TO STUDY TYPE, BEHAVIOUR AND DESIGN OF RETAINING WALL STRUCTURE BY SOFTWARE ANALYSIS

A

THESIS

Submitted in partial fulfilment of the requirements for the award of the degree

of

MASTER OF TECHNOLOGY

IN

CIVIL ENGINEERING

With specialization in

STRUCTURAL ENGINEERING

Under the supervision

of

Mr. Chandra Pal Gautam (Assistant Professor)

by

Nikita Rahaja (202656)

to

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, SOLAN – 173234 HIMACHAL PRADESH, INDIA MAY-2022

STUDENT'S DECLARATION

I hereby declare that the work presented in the thesis entitled **"TO STUDY TYPE, BEHAVIOUR AND DESIGN OF RETAINING WALL STRUCTURE BY SOFTWARE ANALYSIS**" submitted for partial fulfilment of the requirements for the degree of Master of Technology in Civil Engineering (structural engineering) at **Jaypee University of Information Technology, Waknaghat** is an authentic record of my work carried out under the supervision of **Mr. Chandra Pal Gautam**. This work has not been submitted elsewhere for the reward of any other degree/diploma. I am fully responsible for the contents of my project report.

Nikita Raheja

(202656)

Department of Civil Engineering

Jaypee University of Information Technology, Waknaghat, India

25 May, 2022

CERTIFICATE

This is to certify that the work which is being presented in the thesis titled **"TO STUDY TYPE, BEHAVIOUR AND DESIGN OF RETAINING WALL STRUCTURE BY SOFTWARE ANALYSIS"** in partial fulfillment of the requirements for the award of the degree of Master of Technology in Civil Engineering (structural engineering) submitted to the Department of Civil Engineering, **Jaypee University of Information Technology, Waknaghat** is an authentic record of work carried out by **Nikita Raheja (202656)** during a period from 2021-22 under the supervision of **Mr. Chandra Pal Gautam**, Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat.

The above statement made is correct to the best of our knowledge.

Date.....

Signature of Supervisor	Signature of HOD	Signature of External
Mr. Chandra pal Gautam	Dr. Ashish Kumar	External Examiner
Assistant Professor	Professor and Head	
Department of	Department of	
Civil Engineering	Civil Engineering	
JUIT, Waknaghat	JUIT, Waknaghat	

ACKNOWLEDGEMENT

I take this opportunity to acknowledge all who has been great sense of support and inspiration thought the thesis work successful. There are lots of people who inspired me and helped, worked for me in every possible way to provide the detail about various related topics. Thus, making and report work success. my first gratitude goes to our head of department **Dr**. **ASHISH KUMAR** for his guidance, encouragement and support.

I am very greatful to **Mr. CHANDRA PAL GAUTAM**, Assistant Professor for all his diligence, guidance, and encouragement and helped throughout the period of thesis, which has enabled me to complete thesis work in time. I also thank him for the time that he spared for me, from his extreme busy schedule. His insight and creative ideas are always the inspiration for me during the dissertation work.

Nikita Raheja (202656)

ABSTRACT

Retaining wall is the structure that retains soil on the backside. Retaining wall are "rigid walls used for supporting soil laterally" so that it can be retainined at "different levels" on the "two sides". Due to advancement in the technologies of highway construction, instability of the retaining wall to cause embankment land slide has become common. "In conventional approach of constructing the retaining walls, there are several disadvantages like more construction time, cost, manpower and environmental impacts makes these conventional methods ineffective and uneconomic". For the accurate analysis, GEO5 is FEM based software that used in this work. By the Conventional and software approach (the retaining wall are designed and analyse for stability analysis in GEO5 software), differentiation shows whether a software analysis is best for a convention approach is good or not. Also software analysis stability check to be done at different heights of retaining wall. In GEO5 software we can check whether the wall of any material we are constructing is fulfilling the conditions or not. This software is very time saving when it comes to designing of the wall of different heights and material. For this study a cantilever reinforced retaining wall data has taken from the project named of FOUR LANING OF SOLAN -KAITHLIGHAT SECTION OF NH-22(NOW NH-5) FROM Km.106.00 TO KM. 129.050 ON EPC MODE IN THE STATE OF HIMACHAL PRADESH UNDER NHDP PHASE III. In this study, walls ranging from 2-10 meter height wall is designed on GEO5 of different material like reinforced retaining wall, stones masonry wall and stoncrete wall. These walls are then compared to each other on various factors and parameters to find out the best suited wall for different conditions.

TABLE OF CONTENTS

Cont	tents	Page No
Title		i
Studer	nt declaration	ii
Certifi	cate	iii
Ackno	owledgement	iv
Abstra	ict	v
List of	figures	ix
List of	tables	xi
CHA	APTER 1 : INTRODUCTION	1-13
1.1	General	1
1.2	Types of retaining wall	1
1.3	Gravity retaining wall	2
1.4	Cantilever retaining wall	3
1.5	Counter-fort retaining wall	4
1.6	Crib retaining wall	5
1.7	Gabion retaining wall	6
1.8	Anchored retaining wall	7
1.9	Pile retaining wall	9
1.10	Soil nailing retaining wall	10
1.11	Mechanical stabilization earth retaining wall	11
1.12	Sheet pile retaining wall	12
1.13	Purpose of retaining wall	12
1.14	Application of retaining wall	13

CHA	PTER 2: LITERATURE REVIEW	14-17
2.1	Literature survey	14
2.2	Research objective	17
СНА	PTER 3: METHODOLOGY	18
3.1	Procedure to be followed	18
СНА	PTER 4 : DESIGN BY CONVENTIONAL M	IETHOD 19-32
4.1	General	19
4.2	Check for overturning	22
4.3	Check for sliding	22
4.4	Base pressure check	23
4.5	Design of stem, toe and heel	25
4.6	Reinforcement calculation	26
4.7	Check for shear	27
4.8	Seismic data	27
4.9	Calculation of earth pressure coefficients	28
4.10	Schedule of retaining wall	32
4.11	Parameters of retaining wall	33
СНА	PTER 5 : ANALYSIS BY SOFTWARE	34-49
5.1	General	34
5.2	Applications of Geo5	34
5.3	Design steps of cantilever retaining wall using Geo5	35
5.4	Result of analysis	49

CHA	PTER 6 : DISCUSSION AND RESULTS	50-55
6.1	Result by software	50
6.2	Bar chart and discussions	54
CHA	PTER 7 : CONCLUSION	56
7.1	Conclusion	56

REFERENCE

LIST OF FIGURES

Fig No.	Title	Page No.
1.1	Gravity retaining wall	2
1.2	Cantilever retaining wall	3
1.3	Counter-fort retaining wall	5
1.4	Crib retaining wall	6
1.5	Gabion retaining wall	7
1.6	Anchored retaining wall	8
1.7	Pile retaining wall	9
1.8	Soil nailing retaining wall	10
1.9	Mechanically stabilized retaining wall	11
1.10	Sheet pile retaining wall	12
4.1	Typical cross section of retaining wall	30
4.2	Reinforcement details of retaining wall	31
4.3	Schedule of retaining wall	32
4.4	Table showing various parameters of retaining wall	33
5.1	Project frame	35
5.2	Setting wall	35
5.3	Geometry frame	36
5.4	Material frame	36

5.5	Profile frame	37
5.6	Soil frame of different walls (a) ,(b), (c) and (d)	39
5.7	Assign frame	39
5.8	Foundation frame	40
5.9	Backfill frame	40
5.10	Terrain frame	41
5.11	Water frame	41
5.12	Surcharge frame (a) and (b)	42
5.13	Front face resistance frame	43
5.14	Applied forces frame	43
5.15	Earthquake frame	44
5.16	Base anchorage frame	44
5.17	Stage setting frame	45
5.18	Verification frame (a) and (b)	46
5.19	Bearing capacity frame (a) and (b)	47
5.20	Dimensioning frame (a) and (b)	48
5.21	Stability frame (a) and (b)	49
6.1	Reinforcement details for different heights of wall	54
6.2	Slope stability of different heights of wall	55

