
i

ALL IN ONE MANAGER APPLICATION FOR

ANDROID OPERATING SYSTEM

Project Report submitted in partial fulfillment of the requirement for

the degree of

Bachelor of Technology.

In

Computer Science & Engineering

Under the Supervision of

 Mr. Ravindara Bhatt

By

 Karan Kapoor

 Roll No.: 111217

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

ii

Certificate

This is to certify that project report entitled “ALL IN ONE MANAGER

APPLICATION FOR ANDROID OPERATING SYSTEM”, submitted by

Karan Kapoor (111217) in partial fulfillment for the award of degree of

Bachelor of Technology in Computer Science & Engineering to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out

under my supervision.

This work has not been submitted partially or fully to any other University or

Institute for the award of this or any other degree or diploma.

Date: Mr.Ravindara Bhatt

 (Signature)

Assistant Professor CSE Department

iii

Acknowledgement

It has been a great honor for me to work on “AllinOneManager for android" in this

esteemed institute Jaypee University of Information Technology, Waknaghat Solan.

I am thankful to Mr. Ravindra Bhatt for providing me with a wonderful opportunity in the

form of this project and letting me use the resources available at JUIT. He has been a great

source of inspiration for me throughout my project. This experience enabled me to explore

my hidden potentials. It gave me an opportunity for not only understanding but practically

implementing the various concepts I have learnt in the classrooms.

I am sincerely thankful to my mentor, Mr. Ravindra Bhatt who have been helping me

throughout my training in learning new concepts and software. He helped me in settling

down and made me familiar with the working environment.

All the credit certainly goes to him and JUIT management. Their constant guidance,

inspiration and constructive suggestions have helped me in the successful completion of my

project successfully. I hope I've not missed out anyone who has helped me out during my

training period, if so I express my sincere gratitude towards them.

 KARAN KAPOOR

iv

Abstract

Creating an all in one manager application, which not only stands apart from the rest of

applications in the market, but also to create an application which can be helpful in daily

working.

 To create an All in one manager application, which provides

user with rich features to manage the device on which it is deployed. Creating the application,

which not only provides rich features but is optimized so that the device can be made more

productive with simpler user environment. All in one manager is an application which is

created with a purpose of providing user with a choice to perform several functions

simultaneously.

All in one manager application provides features like Battery Manager (for device battery

efficiency), Application Manager (Allowing user to full control of the applications running

on the device), Task Manager (allowing user to manage task easily), Contact Manager

(allowing user to manage contacts easily) and a Note editor(To manage user’s note).

v

 CONTENT Page No.

 1.CHAPTER 1 INTRODUCTION 1

1.1The Android Operating System 1

1.2Android Applications and Market Scenario 3

1.3 Challenges And Issues 5

1.4 Motivation 6

1.5 Objective 7

1.6 Problem Statement 7

 2. CHAPTER 2 LITERATURE SURVEY 8

2.1 Android Versions: 8

 2.2 Application Life cycle 9

2.3 Battery Specifications 10

2.4 Applications providing Similar services____________11

3. CHAPTER 3 ANDROID ARCHITECTURE 12

 3.1 Linux kernel 12

3.2 Libraries 13

3.3 Android Runtime 13

3.4 Application Framework 13

3.5 Applications 13

 4. CHAPTER 4 REQUIREMENTS 14

4.1 Java Language 14

 4.2. Eclipse ADT(Android Development Environment) 15

 4.3 Android SDK/ADT 16

 5. CHAPTER 5 PROPOSED WORK 17

5.1 Basic components of the applications 17

5.2 The Flowcharts for Applications being created 19

vi

 6.CHAPTER 6 EMULATOR ENVIRONMENT 22

6.1 AVD(Android Virtual Devices) 22

6.2 Test Devices 23

7. CHAPTER 7 OUTPUTS 24

7.1 Battery Manager 24

7.2 Contact manager 25

7.3 Application Viewer + Task Killer 26

7.4 Note Editor 27

8. CHAPTER 8 RESULTS 28

9. CHAPTER 9 CONCLUSION AND FUTURE WORK 31

10. REFERNCE 32

11. APPENDIX 33

vii

FIGURES Page No.

1. Android Interface_______________________________2

2. Top Four Smartphone Operating Systems____________4

3..WorldWide Smartphone Shipment Market Share______ 4

4. Android Version History__________________________8

5. Android application life cycle______________________9

6. Li-ion Battery__________________________________10

7. Android Architecture____________________________12

8. Eclipse IDE____________________________________15

9. Android Sdk manager____________________________16

10. The development process for Android applications____ 18

11. Flowchart Battery saver Application________________19

12. Flowchart Contact manager Application_____________20

13. Flowchart Application viewer+Task killer Application_21

14. Android Emulator______________________________22

15. Micromax Canvas test device_____________________23

16. Battery Manager 24

17. Contacts Manager 25

18. Application viewer +Task killer 26

19. Notes Editor 27

20. Comparison between three running apps before 28

21. Comparison between three running apps after 28

22. Comparison after third party installation 29

23. Line chart depicting battery working (in hrs) 30

1

CHAPTER 1

INTRODUCTION

Mobile applications are becoming increasingly prevalent today, particularly in the world of

business. With huge potential and free of cost nature android became quite popular, leading

to a huge user base. With more than 1.3 billion applications present for android platform and

thousands coming out every day android has become favorite of most developers.

