
Beyond
the Desktop Metaphor

Designing Integrated Digital Work Environments

edited by Victor Kaptelinin and Mary Czerwinski

Beyond the Desktop Metaphor
Designing Integrated Digital Work Environments

edited by Victor Kaptelinin and Mary Czerwinski

The computer’s metaphorical desktop, with its

onscreen windows and hierarchy of folders, is the only

digital work environment most users and designers

have ever known. Yet empirical studies show that the

traditional desktop design does not provide sufficient

support for today’s real-life tasks involving collabora-

tion, multitasking, multiple roles, and diverse tech-

nologies. In Beyond the Desktop Metaphor, leading

researchers and developers consider design approaches

for a post-desktop future.

The contributors analyze the limitations of the

desktop environment—including the built-in conflict

between access and display, the difficulties in manag-

ing several tasks simultaneously, and the need to coor-

dinate the multiple technologies and information

objects (laptops, PDAs, files, URLs, email) that most

people use daily—and propose novel design solutions

that work toward a more integrated digital work envi-

ronment. They describe systems that facilitate access

to information, including Lifestreams, Haystack, Task

Factory, GroupBar, and Scalable Fabric, and they argue

that the organization of work environments should

reflect the social context of work. They consider the

notion of activity as a conceptual tool for designing

integrated systems, and point to the Kimura and activ-

ity-based computing systems as examples.

Beyond the Desktop Metaphor is the first system-

atic overview of state-of-the-art research on integrated

digital work environments. It provides a glimpse of

what the next generation of information technologies

for everyday use may look like—and it should inspire

design solutions for users’ real-world needs.

Victor Kaptelinin is Professor in the Department of

Informatics at Umeå University, Sweden. He is the

coauthor (with Bonnie A. Nardi) of Acting with

Technology: Activity Theory and Interaction Design

(MIT Press, 2006). Mary Czerwinski is a Principal

Researcher and Manager in the Visualization and

Interaction Research Group at Microsoft Research

and adjunct faculty member in Psychology at the

University of Washington.

computer science/business

Contributors

H. Ross Baker, Jacob E. Bardram, Patrick Baudisch, Richard Boardman,

Mary Czerwinski, Nicolas B. Duarte, Danyel Fisher, Eric Freeman, David

Gelernter, Aydin Haririnia, Eric Horvitz, Victor Kaptelinin, David R. Karger,

Dawn E. Klinesmith, Hannah Lee, Blair MacIntyre, Brian Meyers, Thomas P.

Moran, Elizabeth D. Mynatt, Bonnie Nardi, Catherine Plaisant, Pamela

Ravasio, Daniel Robbins, George Robertson, Ben Shneiderman, Greg Smith,

Desney Tan, Vincent Tscherter, Leonid A. Velikovich, Stephen Voida, Alfred

O. Wanga, Matthew J. Westhoff, Shumin Zhai

The MIT Press

Massachusetts Institute of Technology

Cambridge, Massachusetts 02142

http://mitpress.mit.edu

Beyond
the

Desktop
M

etaphor
Kaptelinin

and
Czerw

inski,editors

0-262-11304-X
978-0-262-11304-5

Beyond the Desktop Metaphor

fm.indd ifm.indd i 12/4/2006 1:20:47 PM12/4/2006 1:20:47 PM

fm.indd iifm.indd ii 12/4/2006 1:20:47 PM12/4/2006 1:20:47 PM

edited by Victor Kaptelinin and Mary Czerwinski

Beyond the Desktop Metaphor
Designing Integrated Digital Work Environments

The MIT Press
Cambridge, Massachusetts
London, England

fm.indd iiifm.indd iii 12/4/2006 1:20:47 PM12/4/2006 1:20:47 PM

© 2007 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or informa-
tion storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or
sales promotional use. For information, please email special_sales@mitpress.mit.
edu or write to Special Sales Department, The MIT Press, 55 Hayward Street,
Cambridge, MA 02142.

This book was set in Sabon by Omegatype Typography, Inc., and was printed and
bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Beyond the desktop metaphor : designing integrated digital work environments / Victor
Kaptelinin and Mary Czerwinski, editors.
 p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-262-11304-5 (hc : alk. paper)
ISBN-10: 0-262-11304-X (hc : alk. paper)
1. Human–computer interaction. 2. User interfaces (Computer systems). 3.
Microcomputers. I. Kaptelinin, Victor. II. Czerwinski, Mary P., 1960–.

QA76.9.H85B539 2007
004.16—dc22 2006046846

10 9 8 7 6 5 4 3 2 1

fm.indd ivfm.indd iv 12/4/2006 1:20:47 PM12/4/2006 1:20:47 PM

Acknowledgments vii

1. Introduction: The Desktop Metaphor and New Uses of
Technology 1
Victor Kaptelinin and Mary Czerwinski

I Designing Out of the Box 13

Introduction to Part I 15

2 Beyond Lifestreams: The Inevitable Demise of the Desktop
Metaphor 19
Eric Freeman and David Gelernter

3 Haystack: Per-User Information Environments Based on
Semistructured Data 49
David R. Karger

4 Explorations in Task Management on the Desktop 101
George Robertson, Greg Smith, Brian Meyers, Patrick Baudisch,
Mary Czerwinski, Eric Horvitz, Daniel Robbins, and Desney Tan

II. The Social Dimension of Personal Environments 139

Introduction to Part II 141

5 Personal Role Management: Overview and a Design Study of Email
for University Students 143
Catherine Plaisant and Ben Shneiderman, with H. Ross Baker,
Nicolas B. Duarte, Aydin Haririnia, Dawn E. Klinesmith, Hannah
Lee, Leonid A. Velikovich, Alfred O. Wanga, and Matthew J.
Westhoff

Contents

fm.indd vfm.indd v 12/4/2006 1:20:47 PM12/4/2006 1:20:47 PM

6 Soylent and ContactMap: Tools for Constructing the Social
Workscape 171
Danyel Fisher and Bonnie Nardi

III. From Tasks to Activities 191

Introduction to Part III 193

7. Supporting Activity in Desktop and Ubiquitous Computing 195
Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

8. From Desktop Task Management to Ubiquitous Activity-Based
Computing 223
Jakob E. Bardram

IV. Reflections on the Desktop Metaphor and Integration 261

Introduction to Part IV 263

9. Users’ Theories of the Desktop Metaphor, or Why We Should
Seek Metaphor-Free Interfaces 265
Pamela Ravasio and Vincent Tscherter

10. Toward Integrated Work Environments: Application-Centric
versus Workspace-Level Design 295
Victor Kaptelinin and Richard Boardman

Conclusion 333

11. Beyond the Desktop Metaphor in Seven Dimensions 335
Thomas P. Moran and Shumin Zhai

Contributors 355
Index 357

vi Contents

fm.indd vifm.indd vi 12/4/2006 1:20:47 PM12/4/2006 1:20:47 PM

This book is the result of a collective effort made by researchers who
share an interest in “post-desktop” interactive environments. The editors
would like to thank all the chapter authors for their dedication, time, and
generous intellectual contribution. The MIT Press supported our vision
of the book and helped us bring it to fruition. We would also like to
thank Chip Bruce, Jonathan Grudin, Kristo Ivanov, and Eric Stolterman
for their help, support, and insightful discussions. Our thanks also go
to our employers—Umeå University and Microsoft Research—for sup-
portive environments that provided us with the freedom to work on this
book. Many other people and institutions—too many to be listed on this
page—contributed to this book in one way or another. The editors are
thankful to all of them.

Acknowledgments

fm.indd viifm.indd vii 12/4/2006 1:20:47 PM12/4/2006 1:20:47 PM

fm.indd viiifm.indd viii 12/4/2006 1:20:47 PM12/4/2006 1:20:47 PM

1

The objective of this book is to present and discuss new approaches to
designing next-generation digital work environments. Currently the most
pervasive computer systems, such as Microsoft Windows and Mac OS,
are based on the desktop metaphor. For many users and designers, these
are the only digital work environments they have ever known. It is all too
easy to assume that the desktop metaphor will always determine our expe-
rience of computer systems. The present book challenges this assumption.
Its point of departure is an understanding that desktop systems as we
know them may well represent a temporary—if hugely successful—phase
in the development of interactive environments. Future systems may fur-
ther develop, modify, or even abandon the metaphor. The book is an
attempt to systematically explore a range of issues related to the design of
inter active environments of the future, with a special focus on new design
solutions, concepts, and approaches that could be employed in “post-
desktop” systems.

Systems based on the desktop metaphor emerged on a massive scale as
the first general-purpose work environments “for all” in the early 1980s
(Smith et al. 1982). The designers’ intentions were to support the indi-
vidual user of a stand-alone computer—typically in the context of a tradi-
tional office environment—mostly in launching applications and storing
and retrieving documents. Desktop systems provided coherent, no-non-
sense environments for these types of activities and proved to be an enor-
mous success.

Today, however, the life of a typical computer user is very different. To
carry out their everyday tasks, people often use a range of technologies,
such as desktop and laptop computers, PDAs (personal digital assistants),
and smartphones, and employ various types of information objects, such

Introduction: The Desktop Metaphor and
New Uses of Technology

Victor Kaptelinin and Mary Czerwinski

ch01.indd 1ch01.indd 1 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

2 Victor Kaptelinin and Mary Czerwinski

as files, email messages, URLs, and contacts, to collaborate and commu-
nicate with each other. Information work requires the integration of infor-
mation from a wide variety of sources, cutting across multiple applications
and colleagues. Empirical studies and logical analyses indicate that tradi-
tional desktop systems do not provide sufficient support for information
workers in real-life contexts characterized by collaboration, multitasking,
multiple roles, and diverse technologies (e.g., Plaisant and Shneiderman
1995; Kaptelinin 1996; Dourish et al. 1999; Czerwinski, Horvitz, and
Wilhite 2004).

The Trouble with the Desktop Metaphor

A key factor in the original success of existing desktop systems was a set
of intuitively clear underlying principles that rendered a consistent mental
model of the digital workspace as a whole. The desktop provides a space
for displaying the content of currently active documents in overlapping
windows, while the hierarchical file system facilitates access to stored
documents and tools. Users can rely on their knowledge of a typical office
environment to make informed guesses about how individual objects and
features of a desktop system can be employed to carry out the task at
hand.

Workspaces based on the desktop metaphor are not monolithic. The user
can create any number of subspaces by setting up new folders and rear-
ranging existing ones. These subspaces make it possible to keep groups of
files (and, if necessary, subfolders) separate from each other. Even though
such organization is rigid, not reflecting the changes of the importance of
documents over time (as opposed to piles of papers; see Malone 1983)
and the dynamics of a user’s cognitive processes (Lansdale 1988), it allows
simple, intuitive navigation within the file system as a whole. Therefore,
desktop systems provide relatively well-integrated environments for han-
dling files by individual users of personal computers.

However, even within this application scope, it has become evident
that the desktop metaphor has inherent limitations. One of the problems
designers of desktop systems have continually been struggling with is that
of combining information access and information display—that is, simul-
taneously supporting (a) access to information objects and (b) displaying
the visual representation of the content of those objects.

ch01.indd 2ch01.indd 2 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

Introduction 3

As opposed to its source domain, the physical office, the desktop meta-
phor is based on using the same surface—the screen—for both displaying
and accessing information. Physical desktops can be cluttered with indi-
vidual documents and piles of papers, but we do not need to clear up these
desktops to get to file cabinets, drawers, or bookshelves. People typically
do not have to choose between making visible a desk or a file cabinet;
they can see both and use them independently of each other. The users of
modern information technologies, on the other hand, have to use the same
screen space for finding information objects and for viewing their content.
Both locating a document on a disc and editing the document make use of
the same physical surface of a computer screen.

Perhaps the most apparent features differentiating modern desktop sys-
tems from early ones are the elaborate sets of tools developed by designers
over the years to help users combine information access and informa-
tion display. Users of early systems had to clear an area of the screen by
moving, resizing, or closing open windows in order to view and access
objects located on the desktop. Modern systems, such as Microsoft Win-
dows XP or Mac OS X, allow access to the computer’s content without
ever selecting objects on the desktop. The user, for instance, can always
open the “Documents” folder from the Start menu (Microsoft Windows
XP) or a Finder window (Mac OS X).

A significant advancement of the desktop metaphor for personal com-
puters was the introduction of the taskbar in Microsoft Windows (for
a discussion of similar tools for X Windows, see LaStrange 1989). Not
only do open windows obscure objects located on the desktop, they also
conceal each other—just as papers placed on a physical desktop conceal
other papers from view. As opposed to its physical counterpart, the virtual
desktop lets the user view a list of all open documents and make any one
of them visible by selecting it from the list. If it were possible to do this
in the physical world, such a feature would definitely be appreciated by
many people using physical desks!

Despite the apparent progress in the design of desktop systems over
the last decades, combining information access and information display
remains a problematic issue. Arguably, an obstacle to more effective solu-
tions is the inherent limitations of the desktop metaphor. The very name
“desktop” implies a single, limited physical surface used as a window to all
of the resources of a virtual environment. However, current technological

ch01.indd 3ch01.indd 3 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

4 Victor Kaptelinin and Mary Czerwinski

developments offer a much wider range of possibilities. Multiple, large-
screen, and ambient displays, as well as new input and sensing technol-
ogies, open up new possibilities for combining information access and
information display. Some of these new possibilities are presented in this
book.

In addition, the desktop metaphor itself appears to be somewhat
inconsistent. Desktop systems can be viewed from two different perspec-
tives that correspond, respectively, to (a) the logical structure of a vir-
tual environment, and (b) how that environment is perceived by the user.
From the logical point of view, the top level of a virtual space, the entry
point from which other parts can be accessed, is a collection of stor-
age devices available to the user (for instance, what is displayed in the
“My Computer” folder of Microsoft Windows). The desktop, from this
perspective, is just a folder on one of these devices. However, from the
subjective perspective of the user, the entry point to the system is the desk-
top. Usually, other components of the environment, including the “My
Computer” folder, can be reached from the desktop. It appears this incon-
sistency may be confusing to some users (see Ravasio and Tscherter, this
volume).

Another recurrent problem with desktop systems is multitasking. On
the one hand, desktop systems provide support for some of the key activi-
ties of managing several task contexts. As already mentioned, users of
desktop systems can conveniently organize their files into a hierarchical
structure that matches the structure of their tasks. Also, Apple Macintosh
System 7 and Microsoft Windows 95 made it possible for users of person-
al computers to enjoy a feature previously available only to users of work-
stations—working with several applications at the same time. Yet these
successes in supporting multitasking underline the inherent limitations of
desktop systems in selectively displaying sets of task-related information
objects. This can be illustrated with the following example. Imagine that
files related to two different tasks—task A and task B—are properly orga-
nized into two different folders, and the user can conveniently access these
folders. Even in this simple case, switching from one task to another could
be problematic. The user should either (a) close all documents related to
task A and open documents related to task B, which can be tedious, espe-
cially if the user has to frequently switch back and forth between the tasks,
or (b) keep all documents open, which can cause constant distractions. If

ch01.indd 4ch01.indd 4 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

Introduction 5

the user needs to work with many open documents to accomplish these
tasks, neither strategy can be considered optimal.

An obvious solution to the problem of the selective presentation of task-
related information is employing multiple, task-related desktops along the
lines proposed by developers of the Rooms system (Henderson and Card
1986). However, the only successful example of implementing the idea of
multiple desktops have been window managers for UNIX based systems,
which support switching between a predetermined number of desktops.
As for the more pervasive operating systems for personal computers, such
as MS Windows and Mac OS, multiple (virtual) desktops have not become
widely popular with users.

Therefore, even within a narrowly defined scope of application —indi-
vidual users working with files on stand-alone computers—the desktop
metaphor manifests apparent limitations. Problems with the desktop met-
aphor were further aggravated by the use of email and the Internet as tools
for communication and information sharing. These developments resulted
in multiple information hierarchies within a single virtual environment
(Dourish et al. 1999). Moreover, these hierarchies were not equally sup-
ported by the functionality of desktop systems. What emerged was the file
as a first-class citizen, while individual email messages or instant messages
were not. For example, it is relatively easy to select a disparate group of
files to copy, backup, transfer to another device or move, but this is not
necessarily as easily handled with email. Consider the example of email
attachments—they must be explicitly saved or placed in a folder first,
before having a permanent place or being easily manipulated in a group
fashion.

And, the heavy usage of the World Wide Web and search engines makes
it easy for users to send URLs or website material as content in an email,
but again access and permanent storage of that content is not quite as easy
as it is for files. Most of the time, users must dig through long lists of email
looking for the one that had the attachment, or the website information
in it. New search engines for personal files and web browsing make it
easier to leverage metadata about the content of email, files, and websites
during search, but these systems may not be suitable as replacements for
the computer desktop.

Finally, with a more mobile work force, it is becoming increasingly
important that the user be able to access his or her information bits at any

ch01.indd 5ch01.indd 5 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

6 Victor Kaptelinin and Mary Czerwinski

time, from any device. Once again, the desktop metaphor breaks down
here, as each device has its own look and feel, but must somehow syn-
chronize with the alternate environments.

To sum up, the development of desktop systems over the last two
decades has revealed limitations of the desktop metaphor. In particular,
the metaphor does not provide adequate support for the access to infor-
mation objects along with the display of the content of those objects, mul-
titasking, dealing with multiple information hierarchies, communication
and collaboration, and coordinated use of multiple technologies.

Toward Integrated Digital Work Environments

Limitations of systems based on the desktop metaphor were recognized
by human–computer interaction (HCI) researchers quite early, approxi-
mately at the time when the systems became widely used. That recognition
sparked debates in the HCI community and stimulated the development
of novel approaches. Now, two decades later, one can clearly see a con-
tinuous line of research and development originating from early HCI stud-
ies and growing over the years. In the 1980s, influential work was done
by Malone (1983), Henderson and Card (1986), and Lansdale (1988).
The Rooms system (Henderson and Card 1986) was probably the first
important milestone in exploring design alternatives to traditional desk-
top systems. Selected highlights of the next decade of development include
the Pad++ system (Bederson and Hollan 1994), personal role management
(Plaisant and Shneiderman 1995), Norman’s activity-based computing
(Norman 1998), an “anti-Mac” interface debate in the Communications
of the ACM (Gentner and Nielsen 1996), the Lifestreams system (Fertig,
Freeman, and Gelernter 1996), and a discussion of user practices of find-
ing and filing computer files in the SIGCHI Bulletin (Barreau and Nardi
1995; Fertig, Freeman, and Gelernter 1996).

Around the turn of the century the trickle of novel approaches, proto-
types, and working systems challenging the desktop metaphor turned into
a steady, ever increasing flow. The emergence of pervasive computing as
a distinct field further stimulated the search for new design solutions for
interactive environments (e.g., Arnstein et al. 2002; Voida et al. 2002;
Judd and Steenkiste 2003). New organizing principles were proposed as
alternatives to a single work surface combined with a hierarchical, spatio-
logical structure of embedded containers, underlying traditional desktop

ch01.indd 6ch01.indd 6 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

Introduction 7

systems. Novel approaches were based on different foundational con-
cepts, including (but not limited to): time (Fertig, Freeman, and Gelernter
1996), logical attributes (Dourish et al. 1999), people (Nardi et al. 2001),
tasks and projects (Robertson et al. 2000; Voida et al. 2002; Arnstein
et al. 2002; Kaptelinin 2003), and collective activities (Christensen and
Bardram 2002).

Currently, these approaches are fairly loosely related to each other. Even
though there are more and more cross-references between them, each of
these approaches predominantly positions itself relative to the desktop
metaphor rather than to other alternatives to the desktop. However, recent
developments indicate that there are both theoretical and practical reasons
for increased coordination between individual research efforts.

Each of the novel systems and approaches challenging or extending the
desktop metaphor also contributes to the exploration of a common set
of more general research issues. In this book we tentatively define these
issues as involving the “design of integrated digital work environments.”
By “integrated” environments we mean environments based on a coher-
ent set of underlying principles supporting a coordinated use of tools
and resources across various tasks and contexts. The words “digital”
and “work” are used here in a broad sense. “Digital” primarily means
reinventing the virtual world, but its use in this book also implies taking
into account both digital and physical environments. “Work” covers any
higher-level activity that is part of defining what an information worker
considers as his or her primary role or function, but also includes learning,
leisure, and so forth.

From a practical perspective, the limited impact of novel approaches on
the everyday use of technology probably means that no single concept or
system can be considered a “silver bullet.” The development of stimulat-
ing and supportive integrated digital work environments requires coor-
dinated efforts from a variety of disciplines and perspectives. Therefore,
identifying commonalities and interrelations between current studies of
integrated digital work environments has not only conceptual but also
practical implications for the design of these environments.

The Themes and Structure of This Book
The intention of this book is to discern the analysis and design of inte-
grated digital work environments as a distinct area of HCI research and
to support the consolidation of this emerging field. The book provides a

ch01.indd 7ch01.indd 7 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

8 Victor Kaptelinin and Mary Czerwinski

 comprehensive overview of the state-of-the-art of the most relevant research
and makes an attempt to facilitate the coordination of this research.

Individual chapters of the book are related to each other in several
ways. Perhaps the most apparent common feature of all contributions is
that each of them addresses problems with the desktop metaphor. The sec-
tion above entitled “The Trouble with the Desktop Metaphor” concludes
with a list of limitations of traditional desktop systems. Each of the items
on the list can be mapped to research questions or design solutions in at
least one of the chapters:

Information Access versus Information Display Two systems, presented
in the book, Scalable Fabric (Robertson et al.) and Kimura (Voida et al.),
combine a workspace displaying task-related information objects with
a peripheral representation facilitating access to other objects and other
tasks. The approaches differ in whether the peripheral representations
are scaled-down images displayed on the same screen (Scalable Fabric) or
dynamically generated montages displayed on other surfaces (Kimura).

Multitasking Several of the chapters included in this book—Robertson
et al., Plaisant et al., Voida et al., Bardram, and Kaptelinin and Board-
man—have chosen to emphasize information workers’ tasks, roles, proj-
ects, or activities. Because multitasking is becoming so common in our
daily lives, and based on the observation by all of these authors that there
is so little support for it in the desktop metaphor, the systems described
in these respective chapters have been designed to better enable the user
to find information relevant to a specific task, quickly start, and then
reacquire tasks after interruptions.

Multiple Information Hierarchies Supporting the integration of differ-
ent information hierarchies is a key issue in most chapters. Four general
design solutions are presented in the book: using the same logical attri-
butes across different types of information objects (Freeman and Gelern-
ter, Karger); linking information objects to roles, contacts, or projects
(Plaisant et al., Robertson et al., Fisher and Nardi, Voida et al., Kapteli-
nin and Boardman); organizing windows into groups (Robertson et al.);
and maintaining a uniform structure across existing hierarchies (Kapteli-
nin and Boardman).

ch01.indd 8ch01.indd 8 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

Introduction 9

Communication and Collaboration The book describes several exam-
ples of how personal work environments can be designed to facilitate col-
laboration. The proposed solutions include organizing digital resources
around: (a) the roles of the user (Plaisant et al.), (b) the structure of social
interactions of the user (Fisher and Nardi), and (c) distributed activities
the user is involved in (Bardram). In the last case, work environments are
personal in the sense that they support an individual carrying out his or
her share of an activity as a whole. However, they can also be considered
mediators of collective activities. One of the objectives of the system pro-
posed by Bardram is to make it possible for different users to fill in and
carry out a collective activity, when necessary.

Coordinated Use of Multiple Technologies Several chapters describe
systems supporting the coordination of work carried out on different
computing devices (Voida et al., Bardram). More contributors mention
such support as a direction of future development of their approaches.

Thus, dealing with limitations of existing desktop systems is a common
feature of the book as a whole. Another common feature of the book is
its design orientation.

The book gathers under a single cover a wide range of influential
approaches and systems. A dozen of them are described in the book
firsthand by their developers: ABC, ContactMap, GroupBar, Haystack,
Kimura, Lifestreams, Personal Role Management, Scalable Fabric, Soylent,
Task Gallery, UMEA, and WorkSpaceMirror. A few other systems, though
not presented by their developers, are discussed extensively, as well. One
of the chapters (Ravasio and Tscherter) does not present a novel system
developed by its authors, but the analysis presented is firmly grounded in
the design of an existing desktop system.

The design orientation of the book does not mean a preoccupation with
concrete technological artifacts at the expense of conceptual analysis. In
the spirit of HCI research the book integrates “activities directed at under-
standing with those directed at design” (Carroll and Rosson 1992).

The book combines technological and conceptual exploration in three
different (but related) ways. First, novel systems and their analyses are
used to illustrate a design solution, a strategy that can be implemented in
a range of systems. Second, concrete designs provide evidence that a new

ch01.indd 9ch01.indd 9 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

10 Victor Kaptelinin and Mary Czerwinski

concept is needed to properly understand and support users of technology.
In particular, several chapters make the case for using “activity” as a foun-
dational concept in design. Third and finally, systems and designs provide
ammunition for general reflections on the fate of the desktop metaphor
and integration in digital work environments. Accordingly, the book is
organized into three parts.

The five chapters that make up parts I and II describe systems that
illustrate novel approaches to designing digital work environments. The
chapters suggest a range of organizing principles, according to which
work environments can be organized: by time (Freeman and Gelernter),
by relationships and properties (Karger), by tasks (Robertson et al.), by
people (Fisher and Nardi), and by roles (Plaisant et al.).

Part I, “Designing Out of the Box,” discusses how work environments
can facilitate access to information that in traditional desktop systems is
stored in opaque containers, that is, folders. The proposed solutions are
illustrated with a variety of systems: Lifestreams (Freeman and Gelern-
ter), Haystack (Karger), the Task Gallery, GroupBar, and Scalable Fabric
(Robertson et al.).

The underlying ideas of the design approaches presented in part II,
“The Social Dimension of Personal Environments,” by Plaisant et al., and
Fisher and Nardi, is that the organization of personal work environments
should reflect the social context of work and support the individual’s par-
ticipation in collaborative activities.

The two chapters of part III, “From Tasks to Activities,” discuss the
notion of activity as a conceptual tool for designing integrated digi-
tal environments. The discussion is illustrated with examples of con-
crete systems: Kimura (Voida et al.) and activity-based computing
(Bardram).

Part IV, “Reflections on the Desktop Metaphor and Integration,”
includes two chapters that deal with general issues: an analysis and dis-
cussion of how users make sense of the desktop metaphor (Ravasio and
Tscherter), and a comparison of application-centered integration and
workspace-centered integration (Kaptelinin and Boardman).

Main issues raised in the book and directions for future research are
discussed in the concluding chapter by Moran and Zhai, “Beyond the
Desktop Metaphor in Seven Dimensions.”

The book is one of the first to provide a systematic overview of design-
based HCI research on integrated digital work environments. But it is

ch01.indd 10ch01.indd 10 12/4/2006 1:19:57 PM12/4/2006 1:19:57 PM

Introduction 11

not just an anthology of already existing systems. Its genre can be more
appropriately defined as a collective exploration of the design space of
new-generation digital work environments.

The chapters making up the book report on the latest research results
from the contributors, including technological advancements, empirical
evaluations, and innovative applications of their approaches. The authors
elaborate on the rationale behind their systems, the strengths and limitations
of their approaches, users’ experiences with the systems, how the systems
address problems with existing digital environments, how they compare to
other novel approaches, and how the underlying ideas can be used to benefit
information workers in the design of future digital work environments.

Taken as a whole, the book provides a glimpse into how the everyday
use of information technologies to support information workers may look
in the not-so-distant future. We hope that these systems inspire the next
generation of integrated digital work environments that provide real solu-
tions to users’ needs in this domain.

References

Arnstein, L., Hung C.-Y., Franza, R., Zhou Q.-H., Borriello, G., Consolvo, S.,
and Su, J. (2002). Labscape: A smart environment for the cell biology laboratory.
Pervasive Computing 1 (3): 13–21.

Barreau, D., and Nardi, B. (1995). Finding and reminding: File organization from
the desktop. ACM SIGCHI Bulletin 27: 39–43.

Bederson, B., and Hollan, J. (1994). Pad++: A zooming graphical interface for
exploring alternate interface physics. In Proceedings of the 7th Annual ACM Sym-
posium on User Interface Software and Technology (UIST’94), pp. 17–26. Marina
del Rey, California, November 2–4.

Carroll, J. M., and Rosson, M. B. (1992). Getting around the task-artifact cycle:
How to make claims and design by scenario. ACM Transactions on Information
Systems 10(2): 181–212.

Christensen, H., and Bardram, J. (2002). Supporting human activities—Explor-
ing activity-centered computing. In Borriello, G., and Holmquist, L. E. (eds.),
 Proceedings of the 4th International Conference. UbiComp 2002, pp. 107–116.
Lecture Notes in Computer Science 2498. Berlin: Springer.

Czerwinski, M., Horvitz, E., and Wilhite, S. (2004). A diary study of task switching
and interruptions. Proceedings of the 2004 ACM Conference on Human Factors
in Computing Systems (CHI’04), pp. 175–182. Vienna, Austria, April 24–19.

Dourish, P., Edwards, W., LaMarca, A., and Salisbury, M. (1999). Presto: An
experimental architecture for fluid interactive document spaces. ACM Transac-
tions on Computer–Human Interaction 6: 133–161.

ch01.indd 11ch01.indd 11 12/4/2006 1:19:58 PM12/4/2006 1:19:58 PM

12 Victor Kaptelinin and Mary Czerwinski

Fertig, S., Freeman, E., and Gelernter, D. (1996). “Finding and Reminding” recon-
sidered. ACM SIGCHI Bulletin 28: 66–69.

Gentner, D., and Nielsen, J. (1996). The anti-Mac interface. Communications of
the ACM 39: 70–82.

Henderson, A., and Card, S. (1986). Rooms: The use of virtual workspaces to
reduce space contention in a window-based graphical user interface. ACM Trans-
actions on Graphics 5: 211–243.

Judd, G., and Steenkiste, P. (2003). Providing contextual information to pervasive
computing applications. In Proceedings of the IEEE International Conference on
Pervasive Computing (PERCOM), pp. 133–142. Dallas, Texas, March 23–25.

Kaptelinin, V. (1996). Creating computer-based work environments: An empiri-
cal study of Macintosh users. In Proceedings of the 1996 ACM SIGCPR/SIGMIS
Conference, pp. 360–366. Denver, Colorado, April 11–13.

Kaptelinin, V. (2003). UMEA: Translating interaction histories into project con-
texts. In Proceedings of the 2003 ACM Conference on Human Factors in Comput-
ing Systems (CHI’03), pp. 353–360. Ft. Lauderdale, Florida, April 5–10.

Lansdale, M. (1988). The psychology of personal information management.
Applied Ergonomics 19: 55–66.

LaStrange, T. (1989). An overview of twm (Tom’s Window Manager). Http://
www.lastrange.com/work/twm.pdf/.

Malone, T. (1983). How do people organise their desks? Implications for the
design of office information systems. ACM Transactions on Office Information
Systems 1: 99–112.

Nardi, B., Whittaker, S., Isaacs, E., Creech, M., Johnson, J., and Hainsworth, J.
(2002). Integrating communication and information through ContactMap. Com-
munications of the ACM 45: 89–95.

Norman, D. (1998). The Invisible Computer: Why Good Products Can Fail, the
Personal Computer Is So Complex, and Information Appliances Are the Solution.
Cambridge, Mass.: MIT Press.

Plaisant, C., and Shneiderman, B. (1995). Organization overviews and role man-
agement: Inspiration for future desktop environments. In Proceedings of the 4th
IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WET-ICE’95), pp. 14–22. Berkeley Springs, West Virginia, April 20–22.

Robertson, G., van Dantzich, M., Robbins, D., Czerwinski, M., Hinckly, K., Risden,
K., Thiel, D., and Gorokhovsky, V. (2000). The Task Gallery: A 3D window man-
ager. In Proceedings of the 2000 ACM Conference on Human Factors in Comput-
ing Systems (CHI 2000), pp. 494–501. The Hague, the Netherlands, April 1–6.

Smith, D., Irby, C., Kimball, R., Verplank, W., and Harslem, E. (1982). Designing
the Star user interface. Byte 7: 242–282.

Voida, S., Mynatt, E., MacIntyre, B., and Corso G. (2002). Integrating virtual
and physical context to support knowledge workers. IEEE Pervasive Computing
1: 73–79.

Window Managers for X: The Basics (n.d.). Http://xwinman.org/basics.php/.

ch01.indd 12ch01.indd 12 12/4/2006 1:19:58 PM12/4/2006 1:19:58 PM

I
Designing Out of the Box

ch02.indd 13ch02.indd 13 12/4/2006 1:19:30 PM12/4/2006 1:19:30 PM

ch02.indd 14ch02.indd 14 12/4/2006 1:19:30 PM12/4/2006 1:19:30 PM

In physical offices it is not uncommon to store documents and tools in
opaque containers, such as drawers, file cabinets, binders, or cardboard
boxes. People often start working on a task by finding the things they
need through locating appropriate containers and checking what is inside.
Arguably, shuffling through nontransparent containers is an inefficient
and frustrating way to manage work environments (see, e.g., Freeman
and Gelernter, this volume). In desktop systems there are no bookshelves,
walls, or large desks; the only directly viewable surface is the desktop, so
people are forced to do even more searching through opaque “boxes.”
The chapters in part I suggest a number of ways to overcome this problem
with traditional desktop systems and facilitate access to potentially useful
information (see table I.1). They include creating subsets of chronologi-
cally organized information objects (Freeman and Gelernter), enabling the
development of flexible and dynamic personal information environments

Introduction to Part I

Table I.1
An Overview of Design Approaches Presented in Part I

Chapter

Chapter 2

Chapter 3

Chapter 4

Author(s)

Freeman and
Gelernter

Karger

Robertson, Smith,
Meyers, Baudisch,
Czerwinski, Horvitz,
Robbins, and Tan

System

Lifestreams

Haystack

Task Gallery
GroupBar
Scalable Fabric

Organizing Principle

Time and search

Relationships and attri-
butes

Tasks (explicit)
Tasks (implicit)
“Focus plus context”

ch02.indd 15ch02.indd 15 12/4/2006 1:19:30 PM12/4/2006 1:19:30 PM

by defining and using relationships and attributes (Karger), organizing
information objects around explicitly or implicitly defined tasks, and plac-
ing potentially useful objects on the visual periphery of a working area
(Robertson et al.).

Part I opens with Freeman and Gelernter’s chapter on the Lifestreams
project, which clearly articulates the need for transparent information
storage. The chapter is a personal and historical account by the creators
of the Lifestreams system. The concepts in this system, which organizes a
user’s information bits along the time axis and emphasizes search, predate
many of the search engine ideas that seem so groundbreaking today. Free-
man and Gelernter’s perspective of how the system’s design was consid-
ered back before web-based searching was available provides a delightful
historical frame not only for Lifestreams but also for many of the systems
that followed.

The aim of the Haystack system, presented in a chapter by Karger, is to
give users maximum control in creating their personal information envi-
ronments. The system allows the individual to select various information
objects of interest, record their properties, and organize the objects in a
way that is appropriate to his or her needs. The system is envisioned as
a powerful tool that supports the development of a highly personalized
information space where the person can keep, describe, structure, view, or
search all of his or her information.

The chapter by Robertson, Smith, Meyers, Baudisch, Czerwinski, Hor-
vitz, Robbins, and Tan describes three systems—GroupBar, Task Gallery,
and Scalable Fabric—that can gracefully complement the user interfaces
of existing desktop systems. Their designs do this with representations
that help the user organize collections of resources around higher-level
tasks in order to be able to switch conveniently between these collections.
Each of these systems explores a different way of supporting the user:
extending the functionality of the regular Microsoft Windows taskbar to
organize windows into groups, which are implicitly defined tasks (Group-
Bar); providing a quasi-3D representation facilitating access to a set of
2D workspaces (the Task Gallery); and employing a “focus plus context”
visualization (Scalable Fabric).1

Part I outlines a variety of paths that can be taken in the design of digi-
tal work environments. The diversity of presented approaches also poses
a challenge to future research and development. Can any of the proposed

16 Introduction to Part I

ch02.indd 16ch02.indd 16 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

solutions be employed as the single basis for design? If not, how can differ-
ent approaches be combined with each other and the desktop metaphor?
Arguably, some of the approaches can complement each other produc-
tively. It appears that some strengths of Lifestreams, such as providing
a historical context, and Haystack, such as giving the user control over
defining, recording, and managing properties, can be combined within
a single system. The Task Gallery, GroupBar, and Scalable Fabric can be
easily incorporated into existing desktop systems. However, more work
is needed to determine how (and if) an integration of the approaches can
result in further development in the design of digital work environments.

Note

1. Another example of a system that uses peripheral visualizations is Kimura,
described in chapter 7.

Introduction to Part I 17

ch02.indd 17ch02.indd 17 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

ch02.indd 18ch02.indd 18 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

2
Beyond Lifestreams: The Inevitable Demise
of the Desktop Metaphor

Eric Freeman and David Gelernter

In 1994, we undertook what we considered a radical approach to fixing
our electronic lives by creating an alternative to the desktop metaphor.
Our approach, Lifestreams (Gelernter 1994; Freeman 1997), is a software
architecture for managing personal electronic information. The approach
was radical in the sense that Lifestreams threw out filenames, folders,
and static filing and replaced them with a simple data structure: a time-
ordered stream of documents combined with a few powerful operators
for locating, organizing, summarizing, and monitoring information. Our
prototype implementation at Yale University realized many of the system’s
defining features and allowed us to experiment with the model’s key ideas.
Later, commercial releases implemented a narrower set of Lifestreams’
features, yet met real-world needs and saw limited but successful produc-
tion use, which at some sites still continues—although our commercial
effort has run its course.

Over ten years later one only has to look as far as Apple’s “iApps”
(and other projects and products) to see many Lifestreams features in
action. We don’t claim that our work influenced, directly or indirectly, the
various vendors whose products include features that were introduced,
described, and promoted in the context of Lifestreams. We only claim
that the Lifestreams system was a remarkably accurate predictor of future
developments. We claimed all along that Lifestreams’s defining features
were natural and would end up eventually in standard commercial infor-
mation management systems. This is happening today; as a result there is
some renewed interest in our early work. In this chapter we’ll look back
at our research in alternative desktop metaphors. We will describe the
Lifestreams project: our initial motivations, the basis for those motivations

ch02.indd 19ch02.indd 19 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

20 Eric Freeman and David Gelernter

in the industrial psychology and HCI communities, the research system,
reactions to the system in the mid-1990s, and Lifestreams in today’s con-
text. Finally, we’ll point out Lifestreams-like functionality in today’s appli-
cations and operating systems.

Motivations: Flashback to 1994

Both of us lack the necessary talent (or patience) for organization. In 1994,
the chaos of our real desktops could only be matched by our computer
desktops and file systems.1

We both realized that, short of hiring a whole secretariat, there was
no hope for our physical workspaces. But we knew that there had to be
a better way of managing our software desktops. While we admired the
desktop metaphor (and were avid Macintosh users), we were sure that the
desktop would be incapable of scaling up to meet the coming deluge of
information from a networked world; for that matter, it had already failed
us both. Files (an invention of the 1950s), hierarchical storage (of the
1960s), and the desktop metaphor (of the 1970s) were brilliant inventions,
but were all created before the PC was ubiquitous, email was essentially
universal, and the World Wide Web was spun. The desktop metaphor,
which attempts to simplify common file operations by presenting them in
the familiar language of the paper-based world (paper documents become
files, folders become directories, deletion is handled via the trashcan icon)
had important advantages—particularly for new users (even though it was
still necessary to explain to new users just how the electronic desktop is
like a real one, why and how each “piece of paper” has to be named, how
to eject a CD, and so forth). But the desktop metaphor also constrained
our future software design choices.

We were willing to concede that we were not typical computer users.
But we knew that our frustrations were shared by some, in fact many, pos-
sibly even most computer users. To support (or discredit) our conjecture
we turned to the human–computer interaction (HCI) and human factors
communities where we encountered the work of Mark Lansdale, Thomas
Malone, and others. We looked for evidence in areas where we thought
the desktop was problematic, especially in naming, filing and finding,
archiving, reminding, and summarizing.

ch02.indd 20ch02.indd 20 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

Beyond Lifestreams 21

Filing and Finding
Lansdale’s (1998) work studied the processes of recall, recognition, and
categorization in an attempt to propose software frameworks that have
a basis in psychological theory. His work builds on Malone’s seminal
study of the way people use information: How Do People Organize
Their Desks? Implications for the Design of Online Information Systems
(1983). Malone aimed in this study for a “systematic understanding of
how people actually use their desks and how they organize their per-
sonal information environments,” in an attempt to improve electronic
systems.

