
[1]

BLOOM FILTER ADVANCEMENTS

Project Report submitted in partial fulfillment of the requirement

for the degree of

Bachelor of Technology.

in

Information Technology

under the Supervision of

Mr Shailendra Shukla

By

Niharika Verma - 111409

 to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

[2]

Certificate

This is to certify that project report entitled “ Bloom Filter Advancements”, submitted by

Niharika Verma (111409) in partial fulfillment for the award of degree of Bachelor of

Technology in Information Technology to Jaypee University of Information Technology,

Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

 Mr Shailendra Shukla

Date: 8th May,2015 Assistant Professor (Grade-II)

[3]

Acknowledgement

I would like to express my special thanks of gratitude to my project guide Mr. Shailendra

Shukla as well as the university who gave me the golden opportunity to do this wonderful

project on the topic “ Bloom Filter Advancements ” which also helped me in doing a lot

of Research and i came to know about so many new things I am really thankful to them.

Secondly i would also like to thank my parents and friends who helped me a lot in

finalizing this project within the limited time frame.

Date: 8th May,2015 Niharika Verma

 111409

[4]

Table of Content

S. No. Topic Page No.

1. Introduction 10

 1.1 Operations 11

 1.2 Applications 12

2. Basic Bloom Filter 13

 2.1 Basic Bloom Filter Design 13

2.2 Space and time Advantages 15

2.3 Probability of False Positive 16

2.4 Pseudocode for Bloom Filter Insertion 20

2.5 Pseudocode for Bloom Filter Test 21

3. Basic Counting Bloom Filter 22

 3.1 Basic Counting Bloom Filter Design 24

 3.2 False Positive Probability Of Counting BF 25

 3.3 Pseudocode for CBF Insertion 26

 3.4 Pseudocode for CBF Deletion 27

[5]

4. Basic Weighted Bloom Filter 28

4.1 Basic Weighted Bloom Filter Design 28

4.2 Generalization of Bloom Filter 31

5. Implementation 32

 5.1 Java Implementation 32

 5.2 Java Implementation Results 38

 5.2 Matlab Code for Basic Bloom Filter 46

 5.3 Matlab Code for Counting Bloom Filter 49

6. Results and Conclusion 51

 6.1 Complexity Analysis of Basic Bloom Filter 51

 6.2 Complexity Analysis of Counting Bloom Filter 53

 6.3 Complexity Analysis of Weighted Bloom Filter 54

 6.4 Result and conclusion 55

[6]

List of Figures

S.No. Title Page No.

1. Bloom Filter Architecture 10

2. Bloom Filter Example 14

3. False Positive Rate 18

4. Counting Bloom Filter Architecture 23

5. Bloom Filter Operations 38

6. Bloom Filter Insertion 39

7. Bloom Filter Search 40

8. Bloom Filter Check Empty 41

9. Bloom Filter Clear 42

10. Bloom Filter Size 43

11. Bloom Filter Deletion 44

[7]

12. Show Bloom Filter 45

13. Matlab Implementation of BBF 48

14. Matlab Implementation of CBF 50

[8]

List of Tables

S.No. Title Page No.

1. Key Bloom Filter Parameters 16

[9]

Abstract

This project deals with the Bloom filter advancements where a basic bloom filter is

designed. The main idea of designing a bloom filter is to reduce the time complexity of

search by keeping the false positive probability as minimum as possible.

 The drawbacks of the basic bloom filter is seen which are further dealt with in the next

level of Bloom filters which is counting bloom filters. At each level, the false positive

probability is reduced.

Another advancement is done by creating weighted bloom filter which is an advanced

version of the basic bloom filter with further reduced false positivity rate. Hence the

comparison between these three filters is done and evaluated.

The matlab implementation of the filters are done to see which filter is best in terms or

reduced search time as well lower false positive rate. Also the complexity analysis is

added to see how the time and space complexity increase or decrease with the

advancements.

[10]

CHAPTER 1

1. INTRODUCTION

A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton

Howard Bloom in 1970, that is used to test whether an element is a member of

a set. False positive matches are possible, but false negatives are not. In other words, a

query returns either "possibly in set" or "definitely not in set". Elements can be added to

the set, but not removed. The more elements that are added to the set, the larger the

probability of false positives.