1.1 The Android operating system

Android is an operating system based on the Linux kernel. The project responsible for

developing the Android system is called the Android Open Source Project (AOSP) and is

primarily lead by Google.

The Android Operating System was developed with handheld devices in mind utilizing

touch interface. In beginning android was being developed for digital cameras interface but

later it was observed that this operating system has much more potential in the smartphone

market. With huge potential and free of cost nature android became quite popular, leading

to a huge user base.

There are many advantages to developing for the Android platform:

 Free of cost startup-The development tools for the platform are free to download, and

Google only charges a small fee to distribute applications on the Android Market.

 Innovation and exploration freedom-The Android OS is an open-source platform based

on the Linux kernel and multiple open-source libraries. In addition to building applications

to run on Android devices, developers are free to contribute to or extend the platform as

well.

 Collaboration freedom- Android developers are not required to sign an NDA and are

encouraged to collaborate and share source code with each other. According to a survey by

Black Duck Software, the number of open source mobile apps and libraries grew at a rate

of 168% from 2008 to 2009, faster on Android than any other platform. This means more

code that you can reuse in your own projects to bring them to market much faster.

 Open distribution model. Very few restrictions are placed on the content or functionality

allowed in Google’s Android Market, and developers are free to distribute their

applications through other distribution channels as well.

2

 Multi-platform support. There are a wide variety of hardware devices powered by the

Android OS, including many different phones and tablet computers. Development for the

platform can occur on Windows, Mac OS or Linux.

 Multi-carrier support. A large number of telecom carriers currently offer Android

powered phones. [1]

Fig 1 Android Interface

3

1.2 Android Applications and Market Scenario.

Android applications can be easily developed using various free to use Development kits

available on the internet coupled with free nature and easy uploading of applications to

Google Store makes android development a boon for application developers. In recent years a

lot of development in smartphone technologies with dropping of prices of hardware has

resulted in tremendous production of android applications varying from as simple as

wallpaper changer to complex User Interfaces and enjoyable games. As the user base for

android is growing day by day so is the need for new applications, there are thousands of

similar applications from which user can choose as per his/her preference.

 Being free of cost android development has lead to huge

number of developers developing applications for android platform. With support from

various smartphone vendors development for android has reached new heights. Android

market share is constantly rising and is at its peak nowadays. With Android securing almost

about 85% of market share[2].(as per the data by Tech Times).Android has been the most

developers choice of development platform as it provides the developer with flexibility in

development and requires low start up capital.

 Major competition to android platform in smartphone

market is from IOS, Windows and blackberry, all of them being proprietary platforms giving

an edge to android platform over all these other platforms. With new innovations every day

and hardware becoming cheap software costs need to come down too which is easier said

than done, but being free of cost android is triumphant here.

 With uses that can be found in various other devices has even further

led to android stronghold in the market, these devices include Digital camera (Eg.Galaxy

Camera), Gps navigators, netbooks, smartbooks, smart TVs (Android TV, Google TV). In

addition, the Android operating system has seen applications on smart glasses (Google

Glass), smartwatches, headphones, car CD and DVD players, portable media players. Ouya, a

video game console running Android.

4

Fig 2. Top Four Smartphone Operating Systems, Unit Shipments, Market Share, and Year-Over-Year Growth, Calendar Year 2014 Data

(Units in Millions).

[3](Source: http://www.idc.com/getdoc.jsp IDC Worldwide Quarterly)

Fig 3.WorldWide Smartphone Shipment Market Share by Operating System 2010-2014.

[4](Source: http://www.idc.com/getdoc.jsp IDC Worldwide Quarterly)

5

1.3 Challenges And Issues

 Software Fragmentation Issue

A few variants of Android working framework are accessible on diverse gadgets. Frequent

updates change the version of Android OS that keeps running on the gadget. This suggests

that the engineers can't simply concentrate on the latest version of the OS as not everybody

updates their gadgets. It is inconvenient for many users to upgrade their operating systems.

 Hardware fragmentation:

There are no less than 170 running Android, with generally varying features, from consoles

to cameras, in addition to diverse screen shapes and sizes.

 Stability of the applications:

As new applications are turning out regularly, there is no surety that the application will be

stable or perform reliably over the wide assortment of gadget present, prompting poor or

corrupted performance.

 Huge number of similar applications:

As android development is free and publishing your application is also quiet easy leading to

number of similar applications in case of android there can be thousands, which in turn

leads to copyright infringements.

6

1.4 Motivation

 Huge Market Share

 Android has a much greater and developing business with an overall about 80% share in the

market beating the competition by quite a long stretch.

 Huge chance of success

 With the expansion in Google Play market, the odds of created application making it

successful are a lot more than its competitors.

 Free of cost application publication

 Google Play provides its users over 12% more ad inventory than its competitors which

makes it relatively easier and cheaper to advertise your applications.

 Quicker Turnaround

 There is no perfect application - meaning that there is always room for improvement.

Google Play provides a very helpful platform for beginners and their applications.

 Huge Free Learning Resources

 Android community has grown quite big. It has contributed thousands of resources for

quickly learning the development on this platform. You can locate rich and innovative

media to learn android free of any expense.

