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Abstract 

 

 

This project deals with the Bloom filter advancements where a basic bloom filter is 

designed. The main idea of designing a bloom filter is to reduce the time complexity of 

search by keeping the false positive probability as minimum as possible.  

 

 The drawbacks of the basic bloom filter is seen which are further dealt with in the next 

level of Bloom filters which is counting bloom filters. At each level, the false positive 

probability is reduced.  

 

Another advancement is done by creating weighted bloom filter which is an advanced 

version of the basic bloom filter with further reduced false positivity rate. Hence the 

comparison between these three filters is done and  evaluated. 

 

The matlab implementation of the filters are done to see which filter is best in terms or 

reduced search time as well lower false positive rate. Also the complexity analysis is 

added to see how the time and space complexity increase or decrease with the 

advancements. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

 

A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton 

Howard Bloom in 1970, that is used to test whether an element is a member of 

a set. False positive matches are possible, but false negatives are not.  In other words, a 

query returns either "possibly in set" or "definitely not in set". Elements can be added to 

the set, but not removed. The more elements that are added to the set, the larger the 

probability of false positives. 

 

 

The main aim of  the bloom filter  is to reduce the unnecessary disk access made while 

searching an element while it is not in the set.  

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Probabilistic
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Element_(mathematics)
http://en.wikipedia.org/wiki/Set_(computer_science)
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
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Figure : 1 Bloom Filter Architecture [8] 

 

 

 

 

1.1 Operations 

 

The basic bloom filter supports two operations: test and add. 

Test is used to check whether a given element is in the set or not. If it returns: 

 false then the element is definitely not in the set. 

 true then the element is probably in the set. The false positive rate is a function of 

the bloom filter's size and the number and independence of the hash functions 

used. 

Add simply adds an element to the set. Removal is impossible without introducing false 

negatives, but extensions to the bloom filter are possible that allow removal e.g. counting 

filters. 
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1.2 Applications 

 

The classic example is using bloom filters to reduce expensive disk (or network) lookups 

for non-existent keys. 

If the element is not in the bloom filter, then we know for sure we don't need to perform 

the expensive lookup. On the other hand, if it is in the bloom filter, we perform the 

lookup, and we can expect it to fail some proportion of the time (the false positive rate). 
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CHAPTER 2 

 

BASIC BLOOM FILTER 

 

The basic bloom filter is designed where the false positive rate is checked. 

 

2.1 Basic Bloom Filter Design 

 

 An empty Bloom filter is a bit array of m bits, all set to 0.  

 There must also be k different hash functions defined, each of which maps or 

hashes some set element to one of the m array positions with a uniform 

random distribution. 

 To add an element, feed it to each of the k hash functions to get k array 

positions. Set the bits at all these positions to 1. 

 To query for an element (test whether it is in the set), feed it to each of 

the k hash functions to get k array positions. 

  If any of the bits at these positions are 0, the element is definitely not in the 

set – if it were, then all the bits would have been set to 1 when it was inserted.  

 If all are 1, then either the element is in the set, or the bits have by chance 

been set to 1 during the insertion of other elements, resulting in a false 

positive. 

 

 

 

 

 

http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Map_(mathematics)
http://en.wikipedia.org/wiki/False_positive
http://en.wikipedia.org/wiki/False_positive
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Element Removal : 

Removing an element from this simple Bloom filter is impossible because false 

negatives are not permitted. An element maps to k bits, and although setting any one 

of those kbits to zero suffices to remove the element, it also results in removing any 

other elements that happen to map onto that bit. Since there is no way of determining 

whether any other elements have been added that affect the bits for an element to be 

removed, clearing any of the bits would introduce the possibility for false negatives. 

 

 

Figure : 2 Bloom Filter Example [6] 
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2.2 Space And Time Advantages 

 

Bloom filters also have the unusual property that the time needed either to add items or to 

check whether an item is in the set is a fixed constant, O(k), completely independent of 

the number of items already in the set. No other constant-space set data structure has this 

property, but the average access time of sparse hash tables can make them faster in 

practice than some Bloom filters. 