Both researchers studied categorization, which Lansdale described as
“the problem that lies in deciding which categorizations to use, and in
remembering later exactly what label was assigned to a categorization.”
This topic was particularly important to us because it was directly related
to creating directories and filing documents—mainstays of the desktop
metaphor. Malone’s work suggested that categorizing information might
be the hardest information-management task people encounter. Lansdale
found that “quite simply, information does not fall into neat categoriza-
tions that can be implemented on a system by using simple labels.” The
work of Dumais and Landauer (1983) identified two specific reasons for
this: (1) information falls into overlapping and fuzzy categories, and (2) it
is impossible for users to generate categories that remain unambiguous
over time. Lansdale went further and, based on empirical evidence, con-
cluded that people are “not good at categorizing information,” and that
forcing users to do so is a “flawed psychological process.”

The difficulty of categorizing information, and the lack of reward for
bothering, typically leads users (Malone discovered) not to file infor-
mation at all, in order to overcome “the difficulty of making a decision
between a number of evils, and avoid the consequences of having made
it.” This conclusion suggests in turn that two user tasks (filing and find-
ing) are hard and cumbersome for a good reason: most people are not
good at these activities.

Note also that users are forced to categorize information in another
subtle way: by means of filenames. Lansdale’s work has shown that names
are an ineffective way of categorizing information. Although names can
be mnemonic devices, over time their value decays. Carroll (1982) found

ch02.indd 21ch02.indd 21 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

22 Eric Freeman and David Gelernter

that, within a short period, a user’s naming patterns became inconsistent,
leading to retrieval difficulties.

Archiving
Old information is generally less valuable than new—yet it is often essential.
We can all recall occasions when we’ve needed information we remember
having trashed only last month. Unfortunately, today’s software systems
do not make it easy to archive personal information. Nor do they provide
a convenient method for retrieving what has been archived. Whittaker
and Sidner (1996) quote one user describing his difficulties: “I’m reluctant
to archive junk . . . I know that the consequence of archiving junk is to
make it that much harder to find good stuff. . . . “ The result: users are
left to invent their own schemes or use third-party applications. Neither
method is apt to yield satisfactory performance on retrieval tasks.

Worse, users often delete old information rather than be forced to deal
with the implications of storing it or inventing archiving schemes (Erick-
son 1991; Barreau and Nardi 1995). This is unfortunate and painfully
ironic. Computers should make it much easier and cheaper to archive
information. Today virtually anyone who wants a terabyte of storage can
have it. Hardware is carrying out its obligations, but software (as usual)
lets the user down.

“Reminding”
Malone (1983) pointed out the importance of “reminding” in our paper-
based systems and suggested that reminding be included in software. Yet
desktop systems still provide little support for reminding. Although many
time-management, scheduling, and to-do list applications have come to
market, they don’t provide general solutions to the reminding problem.

In more recent work, Barreau and Nardi (1995) observed that desk-
top computer users often use a file’s location on the desktop as a critical
reminding function. At the end of the day, for instance, a Macintosh user
may leave files on his desktop as a reminder of work to be done next
morning. Others leave email messages in their in-boxes (Whittaker and
Sidner 1996) for the same reason. Lansdale found this behavior largely
idiosyncratic. We have noticed that such a location-based method of
reminding is easily undermined. In any case, since the desktop metaphor
has no inherent semantic notion of reminding, users who leave electronic

ch02.indd 22ch02.indd 22 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

Beyond Lifestreams 23

documents lying around in “strategic locations” are merely coping, on
the fly. Presumably our software should be able to do better than this.

Summarizing
Summarizing is a vital information-processing task. Summaries abbreviate
a document or collection of documents and reduce the amount of infor-
mation a user must process (Klark and Manber 1995). They also allow
users to “gain access to and control the flood of information”; “summa-
ries save time” (Hutchins 1995) in the end.

Summarizing information is obviously not new—yet today there are
few electronic systems that support automatic summarization. Current
desktop systems provide no general purpose support for summaries; they
leave the job to special-purpose applications.

We believe this lack of support has occurred, in part, because of the cur-
rent, narrow application-centric view of desktop computing—work has
focused on developing tools within applications rather than on globally
improving users’ access to information at a systems level. Summaries are
available to users through special-purpose products such as Intuit’s Quick-
en, which allows the creation of overviews for financial information. But
users need summaries for more routine purposes too.

Beyond the Desktop Metaphor

We prefer to approach software design not by metaphorics, but by Nel-
son’s (1990) concept of virtuality. Metaphorics is a method of building
software based on comparisons of software to objects or machines in the
real world (e.g., to the physical desktop in the world of office furniture).
Metaphorics are useful in some contexts, but can also cramp design: once
the metaphor has been chosen, every part of the system has to play an
appropriate part within the metaphor. When designers are forced to add
unexpected functions to the metaphor (e.g., to eject a CD) the solutions
can be confusing or even ridiculous. (Why should dragging a CD icon to
the trash cause the CD to eject? The user doesn’t want to throw away the
CD.) Nelson argues that “adherence to a metaphor prevents the emer-
gence of things that are genuinely new.”

Virtuality, on the other hand, is the construction of unifying ideas that
can be embodied in rich graphic expressions and are no mere metaphors

ch02.indd 23ch02.indd 23 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

24 Eric Freeman and David Gelernter

for a preexisting physical system, ideas that can rather lead (as Nelson
argues) to the invention of new organizing strategies. This was our goal
in designing Lifestreams: to provide a simple, unified system that is easily
grasped by users and is unconstrained by any real-world metaphor.

To create a unified model we began with the following guiding prin-
ciples, driven first by our own design sense and secondarily by the results
we found in the HCI and human factors communities.

Storage should be transparent Naming a file when it is created and
stuffing it in a folder are two prime examples of pointless overhead.
Names should be invented only when users feel like inventing them. In
the real world, “formal documents” (chapters, papers, grant proposals,
books, poems) typically have names, but “informal documents” (drafts,
letters, lists, calculations, reminder notes) typically do not. As comput-
ing becomes increasingly ubiquitous, an ever-larger proportion of our
electronic documents are “informal,” and the requirement that we invent
names for each one of them becomes ever more ludicrous. When you
grab a piece of paper, there is no need for you to give it a name or decide
where to store it before you start writing. On the electronic desktop,
many (arguably most) filenames are not merely pointless (e.g., “draft1.
doc,” “draft2.doc”) but useless for retrieval purposes. Folder names, for
their part, are effective as retrieval cues only for as long as users remem-
ber them—which is often not very long.

Folders and directories are inadequate organizing techniques Our elec-
tronic desktops are too faithful to the paper-based world: they force each
document to be stored in exactly one folder. (At least this is true for
novices; only experts are familiar with concepts like file aliases—and
using them is clumsy even for experts.) In the electronic world, docu-
ments can and should be allowed to live in more than one place at one
time. In a Lifestreams system, for example, a Powerpoint presentation on
Lifestreams might live in the “Lifestreams” folder, the “presentations”
folder, and the “current tasks” folder simultaneously. Conventional soft-
ware systems force users to store information in static categories (namely,
directories). But often we can’t tell where information belongs until we
need it. (Notes about a meeting to discuss an application called Zowie
for the Mac, where Smith, Piffel, and Schwartz were present, might be

ch02.indd 24ch02.indd 24 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

Beyond Lifestreams 25

stored—in a conventional system—in the folder called “Zowie,” or
maybe one called “Mac applications.” In retrospect you might need to
consult your records of all meetings that Piffel attended. But suppose
you didn’t know that at the time. For this obvious reason, the brain cat-
egorizes memories dynamically and not statically. I can ask you to recall
“all meetings that took place in room 300” even if you never consciously
classified meetings by room numbers.) In short, information should be
organized as needed, not a priori at the time it is created. Directories
should be created on demand, and documents should belong to as many
directories as appropriate.

Archiving should be automatic Current systems fail miserably at data
archiving (especially in comparison to paper-based systems). In the desk-
top metaphor it is the user’s responsibility to create an archiving scheme
and follow it. Faced with this task, many users simply throw away old
data rather than archiving it (and then trying to remember how to locate
it once it’s been archived). Software should let documents to age grace-
fully and be archived when they are less frequently used—but allow users
to retrieve any archived item quickly.

Computers should make “reminding” an integral part of the desktop
experience It has been known for some time that reminding is a critical
function of computer-based systems (Malone 1983); yet this functional-
ity is still delivered only in third party applications such as calendars and
task managers, and is not yet part of our integrated electronic environ-
ments. User studies have pointed out the many coping strategies users
rely on to achieve some kind of reminder functions (this holds even for
users who depend on third-party applications). Reminding should be a
basic function in any electronic information system.

Personal data should be available from anywhere, to any device, and
compatibility should be automatic In 1994, we knew that users would
need to access, view, and manage their information from many network-
connected devices. At the time this included emerging tablet computers,
which led the way to PDAs (personal digital assistants) such as the Palm-
Pilot and Microsoft’s PocketPC. Today, we have a whole new set of net-
work-enabled devices, dominated by the cell phone. Personal electronic

ch02.indd 25ch02.indd 25 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

26 Eric Freeman and David Gelernter

information should be available to us on any net-enabled device, regard-
less of which one we choose. It follows that our information-manage-
ment model must scale not only to a high-resolution PC display but also
to small, low-resolution devices.

The system should provide a means of summarizing a set of documents
into a concise overview An important aspect of managing information
is the capacity to construct a “big picture” view of that information. For
example: a time series of mutual fund closing quotes can be summarized
in a historical graph. A set of songs can be summarized in a playlist that
can be printed for a CD jewel case. A set of pay stubs and payments can
be summarized in a partially completed tax return. And so on. “Sum-
marize” can (and ought to) be an exceptionally powerful function if we
define it imaginitively. Our software should include a sophisticated sum-
marize routine, and enable higher-order operations (such as data mining
and analysis) that use summarized data as input.

With these guiding principles in hand, let’s look at the Lifestreams
model.

The Lifestreams Model

Let’s start with the basic data structure of the Lifestreams model: a
lifestream is a time-ordered stream of documents that functions as a diary
of your electronic life. (“Document,” meaning electronic document, is
defined in the broadest possible way: a photo, video, audio, or applica-
tion call all be “documents.”)

Every document you create or receive is stored in your lifestream (see
figure 2.1). The tail of your stream contains documents from the past
(perhaps starting with your electronic birth certificate). Moving forward
from the tail toward the present, your stream contains more recent docu-
ments—papers in progress, for example, or new electronic mail. Each
document is stored at the time you first created or first received it. Thus
all documents (pictures, correspondence, bills, movies, voice mail, and
software) are stored at appropriate points along the way. Moving beyond
the present into the future, the stream contains documents you will need:
reminders, appointments, calendar items, to-do lists.

ch02.indd 26ch02.indd 26 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

Beyond Lifestreams 27

To this model we add a small number of operations that, combined with
the time-ordered stream, accomplish transparent storage, organization
through directories on demand, archiving, reminding, and summaries—in
a natural way.

To create documents, users use one of two operations: new and copy.
New creates a new, empty document and adds it at the head of your
stream. (Every stream has a now-line, marked by the current time. As the
stream ages, the now-line moves steadily farther away from the tail—i.e.,
from the very first document in the stream. New creates an empty docu-
ment and adds it to the stream at the now-line.) Copy takes an existing
document, creates a duplicate, and adds it to your stream at the now-
line. The source document in the copy operation can live in a different
stream; copy, in other words, can be used to transfer a copy of a document

Figure 2.1
An early conceptual drawing of a lifestream.

ch02.indd 27ch02.indd 27 12/4/2006 1:19:31 PM12/4/2006 1:19:31 PM

28 Eric Freeman and David Gelernter

between streams. Creation is always “transparent” because documents,
by default, are always added to the end of the stream (at the now-line)
and don’t have to be named (unless the user chooses to name them) or be
stuffed into a folder.

Lifestreams are organized on the fly with the find operation. Find
prompts for a search query, such as “email from Piffel” or “Leigh Nash
mp3s,” and creates a substream. Substreams present a “view” of the
stream as a whole—a view that contains all documents that are relevant
to the search query. Substreams are different from conventional direc-
tory systems: users don’t place documents into static substreams (although
in some circumstances they can add documents to substreams by hand).
Instead, virtual groups of related documents are created as needed, on the
fly.

Documents aren’t actually stored in substreams. A substream is a tem-
porary collection of documents that already exist on the main stream.
Substreams may overlap; they can be created and destroyed on the fly
without affecting the main stream or other substreams.

Substreams are more than merely the result of a search operation. Find
doesn’t merely return a list of results; find creates a new data structure,
namely, a substream. If you allow a substream to persist, it will collect
new documents that match your search criteria as you create them or
they arrive from outside. In consequence the substream is a natural way
of monitoring information—it acts not only as an organizational device
but as a filter for incoming information. For example: a substream created
with the query “find all documents created by Piffel” would collect new
emails from Piffel as they arrive.

The last operation, summarize, takes a substream and compresses
it into an overview document. The shape and content of this overview
document depends on the type of documents in the substream. If a sub-
stream (for instance) contains the daily closing prices of all stocks and
mutual funds in your investment portfolio, the overview document might
contain a chart showing the historical performance of your securities,
and your net worth. If a the substream contains a list of tasks you must
complete, the overview document might be a prioritized “to-do” list. If
the substream contains all mp3s of “Leigh Nash,” the overview might be
a printable playlist à la iTunes.

ch02.indd 28ch02.indd 28 12/4/2006 1:19:32 PM12/4/2006 1:19:32 PM

Beyond Lifestreams 29

Chronology as a Storage Model
One of the most common questions (and criticisms) of Lifestreams has
always been: “why use creation time as the basis for storage? Isn’t some
other metric more useful? Isn’t creation time too constraining?” Some
realizations of the Lifestreams model allow you to re-sort the stream by
some other key—title, size, whatever you want. But this is beside the
point. The real point is this: human beings live their lives in time; their
experiences exist in time; a Lifestream is explicitly an electronic diary.
It’s not just a file cabinet for information; it tracks your daily experience
as it unfolds. Such a record is inherently useful—that’s why people keep
journals and diaries.2 The stream adds historical context to everything it
contains; like a diary, a stream documents the flow of your work, busi-
ness transactions, thoughts—a function that is largely missing in today’s
operating systems. Often we need not merely isolated documents from the
past; we need to see the context in which those documents were created.
Often we can’t understand a year-old document (a one-line email, a brief
note, incomplete records of a meeting) unless we can see the context from
which it emerged.

Historical context can in fact be crucial in an organizational setting
(Cook 1995). But most current systems do little to track when, where, and
why documents are created and deleted.

Note that a time-based stream also gives us three natural categoriza-
tions for documents: past, present, and future. The “present” portion of
the stream is the zone at and immediately behind (i.e., older than) the
now-line. It holds “working documents”; this is also where new docu-
ments are ordinarily created and incoming documents are placed. As
documents age and newer documents are added, older documents recede
from the user’s view and are “archived” in the process. (Here we mean
archiving in the conceptual sense; users don’t have to worry about old
information cluttering their desktops or getting in the way. If at some
future point they need the archived information, it can be located using
find.) The “future” portion of the stream allows documents to be created
in the future. “Future creation” is a natural method of posting remind-
ers and scheduling information. The system allows users to dial to the
future and use the new operation to deposit a document there—a meet-
ing reminder, say. The “future” is a particularly convenient way to deal

ch02.indd 29ch02.indd 29 12/4/2006 1:19:32 PM12/4/2006 1:19:32 PM

30 Eric Freeman and David Gelernter

with email that arrives at a point when you’re too busy to respond. You
can copy such a message into the future—into “tomorrow morning,” for
example. Tomorrow morning the copy will appear at the now-line; the
email serves as its own reminder. (Yahoo has added a function similar to
this Lifestreams operation.)

Unification
As we mentioned earlier, our goal was to provide a simple, unified system
that is easily grasped by users and solves the problems of filing, finding,
reminding, archiving, and summarizing. The interested reader should refer
to previous writings, in particular the Lifestreams dissertation (Freeman
1997), for details. But it is important to consider how the model achieves
our goals.

First, naming. In Lifestreams there is no such concept. Lifestreams stores
information transparently: any time a document is created or received, it
is automatically added to the stream. This procedure reduces the overhead
of creating information (which, as we mentioned, is one of a user’s most
difficult and ultimately least-productive tasks). Users are freed to concen-
trate on the task at hand instead of the name, folder, disk, machine, or
network location of a particular document or data item.

Second, filing. Lifestreams keys information storage to the time the
information is created or arrrives and organizes information in the con-
text in which it arrived or was created. How? To organize information, the
user does a find, which creates in effect a virtual directory (a substream).
Unlike directories or folders, substreams don’t pigeon-hole information
into specific locations. Documents can exist in multiple substreams at
once. By eliminating naming and filing, the Lifestreams model reduces the
overhead of creating information, improves recall, and makes retrieval
easier. Lifestreams’ method of organizing documents has a second advan-
tage: once you create a substream, you can allow it to persist and become
(automatically) a filter or monitor, accumulating any new documents that
happen to match its search criterion.

Reminding is one of Lifestreams’ most novel features. By extending the
stream into the future, the system allows documents to be created, copied,
or placed in the future—and when their time rolls around, these docu-
ments become natural reminders. (We’ll see how this works in the interface
shortly.) Lifestreams, we believe, is the first general-purpose information

ch02.indd 30ch02.indd 30 12/4/2006 1:19:32 PM12/4/2006 1:19:32 PM

Beyond Lifestreams 31

model to treat reminders as first-class entities and to provide a metaphor
that naturally accommodates reminding.

Lifestreams also solves the conceptual “archiving problem” by means
of its time-organized stream. As documents age, they move out of the
user’s view (again we’ll see how an interface might handle this shortly),
and recede into the stream’s past. The result is a natural means of moving
data out of view as it is no longer needed, while keeping it available for
future retrieval.

Lifestreams also provides a new opportunity for users to exploit relation-
ships and global patterns that exist in document collections by offering an
architectural framework for creating executive summaries and overviews.
Lifestreams itself isn’t concerned with data mining or the many algorithms
for summary-creation. Instead it provides an enabling data structure over
which such analysis can be accomplished. Our Yale prototype provided
several means of generating summaries, but this area remains largely unin-
vestigated—and was not included in our commercial system.

Another way to think about the unifying aspect of Lifestreams is to
consider how a few simple operations allow you to manage your whole
electronic life. The same operation that creates a substream (find) also
creates your mailbox, your web bookmarks, your entire set of Power-
point presentations, and everything else in between. Consider a substream
that includes all documents that include the word “lifestreams”—it will
include documents you created, documents you were sent, web book-
marks for Lifestreams pages, all email that mentions lifestreams, and so
on. In each case, if you can create a substream, you can create a persistent
filter that continues to collect new documents. We’ll also see shortly how
you can see at a glance how much new information has collected in any
substream—as if you were checking email. And at any time you can peek
into the future to see what’s coming up, or take a spin in the past with a
simple click of the mouse; and clicking summarize on any stream gives
you a context-sensitive overview.

The Lifestreams Interfaces
The development of the Lifestreams interface was one of the most impor-
tant and challenging aspects of the project. Creating a new interface
involves navigating a large design space which we have only begun to
explore.

ch02.indd 31ch02.indd 31 12/4/2006 1:19:32 PM12/4/2006 1:19:32 PM

32 Eric Freeman and David Gelernter

Our Yale research prototype consisted of a client/server architecture that
ran over the Internet. The server was the workhorse of the Lifestreams
system. It managed one or more streams, storing all stream documents
and substreams. Each interface acted as a client and provided views of
the stream.

As we’ll explain, our interface presented a definite look and feel for a
stream. But we were actually agnostic regarding the appearance of the
interface; we envisioned many different possibilities. In fact we believed
that the look and feel of the interface would differ radically over a wide
range of computing platforms, from set-top boxes to high-end worksta-
tions. But each interface would support the basic operations. (Again, one
goal of the model was to support interfaces that handled many different
devices with dramatically different capabilities.)

Our Yale work explored four interface implementations: an X Win-
dows client, a pure text command line client, a PDA implementation, and
a web browser implementation. The X Windows interface provided a rich
graphical interface (for the time); it implemented the full range of opera-
tions functionalities. The ASCII interface also implemented the complete
Lifestreams model, but with a text-based, mail-like interface. The PDA
version was implemented on the Apple Newton; it provided rudimentary
stream access, given the Newton’s lack of internal memory and low band-
width. The later commercial versions of Lifestreams were focused mostly
on web browsers, but included a fair amount of support for cell phones
and more modern PDAs.

Describing the interfaces and their functionality in detail is far beyond
the scope of this chapter. But we’ll examine the X Windows interface and
touch briefly on others. The X Windows interface may appear crude next
to today’s GUIs, but its functionality remains unmatched—even by the
commercial Lifestreams implementations!

The X Windows Interface
Our X Windows interface is shown in figure 2.2. The interface is based
on a visual representation of the stream metaphor (and is reminiscent of
early Lifestreams sketches such as the one in figure 2.1). Users can slide
the mouse pointer over the document representations to “glance” at a
thumbnail of each document’s content, or use the scroll bar in the lower
left-hand corner to scroll forward or backward in time. All interface feed-

ch02.indd 32ch02.indd 32 12/4/2006 1:19:32 PM12/4/2006 1:19:32 PM

Beyond Lifestreams 33

back (scrolling through time included) was immediate and close to real
time.

We used color and animation for important document features. A red
border meant “unseen” and a bold one meant “writable.” Open docu-
ments were offset to the side to show that they were being edited. External
helper applications were used to view and edit documents, which sped
up the learning process significantly for Lifestreams users—they could
use applications they were familiar with (such as emacs, xv, and ghost-
view) to create and view documents, while using Lifestreams to organize
and communicate documents. Lifestreams (the document-organization
model) was orthogonal to the document-creation and document-viewing
 applications.

Incoming documents slid in from the left side via animation, with a
“swoosh” sound. Newly created documents popped down from on top
and pushed the stream backward by one document into the past. To view
(or edit) a document, the user simply clicked on its representation.

Figure 2.2
The X Windows interface of Lifestreams.

ch02.indd 33ch02.indd 33 12/4/2006 1:19:32 PM12/4/2006 1:19:32 PM

34 Eric Freeman and David Gelernter

The interface prominently displayed the primary system operations—
New, Clone (our original term for “copy”), Xfer (i.e., transfer—copy to
another stream), Find, Squish (meaning summarize), and a few useful sec-
ondary operations as buttons and menus. The New button created a new
document and added it to the stream. Clone duplicated an existing docu-
ment and placed the copy on the stream. Xfer prompted the user for one
or more addresses and then forwarded a document (to another stream or
email, as appropriate).

Find was supported through a text-entry box that allowed the user to
enter a boolean search query (or keyword search). Find resulted in the cre-
ation and display of a new substream, as shown in figure 2.3. In this figure
we’ve searched for the terms “david and meme,” and the documents that
match the query constitute the substream. If a new document that matches
this query arrives in the meantime, it slides right into the substream—just
as it would have slid into the main stream.

Figure 2.3
Creation and display of a new substream.

ch02.indd 34ch02.indd 34 12/4/2006 1:19:32 PM12/4/2006 1:19:32 PM

Beyond Lifestreams 35

Menu operations were used to select persistent substreams, create
summaries, and travel through time (an operation we’ll explain short-
ly). Figure 2.4 shows the Substreams menu, which is divided into three
sections. The first contains a list of operations that can be performed
on substreams (such as Remove). The next contains one entry labeled
“Your Lifestream,” and focuses the display on your entire Lifestream
(i.e., all of your documents). The last lists all of your substreams. Note
that substreams can be created incrementally—which results in a nested
set of menus. In this example, the nested menus were created by first
creating a substream “lifestreams and david” from the main stream,
then incrementally creating two substreams from this substream: “sce-
narios” and “ben.” Finally, the substream “pda” was created from
the “scenarios” substream. Semantically, this incremental substream-
ing amounts to a boolean AND of each new query with the previous
substream’s query.

While this may look like a classic hierarchy of information, note that
the same document may appear in many streams. A substream can be
removed at any time with the Remove menu item, but if it is left to persist

Figure 2.4
The Substreams menu.

ch02.indd 35ch02.indd 35 12/4/2006 1:19:33 PM12/4/2006 1:19:33 PM

36 Eric Freeman and David Gelernter

it will continue to accrue new documents that match its search criteria as
they are added to the main stream.

Lifestreams displays the time in the upper right hand corner of the inter-
face. This time display also acts as a menu (figure 2.5) that allows the user
to set the interface time to the future or past via a calendar-based dialogue
box. Imagine a cursor always pointing to the position in the stream such
that all documents (see figure 2.6) beyond that point toward the head
have a future timestamp and all documents before it, toward the tail, have
a past timestamp. As time progresses this cursor moves forward toward
the head; as it slips past “future” documents they are added to the visible
part of the stream, just as if a new document had arrived.

The effect of setting the time to the future or past is to reset the time-
cursor temporarily to a fixed position designated by the user. Normally the
user interface displays all documents from the past up to the time-cursor.
Setting the time-cursor to the future allows the user to see documents in
the “future” part of the stream. Creating a document in this mode (i.e.,
“in the future”) results in a document with a future timestamp. Once the
user is finished time-tripping, he can reset to the present by selecting the
“Set time to present” menu option in the time menu.

Figure 2.7 demonstrates the summary operation (in this version, called
Squish); this figure shows a summary of a substream that contains daily

Figure 2.5
Setting the interface time.

ch02.indd 36ch02.indd 36 12/4/2006 1:19:33 PM12/4/2006 1:19:33 PM

Beyond Lifestreams 37

closing values of stocks from an early Internet portfolio service. The sum-
mary graphs these values over time.

Summaries are context sensitive, so while a lifestream may have many
summaries available, only the summaries that are relevant to a particular
substream are presented to the user as possible operations. In this imple-
mentation, the Squish button has actually changed to “Squish stocks” to
indicate that a specific summary is available. If multiple summaries are
appropriate then the user is presented with a list of choices. Finally, if no
summaries are appropriate then the Squish button remains grayed out.

Common Tasks
Lifestreams can be used to accommodate common computer tasks,
such as communication, creating reminders, managing scheduling,
tracking contacts, and managing personal finances (to name a few). For
instance, using email in Lifestreams is not much different from what
users are already accustomed to. To send a message, the user creates

Figure 2.6
Displaying documents having a future timestamp.

ch02.indd 37ch02.indd 37 12/4/2006 1:19:33 PM12/4/2006 1:19:33 PM

38 Eric Freeman and David Gelernter

a new document (by clicking on the New button) and then compos-
es the message using a favorite editor. The message can then be sent
with a push of the Xfer button. Similarly, existing documents are easily
forwarded to other users, or documents can be cloned and replied to.
While all email messages (incoming and outgoing) are intermixed with
other documents in the stream, the user can easily create a mailbox by
substreaming on documents created by other users; or, users can take
this one step further and create substreams that contain a subset of the
mailbox substream, such as “all mail from Bob,” or “all mail I haven’t
responded to.”

As another example, reminders can easily be created by dialing to the
future and depositing documents that act as reminders (we automated this
into one step in the prototype). A user can also send mail that will arrive
in the future. If he “dials” to the future before writing a message, then
when the message is transferred it won’t appear on the recipients’ stream
until either that time arrives or they happen to dial their interface to the

Figure 2.7
The summary operation.

ch02.indd 38ch02.indd 38 12/4/2006 1:19:33 PM12/4/2006 1:19:33 PM

Beyond Lifestreams 39

set creation date. In the present, the document will be in the stream data
structure but the interface won’t show it. We used this feature to send
mail to the future to post reminders to others about important meetings,
department talks, and so on. Because they appear “just in time” and don’t
require the user to switch to yet another application, these reminders are
more effective than those included in a separate calendar or scheduling
utility program.

There are many other examples of common tasks covered in the dis-
sertation and we refer the interested reader there, as a detailed description
would fill an entire chapter in itself.

Alternative Interfaces
As we’ve mentioned in passing, one of the goals of the Lifestreams model
was to scale to the capabilities of devices other than desktop computers. In
contrast, how do you work with the desktop metaphor from a cell phone?
Further, we wanted to provide a universal data structure over which many
types of interface could be explored. In addition to the text-based and
PDA implementations, we also did a fair amount of exploration of other
interfaces in implementation and on paper. For example, figure 2.8 shows
a fully functional calendar interface, implemented as a senior project at
Yale (Larratt-Smith 1996), that provides an alternative to the “stream
view” interface. This interface was particularly handy for reminding and
scheduling tasks.

We also envisioned more ambitious interfaces that, at the time, were
beyond the current technology (as well as our own graphical coding skills).
One example, seen in figure 2.9, was created by Jim Dustin, a graphical
designer working with us in 1997, and looks remarkably like a modern-
day Apple OS X application.

In sum, while our interface experiences were quite diverse and varied,
the space of user-interface designs still remains largely untapped.

Analysis

While many of the motivations and ideas behind Lifestreams are common
sense today, in the early to mid-1990s they were considered a bit fringe.
In an interview with Technology Review, David Gelernter described Eric
Freeman’s work as follows: “it was a risky, radical departure and not an

ch02.indd 39ch02.indd 39 12/4/2006 1:19:33 PM12/4/2006 1:19:33 PM

40 Eric Freeman and David Gelernter

Figure 2.8
The calendar interface.

Figure 2.9
An alternative Lifestreams interface.

ch02.indd 40ch02.indd 40 12/4/2006 1:19:34 PM12/4/2006 1:19:34 PM

Beyond Lifestreams 41

incremental improvement” (Technology Review 1999). While David has
a talent for compliment, nevertheless, undertaking Lifestreams in a largely
theoretical computer science department (with no faculty members in the
HCI community) certainly felt dangerous.3

While we were concerned with the faculty’s acceptance of the work,
in general we were far more concerned with the reaction of everyday
users. Our feedback on Lifestreams came largely from three populations:
a small user base in the computer science department itself (we recruited
not only technically savvy users, but also the department’s administrative
employees), a population of people who had heard about Lifestreams
in the popular press but had never used the system, and a fairly large
population of individuals in the computer and financial industries who
we approached and gave demos to in our attempts to raise capital for a
post-Ph.D. business venture.4 Most of our analysis came from the group
of administrative staff at Yale, who used our prototype for an extended
period of time.

To measure user satisfaction we relied on the Questionnaire for User
Satisfaction (QUIS), a standardized usability testing tool available for
licensed use from the University of Maryland. Users had an overall high
subjective reaction to the system. The following user comment reflects a
high level of satisfaction and was consistent with many of the reactions we
received from the other populations:

The concept (of Lifestreams) appealed to me immediately on two levels. First,
because I know myself that I naturally order and recall events in my life accord-
ing to time cues, that “memories” become less important to my daily activities
the further in the past they recede (yet retain punch and applicability at discrete
moments when recalled because of similarity to current events), and that I find it
so incredibly annoying not to be able to recall something that might be applicable
because the “index” to that memory has been lost, or that a relevant document is
no longer available because it has been thrown away (just weeks before to remove
“clutter” or save space).

Users also quickly “got” the system, scoring (in QUIS) most highly on
the system’s ability to be quickly learned. One user, who was part of Yale’s
administrative staff, spoke directly to this point (underline in original
response):

The time at which I started using Lifestreams was at the beginning of the semester,
my busiest time. . . . All this considered, I was still bowled over by all of the ways
it could, and did, make my job easier in a very short period of time.

ch02.indd 41ch02.indd 41 12/4/2006 1:19:34 PM12/4/2006 1:19:34 PM

42 Eric Freeman and David Gelernter

We also saw evidence that the system did have an effect on users’ views
of managing electronic information:

the time I now spend on this system of mine has really changed. I hate hunting
through this “tree.” It is cumbersome at best and annoying at least. I have seen a
better way. I didn’t realize how much time I spend searching for documents.

Beyond our user study, we also found the system itself “hit home” with
many who had never even used the system but had read about it in the
popular press. Email like the following were quite common:

I have so much stuff coming in my “InBox” daily, whether it’s incoming e-mail,
snailmail, phone messages, articles, or what-have-you; that there’s not really time to
organize it all. Rather, as you quite convincingly point out, I’d rather just STORE it
all (since storage is cheap!) and access only what I want when I want to access it.

In addition to the QUIS surveys, we also instrumented Lifestreams in
order to capture a quantitative measure of the effectiveness of the system.
Overall, data suggested that substreams were an effective and efficient
mechanism for locating information (although certain improvements
could have been made with better indexing technology). You’ll find these
issues and others, such as the variety of user styles we saw when observing
users of the system, detailed in the dissertation.

In sum, Lifestreams appeared to elicit a highly positive subjective reac-
tion from those who used the system, but also from those who just envi-
sioned using it. More quantitative analysis suggested further that in fact
Lifestreams was efficient as a means of managing information. That said,
while these results were promising, there remained much to be done in
terms of studying the utility of Lifestreams among users, particularly in
comparison to the traditional desktop.

Differing Opinions
One of the most interesting discussions on Lifestreams (or perhaps more
accurately, its foundations) was a short public debate in SIGCHI Bulletin
with Deborah Barreau and Bonnie Nardi based on their studies (which
examined users of the desktop metaphor and drew conclusions based
upon their work habits).5 Barreau and Nardi’s (1995) study was particu-
larly interesting to us because they observed many of the same user behav-
iors we had. More specifically, their study, performed over 22 subjects,
noted the following similarities among desktop users:

ch02.indd 42ch02.indd 42 12/4/2006 1:19:34 PM12/4/2006 1:19:34 PM

Beyond Lifestreams 43

a preference for location-based search for finding files (in contrast to
logical, text-based search);

the use of file placement as a critical reminding function; and

the “lack of importance” of archiving files.

This was also interesting to us, because at face value, it obviously con-
tradicts our initial conjecture (as well as the previous work of Lansdale
and Malone). While we believed their findings were valid, we found the
extrapolation from user behavior to user preference misleading. Steven
Steinberg (1997) commented in Wired magazine that from our perspective
this study was “like studying people listening to the radio and deciding
that they didn’t want pictures.”

That’s exactly how we saw it—of course users in 1995 preferred
location-based search (that is, finding files by the folder they are locat-
ed in) to logical search; what choice did they have? While there were
certainly some tools for text-based search on the desktop at that time,
they were crude at best. Today, with the “Googlization” of the desktop
(and nearly ten years of user education through using WebCrawler,
Infoseek, Altavista, and now Google), it seems preferences may be
changing.

In terms of location-based reminding, this was an excellent result and
shows the user’s need for reminding as a core function. But, concluding
that location was the best ways to accomplish this was premature. As
we’ve said before, surely there are better ways.

Last, to claim that archiving files wasn’t important seemed, again, to be
a result of the lack of support in current systems at that time. Archiving
files is obviously valuable, especially if we can find ways to make the pro-
cess transparent and improve means of locating archived materials.

Finally, Barreau and Nardi (1995) observed one additional aspect of
their subjects, noting their

use of three types of information: ephemeral, working, and archived.

We still find this an interesting and important conclusion; we believe
ephemeral, working, and archived to be crucial classifications for desk-
top information, and these classifications provide clues to which abilities
our software systems need to support to manage these different types of
information.

•

•

•

•

ch02.indd 43ch02.indd 43 12/4/2006 1:19:34 PM12/4/2006 1:19:34 PM

44 Eric Freeman and David Gelernter

Commercial Efforts
Lifestreams, although of limited commercial success to date, nevertheless
experienced modest sales and a devoted user base, many of whom are still
using the system today. These commercial systems were aimed primarily
at corporate and enterprise users (although they still supported personal
information) and present the Lifestreams interface in a web browser.

Since the primary author left the company in 2000, exposure to this
customer base is quite limited; however, user reactions to the commer-
cial system were largely positive and mirror the Yale user studies. Post
mortems on factors that have limited Lifestreams acceptance (beyond any
marketing or business development factors) have uncovered issues of inte-
gration with existing corporate systems (such as Outlook/Exchange and
Lotus Notes) as well as the underlying operating system. This last point
shouldn’t be taken lightly: Lifestreams is very much an integral part of
the desktop information environment, and any attempts to bolt on this
functionality in an application or utility will never be as powerful (or as
accepted by users) as having Lifestreams-like models implemented as an
integral part of the operation system (both Microsoft and Apple seem to
be moving in this direction of integrating many lifestreams-like function-
alities at the OS level).

Lifestreams Today

In the late ’90s when we were busily working on our own Lifestreams
startup, we claimed that even if our efforts failed, our idea would become
mainstream, because it was such a natural idea. Looking around the
landscape today, our company is dead, but many of the ideas are blos-
soming nicely—considering such projects as Haystack, Chandler, MyLife-
Bits, parts of Microsoft’s Longhorn, Apple’s Spotlight and iApps, and the
Google desktop (to name only a few). Some of these projects were influ-
enced directly by Lifestreams. But there is a more powerful force at work
too: the management of information demands an underlying model that
is more capable than the desktop metaphor. We live our lives in time.
Lifestreams was, is, and will continue to be inevitable.

Our contribution was (secondarily) the recognition and identification
of problems inherent in the desktop metaphor (based on seminal work of
researchers like Malone, and our own observations), and mainly our pro-

ch02.indd 44ch02.indd 44 12/4/2006 1:19:34 PM12/4/2006 1:19:34 PM

Beyond Lifestreams 45

posal of a new model that breaks away from the constraints of that meta-
phor. Today, things are moving in the right direction. The Google desktop
suggests that users are starting to internalize new models for information
management.

Search has become the holy grail of the desktop. The leading search
companies are moving into desktop search as a way to extend their reach,
and operating systems makers are moving aggressively in this direction as
well. Integrating search into the desktop environments is by no means a
new development—Microsoft has been pursuing WinFS in fits and starts
for over more than ten years—but this time, something is different: every-
one thinks it’s important.

Why is there a growing interest in desktop search? Many attribute this
interest to the “googlization” of the desktop. The thinking goes: If my
desktop is becoming as complex and hard to navigate as the web, why not
apply the principles that work on the web to my desktop? It’s not a bad
idea, and its early success clearly demonstrates a need for new technolo-
gies (and possibly new metaphors) that can help us manage our electronic
lives.

But is “desktop search” what we’re really after? Will it allow us to
finally manage the deluge of information pouring into our desktops? We
didn’t think so in the early ’90s, and we don’t think so now. Our claim is:
To fully deal with the problem, we need to break away from the desktop
metaphor and move to a new model that removes the overhead and design
constraints imposed by the desktop. Search on the desktop is a step in
the right direction; by moving in that direction, we’ve gained something
valuable: an alternative model for how users might take back control of
their electronic lives. Over the last decade, web search has in fact primed
users for a different style of managing their electronic lives. However, as
we have seen, we’re not there yet; search is a necessary component of such
a model; but it won’t be sufficient by itself. Search is only a solution when
you know what you’re looking for. Our guess is that people know what
they’re looking for maybe around half the time. The rest of the time, they
don’t need a good search engine; they need a good “browse engine,” a
good display. Lifestreams remains the best “browse engine” we’ve ever
encountered.

As we’ve covered in detail in this chapter, there is much to be improved
on beyond mere capture and retrieval because the desktop is failing us and

ch02.indd 45ch02.indd 45 12/4/2006 1:19:34 PM12/4/2006 1:19:34 PM

46 Eric Freeman and David Gelernter

will continue to do so in the areas of categorization, reminding, archiving,
and summarization.

Moving away from the desktop metaphor will be a slow process—users
have a lot invested in the current interface; however, as the deluge of infor-
mation continues to accelerate so will the pressure to move past it. In
2006, we are still largely in the same position we were in 1994: our desk-
tops are a mess. But we’re hopeful our work and the work of others has
started us down a path that leads beyond the desktop metaphor. And (as
we like to point out), you may not have heard the last of Lifestreams.

Acknowledgments

Our sincerest thanks to Elisabeth Freeman, Frank Weil, and Tom Carulli
for their contributions to this chapter.

Notes

1. To illustrate that we’re not exaggerating for dramatic effect, in late 1995 Wired
magazine dispatched two New York photographers to Yale University to do a
photo shoot for an upcoming feature article. We expected the worst: they’d put us
in some zany and embarrassing pose that we’d never live down. On schedule, the
photographers arrived and began looking around the computer science depart-
ment for good locations to shoot. They walked into David’s office, set up a tripod,
which extended nearly to the ceiling, and took a photo of David’s desk. They then
promptly left without saying a word.

We can only guess that they felt the desktop photograph communicated more
about what we were trying to do than our pictures ever would. Sure enough, you
can find that image in the February 1996 Wired magazine (full page no less).