The main aim of the bloom filter is to reduce the unnecessary disk access made while

searching an element while it is not in the set.

http://en.wikipedia.org/wiki/Probabilistic
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Element_(mathematics)
http://en.wikipedia.org/wiki/Set_(computer_science)
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors

[11]

Figure : 1 Bloom Filter Architecture [8]

1.1 Operations

The basic bloom filter supports two operations: test and add.

Test is used to check whether a given element is in the set or not. If it returns:

 false then the element is definitely not in the set.

 true then the element is probably in the set. The false positive rate is a function of

the bloom filter's size and the number and independence of the hash functions

used.

Add simply adds an element to the set. Removal is impossible without introducing false

negatives, but extensions to the bloom filter are possible that allow removal e.g. counting

filters.

[12]

1.2 Applications

The classic example is using bloom filters to reduce expensive disk (or network) lookups

for non-existent keys.

If the element is not in the bloom filter, then we know for sure we don't need to perform

the expensive lookup. On the other hand, if it is in the bloom filter, we perform the

lookup, and we can expect it to fail some proportion of the time (the false positive rate).

[13]

CHAPTER 2

BASIC BLOOM FILTER

The basic bloom filter is designed where the false positive rate is checked.

2.1 Basic Bloom Filter Design

 An empty Bloom filter is a bit array of m bits, all set to 0.

 There must also be k different hash functions defined, each of which maps or

hashes some set element to one of the m array positions with a uniform

random distribution.

 To add an element, feed it to each of the k hash functions to get k array

positions. Set the bits at all these positions to 1.

 To query for an element (test whether it is in the set), feed it to each of

the k hash functions to get k array positions.

 If any of the bits at these positions are 0, the element is definitely not in the

set – if it were, then all the bits would have been set to 1 when it was inserted.

 If all are 1, then either the element is in the set, or the bits have by chance

been set to 1 during the insertion of other elements, resulting in a false

positive.

http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Map_(mathematics)
http://en.wikipedia.org/wiki/False_positive
http://en.wikipedia.org/wiki/False_positive

[14]

Element Removal :

Removing an element from this simple Bloom filter is impossible because false

negatives are not permitted. An element maps to k bits, and although setting any one

of those kbits to zero suffices to remove the element, it also results in removing any

other elements that happen to map onto that bit. Since there is no way of determining

whether any other elements have been added that affect the bits for an element to be

removed, clearing any of the bits would introduce the possibility for false negatives.

Figure : 2 Bloom Filter Example [6]

[15]

2.2 Space And Time Advantages

Bloom filters also have the unusual property that the time needed either to add items or to

check whether an item is in the set is a fixed constant, O(k), completely independent of

the number of items already in the set. No other constant-space set data structure has this

property, but the average access time of sparse hash tables can make them faster in

practice than some Bloom filters.

To understand its space efficiency, it is instructive to compare the general Bloom filter

with its special case when k = 1. If k = 1, then in order to keep the false positive rate

sufficiently low, a small fraction of bits should be set, which means the array must be

very large and contain long runs of zeros. The information content of the array relative to

its size is low. The generalized Bloom filter (k greater than 1) allows many more bits to

be set while still maintaining a low false positive rate; if the parameters (k and m) are

chosen well, about half of the bits will be set,[2] and these will be apparently random,

minimizing redundancy and maximizing information content.