LIST OF TABLES

Table no.	Title	Page no.
4.1	Table showing soil data	20
4.2	Table showing other data	20
4.3	Table showing partial safety factor for structural streng	th 20
4.4	Table showing vertical forces	21
4.5	Table showing uls and sls	21
4.6	Table showing horizontal forces	21
4.7	Table showing restoring moment	22
4.8	Table showing partial safety factor for limit state	23
4.9	Table showing vertical forces	23
4.10	Table showing horizontal forces	23
4.11	Table showing restoring moment	24
4.12	Table showing design of bending moment of heel slab	25
4.13	Table showing design of shear force of heel slab	25
4.14	Table showing bending moment & shear of toe slab	25
4.15	Table showing bending moment and shear force of sten	n 26
4.16	Table showing reinforcement calculation	26
4.17	Table showing check for shear	27
4.18	Table showing different parameter	29
4.19	Table showing design coefficients	29

6.1	Table showing results for overturning with factor1.5	50
6.2	Table showing values for shear	51
6.3	Table showing values for flexure and flexure+ pressure	52
6.4	Table showing values for slip	52
6.5	Table showing results for slope stability for RCC wall	53
6.6	Table showing results for slope stability for stone wall	53

CHAPTER 1 INTRODUCTION

1.1 General

Retaining walls are that structure type which is used to retain or hold the soil backside. Retaining wall can be constructed with different kind of materials. Retaining wall tends to move down slope due to gravity and stresses acting within the soil. Walls are often used to achieve desired changes in ground elevation which exceeds the natural slope. "Stabilizing hillsides and control erosion are the main functions of retaining walls". During "the roadway construction sometimes, it is necessary to construct these structures where there is over rugged terrain with steep slopes". "These walls decrease the grades and land requirement alongside the roads. In some cases, there is a lack of land available besides the travel way then retaining walls become necessary to allow acceptable slope conditions and for safer construction".

1.2 Types of retaining walls

The different types of retaining walls, which are classified on the basis of their material and shape used which are as follows;

- ➢ Gravity retaining wall.
- ➢ Cantilever retaining wall.
- Buttress/ Counter-fort retaining wall.
- ➢ Pile retaining wall.
- Anchored retaining wall.
- ➢ Gabion retaining wall.
- Crib retaining wall.
- Soil nailing retaining wall.
- > Mechanical soil stabilization earth retaining wall.
- ➢ Crib retaining wall.
- ➤ Sheet piled wall.

1.3 Gravity Retaining wall

"Gravity retaining wall depends on its self weight only to resist lateral earth pressure".

- Commonly, "Gravity retaining wall is massive because it requires significant gravity load to counter act soil pressure".
- "Sliding, overturning, and bearing forces shall be taken into consideration while this type of retaining wall structure is designed".
- \blacktriangleright "It is economical for a height up to 3m".
- "Material used concrete, stone etc".

(a)

(b)

Fig 1.1 Gravity retaining wall (a) and (b)

1.4 Cantilever retaining wall

- "Cantilevered retaining walls are made from an internal stem of steel-reinforced,castin-place concrete or mortared masonry (often in the shape of an inverted T)".
- "These walls cantilever loads (like a beam) to a large, structural footing, converting horizontal pressures from behind the wall to vertical pressures on the ground below".
- ➤ "Cantilever retaining wall is economical up to height of 3-8m".

(a)

(b)

Fig 1.2 Cantilever retaining wall (a) and (b)

1.5 Counter-fort/Buttress retaining wall

- "It is a cantilever retaining wall but strengthened with counter forts monolithic with the back of the wall slab and base slab".
- > "Counter fort spacing is equal or slightly larger than half of the counter-fort height".
- ➤ "Counter-fort wall height ranges from 8-12m".

(a)

(b)

Fig 1.3 Counter-fort retaining wall (a) and (b)

1.6 Crib Retaining wall

- ➤ "Crib retaining wall are a form of gravity wall".
- "They are constructed of interlocking individual boxes made from timber or pre-cast concrete".
- ➤ "They are constructed of interlocking individual boxes made from timber or pre-cast concrete".
- ➤ "It is suited to support planter areas, but it is not recommended for support of slopes or structures".

(b)

Fig 1.4 Crib retaining wall (a) and (b)

1.7 Gabion Retaining Walls

- "Gabion retaining wall walls are multi-celled, rectangular wire mesh boxes, which are filled with rocks or other suitable materials".
- ➢ "It is employed for construction of erosion control structures".
- "It is also used to stabilize steep slopes"

Fig 1.5 Gabion retaining wall

1.8 Anchored Retaining wall

- "This type of retaining wall is employed when the space is limited or thin retaining wall is required".
- > "Anchored retaining wall is suitable for loose soil over rocks".
- "Considerably high retaining wall can be constructed using this type of retaining wall structure system".

- "Deep cable rods or wires are driven deep sideways into the earth, then the ends are filled with concrete to provide anchor".
- "Anchors (tiebacks) acts against overturning and sliding pressure".

(a)

(b) Fig 1.6 Anchored retaining wall (a) and (b)

1.9 Pile Retaining Wall

- "Pile retaining wall are constructed by driving reinforced concrete piles adjacent to each other".
- "Piles are forced into a depth that is sufficient to counter the force which tries to push over the wall".
- > "It is employed in both temporary and permanent works".

Fig 1.7 Pile retaining wall

1.10 Soil Nailing retaining wall

- "Piling is earth retention and excavation support technique that retains soil, victimization sheet sections with interlocking edges. Pile acts as a temporary certificate wall that has been driven into a slope or excavation to support the soft soils collapse from higher ground to lower ground. It provides high resistance to driving stresses and helps to lightweight".
- Sheet piles will be reused on many comes and long service life above or below water with modest protection. Simple to adapt the pile length by either attachment or bolting and joints square measure less apt to deform throughout driving".

(a)

(b) Fig 1.8 Soil nailing retaining wall (a) and (b)

1.11 Mechanical stabilization earth retaining wall

- "Mechanically stabilized earth (MSE) walls are walls that can tolerate some differential movement. The wall face is unfilled with granular soil whilst retaining the backfill soil".
- "The advantage of MSE walls is the ease of construction, as they do not require formwork or curing. The use of soil nailing in MSE walls, involves introducing slender steel reinforcing bars to the soil, placed parallel to one another on a slight incline and grouted into place".

Fig 1.9 Mechanically stabilized retaining wall

1.12 Sheet pile retaining wall

"Piling is earth retention and excavation support technique that retains soil, victimization sheet sections with interlocking edges. Pile acts as a temporary certificate wall that has beendriven into a slope or excavation to support the soft soils collapse from higher ground to lower ground. It provides high resistance to driving stresses and helps to lightweight. Sheet piles will be reused on many comes and long service life above or below water with modest protection. Simple to adapt the pile length by either attachment or bolting and joints square measure less apt to deform throughout driving".

Fig 1.10 Sheet pile retaining wall

1.13 Purpose of retaining wall

• "This wall prevents the soil or other material at places with sudden elevation changes"

- "Earth retaining structures are used to hold back the earth and maintain the difference in the ground surface height".
- "Retaining structures are designed to withstand the grounds or backfill; other externally exerted loads transmit these forces safely to a foundation".
- "Retaining walls serve as a functional product to prevent sinkholes from destroying your landscape structure". "They are used to stabilize the sloping landscapes and provides level surfaces on slopes".
- "If your property is not prevented from infiltrating, then rainwater runoff can completely damage your land. This can protect your landscape design, also prevent floods from inflowing the area".
- "Retaining walls additionally give your landscape an aesthetically pleasing design".

1.14 Application of retaining wall

- "Construction of basement below ground level in buildings".
- "In the bridge, work consists of the wing walls and abutment".
- "To maintain slopes in hilly areas".
- "As side walls of bridge approach roads".
- "Providing lateral support to the embankment".
- "Protect soil from erosion".

CHAPTER 2

LITERATURE REVIEW

2.1 Literature survey

Ankit C. Mahure and Prof. M. N. Umare[6] in their research they conclude dynamic behavior of the retaining wall at their different heights. "The major problem of instability of walls" is mainly depends on "earth pressure distribution on the wall and the response of wall against the earth pressure, especially, under dynamic/seismic loading condition". So they take a problem and analysis the behavior, stability and strength as well on the different "height of the retaining wall" structure. The study basically helps that what kind of retaining wall is suitable at what height. The main conclusions they got by their research

- Difference in steel increases with increase in heights, the reason behind that the required A_{st} will increases with increase in height.
- Maximum steel required for "L shape retaining wall" than the "cantilever retaining wall". Due to The "thickness" of steam in "L shape retaining wall" is "more" than the "cantilever retaining wall".
- Difference in concrete increases with increase in height, The reason behind that the "L shape retaining wal"l having greater wall thickness than the "cantilever retaining wall".
- "L Shape retaining wall" "consumes more concrete" than the "cantilever retaining wall".