2. It’s interesting to point out that we made the statement “such a record is inher-
ently useful which is why people keep journals or diaries” in ‘95 and felt we needed
to add a parenthetical comment that “at least people used to keep journals.” Over
the last couple of years an interesting phenomenon has occurred: weblogs. Now
keeping a time-ordered dairy of our lives is once again becoming common, this
time on the web. We can’t help but notice that some of our early browser-based
implementations were very close to current weblog systems (perhaps it’s time we
take them in the direction of Lifestreams and allow your entire electronic life to be
captured in a, presumably private, log).

3. Eric Freeman was fortunate to have Ben Bederson as an outside advisor and
the work benefited immeasurably from this. In addition Ben’s participation pro-
vided the credibility needed to convince the Yale faculty that the HCI aspect of the
work was of value.

ch02.indd 46ch02.indd 46 12/4/2006 1:19:34 PM12/4/2006 1:19:34 PM

Beyond Lifestreams 47

4. Note that raising venture capital in the middle of finishing a Ph.D. can provide
an effective means of getting your work in front of a lot of people.

5. Apparently Wired magazine thought it would make its Lifestreams article
more interesting by implying this debate was a contentious one. Nothing could be
further from the truth. In fact we enjoyed the debate immensely and, although we
disagreed with their conclusions, learned much from Barreau and Nardi’s work.

References

Barreau, D., and Nardi, B. (1995). Finding and reminding: File organization from
the desktop. ACM SIGCHI Bulletin 27: 39–43.

Carroll, J. M. (1982). Learning, using, and designing filenames and command
paradigms. Behaviour and Information Technology 1 (4): 327–346.

Cook, T. (1995). Do you know where your data are? Technology Review
(January).

Dumais, S. T., and Landauer, T. K. (1983). Using examples to describe categorizes.
In Proceedings of the 1983 ACM SIGCHI Conference on Human Factors in Com-
puting Systems (CHI’83), pp. 112–115. Boston, Mass., December 12–15.

Erickson, T. (1991). Designing a desktop information system: Observations and
issues. In Proceedings of the 1991 ACM SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI’91), pp. 49–54. New Orleans, Louisiana, April
27–May 2.

Freeman, E. T. (1997). The Lifestreams software architecture. Ph.D. dissertation,
Yale University Department of Computer Science, May 1997. Available at http://
www.cs.yale.edu/homes/freeman/lifestreams.html/.

Gelernter, D. (1994). The cyber-road not taken. Washington Post (April 3): C1.

Hutchins, J. (1995). Introduction to text summarization. Dagstuhl Seminar
Report, IBFI, Dagstuhl.

Jones, W. P., and Dumais, S. T. (1983). The spatial metaphor: Experimental tests
of reference by location versus name. ACM Transactions on Office Information
Systems 4 (1): 43–63.

Klark, P., and Manber, U. (1995). Developing a personal internet assistant. In
Proceedings of ED-Media 95, World Conference on Multimedia and Hypermedia,
pp. 372–377. Graz, Austria, June 18–21.

Lansdale, M. (1988). The psychology of personal information management.
Applied Ergonomics 19 (1): 55–66.

Malone, T. (1983). How do people organize their desks? Implications for the
design of office information systems. ACM Transactions on Office Systems 1 (1):
99–112.

Nelson, T. (1990). The right way to think about software design. In Laurel, B.
(ed.), The Art of Human–Computer Interface Design, pp. 235–243. Boston: Addi-
son-Wesley.

ch02.indd 47ch02.indd 47 12/4/2006 1:19:34 PM12/4/2006 1:19:34 PM

48 Eric Freeman and David Gelernter

Larratt-Smith, A. (1996). A calendar interface for Lifestreams. Technical report,
Senior Project, Department of Computer Science, Yale University, May 1996.

Steinberg, S. G. (1997). Lifestreams. Wired 5: 148–151, 204–209.

The Technology Review TR100. (1999). Technology Review (November/Decem-
ber).

Whittaker, S., and Sidner, C. (1996). Email overload: Exploring personal informa-
tion management of email. In Proceedings of the 1996 ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI’96), pp. 276–283. Vancouver,
British Columbia, Canada, April 13–18.

ch02.indd 48ch02.indd 48 12/4/2006 1:19:35 PM12/4/2006 1:19:35 PM

Introduction

Every individual works with information in his or her own way. In par-
ticular, different users have different needs and preferences in regard to

which information objects need to be stored, retrieved, and viewed;

what relationships and attributes are worth storing and recording to
help find information later;

how those relationship and attributes should be presented when
inspecting objects and navigating the information space;

what operations should be made available to act on the presented
information; and

how information should be gathered into coherent workspaces in order
to complete a given task.

Currently, developers make such decisions and hard-code them into
applications: choosing a particular class of objects that will be managed
by the application, deciding on what schemata those objects obey, devel-
oping particular displays of those information objects, and gathering them
together with relevant operations into a particular workspace. The Hay-
stack project takes a different approach. We posit that no developer can
predict all the ways a user will want to record, annotate, and manipulate
information, and that as a result the applications’ hard-coded informa-
tion designs interfere with users’ abilities to make the most effective use
of their information.

Our Haystack system aims to give the end user significant control over
all four of the facets mentioned above. Haystack stores (i.e., references

•

•

•

•

•

3
Haystack: Per-User Information
Environments Based on Semistructured Data

David R. Karger

ch03.indd 49ch03.indd 49 12/4/2006 1:19:38 PM12/4/2006 1:19:38 PM

50 David R. Karger

to) arbitrary objects of interest to the user. It records arbitrary properties
of the stored information, and relationships to other arbitrary objects. Its
user interface flexes to present whatever properties and relationships are
stored, in a meaningful fashion.

To give users flexibility in what they store and retrieve, Haystack coins
a uniform resource identifier (URI), naming anything of interest to the
user—a digital document, a physical document, a person, a task, a com-
mand or menu operation, a view of some information, or an idea. Once
named, the object can be annotated, related to other objects, viewed, and
retrieved.

To support information management and retrieval, a Haystack user can
record arbitrary (predefined or user-defined) properties to capture any
attributes of or relationships between pieces of information that the user
considers important. Properties of an object are often what the informa-
tion users are seeking when they visit the object. Conversely, they may
help users find the objects they want: the properties serve as useful query
arguments, as facets for metadata-based browsing (Yee et al. 2003), or as
relational links to support the associative browsing typical of the World
Wide Web.

Haystack’s user interface is designed to flex with the information space:
instead of using predefined, hard-coded layouts of information, Haystack
interprets view prescriptions that describe how different types of informa-
tion should be presented—for example, which properties matter and how
their values should be (recursively) presented. View prescriptions are them-
selves customizable data in the system, so they can be imported or modi-
fied by a user to handle new types of information, new properties of that
information, or new ways of looking at old information. Incorporating a
new relationship or even a new type of information does not require pro-
grammatically modifying the application or creating a new one; instead,
an easy-to-author view prescription can be added to describe how to blend
the new information seamlessly into existing information views.

Beyond letting users customize the information they work with, Hay-
stack lets users customize their information-management activities. By
taking a “snapshot” of partially completed dialogue boxes, a user can
create specialized operations to act on their data in common ways. At
a higher level, a variation of the view prescription approach is used to
define workspaces for a particular user task, describing which information

ch03.indd 50ch03.indd 50 12/4/2006 1:19:38 PM12/4/2006 1:19:38 PM

Haystack 51

objects are involved, how they should be laid out, and what operations
should be available to perform on them. With Haystack’s unified informa-
tion model, any heterogeneous set of objects can be brought into a coher-
ent visualization appropriate for a given task.

The need to flexibly incorporate new data types, presentations, and
aggregations is not limited to individual users. As is demonstrated by this
volume, researchers keep proposing beneficial new attributes, relation-
ships, and data types. Plaisant et al. (this volume) propose to tag all infor-
mation objects with a “role” attribute that can be used to determine under
which circumstances a given information object is relevant, and which
operations on it should be available. Fisher and Nardi (this volume) pro-
pose that information management will be improved by recording and
displaying linkages from information objects to the people relevant to
those objects. Freeman and Gelernter (this volume) advocate recording
and presenting information according to the access time of all of a user’s
information objects. The essays all make good cases, suggesting that each
is correct some of the time. The Haystack system demonstrates an infra-
structure that would make it much simpler to incorporate such new ideas
in a single system as they arise, and invoke each of them at the appropriate
times, as opposed to crafting new and distinct applications (and convinc-
ing users to migrate to them) for each new idea.

Principles
Haystack’s design is guided by a number of principles and concepts. Many
of them seem obvious and almost wasteful to assert. But all of them might
be debatable, so we attempt to justify them in our motivation section
below.

Universality Users should be able to record any information object they
consider important or meaningful, and should be able to seek, find, and
view it later.

The centrality of metadata and relationships Much retrieval of objects
is based on recalling specific attributes of the objects and their relation-
ships to other objects. Thus, the system must be able to record whatever
attributes and relationships matter to the user, display them, and support
their use in search and navigation.

ch03.indd 51ch03.indd 51 12/4/2006 1:19:38 PM12/4/2006 1:19:38 PM

52 David R. Karger

One information space There should be no a priori segregation of a
user’s information by “type” or application. Rather, all information
should exist logically in a single space. Users should be able to group and
relate any information objects they choose.

Personalization No developer can predict what kinds of information
objects a user will want to store, or what attributes and relationships will
be meaningful to them for retrieval. Thus, the system must let the end
user define new information types and properties, and adapt to be able to
store, present, and search using those types and properties.

Semantic identity There should be only one representation of a particu-
lar information object in the data model (as opposed to having distinct
representations stored by different applications). Any visible manifesta-
tion of that object should be “live,” offering access to that object (as
opposed to, say, simply acting as a dead text label for an object that must
be located elsewhere).

Separate data from presentation The development of multiple views of
the same information object should be encouraged, so that the right view
for a given usage can be chosen. It should be possible to use each such
view to be used in whatever contexts are desired, instead of restricting
each view to certain applications.

Reuse presentations Many types (such as “email message”) are instanc-
es of more generic types (“message”) that have other incarnations (news-
group posting, instant message, telephone call) and to which many
attributes (sender, recipient, subject) and operations (reply, forward)
apply uniformly. We should design views to apply generically when pos-
sible, so that the user can ignore differences that are irrelevant to their
information-management needs.

This chapter explains the motivation for these principles and describes
the system we have built to apply them.

A Tour of Haystack
To begin exploring Haystack’s design, we take a brief tour through an end
user’s view of Haystack. In figure 3.1 we see a screen shot of Haystack

ch03.indd 52ch03.indd 52 12/4/2006 1:19:38 PM12/4/2006 1:19:38 PM

Haystack 53

managing an individual’s inbox. As is typical of an email application, Hay-
stack shows the user’s inbox in the primary browsing pane. The layout is
tabular, with columns listing the sender, subject, and body, among other
things. Less usual is the fourth “Recommended categories” column, which
the user added to the display by dragging the Recommended Categories
view from the message on the lower right into the inbox column header.
As is usual, the collection includes a “preview” pane for viewing selected
items, which is currently collapsed.

While the Haystack inbox looks much like a typical email display, it
contains much more. Some of the items in the inbox are not email mes-
sages. There are stories from Really Simple Syndication (RSS) feeds, and
even a representation of a person—perhaps placed there as a reminder
that the user needs to meet with him. The RSS message has a sender and
a date, but the person does not. This is characteristic of Haystack: rather

Figure 3.1
Haystack viewing a user’s inbox collection. A person and an email message are
displayed to the right. The user right-clicks on the name “Robert Krauthgamer”
to open a context menu of person-relevant operations.

ch03.indd 53ch03.indd 53 12/4/2006 1:19:38 PM12/4/2006 1:19:38 PM

54 David R. Karger

than being inextricably bound to an “email reader application,” the inbox
is a collection like all other Haystack collections, distinguished only as
the collection into which the user has specified that incoming email (and
news) be placed. It is displayed using the same collection view as all other
collections. Any items can be part of the inbox collection, and will be
properly displayed when the inbox is being viewed. This means that the
inbox can serve as a general purpose “to-do list.” Bellotti et al. (2003)
observe that many users have forced email into this role but have had to
cope as a result with the constraint that only email could be in their to-do
list; Haystack does away with the constraint.

It is also worth noting that RSS was a “late arrival” in Haystack. The
view showing the inbox was created before RSS was developed. When we
made the decision to include RSS stories as a new type of information to be
handled by the system, we did not make any change to the user interface.
Instead, we simply added a view prescription—a small annotation explain-
ing which attributes of an RSS object were worth seeing—and Haystack
was immediately able to incorporate those stories as shown in the figure.
This is standard for Haystack: new types of information, and new attri-
butes of information, do not force modifications to the visualization tool.
Instead, lightweight annotations give Haystack sufficient information to
seamlessly incorporate new types and attributes among the existing data.

On the right-hand side of the screen is a clipboard-like “holding area”
for arbitrary items; it currently contains an email message (about Google
Scholars) and a person (Hari Balakrishnan). Various aspects of the mes-
sage are shown, including the body, attachments (currently collapsed),
and recommended categories. Displayed aspects of the person include
messages to and from them; others, such as address and phone number,
are scrolled out of view.

The bottom of the left panel of figure 3.1 shows that the “email” task
is currently active, and lists various relevant activities (composing a mes-
sage) and items (the inbox) that the user might wish to invoke or visit
while performing this task, as well as a history of items that the user pre-
viously accessed while performing this task (expanded in figure 3.2). The
tasks can be invoked, and items visited, by clicking on them.

Indeed, the user can click on any item on the screen in order to browse
to a view of that item—the individual messages, the various individuals
named as senders or recipients, or any of the “recommended categories.”

ch03.indd 54ch03.indd 54 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

Haystack 55

Similarly, the user can right-click on any visible item in order to invoke a
context menu of operations that can be applied to that object. The user
right-clicks on one of the people listed as a message sender and a menu
(and submenu) opens up listing operations that might be invoked for
that person, such as sending him an email message, initiating a chat, or
entering him in the address book. The operations are not limited to those
typical of an email application; rather, they are the ones applicable to the
object being viewed. One of the operations, “Send to Jaime,” was created
by the user because he performs that operation frequently. He saved a
partially completed “Send this to someone” operation; Haystack auto-
matically recognized that this new operation was applicable and added it
to the context menu.

Finally, the user can drag one item onto another in order to “connect”
those two items in an item-specific way—for example, dragging an item

Figure 3.2
Invoking “send this item to someone” in Haystack. The inbox collection is
displayed in the calendar view. We show three distinct open menus—the task-
 specific history, the result of a search for “Quan,” and the context menu for an
 operation—though in actual use only one would remain open at a time.

ch03.indd 55ch03.indd 55 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

56 David R. Karger

onto a collection places the item into the collection, while dragging an
item into a dialogue box argument (see figure 3.2) field binds that argu-
ment to the dragged item. These three actions—click to browse, right-
click for context menus, and drag and drop—are pervasive. They can be
invoked at any time upon any visible object in a uniform fashion.

A “browsing advisor” in the left pane suggests various “similar items”
to those in the collection—such as items created by Karger, or type of
message—and ways to “refine the collection” being viewed—for example,
limiting to emails whose body contains certain words, or that were sent
at a certain time.

Motivation: Personalizable Information Management

Before embarking on a detailed discussion of the design of the Haystack
system, we attempt to motivate the design by elaborating on the prob-
lem we are trying to solve. We observe that current applications strait-
jacket users into managing information in ways that may not be natural
for them, and argue that good information-management tools must give
users more control over what kinds of information they store and how
they visualize and manage it.

Impersonal Applications
The Haystack project is motivated by the observation that different people
have distinct and often idiosyncratic ways of managing their information.
For example, I use a traditional subject classification for my books (with
many exceptions for books that are in heavy use). My wife arranges her
books chronologically by birth date of the author. A friend groups her
books by color. Each of these three organizations works well for its owner,
reflecting what he or she remembers about the relevant books, but would
fail for many other people.

This variability in physical organization is squeezed into conformity
in the management of digital information.1 Instead of our bookshelves,
current applications are one-size-fits-all: someone else has decided on the
right “organizing principles,” and we are stuck using them whether we
like them or not. The application’s choices may be “optimal” with respect
to some hypothetical average user, but always seem to miss certain attri-
butes a given individual would find useful. In a typical email program, we

ch03.indd 56ch03.indd 56 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

Haystack 57

can sort only by the application’s predefined fields such as subject, sender,
date, and perhaps importance, but not by more idiosyncratic features such
as sender’s age, “where I was when I read this,” number of recipients,
importance of sender, or “needs to be handled by such-and-such a date.”

Sometimes, the desired information is in fact recorded in the applica-
tion but no appropriate interface is offered to make use of it. For example,
although all modern email clients track the threading/reply-to structure
of email messages, Microsoft’s Outlook Express 6 does not permit a user
to display or sort according to the number of messages in a given thread.
So if what I remember about an email message is that it generated much
discussion, there is no easy way for me to exploit that information to find
the message. Mozilla Thunderbird does have this capability, because an
application developer decided it was worth incorporating. And although
the information is present to answer the question, neither tool lets me
display or sort messages according to how long it has been since I have
heard from the sender.

In other cases, the problem starts even earlier, when information a user
cares about cannot even be recorded in an application. Email programs do
not contain a “due by” field for email messages. Although MP3 music files
come with ID3 tags for recording various sorts of metadata, there is no
field or representation for a user to record the dance steps associated with
a given piece of music. And while photographs come with metadata fields,
none of them is designed to hold a pointer to the email message that was
used to send me (and tell me about) the photo. Neither Microsoft’s nor
Thunderbird’s address-book tools allow me to include a photograph of a
given contact. As an academic, I might even want address-book entries for
my colleagues to contain descriptions of, and links to, some of their papers
I have read. But there is no “publications” field in typical address books,
because the application developers did not think it worth including.

In many cases, one could try using one of the generic “note” or “com-
ment” fields available as a last resort, but this abandons all opportunity for
the application to use those fields in a meaningful way. Although I could
write down the filename of a photo of a given contact, I couldn’t see that
photo when looking at their address book entry—instead I would have
to manually seek out and open the named file. And even if I recorded my
colleagues’ publications in an address book “custom” field, I wouldn’t be
able to use the address book to select those colleagues who have published

ch03.indd 57ch03.indd 57 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

58 David R. Karger

in a given conference. If I record a “due by” date as text in the comment
field of an email message, I would likely not get the due-date result I
desire when I sort by that field, since such fields are generally sorted lexi-
cographically. To fix this problem I would have to invent and remember a
specific “backward” representation of dates (year-month-day, with careful
attention to always using two digits for date and month).

Unification
A common reason that an application does not record a given type of
information is that the information is considered a “different application’s
job”—a developer could argue that recording publications seems a job for
a bibliography tool, not an address book, or insist that answering an email
by a certain date should be handled by your to-do list or calendar instead
of your email program. After all this passing the buck, we may grant that
the information a user needs is stored in some application, but it is not
possible to gather it all into one place and use it together, or even to navi-
gate easily from one piece in one application to a different piece in another
application. If my calendar shows that I have to deal with a certain email,
I have to go find the message in my email program before I can deal
with it. Such data fragmentation can also lead users to record duplicate
information in multiple applications, which can then lead to inconsisten-
cies when the user changes one but not all copies of that information. If
a follow-up message arrives eliminating the need for a response, I might
forget to delete it from my to-do list (especially as it would involve more
work to get from the email message to the corresponding to-do item). Our
recent article on data unification (Karger and Jones 2006) discusses this
issue at great length.

Difficulties multiply with more applications. Many people make use
of an email-reading client, a music-management tool, a photo album, a
calendar, and an address book. The email client and address book may be
somewhat linked, but the other applications manage their own data inde-
pendently. Now consider the plight of an entertainment reporter follow-
ing the music industry. She exchanges emails with musicians, schedules
interviews with them, attends scheduled concerts where they play certain
songs, and writes reviews and interviews. It seems likely that such a user
would want to

ch03.indd 58ch03.indd 58 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

Haystack 59

associate emails about a certain interview with the interview article she
is writing;

link musicians to messages from them (as is demonstrated in the
“Person” object in the clipboard of figure 3.1), concerts they played,
songs they performed, and photographs they are in;

“caption” performance photographs of musicians with the song being
performed in the photo;

place songs or albums in a calendar according to release date; and so
on.

At present, while each item of interest is managed by some application,
none is aware of the other item types or applications. The applications’
internal models are not expressive enough to refer to the other item types
(except through English-language “comments”) and their user interfaces
do not display the linkages that interest the user, or bring together the
related objects into a single coherent representation. The system does not
know that the artist noted in the ID3 tags of a song is the same one men-
tioned in the address book. The best the reporter can hope for is to open
all the relevant applications for this data simultaneously, at which point
the information she actually cares about is lost in a clutter of other infor-
mation less relevant to their particular task. The reporter must struggle
to take applications targeted to certain tasks and “repurpose” them for
a new task. She would likely prefer an application targeted specifically at
her task.

In a study of users’ desktop environments, Ravasio, Guttormsen-Schär,
and Krueger (2004) observed that users are themselves aware of this issue:
“the systematic separation of files, emails and bookmarks was determined
by three users to be inconvenient for their work. From their points of
view, all their pieces of data formed one single body of information and
the existing separation only complicated procedures like data backup,
switching from old to new computers, and even searching for a specific
piece of information. They also noted that this separation led to unwanted
redundancy in the various storage locations.”

This fragmentation of related information across applications blocks
an important information-seeking strategy. In a recent study (Teevan et
al. 2004), we highlighted the important role played by orienteering in the

•

•

•

•

ch03.indd 59ch03.indd 59 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

60 David R. Karger

quest for information. Rather than giving a precise description of their
information need and expecting the computer to “teleport” them directly
to the relevant object, users often orienteer, starting somewhere “near” the
object in their information space, then navigating to the object through
a series of local steps. When related information is spread across mul-
tiple applications that are not “linked,” it becomes impossible for users to
follow natural orienteering paths.

New Data Types
Beyond adding information to existing types, users may also discover a
need for brand new types of information. Sometime this may be an enrich-
ment of an existing application. For example, calendar programs often let
one record the location of an event. But this record is merely a text string.
A user might want a richer representation that incorporates directions to
the location, a map of it, a list of nearby hotels, or a link to the site’s web
page if it exists. At other times, a user may create a new type from scratch.
Our music reporter may realize that she wants to record and retrieve
information about concerts—where they happened, who else attended,
who played, how good they were, how many people were arrested, and so
on. Where should she place this information?

Existing applications are even worse at incorporating new types of infor-
mation than they are at extending existing types. They offer no widgets
for displaying the new type, no operations for acting on it, and no slots to
attach it to other information objects in the application. Faced with this
situation, users often turn to a spreadsheet, creating a tabular record in
which each row is an “item” and each column corresponds to some attri-
bute of the new information. This “poor man’s database” does give some
ability to work with the information: users can sort on a column to find
all information with a given value of some attribute. But the presentation
is necessarily generic, without any of the task- or data-specific presenta-
tions, menus, and operations that applications offer to facilitate work in
specific domains.

Personalization
Application developers could easily solve each of the specific problems
mentioned in this section. An application developer could add a place for
a contact’s photo to the address book, or write an address book function

ch03.indd 60ch03.indd 60 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

Haystack 61

that queried the email database and listed “messages from this person,”
or make live links from a photograph to an email message. One might
even build a specialized data-management application for music reporters,
complete with a new “concert” data type.

But there are far more application users than application developers,
and each will have different needs for his or her application’s information
and presentation. Even if application developers could somehow keep up
with all these individual wishes, the resulting applications would be clut-
tered with data and presentations that most people do not care about.
Kaptelinin and Boardman (this volume) argue that efforts to serve all
users within a single application bloat the applications to the point that
they are no longer useful for their original intended task. And the set of
desired attributes is surely a moving target: no matter how many kinds of
information the developers fit into their application, there will be a user
who decides he wants one more.

One, and perhaps the only, way to surmount this problem is to give end
users themselves the ability to customize the data managed by their appli-
cations and the way it is presented. Such customization is already offered
to some extent: most email programs, music managers, and file/directory
explorers give users the ability to choose which columns (attributes) are
displayed in the tabular view of their displayed collections. But this cus-
tomization is limited mainly to tabular/aggregate views; the user has less
control over the presentation of single information objects. When it comes
to adding and then working with new data types and attributes, much less
support is offered—often, the ubiquitous and generic textual “comment”
field is the only place to hold a user’s new information type.

Lessons from the Web
The World Wide Web would appear to address many of the problems we
have outlined with today’s applications. On a web page, users can record
any information they want about any type of object. To add a new infor-
mation attribute, users just type it into the existing web pages—no appli-
cations need to change. They can link to other web pages, regardless of the
type of object that the other web page describes—there are no “partitions
by application.” The web is thus ideally suited for orienteering: a search
engine will generally take one to the right neighborhood, from which a
series of helpful links can be followed to the desired information.

ch03.indd 61ch03.indd 61 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

62 David R. Karger

Should users then abandon applications and move all their data to the
web? Hypothetically, a user could create a separate web page for each
email message, each directory, each music file, each calendar appointment,
each individual in their address book, and so on. Editing these pages,
the user could indicate arbitrary relationships between their information
objects. Feeding these web pages to a tool like Google would give users
powerful search capabilities; combining them with the orienteering oppor-
tunities offered by the user-created links would surely enhance users’ abil-
ity to locate information.

Of course, such an approach could never work: it requires far too much
effort on the part of the user. It is not clear that the payoff in better retriev-
al is worth the investment of organizational effort.2 And the investment
would be huge, given the current state of web content creation tools. Far
more people consume web content than create it; they treat it as a read-
only resource. And “read-only” should be taken literally—users generally
inspect web pages by eye in order to extract their information, rather
than feeding them to any sophisticated automated tools. Conversely, when
people work with their own information, they manipulate and modify it
in various ways. Such manipulation and modification needs to be easy,
so each application should come with its own specialized interfaces and
operations for manipulating the data it manages. We need to let users
manage their information without forcing them to become website devel-
opers.

Typing and Structure
Applications offer structured data models involving carefully defined types
and relationships. These models make it easier for users to manipulate,
navigate, and display information in natural ways than on the web. Many
of the information objects people work with, attributes of them, and rela-
tionships between them have meaningful types. People constitute a type of
object that tends to have attributes like name, address, and phone number.
Mail messages constitute a type of object that typically has attributes like
a sender and a receiver, both of which are often instances of the person
type. And while the sender and receiver may both be people, these two
attributes represent distinct roles with respect to the message that should
not be confused.

ch03.indd 62ch03.indd 62 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

Haystack 63

On the web, it is typically left to the reader to adduce the types of
objects and relationships. The type of an object being viewed may be
implied by the title of the object, or by its exhibited attributes, or its place-
ment in context. The types of the attributes are often indicated in English
in the text preceding or anchoring links—thus, for example, the Internet
Movie Database page for a given movie has headers like “Directed by,”
“Writing credits,” and “Genre,” introducing links to objects that exhibit
those relationships to the given movie.

The drawback of such visual or English-language cues is that they can
only be understood by a human. While this may be fine for basic ori-
enteering, it prevents our applications from exploiting the implicit types
to improve the presentation and retrieval of information. Depending on
context, a user may not want to see all information about an object. To
support email browsing, for example, mail tools generally offer a con-
densed view of (a list of) messages showing only sender, date, and subject.
Such information is painful to extract from an arbitrarily human-format-
ted web page, but easily accessible from a structured data model. In this
sense, web pages are much like the flexible comment fields available in
many applications—able to record everything, but not in a way that can
be used effectively by the supporting applications.

Storing information in structured form also enhances search capabilities.
Individual applications typically exploit structure this way—for example,
a music-playing application will let users arrange their music by composer,
album, or performer. More generally, Yee et al. (2003) have argued that
faceted metadata browsing, in which a user can choose to organize the
corpus according to the value of chosen attributes, is an important infor-
mation-retrieval tool.

While applications have always imposed such structure on their data,
the web is heading in that direction as well. To support navigation and
search, websites like the IMD (Internet Movie Database) store their infor-
mation in structured form and then render it into human-readable form
through the use of templates. Structured storage means that sites can offer
“site search” tools that exploit the available metadata in richer ways than
pure full-text search. For example, Epicurious.com lets users search and
browse on various classes of recipe ingredient or cooking method—a kind
of faceted metadata search (Yee et al. 2003).

ch03.indd 63ch03.indd 63 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

64 David R. Karger

But this move by websites to be more like data-specialized applications
means that they run into some of the same problems that face those appli-
cations. Users often find that the attributes they consider important are
not exposed for navigation, or not available at all. When the data users
are in spans of multiple websites, no one site is able to offer them an
aggregated view of the information, or support navigation that moves
between the sites.

What we need, then, is an approach that fuses the information-flex-
ibility of the web with the rich interactions supported by applications’
structured data models.

User Interface Consequences
We have laid out our motivation for letting end users make their own
choices about their information models—what information objects, attri-
butes, and linkages matter to them. Accepting such a position imposes
interesting challenges on the user interface.

Perhaps the simplest task of a user interface is to display information.
Using traditional application data models this is relatively straightforward.
The developer considers, for each data type and display context, which
features of that object need to be presented to the user. By considering the
expected type of each feature, the developer determines some meaningful
way to display each feature (such as a string, a number, a color, or an icon)
and some effective aggregation of all the individual feature presentations.

But in our personalizable data model, much less can be assumed about
the data that will be displayed. The user may start recording or connect-
ing to novel information types, for which no presentation mechanism was
developed. Even for expected information types, the user may have devel-
oped new relations, or violated the schemas of old relations, so that the
developers’ assumptions of what needs to be displayed become invalid.

It follows that a user interface for our flexible data model will need to
be equally flexible, adapting its presentations to the actual, rather than
planned, content of its data model.

The web browser may seem like a promising start in this direction—it
makes no assumptions about the structure of the information it is present-
ing, but simply renders formatted HTML. But where does that HTML
come from? One possibility is that it is produced by hand—but above, we
have argued that it is implausible to record all user information in HTML.

ch03.indd 64ch03.indd 64 12/4/2006 1:19:39 PM12/4/2006 1:19:39 PM

Haystack 65

Another possibility is to produce the HTML through the application of
some templating engine to the underlying data model, as is done in many
data-oriented websites. But this just pushes the problem down a level: cur-
rent templates require the same strong assumptions about the structure of
the data that limit applications.

Equally problematic is the “read-only” focus of web browsers. We need
a user interface that also lets users manipulate their information with the
ease they expect of typical applications.

Summary
In this section, we have outlined our motivation for a semistructured data
model that can adapt to the needs of any individual user, and for a user
interface that can adapt to fit the data model, incorporating new infor-
mation attributes, new linkages between information, and new types of
information. In the remainder of this chapter, we describe our attempts to
meet these goals in the Haystack system. After addressing the core data-
modeling and user-interface issues, we discuss some of the opportunities
such a system offers.

Semantic Networks—The Haystack Data Model

Above, we have discussed the importance of letting users work with arbi-
trary information objects, and letting them record and use arbitrary new
properties of those objects. Before we can think about an interface to sup-
port these activities, we need to develop a data model flexible enough to
hold the information.

An effective generic representation supporting flexible information is
a semantic network: a graph in which the nodes denote the information
objects to be managed and the edges are labeled with property names
to represent the relations we would like to record. An edge can directly
represent only a binary relation, not one between more than two enti-
ties. However, the majority of relations we have encountered are binary,
and higher-arity relationships can generally be represented by reifying the
relationship (creating a new information object to represent a particular
relationship tuple, and using binary connections from the tuple to the
entities that participate in the relationship), so this binary restriction has
not been a burden.

ch03.indd 65ch03.indd 65 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

66 David R. Karger

In addition to what we think of as relations, semantic network edges
can also represent what we think of as “attributes,” “properties,” or “fea-
tures” of an object, by creating a link, labeled with the attribute name,
between the object and the value of the given attribute. This highlights the
fact that from a formal perspective these concepts are equivalent to rela-
tions. While the user may maintain an intuitive differentiation (e.g., that
properties are intrinsic to an object while relations connect the object to
other distinct objects), we will avoid drawing this distinction in the data
model, and instead carry it into the user interface that aims to present the
data in a way that matches the user’s intuition.

Resource Description Framework (RDF)
While the original version of Haystack (Adar, Karger, and Stein 1999)
implemented its own semantic network representation, we have since
adopted the resource description framework (RDF) propounded as a
standard by the World Wide Web Consortium (Manola and Miller 2003).
RDF meets our representational goals. It uses uniform resource identi-
fiers (URIs) to refer to arbitrary information objects—these are much like
URLs, but need not refer to information stored on a particular web server
(and certainly need not resolve over HTTP). In RDF, information objects
are referred to as resources. Relationships are referred to as properties.
And specific assertions that a given property holds between two resources
are referred to as statements. The two resources linked by the statement
are referred to as the subject and object while the chosen property is called
the predicate. Properties are also named by URIs, which allows us to make
statements about the property—such as a human-readable name for it, or
the assertion that each resource should have only one value for that prop-
erty. Statements too can be reified and given URIs, to allow one to record,
for example, who asserted a given statement.

RDF also supports a type system with inheritance. A Type property is
reserved to specify that a given resource is of a given type. Some resourc-
es, of type Class, represent types; these are the typical objects of a Type
statement. There is a (most generic) class called Object; all resources are
instances of this class. Properties are asserted to be of type Property.

RDF lets users define a collection of types and properties appropriate
to a given usage. These properties can all be defined in a single (RDF)
file; if that RDF file is given a URL, then individual classes and properties

ch03.indd 66ch03.indd 66 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

Haystack 67

in it can be referred to using a label syntax (http://url/\#label). The root
URL is referred to as a namespace for the defined classes and properties.
For example, the Dublin Core defines types such as dc:document and dc:
person and properties such as dc:author and dc:title (here dc: is shorthand
for the Dublin Core namespace, while each suffix labels a specific class or
property in the namespace).

Building atop RDF, the RDF schema language (RDFS) and web ontolo-
gy language (OWL) (McGuinness and van Harmelen 2003) can be used to
define schemata for the classes and properties. RDFS and OWL are collec-
tions of properties and classes (defined in the RDFS and OWL namespac-
es) that can be used to assert typical schematic rules. For example, RDFS
and OWL can be used to assert that the subject of a dc:author statement
must be a dc:document and the object a dc:entity, or that a dc:document
has at most one dc:date. We do not enforce schemata in Haystack; none-
theless, such schemata can be used to establish appropriate views of the
information or to guide (but not force) users in filling in values.

Why RDF?
One might question our choice of RDF as opposed to either XML or a
more traditional table-per-property relational database representation. In
many ways, this question is unimportant. All three representations have
equal expressive power. It is true that unlike traditional databases, RDF
can be used without any schemata. However, RDF and OWL can be used
to impose schemata on an RDF model if we so choose. RDF has a stan-
dard representation in XML (RDF-XML) and can also be stored in a
traditional database (with one table of triples, or with one binary table per
named property). Conversely, XML or database tuples can be represented
in RDF. Of course, the choice of representation might have tremendous
consequences for the performance of the system as it answers a variety of
queries. However, the end user will likely neither know nor care which
representation lies under the covers of the user interface.

Nonetheless, a few features of RDF led us to select it. The lack of
(enforced) schemata, discussed below, is an appealing feature. The use of
URIs (uniform resource identifiers) for all information objects provides
a uniform location-independent naming scheme. Also appealing is the
fact that RDF places all information objects on a level playing field: each
is named by a URI and can become the subject or object of arbitrary

ch03.indd 67ch03.indd 67 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

68 David R. Karger

 assertions. This contrasts (positively) with XML’s hierarchical representa-
tion of information objects, in which the root object is “special” and relat-
ed objects are nested deep inside a particular root object. RDF is more in
keeping with our belief that the information designer cannot predict which
information objects will be of greatest interest to a given user. Shades
of this same argument appear in Codd’s (1970) seminal paper, where he
argues that a hierarchical representation of information that is not funda-
mentally hierarchical introduces an undesirable data dependence that can
trip up database users. A similar argument can be made regarding a rela-
tional database. Defining a database table with many columns suggests
that those fields should be considered in aggregate, but various users may
be interested only in some of those fields. We could offer to project onto a
subset of columns, but RDF surrenders from the start to the idea that each
individual column may be interesting in its own right and deserve its own
table, thereby avoiding the whole question of how to project.

Yet another motivation for our adoption of RDF is its structural simi-
larity to the World Wide Web. The power of the web comes from its links,
which let users navigate from page to related page. Similarly, the semantic
net highlights the linkage of objects rather than highlighting the relations
as a whole. This is important for two reasons. First, it captures a notion of
“locality.” When a user is working with a particular information object, it
is quite common for them to want to visit “adjacent,” related information
objects in the semantic network. Second, linkage is an appropriate empha-
sis given the important role orienteering plays in individuals’ information-
seeking behavior (Teevan et al. 2004). Rather than carefully formulating
a query that precisely defines the desired information target, users often
prefer to start from a familiar location, or a vague search, and “home in”
on the desired information through a series of associative steps. In RDF,
the statements connecting subject and object form natural associative links
along which a user can orienteer from subject to object. The database per-
spective might be more appropriate if a user wished to formulate a com-
plex query, reflecting operations such as “join” and “project” that can be
expressed concisely in a database language such as SQL. However, typical
users are not capable of working with such database query languages, so
exposing these operations will be of limited value.

The various attributes displayed for each item in figure 3.1 are often
just other information objects related by some predicates to the displayed

ch03.indd 68ch03.indd 68 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

Haystack 69

object. Haystack’s user interface lets the user click on any of those infor-
mation objects in order to browse to them, providing support for orien-
teering. As will become clear when we discuss the user interface, RDF’s
single notion of “predicate” is made available to the end user in a number
of ways—sometimes as a relationship to another object, and other times
as an attribute of the current object. “Properties” or “attributes” of a
given object and “relationships” between pairs of objects are all repre-
sented by predicates in the data model.

A Semistructured Model
Beyond named relationships, structured data models often have schemata
expressing knowledge of how different information objects and types will
be related. For example, we might declare that the composer of a sym-
phony will invariably be a person, or that any individual can be married to
at most one other individual at a given time. Such schematic declarations
are very useful. They can protect the user from errors in recording infor-
mation, catching, for example, when a user swaps the composer and title
while entering information about a new symphony. They can facilitate the
presentation of information, letting the user deduce that only one line will
be needed to present the spouse in an address book entry.

But these protections are at the same time restrictions imposed by a
communal sense that might go against the desires of an individual. Con-
sider someone with an interest in computer music: her attempt to enter
a particular computer program as the composer of a symphony will be
blocked if the above schemata are enforced. Similarly, a researcher of
polygamous societies might find himself unable to view critical informa-
tion in his records about people and their spouses.

Thus, although schemata may be of great advisory value, we argue
against enforcing them. There must always be a way for the user either to
modify the schema or violate it if, given fair warning, she concludes that is
the best way to record relevant information. This perspective is a natural
extension of the idea of letting the user record whatever information she
considers important. If we are faced with the choice of violating a schema
or refusing to let a user record information she cares about, we choose the
former. Whereas developers may consider it unlikely for the sender of an
email message to be an animal, and thus may schematize the sender as a
person, a user may decide otherwise. Although documents typically have

ch03.indd 69ch03.indd 69 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

70 David R. Karger

authors, a user might not care to record them. Semantic nets depend less
on schemata than databases do: each named link can exist or not indepen-
dent of any global schema.

A representation like this, in which it is possible to represent a database-
type structure but the structure is not enforced, is known as a semistruc-
tured data model. While we have argued that a semistructured model is
essential to supporting a user’s recording of information, it poses some
problems when it comes time to actually present or manipulate that
information. But these are problems at the user interface level, which
we should address there, instead of trying to solve them by restricting
the data model. As we shall see there, schemata can play an important
role in semistructured information management; the difference is that the
schemata become optional and advisory instead of being enforced. Thus,
semistructured information is best seen as “schema optional” rather than
“schema free.”

Importing Data
Although RDF is appealing, the majority of data is presently not in that
form. Haystack generates RDF data by applying a collection of extrac-
tors to traditionally formatted data. At present we can incorporate direc-
tory hierarchies, documents in various formats, music and ID3 tags,
email (through an IMAP or POP3 interface), Bibtex files, LDAP data,
photographs, RSS feeds, and instant messages. Each is incorporated by an
appropriate parser that is triggered when information of the given type is
absorbed into the system.