 The Java Advantage

 Since Android uses Java as its programming language, it has almost all the advantages of

Java. Specially in terms of a lot of free and open source java libraries that can be used to

develop any kind of app you are thinking of.

7

1.5 Objective

 To Develop applications which provide several functionalities.

 To provide simple interface for the developed applications.

1.6 Problem Statement

Today half the population of the world is using smartphones, smartphones that consume

battery and resources. Everybody wants to maximize the performance and longevity of

device working period. People want easy to use applications and applications that can

accomplish several activities under one main application. Considering all this in mind All in

One Manager for Android platform is being created, which contains, Battery Manager(for

device battery efficiency), Application manager + Task Killer(Allowing user to full control

of the applications running on the device and a way to destroy these applications), Contact

Manager(allowing user to manage contacts easily) and a Note editor(To manage user’s

note).

1.7 Organization of work

Chapter 1 gives a brief introduction of android with challenges and issues associated with

android, android applications and its market scenario, motivation and objective of project and

underlying problem statement. Chapter 2 is about the literature survey done about android

platform ranging from android development tools to android version history, application life

cycle, battery specifications and survey of similar applications to ones being developed. In

Chapter 3 Android architecture is discussed. In Chapter 4 requirements for development of

android applications such as need of IDE and SDK is discussed. Chapter 5 is about proposed

work describing the application development phases and flowcharts for development of

applications. In Chapter 6 we provide with simulation of android on computers and test

devices used for testing the applications. Chapter 7 is comprised of output snapshots of the

applications. In Chapter 8 Results of the project are given. In Chapter 9 Conclusion and

future works are given.

8

 CHAPTER 2

 LITERATURE SURVEY

 The objective behind making this application was to bring the rich functionalities of several

applications onto a mobile device. So while surveying as to on which platform or rather

operating system the project has to be implemented , android platform was selected for the

following reasons:

 Android is an open source platform

 Supports multifunction

 Provides rich and free tools to make interactive application

 Downloading the software’s required for making the application are absolutely free

Applications, that extend the functionality of devices, are written primarily in the Java

programming language (without the usual "write once, run anywhere" claim of the Java

platform) using the Android software development kit (SDK). The SDK includes a

comprehensive set of development tools, including a debugger, software libraries, a handset

emulator based on QEMU, documentation, sample code, and tutorials. Initially, Google's

supported integrated development environment (IDE) was Eclipse using the Android

Development Tools (ADT) plugin in December 2014, Google released Android Studio, based

on IntelliJ IDEA, as its primary IDE for Android application development. Other

development tools are available, including a Native Development Kit for applications or

extensions in C or C++, Google App Inventor, a visual environment for novice programmers,

and various cross platform mobile web applications frameworks.[5]

2.1 Android Versions:

 Fig 4. Android Version History(Source:Wikipedia.org\Androidversions\)

9

2.2 Application Life cycle:

Fig 5 Android application life cycle(Source: en.wikipedia.org\android\)

• Resumed

 In this state, the activity is in the foreground and the user can interact with it. (Also

sometimes referred to as the "running" state.

• Paused

 In this state, the activity is partially obscured by another activity—the other activity that's in

the foreground is semi-transparent or doesn't cover the entire screen. The paused activity

does not receive user input and cannot execute any code.

• Stopped

 In this state, the activity is completely hidden and not visible to the user; it is considered to

be in the background. While stopped, the activity instance and all its state information such

as member variables is retained, but it cannot execute any code. [6]

10

2.3 Battery Specifications:

A lithium-ion battery (sometimes Li-ion battery or LIB) is a member of a family of

rechargeable battery types in which lithium ions move from the negative electrode to the

positive electrode during discharge and back when charging. Li-ion batteries use an

intercalated lithium compound as one electrode material, compared to the metallic lithium

used in a non-rechargeable lithium battery. The electrolyte, which allows for ionic

movement, and the two electrodes are the constituent components of a lithium-ion cell.

Lithium-ion batteries can be dangerous under some conditions and can pose a safety hazard

since they contain, unlike other rechargeable batteries, a flammable electrolyte and are also

kept pressurized. Because of this the testing standards for these batteries are more stringent

than those for acid-electrolyte batteries, requiring both a broader range of test conditions and

additional battery-specific tests. This is in response to reported accidents and failures, and

there have been battery-related recalls by some companies.

Fig 6 Li-ion Battery(Source: www.shoptitans.com)

11

2.4 Applications providing similar services:

 Juice Defender(Battery Manager)

 Packed with seemingly endless options, Juice Defender is one of the best battery managers

out there. The free client lets you manage common connections, such as mobile data as well

as Wi-Fi and Bluetooth. Multiple preset modes, like "aggressive" and "balanced," allow for

toggling and scheduling, background synchronization, and choosing which apps can keep

your screen on.[7]

 Task Manager(Application Viewer + Task Killer)

 Task Manager kills all tasks and apps with one tap and it does it. If you are not willing to

swift through multiple apps and tasks and wonder which to close and which to keep.[8]

 Contacts+(Contact Manager)

Contacts+ is a very robust, well-designed address book. What makes Contacts+ stand out is

that it integrates many of your social networks and messaging apps into one

place, pulling metadata, information, and contact photos into an easy-to-use interface.[9]

 Simplenote(Note Editor)

Simplenote is basically perfect for taking and syncing plain-text notes. It's just a nice-

looking, very fast app that lets you type into it and then syncs what to type to other

platforms and makes everything searchable.[10]

In next chapter, we are going to look into Android architecture and its components in detail.