 

To understand its space efficiency, it is instructive to compare the general Bloom filter 

with its special case when k = 1. If k = 1, then in order to keep the false positive rate 

sufficiently low, a small fraction of bits should be set, which means the array must be 

very large and contain long runs of zeros. The information content of the array relative to 

its size is low. The generalized Bloom filter (k greater than 1) allows many more bits to 

be set while still maintaining a low false positive rate; if the parameters (k and m) are 

chosen well, about half of the bits will be set,[2] and these will be apparently random, 

minimizing redundancy and maximizing information content. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Information_content
http://en.wikipedia.org/wiki/Bloom_filter#cite_note-2
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2.3 Probability of False Positives[2] 

Bloom Filter Size = m bits 

Number of elements in set = n 

Number of hash functions used = k 

 

Let  m denote the number of bits in the Bloom filter. When inserting an element into the 

filter, the probability that a certain bit is not set to one by a hash function is : 

 

 

 

 

Now, there are k hash functions, and the probability of any of them not having set a 

specific bit to one is given by : 

 

 

 

After inserting n elements to the filter, the probability that a given bit is still zero is : 

 

 

 

And consequently the probability that the bit is one is : 
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For an element membership test, if all of the k array positions in the filter computed by 

the hash functions are set to one, the Bloom filter claims that the element belongs to the 

set. The probability of this happening when the element is not part of the set is given by : 

 

   

 

 

Therefore, the probability of false positive in bloom filter is : 

 

 

 

 

OPTIMAL NUMBER OF HASH FUNCTIONS : 

    

The false positive probability decreases as the size of the Bloom filter, m, increases. The 

probability increases with n as more elements are added. Now, we want to minimizethe 

probability of false positives, by minimizing (1−e−kn/m)k with respect to k. This is 

accomplished by taking the derivative and equaling to zero, which gives the optimal 

value of k: 
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Figure : 3 Bloom Filter False Positivity Rate [2] 

 

 

 

 

 

 

 

 

 

 



[19] 

 

TABLE 1 

(KEY BLOOM FILTER PARAMETERS) 

 

 

 

 PARAMETERS 

 

 INCREASE 

 

 Number of hash functions (k) 

 

 Size of filter (m) 

 

 Number of elements in the set (n) 

Higher false positive rate 

 

 More computation, lower false positive 

rate as k  = kopt 

 

 More space is needed, lower false 

positive rate 

 

 Higher false positive rate 
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PSEUDOCODES FOR IMPLEMENTATION 

 

The basic bloom filter algorithms are designed for two operations : insertion and 

checking if an element might be present in the set or not. 

 

 

2.4   Pseudocode for Bloom Filter insertion  

 

Data: x is the object key to insert into the Bloom filter. 

Function: insert(x) 

for j : 1 . . . k do 

/* Loop all hash functions k */ 

i   = hj(x); 

if Bi == 0 then 

/* Bloom filter had zero bit at 

position i */ 

Bi  = 1; 

end 

end 
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2.5   Pseudocode for Bloom Member Test  

 

Data: x is the object key for which membership is tested. 

Function: ismember(x) returns true or false to the 

membership test 

m   1; 

j   1; 

while m == 1 and j _ k do 

i   hj(x); 

if Bi == 0 then 

m   0; 

end 

j   j + 1; 

end 

return m; 
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CHAPTER 3 

 

 

BASIC COUNTING BLOOM FILTER 

 

A Bloom filter can easily be extended to support deletions by adding a counter for each 

element of the data structure. A counting Bloom filter has m counters along with the m 

bits. Fan et al. first introduced the idea of a counting Bloom filter in conjunction with 

Web caches. 