Another outstanding source of semistructured data is the web itself.
Many websites use templating engines to produce HTML representations
of information stored in back-end databases. We have studied machine-
learning techniques to automatically extract such information from the
web pages back into structured form in RDF (Hogue 2004; Hogue and
Karger 2005). In our approach, the user “demonstrates” the extraction
process on a single item by highlighting it and labeling its parts; the system
then attempts to induce the (tree-shaped) structure of HTML tags and
data elements that represent the object on the page. If successful, it can
recognize that structure on future pages and automatically perform the
same extraction. Of course, Haystack does not care about where its RDF

ch03.indd 70ch03.indd 70 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

Haystack 71

comes from, so other extraction methods (Muslea, Minton, and Knoblock
1999) can easily be incorporated.

Viewing Information

Given the representational power of the data model, the next question
is how it should be presented to users so that they can effectively view
and manipulate the stored information. Simply modifying traditional
applications to run atop the unified data model would offer some lim-
ited benefit—for example, by reducing the amount of information dupli-
cated over multiple applications, and therefore reducing the amount of
inconsistency among those duplicates. But it would leave users as con-
strained as before by the developers’ sense of what and how informa-
tion should be presented in various contexts. Instead, we must make it
simple for the user interface to evolve according to the users’ preferences
and the data it is called upon to display. We achieve this goal through
a recursive rendering architecture, in which essentially each object is
asked to render itself and recursively makes the same request of other
objects to which it is related (Huynh, Karger, and Quan 2002; Quan and
Karger 2003).

Views
Most elementary information-management applications present a hierar-
chical display of information on the screen. To display a particular object
in a certain region of the screen, they subdivide that object’s region into
(typically rectangular) subregions, and use those subregions to display
various attributes of the given object and to display other objects to which
the object is related. Thus, a typical email application will present an email
message by creating a region showing the sender, another region showing
the subject, another region showing the body, and so on. The message
might itself be in a subregion as part of a larger display of, say, a collection
of messages, using distinct columns to present each message’s (relationship
to a) sender, subject, and date. The calendar view displays in each day a
list of appointments, and the address book has a standard format for dis-
playing an individual by listing properties such as name, address, phone
number, and notes in some nicely formatted layout. The address itself may

ch03.indd 71ch03.indd 71 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

72 David R. Karger

be a complex object with different subproperties such as street, city, and
country that need to be laid out.

When applications are targeted at specific domains, they can assume a
great deal about what is being displayed in their subregions. The sender
of an email address will be a person; he will have a name and address that
can be shown in the sender region of the display. An address-book entry
will describe a person who has an address. In Haystack we do not wish to
make such assumptions: our inbox contains RSS stories, which perhaps
do not have the same sort of sender as an email message. But we can
still apply the recursive display principle. We can construct a view of any
object X by (i) deciding which properties of X and relationships to other
objects need to be shown, (ii) requesting recursive rendering of views of
the objects required by X, and (iii) laying out those recursively rendered
views in a way that indicates X’s relation to them. As a concrete example,
when rendering a mail message we might consider it important to render
the sender; we do so by asking recursively for a view of the sender and
then laying out that view of the sender somewhere in the view of the mail
message. The recursive call, in rendering the sender, may recursively ask
for a rendering of the sender’s address for incorporation in the view of the
sender.

The key benefit of this recursive approach is that the root view only
needs to know about the root object it is responsible for displaying, and
not about any of the related objects that end up inside that display. Incor-
porating RSS feeds into the inbox did not require a wholesale rewrite of a
mail application; it simply required the definition of a view for individual
RSS messages. Once that view was defined, it was invoked at need by the
collection view showing the inbox.

View Prescriptions
Formally, views are defined by view prescriptions that are themselves
data in the model. A view prescription is a collection of RDF statements
describing how a display region should be divided up and which constants
(e.g., labels) and related objects should be shown in each subdivision. It
also declares that certain standard graphical widgets such as scrollbars
and text boxes should be wrapped around or embedded in the display.

When a view prescription is invoked, it will require some context in
order to render properly. Most obviously, we need to know how much

ch03.indd 72ch03.indd 72 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

Haystack 73

space the rendered object should occupy. It is often useful to pass another
state, such as current colors and font sizes, down from the parent view
in order to get a consistent presentation. This is done by dynamic scop-
ing—the view has access to an environment of variables set by the ances-
tral view prescriptions in the recursive rendering process. It can examine
those variables, as well as modify them for its children.

The key task of Haystack’s interface layer is to decide which view pre-
scription should be used to render an information object. At present, we
take a very simplistic approach: we choose based on the type of object
being displayed and the size of the area in which it will be shown. Each
view prescription specifies (with more RDF statements) the types and
sizes for which it is appropriate; when a rendering request is delegated,
Haystack uses an RDF query to determine an appropriate prescription to
apply. Type and size are the most obvious attributes affecting the choice
of prescription; an issue of great interest that requires further research is
to expand the vocabulary for discussing which views are appropriate in
which contexts.

When matching against type, Haystack uses a type-hierarchy on infor-
mation objects and selects a view appropriate to the most specific possible
type. The type hierarchy lets us define relatively general-purpose views,
increasing the consistency of the user interface and reducing the number of
distinct prescriptions needed. For example, RSS postings, email messages,
and instant messages are all taken to be subtypes of a general “message”
type for which we can expect a sender, subject, and body (Quan, Bakshi,
and Karger 2003). Thus, a single view prescription applies to all three
types. To ensure that all information objects can be displayed in some
way, Haystack includes “last resort” views that are always applicable. For
example, the “small” last resort view simply displays the title or, if unavail-
able, the URI of the information object, while the “large” view displays a
tabular list of all the object’s properties and values (rendered recursively).

One might argue that our view architecture is remarkably impoverished,
offering only rectangular hierarchical decompositions and delegation
based on object type and size. While we agree that this is an impoverished
architecture, we assert that it captures much of the presentational power
of current (equally impoverished) information-management application
displays, and hold up figure 3.1, which can pass as a typical mail client,
as evidence. While matching the presentational capabilities of existing

ch03.indd 73ch03.indd 73 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

74 David R. Karger

 applications, our delegation architecture facilitates the incorporation of
new data types and the cross-domain linkage of information.

One key improvement relative to existing applications is that views can
be invoked anywhere. The right panel of figure 3.1 shows a “clipboard” of
sorts, into which any information object can be dragged for display. Thus
information about the individual “Hari Balakrishnan” can be inspected
without launching an entire address book application; similarly, the email
about “Google Scholars” can remain in view even if we choose to navigate
away from our inbox and stop “doing email.” This idea of getting at data
without the enclosing application connects with the WinCuts technique
propounded by Tan, Meyers, and Czerwinski (2004).

Our view architecture also makes it straightforward to offer multiple
views of the same information object, allowing the user to choose an
appropriate view based on their task. The center pane of figure 3.1 offers
a “change view” drop-down menu. From this menu, the user can select
any view annotated as appropriate for the object being displayed.

It is also important to recognize that at the base of the view recur-
sion, the presentation of complex data objects can be delegated to special-
purpose widgets. Haystack’s view prescriptions would be inadequate for
describing the presentation of a scatter plot and the interactive manipu-
lations a user might want to invoke while viewing it, but a prescription
can certainly specify that some “scatter plot widget” is the proper view
to invoke when a scatter plot needs to be displayed. This approach could
even allow the embedding of entire applications within Haystack, so long
as they can be told what data object to focus on.

Lenses
While it may suffice to display a list of attributes of a given object, the
attributes often group naturally to characterize certain “aspects” of the
information being presented. Such a grouping in Haystack is effected by
defining a lens. Lenses add yet another layer to the presentation of infor-
mation. Like views, lenses are described in the data model as being appro-
priate to a certain type of object. The person and mail message in the right
pane of figure 3.1 are being displayed using a lens view. The lens view is
applicable to all object types. It simply identifies all the applicable lenses
for the given type, and displays each of them. Each lens has a title describ-
ing the aspect it is showing, such as “messages from this person.”

ch03.indd 74ch03.indd 74 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

Haystack 75

Unlike recursively rendered views, these lenses are “reified” in that the
user can visually address each one, choosing to expand or collapse it (with
the small plus/minus sign adjacent to the lens name). The choice is state-
ful: the user’s choice of which lenses to show is remembered each time the
lens view is applied for that type of information object. This provides a
certain level of view customization. Furthermore, many of our lenses are
simple “property set lenses”—they are described by a list of which prop-
erties of the object they will show, and these properties are simply shown
in a list. Users can easily modify these lenses by adding properties to or
removing them from the list. Thus, if a user chooses to define a brand new
property in his data model, it is straightforward for him to adapt the user
interface to present that property.

Lenses can also be context sensitive. For example, some lenses might be
present only when a given task is being performed. The “recommended
categories” lens shown for the Google Scholars email message is pres-
ent only when the user is performing the “organizing information” task.
A “help” lens could aggregate useful information about any object, but
should be visible only when the user is actually seeking help.

Users can further customize their views of information by manipulating
lenses. For example, the fourth “recommended categories” column in the
view of the inbox was created by dragging the “recommended categories”
lens from the Google Scholars view onto the header of the inbox collec-
tion. This would be a useful action if the user wanted to quickly skim and
organize his email based on the headers, without inspecting the details
of each. This tabular collection view lays out one item in each row, and
applies a lens in each column to determine what information to show in
that column about the object in a given row. Any lens can be placed in
a column of this collection view, allowing the user to construct a kind of
“information spreadsheet” showing whichever aspects of the objects in
the collection the user cares to observe.

Collections
Collections are one of the most common data types people work with.
Nearly every application offers tools for managing collections of its primi-
tive elements: directory/folder managers for files, bookmark managers for
web browsers, mail folders for email, and so on. Generally, these col-
lections are limited to the type of object the given application “owns.”

ch03.indd 75ch03.indd 75 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

76 David R. Karger

Under Haystack’s unified data model, it becomes possible to aggregate
arbitrary collections of information germane to a given task. Perhaps the
closest analogue in existing desktop systems is the file manager. Direc-
tories are able to hold files of arbitrary types, meaning that the user can
group files by task instead of by file type. The limitation, of course, is that
such management can be applied only at the file level. Thus, items whose
representation is wrapped up inside an application’s data file, such as indi-
vidual contacts in an address book or individual mail message in a mail
folder, cannot be organized into heterogeneous collections. Haystack, by
providing a uniform naming scheme for all objects of interest, extends the
benefits of heterogeneous collections to arbitrary objects. We have already
noted how, in figure 3.1, non-email objects such as RSS stories and people
can be placed seamlessly into the inbox.

The availability of multiple views is particularly important for collec-
tions, which are perhaps the central nonprimitive data type in Haystack.
Since collections are used for so many different purposes, many views
exist for them. Figure 3.1 shows the standard row-layout for a collection,
but also available are a calendar view (in which each item of the collec-
tion is displayed according to its date—this view is applied to the inbox
in figure 3.2), a graph view (in which objects are shown as small tiles, and
arrows linking the tiles are used to indicate a specific chosen relationships
between them), and the “last-resort” view showing all properties of the
collection and their values. Each view may be appropriate at a different
time. The standard view is effective for traditional email reading. The
graphical view can be used to examine the threading structure of a lengthy
conversation. And the calendar view could be applied by the user to rear-
range email according to its due date instead of its arrival time.

Yet another collection view is the menu. When a collection is playing the
role of a menu, a left click drops down a “menu view” of the collection,
which allows quick selection of a member of the collection. Implement-
ing menus this way gives users the power to customize their interfaces: by
adding to and removing from the collection of operations in a menu, users
modify the menu. Users can similarly customize the pinned-in-place task
menus in the left pane (such as the email task menu displayed in figure
3.1) in order to make new task-specific operations and items available.

Traditionally, drop-down menus are used to present collections of
operations. While Haystack certainly does place operations in menus (see

ch03.indd 76ch03.indd 76 12/4/2006 1:19:40 PM12/4/2006 1:19:40 PM

Haystack 77

below), any object can be in the collections presented this way. Thus, the
notion of lightweight access and putting a collection away is separated
from the issue of access to operations. For example, as shown in figure
3.2, the results of a search in the search box at the top of the system are
presented as a drop-down menu (but can also be navigated to for closer
inspection and manipulation).

A particularly noteworthy collection view is the “check-box view”
exhibited in the bottom right of the display. This forms a somewhat
inverted view of collections, in that it shows which of the collections
from a given category set the Google Scholars email is in. Checking and
unchecking a box will add or remove the item from the given collection.
Of course, the collection itself is live—items can be placed in the collec-
tion by dragging them onto the collection name, and the collection can
be browsed to by a left click. But in a past study (Quan, Bakshi, and
Karger 2003), we demonstrated that presenting the collections to users as
checkable “categories” made a big difference in the way they were used.
Many email users are reluctant to categorize email away into folders, fear-
ing that any email so categorized will be lost and forgotten from their
inboxes. Many mail tools allow a user to copy an email message into a
folder and leave a copy behind in the inbox, but apparently users find this
too heavyweight an activity. In particular, once two copies are made, the
user may have trouble keeping them in sync—an annotation on one copy
will not appear on the other. Checkboxes, on the other hand, feel like a
way of annotating the message, rather than a putting away, and therefore
encourage multiple categorization. In our study, users given the option to
categorize with checkboxes made use of it, and found that it improved
their ability to retrieve the information later. In the underlying data model,
of course, the checkboxes represent collections like all others that can be
browsed to (indeed, the inbox itself is one of the checkable categories).

Creating New Views
We continue to explore ways to let users customize their information pre-
sentation. We have created a “view builder” tool that lets users design
new views for given information types (Bakshi 2004). The users rely on
menus and dragging to specify a particular layout of screen real estate,
and specify which properties of the viewed object should be displayed
in each region and what kind of view should be used to display them.

ch03.indd 77ch03.indd 77 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

78 David R. Karger

The representation of view prescriptions as data, rather than as code that
is invoked with arbitrary effects, makes this kind of view definition fea-
sible—it involves the simple manipulation of the view data. This work is
still in its early stages; while the system has the view-construction power
we want, we continue to seek the most intuitive interfaces offering that
power to users. The current scheme requires explicit reference to prop-
erties, types, and views, which may be beyond the capabilities of many
users. Ultimately, we aim for users to edit the views in place, manipulat-
ing the presentation of the information by dragging appropriate view ele-
ments from place to place. Such design “by example” is likely to be within
the capabilities of more users.

Even with ideal tools, many users will likely be too lazy to design new
views. However, the description of views as data means that, like other
data, views can be sought out from elsewhere and incorporated into the
system. We imagine various power users placing view prescriptions in
RDF on websites where other users can find and incorporate them, much
the way individuals currently define “skins” for applications such as MP3
players.

In the longer term, we hope to explore application of machine learning
to let Haystack create and modify views automatically. By observing the
way a user examines and manipulates information, the system may be
able to hypothesize which attributes are actually important to a user in a
given context, and construct views showing only those attributes.

At a higher level, the same view-construction framework can be used
to design entire workspaces—collections of information objects laid out
and presented in a specific way, to support the performance of a particular
task. We discuss this issue in the section entitled “Workspaces.”

Manipulation

Besides viewing information, users need to be able to manipulate it. Most
of Haystack’s views offer on-the-spot editing of the information they pres-
ent, as a way to change specific statements about an object. More gener-
ally, Haystack offers a general framework for defining operations that can
be applied to modify information objects in arbitrary ways. Most opera-
tions are invoked by context menus that can be accessed by right clicking

ch03.indd 78ch03.indd 78 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

Haystack 79

on objects. Particularly common operations are supported by a natural
drag-and-drop metaphor.

Operations
The basic manipulation primitive in Haystack is the operation. Opera-
tions are arbitrary functions that have been reified and exposed to the
user. Each function takes some number of arguments. When the operation
is invoked, the system goes about collecting its arguments. If the opera-
tion takes only one argument and the operation is invoked in a context
menu, the argument is presumed to be the object being clicked. If more
than one argument is needed, a dialogue box is opened in the right pane
to collect the other arguments. Unlike in many traditional applications,
this dialogue box is modeless. It does not force the user to finish filling
it out before turning to other tasks. In particular, the user can use all of
Haystack’s navigation tools to seek and find the arguments he wishes to
give to the operation (by dragging and dropping them onto the dialogue
box) before invoking it.

Operations are objects that can be manipulated like any other objects in
Haystack. In particular, users can drag operations into (menu) collections
in order to make them accessible from wherever the user wishes.

Invoking Operations
Context menus provide a standard way to access all the operations ger-
mane to a given object. Statements in the data model declare which opera-
tions are applicable to which types of objects; a right click leads to a
database query that creates the collection of operations (and other items)
that apply to the clicked object.

Drag and drop provides a way for a user to associate two information
objects by dragging one onto the other. Dragging onto a collection has the
obvious semantics of placing the object in the collection. Dragging onto a
particular property displayed in a lens has the effect of setting the dragged
object as a value for that property with respect to the object the lens is
showing. Dragging into a dialogue box argument assigns the dragged item
as an argument to the operation being invoked. More generally, a view
can specify the operation that should be invoked when a specific type of
object is dragged into the view.

ch03.indd 79ch03.indd 79 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

80 David R. Karger

Customization
Like other data, operations can be customized by the user. In particu-
lar, the user can fill in some of the invoked operation’s arguments, then
“curry” the result, saving it as a new, more specialized operation (Quan,
Huynh, Karger, and Miller 2003). For example, a user may take the stan-
dard “email an object” operation, fill in his boss’s email address as the
destination, and then curry it into a “mail this to my boss” operation.
Since the curried operation takes only one argument (the object to send),
it can be invoked in a right-click context menu with no need for any dia-
logue box. Once created, the new operation can be given a name and then
dragged into various collections of commands (menus) so that it can be
accessed when needed.

We are working to offer users more powerful operation customiza-
tions. In addition to currying operations, we would like to let users define
new operations by composing existing ones—passing the result of one
operation as an argument to the next. We are also exploring techniques
like those we use to extract information from web pages (see the section
“Importing Data”) that let a user encapsulate web operations (accessed
through web forms) as Haystack operations, which can then by accessed
(and customized) through Haystack’s interface without visiting the web-
site.

Like views, operations offer an opportunity for arbitrary, fine-grained
extensions of Haystack. Operations are defined in RDF, and so can be
created and offered up by power users for download by any individuals
who find them useful. Some operations may simply be carefully curried
operations; others may include newly crafted database queries, or even
arbitrary code.

Example
Figure 3.2 shows what happens after a user invokes the “send this item”
operation on a particular object. A dialogue box in the right pane gathers
the necessary arguments, including the object to send (already filled in)
and the person to whom it should be sent. To fill in that person, we show
how the user might drop down the email-specific history in the left pane,
listing items recently used while handling email. Since the desired recipi-
ent is not present, the user can perform a search in the search box in the
top navigation bar. The (single) result matching this search appears in a

ch03.indd 80ch03.indd 80 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

Haystack 81

drop-down menu. From there it can be dragged and dropped onto the dia-
logue box in order to indicate that it is the intended recipient. If the user
has cause to believe that he will need to send this particular item to other
individuals, he can drop a context menu from the dialogue box (shown)
and select “save this as an operation” to create a new operation for which
the item to send is prespecified, and only the intended recipient needs to
be filled in. The resulting operation, which takes only a single argument
(the intended recipient), will become available in the context menu that
drops down when right-clicking any person. A complementary operation,
in which the recipient is prespecified but the item to send is not, shows up
as “Send to Jaime” in the context menu of figure 3.1.

Tasks

Another concept we consider it crucial to model in Haystack is that of
tasks. Without attempting a formal definition, we recognize that many
people spend time engaged in what are commonly called tasks: dealing
with their email, planning their day, writing a paper, surfing the web,
shopping for an item, and so on. For each of these tasks, there is informa-
tion the user will likely need to work with (the inbox for email, the calen-
dar for day planning, the paper being written, and so on) and a collection
of operations the user is likely to invoke while doing the task (sending a
reply to an email message, scheduling an appointment, or spell-checking
a document). Nowadays, it seems that people are often doing more than
one task at a time; however, at most a few are likely to be kept simultane-
ously in mind.

The Task Window
In Haystack, we are exploring two approaches to supporting tasks. The
first is the task pane shown on the left of the figures. The task pane can
display a collection of objects and operations useful for a given task. For
example, in figure 3.1 we see an “E-mail” task window containing objects
(such as the inbox) and operations (such as composing a message) relevant
to the email task. The user can navigate to task-relevant objects, or invoke
task-relevant operations, by clicking on them in the task window. The task
window simply presents a collection, which can be manipulated like any
collection. In particular, if the user decides that other objects or operations

ch03.indd 81ch03.indd 81 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

82 David R. Karger

are frequently useful for the task, she can drag those items into the task-
collection so that they will be accessible in the future. Of course, a user
can also create brand new tasks and populate them with relevant items.

Also visible in the task windows is a task-specific history collection,
containing the items accessed in the recent past while the user was per-
forming this task. Unlike a generic history such as might be found in a
web browser, the task-specific history does not become cluttered with
irrelevant items visited while the user is performing other unrelated tasks.
If there are items that a user accesses often while doing the given task,
those items will tend to be found in the history. Thus, even if the user does
not go to the trouble of customizing the task window to include items he
needs for the task, the history provides a kind of automated customization
accomplishing the same thing.

The task window is much lighter-weight than the typical application,
but at the same time it is significantly more detailed than a “minimized”
application. We believe that this middle ground can be very effective for
multitasking users. Instead of cycling through the expansion and collapse
of various full-screen windows as they try to work with information from
multiple applications, users can keep a little bit of state from each of their
tasks in view.

The task windows can be seen as similar to the dockable “toolbars”
currently available in many applications. However, their modeling as stan-
dard collections means that users are free to incorporate any objects or
operations they find useful.

Task windows become active in two ways. First, users may explicitly
begin doing the task. For example, the user can select “E-mail” from the
starting-point menu (top right) in order to invoke the task. Alternatively,
a user can type “E-mail” into the search box, and select the “E-mail” task
from the result set. This is analogous to launching an application: the user
explicitly states that she wishes to begin the task. A second option is for the
system to guess which tasks the user is engaged in. For example, in figure
3.2, a grayed-out “Addresses and Contacts” task is visible in the left pane.
This is a sign that the system believes the user may be performing this task.
If the user clicks on the grayed-out header, the task window will expand
to show the items relevant to that task. At present, such guesses are hard-
wired into the system—certain objects and types are explicitly associated
(by an appropriate RDF statement) with certain tasks. For example, the

ch03.indd 82ch03.indd 82 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

Haystack 83

inbox is explicitly associated with email, so any time the user navigates to
the inbox, the email task is offered in the left pane. In the longer term, we
see this problem of discovering which tasks a user is currently performing
as a fruitful target for machine-learning research.

Workspaces
Our second approach to tasks is on a larger scale. A workspace is a
(presumably rather large) region filled with (relatively detailed) views of
various information objects that can be used to tackle a given task. For
example, a traditional email application may present a region holding a
collection of current messages, a region holding a particular current mes-
sage, a region holding an address book, and so on. A user working on a
paper about a particular research project may wish to gather and lay out
the relevant research data, useful citations and documents, spell-check-
ing functionality, and mail-sending operations to their co-authors (see the
section entitled “Manipulation” on customizing operations). Continuing
our main argument that developers cannot predict what workspaces end
users will want, we would like to give end users the ability to create their
own workspaces, deciding what pieces of information should be presented
(and in what way) to let them carry out a given task.

Creating a workspace is much like creating a new view. While a view
may be intended to apply to many pieces of information, a workspace is
typically created once, for a single task. While a view typically presents
information associated with the object being viewed, workspaces instead
present information associated with the task to be performed—in a sense,
the workspace can be seen as a view of the task.

Given their similarity, we can apply tools similar to those for the con-
struction of views to the construction of workspaces. To construct a work-
space, the user needs to choose a collection of items to be shown in the
workspace, choose a view for each of those items, and determine how
those views should be laid out in the workspace. Choice of items (creating
a collection) and the selection of (predefined) views are already available
as standard components of Haystack. We have designed a prototype tool
for managing the layout of the items so as to create a workspace (Bakshi
2004).

Figure 3.3 shows a paper-writing workspace constructed with our drag-
and-drop tools by assembling views that were also constructed with our

ch03.indd 83ch03.indd 83 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

84 David R. Karger

drag-and-drop tools mentioned in the section entitled “Creating New
Views.”

Search

Beyond reading and writing information, search is perhaps the key activ-
ity in information management. Haystack offers a number of search tools.
We aim to make search both pervasive and lightweight—rather than drop-
ping what they are doing and initiating a search, we want users to think
of search as a “no-overhead” activity that is performed as part of regular
navigation.

As we argued above, orienteering is a natural search mode. Should a
plausible starting point be visible, we expect users to “hyperlink” their
way from object to object, homing in on the one they are seeking. By plac-

Figure 3.3
A workspace constructed by drag and drop. This workspace is specialized for
writing a particular research paper, presenting research data, coauthors, and
relevant references. The publication view was created with the similar view-
 construction tool.

ch03.indd 84ch03.indd 84 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

Haystack 85

ing user-definable task-specific collections of information in the left panel,
we aim to maximize the chances that the user will find a good jumping-off
point for their search.

Text Search
At times, of course, no such starting point is clearly visible. A simple
scheme to fall back on at that point is text search. Information objects are
often associated with memorable text, such as a title, a body, or an anno-
tation. Haystack’s upper navigation bar includes a search box into which
an arbitrary textual query can be entered. The results of this search are a
collection. The collection is presented in the drop-down-menu view of a
collection, which optimizes for rapid selection of an item in the common
case where the search is successful. However, the collection of results can
also be “navigated to” to provide the starting point for a more complex
search.

In Haystack, text is associated with many items—not just traditional
data, but other objects such as operations. Thus, a user can search to
find (and then invoke in place) an operation by describing it—essentially
dynamically specifying a menu of commands relating to the given descrip-
tion. It also becomes natural to use search at a fine grain to locate small
items, for example, to locate a particular value to fill in as the argument
to a dialogue box.

Unlike text search of traditional corpora, where the text associated with
a given item is clear (the text in the file plus its metadata), the question of
what text to associate with a given RDF resource is complex. It is natural
to associate with a resource any text directly connected to it by a state-
ment, but one might also imagine associating text located at greater dis-
tance along a chain of statements.

Fuzzy Browsing
Much research has been done in the database community on search. Some
(Bosc, Motro, and Pasi 2001) have even looked for ways to offer ranked or
approximate matching, avoiding the off-putting “all or nothing” effect of
Boolean database queries. However, as we argued above, attention needs
to be given to orienteering, which manifests in search as an iterative pro-
cess of query specification, inspection of the results, and refinement of the
query. Orienteering along statements is natural to get from one resource

ch03.indd 85ch03.indd 85 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

86 David R. Karger

to another, but when a user starts by issuing a query, she is faced with a
collection of better or worse matches from which she needs to orienteer.
Yee et al. (2003) have explored faceted metadata browsing as a way to let
users orienteer through a collection of data by choosing to restrict certain
attributes of the information.

In Haystack, we are exploring ways to bring orienteering tools from the
text-search domain to the database domain (Sinha 2003; Sinha and Karger
2005). We propose to think of a resource’s attributes and values (predi-
cates and objects) as features of that resource that can be used for search
and similarity estimation, much as the words in a document are used in
text search. Put another way, we can think of associating to each item a
“virtual document” containing “words” such as “author:yc1yb87Karger”
and “Send-Date:012937” (note that URIs are kept in the terms in order
to differentiate values that are lexicographically identical but semantically
distinct). We can apply all the well-studied techniques of fuzzy text search
to those virtual documents.

For example, given any item, we can define “similar items” to be those
that share many of the same attribute values. These may well be worth
displaying when we are looking at an item, as they will likely assist the
user’s orienteering. Text-search research suggests various term- weighting
approaches to decide which attributes are “important” in deciding
 similarity—for example, extremely common attributes should likely be
ignored. When it comes to the common search process of issuing queries,
browsing the results, and modifying the query, the text-search community
has also developed various query refinement and relevance feedback tech-
niques that can be used to suggest next steps. It is just such suggestions
that are presented in the left pane of figure 3.1.

Database Search
We also offer a general-purpose “find” interface that lets people design a
database query against the RDF model. At present it is limited to express-
ing constraints that specific predicates must take on certain values. We
have invested relatively little effort in this interface, because we see the
need to express a query in this way as a sign of failure of the more light-
weight navigation tools. Instead of a generic query interface, we expect
that specific useful queries will likely be packaged up by developers as

ch03.indd 86ch03.indd 86 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

Haystack 87

operations (discussed above) that use domain-specific dialogues to capture
the information necessary to formulate the query.

Discussion

Having presented the Haystack system, we now turn to a discussion of
some of our design choices and of some of the open questions that we
continue to examine.

Why a Semantic Network?
Our discussion of Haystack may lead one to ask why we use a database
or structured model at all. The user sees almost no sign of the underlying
database: tuples are never shown, and database querying is deprecated.
One might think, given our focus on link traversal, we would be better
off simply storing user information as HTML in some kind of “personal
web.”

On the contrary, we argue that a semistructured data model is abso-
lutely critical to the design of a personalizable information-management
system. Much of the data users work with clearly is structured, relying
heavily on properties and relationships to other items. Unlike the web, in
which each link must be manually labeled with a textual description of its
role, a structured model gives a concise machine-readable way to indicate
that role played by a certain class of links. Our view-rendering architecture
can make use of that structure to render information objects in a variety
of informative ways. And the representation of links in machine-readable
form means that, even if complex database queries are beyond end users’
capabilities, power users can package up complex database queries (as
operations) and information presentations (as views and lenses) that can
then be incorporated by typical users to increase the capabilities of their
system. Even more generally, the structure available in the model makes it
possible to write various autonomous agents that can import and manipu-
late data on behalf of the end user.

Semantic Networks Are Universal
We also argue that a semantic network, and RDF in particular, offers
a natural “universal data model” that should be adopted widely in the

ch03.indd 87ch03.indd 87 12/4/2006 1:19:41 PM12/4/2006 1:19:41 PM

88 David R. Karger

development of applications. The semantic network is rich enough to rep-
resent a tremendous portion of the information that users need to work
with. At the same time, it is simple enough to be incorporated into any
application design with very little effort. All that is needed is a mechanism
for naming individual objects, and a representation for specific relation-
ships connecting those named objects.

With such a representation, applications can easily make use of data
created by other applications, even if they understand nothing else
about those applications’ semantics. An object name is enough to let
an application create a live link to the object in another application.
A relation connecting two objects can be exploited by an application
without much understanding of the meaning of that link (as is the case
on the web). Invariably, applications will hold some information that is
too “complicated” to expose into the semantic network—the individual
pixels of an image, or the fuzzy classification scheme of some complex
data filer—but these can easily hide inside the individual information
objects named in the network and be handled by applications that do
understand the internals of those objects. Meanwhile, search tools can
let users query on and browse the metadata represented by the semantic
network without understanding the semantics of those relationships or
the information objects to which they relate. Much like text or files,
relations are universal enough to be worth giving a standard representa-
tion, so that cross-application tools (like clipboards and desktop search
engines) can help to reduce the problem of data fragmentation across
applications.

It is also worth noting that much of what each application does is just
a straightforward manipulation of relations and attributes. Nearly every
application offers some sort of “collection” framework, with the same
drag-and-drop interactions for moving items among collections. Many
offer “annotations”—customized fields that can be filled in with arbitrary
text—again using similar interfaces. Offering these capabilities by applica-
tion is a waste of the developer’s effort, and also means that they cannot
be used across applications. Given the essential simplicity of the intended
data model manipulations, there is good reason to expose it at a system-
wide level, much as the manipulation of files (and ASCII text) is exposed
in existing systems.

ch03.indd 88ch03.indd 88 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

Haystack 89

The Role of Schemata
While we rely heavily on a structured representation, the same is not obvi-
ously true of schemata. We allow the user to relate arbitrary objects in
a schema-violating fashion—the author of a document can be a piece of
furniture, the delivery date a person. And we allow users to craft arbi-
trary new relations to connect objects, without providing any schematic
descriptions.

On not using schemata On the whole, we believe this schema-light
approach is necessary in a personal information-management system.
Given schemata, we must choose whether to enforce them or not. As with
developers designing applications, we will invariably find users want-
ing to record information that will violate our schemata. At that point,
we must choose whether to enforce our schemata and forbid users from
recording information they consider important, or to allow for the viola-
tion of our schemas. Although the latter choice makes it challenging for
us to design the structure of our system, the former defeats the fundamen-
tal goal: to let users record information they need. Mangrove (see Halevy
et al. 2003) takes a similar tack, arguing that in practice schema will need
to be crafted to fit existing data, rather than the reverse.

Of course, one might argue that the user does not know best. Perhaps
enforcement can be couched as an educational experience that teaches
users how they ought to be structuring their information. We suspect,
however, that users are too set in their ways for such an approach to
work. Even if an interface can steer users to record information the
“right” way, we expect users returning to seek that information will look
for it the “wrong” way that they original envisioned, and thus be unable
to find it because it was recorded “right.” We need to record informa-
tion the way we expect users to seek it, even if we expect them to seek it
incorrectly.

On using schemata Although we do not envision enforcing schemas,
they nonetheless pervade Haystack. For the sake of consistency, we do
attempt to steer users toward reasonable information schemata. We
expect that the “preexisting conditions” established by the large number
of schemata initially distributed with Haystack will lead to users having

ch03.indd 89ch03.indd 89 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

90 David R. Karger

similar in-the-large knowledge representations, so that standard views,
queries, and operations work with them.

Schemata play a particularly important role in the design of views. In
particular, we make heavy use of Type assertions to decide on appropriate
views and operations; a user with a highly nonstandard type system will
also need a highly nonstandard interface to work with it. The choice of
which attributes to display in the view of an object of a given type is also
schematic—it expresses an expectation that those attributes will typically
be available, and that other attributes will not (or will not be important).
When users modify views, they are in a sense modifying the schemas asso-
ciated with the viewed types. A key difference, however, is that the sche-
matic constraints suggested by views are “soft.” While a view implies that
certain attributes are expected, the lack of one simply results in no infor-
mation being displayed. We can see this in figure 3.1: while the inbox dis-
play suggests the need for a sender and date associated with each object, a
person can be included in the collection, with the only consequence being
some blank fields. Equally important is the fact that multiple views mean
that, in a sense, different schemata can be imposed on the same object at
different times, depending on the task the user is undertaking.

Although we do not enforce schema, the manipulation primitives of
our user interface often make strong suggestions. Schematic annotations
about whether a given property is single-valued or multi-valued affect
the behavior of drag and drop: dropping on a single-valued field may
replace the value of the property while dropping on a multi-valued field
may incorporate an additional value for the property. Again, these sug-
gestions are not rigidly enforced: with sufficient effort, a user can add
a second value to a schematically single-valued attribute. At that point,
views that assume single-valuedness may end up displaying only one of
the two assigned values nondeterministically. Of course, there is always
the opportunity for the user to modify the view to repair this flaw. And
database queries, which address the data without the constraints imposed
by views, can make full use of the multiple values.

Underlying our use of schemas is the general research question of
how to make use of database schemata that are “usually true.” We have
already discussed ways that usually true schemata can facilitate the design
of information views. At the programmer level, schemata let the developer
write clearer code, as they can avoid complex case analyses for dealing

ch03.indd 90ch03.indd 90 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

Haystack 91

with data. As a simple example, knowing that a given property is always
present means that one can skip the code needed to deal with its absence.
An intriguing question is to what extent usually true schemata can be used
to maintain clear code. At present, Haystack operations are filled with
various blocks of code dealing with schema exceptions—for example, an
operation that sorts on dates needs to check explicitly whether each date
is actually of type date. In other cases, operations fail silently when they
encounter unexpected exceptions (arguably, this is reasonable behavior,
effectively refusing to apply the operation to schema-violating data). One
might hope instead to write code in which all schema violations are caught
implicitly and branched off to some kind of exception-handling block. But
this begs the question of describing that exception-handling code, and in
particular giving clean descriptions of the ways the schema can be violated
and of the desired defaults to apply when they are.

Haystack Limitations
Our use of Haystack has highlighted assorted limitations and flaws in the
design. One significant flaw is “UI ambiguity.” Given that every object on
the screen is alive, it is sometimes difficult for the user interface to guess
which object a user is addressing with a given click. Any point on the
screen is generally contained in several nestings of hierarchically displayed
objects, and when the user clicks it is unclear which level of the nesting he
is addressing. For context menus, we resolve this problem by giving the
author access to menus for all the objects nested at the click point. As can
be seen in figure 3.1, the context menu offers access to operations on the
email sender, on the email message of which that sender is a part, and on
the inbox of which the email message is a part. When the user drags and
drops an object, we make the heuristic decision to address the “most spe-
cific” (lowest in the hierarchy) objects at the click and drop points. This is
often correct, but it sometimes leads to difficulties. For example, in order
to drop an item onto a display of a collection, one must carefully seek out
a portion of the collection display that is not owned by any recursively
rendered member of the collection. Much research remains to be done on
the best way to disambiguate UI actions.

The power we give users over the data model can also be damaging.
Haystack does not offer users much protection to users as they perform
operations that could destroy their data. Beyond the users’ own data, since

ch03.indd 91ch03.indd 91 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

92 David R. Karger

the entire interface is described as data, users can corrupt their interfaces
in ways that make them impossible to use. For example, users can dissoci-
ate views from the data types they present, and suddenly find themselves
unable to view information.

The proper solution to this problem is to develop effective access control
(particularly write-control) methods on the data. We have not addressed
this critical issue, and pose it as an open problem below.

Other Applications

In this section, we speculate on some other roles for the architecture we
have created: to let users consume the semistructured data being produced
by the Semantic Web effort (Berners-Lee, Hendler, and Lasilla 2001), and
to let individual users contribute to that effort by sharing or publishing
some of their own semistructured information.

The Semantic Web
Whether or not one accepts the need for a semantic network on each
user’s desktop, semantic networks seem destined to play a critical role
in information dissemination as the so-called Semantic Web (Berners-
Lee, Hendler, and Lasilla 2001) evolves. The web is an extremely rich
source of information, but its HTML documents present that information
in “human readable” form—that is, one in which the semantics of the
documents are decoded by human beings based on their understanding of
human language. Such documents cannot be easily digested by automated
agents attempting to extract and exploit information on behalf of users.
Thus, momentum is building behind an effort to present information on
the web in RDF and XML, forms more amenable to automated use.

One might think that the richer semantics offered by the Semantic Web
versus the traditional web could also increase human users’ ability to
retrieve information from it. But at present the opposite is true, since no
good interfaces exist for the Semantic Web. On the Semantic Web, data
and services are exposed in a semantics-rich machine-readable fashion,
but user interfaces for examining that data, when they exist at all, are usu-
ally created from centralized assemblies of data and services. For example,
with a semantic portal (e.g., SEAL, Stojanovic et al. 2001), or Semantic
Search (Guha, McCool, and Miller 2003), database administrators aggre-

ch03.indd 92ch03.indd 92 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

Haystack 93

gate semantically classified information together on a centralized server
for dissemination to web users. This helps users access the Semantic Web
through a traditional web browser.

But a web portal interface has the same drawbacks as traditional appli-
cations. It seems unlikely that one designer can create an interface that
is “just right” for all the distinct individuals who will use it. Also, the
design of any one portal has in mind a fixed ontology; arbitrary informa-
tion arriving from other parts of the Semantic Web (“other applications”)
cannot be automatically incorporated into views generated by the portal.
If some schema is augmented, no portal will be able to present informa-
tion from the augmented schema until the portal developer modifies his or
her display system. Thus, portals take us back to the balkanized informa-
tion structures we tried to remove with a semantic network model.

On the other hand, if the user’s client software could perform this
data aggregation and user interface construction on a per-user basis,
then we could restore a user’s ability to freely navigate over informa-
tion and services on the Semantic Web. Our view architecture offers just
such an opportunity to integrate data at the client end (Quan and Karger
2004). Separate pieces of information about a single resource that used
to require navigation through several different websites can be merged
together onto one screen, and this merging can occur without specialized
portal sites or coordination between websites/databases. Furthermore,
services applicable to some piece of information need not be packaged
into the web page containing that information, nor must information be
copied and pasted across websites to access services; semantic matching
of resources to services (operations) that can consume them can be done
by the client and exposed in the form of menus. By crafting and distribut-
ing views and operations, users can create and publish new ways of look-
ing at existing information without modifying the original information
source.

Collaboration and Content Creation
Our discussion so far has focused on one user’s interaction with her
own information (and then the Semantic Web). But we believe that our
system can enhance the recording of knowledge by individuals for com-
munal use, as well as the search for and use of that knowledge by broader
 communities.

ch03.indd 93ch03.indd 93 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

94 David R. Karger

One of the tremendous benefits of the World Wide Web is that it dra-
matically lowered the bar for individuals wishing to share their knowledge
with a broader community. It became possible for any individual, without
sophisticated tool support, to record information that could then be locat-
ed and accessed by others. If the same were done on the Semantic Web,
then information recorded by users can be much richer, making it more
useful to other individuals (and automated agents) than plain HTML.