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Information_content
http://en.wikipedia.org/wiki/Bloom_filter#cite_note-2

[16]

2.3 Probability of False Positives[2]

Bloom Filter Size = m bits

Number of elements in set = n

Number of hash functions used = k

Let m denote the number of bits in the Bloom filter. When inserting an element into the

filter, the probability that a certain bit is not set to one by a hash function is :

Now, there are k hash functions, and the probability of any of them not having set a

specific bit to one is given by :

After inserting n elements to the filter, the probability that a given bit is still zero is :

And consequently the probability that the bit is one is :

[17]

For an element membership test, if all of the k array positions in the filter computed by

the hash functions are set to one, the Bloom filter claims that the element belongs to the

set. The probability of this happening when the element is not part of the set is given by :

Therefore, the probability of false positive in bloom filter is :

OPTIMAL NUMBER OF HASH FUNCTIONS :

The false positive probability decreases as the size of the Bloom filter, m, increases. The

probability increases with n as more elements are added. Now, we want to minimizethe

probability of false positives, by minimizing (1−e−kn/m)k with respect to k. This is

accomplished by taking the derivative and equaling to zero, which gives the optimal

value of k:

[18]

Figure : 3 Bloom Filter False Positivity Rate [2]

[19]

TABLE 1

(KEY BLOOM FILTER PARAMETERS)

 PARAMETERS

 INCREASE

 Number of hash functions (k)

 Size of filter (m)

 Number of elements in the set (n)

Higher false positive rate

 More computation, lower false positive

rate as k = kopt

 More space is needed, lower false

positive rate

 Higher false positive rate

[20]

PSEUDOCODES FOR IMPLEMENTATION

The basic bloom filter algorithms are designed for two operations : insertion and

checking if an element might be present in the set or not.

2.4 Pseudocode for Bloom Filter insertion

Data: x is the object key to insert into the Bloom filter.

Function: insert(x)

for j : 1 . . . k do

/* Loop all hash functions k */

i = hj(x);

if Bi == 0 then

/* Bloom filter had zero bit at

position i */

Bi = 1;

end

end

[21]

2.5 Pseudocode for Bloom Member Test

Data: x is the object key for which membership is tested.

Function: ismember(x) returns true or false to the

membership test

m 1;

j 1;

while m == 1 and j _ k do

i hj(x);

if Bi == 0 then

m 0;

end

j j + 1;

end

return m;

[22]

CHAPTER 3

BASIC COUNTING BLOOM FILTER

A Bloom filter can easily be extended to support deletions by adding a counter for each

element of the data structure. A counting Bloom filter has m counters along with the m

bits. Fan et al. first introduced the idea of a counting Bloom filter in conjunction with

Web caches.

The structure works in a similar manner as a regular Bloom filter; however, it is able to

keep track of insertions and deletions. In a counting Bloom filter, each entry in the Bloom

filter is a small counter associated with a basic Bloom filter bit. When an item is inserted,

the corresponding counters are incremented; when an item is deleted, the corresponding

counters are decremented. To avoid counter overflow, we need choose sufficiently large

counters.

[23]

Figure :4 Counting Bloom Filter Architecture [7]

[24]

3.1 Basic Counting Bloom Filter Design

 A basic bloom filter with m bits size is taken.

 K number of hash functions are used using the optimal value of k

 A counting filter with size same as the basic bloom filter is used of m bits.

 Each time the bit at a particular index is set, the value of count corresponding to

that array index is incremented.

 At the time of deletion, the value of count at the index provided by different hash

functions is checked.

 If the value of count at all the positions is zero, then the element can be deleted

since that position is not set by any of the elements in the set.

 If the values of count is non-zero , then that element cannot be deleted.

 The space required for such an architecture is twice of that used in the basic

bloom filter design whereas the complexity remains same.

[25]

3.2 False Positive Probability of Counting Bloom Filter[2]

The probability that the ith counter is incremented j times is a binomial random variable:

The counter counts the number of times that the bit is set to one. All the counts are

initially zero. The probability that any count is greater or equal to j:

As already mentioned the optimum value for k (over reals) is ln 2m/n so assuming that

the number of hash functions is less than ln 2m/n we can further bound :

[26]

PSEUDOCODES FOR IMPLEMENTATION

3.3 Pseudocode for Counting Bloom Filter insertion

Data: x is the item to be inserted.

Function: insert(x)

for j : 1 . . . k do

/* Loop all hash functions k */

i = hj(x);

/* Increment counter Ci */

Ci Ci + 1;

if Bi == 0 then

/* Bit is zero at position i */

Bi = 1;

end

end

[27]

3.4 Pseudocode for Counting Bloom Filter deletion

Data: x is the item to be removed.