Hua Wen, Jiu-jiang Wu, Jiao-li Zou, Xin Luo, Min Zhang, and Chengzhuang Gu[7] in their research they use GEOBAGS filled with construction waste (demolished concrete waste) and prepare a model in proportion of a prototype. There "retaining walls constructed from geobags filled with construction waste are a new flexible supporting structure characterized by easy construction, low costs, and good supporting effects and facilitate the recycling of construction waste". They took this concept from ancient Egypt time. They conduct this model test on different slopes and length of the Geobags (Q1, Q2, Q3, Q4 and Q5). Accordingly they find mode of failure of retaining wall, load carrying capacity, mode of failure of the slopes. By their study provides helps to use waste construction material effectively,

Su Yang, Amin Chegnizadeh, Hamid Nikraz[8] in this they conclude how the retaining walls behave under the seismic conditions. They elaborate the actual condition of the retaining wall unde earthquake they mainly focus two analytical theories one of coulombs wedge failure theory and one sub-method of this is elasticity analysis method. Also analyse MO (Mononobe and okabe) method. And describe the limitation of MO method.

Ganesh C. Chikute, Ishwar P. Sonar[9] the main aim of their case study was how best the gabion wall among the other as the suggest itself "Techno-Economical Analysis of Gabion Retaining Wall Against Conventional Retaining Walls". They describe the material needed and work methodology for the gabion walls while taking a actual case study of Bank erosion at Ordinance factory, Kirki, Pune. They make a proper comparative of gabion wall with other conventional retaining wall in term of cost of construction, speed of construction, material quantity needed which is very helpful in future. According to them The construction cost of Gabion Wall as compare to Rubble Masonry, RCC Cantilever, RCC Counter-fort, Gravity retaining wall are 0.3%, 54.12%, 10.72%, 9.56% less respectively. Gabion Wall is ideally suited for remote area where skill labour, advance machinery, material is difficult to arrange.

Karthik Babu C and Keerthi Gowda B S [10] the study is basically on "counter fort retaining walls" with and without "pressure relief shelf" using soft computing techniques (SAP200). They gives a brief about this SAP200 software. They conclude a design of counter fort wall with conventional method as well as SAP200 software with and without pressure relieve wall and make comparative that which one is good In the present study comparison of conventional "counter-fort earth retaining wall" with "pressure relief shelf" attached counterfort earth retaining wall is studied. "counter-fort earth retaining wall" with "pressure relief shelf" at 2H/3 positions is very well suited to design the "counter-fort earth retaining wall". Performing analysis of "counter-fort earth retaining wall" by using SAP-2000 is very much advantageous compared to manual techniques. It saves time; repeated iterative analysis could be done with effortlessly. A less experienced (new) design engineers can be successfully use SAP-2000 for analysis of counter-fort earth retaining wall Hence counter-fort earth retaining wall with pressure relief shelf at 2h/3 positions is very well suited to design the counter-fort earth retaining wall. Performing analysis of counter-fort earth retaining wall by using SAP-2000 is very much advantageous compared to manual techniques. It saves time; repeated iterative analysis could be done.

HAN Shang Yu, LI Kai Ren and Qiu Fang[11] their study is on "Construction Technique about The Reinforced Concrete Retaining Wall's Lateral Displacement Repairing". This repairing technique is very useful and their study is also very help full in construction world because describe the method that how to repair retaining wall when got laterally displaced. In this they describe all material required for this repairing and work procedure for the repairing as well. They also ensure and mentioned "Construction Quality Control Points" and "Quality Assurance Measures" taken before during and after the repairing.

Jyoti P. Bhusari and Rajashri S. Ghodke[12]: in this they study "the structural behavior of cantilever retaining wall with pressure relieving shelves". By this we knew about how these pressure relieving wall helps in decreasing the net effect of lateral earth pressure and Bending moment as well. But in this they also try to find the ideal location of the

pressure relieving walls in the cantilever r/wall so that maximum amount of net forces can be reduces. The deflection also gets reduced about 95 percent if we provide shelf of 3.5m at height of 0.5h. Overall they conclude that, "retaining wall with shelves can be considered as an effective solution of the high retaining walls according to the study".

Suk -Min Kong, Dong-Wook Oh, So-Yeon Lee, Hyuk-Sang Jung and Yong-Joo Lee[14] in their study they analyze reinforced retaining wall failure based on reinforced length. They did numerical 3D analysis i.e. modeling by using PLAXIS 3D (It widely used fem program for 3D geotechnical engineering). In this they plotted a graph b/w height of retaining wall vs horizontal displacement for straight retaining wall vs. curved retaining wall and this way the find out the role of retaining wall (length wise) in budging and settlement.

K. Jagadeesh, K.suresh and Dr. K. uday[15] in this they analyze the multi tier retaining wall. In this they analyze the stability of retaining wall external as well as internal. They took well graded as well as poorly graded soil for the study and they same study is carried out by GEO5 Software and form the finding it have been conclude that "intensity of surcharge" of the "upper tier to the lower tier" has "calculated by GEO5 Software, as per the results it is seen that to increase in the pull out resistance there would be minimum length of reinforcement". The stability of the retaining wall depends upon shape or geometry of retaining wall.

Anjali Diwalkar[16]: in this they design and study the outcomes of retaining wall And the conclude that Various systems are implemented to support laterally the soil. Retaining walls might face failure because of sliding, overturning, and bending. Gross pressure and its point of application plays vital role in its failure. "Coulomb's theory method and Rankine theory method used to evaluate the lateral earth pressure on retaining wall for static condition". The "retaining wall with relieving platform is safer against overturning and sliding as compared to cantilever retaining wall". In the gravity type of walls the sequence of construction is a also a important factor to be considered in the design.

Dr. Dhamdhere, Dr. V. R. Rathi and Dr. P. K. Kolase[17] they study about the design criteria of the cantilever and counter fort retaining wall with pressure relieving wall. Also study the results of stability of retaining walls, cost optimization and their behavior of bending moments at different heights so it is helpful in designing the cantilever and counter fort at adequate heights accordingly all the data has been described by help of graphs which is very helpful for construction and selection purposes. "The bending moment in toe and heel is less for retaining wall with relieving platform than cantilever retaining wall". "The area of steel for toe and heel is less for retaining wall with relieving platform than cantilever retaining wall".

2.2 Research objective

- Designing of the retaining wall and analysis its behaviour and stability
- GEO5 models
- Comparative between the result out comes with other type of retaining wall

CHAPTER 3 METHODOLOGY

3.1 Procedure to be followed

After the study , about the retaining wall, its type, application and its purposes. In this case study a numerical problem to be taken for the analysis of the conventional design approach and the same problem has to be analyzing by the software i.e. GEO5. The design process goes with the "selection of geometry", "according to the specifications given in various codes" and "then their overall stability is calculated when backfill load acts on them" at different heights but same loading condition. After all the outcomes/ results by both approaches we have to prepare a comparative and check weather which approach is best for the designing of the retaining walls.

CHAPTER 4

DESIGN BY CONVENTIONAL METHOD

4.1 General

The design of "reinforced cantilever retaining wall" is as follows;

(a) Preliminary structural data

Deck level	8.0	m
Depth of foundation	2	m
Stem thickness at ton	03	m
Stem thickness at top	1.5	m
Toe length	3.2	m
Heel length	4.0	m
Thickness of base at toe and stem junction	1.5	m
Thickness of toe slab at edge	0.75	m
Thickness of heel slab at edge	0.75	m
Total Height (H) Base Width (B)	10.0 9.2	m m
(b)Material Data		
Grade of concrete	30	N/mm ²
Grade of reinforcement	500	N/mm ²
(c)Material unit weight Data		
Unit weight of RCC	25.0	kN/m^3
Unit weight of dry soil	20	kN/m ³
(d)Calculation units		

KN, m, KN-m, Mpa, mm

(e) Soil Data

Table 4.1 Soil data

Description	Units	Value
Cohesion of soil	-	0.0
Angle of internal friction;	deg.	30.0
	Rad.	0.52
Safe bearing capacity of soil;	kN/m ²	225
Net safe bearing capacity of soil	kN/m ²	

(f) Other Data

	Units	Symbol	Value
Surcharge angle = $TAN^{-1}(1/2)$	degree	β	0
	rad.	β	0.000
Active earth pressure coefficient	-	Ka	0.318
Coefficient of friction b/w concrete and soil <i>IRC:78-2014</i>	-	μ	0.577

Table 4.2 Other data

"Partial Safety Factor for Verification of Structural Strength".