Unfortunately, the state-of-the-art tools for authoring Semantic Web
information are graph editors that directly expose the information objects
as nodes and properties as arcs connecting those nodes (Eriksson et al.
1999; Pietriga, n.d.). Such tools require a far more sophisticated user than
do the simple HTML editors that let naive users publish their knowledge
to the World Wide Web.

Haystack makes it easy for users to author structured information,
which is already represented in the Semantic Web’s native RDF format.
This lowers the bar for a user who decides to expose some of his “internal
use” information to the world at large. Traditionally, someone who read
a document and annotated it for his own use would have to do substantial
work to convert those annotations (and possibly the document) to HTML
to be published on the web. With a semantic network representation, the
document and annotations are already in the right form for publication
on the Semantic Web, and the user only needs to decide who should have
access to them.

Of course, the access-control problem is a difficult one, made more dif-
ficult by the fine granularity of the data model. We need a simple interface
letting users specify which properties and relationships on which objects
should be visible to which people.

On the opposite side, when information is being gathered from numer-
ous sources, an individual must start making decisions of trust. Again,
interfaces must be developed to let users specify which Semantic Web asser-
tions they wish to incorporate as “truth” in their own semantic networks.

Another significant issue that must be tackled when users collaborate is
the problem of divergent schemata. If each user is allowed to modify his
information representation, then it is unlikely that these representations
will align when data is exchanged. We hope that this problem can be ame-
liorated by sharing view prescriptions and operations along with data.

ch03.indd 94ch03.indd 94 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

Haystack 95

A piece of related work that we should mention here is the REVERE
system, and in particular the MANGROVE project (Halevy et al. 2003).
REVERE shares many of Haystack’s goals and methods. Like Haystack,
REVERE aims to colonize a useful point somewhere between structured
and unstructured information. Haystack focuses on helping each indi-
vidual manage their own information better. For REVERE, in contrast,
collaboration is a primary goal. Thus, issues of schema alignment that
can be pushed to the future for Haystack become primary drivers for the
design of REVERE.

Related Work

Much recent work has highlighted the problems created by application-
centric data management and has proposed ways to stretch or coordinate
applications to address the problem. Bellotti et al. (2003) observed that
email applications were being used for task management, and showed
how to augment an email application’s “views” to support this additional
task. Ravasio, Guttormsen-Schär, and Krueger (2004) have given evidence
of the problems users run into when trying to perform tasks whose data
spans multiple applications. In this volume, Kaptelinin and Boardman
argue that one must instead take a “workspace-centric approach” that
brings together the data needed for a task, instead of the data managed by
one single application.

There have been several efforts in the past to center information man-
agement on the idea of relations. The Presto project (Dourish et al. 2000)
proposed to do away with static directories as the key organizing frame-
work documents, and to instead base location on queries against meta-
data that was recorded for each file. Lifestreams, discussed in this volume
(Freeman and Gelernter), focused on one piece of metadata above all: the
time of last use. These two systems continued to focus on the file as the
basic unit of information, however, and emphasized queries rather than
linking, display, and browsing.

The ObjectLens system (Lai and Malone 1988) is a clear forerunner of
many of the ideas we explore in Haystack. ObjectLens emphasized the
idea of arbitrary information objects drawn from a type hierarchy, with
attributes and links to other objects. OVAL (Malone, Lai, and Fry 1995)

ch03.indd 95ch03.indd 95 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

96 David R. Karger

was a tool for rapidly creating applications out of “objects, views, agents,
and links” similar to the workspace design used in Haystack.

The WinCuts tool (Tan, Meyers, and Czerwinski 2004) demonstrates
an alternative approach to freeing data from applications: it cuts out small
windows into applications so that individual pieces of data from those
applications can be viewed (near data from other applications) without
the clutter of the rest of the application. Because WinCuts operates at the
pixel level, it is extremely generic—it can snag information from near any
application. But this is also its weakness. Since only the pixels of different
applications are unified, and not the data, WinCuts creates no additional
semantic linkage between the data in multiple applications. Dragging data
from one WinCut to another works only if the two underlying applica-
tions are already set up to share data.

Several chapters in this volume propose interesting new relations that
are worth recording between information objects, or interesting new visu-
alizations of existing or new relationships (e.g., Fisher and Nardi, Freeman
and Gelertner, Plaisant et al.). Under the current approach to application
development, each of those tools must be developed from scratch, and
extensive work invested in attaching to and remote-controlling existing
applications for working with the given data objects. This kind of inte-
gration work must be repeated for each new approach. And the work
would multiply even further if someone were ambitious enough to try to
build an application that incorporated all the different approaches. This
seems wasteful, given that in each case the core idea is simply to track
some additional relations and to create some views that exploit those rela-
tions. An infrastructure such as Haystack would make it much simpler to
incorporate such new relations and views in a single system as they arise,
and invoke each of them at the times that are appropriate, as opposed to
crafting new and distinct applications (and convincing users to migrate to
them) for each new idea.

Conclusion

The Haystack framework demonstrates some of the benefits of manag-
ing user information uniformly in a semistructured data model. Its sep-
aration of data from presentation lets us knock down the barriers to
information manipulation imposed by the current application model. It

ch03.indd 96ch03.indd 96 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

Haystack 97

will allow users to gather precisely the information they need to tackle a
given task and visualize it with the views that best convey the informa-
tion required.

Notes

1. A direct observation of this phenomenon can be found in Nicolson Baker’s
(1994), in which he laments how the transfer of paper card catalogs to electronic
databases lost fascinating information that had been penciled onto the cards by
patrons.

2. Even though we are optimistic about the payoff, a quick perusal of colleagues’
offices and desks suggests that many of us are too shortsighted to invest the orga-
nizational effort now that would pay off in better retrieval later.

References

Adar, E., Karger, D., and Stein, A. L. (1999). Haystack: Per-user information envi-
ronments. In Proceedings of the 8th International Conference on Information and
Knowledge Management, pp. 413–422. Kansas City, Missouri, November 2–6.

Baker, N. (1994). Discards. New Yorker 68 (April): 81–83.

Bakshi, K. (2004). Tools for end-user creation and customization of interfaces for
information management tasks. Master’s thesis, MIT.

Bellotti, V., Ducheneaut, N., Howard, M., and Smith, I. (2003). Taking email to
task: The design and evaluation of a task management centered email tool. In
Proceedings of the CHI 2003 Conference: Human Factors in Computing Systems,
pp. 345–352. Ft. Lauderdale, Florida, April 5–10.

Berners-Lee, T., Hendler, J., and Lasilla, O. (2001). The Semantic Web. Scientific
American 284 (5): 34–43.

Bosc, P., Motro, A., and Pasi, G. (2001). Report on the fourth international con-
ference on flexible query answering systems. SIGMOD Record 30 (1): 66–69.

Codd, E. F. (1970). A relational model of data for large shared data banks. Com-
munications of the ACM 13 (6): 377–387.

Dourish, P., Edwards, W. K., LaMarca, A., Lamping , J., Petersen, K., Salisbury,
M., Terry, D. B., and Thornton, J. (2000). Extending document management sys-
tems with user-specific active properties. ACM Transactions on Information Sys-
tems 18 (2): 140–170.

Eriksson, H., Fergerson, R., Shahar, Y., and Musen, M. (1999). Automatic genera-
tion of ontology editors. In Proceedings of the 12th Banff Knowledge Acquisition
Workshop, 1999. Banff, Canada, October 16–22.

Guha, R., McCool, R., and Miller, E. (2003). Semantic search. In Proceedings
of the World Wide Web Conference, 2003, pp. 700–709. Budapest, Hungary,
May 20–24.

ch03.indd 97ch03.indd 97 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

98 David R. Karger

Halevy, A., Etzioni, O., Doan, A., Ives, Z., Madhavan, J., McDowell, L., and Tata-
rinov, I. (2003). Crossing the structure chasm. In Proceedings of the First Biennial
Conference on Innovative Data Systems Research (CIDR). Asilomar, California,
January 5–8.

Hogue, A. (2004). Tree pattern inference and matching for wrapper induction on
the World Wide Web. Master’s thesis, MIT.

Hogue, A., and Karger, D. (2005). Thresher: Automating the unwrapping of seman-
tic content from the World Wide Web. In Proceedings of the 14th International
World Wide Web Conference (WWW), pp. 86–95. Chiba, Japan, May 10–14.

Huynh, D., Karger, D., and Quan, D. (2002). Haystack: A platform for creating,
organizing, and visualizing information using RDF. Semantic Web Workshop at
WWW2002. Honolulu, Hawaii, May 7.

Karger, D. R., and Jones, W. (2006). Data unification in personal information
management. Communications of the ACM, January 2006. 49 (1): 77–82.

Lai, K.-Y., and Malone, T. W. (1988). ObjectLens: A spreadsheet for cooperative
work. ACM Transactions on Office Information Systems 6 (4): 332–353.

Malone, T. W., Lai, K.-Y., and Fry, C. (1995). Experiments with OVAL: A radi-
cally tailorable tool for cooperative work. ACM Transactions on Information Sys-
tems 13 (2): 177–205.

Manola, M., and Miller, E. (2003). RDF primer. Http://www.w3.org/TR/ rdf-
primer/.

McGuinness, D. L., and van Harmelen, F. (2003). Owl web ontology language
overview. Http://www.w3.org/TR/owl-features/.

Muslea, I., Minton, S., and Knoblock, C. (1999). A hierarchical approach to wrap-
per induction. In Proceedings of the Third International Conference on Autono-
mous Agents (Agents ’99), pp. 190–197. Seattle, Washington, May 1–5.

Pietriga, E. (n.d.). Isaviz. Http://www.w3.org/2001/11/IsaViz/.

Quan, D., Bakshi, K., Huynh, D., and Karger, D. R. (2003). User interfaces for
supporting multiple categorization. In Proceedings of INTERACT: 9th IFIP Inter-
national Conference on Human Computer Interaction, pp. 228–235. Zurich,
Switzerland, September 1–5.

Quan, D., Bakshi, K., and Karger, D. R. (2003). A unified abstraction for mes-
saging on the semantic web. In Proceedings of the 12th International World Wide
Web Conference, p. 231. Budapest, Hungary, May 20–24.

Quan, D., Huynh, D., Karger, D., and Miller, R. (2003). User interface continua-
tions. In Proceedings of UIST (User Interface Systems and Technologies), pp. 145–
148. Vancouver, Canada, November 2–5.

Quan, D., and Karger, D. R. (2003). Haystack: A platform for authoring end-user
Semantic Web applications. In Proceedings of the International Semantic Web
Conference, 2003. Sanibel Island, Florida, October 20–23.

Quan, D., and Karger, D. R. (2004). How to make a semantic web browser. In
Proceedings of the 13th International World Wide Web Conference, pp. 255–265.
New York City, May 17–22.

ch03.indd 98ch03.indd 98 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

Haystack 99

Ravasio, P., Guttormsen-Schär, S., and Krueger, H. (2004). In pursuit of desk-
top evolution: User problems and practices with modern desktop systems. ACM
Transactions on Computer-Human Interaction (TOCHI) 11 (2): 156–180.

Sinha, V. (2003). Dynamically exploiting available metadata for browsing and
information retrieval. Master’s thesis, MIT.

Sinha, V., and Karger, D. R. (2005). Magnet: Supporting navigation in semis-
tructured data environments. In SIGMOD ‘05: Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Data, pp. 97–106. Balti-
more, Maryland, June 13–16.

Stojanovic, N., Maedche, A., Staab, S., Studer, R., and Sure, Y. (2001). SEAL:
A framework for developing SEmantic portALs. In K-CAP ‘01: Proceedings of
the 1st International Conference on Knowledge Capture, pp. 155–162. Victoria,
Canada, October 22–23.

Tan, D. S., Meyers, B., and Czerwinski, M. (2004). WinCuts: Manipulating
arbitrary window regions for more effective use of screen space. In Extended
Abstracts of Proceedings of ACM Human Factors in Computing Systems CHI
2004, pp. 1525–1528. Vienna, Austria, April 24–29.

Teevan, J., Alvarado, C., Ackerman, M., and Karger, D. R. (2004). The perfect
search engine is not enough: A study of orienteering behavior in directed search.
In Proceedings of the ACM CHI Conference on Human Factors in Computing
Systems, 2004, pp. 415–422. Vienna, Austria, April 24–29.

Yee, P., Swearingen, K., Li, K., and Hearst, M. (2003). Faceted metadata for image
search and browsing. In Proceedings of ACM CHI Conference on Human Factors
in Computing, pp. 401–408. Ft. Lauderdale, Florida, April 5–10.

ch03.indd 99ch03.indd 99 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

ch03.indd 100ch03.indd 100 12/4/2006 1:19:42 PM12/4/2006 1:19:42 PM

Introduction

An increasing number of tasks require that users coordinate and operate
on information from multiple sources. Each source of information is typi-
cally contained within a window, the fundamental unit at which users cur-
rently manipulate information. With continuing advances in computing
and networking capabilities, users can open large numbers of windows,
each containing different information. Often, users benefit from simul-
taneously viewing related information that exists within different win-
dows. Additionally, the spatial layout of this information may be crucial
to effective task performance as it helps users not only to establish spatial
relationships but also to visually compare contents.

Subsequent chapters in this book describe various projects aimed at
making users more efficient at managing and performing their tasks.
Owing to the various interpretations of what constitutes a coherent
activity, each project defines the meaning of a task differently. We
have found through interviews that many end users loosely define a
task by a group of windows and the actions that operate on them.
Examples include working on finances, writing a paper, or managing
correspondence, each of which may involve a continuously changing
set of many windows and/or applications. Users today are faced with
an increasingly difficult job of managing these windows and tasks. In
this chapter we describe our work in building tools that allow users to
effectively manipulate windows on their desktop in order to complete
their tasks.

4
Explorations in Task Management on the
Desktop

George Robertson, Greg Smith, Brian Meyers, Patrick Baudisch, Mary
Czerwinski, Eric Horvitz, Daniel Robbins, and Desney Tan

ch04.indd 101ch04.indd 101 12/4/2006 1:19:48 PM12/4/2006 1:19:48 PM

102 George Robertson et al.

Task Management Research
When working on a task, users often need to see multiple windows simul-
taneously (Kandogan and Shneiderman 1997). Additionally, researchers
have observed that information workers often switch between concur-
rent tasks, either because of multitasking activities (Bannon et al. 1983)
or external interruptions (Cutrell, Czerwinski, and Horvitz 2001; Czer-
winski, Cutrell, and Horvitz 2000; Czerwinski, Horvitz, and Wilhite
2004; Gillie and Broadbent 1989; Maglio and Campbell 2000). Thus,
the two main problems that we focus on are (i) effectively managing
multiple windows and tasks, and (ii) recovering from task switches and
 interruptions.

There exists a large body of research exploring window management
systems, which allow users to manage multiple windows on the screen
(for history and review, see Myers 1988). In the traditional desktop meta-
phor, managing tasks can involve dozens of operations, including open-
ing, moving, and resizing windows, as well as scrolling content. This can
be extremely tedious and adds considerably to cognitive load as users per-
form their main tasks. Additionally, the desktop metaphor has inadequate
support for saving and switching between tasks, leading to wasted effort
and frustration on the part of the user (Card, Robertson, and York 1996;
Henderson and Card 1987; Kandogan and Shneiderman 1997; Robert-
son, Card, and Mackinlay 1993; Robertson et al. 1998).

Card and Henderson (1987) proposed a solution to these problems in
their Rooms system. They observed that tasks can be supported by man-
aging working sets of windows, in much the same way that operating
systems manage working sets in memory. In this work, they identified
several desirable properties of task management systems, including fast
task switching, fast task resumption, and easy reacquisition of mental task
context after interruptions. The Rooms system provided a mechanism for
particular windows to be associated with particular tasks and for users to
switch between these tasks easily.

As an extension to the desktop metaphor, several modern operating
systems provide virtual desktop managers. These managers allow users
to organize windows onto multiple virtual desktops, and to switch easily
between them. Many of these systems are currently available, and are
described in XDesk 2003. The virtual desktop metaphor treats the physical

ch04.indd 102ch04.indd 102 12/4/2006 1:19:49 PM12/4/2006 1:19:49 PM

Explorations in Task Management 103

display as a viewport into a much larger virtual space. Hence, users with
virtual desktop managers potentially have to keep track of how windows
and tasks are laid out within a fairly large amount of space. Although
users can treat each virtual desktop as a different task, most virtual desk-
tops do not provide explicit task management features. Although virtual
desktop managers have had some success, there has been little published
on the usefulness or usability of these systems, especially as they relate to
task management (cf. Ringel 2003).

In addition to virtual desktop managers, a number of alternative solu-
tions for managing large numbers of windows have been proposed,
including extending the user’s desktop with additional low-resolution
screen space (Baudisch, Good, and Stewart 2001), extending the desktop
into 3D space (Wurnig 1998), into zoomable space as in Pad++ (Beder-
son and Hollan 1994), and into the time dimension (Rekimoto 1999).
Also, systems that involve bumping other windows away (Bell and
Feiner 2000; Hutchings and Stasko 2004; Kandogan and Shneiderman
1997) and tiled window managers (Bly and Rosenberg 1986; Morris et
al. 1986; Teitelman 1986) address some of these issues. Elastic Windows
uses a space-filling tiled layout and addresses the problem of simultane-
ous display of multiple windows by allowing the user to create con-
tainers into which multiple windows can be dragged (Kandogan and
Shneiderman 1997).

3D Rooms (Robertson, Card, and Mackinlay 1993) extended the ideas
of Rooms using a 3D virtual environment to represent the information
workspace. This system was not strictly a window manager, since abstract
information visualizations replaced windows. The basic motivation in this
system was to engage human spatial cognition and perception in order to
make task management easier. Web Forager (Card, Robertson, and York
1996) and Data Mountain (Robertson et al. 1998) each used a virtual
environment to more fully engage human spatial cognition and memory
while managing documents. Studies of Data Mountain (Czerwinski et al.
1999; Robertson et al. 1998) demonstrated that placing documents in
space helps users remember where the documents are during later retriev-
als. Our work shares this approach. We provide tools to bring the advan-
tages of human spatial cognition and perception to managing windows
and tasks within our current set of computer applications.

ch04.indd 103ch04.indd 103 12/4/2006 1:19:49 PM12/4/2006 1:19:49 PM

104 George Robertson et al.

Our Approach
While working on their tasks, users need easy access to particular win-
dows and applications that contain relevant information. Hence, we assert
that an effective task management system should provide mechanisms for
users to easily group relevant sets of windows, to organize the groups and
windows within the groups, to switch between groups, and to lay out how
the groups and windows are displayed on the screen.

In this chapter, we present three systems that explore different facets
of task management: GroupBar, Scalable Fabric, and Task Gallery.
GroupBar adds new semantics to the existing Microsoft Windows task-
bar for organizing and managing tasks. Scalable Fabric uses scaling and
a focus-in-context metaphor to visualize groups of related windows. In
this system, all tasks are scaled and located in the periphery so that they
are simultaneously visible. Finally, Task Gallery is a 3D environment in
which organizing and managing tasks is grounded in the physical-world
metaphor of a gallery. For each of these interfaces, we performed user
studies that illustrate lessons learned through the design process that test
the usability of our systems.

GroupBar

GroupBar was designed with the goal of providing task management
features by extending the current Windows taskbar metaphor. GroupBar
preserves basic taskbar tile functionality, presenting one tile for each open
window in the system, and showing the currently “active” window tile in
a darker, depressed-button state. Any tile can be clicked on to activate the
corresponding window or to minimize the window if it is already active.
Going beyond current taskbar functionality to offer task management
support, GroupBar allows users to drag and drop tiles that represent open
windows into high-level tasks called “Groups,” and to switch between
these tasks with a single click of the mouse. Since no drag interaction is
defined on the tiles of the original taskbar, users who choose not to use
this grouping functionality can use GroupBar as if it were the regular
taskbar. The similarity to the Windows taskbar not only allows leveraging
familiarity in order to reduce learning time, but also provides us with a
basis for a targeted comparison of the task-management features Group-
Bar provides.

ch04.indd 104ch04.indd 104 12/4/2006 1:19:49 PM12/4/2006 1:19:49 PM

Explorations in Task Management 105

Task Formation in GroupBar
With GroupBar, users can group multiple windows into tasks simply by
dragging a window tile onto another tile. During the drag, a white caret
animates along the bar to track the pointer location and suggest the result
of the drop operation (figure 4.1a). When a Group is formed, GroupBar
visually unifies member tiles by surrounding them with a gray background
and complementing the newly formed unit with a green “tab” at the top.
Users can add windows to a Group by repeating this drag-and-drop action,
and they can ungroup a tile by dragging it out of a Group. When a Group
is reduced to a single tile, the remaining tile is automatically ungrouped
and the Group tab disappears.

Task Organization in GroupBar
The currently shipping Windows taskbar displays the window tiles in the
order in which the underlying applications were started. However, we felt

Figure 4.1
GroupBar’s basic look and functionality: In (a), dragging a window on top of
another tile combines both tiles into a Group. Grouping information is primar-
ily conveyed via subtle changes in shape and surrounding coloration of grouped
tiles, using the green Group tab as a high-contrast unifier and control surface.
In (b), dragging a window tile or Group tab between other tiles rearranges the
ordering of tiles to allow users to make better use of spatial memory.

ch04.indd 105ch04.indd 105 12/4/2006 1:19:49 PM12/4/2006 1:19:49 PM

106 George Robertson et al.

that users could more easily locate their windows and tasks if they were
allowed to explicitly order the tiles. Hence, we allow users to rearrange
tasks as well as individual tiles to provide a more meaningful order within
the GroupBar (figure 4.1b). This function is accomplished by dragging
and dropping the items to the desired location on the bar between existing
tiles or Groups. With this small improvement, we are building upon our
philosophy of using spatial positioning as a memory and task-switching
aid.

Providing simultaneous support for grouping and reordering semantics
within the drag-and-drop operation required careful design. Grouping
carets (see figure 4.2) are distinguished from rearrangement carets not just
by position but also by curvature, which provides a much more definitive
visual cue. In fact, this consideration was the motivation for choosing a
curved window tile design instead of purely rectangular tile designs used
by previous prototypes and by the taskbar itself.

As figure 4.2 shows, the screen space containing the straight-line caret
is too small to allow users to actually acquire this space efficiently. Group-
Bar solves this problem by decoupling the target surfaces from the visual
location of the caret symbols—distributing the screen space between tile
centers evenly among the three adjacent targets, independent of where the
caret symbols appear. Our experience so far with this assignment of target
surfaces is positive, and the benefit of larger minimum drop areas seems
to outweigh the lack of absolute positional precision.

As evident in the first two figures, GroupBar can be configured to either
horizontal or vertical form at any time by dragging the bar to a different
edge of the screen, just like the standard Windows taskbar.

Figure 4.2
Bar fragment and all possible carets over it. In order to allow users to easily
acquire the drop position for insertion, GroupBar distributes the activation sur-
face evenly over the various possibilities.

ch04.indd 106ch04.indd 106 12/4/2006 1:19:49 PM12/4/2006 1:19:49 PM

Explorations in Task Management 107

Switching between Tasks in GroupBar
Users can quickly switch between tasks by clicking on a task’s green
Group tab. The Group-level operations in GroupBar are analogous to
existing window-level operations for minimizing and restoring windows
using the Windows taskbar. Clicking on an inactive Group tab activates
the group. Clicking on an active Group tab toggles between minimizing
all windows within the Group and restoring all those windows. With this
simple extension, GroupBar becomes an efficient task-switching tool.
Switching between multi-window tasks is done by clicking the GroupBar
tile of the new task, much as switching between individual windows is
done by clicking the corresponding tile of the new window.

Whereas virtual desktop managers tend to make a strict separation
between tasks, GroupBar deliberately allows users to simultaneously dis-
play any subset of windows, even if they are assigned to different tasks,
simply by clicking the individual tiles. For maximum flexibility, we includ-
ed several options in the right-click (context) menu of the bar to con-
trol the experience of switching between various windows and tasks. For
instance, the “Minimize Others on Group Click” binary option can be
useful in reducing unnecessary screen clutter when switching to a new
task.

Task Layout in GroupBar
Beyond task-switching, we added a number of window management
features into the right-click (context) menu of the Group tab (see
figure 4.3).

As noted before, repeatedly moving and sizing multiple windows indi-
vidually to get just the right information displayed is tedious when manag-
ing one or more multi-window tasks. We saw an opportunity to address
some of these window layout issues when extending the familiar window
“Maximize” function to the Group level. The obvious translation, maxi-
mizing each window in the Group, would make all the Group’s windows
overlap one another, which is not likely to be useful. Instead, we extend-
ed the analogy by creating a “Layout Group” operation which serves to
maximize the collective space taken up by the Group, rather than maxi-
mizing the space taken up by each individual window. By using the group-
ing information that the user has provided, the system can make much

ch04.indd 107ch04.indd 107 12/4/2006 1:19:49 PM12/4/2006 1:19:49 PM

108 George Robertson et al.

more intelligent choices about the most effective usage of overall screen
space for a given task. The current implementation of GroupBar offers
a submenu, shown in figure 4.4, which allows users to choose among
several layout templates that take into account the screen configuration
of the system.

This implementation is only a small step toward realizing what we
believe to be the full potential value of such layout assistance. For one,
we envision future Group layout choosers that fill in the stylized window
representations with thumbnail previews of the actual windows in the
Group. This would provide the user with the strongest sense of control
and predictability about the effects of the operation. Also, the layouts
should take into account the number of windows in the Group and their
current sizes and positions in order to present the most specific, custom-
ized set of options for a given Group. Customization could be further

Figure 4.3
Clicking the green Group tab restores all windows in that Group and brings them
to the foreground. Right-clicking a Group tab offers other actions.

ch04.indd 108ch04.indd 108 12/4/2006 1:19:49 PM12/4/2006 1:19:49 PM

Explorations in Task Management 109

exploited by allowing users to design their own layout templates, or by
using learning algorithms to develop auto-customized templates corre-
sponding to individual usage patterns over time. Even further out, we
imagine being able to use the semantic and visual content of the windows
and tasks themselves to provide even more efficient and intelligent layout
choices to the user.

Scaling Up
Our research suggests that increasing display size is associated with larger
numbers of open windows, leading to even more crowded desktops in
the future. Hence, we must create designs that can smoothly scale to
larger numbers of managed windows. As the number of displayed win-
dows increases, any type of fixed bar interface will eventually run out of
space. GroupBar extends the current mechanisms used by the taskbar and
implements two ways of dealing with increasing numbers of windows and
tasks.

On the standard Windows taskbar, the “Group Similar Taskbar But-
tons” option is turned on by default. This option combines all window
tiles belonging to the same application into a single taskbar tile that acts as
a pop-up menu when clicked. Unfortunately, the taskbar “grouping” cri-
teria (namely, the application) has no necessary correlation with the user’s
notion of the task at hand, and consequently no necessary correlation

Figure 4.4
GroupBar context menu allows users to arrange all windows in that Group
according to layout templates. Here the user uses a triple-monitor display in a
horizontal configuration, thus every layout extends across three screens.

ch04.indd 109ch04.indd 109 12/4/2006 1:19:50 PM12/4/2006 1:19:50 PM

110 George Robertson et al.

with the frequency and recency relationships inherent in a user-defined
Group. So although the taskbar’s grouping mechanism does serve to
reclaim space, it actually hinders window and task switching by invalidat-
ing spatial memory and relegating a relatively arbitrary set of windows to
hidden locations regardless of their importance to the task at hand.

Our approach to dealing with large numbers of windows leverages
GroupBar’s knowledge about Groups. Groups have a “collapse” ability
that can be triggered explicitly via the “Collapse Group” command on
the Group context menu or automatically under certain circumstances
(for example, when running out of tile room on a particular bar). Groups
collapse into a more space-efficient representation (as shown vertically in
figure 4.5b and horizontally in figure 4.5c), which shows just the icon of
each window inside the Group tab. The “Auto-Collapse Inactive Groups”
option in GroupBar collapses any Group that does not have a currently
active window. Even relying on a simple “least recently used” Group cri-
terion to collapse only when strictly necessary, we believe the GroupBar’s
features to be an improvement over the existing taskbar.

When the “grouping” strategy is insufficient, the taskbar allows users
to page through sets of tiles using small arrow handles (shown in figure
4.5a). This makes a large number of potentially relevant tiles difficult to
access, and with no feedback as to the current tile “page” number, the
search for an individual tile can be lengthy. Alternatively, the user can
resize the taskbar such that more tiles are visible, but this subtracts direct-
ly from the space used for window content.

Rather than paging through multiple tilesets on the bar or increasing the
individual bar’s size, GroupBar allows multiple simultaneous bar instan-
tiations on different edges of the same desktop. Additional bars, initially
empty, are added using the “Add New Bar” command from the GroupBar
context menu. The user can position the newly created bar on any exter-
nal edge of any monitor, and then populate it using the same drag-and-
drop mechanism as used within a bar. This allows GroupBar to handle a
much larger number of windows and Groups effectively. Following our
principle of trying to better exploit spatial memory, this also complements
and expands upon the simple tile reordering feature by allowing a much
wider range of 2D placement opportunities, either when moved explicitly
by the user or automatically by the system.

ch04.indd 110ch04.indd 110 12/4/2006 1:19:50 PM12/4/2006 1:19:50 PM

Explorations in Task Management 111

First Study Results
We performed two studies involving GroupBar. The first study was a
7–10 day in situ study of five people using GroupBar on their own mul-
tiple-monitor systems with their own work. In this study, our goal was to
determine whether our design of the GroupBar would contradict existing
taskbar users’ expectations, and to determine if the new grouping abilities
would be easy to learn. To that end, we provided our participants with
only the GroupBar executable and a very brief email tutorial on how to
use its grouping features. As the GroupBar prototype was not integrated
with the taskbar itself (which would have required modifications to the
Windows operating system), users were instructed to hide the existing
taskbar when running GroupBar. All participants fulfilled their commit-
ment to use GroupBar as their primary taskbar for one week, and they
did not report any problems with installing GroupBar or understanding
its use. As we had hoped, users were able to easily integrate GroupBar
into their existing work practices, as evidenced by their comments and
grouping habits.

After using GroupBar for a week, four of the participants filled out a
user satisfaction questionnaire about the perceived benefits of the system
and areas in need of improvement. One user did not return his ques-
tionnaire. The user satisfaction findings were favorable, and two of the

Figure 4.5
(a) Taskbar overflow vs. (b, c) Collapsed Groups in GroupBar.

ch04.indd 111ch04.indd 111 12/4/2006 1:19:50 PM12/4/2006 1:19:50 PM

112 George Robertson et al.

participants stated they would like to continue using GroupBar after the
study, despite its rough edges and lack of integration with the real taskbar.
GroupBar scored above average in response to such questions as:

It is useful to be able to group the tiles on GroupBar by dragging them
“on top” of each other.

It is useful to be able to close/open a group of windows all at once.

It is useful to have GroupBar remember a layout for a group of win-
dows, so that they open in the same layout as when the user closed the
group.

GroupBar makes multiple monitors more useful.

On the other hand, users did not report finding utility in having non-
group windows minimize on a group switch, or in running more than one
GroupBar at a time.

We asked users what features of GroupBar most helped them manage
their open windows, and what more we could do to design better win-
dows/task management support into GroupBar, and found several com-
monalities in the responses. Three out of four users talked about their
window groupings, implicitly confirming that they considered the
“Group” concept to be something that was applicable to their work
habits. And virtually all the comments concerning possible improvements
were summed up in two suggestions. The first suggestion was simply that
the GroupBar and taskbar needed to be unified, so that other features of
the taskbar (system notification tray, Start Menu, etc.) were available with
grouping semantics on a single bar. This, of course, represents our vision
all along—the GroupBar prototype was designed to address only the tile
behavior of the taskbar, and would certainly need to incorporate the rest
of the non-tile features of the taskbar to be fully functional and viable as a
taskbar replacement. The second suggested improvement was more com-
plex. Users suggested that GroupBar perform “auto-grouping” in appro-
priate cases, so that the benefits of grouping were available without even
the minimal drag-and-drop effort to create the Groups. It did not appear
from the users’ comments that they thought this would be a particularly
difficult feature to provide, and this is in fact a feature we had considered
during the design phase. We investigated several strategies ranging from
simplistic (always adding new windows to the most recent group) to com-
plex (using window title text similarity to perform grouping) but rejected

•

•

•

•

ch04.indd 112ch04.indd 112 12/4/2006 1:19:50 PM12/4/2006 1:19:50 PM

Explorations in Task Management 113

each strategy as potentially more often wrong than right. We realized that
to be consistently correct an auto-grouping strategy would have to involve
detection and understanding of the user’s intent, an extremely difficult
problem.

Second Study Results
We decided to take the initial feedback from our small field study and get
a more robust understanding of GroupBar’s hypothesized ease of use over
the taskbar. We conducted a comparative lab study with eighteen partici-
pants performing timed tasks using either the taskbar or the GroupBar.
Each task required participants (all experienced Windows users) to switch
between windows within the task in order to complete it; for example,
to copy/paste or to reference another document. In addition, the experi-
menter systematically interrupted the user’s work on one task to prompt
a switch to a different task. We wanted to see whether we could get a
measurable productivity improvement with GroupBar simply by alleviat-
ing some of the built-in task-switching overhead imposed by taskbar’s
constraint of performing task management at the single-window level.
Users commented that the tasks and interruptions forcing the switches
were similar to what they experienced in the real world, so we feel that
the experiment successfully simulated an information worker’s daily task
switching.

We found a borderline significant task completion time advantage for
GroupBar, as shown in figure 4.6. While the quantitative results certainly
could have been stronger, we were very encouraged by the consideration
that GroupBar was technically a “new” tool for task switching, and we
were comparing it against an existing tool that all the participants had
years of daily experience using. Even more encouraging were the results
of the user satisfaction questionnaire. As shown in table 4.1, users signifi-
cantly favored GroupBar over taskbar on every question (as determined
by ANOVA with Bonferroni corrections for multiple tests, all significant
at the p<.05 level).

Finally, GroupBar was unanimously preferred over the taskbar. Despite
this, many participants suggested improvements to GroupBar. Most fre-
quent requests were for color coding or labeling of the different tasks
organized in the bar, and adding tooltips showing document names when
a group is collapsed. These features could easily be added to GroupBar.

ch04.indd 113ch04.indd 113 12/4/2006 1:19:50 PM12/4/2006 1:19:50 PM

114 George Robertson et al.

Several expert users wanted to see better keyboard accelerator support
(like Alt-Tab for switching between Groups) enabled in GroupBar.

Summary
With GroupBar we wanted to allow users to group and regroup windows
easily and quickly, and then allow them to operate on groups of windows
(or tasks) as though they were a single unit. We thought that by incorpo-
rating a wider array of spatial arrangement preferences, offering users a
higher-level organizational structure (the Group), and extending existing
window manipulation functions to the Group level, we could design an
improved window management experience that is built on the existing

Figure 4.6
Average task times +/– one standard error of the mean for taskbar and
 GroupBar.

16

14

12

10

8

6

4

2

0

A
ve

ra
ge

 T
as

k
T

im
e

(S
ec

on
ds

)

Tool

Task Times

Task Bar

GroupBar

Table 4.1
Average Satisfaction Ratings for the Taskbar and GroupBar

Survey Question (1 = Disagree, 5 = Agree)

Task switching was easy to perform using the . . .
It was hard to go back and forth between my various
windows and applications using . . .
I was satisfied with the functionality of the . . .
The [Taskbar/GroupBar] is an attractive innovation
for Windows.

Taskbar

2.95
3.32

2.68
3.16

GroupBar

4.63
1.42

4.42
4.42

Note: All ratings were significantly in favor of GroupBar at the p < .05 level.

ch04.indd 114ch04.indd 114 12/4/2006 1:19:50 PM12/4/2006 1:19:50 PM

Explorations in Task Management 115

taskbar metaphor. We feel that we have achieved these goals: the field
study suggested to us that GroupBar was considered valuable by the par-
ticipants, and the laboratory study allowed us to better verify these ben-
efits in a more controlled setting against familiar, extant techniques. The
studies further provide evidence that software tools like GroupBar can
provide user assistance as users manage multiple, complex tasks. We find
that the task management experience can indeed be improved simply by
addressing the existing constraint that window management mechanisms
operate only at what has increasingly become an unnaturally “low” level
(the level of the individual window).

In the next section, we present Scalable Fabric, a task-management
system designed specifically for future computing display surfaces, when
large displays or wall projections will replace the smaller, more isolated
display surfaces upon which most users interact today.

Scalable Fabric

In designing our second prototype, Scalable Fabric, we moved beyond the
one-dimensional taskbar metaphor dominating current operating systems.
The goal in designing this prototype was to look further into the future
where users would have larger screens containing many more windows.
In an informal study at our corporation (Hutchings et al. 2004), we found
that expert users on larger display surfaces leave more applications run-
ning and have more windows open. For example, we observed in sixteen
users that single-display users tend to keep an average or four windows
open at once, while dual-monitor users keep twelve and triple-monitor
users keep an average of eighteen windows open.

Scalable Fabric is a system based on managing multi-window “tasks”
on the Windows desktop, this time using a focus-plus-context display to
allocate screen real estate in accordance with users’ attention. Scalable
Fabric allows users to leave windows and clusters of windows open and
visible at all times via a process of scaling down and moving the win-
dows to the periphery. Scalable Fabric is a focus-plus-context display in
the sense that users focusing their attention on a primary task are provid-
ed with the context of other work (i.e., competing or potentially related
tasks) displayed in the periphery. This use of the periphery leverages both
the user’s spatial memory and also the user’s visual recognition memory

ch04.indd 115ch04.indd 115 12/4/2006 1:19:51 PM12/4/2006 1:19:51 PM

116 George Robertson et al.

for images in order to facilitate task recognition and location (Czerwinski
et al. 1999). This mechanism was inspired by the scaling at the edges of
the display in Flatland (Mynatt et al. 1999) and by ZoomScapes’ loca-
tion-based scaling mechanism (Guimbretiere, Stone, and Winograd 2001).
While ZoomScapes is not a task-management system, its management of
sheets and groups of sheets is similar to Scalable Fabric’s management of
windows and tasks.

To facilitate task switching, Scalable Fabric allows users to group col-
lections of windows that are used together, much like GroupBar does,
but in a manner that exploits spatial memory much more extensively. We
know from user studies on Data Mountain (Robertson et al. 1998) that
spatial memory works in a virtual environment similarly to the way it
works in the physical world, and that user task performance is enhanced
particularly when the task involves retrieving items placed spatially.

In the remainder of the section, we will first describe details of the Scal-
able Fabric methodology. We present the results of a comparative user
study of Scalable Fabric and the Windows taskbar, as well as a longitudi-
nal field study of Scalable Fabric. Finally, we discuss project directions and
opportunities for future research.

Layout in Scalable Fabric
In Scalable Fabric, the user defines a central focus area on the display sur-
face by moving periphery boundary markers to desired locations. In figure
4.7, these boundary markers are visible (defined by the thin blue rect-
angle), but users usually hide the boundary markers unless they are chang-
ing the size or shape of the focus area, in which case the markers serve as
resize handles. The user’s choice of location and size of focus area is typi-
cally influenced by the configuration and capabilities of the physical dis-
plays. For example, on a triple-monitor display, users may prefer to define
the central monitor as the focus area having no upper or lower peripheral
regions and use the side monitors as the only peripheral regions.

Within the focus area, windows behave as they normally do on the
Windows desktop. The periphery contains windows and clusters of win-
dows, or tasks, which are not currently in use, but may be put to use at
any time. Windows in the periphery are smaller so that more tasks can be
held there when the user is focusing on something else. With this meta-
phor, we believe users will rarely need to close or minimize windows in

ch04.indd 116ch04.indd 116 12/4/2006 1:19:51 PM12/4/2006 1:19:51 PM

Explorations in Task Management 117

the traditional sense. Users can take advantage of extra screen real estate,
especially on larger displays, to allow the peripheral windows to always
be visible.

When a user moves a window into the periphery, it shrinks monotoni-
cally with the distance from the focus-periphery boundary, getting smaller
as it nears the edge of the screen. When the user clicks on a window in
the periphery, it returns to its last focus position; this is the new “restore”
behavior, and is accomplished with a one-second animation of the window
moving from one location to the other. When the user “minimizes” a
window in the focus area, for example, by clicking the window’s “mini-
mize” button, it returns to its last peripheral position.