Function: delete(x)

for j : 1 . . . k do

/* Loop all hash functions k */

i = hj(x);

/* Decrement counter Ci */

Ci Ci − 1;

if Ci = 0 then

/* Reset bit at position i */

Bi = 0;

end

end

Algorithm 3.3 presents the pseudocode for the insert operation for element x with

counting. The operation increments the counter of each bit to which x is hashed. The

counting structure supports the removal of elements using the delete operation presented

in Algorithm 3.4. The delete decrements the counter of each bit to which x is hashed. The

cor responding bit is reset to zero when the counter becomes zero.

[28]

CHAPTER 4

BASIC WEIGHTED BLOOM FILTER

The basic weighted bloom filter is based on the elements’ query frequencies and their

probabilities of being members. In many applications, query frequencies and membership

likelihoods are estimated or collected with well developed techniques. Statistics of such

information are maintained, especially for a set of ‘hot’ categories.

The filter’s false positive probability is a weighted sum of each individual element’s false

positive probability, where the weight corresponding to an individual element is

positively correlated with the element’s query frequency and is negatively correlated with

the element’s probability of being a member. Therefore, we would in general like to

assign more hash functions to an element with a higher query frequency or with a lower

probability of being a member, in order to reduce the false-positive probability of an

element with a higher weight.

4.1 Basic Weighted Bloom Filter Design

 Same as the traditional bloom filter, it uses m bits to record the n elements of the

set S.

 There are N elements in the universe and N >> n

 Probability of an element ‘e’ being a member is xe

[29]

 E{Xe} = xe

 For each element e € U, denote its query frequency by fe.

 Denote the number of hash functions used for an element e by ke

 Probability that a query is about an element a € U :

 P = freq of element a / freq of all elements € U

 Total number of hash functions used for elements in S :

 Probability that a bit is not set :

 Prob (Bit = 0) :p

Prob (Bit = 1) : 1-p

 The probability of a false positive is the weighted sum of the false positive

probabilities of all non-members in the universe, denoted by PFP[3] :

[30]

 Normalized query frequency :

 False Positive Probability :

 Value of ke for all e € U :

 Expectation of False Positive Probability :

[31]

4.2 Generalization Of Bloom Filter

We compare the weighted Bloom filter to the traditional Bloom filter and show that

our result is a generalization and further optimization of the traditional optimal

configuration.

Optimal Configuration For Bloom Filter :

In the weighted Bloom filter setting, all the elements should be treated the same when no

knowledge about query frequencies or membership likelihood is available.

By plugging xe = n/N and E{re} = 1/N , we obtain the formulas ke = (m/n) ln 2 and

PFP = 2^(-m/n) ln 2, the same as the second and the third formulas of the traditional

Bloom filter’s configuration.

[32]

CHAPTER 5

5.1 Implementation in Java

BLOOM FILTER :

package bloom.filter;

import java.util.*;

import java.security.*;

import java.math.*;

import java.nio.*;

/* Class BloomFilter */

class BloomFilter

{

 private byte[] set;

 private Integer[] countSet;

 private Integer[] frequency;

 private int keySize, setSize, size;

 private MessageDigest md;

 /* Constructor */

 public BloomFilter(int capacity, int k)

 {

 setSize = capacity;

 set = new byte[setSize];

 countSet = new Integer[setSize];

 frequency = new Integer[20];

 keySize = k;

 size = 0;

 for(int i=0; i<setSize ; i++){

 countSet[i] = 0;

 }

 for(int i=0; i<20; i++){

 frequency[i] = 0;

 }

 try

 {

 md = MessageDigest.getInstance("MD5");

 }

 catch (NoSuchAlgorithmException e)

 {

[33]

 throw new IllegalArgumentException("Error : MD5 Hash not found");

 }

 }

 /* Function to clear bloom set */

 public void makeEmpty()

 {

 set = new byte[setSize];

 countSet = new Integer[setSize];

 for(int i =0; i<setSize; i++){

 countSet[i]=0;

 }

 size = 0;

 try

 {

 md = MessageDigest.getInstance("MD5");