 

The structure works in a similar manner as a regular Bloom filter; however, it is able to 

keep track of insertions and deletions. In a counting Bloom filter, each entry in the Bloom 

filter is a small counter associated with a basic Bloom filter bit. When an item is inserted, 

the corresponding counters are incremented; when an item is deleted, the corresponding 

counters are decremented. To avoid counter overflow, we need choose sufficiently large 

counters. 
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Figure :4 Counting Bloom Filter Architecture [7] 
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3.1 Basic Counting Bloom Filter Design 

 

 A basic bloom filter with m bits size is taken. 

 

 K number of hash functions are used using the optimal value of k 

 

 A counting filter with size same as the basic bloom filter is used of m bits. 

 

 Each time the bit at a particular index is set, the value of count corresponding to 

that array index is incremented. 

 

 At the time of deletion, the value of count at the index provided by different hash 

functions is checked. 

 

 If the value of count at all the positions is zero, then the element can be deleted 

since that position is not set by any of the elements in the set. 

 

 If the values of count is non-zero , then that element cannot be deleted. 

 

 The space required for such an architecture is twice of that used in the basic 

bloom filter design whereas the complexity remains same. 
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3.2   False Positive Probability of Counting Bloom Filter[2] 

 

The probability that the ith counter is incremented j times is a binomial random variable: 

 

 

 

The counter counts the number of times that the bit is set to one. All the counts are 

initially zero. The probability that any count is greater or equal to j: 

 

 

 

As already mentioned the optimum value for k (over reals) is ln 2m/n so assuming that 

the number of hash functions is less than ln 2m/n we can further bound : 
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PSEUDOCODES FOR IMPLEMENTATION 

 

3.3  Pseudocode for Counting Bloom Filter insertion  

 

Data: x is the item to be inserted. 

Function: insert(x) 

for j : 1 . . . k do 

/* Loop all hash functions k */ 

i  =  hj(x); 

/* Increment counter Ci */ 

Ci   Ci + 1; 

if Bi == 0 then 

/* Bit is zero at position i */ 

Bi  =  1; 

end 

end 
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3.4    Pseudocode for Counting Bloom Filter deletion  

 

Data: x is the item to be removed. 

Function: delete(x) 

for j : 1 . . . k do 

/* Loop all hash functions k */ 

i  =  hj(x); 

/* Decrement counter Ci */ 

Ci   Ci − 1; 

if Ci  =  0 then 

/* Reset bit at position i */ 

Bi  =  0; 

end 

end 

 

 

Algorithm 3.3 presents the pseudocode for the insert operation for element x with 

counting. The operation increments the counter of each bit to which x is hashed. The 

counting structure supports the removal of elements using the delete operation presented 

in Algorithm 3.4. The delete decrements the counter of each bit to which x is hashed. The 

cor responding bit is reset to zero when the counter becomes zero. 
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CHAPTER 4 

 

BASIC WEIGHTED BLOOM FILTER 

 

The basic weighted bloom filter is based on the elements’ query frequencies and their 

probabilities of being members. In many applications, query frequencies and membership 

likelihoods are estimated or collected with well developed techniques. Statistics of such 

information are maintained, especially for a set of ‘hot’ categories. 

 

 

The filter’s false positive probability is a weighted sum of each individual element’s false 

positive probability, where the weight corresponding to an individual element is 

positively correlated with the element’s query frequency and is negatively correlated with 

the element’s probability of being a member. Therefore, we would in general like to 

assign more hash functions to an element with a higher query frequency or with a lower 

probability of being a member, in order to reduce the false-positive probability of an 

element with a higher weight. 

 

4.1   Basic Weighted Bloom Filter Design 

 

 Same as the traditional bloom filter, it uses m bits to record the n elements of the 

set S. 

 

 There are N elements in the universe and N >> n 

 

 Probability of an element ‘e’ being a member is xe 
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 E{Xe} =  xe 

 

 For each element e € U, denote its query frequency by fe. 