Task Formation in Scalable Fabric
Scalable Fabric uses natural metaphors and gestures that allow users to
define, access, and switch between tasks. To define tasks, windows in the
periphery are grouped into clusters enclosed with a colored banner (see
figures 4.8 and 4.9). To create a new task, the user simply moves a window
in the periphery near another that is not in a task. The user can then name

Figure 4.7
Scalable Fabric showing the representation of three tasks as clusters of windows,
with one of the windows from the Colleges task shown in the focus area. In this
case, an option to display the border of the central focus region is turned on.

ch04.indd 117ch04.indd 117 12/4/2006 1:19:51 PM12/4/2006 1:19:51 PM

118 George Robertson et al.

the implicitly created task. Until the task is named, it is ephemeral. That
is, if the number of items in the task is reduced to one then the task will
be removed (i.e., the task marker will disappear). Moving a window near
any task marker makes it part of that task. This behavior makes it easy for
users to construct tasks by dragging and dropping windows onto existing
windows or clusters of windows.

Task Organization in Scalable Fabric
When a window is moved into the periphery, other windows temporarily
move out of the way. This is similar to the occlusion avoidance behav-
ior employed in Data Mountain (Robertson et al. 1998), and it makes it
impossible to obscure one peripheral window with another.

When clusters are moved around, they avoid each other similarly to
the way windows avoid one another, except that the stationary cluster
remains in position, and the moving cluster moves around it. For moving
and scaling windows and clusters in Scalable Fabric, we considered find-
ings from ZoomScapes (Guimbretiere, Stone, and Winograd 2001). As
windows are rectangles rather than points, it is important to identify the
point about which scaling occurs. Like ZoomScapes, Scalable Fabric uses
the cursor location (i.e., the drag point) as the scale point. We experi-
mented with several alternatives and concur with the earlier work that the
cursor position is the most useful scale point.

When moving a cluster, scaling the windows in the cluster is not suffi-
cient. ZoomScapes scales the distance between the center of the sheets and
the cursor dragging point. In Scalable Fabric, we achieve a more pleasing
effect by scaling the distances from the window centers to the center of the
cluster. That is, as the cluster gets smaller, the windows move closer togeth-
er. When a window moves across the scaling boundary, an abrupt change
in scale is disconcerting. ZoomScapes solves this by having a bridge zone
where a sharp ramp in scaling is applied. Scalable Fabric uses a different
approach, and applies a half-second transition animation to the new scale.
This appears to be more graceful than the ramp-zone approach.

Task Switching in Scalable Fabric
In Scalable Fabric, users can use natural gestures to access and toggle
among tasks. When a user clicks on a task marker, the entire task is select-
ed, restoring its windows to their focus positions. If the user clicks on

ch04.indd 118ch04.indd 118 12/4/2006 1:19:51 PM12/4/2006 1:19:51 PM

Explorations in Task Management 119

a task marker when all of its windows are currently in the focus area,
each window in the cluster returns to its peripheral position. If one task
is selected and the user clicks on a different task marker, a task switch
occurs, that is, all windows of the current task move to their peripher-
al positions, and the windows comprising the task being selected in the
periphery move to their previous configuration in the focus area.

Iterative Design
We have pursued a process of iterative design for refining and testing ver-
sions of Scalable Fabric. To date, we have created three implementations
of the system.

The first version of Scalable Fabric was a prototype that worked with
images of windows, which allowed us to refine the visual design and
interaction behaviors. Informal studies were conducted to collect usability
issues to drive the second design iteration. While users understood the
basic ideas, they had significant problems understanding the task marker,
which was a 3D card holder.

The second design worked with real windows on the Windows Desk-
top. A user study comparing Scalable Fabric to the Windows XP taskbar
suggested that Scalable Fabric was easily learned and considered valu-
able by the participants, but several usability issues were noted. The task
marker was redesigned to be like a flagpole, but test participants still had
problems identifying what it was. In addition, we found that the task
occlusion avoidance behavior caused confusion. In this version, while a
task was being moved, other tasks would move out of its way (similar to
the way peripheral windows avoided each other to prevent occlusion of
windows). A study showed no significant difference in task performance
time between the two approaches.

The third version of Scalable Fabric (shown in the figures) was devel-
oped as a set of refinements on the second design. Figure 4.8 shows a
close-up of the appearance of windows and task markers, with the cursor
hovering over one window to show its title tooltip. Most of the time the
task marker appears as displayed in figure 4.9. However, if the user hovers
over the marker or moves a window into the task group, a box appears as
rendered in figure 4.9. Based on feedback from the first two designs, the
task marker is much simpler in the final design. Also, we redesigned task
occlusion avoidance so that the moved task avoids other tasks, rather than

ch04.indd 119ch04.indd 119 12/4/2006 1:19:51 PM12/4/2006 1:19:51 PM

120 George Robertson et al.

Figure 4.8
Close-up of task (third design).

Figure 4.9
Task-highlighting during hover.

ch04.indd 120ch04.indd 120 12/4/2006 1:19:51 PM12/4/2006 1:19:51 PM

Explorations in Task Management 121

having the others tasks move out of the way. Test participants found this
much more intuitive.

To gather further information about how people actually use virtual
desktop managers, and to begin to understand in a more detailed manner
how Scalable Fabric might be used in real situations, we conducted a
longitudinal study with thirteen participants using their real systems and
tasks. This study revealed new opportunities for design iteration. Specifi-
cally, as core issues with the design are addressed, system performance and
bug fixes have become more important to our end users.

A version of Scalable Fabric was released for public use in 2005. During
the four months following its release, approximately 11,300 people have
downloaded and used it. The response has generally been favorable, with
most users continuing to use it. However, several implementation-specific
performance and behavior problems have led some people to stop using
the prototype after an evaluation period. Some of these problems can be
addressed with changes to the current implementation, but others will
require rewriting Scalable Fabric as a replacement for the legacy window
manager.

Next Steps
Scalable Fabric provides basic task management, using a focus-plus-con-
text spatial metaphor. Windows in the central focus area behave as usual,
while windows in the display periphery are scaled-down, “minimized”
windows. By requiring less space, peripheral windows can remain open
and live. Task switching is accomplished using a single mouse click. Two
user studies have provided guidance for the iterative design of Scalable
Fabric and suggest that users prefer this approach to the standard Win-
dows taskbar, especially for multiple monitors or large displays. The stud-
ies have also identified problems that still need to be addressed. Many of
these problems can be attributed to the decision to build Scalable Fabric
on top of an existing window manager rather than building it within or
replacing the window manager.

A future implementation of Scalable Fabric will address these issues.
However, it is also interesting to explore what future desktop interactions
might be possible now that powerful graphics cards and better render-
ing support are available, making virtual 3D desktops a viable alternative

ch04.indd 121ch04.indd 121 12/4/2006 1:19:51 PM12/4/2006 1:19:51 PM

122 George Robertson et al.

candidate to the typical desktop user interface. We address this in the next
section with the Task Gallery.

Task Gallery

Similar to Scalable Fabric, Task Gallery creates a visible representation of
a task and allows users to switch easily between tasks. The Task Gallery
also takes advantage of the user’s spatial memory for task management. In
the Task Gallery (figure 4.10), the current task is displayed on a stage at
the end of a virtual art gallery. It contains opened windows for that task.
Other tasks are placed on the walls, floor, and ceiling of the gallery. The
user switches to a new task by clicking on it, which moves it to the stage.
Viewing multiple windows simultaneously is done with a button click,
and uses automatic layout and movement in the 3D space to provide uni-
form and intuitive scaling. Applications and frequently used documents
are kept in a Start Palette carried in the user’s virtual left hand. Studies

Figure 4.10
The Task Gallery.

ch04.indd 122ch04.indd 122 12/4/2006 1:19:51 PM12/4/2006 1:19:51 PM

Explorations in Task Management 123

suggest that users are enthusiastic about the Task Gallery, that it is easy
to navigate the space, and that it is easy to find tasks and switch between
them.

Task Gallery Design
The choice of a navigable spatial metaphor was motivated by a desire to
leverage human spatial memory. An art gallery was chosen because of
its familiarity. To increase ease of retrieval, the Task Gallery includes the
images of documents and tasks in the space in addition to their spatial
location and title cues. Classical mnemonic research has documented that
mental cues in the form of visual images are an excellent way to enhance
memory for items (Patton 1990). Our previous studies have shown the
strong influence of snapshot/thumbnail cues to aid spatial memory during
the storage and retrieval of web pages (Czerwinski et al. 1999).

The existing Windows desktop metaphor uses menus (especially the
Start Menu) and toolbars to give the user access to commonly used tools
and documents. To better fit the metaphor of moving through a hallway
and using an adaptation of Glances and Toolspaces (Pierce et al. 1999),
we designed the Task Gallery so that the user carries tools and documents
associated with the virtual body. Glances are a lightweight, ephemeral
way of looking around in a virtual environment without moving the vir-
tual body. Toolspaces are placed around the user and hold various tools or
objects, keeping them associated with the virtual body as it moves through
the virtual environment.

The Task Gallery has toolspaces to the left, right, above, and below
the user. Hands and feet are shown to make the scale of the objects in the
toolspaces more obvious and to suggest that these tools stay with the user
as he navigates the environment. In the Task Gallery, glances are initiated
with the controls shown in figure 4.11. Glances remain in effect until the
user selects something in a toolspace or glances elsewhere.

The left toolspace contains the “Start Palette,” which is a Data Moun-
tain (Robertson et al. 1998) with the appearance of an artist’s palette
(figure 4.12). The original Data Mountain was a tilted 3D plane in hold-
ing favorite web pages. The objects on the Start Palette are icons and snap-
shots for applications, favorite documents, or web pages. The behavior of
the Start Palette is similar to a Data Mountain, including object movement
and occlusion avoidance. The only difference is that selecting an object

ch04.indd 123ch04.indd 123 12/4/2006 1:19:52 PM12/4/2006 1:19:52 PM

124 George Robertson et al.

Figure 4.11
Onscreen 3D navigation controls appear in the lower left corner of the screen.

Figure 4.12
Start Palette—A Data Mountain, held in the user’s left-hand toolspace.

ch04.indd 124ch04.indd 124 12/4/2006 1:19:52 PM12/4/2006 1:19:52 PM

Explorations in Task Management 125

from the Start Palette causes an application to launch with its window(s)
in the current task. When an application is launched, the glance is ter-
minated. Our user testing demonstrated that participants learned to add
applications and documents to their tasks easily using the Start Palette.
Earlier studies of Data Mountain (Robertson et al. 1996) suggest that
users should be able to find icons on the Start Palette much faster than in
the traditional Start Menu.

Task Formation in Task Gallery
New tasks can be created by picking the “new task” item on a menu
or on the Start Palette. A background image is chosen by the system to
distinguish the new task from existing tasks. The user’s desired location
of the new task is not yet known, so it is placed on the floor in front of
the stage. Other tasks on the floor are moved back away from the stage
to make room for the new task. This is done with a three-step animation:
move the camera back to make the action visible, move the tasks on the
floor back and place the new task on the floor, and finally do a task switch
as described earlier. The three-step animation was implemented as a result
of user testing, and greatly improved the usability of task creation. We
assume that the user will move the task to a more appropriate location in
the gallery later.

Task Organization in Task Gallery
The user can move tasks wherever desired with a dragging movement.
Tasks are constrained to the walls, floor, or ceiling, but can be moved
between these surfaces in a way inspired by Object Associations (Bukows-
ki and Sequin 1995). The transition from wall to floor, for example,
causes the task to shift to the appropriate orientation on the floor. Task
frames are tilted outward so that they are more legible from a distance.
Task frames on walls are mounted on a stand to make the metaphor more
obvious and to ground them visually in depth. Segmentation of the gal-
lery into separate rooms, grouping of task windows into mounted pieces
of artwork, and using distinctive backgrounds all provide landmark and
spatial cues that act as memory aids.

Users (especially non-gamers) tend to get lost in many 3D systems that
require them to navigate. We avoid this problem by keeping the space

ch04.indd 125ch04.indd 125 12/4/2006 1:19:52 PM12/4/2006 1:19:52 PM

126 George Robertson et al.

simple (a linear hallway), by choosing a metaphor appropriate for the
context (viewing art in a gallery), and by constraining the navigation.
Thus, we provide a few simple controls rather than a general egocentric
navigation mechanism. Figure 4.11 shows these on-screen controls, which
allow the user to “jump” backward, forward, home (primary view), and
to a bird’s-eye view showing all the tasks in the Task Gallery. Each jump
control starts a one-second camera animation from the current position
to the desired target. Our studies showed that users did not become dis-
oriented in the 3D space when using these controls, and that they could
easily find their desired tasks.

Switching Tasks in Task Gallery
In the Task Gallery, switching between tasks and viewing multiple win-
dows simultaneously are simple actions. In addition, the Task Gallery pro-
vides a strong spatial framework for encoding location information and
front-to-back relationships, thereby engaging the user’s spatial memory to
help retrieve tasks and services. Task switching is accomplished by clicking
on the frame in the gallery. A one-second animation is used to reenforce
the spatial metaphor. The current task is closed by creating a snapshot
which is moved back to the task’s frame in the gallery. The newly selected
task is then moved from its frame to the stage. When it arrives at the stage,
it is transformed from artwork into live windows. A “ghosted” view of
the task remains in the gallery, to mark the spot that it came from.

The initial and primary working view is a close-up of the stage (figure
4.14), showing the current task and its live windows. To view other tasks,
the user backs up to see more of the gallery, as in figure 4.10. The gallery is
composed of a sequence of rooms, with only one closed end; more rooms

Figure 4.13
Window manipulation controls appear over a window banner when the user
points to it.

ch04.indd 126ch04.indd 126 12/4/2006 1:19:52 PM12/4/2006 1:19:52 PM

Explorations in Task Management 127

are revealed without limit as the user moves back. This provides a simple
way of managing the user’s attention. As the user backs away, attention is
widened. Moving to the stage focuses attention on the current task.

Layout in Task Gallery
The current task on the stage has several components, including a loose
stack, an ordered stack, and a selected windows set. The loose stack is
used for overlapped windows in much the same way as the current desk-
top metaphor. These windows are mounted on stands to visually ground
them to the stage. Clicking on one of these windows will bring it forward
to a selected window position, replacing the current selected window.
The window manipulation controls shown in figure 4.13 are used for
moving windows around and placing them on various stacks. These con-
trols appear over the window banner when the user points to the banner.
Windows in the loose stack can be directly moved anywhere on the stage.
Using a technique similar to Point of Interest object movement (Mackinlay,

Figure 4.14
The stage with an ordered stack and one selected window.

ch04.indd 127ch04.indd 127 12/4/2006 1:19:52 PM12/4/2006 1:19:52 PM

128 George Robertson et al.

Card, and Robertson 1990), the mouse controls movement in the plane
perpendicular to the line of sight, and the shift and control keys control
movement toward or away from the user.

The ordered stack appears to the left of the stage, as shown in figure
4.14. Users choose to place windows in the ordered stack to keep cur-
rently unused windows organized (e.g., open email messages). If one of
the windows on the podium is moved, the stack is tidied to have a fixed
distance between each window. Clicking on a page in the ordered stack
moves it to the selected window region.

When windows are selected, the system moves them closer to the user
for greater legibility. Multiple windows can be selected using the “Add to
Selection” icon in figure 4.13. Each time a window is added, an automatic
layout moves the windows so they are all visible side by side (figure 4.15).
Unlike tiled window managers that crop windows and may force users to
scroll, this operation does not affect what is visible in selected windows.
Thus we use distance in 3D to provide uniform scaling in an intuitive way.

Figure 4.15
Multiple selected windows.

ch04.indd 128ch04.indd 128 12/4/2006 1:19:53 PM12/4/2006 1:19:53 PM

Explorations in Task Management 129

Task Gallery User Studies
Our first three studies examined task management before and after vari-
ous usability issues were resolved. The third study took place several
months after the first two, and included evaluation of features added in
response to the first two studies (e.g., icon identification). In addition, we
were interested in how spatial cognition pertains to 3D environments like
the Task Gallery, and whether or not aspects of real-world spatial location
memory transfer to electronic environments.

We were interested specifically in how well users could create and
modify tasks and arrange the overall task space. In addition, detailed
information about organizing and retrieval strategies was collected to
support those strategies in future designs. We wanted to know whether
organizing strategies were based on frequency, size, type of content, or
time. While the art gallery metaphor suggests use of the walls over the
floor and ceiling, previous research suggests that certain bodily axes are
considered primary in the real world (Bukowski and Sequin 1995; Feiner
et al. 1993). We wanted to know if participants’ organizing strategies and
subsequent retrieval performance and representation of the space related
to properties of the metaphor or to up–down, front–back, and left–right
axes relative to the user’s orientation in the space.

User Study 1 and 2 Results

Method Eleven participants (five female) between the ages of 16 and
65 participated—five participants evaluated the first iteration prototype,
and six participants evaluated the second iteration prototype. Two proto-
type versions of the Task Gallery, which used “snapshots” of documents,
were fully interactive except that the applications were not live. During
the experimental trials, users created tasks, organized the tasks in a way
that was meaningful to them, retrieved eight tasks and their specific con-
tent items, and finally carried out various Windows operations. After the
first experimental trial, we asked users to draw what the hallway looked
like to them, and what location and orientation they had within the hall-
way. At the end of the session, users drew their information layout in the
hallway in as detailed a manner as they were able. In addition, they filled
out a user satisfaction questionnaire.

ch04.indd 129ch04.indd 129 12/4/2006 1:19:53 PM12/4/2006 1:19:53 PM

130 George Robertson et al.

Between the first and second study, several changes were made to the
prototype in response to observed user problems. We changed the manner
in which tasks were created, named, and labeled when selected.

Participants placed significantly more tasks on the left and right walls of
the gallery than the ceiling or floor. This tendency to conform to the way
space is typically used in a real-world gallery suggests that participants
were using the metaphor to guide interaction. Legibility was the same on
walls, floor, and ceiling in these two studies.

Participants’ organization of tasks involved spatially grouping related
tasks. Tasks that “went together” were placed close together on the same
surface. A variety of organizational strategies were observed including
ordering by frequency of use, location of use (i.e., home versus work),
semantic relations, and alphabetical. Furthermore, most participants used
more than one organizing strategy.

Eighteen percent of the tasks were recalled but placed incorrectly.
Analysis of those errors showed that it was more difficult to remember
whether a task had been placed on the left or right wall than to remember
its depth order (i.e., was it closest to the stage, next closest, and so on).
Ninety-two percent of the placement errors were due to drawing tasks on
the wrong wall. Only 8 percent of these errors were due to drawing tasks
in the wrong relative depth order. This is consistent with the literature on
memory for spatial arrays (Franklin and Tversky 1990; Siegel and White
1975), which finds that front–back relations are easier to remember than
left–right relations. This supports our design by showing that users lever-
age the front–back relations afforded by the use of 3D to represent and
recall task location.

Overall, user satisfaction ratings were positive, given that this is the first
evaluation of the prototype. Average satisfaction ratings were 4.9 for both
the first and second iterations, using a 7-point scale, with 7=positive.

User Study 3 Results—Live Task Gallery
Nine participants (three female) between the ages of 16 and 52 partici-
pated in this iteration of testing with a version of the system including
live Windows applications. For this study, eight tasks and their contents
were identified and created prior to the study. Tasks typically contained
between 5 and 11 documents (like Word documents, Excel spreadsheets,
web pages, and email). Note that this iteration of testing included many

ch04.indd 130ch04.indd 130 12/4/2006 1:19:53 PM12/4/2006 1:19:53 PM

Explorations in Task Management 131

more documents in tasks than the previous two iterations, as we were
interested in how the Task Gallery might scale up to larger numbers of
documents. Therefore, we did not attempt any quantitative comparisons
to the previous two iterations.

On average, users identified the windows control icons (figure 4.13) 44
percent of the time and matched the icons correctly 48 percent of the time.
Given the users had not seen the Task Gallery and did not know what
could be done in the environment at the time of the icon evaluation, this
is not a surprising result. After using the system for under ten minutes, all
users understood how the novel 3D windows controls operated and what
their unique functions were.

Satisfaction ratings were higher with this iteration. The overall average
satisfaction ratings were 5.3 (standard deviation = 1.4) using a 7-point
scale, with 7= positive. On average, users rated the Task Gallery as pref-
erable to their current Windows software (average = 5.0, 7= prefer Task
Gallery).

We asked participants where they had laid out their tasks at the end
of the session, and why they chose those spatial locations. The majority
of the participants felt that placing tasks on the ceiling or floor would
violate the Task Gallery metaphor. Some participants simply did not like
the idea of tasks lying on the floor. Two participants, however, mentioned
that tasks on the ceiling and floor were more difficult to read, due to the
angle at which they are placed. This was not true in the prototype tested
in experiments 1 and 2. Legibility problems arose in the final version of
the system as a result of addressing some serious texture management
issues.

Discussion
The Task Gallery is an exploration of the use of 3D virtual environments
for window and task management. It is motivated by the desire to lever-
age human spatial cognition and perception and to take advantage of the
coming ubiquity of 3D graphics hardware for more than computer games.
User tests suggest that the Task Gallery does help with task management
and is enjoyable to use. But we have only scratched the surface.

In our usability studies we observed users exhibiting many of the same
principles of spatial cognition as are exhibited in the real world. Users had
a strong sense of front-to-back ordering of their tasks, rarely confusing

ch04.indd 131ch04.indd 131 12/4/2006 1:19:53 PM12/4/2006 1:19:53 PM

132 George Robertson et al.

that ordering in memory. We will continue to explore metaphors leverag-
ing users’ real-world knowledge in our future 3D environments.

One of the key technical challenges in building a 3D window manager is
to get existing applications to work in the 3D environment without chang-
ing or recompiling them. This requires both output and input redirection
facilities in the operating system. Output redirection requires notification
whenever an application has updated its visual display, so that the system
can force applications to render to off-screen bitmaps for use as textures in
the 3D environment. Input redirection causes mouse and keyboard events
to be received by an application rather than the 3D environment’s main
window, but with mouse coordinates translated from 3D to 2D.

There are several improvements we plan to make to the Task Gallery.
We have seen that better landmarks could make a significant difference in
helping users remember on which wall they placed tasks. Also, the Data
Mountain occlusion avoidance algorithm can be used to help avoid occlu-
sion problems while moving task frames.

Our goal was to design a 3D window manager that solves two prob-
lems with the current desktop metaphor: task management and compari-
son of multiple windows. The Task Gallery is a first-generation system
that addresses these issues and is built on a general-purpose application
redirection technology which will allow us to explore alternative user
interfaces for application environments.

Task Persistence

Any task management system that loses all its accumulated task knowl-
edge on reboot is ultimately of limited utility. Microsoft Windows, like
most common operating systems today, does not offer any standardized
mechanisms for encapsulating the state of a particular running window in
a way that can be persisted or recreated—indeed, to be useful, any such
mechanism would require the application developer’s cooperation —so
there is currently no ideal solution to the problem of task persistence. The
three systems we describe in this chapter are all built on top of unmodified
Windows systems, and hence are limited in the range of task persistence
solutions they offer.

We designed GroupBar explicitly with quick, lightweight interaction
mechanisms to keep the organizational effort low and hopefully thereby

ch04.indd 132ch04.indd 132 12/4/2006 1:19:54 PM12/4/2006 1:19:54 PM

Explorations in Task Management 133

to encourage even transient Groups. However, some tasks are longer-
term and require a persistence mechanism. We introduced the idea of the
“Snapshot,” which is a time-stamped, binary file containing a sequence
of window titles, window positions, window thumbnails, window persis-
tence strings, and Group membership information. We use a number of
techniques to try to extract from a window the persistence strings neces-
sary to re-create it. We attempt to save off both the name and path for
the application that owns the window, as well as the “document” string
representing the current content of the window. We also allow the user
to write in custom persistence strings in cases where our techniques are
insufficient. To surface Snapshots in the interface, we added a permanent,
top-level button to GroupBar, displaying a camera icon that invokes a
dialogue to allow the user to select individual windows, individual groups,
or all windows and groups on the bar for Snapshot inclusion. A second,
top-level button (labeled “List . . .”) launches a Snapshot explorer that
provides a list of existing Snapshots with their accompanying properties
and graphical previews of the contained windows. The user can select
the “Restore” command from this explorer to reposition or relaunch the
windows for any selected Snapshot.

In Scalable Fabric, rather than attempting to solve the general persis-
tence problem, we simply save window position, size, and title informa-
tion for windows and tasks that are running. This information is updated
whenever a window is created or moved, or when a task is selected or
changed. When Scalable Fabric is restarted, if an open window of the
same title is discovered, it will be restored to the last state it was rendered
within Scalable Fabric. If the window is not present, Scalable Fabric
does not try to start the application and restore its running state. This
approach means that Scalable Fabric can be terminated and restarted,
and all states will be restored. However, if the user logs off or reboots the
machine, Scalable Fabric will not be able to restore the state, although
the task markers will remain. Obviously, the Snapshot or window persis-
tence strings used by GroupBar could also be used for Scalable Fabric in
a future version.

Task Gallery takes an intermediate approach, recording and storing the
information used to launch an application. This is similar to GroupBar’s
approach, except that no provision was made for modifying the persis-
tence strings used for restarting applications.

ch04.indd 133ch04.indd 133 12/4/2006 1:19:54 PM12/4/2006 1:19:54 PM

134 George Robertson et al.

These interim solutions are far from ideal. Some Windows applications
allow inspection of their open documents through various COM inter-
faces. It is also possible that this can be done by tracking file opening and
closing and window creations, but this approach is difficult without modi-
fying existing applications. Additionally, applications often allow the user
to change what files are open, and some even provide a sophisticated form
of window management within the application with could conceivably
be useful to persist. Without some standard way of getting at the state of
open files and subwindows within an application, it is extremely difficult
to solve the general problem. In the original Rooms system (Henderson
and Card 1987), the operating system environment (a Lisp-based OS) pro-
vided the necessary application and document information to allow the
system on relaunch to restore the Room state exactly as the user last saw
it, providing a certain system-wide level of persistence support. However,
at the individual window or task level, the persistence problem can be
even more complex than that. Ideally, a robust task-management persis-
tence model would need to allow subsets of working items to be flexibly
named, persisted, modified, and recalled. It would also need to allow for
different granularities of persistence: for example, when a user tries to
persist a collection of open web-browser windows, the desired long-term
information might be the current content of the windows’ web pages, or
it might be just the URLs that the windows point to, or it might even be
just the physical layout of the multiple browser windows. Ultimately, we
need operating system modifications that permit applications to reveal
and restore their state, and for applications to be written so that their state
is available for task-management systems to inspect and use.

Conclusion

As display costs drop and processors and video cards continue to increase
in power, the use of multiple-monitor systems or larger displays is likely
to increase. It would be difficult to understand how (or, in fact, whether)
to design for this coming change if one does not understand both how
people generally interact with and manage windows, and how multiple
monitor practices differ from those of the past. The overall value of the
results we present in this chapter is in gaining starting points from which
to further investigate these practices, similarities, and differences. We

ch04.indd 134ch04.indd 134 12/4/2006 1:19:54 PM12/4/2006 1:19:54 PM

Explorations in Task Management 135

have also presented several ideas for how to begin novel user-interface
designs that leverage how users interact with windows across variable
display sizes.

In the three designs presented in this chapter, we have assumed that
users manually identify tasks by grouping windows and perhaps naming
the groups. Many users and test participants have requested tools that
automatically do the grouping, or at least suggest groupings. We have
begun research on monitoring user activity and semi-automatically deriv-
ing task groupings, for example, by observing clustering of window inter-
actions over time. However, much research remains to be done to make
this work effectively.

For each design (GroupBar, Scalable Fabric, and Task Gallery), we dis-
cussed how task-switching support was improved over existing tools, in
addition to areas where each design could iteratively be improved. In com-
bination, we have seen ample evidence that software support for rapid
and repeated task switching is of great value to desktop PC information
workers, and that the time has come to incorporate many of these research
ideas into commercially available products.

Acknowledgments

We gratefully acknowledge Maarten van Dantzich, Ken Hinckley, Kirsten
Risden, David Thiel, and Vadim Gorokhovsky for contributions to the
development of Task Gallery, and Dugald Hutching for contributions to
the development of Scalable Fabric.

References

Bannon, L., Cypher, A., Greenspan, S., and Monty, M. (1983). Evaluation and
analysis of user’s activity organization. In Proceedings of CHI ’83, pp. 54–57.
New York: ACM.

Baudisch, P., Good, N., and Stewart, P. (2001). Focus plus context screens:
Combining display technology with visualization techniques. In Proceedings of
UIST’01, pp. 31–40. New York: ACM.

Bederson, B., and Hollan, J. (1994). Pad++: A zooming graphical interface for
exploring alternative interface physics. In Proceedings of UIST ’94, pp. 17–26.
New York: ACM.

Bell, B., and Feiner, S. (2000). Dynamic space management for user interfaces. In
Proceedings of UIST ’00, pp. 238–248. New York: ACM.

ch04.indd 135ch04.indd 135 12/4/2006 1:19:54 PM12/4/2006 1:19:54 PM

136 George Robertson et al.

Bly, S., and Rosenberg, J. (1986). A comparison of tiled and overlapping windows.
In Proceedings of CHI ’86, pp. 101–106. New York: ACM.

Bukowski, R., and Sequin, C. (1995). Object associations: A simple and practi-
cal approach to virtual 3D manipulation. In Proceedings of 1995 Symposium on
Interactive 3D Graphics, pp. 131–138. New York: ACM.

Card, S. K., and Henderson, A. H., Jr. (1987). A multiple, virtual-workspace inter-
face to support user task switching. In Proceedings of CHI+GI 1987, pp. 53–59.
New York: ACM.

Card, S., Robertson, G., and York, W. (1996). The WebBook and the Web For-
ager: An information workspace for the World-Wide Web. In Proceedings of CHI
’96, pp. 111–117. New York: ACM.

Cutrell, E., Czerwinski, M., and Horvitz, E. (2001). Notification, disruption,
and memory: Effects of messaging interruptions on memory and performance. In
Human-Computer Interaction—Interact ’01, pp. 263–269. IOS Press.

Czerwinski, M., Cutrell, E., and Horvitz, E. (2000). Instant messaging and inter-
ruption: Influence of task type on performance. In Proceedings of OZCHI 2000,
Paris, C., Ozkan, N., Howard, S., and Lu, S. (eds.), pp. 356–361. Sydney, Austra-
lia, Dec. 4–8.

Czerwinski, M., and Horvitz, E. (2002). Memory for daily computing events.
In People and Computers XVI: Proceedings of HCI 2002, Faulkner, X., Find-
lay, J., and Detienne, F. (eds.), pp. 230–245. September 2–6. London: Springer-
Verlag.

Czerwinski, M., Horvitz, E., and Wilhite, S. (2004). A diary study of task switching
and interruptions. In Proceedings of CHI ’04, pp. 175–182. New York: ACM.

Czerwinski, M., van Dantzich, M., Robertson, G., and Hoffman, H. (1999). The
contribution of thumbnail image, mouse-over text, and spatial location memory
to web page retrieval in 3D. In Proceedings Interact ’99, pp. 163–170, August
30–September 3. London: Springer-Verlag.

Feiner, S., MacIntyre, B., Haupt, M., and Solomon, E. (1993). Windows on
the world: 2D windows for 3D augmented reality. In Proceedings of UIST ’93,
pp. 145–155. New York: ACM.

Franklin, N., and Tversky, B. (1990). Searching imagined environments. Journal
of Experimental Psychology: General 199: 63–76.

Gillie, T., and Broadbent, D. (1989). What makes interruptions disruptive? A
study of length, similarity, and complexity. Psychological Research 50: 243–250.

Guimbretiere, F., Stone, M., and Winograd, T. (2001). Fluid interaction with
high-resolution wall-size displays. In Proceedings of UIST’01, pp. 21–30. New
York: ACM.

Henderson, D. A., Jr., and Card, S. K. (1987). Rooms: The use of multiple virtual
workspaces to reduce space contention in a window-based graphical user inter-
face. ACM Transactions on Graphics 5 (3): 211–243.

Hutchings, D. R., and Stasko, J. (2004). Revisiting display space management:
Understanding current practice to inform next-generation design. In Proceedings

ch04.indd 136ch04.indd 136 12/4/2006 1:19:54 PM12/4/2006 1:19:54 PM

Explorations in Task Management 137

of Graphics Interface 2004, London, Ontario, Canadian Human Computer Com-
munications Society, pp. 127–134, May 17–19.

Hutchings, D. G., Smith, G., Meyers, B., Czerwinski, M., and Robertson, G.
(2004). Display space usage and window management operation comparisons
between single monitor and multiple monitor users. In Proceedings of AVI 2004,
Gallipoli, Italy. pp. 32–39, May 25–28.

Kandogan, E., and Shneiderman, B. (1997). Elastic Windows: Evaluation of multi-
window operations. In Proceedings of CHI ’97, pp. 250–257. New York: ACM.

Mackinlay, J., Card, S., and Robertson, G. (1990). Rapid controlled movement
through a virtual 3D workspace. SIGGRAPH ’90, pp. 171–176. New York:
ACM.

Maglio, P. P., and Campbell, C. S. (2000). Tradeoffs in displaying peripheral infor-
mation. In Proceedings of CHI ’00, pp. 241–248. New York: ACM.

Morris, J., Satyanarayanan, M., Conner, M., Howard, J., Rosenthal, D., and
Smith, F. (1986). Andrew: Distributed personal computing environment. CACM
29 (3): 184–201.

Myers, B. (1988). Window interfaces: A taxonomy of window manager user inter-
faces. IEEE Computer Graphics and Applications 8 (5): 65–84.

Mynatt, E., Igarashi, T., Edwards, W., and LaMarca, A. (1999). Flatland: New
dimensions in office whiteboards. In Proceedings of CHI ’99, pp. 346–353. New
York: ACM.

Patton, B. M. (1990). The history of memory arts. Neurology 40: 346–352.

Pierce, J., Conway, M., van Dantzich, M., and Robertson, G. (1999). Toolspaces
and glances: Storing, accessing, and retrieving objects in 3D desktop applications.
In Proceedings of Symposium on Interactive 3D Graphics, April 1999, pp. 163–
168. New York: ACM.

Rekimoto, J. (1999). Time-machine computing: A time-centric approach for the
information environment. In Proceedings of UIST ’99, pp. 45–54, New York:
ACM.

Ringel, M. (2003). When one isn’t enough: An analysis of virtual desktop usage
strategies and their implications for design. In CHI Extended Abstracts 2003,
pp. 762–763. New York: ACM.

Robertson, G., Card, S., and Mackinlay, J. (1993). Information visualization using
3D interactive animation. CACM 36 (4): 57–71.

Robertson, G., Czerwinski, M., Larson, K., Robbins, D., Thiel, D., and van Dantz-
ich, M. (1998). Data Mountain: Using spatial memory for document management.
In Proceedings of UIST ’98, pp. 153–162. New York: ACM.

Robertson, G. van Dantzich, M., Robbins, D., Czerwinski, M., Hinckley, K.,
Risden, K., Thiel, D., and Gorokhovsky, V. (2000). The Task Gallery: A 3D
window manager. In Proceedings of CHI ’00, pp. 494–501. New York: ACM.

Siegel, A., and White, S. (1975). The development of spatial representations of
large-scale environments. In H. Reese (ed.), Advances in Child Development and
Behavior, vol. 10, pp. 9–55. New York: Academic Press.

ch04.indd 137ch04.indd 137 12/4/2006 1:19:54 PM12/4/2006 1:19:54 PM

138 George Robertson et al.

Smith, G., Baudisch, P., Robertson, G., Czerwinski, M., Meyers, B., Robbins,
D., and Andrews, D. (2003). GroupBar: The taskbar evolved. In Proceedings of
OZCHI ’03, Brisbane, Australia, Nov. 26–28.

Teitelman, W. (1986). Ten years of window system—A retrospective view. In Hop-
good, F., Duce, D. Fielding, E. Robinson, K., and Williams, A. (eds.), Methodology
of Window Management. Berlin: Springer-Verlag.

Wurnig, H. (1998). Design of a collaborative multi-user desktop system for aug-
mented reality. In Proceedings of the Central European Seminar on Computer
Graphics, Budmeric, Bratislava, April 21–22.

XDesk Software (2003). About virtual desktop managers. Http://www. virtual-
desktop.info/.

ch04.indd 138ch04.indd 138 12/4/2006 1:19:54 PM12/4/2006 1:19:54 PM

II
The Social Dimension of Personal
Environments

ch05.indd 139ch05.indd 139 12/4/2006 1:20:00 PM12/4/2006 1:20:00 PM

ch05.indd 140ch05.indd 140 12/4/2006 1:20:00 PM12/4/2006 1:20:00 PM

Introduction to Part II

The main focus of the book is on personal work environments, not group-
ware. However, support of communication and collaboration is a major
concern for most of the contributors. There is no contradiction here, since
creating contexts for personal work is no less important for successful
collaboration than creating shared work contexts. Much of collaboration
takes place when the collaborating individuals are working in their person-
al environments. The chapters in part II describe novel design approaches
to creating “collaboration-friendly” personal work environments.

It is widely recognized that our work habits and behaviors change based
on the roles we take on as we carry out our information tasks. Owing to
increased work hours, mobility, and pervasiveness of technology in our
lives, our personal activities, hobbies, family-based communication, and
formal work are becoming increasingly intertwined. The chapter on per-
sonal role management by Plaisant and Shneiderman, with Baker, Duarte,
Haririnia, Klinesmith, Lee, Velikovich, Wanga, and Westhoff, attempts to
design and study a system that supports this ever-increasingly important
aspect of our digital lives. The idea of role-based task management is seen
as a promising approach in the design of today’s software environments
and tools.

Fisher and Nardi’s emphasis on people and communication is a refresh-
ing take on information work. The systems discussed in their chap-
ter—ContactMap and Soylent—take people to be “first-class citizens”
in computing environments, a trend that is receiving worthy and long
overdue attention.

There is a similarity between the chapters in that both employ represen-
tations of the social context of individual work. However, the proposed
approaches embodied in the systems designed by the authors emphasize

ch05.indd 141ch05.indd 141 12/4/2006 1:20:00 PM12/4/2006 1:20:00 PM

different poles of the social dimension of personal work environments.
While ContactMap represents other people (contacts), Personal Role
Manager focuses on the various roles of the user in collaboration with
other people. It appears that these perspectives can complement each
other. This possibility is one of the many intriguing directions for further
work on the social dimension of personal work environments, suggested
by discussions in part II.

142 Introduction to Part II

ch05.indd 142ch05.indd 142 12/4/2006 1:20:00 PM12/4/2006 1:20:00 PM

Introduction

Our daily activities are rich and complex as we switch among many roles
at work, at home, and in our community. A professor may be a teacher
of several courses, an advisor to students, a member of academic commit-
tees, a principal investigator of grants, a conference organizer, an editor of
scientific journals, and a liaison to industry. Most job descriptions include
multiple responsibilities: even a salesperson may deal with categories of
clients, train new employees, manage the company car pool, and supervise
website maintenance. Work needs to be juggled with personal roles, such
as being a soccer player or volunteer fireman, and family roles, such as
being a parent, a home remodeler, a Parent–Teacher Association member,
or a remote caregiver for an older adult. We talk about wearing “differ-
ent hats” and about the things we do in our “other lives.” This language
provides hints to the importance and the distinctiveness of those roles.
Different roles require different states of mind, different levels of pres-
sure, privacy, and professionalism. Those hats may also symbolize how
we highlight different personality traits in different roles. Nevertheless,
we conduct our activities using the same computer environment. Some
applications may have ways to customize their appearance and behavior
to fit users’ needs and wishes, but the underlying environment remains
unchanged as we switch between those often very disparate roles. The
question for designers is: How can we design graphical user interfaces that
provide more efficient actions by taking into account these various roles?

Some users attempt to create distinct roles by having separate email
accounts or even separate computers for their work, household, hobbies,

5
Personal Role Management: Overview and a
Design Study of Email for University Students

Catherine Plaisant and Ben Shneiderman
with H. Ross Baker, Nicolas B. Duarte, Aydin Haririnia, Dawn E.
Klinesmith, Hannah Lee, Leonid A. Velikovich, Alfred O. Wanga, and
Matthew J. Westhoff

ch05.indd 143ch05.indd 143 12/4/2006 1:20:00 PM12/4/2006 1:20:00 PM

144 Catherine Plaisant and Ben Schneiderman

and so on. We define roles as enduring (from a month to many years)
efforts of an individual, for which there are mostly distinct sets of people,
events, and documents. A task is a short-term (from an hour to a week)
effort for an individual, whereas a project is an enduring effort for a group
of people. Organizations are typically concerned about project manage-
ment, so they emphasize tools for coordination among individuals and
critical path techniques to speed completion of the team effort. Since we
are concerned with enabling a person to manage multiple roles inside and
outside his or her organization, we emphasize document management,
calendar support, communication needs, and attention switching among
multiple roles.