Table 4.3 Partial safety factor for structural strength

Load	ULS	Rare Combinati on.	Frequent Combinatio n	Quasi- permanent Combination.
DL	1.35	1	1	1
EP	1.5	1	1	1
LSC	1.2	0.8	0	0

Vertical force (kN)

Table 4.4Vertical forces

Description	Units	Vertical forces
Weight of stem / unit length of wall	kN	191.25
Weight of Base slab / unit length of wall	kN	258.75
Weight of backfill soil	kN	812.00
Weight of soil above toe	kN	56.00
Force due to active pressure /unit length of wall (P_v)	kN	0.00
Net vertical force	kN	1318.00

Table 4.5 Uls and Sls

ULS	SLS					
Basic Comb.	Rare Comb.	FrequentComb.	Quasi- permanentComb.			
258.19	191.25	191.25	191.25			
349.31	258.75	258.75	258.75			
1096.20	812.00	812.00	812.00			
75.60	56.00	56.00	56.00			
0.00	0.00	0.00	0.00			
1779.30	1318.00	1318.00	1318.00			

Horizontal force (kN)

Table 4.6 Horizontal forces

			ULS	SLS		
Description	Units	Verti cal force s	Basi c Com b.	Rar e Com b.	Freque nt Com b.	Quasi- permane nt Comb.
Force due to active pressure /unitlength of wall (P _h)	kN	317.75	476.6 2	317.75	317.75	317.75
Live Load Surcharge	kN	76.26	91.51	61.01	0.00	0.00
Net Horizontal force	kN	394.00	568.13	378.75	317.75	317.75

4.2 Check for Over Turning

Restoring Moment (Per Unit)

1 able 4./ Kestoring momen	ent	momei	Restoring	K	4.7	able
----------------------------	-----	-------	-----------	---	-----	------

				ULS	SLS			
Section	Area	Weight (kN/m)	l. arm (m)	Basi c Com b.	Rare Com b.	Freque nt Comb	Quasi- permane ntComb.	Moment about Toe (kN- m)
1	2.55	63.75	3.35	86.06	63.75	63.75	63.75	288.31
2	5.10	127.50	3.90	172.13	127.50	127.50	127.50	671.29
3	39.10	782.00	6.39	1055.7	782.00	782.00	782.00	6742.71
				0				
4	6.53	163.13	4.35	220.22	163.13	163.13	163.13	957.95
5	1.60	32.00	1.60	43.20	32.00	32.00	32.00	69.12
6	1.50	37.50	6.03	50.63	37.50	37.50	37.50	305.44
7	1.50	30.00	7.37	40.50	30.00	30.00	30.00	298.35
8	1.20	30.00	2.13	40.50	30.00	30.00	30.00	86.40
9	1.20	24.00	1.07	32.40	24.00	24.00	24.00	34.56
10	1.13	28.13	3.95	37.97	28.13	28.13	28.13	149.98
11	0.00	0.00	6.97	0.00	0.00	0.00	0.00	0.00
P_v		0.00	9.20	0.00	0.00	0.00	0.00	0.00

Total Restoring Moment (Mr)	9604.1
Overturning Moment (kN-m) Mo	2459.35
Factor of Safety against Overturning	
(F.O.S)	3.91
Criteria	Safe > 1.5
4.3 Check for Sliding	
Sliding Force	568.13
Resisting Force	1027.28
Factor of Safety against Sliding	

(F.O.S)	1.81
Criteria	Safe > 1.5

4.4 Base Pressure Check

"Partial Safety Factor for Verification of Serviceability Limit State"

Table 4.8 Partial safety factor for limit state

Load	Comb.(1)	Comb.(2)	Accidental Comb.
DL	1.35	1.00	1.00
EP	1.50	1.30	0.00
LSC	1.20	1.00	0.20

Vertical force (kN)

Table 4.9	Vertical forces

Description	Units	Vertic al forces	Comb.(1)	Comb.(2)	Accide ntal Comb.
Weight of stem / unit length of wall	kN	191.2 5	258.19	191.25	191.25
Weight of Base slab / unit length of	kN	258.7 5	349.31	258.75	258.75
Weight of backfill soil	kN	812.0 0	1096.2 0	812.00	812.00
Weight of soil above toe	kN	56.00	75.60	56.00	56.00
Net vertical force	kN	1318.00	1779.3 0	1318.00	1318.0 0

Horizontal force

 Table 4.10
 Horizontal forces

Force due to active pressure	kN	317.75	476.62	413.07	0.00
/unit length of wall (P _h) Live Load Surcharge	kN	76.26	91.51	76.26	15.25
Net Horizontal force	kN	394.00	568.13	489.33	15.25

Restoring Moment (Per Unit)

Section	Area	Weight (kN/m)	l. arm (m)	Combinati on(1)	Combinati on(2)	Accidental Combinatio n	Moment
1	2.55	63.75	3.35	86.06	63.75	63.75	288.31
2	5.10	127.50	3.90	172.13	127.50	127.50	671.29
3	39.10	782.00	6.39	1055.70	782.00	782.00	6742.71
4	6.53	163.13	4.35	220.22	163.13	163.13	957.95
5	1.60	32.00	1.60	43.20	32.00	32.00	69.12
6	1.50	37.50	6.03	50.63	37.50	37.50	305.44
7	1.50	30.00	7.37	40.50	30.00	30.00	298.35
8	1.20	30.00	2.13	40.50	30.00	30.00	86.40
9	1.20	24.00	1.07	32.40	24.00	24.00	34.56
10	1.13	28.13	3.95	37.97	28.13	28.13	149.98
11	0.00	0.00	2.23	0.0	0.0	0.0	0.00

 Table 4.11
 Restoring moment

Total Restoring Moment(Mr)

9604.1

Overturning Moment (kN-m)(Mo)		2459.35
Eccentricity (e)	e D/6	0.58
	Criteria	e < B/6
		No tension
Minimum Pressure (kN/m ²) Maximum Pressure (kN/m ²)	P _{min} P _{max}	119.68 267.13

4.5 DESIGN OF STEM, TOE & HEEL Design BM & SF - Heel Slab

Description	units	Symbol	Value
1) Downward Pr. due to weight of soil	kN/m ²		258.30
2) Pr. due to weight of heel slab	kN/m ²		50.63
4) Upward Pressure -			
a) At edge of heel	kN/m ²		119.68
b) Below junction of stem and heel	kN/m ²		183.79
5) Net downward pressure -			
a) At edge of heel	kN/m ²		189.25
b) Below junction of stem and heel	kN/m ²		125.14
Ultimate Moment	kN-m	Mu	1343.03

Table 4.12 Design of bending moment for heel slab

Table 4.13 Design of shear force for heel slab

Description	units	Symbol	Value
1) Downward Pr. due to weight of soil	kN/m ²		258.30
2) Pr. due to weight of heel slab	kN/m ²		50.63
4) Upward Pressure -			
a) At edge of heel	kN/m ²		119.68
b) At d from stem	kN/m ²		204.57
5) Net downward pressure -			
a) At edge of heel	kN/m ²		189.25
b) At d from stem	kN/m ²		104.35
Ultimate shear	kN	Vu	587.21

Table 4.14 BM & SF for toe slab

Description	units	Symbol	Value
1) Downward Pr. due to weight of soil	kN/m ²		0.00
2) Pr. due to weight of toe slab	kN/m ²		37.97
3) Upward Pressure -			
a) At edge of toe slab	kN/m ²		267.13
b) At the face of Stem	kN/m ²		207.83
4) Net downward pressure -			
a) At edge of toe slab	kN/m ²		229.16
b) At the face of Stem	kN/m ²		169.86
Ultimate Moment	kN-m	Mu	1072.09
Ultimate shear	kN	Vu	349.14

Design BM & SF – Stem

Table 4.15 BM & SF for stem

Description	units	Symbol	Stem @ Base	Stem @ 0.5*(H- D)
Thickness of heel slab	m	ts	1.50	1.50
Revised height of stem	m	H_1	8.50	4.25
Ultimate Moment	kN-m	Mu	1559.94	236.31
Ultimate Shear	kN	Vu	422.14	124.98