 

 Denote the number of hash functions used for an element e by ke 

 

 Probability that a query is about an element a € U  : 

           P = freq of element a / freq of all elements € U 

 Total number of hash functions used for elements in S : 

 

 Probability that a bit is not set : 

 

 Prob ( Bit = 0) :p 

Prob ( Bit = 1) : 1-p 

 The probability of a false positive is the weighted sum of the false positive 

probabilities of all non-members in the universe, denoted by PFP[3] : 
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 Normalized query frequency : 

 

 False Positive Probability : 

 

 

 

 Value of ke for all e € U : 

 

 Expectation of  False Positive Probability : 
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4.2   Generalization Of Bloom Filter  

 

We compare the weighted Bloom filter to the traditional Bloom filter and show that 

our result is a generalization and further optimization of the traditional optimal 

configuration. 

Optimal Configuration For Bloom Filter : 

 

In the weighted Bloom filter setting, all the elements should be treated the same when no 

knowledge about query frequencies or membership likelihood is available. 

 

By plugging xe = n/N and E{re} = 1/N , we obtain the formulas ke = (m/n) ln 2 and  

PFP = 2^(-m/n) ln 2, the same as the second and the third formulas of the traditional 

Bloom filter’s configuration. 
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CHAPTER 5 

5.1 Implementation in Java 

BLOOM FILTER : 

 

package bloom.filter; 

import java.util.*;     

import java.security.*; 

import java.math.*; 

import java.nio.*; 

  

/* Class BloomFilter */ 

 

class BloomFilter 

{     

    private byte[] set; 

    private Integer[] countSet; 

    private Integer[] frequency; 

    private int keySize, setSize, size; 

    private MessageDigest md;  

    /* Constructor */ 

 

 

    public BloomFilter(int capacity, int k) 

    { 

        setSize = capacity; 

        set = new byte[setSize]; 

        countSet = new Integer[setSize];      

        frequency = new Integer[20];         

        keySize = k; 

        size = 0;         

        for(int i=0; i<setSize ; i++){ 

            countSet[i] = 0; 

        }         

        for(int i=0; i<20; i++){ 

            frequency[i] = 0; 

        }         

        try  

        { 

            md = MessageDigest.getInstance("MD5");   

        }  

        catch (NoSuchAlgorithmException e)  

        { 
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            throw new IllegalArgumentException("Error : MD5 Hash not found"); 

        } 

    } 

 

 

 

    /* Function to clear bloom set */ 

    public void makeEmpty() 

    { 

        set = new byte[setSize]; 

        countSet = new Integer[setSize];         

        for(int i =0; i<setSize; i++){ 

            countSet[i]=0; 

        } 

        size = 0; 

        try  

        { 

            md = MessageDigest.getInstance("MD5"); 

        }  

        catch (NoSuchAlgorithmException e)  

        { 

            throw new IllegalArgumentException("Error : MD5 Hash not found"); 

        } 

    } 

 

 

 

 

    /* Function to check is empty */ 

    public boolean isEmpty() 

    { 

        return size == 0; 

    } 

 

 

 

    /* Function to get size of objects added */ 

    public int getSize() 

    { 

        return size; 

    } 
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    /* Function to get hash - MD5 */ 

    private int getHash(int i) 

    { 

        md.reset(); 

        byte[] bytes = ByteBuffer.allocate(4).putInt(i).array(); 

        md.update(bytes, 0, bytes.length); 

        return Math.abs(new BigInteger(1, md.digest()).intValue()) % (set.length - 1); 

    } 

 

 

 

 

    /* Function to add an object */ 

    public void add(Object obj) 

    {           

        int element = (Integer)obj; 

        frequency[(Integer)obj]+=1; 

        System.out.println("Element is : "+element);       

        int[] tmpset = getSetArray(obj);                 