 }

 catch (NoSuchAlgorithmException e)

 {

 throw new IllegalArgumentException("Error : MD5 Hash not found");

 }

 }

 /* Function to check is empty */

 public boolean isEmpty()

 {

 return size == 0;

 }

 /* Function to get size of objects added */

 public int getSize()

 {

 return size;

 }

[34]

 /* Function to get hash - MD5 */

 private int getHash(int i)

 {

 md.reset();

 byte[] bytes = ByteBuffer.allocate(4).putInt(i).array();

 md.update(bytes, 0, bytes.length);

 return Math.abs(new BigInteger(1, md.digest()).intValue()) % (set.length - 1);

 }

 /* Function to add an object */

 public void add(Object obj)

 {

 int element = (Integer)obj;

 frequency[(Integer)obj]+=1;

 System.out.println("Element is : "+element);

 int[] tmpset = getSetArray(obj);

 System.out.println("hello");

 for (int i : tmpset){

 set[i] = 1;

 countSet[i] +=1;

 }

 size++;

 }

 /* Function to check is an object is present */

 public boolean contains(Object obj)

 {

 int[] tmpset = getSetArray(obj);

 for (int i : tmpset)

 if (set[i] != 1)

 return false;

 return true;

 }

[35]

 /* Function to get set array for an object */

 private int[] getSetArray(Object obj)

 {

 int freq ;

 int freqSum=0;

 for(int i =0; i<20; i++){

 if(frequency[i]>0)

 freqSum += 1;

 }

 freq = (frequency[(Integer)obj]/freqSum)*100;

 System.out.println("freq : "+freq);

 if(freq >= 50){

 keySize = keySize*2;

 }

 int[] tmpset = new int[keySize];

 tmpset[0] = getHash(obj.hashCode());

 for (int i = 1; i < keySize ; i++){

 tmpset[i] = (getHash(tmpset[i - 1]));

 }

 System.out.print("Keys are : ");

 for(int i =0; i<keySize; i++){

 System.out.print(tmpset[i]+"\t");

 }

 return tmpset;

 }

 public void delete(Object obj)

 {

 int[] tmpset = getSetArray(obj);

 for (int i : tmpset){

 if(countSet[i] == 1){

 set[i] = 0;

 countSet[i] -=1;

 }else

 {

 System.out.println("Element cannot be deleted");

 break;

 }

 }

 size--;

 }

[36]

 public void showBF(){

 System.out.println("Index \tBloom \t Count");

 for(int i=0; i<setSize ; i++){

 System.out.println(i +"\t"+set[i]+"\t" + countSet[i]);

 }

 }

}

BLOOM FILTER TEST :

package bloom.filter;

import java.util.Scanner;

/**

 *

 * @author Niharika

 */

public class BloomFilterTest

{

 public static void main(String[] args)

 {

 Scanner scan = new Scanner(System.in);

 System.out.println("Bloom Filter Test\n");

 System.out.println("Enter set capacity and key size");

 BloomFilter bf = new BloomFilter(scan.nextInt() , scan.nextInt());

 char ch;

 /* Perform bloom filter operations */

 do

 {

 System.out.println("\nBloomFilter Operations\n");

 System.out.println("1. insert ");

 System.out.println("2. contains");

 System.out.println("3. check empty");

 System.out.println("4. clear");

 System.out.println("5. size");

 System.out.println("6. Delete");

 System.out.println("7. Show Bloom Filter");

 int choice = scan.nextInt();

[37]

switch (choice)

 {

 case 1 :

 System.out.println("Enter integer element to insert");

 bf.add(new Integer(scan.nextInt()));

 break;

 case 2 :

 System.out.println("Enter integer element to search");

 System.out.println("Search result : "+ bf.contains(new Integer(scan.nextInt())

));

 break;

 case 3 :

 System.out.println("Empty status = "+ bf.isEmpty());

 break;

 case 4 :

 System.out.println("\nBloom set Cleared");

 bf.makeEmpty();

 break;

 case 5 :

 System.out.println("\nSize = "+ bf.getSize());

 break;

 case 6:

