

  $Inv[$i] = array_slice($A[$i], $n); 

 } 

 

 return $Inv; 

} 
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CHAPTER 6 

Results  

Extracted data  

Glycolysis  

id type substrateid substratename productid productname 

37 reversible 101 cpd:C00084 40 cpd:C00033 

39 reversible 101 cpd:C00084 40 cpd:C00033 

44 reversible 97 cpd:C00469 101 cpd:C00084 

45 reversible 97 cpd:C00469 101 cpd:C00084 

47 irreversible 98 cpd:C00022 136 cpd:C00068 

48 irreversible 99 cpd:C05125 96 cpd:C15972 

49 reversible 103 cpd:C15973 100 cpd:C00024 

50 reversible 95 cpd:C00186 98 cpd:C00022 

52 irreversible 92 cpd:C00074 98 cpd:C00022 

54 reversible 85 cpd:C00631 92 cpd:C00074 

55 reversible 85 cpd:C00631 93 cpd:C00197 

56 reversible 130 cpd:C00118 94 cpd:C00236 

57 reversible 130 cpd:C00118 88 cpd:C00111 

13 reversible 104 cpd:C05378 130 cpd:C00118 

58 irreversible 91 cpd:C05345 104 cpd:C05378 

59 irreversible 104 cpd:C05378 91 cpd:C05345 

61 reversible 90 cpd:C00668 91 cpd:C05345 

62 reversible 84 cpd:C00103 90 cpd:C00668 

63 reversible 89 cpd:C01172 91 cpd:C05345 

64 irreversible 87 cpd:C00221 89 cpd:C01172 

65 irreversible 87 cpd:C00221 89 cpd:C01172 

66 reversible 90 cpd:C00668 89 cpd:C01172 

68 reversible 86 cpd:C00267 87 cpd:C00221 

69 irreversible 86 cpd:C00267 90 cpd:C00668 

70 irreversible 86 cpd:C00267 90 cpd:C00668 

71 irreversible 90 cpd:C00668 86 cpd:C00267 

75 reversible 103 cpd:C15973 96 cpd:C15972 

76 reversible 93 cpd:C00197 94 cpd:C00236 
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112 irreversible 113 cpd:C00036 92 cpd:C00074 

128 reversible 125 cpd:C01159 93 cpd:C00197 

129 reversible 94 cpd:C00236 125 cpd:C01159 

131 irreversible 40 cpd:C00033 100 cpd:C00024 

133 irreversible 86 cpd:C00267 90 cpd:C00668 

134 reversible 87 cpd:C00221 89 cpd:C01172 

140 irreversible 125 cpd:C01159 85 cpd:C00631 
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CHAPTER 7 

Conclusion and future aspects 

Chemical reactions vary greatly in the speed at which they occur. Some are essentially 

instantaneous, while others may take years to reach equilibrium. The Reaction Rate for a given 

chemical reaction is the measure of the change in concentration of the reactants or the change in 

concentration of the products per unit time. Calculating the rate of the reaction  is a very 

important entity of the reaction occurring in the metabolic pathways with the help of this we can 

decide which reactions are helping pathway in more efficient way and as per our convenience we 

can decide that which reaction are better or they are not helping much in the pathway so that we 

can direct them manually. Rate of reaction can be use to control the reaction to get the product of 

interest.   
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APPENDIX 

The input file for the code is  
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