        System.out.println("hello"); 

        for (int i : tmpset){ 

            set[i] = 1; 

            countSet[i] +=1; 

        } 

        size++; 

    } 

 

 

 

 

    /* Function to check is an object is present */ 

    public boolean contains(Object obj)  

    { 

        int[] tmpset = getSetArray(obj); 

        for (int i : tmpset) 

            if (set[i] != 1) 

                return false; 

        return true; 

    } 
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    /* Function to get set array for an object */ 

    private int[] getSetArray(Object obj) 

    {                     

        int freq ; 

        int freqSum=0; 

        for(int i =0; i<20; i++){ 

            if(frequency[i]>0) 

                freqSum += 1; 

        }         

        freq = (frequency[(Integer)obj]/freqSum)*100; 

        System.out.println("freq : "+freq);         

        if(freq >= 50){               

            keySize = keySize*2;             

        }         

        int[] tmpset = new int[keySize]; 

        tmpset[0] = getHash(obj.hashCode());             

        for (int i = 1; i < keySize ; i++){ 

                tmpset[i] = (getHash(tmpset[i - 1])); 

        }         

        System.out.print("Keys are : ");         

        for(int i =0; i<keySize; i++){ 

            System.out.print(tmpset[i]+"\t"); 

        }         

        return tmpset;   

    }     

 

 

    public void delete(Object obj) 

    { 

        int[] tmpset = getSetArray(obj);         

        for (int i : tmpset){           

            if(countSet[i] == 1){ 

            set[i] = 0; 

            countSet[i] -=1; 

            }else 

            { 

                System.out.println("Element cannot be deleted"); 

                break; 

            } 

        } 

        size--; 

    } 
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    public void showBF(){ 

        System.out.println("Index \tBloom \t Count"); 

        for(int i=0; i<setSize ; i++){            

            System.out.println(i +"\t"+set[i]+"\t" + countSet[i]); 

        } 

    } 

} 

 

 

BLOOM FILTER TEST : 

 

 

package bloom.filter; 

 

import java.util.Scanner; 

 

/** 

 * 

 * @author Niharika 

 */ 

public class BloomFilterTest 

{ 

    public static void main(String[] args) 

    { 

        Scanner scan = new Scanner(System.in); 

        System.out.println("Bloom Filter Test\n");    

  

        System.out.println("Enter set capacity and key size"); 

        BloomFilter bf = new BloomFilter(scan.nextInt() , scan.nextInt()); 

  

        char ch; 

        /*  Perform bloom filter operations  */ 

        do     

        { 

            System.out.println("\nBloomFilter Operations\n"); 

            System.out.println("1. insert "); 

            System.out.println("2. contains"); 

            System.out.println("3. check empty"); 

            System.out.println("4. clear"); 

            System.out.println("5. size"); 

            System.out.println("6. Delete"); 

            System.out.println("7. Show Bloom Filter"); 

  

            int choice = scan.nextInt();             
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switch (choice) 

            { 

            case 1 :  

                System.out.println("Enter integer element to insert"); 

                bf.add( new Integer(scan.nextInt()) );                      

                break;                           

            case 2 :  

                System.out.println("Enter integer element to search"); 

                System.out.println("Search result : "+ bf.contains( new Integer(scan.nextInt()) 

)); 

                break;                                           

            case 3 :  

                System.out.println("Empty status = "+ bf.isEmpty()); 

                break; 

            case 4 :  

                System.out.println("\nBloom set Cleared"); 

                bf.makeEmpty(); 

                break;     

            case 5 :  

                System.out.println("\nSize = "+ bf.getSize() ); 

                break;          

            case 6: 

                System.out.println("Enter integer element to delete"); 

                bf.delete( new Integer(scan.nextInt()) ); 

                break; 

            case 7: 

                System.out.println("Bloom Filter is : \n"); 

                bf.showBF(); 

                break; 

            default :  

                System.out.println("Wrong Entry \n "); 

                break;    