4.6 Reinforcement Calculation

Flexure Reinforcement

Table 4.16	Reinforcement calculations

Description	Units	Stem @ Base	Stem @	Toe	Heel
			0.5*(H -D)		
Main reinforcement			-D)		
Design bending moment	kN-m	1560	236	1072	1343
Reqd effective depth	mm	614	239	509	570
Dia. of bars	mm	25	16	25	25
Dia. of bars (In 2nd Layer)	mm	25	0	0	25
Cover	mm	75	75	75	75
Prov. avg depth	mm	900	600	1125	1125
Prov. effective depth	mm	813	517	1038	1038
Reqd. area of reinf.	mm^2	4908	1089	2474	3134
min. area of reinf.	mm^2	1080	720	2454	2454
prov. area of reinf.	mm^2	9817	1340	4909	9817
prov. spacing of reinf.	mm	100	150	100	100
Check		ok	ok	ok	ok
Distribution reinforcement					
dia. of bar	mm	12	12	12	12
min. area of reinf.	mm^2	982	218	495	627
Min. area on earth face	mm^2	654	145	330	418
Min. area on exposed face	mm^2	327	73	165	209
Spacing on earth face	mm	150	150	200	200
Spacing of exposed face	mm	150	150	200	200
prov. area of reinf. each face	mm^2	1508	1508	1131	1131
Check		ok	ok	ok	ok

4.7 Check for shear

Description	Units	Stem @ Base	Stem @	Toe	Heel
			0.5*(
			H-D)		
effective depth	mm	812.5	517	1037.5	1037.5
k		1.50	1.62	1.44	1.44
b _w	mm	1000	1000	1000	1000
ρ_1		1.21E-	2.59E-03	4.73E-03	9.46E-03
		02			
σ _{cp}		0	0	0	0
VRd.c(calc.)	kN	443.16	183.96	399.45	502.11
VRd.c min.	kN	252.47	181.33	304.11	304.11
V _{Ed}	kN	422.14	124.98	349.14	587.21
Shear Reinf. Requirement		No	No	No	No

Table 4.17 Check for shear

4.8 Seismic Data

Seismic Zone

Zone IV

Horizontal seismic coefficient (α h) is given by :

		Ζ	Ι	S_a
u	h	2	\overline{R}	g

where,

Zone factor	Ζ	0.24
Importance factor	Ι	1.20
Response reduction factor	R	3.00
Spectral coefficient in x-direction	(Sa/g)x	2.50
Spectral coefficient in z-direction	(Sa/g)z	2.50
Spectral coefficient in y-direction	(Sa/g)y	2.50
Seismic coefficient in x-direction	(ah)x	0.120
Seismic coefficient in z-direction	(ah)z	0.120

4.9 Calculation of earth pressure coefficients

"Calculation of earth pressure coefficients in normal and seismic

- Ca horizontal dynamic active earth pressure coefficient
- Cp horizontal dynamic passive earth pressure coefficient
- Ka horizontal static active earth pressure coefficient
- Kp horizontal static passive earth pressure coefficient

"where,

Φ	angle of internal friction of soil
α	angle which earth face of the wall makes with the
vertical	
β	slope of earthfill
δ	angle of friction between the wall and earthfill
should be equal to	-
	$2/3$ of Φ subject to maximum of 22.5°

Ah	horizontal seismic coefficient
Av	vertical seismic coefficient"

λ =	λ = tan ^{−1}	Ah
		1± A _V

Ah	0.12
Av	0.08

Table 4.18 Different parameters

Φ	30.0 degree	0.52 rad
α	0.14 degree	0.00 rad
β	0 degree	0.00 rad
δ	20 degree	0.35 rad
λmax	7.43 degree	0.13 rad
λmin	6.34 degree	0.11 rad

Table 4.19 Design coefficients

Design Coeffici ent	max	min	Design dynamic coefficient	static coefficie nt	dynam ic chang e
Ca	0.33	0.25	0.33	0.32	0.01

<u>Notes</u>

- 1. ALL DIMENSIONS ARE IN MM, & LEVELS ARE IN METRES UNLESS OTHERWISE SPECIFIED.
- 2. DIMENSIONS ARE NOT TO BE SCALED. ONLY WRITTEN DIMENSIONS SHALL BE FOLLOWED.
- THIS DRG. SHALL BE READ IN CONJUNCTION WITH OTHER RELEVANT DRGS.
- GRADE OF CONCRETE IN R.C.C. WING/ RETAINING WALLS SHALL BE OF M35 MIX.
- ALL REINFORCING STEEL SHALL BE HIGH YIELD STRENGTH DEFORMED (TMT) BARS AND (GRADE-Fe 500). CONFORMING TO IS:1786.
- 6. WHEREVER THERE IS VARIATION IN DEPTH OF FOUNDATION A CONSTRUCTION JOINT SHALL BE PROVIDED IN FOUNDATION.
- 7. CLEAR COVER TO REINFORCEMENT SHALL BE AS FOLLOWS.
 - (a) FOR FOUNDATION AND WALL CN EARTH RETAINING SIDE-75mm.

FIG 4.1 Typical cross section of retaining wall

(a) FOR FOUNDATION AND WALL CN EARTH RETAINING SIDE-75mm.

(b) OTHERS -50mm.

- THE BEARING PRESSURE BELOW FOUNDATION IS AS PER TABLE-2, THE BEARING CAPACITY OF SOL IN EXCESS OF BEARING PRESSURE MAY BE ENSURED AT THE FOUNDING LEVEL.
- BACK FILLING OF EXCAVATED TRENCH SHALL BE CARRIED OUT UP TO THE NATURAL GROUND LEVEL WITH PROPER COMPACTION.
- 10. TYPE OF WING/RETAINING WALL AS MENTIONED IN TABLE- 1 MAY BE SUITABLY ADOPTED BASED ON THE GROUND LEVEL AT SITE.
- LAYNG, COWPACTION AND EXTENT OF BACK FILL BEHIND RETAINING WALL SHALL CONSISTS OF SELECTED EARTH CONFORWING TO APPENDIX-6 OF IRC:78-2014 HAVING PROPERTIES C=0,\$\$\mathcal{v}\$>30" & DENSITY =18KN/m3.
- 12. 600mm. THICKNESS FILTER MEDIA SHALL BE PROVIDED BEHIND RETAINING WALLS.

FIG 4.2 Reinforcement detail of retaining wall

4.10Schedule of retaining wall

ŧ	SCHEDULE OF RETAINING/TCE WALL	

			HEIGHT	r (H) 2M	HEIGHT	(H) 4 M	HEIGHT	r (H) 5M	HEIGH	IT (H) 6M	HEIGHT	(H)7M	HEIGHT (H)	8M	HEIGHT (H)	9M	HEIGHT (H)	10M
SR.NO	TYPES Of Bar	SHAPE OF (Not to scale	DIA OF BAR S (mm)	SPACING/ NO Of BARS(mm)	DIA OF BARS (mm)	SPACING/ NO OF BARS(mm)	DIA OF Bars (mm)	SPACING/ NO OF BARS(mm)	DIA OF Bar S (mm)	SPACING/ NO OF BARS(mm)	DIA OF Bars (mm)	SPACINGI NO OF BARS(mm)	DIA OF Bars (mm)	SPACING/ NO OF BARS(mm)	DIA OF Bars (mm)	SPACINGI No Of BARS(mm)	DIA OF BARS (mm)	SPACINGI No Of BARS(mm)
1	۵		10	150	12	150	12	75	16	120	20	150	20	75	25	75	25 2 loyer	100
2	a1		10	150	12	150	12	150	16	150	16	150	16	150	16	150	16	150
3	c1	\land	10	150	12	150	12	150	16	150	16	150	16	100	ZU	100	20	120
4	c2	_	8	200	8	200	8	200	8	200	8	200	10	200	12	200	12	200
5	ď	_	8	150	8	150	8	150	8	150	8	150	10	150	12	150	12	150
6	el		10	150	12	100	12	75	16	100	20	100	25	100	25 2 laye	100	25 2 loyer	100
7	e2		8	200	8	200	8	200	8	200	8	200	10	200	12	200	12	200
8	ł	_	10	4 NOS	10	4 NOS	10	4 NOS	10	4 NOS	10	4 NOS	10	4 NOS	10	4 NOS	10	4 NOS
9	sî		10	300	10	300	10	300	10	300	10	300	10	300	10	300	10	300
10	s2	_	8	200	8	200	8	200	8	200	8	200	10	200	12	200	12	200
11	sĴ	\land	10	300	10	300	10	300	10	300	10	300	10	300	10	300	10	300
12	s4		8	200	8	200	8	200	8	200	8	200	10	200	12	200	12	200
13	s5		12	200	12	200	12	200	12	200	12	200	12	200	12	200	12	200
14	ső	—	8	150	8	150	8	150	8	200	8	200	10	200	12	200	12	200

. 1

ï

1

.