12

 CHAPTER 3

 ANDROID ARCHITECTURE

Application architecture is the process of defining a structured solution that meets all of the

technical and operational requirements, while optimizing common quality attributes such as

performance, security, and manageability. It involves a series of decisions based on a wide

range of factors, and each of these decisions can have considerable impact on the quality,

performance, maintainability, and overall success of the application.

Fig 7. Android Architecture(Source:Tutorial point.in\android_arch\architecture.jpg)

3.1 Linux kernel

At the bottom of the layers is Linux - Linux 2.6 with approximately 115 patches. This

provides basic system functionality like process management, memory management, device

management like camera, keypad, display etc. Also, the kernel handles all the things that

Linux is really good at such as networking and a vast array of device drivers, which take the

pain out of interfacing to peripheral hardware.

13

3.2 Libraries

On top of Linux kernel there is a set of libraries including open-source Web browser engine

WebKit, well known library libc, SQLite database which is a useful repository for storage

and sharing of application data, libraries to play and record audio and video, SSL libraries

responsible for Internet security etc.

3.3 Android Runtime

This is the third section of the architecture and available on the second layer from the bottom.

This section provides a key component called Dalvik Virtual Machine which is a kind of

Java Virtual Machine specially designed and optimized for Android.

The Dalvik VM makes use of Linux core features like memory management and multi-

threading, which is intrinsic in the Java language. The Dalvik VM enables every Android

application to run in its own process, with its own instance of the Dalvik virtual machine.

The Android runtime also provides a set of core libraries which enable Android application

developers to write Android applications using standard Java programming language.

3.4 Application Framework

The Application Framework layer provides many higher-level services to applications in the

form of Java classes. Application developers are allowed to make use of these services in

their applications.

3.5 Applications

You will find all the Android application at the top layer. You will write your application to

be installed on this layer only. Examples of such applications are Contacts Books, Browser,

Games etc.[11]

In next chapter, we are going to discuss about requirements related to the development of

android applications.

14

 CHAPTER 4

 REQUIREMENTS

Development of an application for specific platform comes with its own specific

requirements such as language requirements, Integrated Development Environment and other

add-ons. For development of android application we have basic three requirements. These

requirements are to be taken care of before starting the development of the applications.

4.1 Java Language:

Writing in the Java programming language is the primary way to produce code that will be

deployed as byte code in a Java Virtual Machine (JVM); byte code compilers are also

available for other languages, including Ada, JavaScript, Python, and Ruby. In addition,

several languages have been designed to run natively on the JVM, including Scala, Clojure

and Groovy. Java syntax borrows heavily from C and C++, but object-oriented features are

modeled after Smalltalk and Objective-C. Java eschews certain low-level constructs such as

pointers and has a very simple memory model where every object is allocated on the heap

and all variables of object types are references. Memory management is handled through

integrated automatic garbage collection performed by the JVM.

Java is used to develop Android application. It runs in a Virtual Machine, so no need to

recompile it for every phone out there. Large number of development tools for java.

15

4.2 Eclipse ADT(Android Development Environment)

In computer programming, Eclipse is an integrated development environment (IDE). It

contains a base workspace and an extensible plug-in system for customizing the environment.

Written mostly in Java, Eclipse can be used to develop applications.

The initial codebase originated from IBM VisualAge. The Eclipse software development kit

(SDK), which includes the Java development tools, is meant for Java developers. Users can

extend its abilities by installing plug-ins written for the Eclipse Platform, such as

development toolkits for other programming languages, and can write and contribute their

own plug-in modules.

 Eclipse IDE is designed to provide an integrated environment in which to build Android

applications. It is a freeware available to download.

Fig 8 Eclipse IDE in use

16

4.3 Android SDK/ADT

Android Development Tools (ADT) is a plugin for the Eclipse IDE that is designed to

provide an integrated environment in which to build Android applications. ADT extends the

capabilities of Eclipse to let developers set up new Android projects, create an application UI,

add packages based on the Android Framework API, debug their applications using the

Android SDK tools, and export signed (or unsigned) .apk files in order to distribute their

applications. It is a freeware available to download. It was official IDE for Android but was

replaced by Android Studio (based on IntelliJ IDEA Community Edition).

SDK(Software Development Kit) Tools is a downloadable component for the Android SDK.

It includes the complete set of development and debugging tools for the Android SDK.

Android Development Tools (ADT) is a plug-in for the Eclipse IDE that is designed to give

you a powerful, integrated environment in which to build Android applications

 Fig 9 Android Sdk manager

In the next chapter discussion will be focused on proposed work that is how to tackle the

problem at hand and how to approach the problem.

17

 CHAPTER 5

PROPOSED WORK

The applications to be created are battery manager, application manager and contact manager

from there other applications can start forming and coalescing together. These sub

applications are to create an environment that is easy to use as well as provide several

functionalities to the user.

5.1 Basic components of the applications

 Battery manager will show current battery state of the battery and information about the

battery.

 The application manager will show running application and installed applications, task

killer will terminate running applications which will help in releasing device resources.