            }     

  

            System.out.println("\nDo you want to continue (Type y or n) \n"); 

            ch = scan.next().charAt(0);                         

        } while (ch == 'Y'|| ch == 'y');     

    } 

} 
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5.2 Results : 

Operations :  

The operations used in the Bloom filter are as follows: 

 Insertion 

 Contains 

 Check Empty 

 Clear 

 Size 

 Delete 

 Show Bloom Filter 

 

 

Figure : 5 Bloom Filter Operations 
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Insertion :  

 
The insertion operation is performed to add elements into the Bloom Filter. After entering 

the element, the element’s frequency is calculated for calculating the weight of the 

element in the Bloom filter to set the key size of the frequently occurring elements. 

 

The following screenshot shows the element insertion , the frequency of the element 

being inserted. Also, the corresponding keys are calculated from the formula in the above 

code. The calculated keys are then set to 1 which shows the array index being set by the 

inserted element. 

 

 

 

 
 

Figure 6 : Bloom Filter Insertion 
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Contains :  

 
This function is used to check whether a given element is in the set or not. The frequency 

of the element is not calculated since no weight needs to be assigned for the element to be 

searched.  

 

The search result returns true if the element may be in the set i.e. the search result if true 

of the keys calculated by the element are all set to 1.  

 

If the calculated keys are all found out to be 0, it means the element is definitely not a 

part of the set, else, it may or may not be in the set. 

 

 

 

 
 

Figure 7 : Bloom Filter Search 
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Check Empty : 

 
This function is used in the Bloom Filter to check whether the set or the bloom filter is 

empty or not.  

 

If the bloom filter is empty and there are no elements in the set, then the search result 

shows true. 

 

The search result is false if there are elements are already inserted in the set. 

 

 

 
 

Figure 8 : Bloom Filter Check Empty 
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Clear : 

 
This function is used to clear the Bloom Filter. If the bloom filter contains already 

inserted elements, all the elements from the Bloom Filter are deleted and the array 

indexes previously set to 1 for different element’s keys are again set to 0. 

 

In case of counting bloom filter, along with the array index of the basic bloom filter, the 

index in the counter array are also set to 0 for all the corresponding array position of the 

keys. 

 

 

 

 
 

 

Figure 9 : Bloom Filter Clear 
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Size : 

 
This function shows the size of the bloom filter initially entered by the user. 

 

 

 
 

 

Figure 10 : Bloom Filter Size 
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Delete : 

 
This function is used to delete a particular element from the filter. The keys of the 

element to be deleted are calculated. If the bit at even a single array index of the key is set 

to 1, then the element cannot be deleted otherwise it can be deleted. 

 

 

 

 

 
 

Figure 11 : Bloom Filter Deletion 
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Show Bloom Filter : 

 
This function is used to show the entire bloom filter. It shows the basic bloom filter array 

in which are the keys calculated are set to 1. Also the counting bloom filter array contains 

the number of times an index of the basic bloom filter array is set to 1. 

 

 

 
 

 
Figure 12 : Show Bloom Filter 
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5.3 Matlab Code For Basic Bloom Filter : 

clc; 

clear all; 

  

m=64; 

n=[1:0.001:1000]; 

k=(m./n)*log(2); 

y=(1-exp((-k.*n)./m)).^k; 

subplot(2,2,1); 

plot(n,y,'red'); 

xlabel('Number of elements'); 

ylabel('False Positivity'); 

  

m=128; 

n=[1:0.001:1000]; 

k=(m./n)*log(2); 

y=(1-exp((-k.*n)./m)).^k; 

subplot(2,2,2); 

plot(n,y,'red'); 

xlabel('Number of elements'); 

ylabel('False Positivity'); 