Current graphical user interfaces are based on the physical desktop
metaphor of documents, files, and folders and applications to manipulate
them. To fulfill their obligations within a role, users have to think in terms
of low-level actions such as launching applications, opening files, navigat-
ing directory structures, and searching for information. Then they have to
save results as new documents and send them to others. Aside from the
possibility of saving files in role-specific folders, today’s graphical user
interfaces do not take into consideration the need to handle separate roles
in separate ways. Worse still, they do not allow for rapid role switching.

A typical scenario might go like this: John is the principal investigator
of a large grant. He has been working for an hour on the project report.
File explorers and email tools are focused on the correct project folder;
word processors show the right set of documents; the web browser his-
tory is now full of the relevant web pages he just looked at. His windows
have been resized and laid out in a convenient way. Work seems to be
moving along nicely, but now John needs to switch to another task. One
of his many roles is to be the chair of a symposium, for which a confer-
ence call is scheduled in five minutes with the representative from the
printer’s office. John starts by browsing the contact list to recognize the
name of the printer, but he fails in this task because the list is too long.
He switches to the word processor to open the planning document that
might contain the printer’s name. Unfortunately the list of the documents
opened recently are all related to the principal investigator role of writing
the report, so he patiently navigates the file hierarchy up from the recent
report directory and then down to the symposium directory. After carry-

ch05.indd 144ch05.indd 144 12/4/2006 1:20:01 PM12/4/2006 1:20:01 PM

Personal Role Management 145

ing out a search, he recognizes the file name that deals with the printer
and gets the phone number to call. But before starting the call he switch-
es to the calendar application and flips nervously through the weekly
views to refresh his memory of the symposium’s camera-ready deadline
and the ship-to-printer deadline that were set earlier. Finally he opens a
web browser and browses his long list of favorites to find the symposium
webpage. After the conference call is over, he switches to setting up a
doctor’s appointment for his son and writes a letter to his son’s teacher to
request permission to take his son out of school during lunchtime. He also
responds to a call requesting an immediate change in the web announce-
ment for the holiday party he organized. Later on he returns to the project
report, but he has to spend a few minutes to reopen windows, resize them,
and renavigate each application to the right folder. He realizes that the list
of recently opened documents is useless now and that default folders are
mapped to the wrong place.

In contrast, a Personal Role Management environment would allow
John to switch instantly from being a project manager to being a sym-
posium organizer in one step. He would find his environment focused
on the selected role: file browsers would be opened in the relevant home
directory, recently opened files would be based on the tasks he performed
last in that role, the contact list would appear filtered on the contacts rel-
evant to that role (making it easy for users to recall relevant names), the
calendar would highlight the relevant deadlines entered while that role
was selected, and key applications and documents could be saved and
opened at once.

We proposed the Personal Role Management strategy in 1994 as a
guiding concept for the next generation of graphic user interfaces. The
first generation was the command line interfaces, which required users
to know about computer concepts and syntax. These were replaced by
second-generation graphical user interfaces, using the desktop metaphor,
icons, and folders. Next, the third generation emphasized a docu-centric
approach, in which applications faded into the background while multi-
media documents become the center of attention. Our proposed fourth-
generation user-centered design emphasizes users’ roles, collaborators,
and tasks rather than documents. Each role involves coordination with
groups of people and accomplishment of tasks within a schedule.

ch05.indd 145ch05.indd 145 12/4/2006 1:20:01 PM12/4/2006 1:20:01 PM

146 Catherine Plaisant and Ben Schneiderman

As interface environments have allowed multitasking, some users have
managed to support roles by keeping multiple windows open simulta-
neously. By running window managers that allow multiple desktops,
 sometimes called Rooms (e.g., Henderson and Card 1986; Robertson et
al. 2000), it is possible to simulate a Personal Role Management strategy.
However, this approach does not address key issues of organizing docu-
ments, contacts, calendars, web favorites, and recent files. In such mul-
tiple desktop environments, focusing on a role corresponds to a change
of location in the virtual space, but the behavior of the individual appli-
cations remains unchanged as they remain blind to the change in their
context of use.

In contrast with the research on role theory (Sarbin and Allen 1968;
Biddle and Thomas 1979; Roos and Starke 1981), or computer-sup-
ported collaborative work (Singh and Rein 1992), which focuses mainly
on the coordination of individuals within an organization, Personal Role
Management focuses on helping individuals manage their multiple roles.
Newer frameworks, such as activity theory (Redmiles 2002), view work
as an activity driven by various needs in which people seek to achieve
goals. Activity theory proponents provide useful insights for accomplish-
ing organizational goals, but they have not provided adequate frameworks
for understanding how users view their multiple roles inside and outside
the organization.

Early Explorations

Our original work on Personal Role Management was based on an obser-
vational study of World Bank employees. The study looked at project life-
cycle, document management, email practices, training, and availability
of software tools, and it identified problems that World Bank employees
regularly struggle with which seemed generic enough to be significant in
other organizations. One of those problems was the juggling of many
roles within the organization. Managers often supervised several projects
at once and also had various roles within their business unit or group. For
example, an employee could be in charge of two projects (a healthcare
clinic in Algeria and the construction of a drinking water supply system in
Mali), a member of three task forces, editor of the magazine, and organiz-

ch05.indd 146ch05.indd 146 12/4/2006 1:20:01 PM12/4/2006 1:20:01 PM

Personal Role Management 147

er of the holiday party. A great deal of personal organization is required
to manage such roles whose goals, collaborators, tools, and documents
are mostly distinct.

Our exploration led to two main concepts: Personal Role Management
and organizational overviews. Organizational overviews were proposed
as a consistent background for presenting results of searches in databases
but also as a way to map the multiple personal roles an individual has in
an organization and serve as a resizable control panel used to switch roles
(figures 5.1, 5.2, 5.3). The prototype showed Personal Role Management

Figure 5.1
A new employee of the bank would see this role overview before he or she is
assigned a new job. On the top left is the bank’s main organization structure. And
the three other boxes are to organize and cluster the roles related to the business
unit, and user’s workgroup personal roles.

ch05.indd 147ch05.indd 147 12/4/2006 1:20:01 PM12/4/2006 1:20:01 PM

148 Catherine Plaisant and Ben Schneiderman

as a strategy that allowed knowledge workers to organize information
according to their roles in the organization. The roles were defined as
having a vision statement, a set of people, a schedule, and a task hierar-
chy. The vision statement is a document established by the individual or
the superior. It may facilitate training or transfer of responsibility. The set
of people is a contact list narrowed down to show only the most relevant
contacts for this role. The schedule is focused on a specific role and the
relevant files and tools are shown. Moving in and out of a specific role,
or switching roles, is instantaneous and seamless (figure 5.4). A role over-

Figure 5.2
As roles are assigned to our new employee they can be organized on the overview
and used by personal role managers. Such role overview can also be shrunk to the
size of a large icon and displayed at all time to allow users to switch roles easily.
Keyboard shortcuts can also speed role switching.

ch05.indd 148ch05.indd 148 12/4/2006 1:20:01 PM12/4/2006 1:20:01 PM

Personal Role Management 149

view icon, even when very small, can be used to switch roles, and enlarged
to reveal more details when needed. When John receives a call regarding a
different role, shifting to that role is done with a single click on the over-
view, or using a keyboard shortcut.

A low-fidelity prototype was developed to illustrate the Personal Role
Management strategy (Plaisant and Shneiderman 1995a). The strategy
was first presented in a keynote talk by Ben Shneiderman at the Brit-
ish HCI conference on People and Computers in 1994 (Shneiderman and
Plaisant 1994), and a longer description of the work appeared a year later
(Plaisant and Shneiderman 1995b).

Figure 5.3
Here we see the same organization overview but simple visualization techniques
summarize the amount of unread emails (M) and To-do items (*) for each role,
alerting users of which roles may need more attention today.

ch05.indd 149ch05.indd 149 12/4/2006 1:20:01 PM12/4/2006 1:20:01 PM

150 Catherine Plaisant and Ben Schneiderman

(a)

(b)

ch05.indd 150ch05.indd 150 12/4/2006 1:20:01 PM12/4/2006 1:20:01 PM

Personal Role Management 151

Personal Role Management was also used to illustrate a window man-
agement environment called Elastic Windows (Kandogan and Shneiderman
1997). The hierarchical layout (figure 5.5) indicates the hierarchic relation-
ship between the contents of the windows by the spatial cues in the organi-
zation of windows. It provides the users with an overview of all their roles,
so that they can pick any role or parts of it and start working on it. Hierar-
chical grouping provides a role-based context for information organization.
It also supports the ability to hide graphical information, as window hier-
archies can be collapsed into a single icon (or other primitives), making the
approach scalable. The collapsed hierarchy of windows can be saved and
retrieved, which allows users to reuse a previous window organization.

While most discussants are sympathetic to Personal Role Management,
a common critique is that roles are often interrelated and that it can be

Figure 5.4
Three steps of the animation of a mockup prototype showing how (a) selecting a
role in the role overview (which appears as a large icon on the top left) opens the
selected role (b) which fills the screen (c), and reveals the calendar, contact list,
and file hierarchy focused on the role. The role overview is still visible on the top
left for rapid switching to another role.

(c)

ch05.indd 151ch05.indd 151 12/4/2006 1:20:02 PM12/4/2006 1:20:02 PM

152 Catherine Plaisant and Ben Schneiderman

difficult to separate them. Sometimes users work with the same people on
multiple projects and even organize social events or family vacations with
them. Documents may be reused in different contexts, and calendars also
need to show all events for all roles, especially when the user is schedul-
ing a new event or just planning the day. There is a legitimate danger
that managing roles may consume more time than it saves. We recognize
that role management may not be useful to all users, but nevertheless, we
believe that many users hold distinct and stable roles (i.e., with a mostly
distinct set of collaborators, documents, and schedule for month, years,
or longer). Therefore, there is a strong advantage in filtering the interface
environment to reveal only the relevant information and allow users to
focus their attention on that role. A short list of contact names might
remind users of things to do—just as it happens when one see collabora-

Figure 5.5
An illustration of the later implementation of a university professor role man-
ager prototyped with Elastic Windows. This professor is advisor to a number of
graduate students in a number of research projects (three recent ones and five
earlier projects are represented here). He teaches two courses this semester at the
university (CMSC 434 and 828S), is industry liaison to three companies, and has
personal duties.

ch05.indd 152ch05.indd 152 12/4/2006 1:20:02 PM12/4/2006 1:20:02 PM

Personal Role Management 153

tors in the hallway. A focused view of the calendar will remind them of
deadlines and plans, and a focused view of the file system can save some
navigation steps. Of course, Personal Role Managers need to allow for
user control of the amount of focusing that occurs when they switch roles,
and in some cases they may not be able to filter or focus their environment
at all when new tasks arise.

A pragmatic way to define roles in a role management environment is
as a subset of real-life roles that are distinct enough to allow for benefi-
cial automatic customizing of the environment. For example, a university
faculty member’s multiple roles as researcher may not be distinct enough
to be seen as multiple roles in such a role-based environment (because
colleagues may be involved in multiple projects and overlapping research
topics). On the other hand, it is likely that being the chair of a conference,
a member of the dean search committee for another college, or a member
of an elementary school parent–teacher association will be very distinct
roles that can be identified fairly easily.

The creation of new roles is also a challenging issue. Some roles may be
inherited from other users, or provided by organizations. For example, a
professor is given a teaching role that includes a schedule, a set of students,
and preset documents. A new mother on maternity leave might pass a par-
ticular work role and all its components to a temporary replacement. Roles
may also split as they become more complex, such as when a subcommittee
is formed to concentrate on a specific issue. Or roles may be merged, such
as when two sales teams reorganize under one manager. Finally new roles
can be created on the fly by simply initiating a role and performing work
in that role. For example, if a user creates a new role for himself as carpool
coordinator that role will become more defined as he sends email, cre-
ates documents, or enters events in his calendar within that role. Switching
roles must be easy and rapid, with clear feedback about the active role.

It is natural to consider the possibility of the automatic creation of roles
from templates provided by organizational designers. It is easy to under-
stand how professors could be sent roles from the registrar or department
chair based on registration data, the assignment of teaching assistants,
and the university calendar. Just as the creation of Excel or Word macros
or templates has become a specialty in many organizations, the creation
of role templates could greatly facilitate adoption of the Personal Role
Management approach.

ch05.indd 153ch05.indd 153 12/4/2006 1:20:02 PM12/4/2006 1:20:02 PM

154 Catherine Plaisant and Ben Schneiderman

Case Study of Role-Based Email for College Students

The Personal Role Management strategy was recently revisited by a team
of University of Maryland undergraduates who investigated how it might
improve email interfaces for university students. Although all users assume
multiple roles, college students constitute an interesting example of users
assuming fairly distinct and predictable roles, at least when they start as
freshmen. Their school role—or student role—is structured by the rhythm
and interactions of classes, projects, and exams. Their family role is usu-
ally disconnected from school; and they are often employed outside of
campus, work role, interacting with yet another separate group of people.
Our team of students conducted small surveys looking at email usage pat-
terns and the subjective experiences of students on campus. These surveys
suggest that email overload and feature intimidation are the main hin-
drances to email communication on campus.

We looked at how Personal Role Management in email can exploit the
categorical nature of college students’ email correspondence. The contacts,
schedule, and many of the documents involved in class communication
are typically well defined (e.g., students and professors in specific classes),
which are known ahead of time and can be preset automatically. This
knowledge permits an email program to automatically organize many
of a student’s messages and contacts by grouping them separately. Class
directory listings and specialized views of calendars become possible with
the requisite back-end support. We describe scenarios of use, an interface
mockup, and user reactions. Our research suggests that using those roles
as a driving component for designing an email interface for college stu-
dents might address some of the problems identified in our surveys and
interviews.

User groups in other settings may also benefit from role-based email
interfaces as long as some of their roles are sufficiently distinct to allow
some level of automatic role detection, and to benefit from customization
of the interface for different roles.

Related Work on Electronic Mail
In their study of email overload, Whittaker and Sidner (1996) observed
that people were using email for task management and personal archiving.
They describe the goals of task management as “[ensuring] that informa-

ch05.indd 154ch05.indd 154 12/4/2006 1:20:02 PM12/4/2006 1:20:02 PM

Personal Role Management 155

tion relating to current tasks is readily available.” The researchers con-
clude from a study of Lotus NotesMail users that keeping email organized
presents a major problem for some email users, resulting in backlogs of
unread and unanswered mail.

More recently, Ducheneaut and Bellotti (2001) described further how
email is being widely used as a personal information manager (PIM).
Through interviews, they examined how people at work sort their email
messages and deal with clutter in a business environment. The researchers
suggested that “to better support the use of email as a PIM tool, organi-
zation of folders should be more flexible. . . . the management of to-dos
and reminders within email should be supported.” The interview results
indicated that available software did not adequately expose such features.
They raise the following question based on their research: “Would it be
possible to leverage a model of users’ roles and organizational environ-
ment in the design of email clients? One possible way is to present a dif-
ferent interface, with different email management options, depending on
a user’s role.”

Bellotti et al. (2003) developed a prototype of a task management-
 centric email client that received positive feedback from business users
who tested it. Two other recent papers discuss the organization of email
by task or activity (Kaptelinin 2003; Venolia and Neustaedter 2003). The
choice of task management over role management may better suit some
business usage patterns, where employees juggle many short-lived tasks—
all within a single role (ESA&NTIA report, 2002). However, many users
have multiple distinct roles, and often integrate non-work aspects of
their personal lives in their email activities (Nippert-Eng 1996), introduc-
ing distinct social groups of people, events, and tasks which should be
managed separately from work activities. Our informal surveys suggest
that college students often assume a number of distinct roles; therefore a
Personal Role Management strategy may be fitting for college students.
Because our student team had first-hand experience with the life of col-
lege students and access to a large number of friends and classmates to
interview they decided to focus on this particular user group. In another
domain, Barreau and Nardi (1995) have argued for the importance of
location-based saving and searching, and have shown that the user’s per-
ception of their information space and the location of information within
that space serve a reminding function. This is contrast with researchers

ch05.indd 155ch05.indd 155 12/4/2006 1:20:03 PM12/4/2006 1:20:03 PM

156 Catherine Plaisant and Ben Schneiderman

who suggest that users only need better tools to find their documents in
archives that are organized only by temporal sequence (Fertig, Freeman,
and Gelernter 1996a,b). Another key direction is to use computer-based
tools that analyze frequency of email exchanges with particular individu-
als, as a starting point for user identification of distinct groups of collabo-
rators (Nardi et al. 2002; Fisher and Dourish 2004; Fisher and Nardi, this
volume). ContactMap and Soylent productively focus on people, while
the role manager concept includes schedules and documents as parts of
the role.

The U.S. Department of Commerce surveys show email use among the
general U.S. population at 45.2 percent in 2002, up from 35.4 percent in
2000 (ESA&NTIA 2002). College students represent a continuation of
this trend. A study by the Pew Internet and American Life Project in 2002
indicates that “college students are heavy users of the Internet compared
to the general population . . . in part because they have grown up with
computers. [The Internet] is integrated into their daily communication
habits and has become a technology as ordinary as the telephone or televi-
sion” (Jones 2002).

The rest of this section summarizes information gathered about the use
of email by the student population and presents an interface mockup illus-
trating how a “student role” might be implemented in a role-centric email
program. This work was conducted by an interdisciplinary “Gemstone
team”1 of undergraduate students at the University of Maryland (the last
eight authors of this chapter).

Understanding Students’ Needs
In order to learn about the concerns, preferences, attitudes, and needs
of students, two on-campus surveys were conducted. The first survey, a
small general one, was conducted in November 2001 with students at
the University of Maryland, College Park. The survey was distributed
outside one of the dormitory cafeterias during dinner hours. It showed
that college students use email to communicate on a daily basis. Of 35
students surveyed, 86 percent check their email several times a day and
100 percent check their email at least once a day. In addition, 89 percent
of students use more than one email address to send and receive email
messages.

ch05.indd 156ch05.indd 156 12/4/2006 1:20:03 PM12/4/2006 1:20:03 PM

Personal Role Management 157

To assess the quality of current email software in meeting the needs of
college students, students were asked to identify the email functions that
they use regularly. Some functions (e.g., send attachment, forward mes-
sage, delete messages) were used by nearly all students, while other func-
tions (e.g., send signature file, send autoreply message) were used by only
a few. While some of the features were simply not relevant to them, other
features went unused apparently because of their complexity and lack
of visibility in the email program. For example, 100 percent of respon-
dents reported receiving junk email and 43 percent used filters to block
the unwanted messages. At the same time, 6 percent of students were
uncertain of what filters were, and 40 percent believed filtering should be
improved, particularly its ease of use.

The topic of email organization was also addressed in the survey. Stu-
dents were asked if they use folders to sort and store email messages.
Eighty percent of students surveyed use folders; 75 percent of these stu-
dents had fewer than 10 folders. The rest of the students surveyed had
between 10 and 30 folders. Email organization is relevant to college stu-
dents as evidenced by the 48 percent of students who saved more than half
of all the emails that they receive. Only 21 percent of students saved less
than one tenth of all the email that they received.

Students were also asked to identify the people that they email regularly.
As expected, students use email to communicate with friends and family
members. Sixty-three percent of students also use email to communicate
with coworkers (figure 5.6).

Figure 5.6
Persons to whom the thirty-five survey respondents sent emails to.

ch05.indd 157ch05.indd 157 12/4/2006 1:20:03 PM12/4/2006 1:20:03 PM

158 Catherine Plaisant and Ben Schneiderman

A section of the survey was devoted to the evaluation of current email
software by students. Our sample of students used a wide variety of email
tools. Students commented on email features that they like and dislike,
naming the following positive features frequently:

simplicity

email notification

address book

folders

support for multiple email addresses

Students also identified problems with current email programs. The fol-
lowing issues were acknowledged by students:

difficulty changing how features work

difficulty setting up

lack of spell-checking (in some tools)

feature overload

Despite its small sample size, the first survey provided some insight
into student email use and helped us develop a second survey. In April
2002, the second survey was distributed to 47 students, most of whom
again were students at the University of Maryland, College Park. Like
the first survey, the second survey addressed problems that students
encountered with current email software. In addition, the second
survey considered students’ attitudes toward potential changes to the
user interface.

To investigate filtering, students were asked if they understand and
know how to use filters. Nine percent of students confessed that they did
not know how to use filters, and 32 percent had only a vague idea. In
general, students were receptive to automation in email. Most students
(72 percent) told us that they would like to have their emails automati-
cally sorted for them. Also, 66 percent of the students were enthusiastic
about an email program that changes to accommodate their personal
preferences. Most students, however, were not comfortable using an
email program that keeps track of their usage patterns and makes infer-
ences about their intentions (even for the exclusive purpose of adjusting
the user interface).

•

•

•

•

•

•

•

•

•

ch05.indd 158ch05.indd 158 12/4/2006 1:20:03 PM12/4/2006 1:20:03 PM

Personal Role Management 159

System Mockup
Based on the feedback received, the student authors set out to indepen-
dently design a user interface that addresses two major problems for col-
lege students per their observations: email overload and feature overload.
They investigated how Personal Role Management may address these
problems in two ways. First, organizing messages by role may manage
email overload. Second, the ability to select a current role permits hiding
functionality irrelevant to that role, alleviating some feature overload. A
lighter feature set also leaves more room for special functionality in a
given role, such as a customized class calendar organized by semester.

In designing a role management user interface, the students established
criteria for simplicity. They believed that the interface ought to be suffi-
ciently familiar to current email users. Ideally, novices could use the pro-
gram exactly like existing email software while they explored the role
management functionality. The additional overhead from using Personal
Role Management ought to be minimal to reduce the switching penalty.
Finally, the interface must degrade “gracefully” and be useful and usable
when no information is available about the roles of the users or when the
users were not willing to make use of the new features.

After several revisions of sketched paper mockups, screenshots were
generated using computer graphics tools to better resemble an actual
interface. Those screenshots were used to collect feedback from poten-
tial users. Finally, they implemented a Visual Basic prototype to illustrate
some of the interactions. Figures 5.7 through 5.9 show sample screenshots
of the prototype.

The most significant departure from standard email clients is the pres-
ence of role selection tabs. Each role has a separate view, defined by the
user or preset by the university, where only messages, contacts, and func-
tionality relevant to the role are visible. In the example of figure 5.7 two
specific roles are available—school and work—with the school role cur-
rently selected. The General role corresponds to the “standard” entry to
the email interface where no role is selected. Roles could include subroles;
for example, each class (e.g., ANTH 240, ENEE 435) is a subrole that
provides further filtering in the school role.2

Figure 5.8 shows the calendar view of the School role. The school
calendar displays data in a manner convenient for school-related tasks,

ch05.indd 159ch05.indd 159 12/4/2006 1:20:03 PM12/4/2006 1:20:03 PM

Figure 5.7
Role management email interface in school role under mail view. Arrows added
to the screen shot indicate the linkage between parts of the display. Here the stu-
dent has clicked on ENEE 408E to show only the mail related to the ENEE 408E
class. The contact list was filtered as well to show only students enrolled and
instructors teaching that class. Further filtering of the mail list can be done; here
only announcements are shown. Once the ENEE 408E role is selected, a click on
“calendar” will switch to the calendar for that particular class.

Figure 5.8
Role management email interface in school role under calendar view. Here the
ENEE 435 class (or subrole) has been selected. A semester calendar correspond-
ing to the class duration is shown, color coded to represent class meeting time,
assignments and exams, on top of a black and white view of the complete school
role calendar. Day events are listed for all classes as well but ENEE 435 events
are highlighted.

ch05.indd 160ch05.indd 160 12/4/2006 1:20:03 PM12/4/2006 1:20:03 PM

Personal Role Management 161

such as using a semester layout, as opposed to a financial quarter layout
for the work calendar. The calendar can use different colors to indicate
class times, exams, assignment deadlines, and so on. The school role view
shows all the events relevant to that role, while focusing on a particular
class—by clicking on the right side of the information panel—focuses on
the schedule of that class.

When a role is selected, the information panel located on the right side
of the screen summarizes the information most relevant to the role. For
the school role, it shows University Announcements and the list of classes.
For the work role, it shows general announcements and two projects,
“Circuit project” and “Reports” (figure 5.9). For contextual cues, a dif-
ferent visual theme or skin can distinguish each role; this was limited to
color in our prototype but can includes fonts, icon style, sound effects,
and so on, to indicate which role is currently being assumed. The subroles
belonging to a role appear in the role information panel on the right side
of the screen and are also shown as folders in a hierarchical browser. This
view also allows users to create traditional folders if needed in the role.
The bottom portion of the information panel can provide a summary of
roles that are not currently visible. Figure 5.8 shows it reminding the user
that new mail has arrived, which can be found in the Mail view (clicking

Figure 5.9
Role management email interfaces in the work role for mail (left) and calen-
dar views (right). The work role is not as well defined as the school role. Still
users can define customized calendars (here a quarter calendar), or different
options—for example, a different signature file and automatic spell-checking.
The contacts are limited and different from the school role, and play an impor-
tant part in characterizing the role itself.

ch05.indd 161ch05.indd 161 12/4/2006 1:20:03 PM12/4/2006 1:20:03 PM

162 Catherine Plaisant and Ben Schneiderman

the reminder would switch to it). Each role allows several tabs as well, but
with a larger screen all the information would be visible at once.

The general role is unique because it encompasses messages and con-
tacts from all roles, acting like a regular email application, and allows
users to transition from non-role-based email and back to it when needed.
The other purpose of the general role is to hold correspondence that does
not fit any defined role.

Several potential problems arise when considering Personal Role Man-
agement as a method of organization. Most importantly, roles are not
always mutually exclusive. To deal with this, a given message or contact
can be made visible in any role to which it is possibly related. In other
words, a role acts as a filtered view to see messages, contacts, and events
that can be relevant to that role. This allows for role overlap, such as an
email from a friend requesting help on homework while commenting on
recent social events. There is also the question of how the application
determines what messages and contacts fit under which roles. A potential
solution comes from the fact that many students in our surveys used sev-
eral email addresses (they typically have a university address, an older per-
sonal address, and a work address). Those different addresses could easily
be used to filter content in different roles. A less restrictive approach is to
assume nothing about an unmarked message until the user assigns it to a
role (e.g., by dragging it to the role tab or using a keyboard shortcut). The
new contact is added to the role, and all subsequent correspondence with
that person will be assigned to that role unless the thread is marked with
another role. Alternatively, if the user initiates the communication from
a given role, the recipient is automatically marked to that role. Adding a
role selection option to the email header might prevent some mistakes,
but it is more useful to provide rapid and seamless role-switching with
shortcuts. Unassociated messages and contacts remain in the general role,
which can alternatively show all emails, or “general-only” emails, as well
as all people, and all events equally displayed in the calendar. Not every-
thing can be sorted, but even if only 20 to 30 percent of items are sorted
automatically it can represent a significant time savings and reduce the
overhead of task switching. Benefits should increase with the number of
unambiguously distinct roles.

Another issue is how to deliver useful role-specific functionality. Some
functionality can be delivered automatically at the institutional level (e.g.,

ch05.indd 162ch05.indd 162 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

Personal Role Management 163

using a semester-based calendar for the class role), and adequate user con-
trol can further customize the interface for each role. At the institutional
level, a university might define and disseminate default roles to students.
For example, signing up for a class would send the student a new role with
the class syllabus, book information, exam dates, and lists of teachers
and classmates; the newly elected president of the badminton club would
receive a new role containing a calendar of deadlines, a specific list of
contacts, and a budget viewer. Some of the automation could take place
by embedding metadata in an email.

Using ideas promoted by Semantic Web researchers (Hendler, Berners-
Lee, and Miller 2002), the email client could provide tools for embedding
role associations, news items, event changes, or other meta-information into
messages. Upon receiving such messages, the client could reliably read and
act on the information (with requisite security considerations). Metadata-
unaware email clients would simply ignore the data. Metadata encoding
could be implemented as an icon toolbox allowing users to click and drag
“forms” into their message. Once properly filled out, these forms could
then offer the recipient to add dates, meetings, contact information, or other
data to his or her role-based email program. Ideally, the past president of
the badminton club could email his now ended role to the new president.

For advanced users, personal customization of the roles will increase
the benefits of using roles. Roles could use a different signature (formal
for work, informal for school, home address for friends and family).
Automatic spell-checking might be enabled in the work role but not the
friends role, where communication is less formal (students clearly indi-
cated that spell-checking was annoying when talking to friends). Different
skins could be chosen to match the mood of those different roles. Search
could be automatically limited to the role information by default. Auto-
matic copies could be turned off in the friends role and archiving turned
on in the work role. The more roles that are differentiated the more time
savings Peronal Role Management can generate.

Scenario of Use
Consider the following scenario of use: Matt, a typical college student, has
just arrived as a freshman at the University of Maryland. He has brought
his computer to school and is encouraged to download and become famil-
iar with a recommended (role-based) email program that has been tailored

ch05.indd 163ch05.indd 163 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

164 Catherine Plaisant and Ben Schneiderman

to University of Maryland students. When he installs the software, the
school calendar is already populated with class registration deadlines, uni-
versity holidays, events, and the last day of class. When Matt registers for
classes he receives an automated acknowledgment message that includes
metadata information about the class. This information is used by the
email program to set up the school role for Matt. His calendar is updated
(after he reviews the information and acknowledges the automatic loading
of his calendar); the contact list includes information about the instruc-
tor and the teaching assistant; and the syllabus is saved in the class file
folder. When class starts, a reminder email indicates a classroom change
and loads the contact information of classmates.

When reading email Matt can now choose to read all his email at once
(using the General role tab), or focus on his school role first, then review
the other messages. While he is reading his school role email, he sees in
the information panel that the ENEE 430 professor has highlighted the
upcoming group project first deadline. In one click he can switch to that
class subrole and review the class calendar, which is useful since—like most
undergraduate students—he does not maintain a personal calendar. He
switches to the email view, but can’t quite remember the name of the fellow
classmate he is supposed to work with so he scans the list of about twenty
classmates. He recognizes the name and sends email to set up a meeting.

A few months later, Matt gets a part-time job in a local company. At first,
all his work-related email appears in the General role. After a few weeks,
Matt has received emails from many people in the company and he spends
five minutes setting up his work role. He drags messages sent by work col-
leagues onto the work role to add their names in the work role contact list. A
few months later he is already working on two projects so he creates two sub-
roles within his work role. A month later the company adopts a role-based
email system, but since Matt is graduating and quitting his job, he can pass
his role to the fellow student taking his place by emailing him the role infor-
mation (calendar, contacts, selected important emails, to-do lists, reports) all
at once. Soon he will also archive his entire school role all together.

Informal User Feedback
We conducted scenario testing and interview sessions. Twenty students
from the University of Maryland, College Park were interviewed during
November–December of 2002. The testing procedure involved printed

ch05.indd 164ch05.indd 164 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

Personal Role Management 165

prototype mockups, and was designed to measure the subject’s under-
standing of the interface and concept of role management. Before testing,
initial impressions were recorded. Several scenarios calling for simple tasks
were then presented. No prior training or demonstration was provided.
The subjects were encouraged to verbalize their thought process, and their
remarks were recorded. A follow-up interview was conducted afterward.

From the initial impressions, many of subjects considered the inter-
face “busy.” These subjects were asked what information they would
eliminate, and how well the information was organized. Several subjects
thought that the information panel was not always useful, and thought it
should be collapsible. The calendar’s weekly and daily views seemed too
detailed, since many students seldom used calendars to record personal
information. A simplified calendar was thought to be more helpful. Feed-
back on the organization of information was generally positive, and the
hierarchical views in the calendar received praise. One student commented
that it was easy to focus on short-term activities without losing sight of
long-term goals. The majority of subjects recognized the purpose of role
folders right away; a few initially mistook the work role tab for campus
job searches (which in fact could be the default setup for students who do
not have a job yet).

In the scenarios, the subjects had little trouble recognizing the needed
interface features, including the view selection buttons, the information
panel, and the contacts hierarchy. Asked to look up the dates of next
semester’s spring break, 75 percent correctly selected the calendar view
and manipulated the pull-down semester menu. Starting from the cal-
endar view, the subjects were asked to email their class instructor. Sixty
percent took the shortest path by using the instructor email link in the
information panel, while the rest preferred to switch to the mail view and
use the contact list. To send a mass email to everyone in a class, 70 percent
made the optimal choice by clicking the class’s root node in the contacts
hierarchy inside the mail view.

The follow-up interviews examined the interface’s perceived viability as
a personal information manager. This issue is relevant to the target audi-
ence, since 65 percent of the subjects reported using a date book or another
kind of scheduler. Seventy percent said they would consider using a pro-
gram like the one presented in place of their current planner; 65 percent
said they would use the program to check their daily agenda. While such

ch05.indd 165ch05.indd 165 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

166 Catherine Plaisant and Ben Schneiderman

statements may not predict actual usage, they suggest a generally positive
reaction. The remaining questions involved automation, and the students
remained opposed to automatic changes: 75 percent wanted to be notified
of changes to their schedule and to be asked for their approval.

Feedback from faculty and colleagues was less enthusiastic as more con-
cerns were raised about the capability of the system to correctly sort emails
by role. Faculty and staff typically have a large number of less distinct roles
with overlapping sets of colleagues. Everyone had some roles for which
the separation was sufficient to be detected correctly, and some where the
separation would be difficult. For example, teaching roles or campus-wide
committee member roles are more distinct, but research projects have a lot
of overlap and may have to be grouped into a large role.

Conclusions

Our research findings on campus email use have several implications for
those designing future email clients: students use email in different ways
than the average business user and would benefit from specially designed
interfaces. Although school-related email use is heavy, functionality
beyond simple messaging is sparsely used and students spend very limited
amount of time organizing their emails.

Figure 5.10

ch05.indd 166ch05.indd 166 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

Personal Role Management 167

Freshmen come to campus ready to start a new life and are likely to
adopt software that helps them get organized with their classes. Cus-
tomizing the interface to their needs and providing personal information
management features from the start by creating a program to gather and
display university or class schedules is likely to increase use and stream-
line email and calendar management. Most students keep a significant
portion of their incoming mail. Many would like to have the messages
automatically sorted into folders, but don’t seem to know how—or worry
that messages will be misplaced. The Personal Role Management strategy
may contribute to lessening those problems.

The proposed interface illustrates one way that Personal Role Man-
agement might be implemented, and initial reactions from students are
positive. We hope others will continue developing the Personal Role Man-
agement strategy for email clients. Developing a fully functional prototype
would be the next step in evaluating the practicality of this approach.

Other user groups may also benefit from role-based interfaces when
their roles are sufficiently distinct to allow an adequate level of automatic
role detection, or to benefit from customization of the interface for the
different roles. Personal Role Management benefits will be greatest when
users switch to focused and distinct roles, as it would allow them to focus
rapidly on the information relevant to each role. Personal Role Manage-
ment alone will not solve all the problems of information or email over-
load, but it has the potential to organize interface environment in a way
that is meaningful to users and mirrors the many lives they live.3

Acknowledgments

We appreciate partial support from National Science Foundation Grant
for Information Technology Research no. 0086143, Understanding the
Social Impact of the Internet: A Multifaceted Multidisciplinary Approach.
Additional thanks to Harry Hochheiser and Rina Levy for helping us in
the past to refine our understanding of Personal Role Management.

Notes

1. The Gemstone Program at the University of Maryland focuses on the devel-
opment of the students outside the standard classroom environment, and chal-
lenges the students in the development of research, teamwork, communication and

ch05.indd 167ch05.indd 167 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

168 Catherine Plaisant and Ben Schneiderman

 leadership skills. The team included students from Civil Engineering, Biochemis-
try, Electrical Engineering, Physiology and Neurobiology, German, and Computer
Science. Working under the guidance of a mentor (Catherine Plaisant) they met
once a week for three years. The students conducted their research mostly inde-
pendently. They conducted surveys, designed prototypes, collected user feedback,
and wrote a final thesis, which is summarized in this essay.

2. The idea of subroles was introduced by the students. The original Personal
Role Management proposal specifically avoided subroles because of the added
complexity.

3. About the student authors: H. Ross Baker is a computer scientist with an
interest in linguistics; he is now a graduate student in the Department of Linguis-
tics at Northwestern University. Nicolas Duarte is an electrical engineer with an
interest in nanotechnology; he is now a graduate student seeking his Ph.D. in the
Department of Electrical Engineering at Pennsylvania State University, researching
thermal transport in nanowires. Aydin Haririnia is a biochemist with an interest
in protein NMR and crystallography. He is now a graduate student in the Depart-
ment of Chemistry and Biochemistry at the University of Maryland. Dawn Kline-
smith is a civil engineer with an interest in structural engineering; she is a Ph.D.
student in the Department of Civil and Environmental Engineering at the Univer-
sity of California, Berkeley. Hannah Lee is a recent graduate of the University of
Maryland with an interest in physiology and neurobiology. Leonid Velikovich is a
computer scientist with an interest in computer graphics; he is a recent graduate of
the Department of Computer Science at the University of Maryland. Alfred Wanga
is an electrical engineer with an interest in electronic materials and devices. He is
now a graduate student at Penn State University. Matt Westhoff is a computer
scientist with an interest in computer graphics. He recently graduated from the
University of Maryland, College Park.

References

Barreau, D. K. (1995). Context as a factor in personal information management sys-
tems. Journal of the American Society for Information Science 46 (5): 327–339.

Barreau, D. K., and Nardi, B. A. (1995). Finding and reminding: File organization
from the desktop. SIGCHI Bulletin 27 (3): 39–43.

Bellotti, V., Ducheneaut, N., Howard, M., and Smith, I. (2003). Taking email to
task: The design and evaluation of a task management centered email tool. In
Proceedings of CHI 2003 Conference: Human Factors in Computing Systems,
pp. 345–352. Ft. Lauderdale, Florida, April 5–10.

Biddle, B. J., and Thomas, E. J. (1979). Role Theory: Concepts and Research.
New York: Krieger Publishing.

Ducheneaut, N., and Bellotti, V. (2001). E-mail as habitat: An exploration of
embedded personal information management. interactions 8 (5): 30–38.

ESA&NTIA, U.S. Department of Commerce (2002). Economics and Statistics
Administration, and National Telecommunications and Information Administra-

ch05.indd 168ch05.indd 168 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

Personal Role Management 169

tion. A Nation Online: How Americans Are Expanding Their Use of the Internet.
Washington, D.C. Http://www.esa.doc.gov/508/esa/ANationOnlineEXSFeb02.
htm/.

Fertig, S., Freeman, E., and Gelernter, D. (1996a). “Finding and reminding” recon-
sidered. ACM SIGCHI Bulletin 28 (1): 66–69.

Fertig, S., Freeman, E., and Gelernter, D. (1996b). Lifestreams: An alternative to
the desktop metaphor. In Companion Proceedings of CHI 96 Conference: Human
Factors in Computing Systems, pp. 410–111. Vancouver, Canada, April 13–18.

Fisher, D., and Dourish, P. (2004). Social and temporal structures in everyday col-
laboration. In Proceedings of CHI 2004 Human Factors in Computing Systems.
Vienna, Austria, April 24–29.

Henderson, D. A., and Card, S. (1986). Rooms: The use of multiple virtual work-
spaces to reduce space contention in a window-based graphical user interface.
ACM Transactions on Graphics 5 (3): 211–243.

Hendler, J., Berners-Lee, T., and Miller, E. (2002). Integrating applications on the
Semantic Web [English version]. Journal of the Institute of Electrical Engineers of
Japan 122 (10): 676–680.

Jones, S. (2002). The Internet Goes to College: How Students Are Living in the
Future with Today’s Technology. Washington, D.C.: Pew Internet and American
Life Project. Http://usinfo.state.gov/usa/t091602.htm/.

Kandogan, E., and Shneiderman, B. (1997). Elastic Windows: evaluation of multi-
window operations. In Proceedings of CHI’97 Conference: Human Factors in
Computing Systems, pp. 250–257. Atlanta, Georgia, March 22–27.

Kaptelinin, V. (2003). UMEA: Translating interaction histories into project con-
texts. In Proceedings of CHI 2003 Conference: Human Factors in Computing
Systems, pp. 353–360. Ft. Lauderdale, Florida, April 5–10.