 Contact manager helps to manage the contacts on the device either by adding, deleting or by

editing the current contacts.

 Note editor help to manage everyday notes.

These applications are to be created in Eclipse IDE under Android Application Project.

With Android ADT/SDK packages installed the Android applications can be created using

GUI interface of Eclipse.

18

Fig 10 The development model for Android applications(Source: wiki.dave.eu)

Fig 10 depicts the work flow for developing an android application in which we have 3

phases:

 Setting up application development softwares(IDE, SDK,AVD) in the system.

 Designing and development of the application. Setting up data items such as icons,

thumbnails in file directory for use, creation of manifesta and writing code for the

application.

 Testing and then debugging of the application created for the optimization.

19

5.2 The Flowcharts for Applications being created

1. Flowchart for Battery Manager Application:

Fig 11 Flowchart Battery saver Application

Working of Battery manager application is based upon two criterias. The first criteria consists

of if user selects to clean up all the applications which have been running in the background

for more than an hour will be terminated. The second criteria is that if battery status falls

below 20 % all the application which are not necessary for device functioning will be

terminated.

20

2. Flowchart for Contact Manager Application:

Fig 12 Flow Diagram for Contact Manager

Fig 12 depicts the flowchart of contact manger application in which a user is provided with 3

options when the application begins working that is Add contact, Delete Contact and Edit

contact. From the options user can modify add or delete the existing contact.

21

3.Flowchart for Application Viewer + Task Killer Applications:

Fig 13 Flowchart for Application Viewer + Task Killer Applications

Fig 13 depicts the flowchart for Application Viewer+Task Killer the application which can be

used to see various applications running on the device and the user is provided with an option

to close the applications if he/she wants to.

In next chapter Emulation environment will be discussed in detail. Topics of discussion will

be Android Virtual Devices(AVDs) and the testing devices used for the project.

22

 CHAPTER-6

EMULATOR ENVIRONMENT

Testing is a very crucial part of application development. Two modes of testing are available

for android application testing one of them is to transfer the application.apk file to a device

and test it, the other way is to use Android virtual Devices.

6.1 AVD(Android Virtual Devices)

Fig 14 Android Emulator

An Android Virtual Device (AVD) is an emulator configuration that lets you model an actual

device by defining hardware and software options to be emulated by the Android Emulator.

The easiest way to create an AVD is to use the graphical AVD Manager, which you launch

from Eclipse by clicking Window > AVD Manager.

Once the AVD is launched, you can see how it gives the complete look and feel of a real

Android-based mobile phone, complete with keyboard and multi-touch support. It can also be

used in a variety of configurations to test your app, such as landscape/portrait mode, network

strength, and roaming network, etc. All of these options can be configured using the AVD

manager. The AVD is self-sufficient to emulate different devices available. You can create

different AVDs for different configurations and test your application on each of them to make

sure it is compatible across device types.

23

6.2 Test Devices

1. Micromax Canvas Turbo Mini A200

 RAM 1GB

 Battery Li-Ion, 1800 mAh.

2.HTC Wildfire S

 RAM 512MB

 Battery: Li-Ion 1230 mAh.

 Fig 15 Micromax Canvas Turbo Mini A200

In next chapter Output screens of the applications will given.

24

CHAPTER-7

 OUTPUTS

Four Applications were developed, the output snapshots of the four applications are provided.

The snapshots depicts the applications in their running state.

7.1 Battery Manager

 Fig 16 Battery Manager

Fig 16 is the output snapshot of Battery manager application showing various parameter

such as temperature of the battery and voltage utilized by the battery. It als odepicts the time

left till the battery can be used. Also an option to clean up is given so as to close down

applications working in backgroud with not much use or not been used for some time.

25

7.2 Contact manager

Fig 17 Contacts Manager

Fig 17 is the output snapshot of the contact manager application depicting its three

functionalities that are adding, deleting and managing contacts as per the user preference.

The application can be used to edit contacts or just to which contacts are stored on the device.

26

7.3 Application Viewer + Task Killer

Fig 18 Application viewer +Task killer

Fig 18 is the snapshot of application viewer+Task Killer application which can be used to

view various applications running on the device at any given time. User can lock the

applications he/she does not want to be destroyed.

27

7.4 Note Editor

Fig 19 Notes Editor

Fig 19 is the screenshot of the Note editor application in which user can create various notes

of his/her requirements for later use and can save these notes in the devices memory. Note

editor provides various fonts and colors for text to be written.

In next chapter the results of the project will be discussed.

28

 CHAPTER-8

 RESULTS

Results are generated in graphical format to compare the performance of the developed

applications within various parameters. Also to compare the application with a third party

application(of similar type).

8.1 Comparison of three applications before and after Installing developed

applications.

1. Comparison of three applications before and after Installing developed applications:

Fig 20 Comparison between three running applications before installing developed applications.

From the graph it can be seen that a lot of resources are being used up by these 3 applications

 2. Comparison of three applications after Installing applications:

Fig 21 Comparison between three running applications after installing developed applications.

29

Fig 25 and fig 26 are depicting the use of memory by the device before and after installation

of developed application. For test cases 3 different applications were selected namely User

Interface(UI), WhatsApp , Google Chrome browser for testing the application as to assess

how much performance gain do we get after installing the application.

 The performance gain is not very high, application is able to

save around 5mb of memory more as compared to the case when no application is installed.