  

m=512; 

n=[1:0.001:1000]; 

k=(m./n)*log(2); 

y=(1-exp((-k.*n)./m)).^k; 

subplot(2,2,3); 

plot(n,y,'red'); 

xlabel('Number of elements'); 

ylabel('False Positivity'); 
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m=1024; 

n=[1:0.001:1000]; 

k=(m./n)*log(2); 

y=(1-exp((-k.*n)./m)).^k; 

subplot(2,2,4); 

plot(n,y,'red'); 

xlabel('Number of elements'); 

ylabel('False Positivity'); 

  

xlabel('Number of elements'); 

ylabel('False Positivity'); 

 

RESULT : 

Here , we have considered four values of m = 64,128,512,1024. We have seen that as  

size of the bloom filter increases, the false positive rate decreases for the basic bloom  

filter. 
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Figure : 13 Matlab Implementation of BBF. 

 

 

 

 

 

 

 



[49] 

 

5.4 Matlab Code For Counting Bloom Filter : 

clc; 

clear all; 

  

m=64; 

n=[1:0.001:1000]; 

k=round((m./n)*log(2)); 

j=16; 

z = m .* (((2.71 .*n.*k)./(j.*m))).^j; 

subplot(2,2,1); 

plot(n,z); 

xlabel('Number of elements'); 

ylabel('False Positivity'); 

  

m=128; 

n=[1:0.001:1000]; 

k=round((m./n)*log(2)); 

j=16; 

z = m .* (((2.71 .*n.*k)./(j.*m))).^j; 

subplot(2,2,2); 

plot(n,z); 

xlabel('Number of elements'); 

ylabel('False Positivity'); 

  

m=512; 

n=[1:0.001:1000]; 

k=round((m./n)*log(2)); 

j=16; 

z = m .* (((2.71 .*n.*k)./(j.*m))).^j; 

subplot(2,2,3); 

plot(n,z); 

xlabel('Number of elements'); 

ylabel('False Positivity'); 

  

m=1024; 

n=[1:0.001:1000]; 

k=round((m./n)*log(2)); 

j=16; 

z = m .* (((2.71 .*n.*k)./(j.*m))).^j; 

subplot(2,2,4); 

plot(n,z); 

xlabel('Number of elements'); 

ylabel('False Positivity'); 
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Figure :14  Matlab Implementation of Counting Bloom Filter 

Result: The counting Bloom Filter is implemented for various values of m 

=64,128,512,1024. Hence, it is clear that as the size of bloom filter increases, the false 

positivity decreases for large value of n.  

Comparison : The above figures show that the Counting Bloom Filter is better than 

the Basic Bloom Filter as the false positivity has significantly reduced in the counting 

filter along with the facility of removal of element deletion if necessary conditions are 

satisfied.  
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CHAPTER – 6 

 

6.1 Complexity Analysis of Basic Bloom Filter 

The complexity analysis of the Basic Bloom Filter include the searching time complexity 

required to test whether an element is a member of the set or not which in turn helps in 

finding the false positivity rate. 

The working code required for checking whether the element is in the set or not is as 

follows:  

private int getHash(int i) 

    { 

        md.reset(); 

        byte[] bytes = ByteBuffer.allocate(4).putInt(i).array(); 

        md.update(bytes, 0, bytes.length); 

        return Math.abs(new BigInteger(1, md.digest()).intValue()) % (set.length - 1); 

    } 

 

private int[] getSetArray(Object obj) 

    {                  

       int freq ; 

        int totalElements=0; 

        for(int i =0; i<20; i++){             

                totalElements += frequency[i];         

        }                                

         

        freq =(frequency[(Integer)obj]*100)/totalElements; 

        System.out.println("freq : "+freq); 

         

        if(freq >= 50 && totalElements>10){   

             

            keySize = keySize*2; 

             

        } 

         

        int[] tmpset = new int[keySize]; 

        tmpset[0] = getHash(obj.hashCode()); 
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        for (int i = 1; i < keySize ; i++){ 

                tmpset[i] = (getHash(tmpset[i - 1])); 