Fig 4.3 Schedule of retaining wall

4.11 Parameters of retaining wall

TAB	TABLE SHOWING VARIOUS PARAMETERS OF RCC RETAINING WALL								
	PARAMETER	S							
SR.NO	HIGHI (mm)	2-3№	4-51/	5-6M	6-71	7-M	8M	9M	1 O M
1	В	2.3	3.4	4.2	5.0	5.9	6.8	7.1	7.7
2	b1	8.0	1.3	1.4	1.8	2.0	2.6	3	3.2
3	b2	1	1.6	2.0	2.2	2.6	2.9	3.6	4
4	t	0.5	0.8	1.0	1.1	1.2	1.3	1.4	1.5
5	ť1	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4
6	t2	0.5	0.6	0.8	*	1.3	1.3	1.4	1.5
7	L1	0.85	0.85	1.05	1.05	1.05	1.05	1.05	1.05
8	L2	0.85	0.85	0.85	0.85	1.05	1.05	1.05	1.05
9	L3	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
10	Df	1.5	1.5	1.5	2.0	2.0	2.0	2.0	2.0
11	maximum hase pressure kN/m²	64.00	150.00	176.00	189.23	224.36	224.0	225.00	260.00

Fig 4.4 Parameters of retaining wall

CHAPTER 5 ANALYSIS BY SOFTWARE

5.1 GENERAL

The GEO 5 "software" is used for this study. GEO 5 is used for both Finite Element Method and analytical methods. GEO5 acquire a isolated way of execute "standards and partial safety factors which are distinct from structural input".

5.2 APPLICATIONS OF GEO5

"GEO5 is a geotechnical software that is used to solve various geotechnical problems". Apart from "geotechnical engineering task (slope stability, foundations, retaining walls)", it also involves the "applications for the analysis of tunnels, building damage due to tunneling or rock slope stability". GEO5 is "based" on both "analytical method" and "finite element method". The "analytical method" i.e "slope stability, sheeting design allow users to design and also to check structures quickly and efficiently". "The designed structure is transferred into the FEM which is used for the overall analysis of the structure". "It saves designers time as well as compares two independent solutions, thus increasing the design safety". "It is a powerful and easy to use package which consists of individual programs having a consistent graphical interface".

GEO5 is used for the;

- a. Stability analysis.
- b. Excavation.
- c. Retaining wall design.
- d. Foundation design.
- e. Soil settlement analysis.
- f. Digital terrain design model.
- g. Finite element analysis (advanced).

5.3 DESIGN STEPS OF CANTILEVER REATINING WALL USING GEO5

The design steps are as follows;

Start the Geo5 program, click on cantilever retaining wall plan. Click on the "project" option. Fill the details like date, project name, description etc.

Fig 5.1 Project frame

Next step is "setting" click on setting and select the code which is appropriate for the design of wall.

Fig5.2 Setting frame

- 2D Frames Project 🛱 Settings 3D Geometry 5.70: **+** 10.00 10.00 Profile Q Soils 🗮 Assign 3.20 4.00 2 💾 Founda 🌈 Backfill نې r Terrain 9.20 🚰 Water 🏴 Surcharg Ŀ L \mathbf{L} ±I FF resista ↓ Applied fo 뤘 Earthquak Wall oe 5.70 [-] k = 0.30 [m] v1 = 3.20 [m] s₁ = Base and h = 9.70 [m] v₂ = 4.00 [m] Outputs [m] Shank 2.00 [m]
- Now go for the "Geometry ", select the shape and fill the dimensions

xx =

0.30 [m]

Fig5.3 Geometry frame

Next one is "material", select the properties of the wall. Fill the units weight of the wall. Select from list of type of steel used cement used.

E* Add pictu Geometry : Total :

List of pic

Next frame is "profile", enter the depth of soil layers present click on "add" to add the depth of top soil layer from top

Fig5.5 Profile frame

> Next is "Soils", fill the specifications of soil click on "add" to classify the type of soil and fill the properties γ , δ , c and ϕ

File Edit Input Analysis Outputs Settings H	elp					
, 🗅 🔒 • 🖪 • 🙀 🛍 🧯						
		Л		° ° ° °	—	Frames
		//		<u>૾૾૾૾૾૾૾૾૾૾૾૾</u>		Project
30				°°°°°°		Settings
				0000 000 000		L Geometry
↔	10.00		10.00	္ခံုိုိုိုိုို		Material
	Edit coil parameters				1	Profile
	Euroson parameters					Soils
F7	Identification			Draw		Assign
<u>~</u>	Name : Poorly grav	ded gravel (GP), medium dense		-		A Foundation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Poorly	graded gravel (GP), medit	_	Pattern category		Backfill
\$Q\$	Basic data		20.0	GEO		Water
	one weight .	γ = 20.00 [kw/m-]	20.0	Pattern		Surcharge
Add	Stress-state :	effective			h copy	IFF resistance
No. Soil name	Angle of internal friction :	φ _{ef} = 35.50 [°]	33 - 38	• • • • • • • •	h all cole	Applied forces
2 Silt with low or medium plasticity (ML, MI)	Cohesion of soil :	c _{ef} = 0.00 [kPa]	0	Gravel	P UI JUIJ	- Earthquake
	Angle of friction strucsoil :	δ = 22.00 [°]				Base anchoraci
	Pressure at rest		?	Classification		Outputs
	Soil :	cohesionless 💌		Classify		B* Add picture
				Clear		Profile and assi:
	Uplift pressure		?			I otal :
	Calc. mode of uplift :	standard 💌			7	E cat of pictules
	Saturated unit weight :	γ _{sat} = 22.00 [kN/m ³ ]		OK + 🖲	board	
sio				🖉 ок	eo Ch	E Copy view
<u>v</u>				Cancel	0	

(a)



(	b)



(c)

File E	lit Input Analysis Outputs Settings Help			
e	) 🔓 : 🛱 📲 : - 🖪 : -	[1]		
	U U			Frames  Frames Frames  Frames  Frames  Frames  Frames  Frames  Frames  Frames  Frames  Frames  Frames Frames  Frames  Frames  Frames  Frames  Frames  Frames
	Add      Add	twith low or medium plasticity (ML, M1), firm consistency           treight: $\gamma = 20.00 \text{ kV/m}^3$ ess-state:         effective           gle of internal fiction: $q_{eff} = 21.00 \text{ s}^3$ hesion of soil : $c_{eff} = 12.00 \text{ kPa}$ gle of internal fiction: $\delta_{eff} = 21.00 \text{ kPa}$ gle of internal fiction: $\delta_{eff} = 21.00 \text{ kPa}$ gle of internal fiction: $\delta_{eff} = 20.00 \text{ s}^3$ gle of internal fiction: $\delta_{eff} = 20.00 \text{ s}^3$ gle of internal fiction: $\delta_{eff} = 22.00 \text{ kV/m}^3$	Bected sols     b selected sols     b all sols	Image: Surcharge         Image: FF resistance         Image: Applied forces         Image: Surcharge         Image: Surcharge         Outputs         Image: Surcharge         Profile and assim: 0         Total:         Image: Surcharge

(d)

Fig5.6 Soil frame of different soils (a )(b) (c) & (d)

➢ Input the parameters of soil by "Assign" command.

		_
File Edit Input Analysis Outputs Settings Help		
: 🗋 💾 - 🔚 - 🕫 💼 🔅 🕂 💷	]	
		rames
		Project
30		Seconds
		Geometry
<b>↔</b>	10:00	Material
		Profile
		Soils
		Assign
		Here Foundation
		🜈 Backfill
	9.20	Terrain
<b>~~</b>		Water
	1	Surcharge
Poorly graded gravel (GP), medium der	inse d	FF resistance
Laver Thickness [m] Assigned soil		Applied forces
> 1 6.50 Sit with low or medium plasticity (ML, ■)	3	💀 Earthquake
2 3.50 Poorly graded gravel (GP), medium der		Base anchoran
3 Poorly graded gravel (GP), medium der		outputs
		Add picture
	P	rofile and assi :
	те	otal :
		E ^{III} List of pictures
5.		
Assi	<b>v</b>	Copy view



Click on "foundation" and prefer the appropriate type of foundation

![](_page_51_Figure_1.jpeg)

#### **Fig5.8 Foundation frame**

Next step is "Backfill" select the suitable backfill shape and type of soil requied for backfill

![](_page_51_Figure_4.jpeg)

#### Fig5.9 Backfill frame

> Next is "Terrain" select shape of the terrain type.