 System.out.println("Enter integer element to delete");

 bf.delete(new Integer(scan.nextInt()));

 break;

 case 7:

 System.out.println("Bloom Filter is : \n");

 bf.showBF();

 break;

 default :

 System.out.println("Wrong Entry \n ");

 break;

 }

 System.out.println("\nDo you want to continue (Type y or n) \n");

 ch = scan.next().charAt(0);

 } while (ch == 'Y'|| ch == 'y');

 }

}

[38]

5.2 Results :

Operations :

The operations used in the Bloom filter are as follows:

 Insertion

 Contains

 Check Empty

 Clear

 Size

 Delete

 Show Bloom Filter

Figure : 5 Bloom Filter Operations

[39]

Insertion :

The insertion operation is performed to add elements into the Bloom Filter. After entering

the element, the element’s frequency is calculated for calculating the weight of the

element in the Bloom filter to set the key size of the frequently occurring elements.

The following screenshot shows the element insertion , the frequency of the element

being inserted. Also, the corresponding keys are calculated from the formula in the above

code. The calculated keys are then set to 1 which shows the array index being set by the

inserted element.

Figure 6 : Bloom Filter Insertion

[40]

Contains :

This function is used to check whether a given element is in the set or not. The frequency

of the element is not calculated since no weight needs to be assigned for the element to be

searched.

The search result returns true if the element may be in the set i.e. the search result if true

of the keys calculated by the element are all set to 1.

If the calculated keys are all found out to be 0, it means the element is definitely not a

part of the set, else, it may or may not be in the set.

Figure 7 : Bloom Filter Search

[41]

Check Empty :

This function is used in the Bloom Filter to check whether the set or the bloom filter is

empty or not.

If the bloom filter is empty and there are no elements in the set, then the search result

shows true.

The search result is false if there are elements are already inserted in the set.

Figure 8 : Bloom Filter Check Empty

[42]

Clear :

This function is used to clear the Bloom Filter. If the bloom filter contains already

inserted elements, all the elements from the Bloom Filter are deleted and the array

indexes previously set to 1 for different element’s keys are again set to 0.

In case of counting bloom filter, along with the array index of the basic bloom filter, the

index in the counter array are also set to 0 for all the corresponding array position of the

keys.

Figure 9 : Bloom Filter Clear

[43]

Size :

This function shows the size of the bloom filter initially entered by the user.

Figure 10 : Bloom Filter Size

[44]

Delete :

This function is used to delete a particular element from the filter. The keys of the

element to be deleted are calculated. If the bit at even a single array index of the key is set

to 1, then the element cannot be deleted otherwise it can be deleted.

Figure 11 : Bloom Filter Deletion

[45]

Show Bloom Filter :

This function is used to show the entire bloom filter. It shows the basic bloom filter array

in which are the keys calculated are set to 1. Also the counting bloom filter array contains

the number of times an index of the basic bloom filter array is set to 1.

Figure 12 : Show Bloom Filter

[46]

5.3 Matlab Code For Basic Bloom Filter :

clc;

clear all;

m=64;

n=[1:0.001:1000];

k=(m./n)*log(2);

y=(1-exp((-k.*n)./m)).^k;

subplot(2,2,1);

plot(n,y,'red');

xlabel('Number of elements');

ylabel('False Positivity');

m=128;

n=[1:0.001:1000];

k=(m./n)*log(2);

y=(1-exp((-k.*n)./m)).^k;

subplot(2,2,2);

plot(n,y,'red');

xlabel('Number of elements');

ylabel('False Positivity');

m=512;

n=[1:0.001:1000];

k=(m./n)*log(2);

y=(1-exp((-k.*n)./m)).^k;

subplot(2,2,3);

plot(n,y,'red');

xlabel('Number of elements');

ylabel('False Positivity');

[47]

m=1024;

n=[1:0.001:1000];

k=(m./n)*log(2);

y=(1-exp((-k.*n)./m)).^k;

subplot(2,2,4);

plot(n,y,'red');

xlabel('Number of elements');

ylabel('False Positivity');

xlabel('Number of elements');

ylabel('False Positivity');

RESULT :

Here , we have considered four values of m = 64,128,512,1024. We have seen that as

size of the bloom filter increases, the false positive rate decreases for the basic bloom

filter.