        } 

         

        System.out.print("Keys are : "); 

         

        for(int i =0; i<keySize; i++){ 

            System.out.print(tmpset[i]+"\t"); 

        } 

         

        return tmpset; 

     

    } 

public boolean contains(Object obj)  

    { 

        int[] tmpset = getSetArray(obj); 

        for (int i : tmpset) 

            if (set[i] != 1) 

                return false; 

        return true; 

    } 

 

 

In the above given code, the following functions are used : 

 

 getHash() : This function has a constant time complexity since it has no loops in 

it. Hence the time complexity remains constant. 

 

 getSetArray() : This function has for loop running twice to the length of the 

keyize k. Since it has a for loop , the time complexity of this function comes out 

to be O ( k). 

 

 contains() : This function gives the result as to whether the element is in the set or 

not. This function has the other function getSetArray with time complexity O(k). 

Hence the complexity of the overall Basic Bloom filter to check whether an 

element is a member of the set or not is O(k). 

 

 

 CONCLUSION :  

The complexity of adding an element into the array : O(k) 

 

The complexity of checking set membership : O(k) 
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6.2  Complexity Analysis of Counting Bloom Filter 

The counting bloom filter is an extension of the Basic Bloom Filter. Hence the basic 

running code for checking whether an element is in the set or not remains the same. The 

addition made comprises of  creation of an extra array as the counter. 

As we have already seen that the complexity of the Basic Bloom filter is O(K). The time 

complexity for checking whether an element is member of the set or not remains 

unchanged. We directly go to the basic bloom filter to check the set membership.  

The counting bloom filter is basically used at the time of element deletions from the set 

which cannot be achieved using the basic bloom filter. 

The code for deletion of an element is as follows : 

public void delete(Object obj) 

    { 

        int[] tmpset = getSetArray(obj); 

         

        for (int i : tmpset){ 

             

            if(countSet[i] == 1){ 

            set[i] = 0; 

            countSet[i] -=1; 

            }else 

            { 

                System.out.println("Element cannot be deleted"); 

                break; 

            } 

        } 

        size--; 

    } 

Since the above code for deletion again contains the function getSetArray() which has the 

time complexity O(k). The other for loop runs till the length of tempest which again is of 

size k. Hence the overall complexity for deletion comes out to be O(k) again. 
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 Conclusion :  

The time complexity for adding an element : O(k) 

The time complexity for testing set membership : O(k) 

The time complexity for deleting an element : O(k) 

 

6.3  Complexity Analysis of Weighted Bloom Filter 

The weighted Bloom Filter is designed as an extension of the counting bloom filter and 

the basic bloom filter. It includes using more hash functions for the frequently occurring 

elements. The frequency of an element is calculated based on which decision is taken to 

find how many number of hash functions should be used.  

In the function getSetArray() given above in the basic bloom filter, the frequency of each 

element is calculated as and when it is entered. As soon as the element is entered, based 

on the previously entered items, the frequency is calculated. 

The formula used for finding the frequency is given below: 

int freq ; 

        int totalElements=0; 

        for(int i =0; i<20; i++){             

                totalElements += frequency[i];         

        } 

                                    

         

        freq =(frequency[(Integer)obj]*100)/totalElements; 

        System.out.println("freq : "+freq); 

         

        if(freq >= 50 && totalElements>10){   

            keySize = keySize*2; 

        } 
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In the above code for calculating the frequency of each element, no loops are used . 

Hence the frequency calculation would not cause the overall complexity of the code to 

change. 

 Conclusion : 

The time complexity for adding an element : O(k) 

The time complexity for testing set membership : O(k) 

The time complexity for deleting an element : O(k) 

 

Hence we have seen that the Bloom Filter Advancements reduce the false positivity rate 

without changing the time complexity throughout. The property of the Basic Bloom filter 

to have a constant search time is retained throughout the project. 
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