The applications worked smoothly on the testing devices with less than 3 crashes for all the

time the application was used. Moreover the gain though not very significant the application

was able to perform smoothly.

 8.2 Comparison of three applications after Installing third party

application:

Fig 22 Comparison of three applications after Installing third party application

Fig 27 Depicts the graph showing usage of memory resources when a third party Battery

management application was installed(that is DU battery Saver). The application enhanced

the efficiency and performance of the device quite significantly.

 It can be seen from the graph that in case of User

Interface about 50mb of memory is being saved and in case of both the other applications the

memory being saved is about 5MB to 10MB, leading to better performance of the device.

30

8.3 Line chart depicting battery working (in hrs) before and after using

application:

Fig 23 Line chart depicting battery working (in hrs) before and after using application.

Fig 26 depicts the battery performance of the device with and without the developed

applications installation. The test were conducted over the week and seen how long the

battery lasted. More hours lead to better performance.

 Various applications were run simultaneously on the device for

both before and after cases to create similar test environments to get the data that for how

long the battery lasted. From the graph, it is seen that there is very slight difference in battery

performance after installing the application as only very slight difference of battery

31

CHAPTER-9

 CONCLUSION AND FUTURE WORK

9.1 CONCLUSION:

Application is showing a lot of potential and can render helpful to user in various ways either

by letting the user control the phone through one application or by helping in improvement of

phones performance.The applications are performing smoothly on various devices on which

it was tested. Applications are quite stable and are not hindering the workings of the devices

on which it was tested. The performance and efficiency gains were not high. The gain from

using the applications was not more than that of 2%-3%. The applications can further be

enhanced overtime to the level of performance gains provided by third party paid

applications. Though getting various applications in single application is something new

which has given a slight edge to the application as it makes performing several tasks easier

and smooth.

9.2 Future Scope

 In future more extensive work can be done on these

applications to further enhance the workings, optimization and feel of the applications. In

future this application can be expanded to incorporate even more sub applications to improve

the user experience, make work space more easy to use and to enhance the devices efficiency.

 Moreover, the application can be expanded to incorporate not only basic but also other more

specific requirements.

32

REFERENCES
BOOKS:

[1]. Android in Action by W. Frank Ableson.

[2]Development of Android Applications by Edison Jimenez and Kyle Davidson

[4]. Android OS: A robust, free, open-source operating system for mobile devices by Paul Michael Kilgo

Websites:

[4]. www.Developer.android.com/

[5].http://www.theappguruz.com/

[6]. Introduction to Android: http://developer.android.com/guide/index.html.

[7]. Android API: http://developer.android.com/reference/packages.html

[8]. Android User Interfaces: http://developer.android.com/guide/topics/ui/index.html

[9]. The Java Tutorials: http://docs.oracle.com/javase/tutorial/

[10]. Sample Source Code: http://developer.android.com/resources/samples/get.html

Additional Resource References:

[1].developer.android.com/about/

[2].http://www.techtimes.com/articles/12006/20140803/android-85-global-smartphone-

marketshare-report.htm

[3].http://www.idc.com/getdoc.jsp

[4]. http://www.idc.com/getdoc.jsp

[5].http://www.appsfreedom.com/best-way-extend-enterprise-asset-management-apps-

mobile-devices/

[6]. http://developer.android.com/training/basics/activity-lifecycle

[7]. https://play.google.com/store/apps/details?id=com.latedroid.juicedefender&hl=en

[8].https://play.google.com/store/apps/details?id=com.rhythm.hexise.task&hl=en

[9].https://play.google.com/store/apps/details?id=com.contapps.android&hl=en

[10].https://play.google.com/store/apps/details?id=com.automattic.simplenote&hl=en

[11]. http://www.tutorialspoint.com/android/android_architecture.htm

33

APPENDIX

Codes

 Battery manager:
package com.manager_battery.batterydata;

import android.os.BatteryManager;
import android.os.Bundle;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;
import android.util.Log;

import android.widget.TextView;

public class MainActivity extends Activity {
 TextView textBatteryLevel = null;

 String batteryLevelInfo = "Battery Level";

 @Override
 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);
 textBatteryLevel = (TextView) findViewById(R.id.txtBatteryInfo);

 registerBatteryLevelReceiver();

 }
 @Override

 protected void onDestroy() {

 unregisterReceiver(battery_receiver);
 super.onDestroy();

 }

 private BroadcastReceiver battery_receiver = new BroadcastReceiver() {
 @Override

 public void onReceive(Context context, Intent intent) {

 boolean isPresent = intent.getBooleanExtra("present", false);
 String technology = intent.getStringExtra("technology");

 int plugged = intent.getIntExtra("plugged", -1);

 int scale = intent.getIntExtra("scale", -1);

 int health = intent.getIntExtra("health", 0);

 int status = intent.getIntExtra("status", 0);

 int rawlevel = intent.getIntExtra("level", -1);
 int voltage = intent.getIntExtra("voltage", 0);

 int temperature = intent.getIntExtra("temperature", 0);

 int level = 0;

 Bundle bundle = intent.getExtras();

 Log.i("BatteryLevel", bundle.toString());
 if (isPresent) {

 if (rawlevel >= 0 && scale > 0) {
 level = (rawlevel * 100) / scale;