![](_page_52_Figure_1.jpeg)

Fig 5.10 Terrain frame

> Next parameter is "Water", select the position of water table.

![](_page_52_Figure_4.jpeg)

Fig5.11 Water frame

Next is "Surcharge", by clicking on add select the suitable surcharge condition according to the the present situation of the area

![](_page_53_Figure_1.jpeg)

(a)

![](_page_53_Figure_3.jpeg)

(b)

Fig5.12 Surcharge frame (a) and (b)

![](_page_54_Figure_0.jpeg)

> Next is "Front Face Resistance", select the type of suitable height and type of soil.

Fig5.13 Front face resistance frame

Next is "Applied force", by clicking on add fill the forces acting on the wall or soil

![](_page_54_Figure_4.jpeg)

Fig 5.14 Applied forces frame

Next frame is "Earthquake", select the suitable condition and analyse the earthquake condition

![](_page_55_Figure_1.jpeg)

Fig5.15 Earthquake frame

![](_page_55_Figure_3.jpeg)

Next step is "Base anchorage" select the icon if any need

![](_page_55_Figure_5.jpeg)

Next one is "Stage setting" select the stages according to the given condition

File Edit Input Analysis Outputs Settings Help		
		Frames
2D		^
		Profile
30		Soils
1000		Assign
++		Here Foundation
		T Backfill
Q		Terrain
	9.20	Water
	<i>k</i> ──── <i>k</i>	Surcharge
		1 FF resistan
80 A		🛃 Applied for
		🐰 Earthquake
1		🕆 Base ancho
Design situation :	permanent	12 Stage setti
		🔁 Verification
Pressure acting on the wall : the wall c	an deflect (active pressure)	📟 Bearing cap
		- ~
		Outputs
		Add picture
		Stage settings :
		Total :
		E ^{III} List of pictu
57		
setting		
tage		Copy view
<u>v</u>		

#### Fig 5.17 Stage setting frame

Now click on the "Verification" and examine the "result" of slip and overturning of the "reinforced cantilever wall"

![](_page_56_Figure_4.jpeg)

> Click on in detail to go for the detailed results

File		<mark></mark> 6 (	t stage	Verification		
			_	Verification of complete wall           Check for overturning stability           Reasting moment Mag. = 851.20 k/m/m           Overturning moment May. = 851.20 k/m/m           Safety factor = 4.20 > 1.50           Wall for overturning is SATISFACTORY           Check for sig           Reasting horizontal force Hag. = 968.37 k/l/m           Safety factor = 1.88 > 1.50           Wall for overturning row Hag. = 564.37 k/l/m           Safety factor = 1.88 > 1.50           Wall for overturning to SATISFACTORY           Overail check - WALL is SATISFACTORY		Frames → rofile → Sols → Sols → Soundation → Backfill → Backfill → Terrain → Surcharge → Surcharge → Apple forces
	rificati No. f force > 1 2 3 4 5 6 7 8 9	on :      Force Force Weight - wal Earthq constr. FF resistance Earthq face Weight - sarl wedge Earthq.actup ressure Earthq act.pressure house			😰 in detail	Base anchorage     Base anc
Verificatio				*		Copy view

![](_page_57_Figure_2.jpeg)

#### Fig 5.18 Verification frame (a) and (b)

Now go for "Bearing capacity", "perform an analysis for design bearing capacity of the "foundation soil" having bearing capacity of 225 kPa

File Edit Input Analysis Outputs Settings Help			
			Frames _
			<ul> <li>Profile</li> <li>Soils</li> <li>Assign</li> <li>Assign</li> <li>Backfill</li> <li>Terrain</li> <li>Water</li> <li>Surcharge</li> <li>Ff resistance</li> </ul>
			Applied forces
			去 Earthquake
Calculation of bearing capacity of foundation sol		🖳 🕅 In detai	12 Stage settings
Input bearing capacity of foundation sol	Verification		Nerification
Analyze bearing capacity by program spread rooting     Date and address and address and address a	ECCENTRICITY: FOUNDATION SOIL:	SATISFACTORY (0.0%) SATISFACTORY (98.4%)	Bearing cap.
			~
Bearing capacity of found. soil : R = 225,00 [(Pa)			Outputs _
Overall length of wall foundation : [m]			B* Add picture
出 Launch program Spread Footing			Bearing cap. : 0
			Total: 0
			List of pictures
- cero			
Des			Dopy view

(a)

![](_page_58_Picture_0.jpeg)

> Note: For detailed results click on in detail.

(b)

Fig 5.19 Bearing capacity frame (a) & (b)

> Next parameter is "Dimensioning", analyze dimensions and steel used of the wall

File			[1] G						
20				0.1	0.7715.00 pr	of. 20.0mm.cov	er 30.0mm		Frames .
30	]			_ +	0.11-2-11	.,/			Soils
1			10,00		<b>1</b>				Here Foundation
`+	·					6. ° °			🜈 Backfil
C	ζ					<u>, , , , , , , , , , , , , , , , , , , </u>			Terrain
	_				20				Surcharge
2	2 7			<u>}</u>	1				1 FF resistance
									🛃 Applied forces
50	3								💀 Earthquake
~									Base anchorage
1	Dimensio	ning : 🛨 😑 [1]						🕵 In detai	Stage settings
	No	Earco	- 1	-	Anolic	noint	Cooff	- Location of dimensioning	R Verification
	of force	Force	[kN/m]	[kN/m]	x [m]	z [m]	[-]	Construction joint check Depth : 0,10 [m]	Bearing cap.
	> 1	Weight - wall	0.00	0.77	0.16	-0.05	1.000 ^	- Data for dimensioning	
	2	Earthq constr.	-0.09	-0.06	0.16	-0.05	1.000	Deperforcement courses 20.0 [mm] Number of barrs 5.00 [-]	Colority
	3	Earthquake - pressure at rest	-0.08	0.00	0.32	-0.05	1.000	Conservation width 100 [m] Residentiates 200 [m]	Outputs .
	5	house	-2.57	0.00	0.32	-0.05	1.000	Cross-sector whom: 1.00 [m] bar diameter: 20.0 [mm]	BT Add picture
								Inserted steel area : 1570.8 mm ²	Dimensioning :
								Construction joint check 0.10 m	List of nictures
								SHEAR: SATISFACTORY (1.7%)	a coros pictores
Ding								FLEXURE : SATISFACTORY (0.1%)	
ension								DESIGN PRINCIPLES: SATISFACTORY (30.0%)	

➢ Wall jump check

File	Edit Input Analysis Outputs Settings Help	
		Frames
Dimensioning	Immensioning:       Immensioning:<	tarmquae ↑ Base antorage ↓ Stage settings ↓ Verification ■ Beering cap. ↓ Distoitiy Outputs ↓ Stability Outputs ↓ Stability Outputs ↓ Stability Outputs ↓ Base of picture ↓ Base of pictures ↓ Base of pictures ↓ Base of pictures ↓ Base of pictures ↓ Base of pictures

(b)

Fig 5.20 Dimesioning frame (a) & (b)

> Next is "Stability", and examine the stability of the wall by different methods

![](_page_59_Figure_5.jpeg)

➢ Analyze it with all methods

![](_page_60_Figure_1.jpeg)

(b)

Fig 5.21 Stability frame (a) & (b)

## **5.4 Results of analysis**

Overturning	:43.8 % ; SATISFACTORY
Slip	:97.4 % ; SATISFACTORY
Eccentricity	:0.00 % ; SATISFACTORY
Foundation soil	:94.80 % ; SATISFACTORY
Factor of Safety Overall stability	:3.42 > 1.5 ; SATISFACTORY : The cantilever wall is overall acceptable

## CHAPTER 6

## **DISCUSSION AND RESULTS**

#### **6.1 RESULTS BY SOFTWARE**

" For retaining walls of different height the overturning factor is as shown in the table between Retaining wall, stone wall and stoncrete wall"

SR NO	HEIGHT OF RETAINING WALL (M)	REINFORCED CANTILEVER RETAINING WALL	STONE MASONARY RETAINING WALL	STONECRETE RETAINING WALL
1	2	6.23	6.19	6.17
2	4	3.77	4.01	3.98
3	6	2.95	2.96	2.92
4	8	3.60	3.58	3.59
5	10	3.42	3.83	3.75

#### Table 6.1 Results for the overturning with factor 1.5

"In this table the various values of overturning is shown for different kinds of wall having different wall height". "In this the wall of different kinds having different heights is modeled on Geo5 software to check the overturning factor and from this we come to know about which material and height wall is more safe in overturning".