[48]

Figure : 13 Matlab Implementation of BBF.

[49]

5.4 Matlab Code For Counting Bloom Filter :

clc;

clear all;

m=64;

n=[1:0.001:1000];

k=round((m./n)*log(2));

j=16;

z = m .* (((2.71 .*n.*k)./(j.*m))).^j;

subplot(2,2,1);

plot(n,z);

xlabel('Number of elements');

ylabel('False Positivity');

m=128;

n=[1:0.001:1000];

k=round((m./n)*log(2));

j=16;

z = m .* (((2.71 .*n.*k)./(j.*m))).^j;

subplot(2,2,2);

plot(n,z);

xlabel('Number of elements');

ylabel('False Positivity');

m=512;

n=[1:0.001:1000];

k=round((m./n)*log(2));

j=16;

z = m .* (((2.71 .*n.*k)./(j.*m))).^j;

subplot(2,2,3);

plot(n,z);

xlabel('Number of elements');

ylabel('False Positivity');

m=1024;

n=[1:0.001:1000];

k=round((m./n)*log(2));

j=16;

z = m .* (((2.71 .*n.*k)./(j.*m))).^j;

subplot(2,2,4);

plot(n,z);

xlabel('Number of elements');

ylabel('False Positivity');

[50]

Figure :14 Matlab Implementation of Counting Bloom Filter

Result: The counting Bloom Filter is implemented for various values of m

=64,128,512,1024. Hence, it is clear that as the size of bloom filter increases, the false

positivity decreases for large value of n.

Comparison : The above figures show that the Counting Bloom Filter is better than

the Basic Bloom Filter as the false positivity has significantly reduced in the counting

filter along with the facility of removal of element deletion if necessary conditions are

satisfied.

[51]

CHAPTER – 6

6.1 Complexity Analysis of Basic Bloom Filter

The complexity analysis of the Basic Bloom Filter include the searching time complexity

required to test whether an element is a member of the set or not which in turn helps in

finding the false positivity rate.

The working code required for checking whether the element is in the set or not is as

follows:

private int getHash(int i)

 {

 md.reset();

 byte[] bytes = ByteBuffer.allocate(4).putInt(i).array();

 md.update(bytes, 0, bytes.length);

 return Math.abs(new BigInteger(1, md.digest()).intValue()) % (set.length - 1);

 }

private int[] getSetArray(Object obj)

 {

 int freq ;

 int totalElements=0;

 for(int i =0; i<20; i++){

 totalElements += frequency[i];

 }

 freq =(frequency[(Integer)obj]*100)/totalElements;

 System.out.println("freq : "+freq);

 if(freq >= 50 && totalElements>10){

 keySize = keySize*2;

 }

 int[] tmpset = new int[keySize];

 tmpset[0] = getHash(obj.hashCode());

[52]

 for (int i = 1; i < keySize ; i++){

 tmpset[i] = (getHash(tmpset[i - 1]));

 }

 System.out.print("Keys are : ");

 for(int i =0; i<keySize; i++){

 System.out.print(tmpset[i]+"\t");

 }

 return tmpset;

 }

public boolean contains(Object obj)

 {

 int[] tmpset = getSetArray(obj);

 for (int i : tmpset)

 if (set[i] != 1)

 return false;

 return true;

 }

In the above given code, the following functions are used :

 getHash() : This function has a constant time complexity since it has no loops in

it. Hence the time complexity remains constant.

 getSetArray() : This function has for loop running twice to the length of the

keyize k. Since it has a for loop , the time complexity of this function comes out

to be O (k).

 contains() : This function gives the result as to whether the element is in the set or

not. This function has the other function getSetArray with time complexity O(k).

Hence the complexity of the overall Basic Bloom filter to check whether an

element is a member of the set or not is O(k).