 }

 String info = "Battery Level: " + level + "%\n";
 info += ("Technology: " + technology + "\n");

 info += ("Plugged: " + getPlugTypeString(plugged) + "\n");

 info += ("Health: " + getHealthString(health) + "\n");
 info += ("Status: " + getStatusString(status) + "\n");

 info += ("Voltage: " + voltage + "\n");

 info += ("Temperature: " + temperature + "\n");
 setBatteryLevelText(info + "\n\n" + bundle.toString());

 } else {

 setBatteryLevelText("Battery not present!!!");
 }

 }

 };
 private String getPlugTypeString(int plugged) {

 String plugType = "Unknown";

 switch (plugged) {
 case BatteryManager.BATTERY_PLUGGED_AC:

 plugType = "AC";

 break;
 case BatteryManager.BATTERY_PLUGGED_USB:

34

 plugType = "USB";

 break;

 }

 return plugType;

 }
 private String getHealthString(int health) {

 String healthString = "Unknown";

 switch (health) {
 case BatteryManager.BATTERY_HEALTH_DEAD:

 healthString = "Dead";

 break;
 case BatteryManager.BATTERY_HEALTH_GOOD:

 healthString = "Good";

 break;
 case BatteryManager.BATTERY_HEALTH_OVER_VOLTAGE:

 healthString = "Over Voltage";

 break;
 case BatteryManager.BATTERY_HEALTH_OVERHEAT:

 healthString = "Over Heat";

 break;
 case BatteryManager.BATTERY_HEALTH_UNSPECIFIED_FAILURE:

 healthString = "Failure";

 break;

 }

 return healthString;
 }

 private String getStatusString(int status) {

 String statusString = "Unknown";

 switch (status) {

 case BatteryManager.BATTERY_STATUS_CHARGING:

 statusString = "Charging";
 break;

 case BatteryManager.BATTERY_STATUS_DISCHARGING:

 statusString = "Discharging";
 break;

 case BatteryManager.BATTERY_STATUS_FULL:

 statusString = "Full";
 break;

 case BatteryManager.BATTERY_STATUS_NOT_CHARGING:

 statusString = "Not Charging";

 break;

 }

 return statusString;

 }

 private void setBatteryLevelText(String text) {

 textBatteryLevel.setText(text);

 }

 private void registerBatteryLevelReceiver() {

 IntentFilter filter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);

 registerReceiver(battery_receiver, filter);

 }
}

35

 APPLICATION VIEWER +TASK KILLER

package com.Karan.appkiller;

import java.lang.reflect.InvocationTargetException;

import java.lang.reflect.Method;

import java.util.ArrayList;
import java.util.List;

import com.Karan.appkiller.R;

import android.app.ActivityManager;
import android.app.ListActivity;

import android.app.ActivityManager.RunningAppProcessInfo;

import android.content.Context;
import android.content.Intent;

import android.content.SharedPreferences;

import android.content.pm.ApplicationInfo;
import android.content.pm.PackageManager;

import android.content.pm.PackageManager.NameNotFoundException;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.graphics.drawable.Drawable;

import android.net.Uri;
import android.os.Bundle;

import android.text.TextUtils;

import android.view.ContextMenu;
import android.view.LayoutInflater;

import android.view.MenuItem;

import android.view.View;
import android.view.ViewGroup;

import android.view.Window;

import android.view.ContextMenu.ContextMenuInfo;
import android.view.View.OnClickListener;

import android.widget.AdapterView;

import android.widget.BaseAdapter;
import android.widget.Button;

import android.widget.ImageView;

import android.widget.ListView;
import android.widget.TextView;

import android.widget.ToggleButton;

public final class AppKiller extends ListActivity implements OnClickListener {

 private static final String PREFS_FILENAME = "GenKiller.conf";

 private static final String ShowLockedKey = "ShowLocked";
 private static final String PREFS_WHITE_LIST = "WhiteList";

 private static final int MENU_KILL = 0;

 private SharedPreferences prefs;
 private List<String> runningPackages = new ArrayList<String>();

 private List<String> reservedPackages = new ArrayList<String>();

 private List<String> whiteListPackages = new ArrayList<String>();
 private ActivityManager activityManager;

 private PackageAdapter adapter;

 private boolean showLocked;
 private Method killMethod;

 @Override
 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 this.requestWindowFeature(Window.FEATURE_NO_TITLE);
 this.setContentView(R.layout.main);

 this.activityManager = (ActivityManager)this.getSystemService(ACTIVITY_SERVICE);

 this.prefs = this.getSharedPreferences(PREFS_FILENAME, MODE_PRIVATE);

 if (this.reservedPackages.isEmpty()) {
 this.reservedPackages.add("system");

 this.reservedPackages.add("com.google.process.gapps");

 this.reservedPackages.add("android.process.acore");
 this.reservedPackages.add("android.process.media");

 }

 this.loadWhiteList();

 this.initializeButtons();

 this.initializeKillMethod();

36

 this.adapter = new PackageAdapter(

 this.getApplicationContext(),

 this.runningPackages,

 this.whiteListPackages,
 this.showLocked);

 this.setListAdapter(this.adapter);

 ListView listView = this.getListView();
 listView.setTextFilterEnabled(false);

 this.registerForContextMenu(listView);