Table 6.2	Values fo	r shear	of wall
-----------	-----------	---------	---------

SR NO	HEIGHT OF RETAINING WALL (M)	REINFORCED CANTILEVER RETAINING WALL(%)	STONE MASONARY RETAINING WALL (%)	STONECRETE RETAINING WALL (%)
1	2	3.60	7.0	7.2
2	4	18.3	2.6	2.4
3	6	44.3	14.5	12.9
4	8	27.0	7.2	6.7
5	10	47.3	12.2	11.5

"In this table the different values of different heights and material wall is calculated by software and shown in tabular form for easy understanding". "By this we are able to understand which wall is more safe in shear If the shear is more than the shape of the wall can deflect in direction parallel to their planes". "If shear is more in the wall then we can provide a shear key which holds the wall in position and resist to have the change in the shape of the wall"

SR NO	HEIGHT OF RETAINING WALL (M)	REINFORCED CANTILEVER RETAINING WALL (%)	STONE MASONARY RETAINING WALL (%)	STONECRETE RETAINING WALL (%)
1	2	1.0	27.1	25.2
2	4	10.9	10.2	10.1
3	6	34.1	16.4	15.7
4	8	10.9	0.5	0.2
5	10	20.6	0.9	0.7

#### Table 6.3 Values of flexure and flexure + pressure

"In this table the different values of flexure and flexure + pressure is find out on software to make the wall more safe". "If the bending moments required for the equilibrium exceeds the flexural strength of the wall, flexural failure may occur". "The structural ductility of the wall itself may influence the level of deformation produced by flexural failure". "If the flexure is more than the wall is not safe"

Table 6.4	Values for slip
-----------	-----------------

SR NO	HEIGHT OF RETAINING WALL (M)	REINFORCED CANTILEVER RETAINING WALL	STONE MASONARY RETAINING WALL	STONECRETE RETAINING WALL
1	2	2.59	2.66	2.52
2	4	2.06	2.34	2.08
3	6	1.51	1.66	1.45
4	8	1.93	1.99	1.65
5	10	1.54	1.98	1.72

"In the above table the value of slip is given by software analysis for different heights and materials. The wall will slide if the lateral thrust exceeds the frictional resistance developed between the base of the wall and soil. All the lateral forces try to slide the wall. The resistance against sliding is mainly provided by the friction between the base slab and the soil below it".

SR NO	HEIGHT OF RCC	BISHOPS	FELLENIUS/ PETTERSON	SPENCER	JANBU	MOGENSTERN- PRINCE
	WALL					
1	2	2.95	2.91	2.95	2.95	2.95
2	4	2.11	2.05	2.12	2.12	2.12
3	6	2.07	2.03	2.08	2.08	2.08
4	8	2.10	2.06	2.12	2.11	2.11
5	10	1.68	1.68	1.63	1.62	1.62

Table 6.5 Results for slope stability of RCC wall

 Table 6.6 Results for slope stability of stone wall

SR NO	HEIGHT OF STONE WALL (M)	BISHOPS	FELLENIUS/ PETTERSON	SPENCER	JANBU	MOGENSTERN- PRINCE
1	2	2.77	2.44	2.77	2.77	2.77
2	4	2.14	2.08	2.15	2.15	2.15
3	6	2.08	2.03	2.08	2.08	2.08
4	8	2.12	2.07	2.13	2.12	2.12
5	10	2.01	1.96	2.02	2.01	2.01

"In the above table of 6.5& 6.6 slope stability the walls are analyzed by five different methods to check the overall stability of the walls by software". "Slope stability analysis is performed to assess the safe design of a man-made or natural slopes and the equilibrium conditions". "Slope is the resistance of inclined surface to failure by sliding or collapsing". "In this the stone walls and the rcc wall are designed and analysed on the geo5 software to give the better results about the slope stability analysis of the wall".

## **6.2 BAR CHARTS AND DISCUSSIONS**

"In this we will discuss about the amount of steel portion used in the reinforced cantilever wall". "In this we compare the amount of steel used at different heights of the retaining wall". "When a reinforced retaining wall is made it is very important to find out the exact amount of steel required foe stem, toe and heel of the wall".

![](_page_65_Figure_3.jpeg)

Fig 6.1 Reinforcement details of walls

#### Bar chart for slope stability of different wall

In this bar chart we are going to discuss about the slope stability of different material and different heights. In thus we take a reinforced retaining wall, stne masonary wall and stonecrete wall. These are tested on different heights on geo5 software to get the detailied or accurate results of slope stability.

![](_page_66_Figure_2.jpeg)

Fig 6.2 Slope stability of different walls

## CHAPTER 7 CONCLUSION

#### 7.1 Conclusion

"In this project work I decided to work on the stability, design and behavior of retaining walls of different height having different construction material for same parameters and for same loading conditions. By designing the wall using software and by manual calculations I concluded that"

- "The overturning factor of reinforced retaining wall ,stone masonry wall and stoncrete wall is nearly equal to each other. All the walls are safe in overturning".
- "The shear factor of reinforced retaining wall, stone masonry wall and stoncrete wall, retaining wall has the maximum shear among them and stone masonry have the least values for shear".
- ➤ "When we consider the factor cost then reinforced retaining wall is more costly than the other two walls. For example if we are constructing a 10 m wall than it will cost around 2.5 lacs for reinforced retaining wall and 1.05 lacs for stone masonry wall".
- "The slope stability of retaining wall and stone wall is nearly equal to each other and both wall are overall stable".
- "For 8 -25 m height of retaining wall generally reinforced wall is preferred or best, below 8 m height stone wall is more economical and preferred".

## REFRENCES

- 1. Anjali Diwalkar 20202 Analysis and Design of Retaining Wall: A Review
- 2. Ankit C. Mahure, Prof. M.N. Umare(2019). Investigation on dynamic behavior of different types of retaining walls with different
- 3. D.R. Dhamdhere Dr. V. R. Rathi Dr. P. K. Kolase 2018 Design and analysis of retaining wall
- 4. Ganesh C. Chikute, Ishwar P. Sonar² 08 Aug 2019 TechnoEconomical Analysis of Gabion Retaining Wall Against Conventional Retaining Walls
- HAN Shang Yu, LI Kai Ren, Qiu Fang(china) 2018 The Study on Construction Technique about The Reinforced Concrete Retaining Wall's Lateral Displacement Repairing
- Hua Wen, Jiujiang Wu, Jiao-li Zou, Xin Luo, Min Zhang, and Chengzhuang Gu 22 June 2016Model Tests on the Retaining Walls Constructed from Geobags Filled with Construction Waste
- 7. IRC: 6-2014
- 8. IRC : 6-2017
- 9. IRC: 78-2014
- 10. IRC: 112-2011
- 11. IS: 456-2000
- 12. IS 14458 Guidelines for Retaining Wall for hilly area.
- 13. Jyoti P. Bhusari Rajashri S. Ghodke December-2019 Structural Behaviour of Cantilever Retaining Wall with Pressure Relieving Shelves
- 14. Karthik Babu C and Keerthi Gowda B S December 2016 Analysis of Counterfort Retaining Wall with and without Pressure Relief Shelf using Soft Computing Technique
- 15. K.Jagadeesh, K.Suresh, Dr.K.V Uday 2015 Analysis of Multi Tier Retaining Wall
- 16. Suk -Min Kong Dong-Wook Oh So-Yeon Lee Yong-Joo Lee Analysis of reinforced Retaining wall failure based on reinforcement length
- 17. Su Yang Amin Chegnizadeh Hamid Nikraz November 2013 Review of Studies on Retaining Wall's Behavior on Dynamic / Seismic Condition
- Yash Chaliawala Gonvant Solanki Anuj k. chandiwala 2015 Comperitive study of Cantilever Retaining wall and Counterfort Retaining wall