 CONCLUSION :

The complexity of adding an element into the array : O(k)

The complexity of checking set membership : O(k)

[53]

6.2 Complexity Analysis of Counting Bloom Filter

The counting bloom filter is an extension of the Basic Bloom Filter. Hence the basic

running code for checking whether an element is in the set or not remains the same. The

addition made comprises of creation of an extra array as the counter.

As we have already seen that the complexity of the Basic Bloom filter is O(K). The time

complexity for checking whether an element is member of the set or not remains

unchanged. We directly go to the basic bloom filter to check the set membership.

The counting bloom filter is basically used at the time of element deletions from the set

which cannot be achieved using the basic bloom filter.

The code for deletion of an element is as follows :

public void delete(Object obj)

 {

 int[] tmpset = getSetArray(obj);

 for (int i : tmpset){

 if(countSet[i] == 1){

 set[i] = 0;

 countSet[i] -=1;

 }else

 {

 System.out.println("Element cannot be deleted");

 break;

 }

 }

 size--;

 }

Since the above code for deletion again contains the function getSetArray() which has the

time complexity O(k). The other for loop runs till the length of tempest which again is of

size k. Hence the overall complexity for deletion comes out to be O(k) again.

[54]

 Conclusion :

The time complexity for adding an element : O(k)

The time complexity for testing set membership : O(k)

The time complexity for deleting an element : O(k)

6.3 Complexity Analysis of Weighted Bloom Filter

The weighted Bloom Filter is designed as an extension of the counting bloom filter and

the basic bloom filter. It includes using more hash functions for the frequently occurring

elements. The frequency of an element is calculated based on which decision is taken to

find how many number of hash functions should be used.

In the function getSetArray() given above in the basic bloom filter, the frequency of each

element is calculated as and when it is entered. As soon as the element is entered, based

on the previously entered items, the frequency is calculated.

The formula used for finding the frequency is given below:

int freq ;

 int totalElements=0;

 for(int i =0; i<20; i++){

 totalElements += frequency[i];

 }

 freq =(frequency[(Integer)obj]*100)/totalElements;

 System.out.println("freq : "+freq);

 if(freq >= 50 && totalElements>10){

 keySize = keySize*2;

 }

[55]

In the above code for calculating the frequency of each element, no loops are used .

Hence the frequency calculation would not cause the overall complexity of the code to

change.

 Conclusion :

The time complexity for adding an element : O(k)

The time complexity for testing set membership : O(k)

The time complexity for deleting an element : O(k)

Hence we have seen that the Bloom Filter Advancements reduce the false positivity rate

without changing the time complexity throughout. The property of the Basic Bloom filter

to have a constant search time is retained throughout the project.

[56]

Reference:

1. Bloom Filters Wikipedia

2. Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz, “Theory and

Practice of Bloom Filters for Distributed Systems”, Communications Surveys &

Tutorials, IEEE, Volume:14 , Issue: 1, 2012,Pages 131-155

3. Jehoshua Bruck, Jie Gao, Anxiao (Andrew) Jiangz, “Weighted Bloom Filter”,

Information Theory, 2006 IEEE International Symposium ,2006, Pages 187-191

4. Flavio Bonomi1, Michael Mitzenmacher , Rina Panigrahy, Sushil Singh and

George Varghese, “An Improved Construction for Counting Bloom Filters”,

ESA'06 Proceedings of the 14th conference on Annual European Symposium -

Volume 14,2006, Pages 684-695 .

5. Navendu Jain, Mike Dahlin, Renu Tiwari, “Using Bloom filters to refine web

search results”, In Proceedings of the eighth International Workshop on the Web

and Databases, 2005.

6. Basic Bloom Filter - https://www.wikipedia.com/bloomfilter

7. Counting Bloom Filter - http://blog.csdn.net/jiaomeng/article/details/1498283

8. Basic Bloom Filter Architecture -

http://en.wikipedia.org/wiki/Bloom_filter#/media/File:Bloom_filter_speed.svg

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6151681
https://www.wikipedia.com/bloomfilter
http://blog.csdn.net/jiaomeng/article/details/1498283

	Information Technology
	Mr Shailendra Shukla
	Niharika Verma - 111409
	Certificate