 }

 private void initializeButtons() {

 Button killButton = (Button) this.findViewById(R.id.btnKill);
 killButton.setOnClickListener(this);

 this.showLocked = this.prefs.getBoolean(ShowLockedKey, true);
 final ToggleButton showHideButton = (ToggleButton) this.findViewById(R.id.btnShowHide);

 showHideButton.setChecked(showLocked);

 showHideButton.setOnClickListener(this);
 }

 Contact manager:

package com.cmanager.contacts;

import java.util.ArrayList;

import android.app.ListActivity;

import android.content.Context;

import android.content.Intent;

import android.database.Cursor;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

import android.widget.TextView;

public class MainActivity extends ListActivity {

 private ArrayList<String> conNames;

 private ArrayList<String> conNumbers;

 private Cursor crContacts;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 conNames = new ArrayList<String>();

 conNumbers = new ArrayList<String>();

 crContacts = ContactHelper.getContactCursor(getContentResolver(), "");

 crContacts.moveToFirst();

 while (!crContacts.isAfterLast()) {

 conNames.add(crContacts.getString(1));

 conNumbers.add(crContacts.getString(2));

 crContacts.moveToNext();

 }

 setListAdapter(new MyAdapter(this, android.R.layout.simple_list_item_1,

 R.id.tvNameMain, conNames));

 }

 private class MyAdapter extends ArrayAdapter<String> {

 public MyAdapter(Context context, int resource, int textViewResourceId,

 ArrayList<String> conNames) {

 super(context, resource, textViewResourceId, conNames);

 }

 @Override

37

 public View getView(int position, View convertView, ViewGroup parent) {

 View row = setList(position, parent);

 return row;

 }

 private View setList(int position, ViewGroup parent) {

 LayoutInflater inf = (LayoutInflater) getSystemService(Context.LAYOUT_INFLATER_SERVICE);

 View row = inf.inflate(R.layout.liststyle, parent, false);

 TextView tvName = (TextView) row.findViewById(R.id.tvNameMain);

 TextView tvNumber = (TextView) row.findViewById(R.id.tvNumberMain);

 tvName.setText(conNames.get(position));

 tvNumber.setText("No: " + conNumbers.get(position));

 return row;

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater imf = getMenuInflater();

 imf.inflate(R.menu.main, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 if (item.getItemId() == R.id.item1) {

 Intent intent = new Intent(MainActivity.this, AddContact.class);

 startActivity(intent);

 } else if (item.getItemId() == R.id.item2) {

 Intent intent = new Intent(MainActivity.this, DeleteContacts.class);

 startActivity(intent);

 }

 return super.onOptionsItemSelected(item);

 }

}

 Note Editor
package com.karan.noteeditor;

import java.io.DataInputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.util.Locale;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.SearchManager;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.content.SharedPreferences;

import android.graphics.Typeface;

import android.os.Bundle;

import android.os.Handler;

import android.preference.PreferenceManager;

import android.provider.SearchRecentSuggestions;

import android.text.Editable;

import android.text.InputType;

import android.text.TextWatcher;

38

import android.view.Menu;

import android.view.MenuItem;

import android.widget.Toast;

import com.karan.noteeditor.EditTextSelectable.OnSelectionChangedListener;

import com.maxistar.textpad.R;

public class EditorActivity extends Activity {

private static final int OPEN_FILE = 1;

private static final int SAVE_FILE = 2;

//private static final int SETTINGS = 3;

private static final int NEW_FILE = 4;

private static final int SAVE_AS = 5;

private static final int MENU_SEARCH = 6;

private static final int REQUEST_OPEN = 1;

private static final int REQUEST_SAVE = 2;

private static final int REQUEST_SETTINGS = 3;

private static final int DO_NOTHING = 0;

private static final int DO_OPEN = 1;

private static final int DO_NEW = 2;

private EditTextSelectable mText;

private TextWatcher watcher;

String filename = TPStrings.EMPTY;

boolean changed = false;

private int open_when_saved = DO_NOTHING; // to figure out better way

Handler handler = new Handler();

static int selectionStart = 0;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mText = (EditTextSelectable) this.findViewById(R.id.editText1);

//mScrollView = (ScrollView) this.findViewById(R.id.scroll);

applyPreferences();

if (savedInstanceState!=null){

restoreState(savedInstanceState);

}

else {

Intent i = this.getIntent();

if (TPStrings.ACTION_VIEW.equals(i.getAction())) {

android.net.Uri u = i.getData();

openNamedFile(u.getPath());

}

}

watcher = new TextWatcher() {

@Override

public void afterTextChanged(Editable s) {

// TODO Auto-generated method stub

}

@Override

39

public void beforeTextChanged(CharSequence s, int start, int count,

int after) {

// TODO Auto-generated method stub

}

@Override

public void onTextChanged(CharSequence s, int start, int before,

int count) {

if (!changed) {

changed = true;

updateTitle();

}

}

};

//mText.invalidate(); //

handler.postDelayed(new Runnable(){

@Override

public void run() {

mText.addTextChangedListener(watcher);

mText.addOnSelectionChangedListener(new OnSelectionChangedListener(){

@Override

public void onSelectionChanged(int selStart, int selEnd) {

// TODO Auto-generated method stub

selectionStart = mText.getSelectionStart();

}

});