Nardi, B., and Barreau, D. (1997). “Finding and reminding” revisited: Appro-
priate metaphors for file organization at the desktop. SIGCHI Bulletin 29 (1):
76–78.

Nardi, B., Whittaker, S., Isaacs, E., Creech, M., Johnson, J., Hainsworth, J. (2002).
ContactMap: Integrating communication and information through visualizing
personal social networks. Communications of the ACM 49 4 (April): 89–95.

Nippert-Eng, C. (1996). Home and Work: Negotiating Boundaries through Every-
day Life. Chicago: University of Chicago Press.

Plaisant, C., and Shneiderman, B. (1995a). Organization overviews and role man-
agement: Inspiration for future desktop environments. In Proceedings of IEEE
4th Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, pp. 14–22. Berkeley Springs, West Virginia, April 20–22.

Plaisant, C., and Shneiderman, B. (1995b). Organization overviews and role man-
agement: Inspiration for future desktop environments. In Video Proceedings of
CHI’95 Conference: Human Factors in Computing Systems. Denver, Colorado,
May 7–11. Also included in the 1994 HCIL Open House video, http://www.
cs.umd.edu/hcil/pubs/video-reports.shtml/.

ch05.indd 169ch05.indd 169 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

170 Catherine Plaisant and Ben Schneiderman

Redmiles, D. (2002). Introduction to the Special Issue on Activity Theory and the
Practice of Design. Computer Supported Cooperative Work 11 (1−2): 1–11.

Robertson, G., van Dantzich, M., Robbins, D., Czerwinski, M., Hinckley, K.,
Risden, K., Thiel, D., and Gorokhovsky, V. (2000). The Task Gallery: A 3D
window manager. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 494–501. The Hague, The Netherlands, April 1–6.

Roos, L. L., Jr., and Starke, F. A. (1981). Organizational roles. In Nystrom, P. C.,
and Starbuck, W. H. (eds.), Handbook of Organizational Design, vol. 1: Adapting
Organizations to Their Environments. Oxford: Oxford University Press.

Sarbin, T. R., and Allen, V. L. (1968). Role theory. In Lindzey, G., and Aronson, E.
(eds.), Handbook of Social Psychology, 2nd ed. New York: Addison-Wesley.

Shneiderman, B., and Plaisant, C. (1994). The future of graphic user interfaces:
Personal Role Managers. In People and Computers IX, pp. 3–8. Glasgow, Scot-
land, August 23–25.

Singh, B., and Rein, G. (1992). Role Interaction Nets (RINS): A process descrip-
tion formalism. Technical Report CT-083–92. Microelectronics and Computing
Center, Austin, Texas.

Venolia, G. D., and Neustaedter, C. (2003). Understanding sequence and reply rela-
tionships within email conversations: A mixed-model visualization. In Proceedings
of CHI 2003 Conference: Human Factors in Computing Systems, pp. 361–368.
Ft. Lauderdale, Florida, April 5–10.

Whittaker, S., and Sidner, C. (1996). Email overload: Exploring personal infor-
mation management of email. In Proceedings of CHI 1996 Conference: Human
Factors in Computing Systems, pp. 276–283. Vancouver, Canada, April 13–18.
New York: ACM Press.

ch05.indd 170ch05.indd 170 12/4/2006 1:20:04 PM12/4/2006 1:20:04 PM

Introduction: Exploring and Articulating the Social Workscape

Within computer systems, people can be anywhere, and should be every-
where. We believe that representations of meaningful social presence
within computer systems will lead to more meaningful and more interest-
ing interactions with both the computer and other people in our workday
environments.

Little of what knowledge workers do is done alone. Nardi, Whittaker,
and Schwarz (2002) interviewed workers about how they manage and
interact with people at work. It was found that workers were careful man-
agers of their personal social networks, perpetually aware of the ways in
which they interacted with others. People managed three interpersonal
tasks: building social networks, maintaining the networks, and activating
nodes within the networks as needed.

While users manage these tasks with communication and contact-man-
agement tools, many of the tasks continue to be difficult. Three-pane
mailers, for example, do a poor job of providing contextual information
such as communication histories about message senders. Message attach-
ments are frequently lost, or dissociated from the messages to which they
are attached. Instant message (IM) transcripts, mail histories, and other
forms of interaction are all stored and presented separately.

Users attempt to work around the problems of current tools. Research
has shown that email is used not only for its intended purpose of asyn-
chronous communication, but for task management and personal
archiving (Whittaker and Sidner 1996; Ducheneaut and Bellotti 2001).
For example, Ducheneaut and Bellotti found that users kept old messages
as an address book. They used the inbox as a to-do list, a memo-pad, and

6
Soylent and ContactMap: Tools for
Constructing the Social Workscape

Danyel Fisher and Bonnie Nardi

ch06.indd 171ch06.indd 171 12/4/2006 1:20:09 PM12/4/2006 1:20:09 PM

172 Danyel Fisher and Bonnie Nardi

a future calendar. They used email archives as version-control systems.
They blurred the lines between personal and collaborative technologies,
reappropriating the one application available to them that would asso-
ciate persistent information with people into a people-oriented personal
database and communications center.

In repurposing email, users found ways to place the work objects within
their computer system—contacts, files, and information—into a social
context. In other words, they constructed a social workscape. The email
they archived and contacts they maintained built a context, allowing them
to track and connect relationships between their contacts and their infor-
mation.

However, such ad hoc unprincipled solutions are unsatisfying. Leaving
attachments in mail means losing their file system aspects (such as sorting
into folders and searching); storing dates within the inbox does not have
a useful calendar-based interface. The social workscape is incompletely
supported by current technology, no matter how many workarounds users
devise.

In this paper, we explore the implications of supporting a social work-
scape within a computer system. We discuss the idea of representing people
and relationships within the computer system as first-class entities: group-
able, selectable objects linked to other resources, connected to underlying
data sources. We envision a system that is designed around ubiquitous
connections between people, activities, and artifacts.

That these ubiquitous connections are useful might be seen by a variety
of frequent information and networking tasks. A user might:

Look for files associated with a particular person.

Get the current location or travel information for a person associated
with a particular file or task, or find the most available person associated
with the task.

Find out who has sent them information or requests relating to a par-
ticular topic.

Collect all correspondence and emailed files relating to a particular
file.

Find the history of communication by a person or group of people.

We refer to a system that assists with these tasks as person-centric; it is a
system whose design is centered around the notion of the person.

•

•

•

•

•

ch06.indd 172ch06.indd 172 12/4/2006 1:20:09 PM12/4/2006 1:20:09 PM

Soylent and ContactMap 173

Our vision of the workscape is similar to that of Plaisant et al. (this
volume); their notion of “role management” places interactions with doc-
uments and systems within specific roles. In contrast, both of the systems
we describe step away from the administrative task of specifying roles,
and instead concentrate on understanding the social structure of our net-
works.

Building the Workscape with Personal Social Networks
A crucial aspect of such a system is that of the relationships between people.
Some systems track large amounts of archival information (Dumais et al.
2003), but do not attempt to track interconnections between people. We
use the notion of “personal social network” to organize these interconnec-
tions. By tracking groups of contacts in a network, we can associate these
groups with the social and technical contexts in which they are situated.

Personal social networks are different from the public social networks
that have become popular recently, such as those supported by Friendster
(boyd 2004). Public network systems attempt to connect people who do
not know each other, by connecting friends of friends to each other. Per-
sonal social networks represent a single user’s perspective on the connec-
tions between the people they contact. This chapter looks at two different
systems that collect, track, and interpret personal social networks. Con-
tactMap takes a top-down approach, starting from a user interface and
working down to a system design. Soylent takes a bottom-up approach,
building a generalized infrastructure for storing and displaying the social
context around people. The chapter then discusses a series of philosophies
that would direct the design of a future person-centric computer system.

ContactMap: A Top-Down Approach

ContactMap began with the insight that personal social networks are crit-
ical resources in today’s economy (Nardi, Whittaker, and Schwarz 2002).
ContactMap organizes the computer desktop according to people in the
user’s personal social network (Nardi et al. 2002). It does this by display-
ing the contacts in the user’s social network and providing functionality
relevant to those contacts. A contact can be an individual or group whom
the user is familiar with and wishes to make available to themselves. Each
contact has an icon: a photo of the contact, or another mnemonic image.

ch06.indd 173ch06.indd 173 12/4/2006 1:20:09 PM12/4/2006 1:20:09 PM

174 Danyel Fisher and Bonnie Nardi

Contacts may be clustered together into groups; each contact may belong
to none, one, or more groups, as shown in figure 6.1.

ContactMap integrates communication and information management
in a single user interface. Each contact can be clicked to access informa-
tion associated with the contact or to communicate with the contact. Let’s
say Sally is our user and Sam one of the contacts in Sally’s ContactMap.
In a typical scenario, Sally clicks on Sam to get a list of the email messages
he has sent her. Sam’s contact information shows reminders and notifica-
tions of unread email messages associated with him. She reads the last
couple messages from him, and then wants to call him. She clicks on his
icon, and uses ContactMap’s click-to-dial feature to make the call. After
the call, Sally remembers something she forgot, and she clicks on Sam to
send an email message. ContactMap opens a new message addressed to
Sam. Sally’s work has taken place with a minimum of fuss—no looking
up phone numbers or email addresses, no launching of additional appli-
cations. Sally sees only the email from Sam and does not have to search
through folders.

Figure 6.1
ContactMap.

ch06.indd 174ch06.indd 174 12/4/2006 1:20:09 PM12/4/2006 1:20:09 PM

Soylent and ContactMap 175

ContactMap helps people manage the multitasking with different indi-
viduals and groups characteristic of work in the modern economy (Nardi,
Whittaker, and Schwarz 2002).

Within the tool, Sally can find any documents Sam had sent her, as they
are indexed by contact. Sally can start a videoconference with Sam, or an
IM exchange; she can send him a fax or go to his website.

Any ContactMap functions can be performed on a group instead of an
individual. A conference call can be initiated, a group email sent, a web-
site linked to, and so forth. Individual contacts can be placed in multiple
groups in ContactMap, as individuals in a social network often occupy
more than one role in a user’s life. Sam might be Sally’s coworker and also
a member of her gardening club.

Empirical research shows that most users have small social maps, with
an average of 95 people (Whittaker et al. 2004). While maps certainly
grow over time, people keep a small set of active contacts. This allowed
us to step away from a multilayered hierarchical design: there are groups
of people, but no groups of groups of people. An elaborate means of orga-
nizing contacts is unnecessary and would be confusing for many users. As
active contacts come in and out of a user’s life, the user can shrink down
contacts to small icons, or place offscreen when not needed. The informa-
tion about contacts is preserved, but does not need to be visible, cluttering
the display.

ContactMap is a social workscape in which the most common actions
of a user’s daily work are reorganized to reflect the people with whom
the user interacts. It does not replace operating system functionality but
provides a different user interface to that functionality. Instead of privileg-
ing files and folders, ContactMap centers on people in the user’s personal
social network.

Setting up ContactMap begins with a numerical analysis of the user’s
email folders. Based on domain names, frequency of contact, and frequen-
cy of replies to messages, ContactMap presents a list of contacts to the user
(Nardi et al. 2002). Users select the contacts to include in their map, and
group them as they wish. Groups can be color coded. ContactMap sup-
plies a default color scheme, or the user can choose any colors desired.

While not currently implemented, future versions could connect contact
lists to address books, phone logs, and other digital sources. Web-based
updates could handle the chore of keeping up with changes in contact

ch06.indd 175ch06.indd 175 12/4/2006 1:20:10 PM12/4/2006 1:20:10 PM

176 Danyel Fisher and Bonnie Nardi

information. Contacts could be shared selectively among work groups or
“buddies” as in instant messaging.

ContactMap was tested with 15 users including researchers, managers,
administrative assistants, and marketing staff (Whittaker et al. 2004). The
tests showed that the mean number of contacts chosen was 95, with a
range of 15 to 184. Even 184 contacts is an easily manageable number to
display iconically on a full screen.

Users grouped their contacts, with a mean of 11 groups and a range of 2
to 23. Constructing automatic groups seemed like a good idea during the
initial design of ContactMap, but after several failed experiments, it was
decided to allow users to form their own groups. With the small number of
contacts, the grouping task was easy and users even seemed to enjoy reflect-
ing on their social networks as they grouped contacts. The average size of
groups was 8, and nearly all contacts appeared in groups. Only 7 percent
were “singletons.” An individual contact can appear in multiple groups.
The nature of the groups was surprisingly uniform across the test popu-
lation: work groups, work projects, friends, family, and special interests,
which in our sample included the PTA, a rock band, and a stock club.

Research on the importance of face-to-face interaction in everyday com-
munication (Nardi and Whittaker 2002) suggested that making it easy to
use a photo of a contact would be pleasing. Users simply need to locate a
digital photo or image and ContactMap will size and place it properly in
the map. This feature was popular with those in the user test.

Further testing would be needed to learn more about this issue and
other aspects of the typical user of ContactMap. At this time, Contact-
Map exists as a prototype but is no longer under development.

Soylent: A Bottom-Up Approach

Soylent forms the basis of an infrastructure which can be used to con-
struct ContactMap-like applications. The name, a punning reference,1 is
a way of stating its goal: that computer systems be “made out of people.”
It consists of tools to create, store, and access personal networks, ways
to visualize and interact with those networks, and preliminary tools that
connect those networks to applications.

Soylent was developed in part to respond to issues raised in the Net-
WORK and ContactMap research (Nardi, Whittaker, and Schwarz 2002;

ch06.indd 176ch06.indd 176 12/4/2006 1:20:10 PM12/4/2006 1:20:10 PM

Soylent and ContactMap 177

Nardi et al. 2002). While ContactMap starts by addressing current needs
with a tool, Soylent was designed to more generally explore ways that
social information infrastructures can be assembled and designed. It uses
email correspondence information to build a social network, and tracks
both the temporal extent of interactions and the groups that implicitly are
parts of the interaction.

In this section, we discuss the construction of the Soylent system, and
describe a prototype built over the Soylent infrastructure: a series of social
extensions to an email program.

Soylent’s data are collected from email archives and assembled into a
history of interaction. The history stores and indexes messages by message
sender, date and time, recipients, and attachments. These data are used as
the basis of a network based on co-occurrence within message headers.
The fact that a user has sent an email to a pair of people (either sharing
a “to” line, carbon-copying both, or some combination) is evidence that
the two people have something in common from that user’s perspective.
Therefore, by examining outgoing messages for clustering information,
Soylent develops a notion of a user’s workscape.

Directing Design with Social Networks
Fisher and Dourish (2004) discussed some of the dominant features of this
large personal archive of email messages when seen as a whole. Here, we
look at ways of interpreting smaller subsets of the graph to understand
personal interactions and the immediate contexts around people.

Analyzing the network Network visualizations of email (such as Eve-
land and Bikson 1988; Tyler, Wilkinson, and Huberman 2003) tradition-
ally examine pairs of names, tied by who sends email to whom. These
techniques provide a collective and global view of email records, and are
analyzed using a “to-from” approach, drawing directed links between
sender and receiver. Those social networks are used to connect a great
many people together, and provide a broad view of how people are con-
nected. In contrast, our system is intended to help understand a single
user’s workspace. Within Soylent, and as in boyd’s (2002) work, a mes-
sage co-addressed to two different persons, whether via a “to,” “cc,”
or “bcc,” is understood as implicitly tying those persons together; the
sender believes that they share an interest in that message. The Soylent

ch06.indd 177ch06.indd 177 12/4/2006 1:20:10 PM12/4/2006 1:20:10 PM

178 Danyel Fisher and Bonnie Nardi

network diagram therefore ties these two people together. This mecha-
nism is shown schematically in figure 6.2.

The diagrams are interpreted by focusing on a perspective that exam-
ines a single correspondent. Each of these diagrams will look at the social
interactions between a user, a correspondent, and the cluster of people
around the correspondent: that is, people to whom the user has sent mes-
sages along with the correspondent. These smaller, person-centered graphs
give a social context around the recipient. In figure 6.2, for example, con-
sider viewing “Z” as the correspondent. In this scenario, Z is connected
to two groups: the one consisting of Y and Z, and the one consisting of
V, W, and Z.

Soylent uses this network to provide a “personal radar” view around a
single recipient. Given a specific name, this radar view can give an over-

Figure 6.2
Schema for the Soylent “ego-centric” visualization.

ch06.indd 178ch06.indd 178 12/4/2006 1:20:10 PM12/4/2006 1:20:10 PM

Soylent and ContactMap 179

view of the interaction history with the person: whom they are associated
with, when those associations most recently happened, and what interac-
tions took place.

To give a brief example, consider the display in figure 6.3. The user
is a professor and the correspondent (center) is a former member of his
research group (left). Edges are coded by recency; more recent communi-
cations are drawn in darker colors. The professor ran a workshop recently
(right); the student joined that workshop. While the research group is now
dissolved (gray), the workgroup continues onward. The student sits at the
connection between these groups, and thus exists in two very different
contexts.

A different example can be seen in figure 6.4, where the makeup of a
social group changes over time. The user is a student; the correspondent is
one of the user’s friends, a social coordinator. Note the three clusters in the
network diagram, separated by color; these are parts of a social group. As
members of the group graduated, clusters of them fell out of touch.

Figure 6.3
An ego-centric view centering on a professor. More recent communications are
drawn in darker colors.

ch06.indd 179ch06.indd 179 12/4/2006 1:20:10 PM12/4/2006 1:20:10 PM

180 Danyel Fisher and Bonnie Nardi

Applying Awareness to Everyday Tasks with EE4P
Soylent can use parts of the social network of personal online interactions
as features in an email client to produce context for email messages. A
prototype email client, called “EE4P” (“Enhanced Email for People”),
uses the network to help make information available to users and address
some of the problems raised above. EE4P is an extension to a traditional,
three-pane email client. Its code is based on ICEMail (Nourie 2001, http://
icemail.org), an open-source project. EE4P currently exists in a proof-of-
concept implementation.

EE4P uses the Soylent databases and API to provide the user with anno-
tated information about both incoming and outgoing email. Every message

Figure 6.4
An ego-centric view showing a changing social group.

ch06.indd 180ch06.indd 180 12/4/2006 1:20:10 PM12/4/2006 1:20:10 PM

Soylent and ContactMap 181

and every person is tied to a series of other messages, people, and groups;
as the user reads or writes a message, EE4P provides auxiliary information
about current interactions with them. Thus, for example, while the user
writes an email to a current group, the system makes available past emails
both received and sent to members of the group, and a selection of past
people who were associated with it, in a sidebar.

EE4P provides three major features: recipient prediction, an enhanced
display with easy access to user histories, and an enhanced address book.

Recipient prediction Recipient prediction uses networks to suggest
logical groups. Recipient prediction is triggered when the user types in
a name on the “to” line of a message and presses the comma key, which
suggests that more names are to come. The system then searches the
immediate network of people around that name, and suggests them in a
pull-down menu. It is easy to invoke an entire carbon-copy list at once
(figure 6.5). The system is not constrained to historical combinations; it
is able to suggest groupings that are logical expansions of the previous
names. By using clustering algorithms, EE4P is able to suggest various
granularities of groups. For example, when a message is sent to a team
leader, it might suggest four distinct lists, based on different sections of
the network:

the core members of a team;

the core members plus the developers;

the core members plus the designers; and

everyone involved in the team, including core members, developers,
and designers.

Of course, these are only recommendations; the user is free to select names
that the system does not suggest at all.

User histories and the message display When a user is reading or writ-
ing a message, EE4P uses the network around the name to allow easy
access to other messages (based on similar audience and time) and other
groups that may be relevant to the user. Each of these names, messages,
and groups is selectable, and can reveal broad information about the
user’s history. In particular, the user has access to:

address book entries for every person involved in the message;

•

•

•

•

•

ch06.indd 181ch06.indd 181 12/4/2006 1:20:11 PM12/4/2006 1:20:11 PM

182 Danyel Fisher and Bonnie Nardi

other people who may be closely linked to the people mentioned in the
message;

message histories for every person involved in the message, and other
people who are closely involved; and

a group “message history” that covers the participation of the whole
group.

While the implementation does not currently take into account some
potentially useful data, such as links to attachments or directly related
messages, the mechanism is designed to be extensible enough to add those
features.

Enhanced address book EE4P provides a standard address book that
stores manually entered information about individuals. Entries, however,
are annotated with additional information: one pane shows a social net-
work view, while another pane gives a history of past messages to and

•

•

•

Figure 6.5
Filling in a carbon-copy list through EE4P.

ch06.indd 182ch06.indd 182 12/4/2006 1:20:11 PM12/4/2006 1:20:11 PM

Soylent and ContactMap 183

from that person. EE4P can also generate address book entries on the fly
for groups of people (figure 6.6).

Soylent as a Philosophy
The crucial insight from the Soylent work is that the implicit information
generated through online interaction can give a meaningful (if incomplete)
picture of the contexts in which people interact. These traces can be accu-
mulated into a history that can be usefully processed and provided to the
user. In this case, we have illustrated contact management possibilities
with the tool.

In a more general case, however, Soylent suggests a more ubiquitous
use of connections between people, artifacts, and times. ContactMap had
a way of associating file information with personal data; so, too, Soylent
suggests that connections between people and resources could be available
within an operating system, providing social information as a service to
system components.

Figure 6.6
Viewing a social network through EE4P.

ch06.indd 183ch06.indd 183 12/4/2006 1:20:11 PM12/4/2006 1:20:11 PM

184 Danyel Fisher and Bonnie Nardi

While Soylent currently has a fixed notion of groups, imposed by the
social network that it collects, the system can support other sorts of inter-
connection information. Future work calls for generalized access to groups
that can be input by the user. In this way, Soylent could support hierarchy
charts and organizational group membership sets—and could also support
the explicit groupings that ContactMap supports. These dynamic groups
could, in turn, be dynamically associated with artifacts based on their mem-
bership and their temporal extent: the system that calculated the groups
would also track the files associated with the people in those groups.

Like ContactMap, Soylent currently exists as a working prototype;
however, it is not under active development.

Comparing Soylent and ContactMap

Soylent and ContactMap are both platforms for handling social network
information. While ContactMap is an end-user tool, designed to model
groups of people, Soylent is an infrastructure for developing and con-
structing social workspaces. ContactMap could be built as an end-user
application with Soylent.

ContactMap visualizes networks explicitly for users to help them inte-
grate communication and information tasks in a single user interface. In
contrast, Soylent uses the networks as a form of background information
on how users interact with each other.

Soylent gathers information from an email network, while ContactMap
uses an automatically generated list of contacts from which the user man-
ually assembles the network. Both, however, start from the user’s com-
munication history as a basis for understanding the set of contacts that
should be modeled. There is a shared logic to how both Soylent and Con-
tactMap view social networks. While traditional social network analysis
tends to view the broad span of a network, and while tools like Friendster
allow users to explore their networks at a distance, Soylent and Contact-
Map emphasize the user’s personal social network. They look only at the
people with whom the user has interacted. This information is a reflection
of the user’s perspective on the world.

Because both ContactMap and Soylent scan only the user’s personal
email folders (and the user can specify which particular folders to scan),
conventional privacy issues do not arise. However, both sets of user tests

ch06.indd 184ch06.indd 184 12/4/2006 1:20:11 PM12/4/2006 1:20:11 PM

Soylent and ContactMap 185

observed a different privacy problem, which we might call “social pri-
vacy.” ContactMap, with its photos and color-coded groups, makes the
user’s personal social network so instantly visible that it reveals quite a lot
about how the user thinks about her social world to anyone glancing at
the user’s desktop. In our informal interactions with users of the proto-
type, they would sometimes be embarrassed, if, say, their manager was not
centrally located on the map.

Similarly, the Soylent display also clearly marks how sets of people are
connected. Users were sometimes concerned that connections that they
considered important not be too visible to passers-by—or that people not
appear to have status on their maps that they do not deserve.

Differences between ContactMap and Soylent
Soylent automatically collects personal information from archives and
assembles networks. These automatically generated networks are incom-
plete. Farnham (2002), for example, has suggested that these networks
may seem incomplete to some users, especially those who are in frequent
face-to-face communication. ContactMap uses a hybrid approach: while
it seeds the network with automatically collected names, it then allows the
user to organize the entries into groups, and thus allows a person to assign
importance even to unrecorded contacts.

ContactMap is structured in a nonhierarchical manner; it allows selec-
tion of a group or of its constituent members individually. The use of
groups in ContactMap can be less flexible than in Soylent. For example,
it would not be possible in ContactMap to specify “all the members of
a group, less a few.” This can be mitigated, to some extent, by creating
several groups with overlapping membership. In contrast, while Soylent
allows generalized access to groups as the clusters of people around a
correspondent, these groups do not have a consistent identity within the
system. As such, it is more difficult to index information to a specific
group.

ContactMap has a strong notion of visualizing the personal social net-
work. The ContactMap designers argue that viewing faces is something
like bringing the spirit of face-to-face contact to computer-mediated com-
munication. The presence of the contact nodes is also important for easy
access to contacts and for a place to attach reminders and notifications, as
well as a means of displaying groups.

ch06.indd 185ch06.indd 185 12/4/2006 1:20:11 PM12/4/2006 1:20:11 PM

186 Danyel Fisher and Bonnie Nardi

Neither ContactMap nor the Soylent “EE4P” interface show the explic-
it box-and-line visualization traditionally associated with social networks.
Instead, both store network information in the back end. ContactMap
stores sets of names. Soylent’s views repeatedly process parts of a large
network in order to generate displays and recommendations. While the
networks are a useful way to handle social information, they are not
 necessary—and, indeed, are likely to be confusing as a primary interface.

The Integrated Workscape

We use these two prototype tools to discuss a more integrated image of the
workscape. As we stated earlier, people can be anywhere, and should be
everywhere, within computer systems. If the notion of “people” becomes
a fundamentally available service within the computer, then applications
can be adapted to use that information.

The file system, for example, can be extended to consider the people
who are involved in it; calendar entries can be annotated with personal
information. Files have several groups of people associated with them:
those who created the file, who sent it, who edited it—as well as the future
steps, those to whom it has been sent, or those who are the ultimate audi-
ence. Some of this information might be associated automatically, while
other parts might have to be connected manually.

Similarly, word processors and other end-user applications might
follow the cues of both EE4P and ContactMap: a document would be
automatically connected with the resources and people that helped gener-
ate it. While Sally writes the next draft of her paper, for example, Sam’s
contact—as her teammate in writing the paper—is immediately available
within the word processor, as both a history correspondence and as a live
contact with an instant messaging status.

This calls for a consistent notion of personal identity throughout the
operating system. The name for an editor of a file must be connected to his
instant messaging identity and his email identity, all collected in one place.

Existing Tools
A first step in this direction might be seen in both the Macintosh OS X
“Mail” program and Microsoft’s Outlook. Both programs connect instant
messaging tools to email clients, so that messages from correspondents who

ch06.indd 186ch06.indd 186 12/4/2006 1:20:11 PM12/4/2006 1:20:11 PM

Soylent and ContactMap 187

use instant messaging are annotated with a symbol showing whether that
correspondent is online or not. In deciding whether and how to respond to
an email, a user can have quick access to an IM connection. This first step
begins to connect different tools to share a unified notion of a workscape.

The “Stuff I’ve Seen” project (Dumais et al. 2003) creates a searchable
archive of email messages, viewed web pages, and files; it allows users
to search through personal archives to find documents indexed by both
author and audience. Stuff I’ve Seen can be understood as a data source
that, connected to social network and grouping tools, could form the core
of a social workscape. Indeed, the recent release of desktop search tools
from several major software vendors provides a new opportunity to begin
to index this information to take advantage of its social information.

Future Directions
The following section discusses how to get from the current implementa-
tions into these more developed forms. We take our guidance from tech-
nologies such as “placeless documents” (Dourish et al. 1999) that suggest
ways of broadly associating information within systems. In a “placeless
system,” the operating system supports arbitrary sets of tags to be asso-
ciated with files, which can then be dynamically queried and displayed.
When those tags are labeled with personal information, a placeless docu-
ment system becomes person-centric.

It is not sufficient, however, to simply annotate each file, or even each
piece of data, with a single name. Soylent’s field research has reminded
us that people and projects are closely associated with temporal extents
and social clusters. Thus, the interconnections between people provide us
with valuable information as to how to index their messages and informa-
tion. To fully flesh out this notion of the social workscape, three layers of
information are needed.

First, there must be a layer of personal annotation associated with files
and messages. Those annotations connect one or more names with com-
puter resources, and can be associated at a variety of times: at creation
time, when emailed, transferred, or received, and so on.

Second, this information must be able to tie people to each other. Some
form of data storage should be able to track interconnections between
people as they are revealed in shared editing of files, sending and receiv-
ing communications, and so on.

•

•

ch06.indd 187ch06.indd 187 12/4/2006 1:20:11 PM12/4/2006 1:20:11 PM

188 Danyel Fisher and Bonnie Nardi

Third, there must a way to specify and learn groups. The results from
ContactMap make it clear that allowing both automatic and manual
interconnections between people is important and useful. Group infor-
mation can, and should, come from a variety of sources: social network
information, corporate hierarchy information, and manual choices.

Limitations
This section has emphasized information that can be derived automatical-
ly from message headers, file locations, and attachment connections. This
view intentionally ignores the content of messages and artifacts. Instead, it
illustrates how powerful an approach based strictly on interaction patterns
can be. The computational power for full-text processing is not necessary
to gain useful information about how sets of people interact; structural
information is a powerful tool that provides much of what is needed.

That said, there are still many ambiguities in derived information. An
isolated message sent from a new correspondent carries little structural
information with it. Is it from a new member of a carpool, a new member
of a work team, or perhaps junk mail? Modern text-analysis techniques
are a potentially powerful way to resolve these ambiguities, as well as to
bring together people working on related projects, but who have not been
sent joint messages. These techniques could examine the texts of messages
sent back and forth, and, by examining shared vocabulary and the pres-
ence of keywords, could collect other information about logical groups
and connections between people.

Summary

In this essay, we have discussed the notion of the social workscape which
ties objects into their social context. We discussed two systems that
explore and articulate the workscape: ContactMap, an end-user applica-
tion, and Soylent, an infrastructure for handling social information. Last,
we used lessons from developing and using ContactMap and Soylent to
help develop a vision of a unified workscape.

Designers may not, of course, be able to incorporate a person- centric
perspective throughout all of new systems. However, there are some
important lessons that can be incorporated into a variety of collaborative
applications:

•

ch06.indd 188ch06.indd 188 12/4/2006 1:20:12 PM12/4/2006 1:20:12 PM

Soylent and ContactMap 189

Interactions between people are meaningful. Applications should
remember the sets of people who have interacted, and make those group-
ings available.

Interactions are not only pairwise. It is important to track the interac-
tions of triads and larger groups, and to detect how those groups change
over time.

Temporal aspects of interaction are important. Most applications
neglect historical information, preferring to give only the current status
of a group or an interaction. This misses the fact that the changes in a
group have important implications for tasks ranging from network main-
tenance to expertise location.

Information must remain associated with people. Information that is
exchanged between two people, or that is delivered via a social conduit,
ought not to be divorced from that conduit: there should be ways to find
the information a contact has sent, and vice versa. This principle can
already be found today in version control systems, where an edit or a file
is always associated with the person who changed the file, even if that
information no longer seems relevant. Files are not divorced from their
social context. With this set of design ideas, future users of digital envi-
ronments will find representations of people anywhere and everywhere
throughout the tools they use.

Note

1. The 1973 movie Soylent Green, starring Charlton Heston and directed by
Richard Fleischer, features the revelation that “Soylent Green is made out of
people.”

References

boyd, d. (2002). Faceted Id/entity: Managing representation in a digital world.
Unpublished master’s thesis. Media Lab, School of Architecture and Planning,
Massachusetts Institute of Technology.

boyd, d. (2004). Friendster and publicly articulated social networking. In Pro-
ceedings of the 2004 Conference on Human Factors in Computing Systems (CHI
2004). Vienna, Austria, April 24–29.

Dourish, P., Edwards, W. K., LaMarca, A., and Salisbury, M. (1999). Presto: An
experimental architecture for fluid interactive document spaces. ACM Transac-
tions on Computer Human Interaction 6 (2): 133–161.

•

•

•

•

ch06.indd 189ch06.indd 189 12/4/2006 1:20:12 PM12/4/2006 1:20:12 PM

190 Danyel Fisher and Bonnie Nardi

Ducheneaut, N., and V. Bellotti (2001). E-mail as habitat. interactions. 8: 30–38.

Dumais, S., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R., and Robbins, D.C.
(2003). Stuff I’ve Seen: A system for personal information retrieval and re-use.
In Proceedings of the 26th Annual Conference on Research and Development
in Information Retrieval (SIGIR 2003), pp. 72–79. Toronto, Canada, July 28–
August 1.

Eveland, J. D., and Bikson, T. K. (1986). Evolving electronic communication net-
works: An empirical assessment. In Proceedings of the 1986 ACM Conference
on Computer Supported Cooperative Work, pp. 91–101. Austin, Texas, Decem -
ber 3–5.

Farnham, S. (2002). Visualizing discourse architectures with automatically gener-
ated person-centric social networks. Presented at the 2002 Workshop in Discourse
Architecture. In Extended Proceedings of the 2002 Conference on Human Fac-
tors in Computing Systems (CHI 2002), pp. 936–937. Minneapolis, Minnesota,
April 20–25.

Fisher, D., and Dourish, P. (2004). Social and temporal structures in everyday col-
laboration. In Proceedings of the 2004 Conference on Human Factors in Comput-
ing Systems (CHI 2004), pp. 551–558. Vienna, Austria, April 24–29.

Nardi, B., and Whittaker, S. (2002). The role of face-to-face communication in
distributed work. In Hinds, P., and Kiesler, S. (eds.), Distributed Work, pp. 83–
112. Cambridge, Mass.: MIT Press.

Nardi, B., Whittaker, S., and Schwarz, H. (2002). NetWORKers and their activity
in intensional networks. Journal of Computer-Supported Cooperative Work 11:
205–242.

Nardi, B., Whittaker, S., Isaacs, E., Creech, M., Johnson, J., and Hainsworth, J.
(2002). ContactMap: Integrating communication and information through visual-
izing personal social networks. Communications of the ACM (April): 89–95.

Tyler, J., Wilkinson, D. M., and Huberman, B. (2003). Email as spectroscopy:
Automated discovery of community structure within organization. In Huysman,
M., Wenger, E., and Wulf, V. (eds.), Communities and Technologies, pp. 81–96.
Deventer, the Netherlands: Kluwer.

Whittaker, S., Jones, Q., Nardi, B., Creech, M., Terveen, L., Isaacs, E., and Hain-
sworth, J. (2004). ContactMap: Using personal social networks to organize com-
munication in a social desktop. ACM Transactions on Computer Human Interface
11 (4): 445–471.

Whittaker, S., Jones, Q., and Terveen, L. (2002). Contact management: Identifying
contacts to support long term communication. In Proceedings of Conference on
Computer Supported Cooperative Work, pp. 216–225. New Orleans, Louisianna,
November 16–20.

Whittaker, S., and Sidner, C. (1996). Email overload: Exploring personal informa-
tion management of email. In Proceedings of the 1996 ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI’96), pp. 276–283. Vancouver,
British Columbia, Canada, April 13–18.

ch06.indd 190ch06.indd 190 12/4/2006 1:20:12 PM12/4/2006 1:20:12 PM

III
From Tasks to Activities

ch07.indd 191ch07.indd 191 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

ch07.indd 192ch07.indd 192 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

Part III includes two chapters that make the case for activity as a funda-
mental concept in the design of digital work environments. Again, the
authors describe the novel systems they designed. The Kimura system,
described in the chapter by Voida, Mynatt, and MacIntyre, goes beyond
the desktop metaphor by integrating regular computer monitors with a
different type of information-displaying surface, namely, the wall space
of an office. Automatically created visualizations of user projects are
shown on the walls to help the user keep track of and switch between the
 projects.

Bardram’s chapter presents the ABC (activity-based computing) frame-
work as a way to support pervasive computing in hospitals. While most
of the chapters in the book deal with work environments for individu-
al users—even though the design of concrete systems is often explicitly
intended to support communication and collaboration—Bardram’s chap-
ter describes an integrated work environment that can be used by groups
of people working toward a common goal. Activities, which may be dis-
tributed between several people, are first-class objects in the system archi-
tecture, which makes it possible for the system to recognize and support
individual contributions to an activity as a whole.

Even though both chapters deal with concrete designs, their intentions
are not limited to presenting particular technologies. Neither do they
place their sole emphasis on design ideas exemplified by the systems. Both
chapters make a more general point, namely, they emphasize the need for
designers to expand their perspective on how technology should support
people. Both chapters claim that technologies should support attaining
meaningful goals, in collaboration with other people and through the use

Introduction to Part III

ch07.indd 193ch07.indd 193 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

of multiple computer devices. In other words, technologies should support
activities rather than low-level, technologically specific tasks.

There are a number of similarities between the chapters. First, they
both deal with ubiquitous computing. Not only does ubiquitous comput-
ing challenge the desktop metaphor, it also makes it necessary to extend
the focus of analysis and technological support. Designers cannot con-
fine their efforts to one particular technology, as often happened in the
past. Ubiquitous computing requires that designers be concerned with
how people integrate the use of various technologies to attain a meaning-
ful goal. Second, the theoretical foundation of both chapters is activity
theory. This framework originating from Russian psychology, became a
popular approach in human–computer interaction (Nardi 1996).

Despite their apparent similarities, the perspectives presented in the
chapters are also substantially different. In one respect they can even be
considered opposite to each other. While Voida et al. mostly deal with
“activity” in a traditional sense, as meaningful, social, and mediated
interaction between a human subject and the world, Bardram’s sugges-
tion to make activity a first-class object in the computing architecture
indicates an emphasis on activity as a computational concept. Given that
both “human” and “computational” meanings of activity are relevant to
design of technological support of people in everyday life, how are these
two meanings related to each other? Both chapters in part 3 take initial
steps in addressing this question, which is likely to stimulate further dis-
cussion in HCI research.

References

Nardi, B. (ed.) (1996). Context and Consciousness: Activity Theory and Human–
Computer Interaction. Cambridge, Mass.: MIT Press.

194 Introduction to Part III

ch07.indd 194ch07.indd 194 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

The emergence of the ubiquitous computing paradigm in the early 1990s
marked the beginning of a new era of computation in the workplace.
Weiser envisioned a world in which we would no longer focus our atten-
tion on a single box while working with information; rather, the pro-
liferation of small, powerful, connected computing devices would allow
computation to “vanish into the background” (Weiser 1991).

Although Weiser’s vision of “ubicomp” is not yet commonplace, main-
stream computing technology has begun to evolve in many of the ways
that Weiser predicted over a decade ago. Computation has become an
integral part of many personal information appliances such as PDAs, cell
phones, and digital music players that users carry with them through-
out the day. A recent surge in interest in the tablet computer form factor
has led some business professionals and students to abandon the use of
pen and paper for electronic ink while taking notes and annotating docu-
ments. The desktop computer itself is spreading beyond its traditional
beige-case-and-monitor boundaries—information that was once stored
primarily on the PC hard drive is making its way onto websites and web
services; multiple monitor use is now becoming quite commonplace, and
in many domains, such as financial trading, virtual walls of tiled monitors
are entirely replacing traditional displays; and experiments in wearable
computing and augmented reality are evolving into commercial enterpris-
es seeking to bring the functionality of a desktop computer to users at any
place and at any time.

At the intersection of all these developments, ubicomp environments
have themselves become a recurring fixture in the research community.
Tangible workbenches for designers (e.g., Ishii and Ullmer 1997; Leibe

7
Supporting Activity in Desktop and
Ubiquitous Computing

Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

ch07.indd 195ch07.indd 195 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

196 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

et al. 2000), smart kitchens (see, e.g., Tran and Mynatt 2002), context-
aware classrooms (see, e.g., Abowd 1999), and reconfigurable meeting
spaces (see, e.g., Johanson, Fox, and Winograd 2002; Streitz et al. 1999)
all demonstrate the advanced interaction techniques and social collabo-
ration that become possible when small, inexpensive computation per-
meates a space, coupled with sensors, cameras, projectors, and various
networking technologies.

Although the ubicomp paradigm shift is having a dramatic impact on
the design and deployment of new devices and applications, it is also
affecting the study of technology and work practice. In general, the migra-
tion of the computer off the desktop and into the world has drawn greater
attention from interrogating users’ dialogue with the computer to the con-
texts in which computers are used. Field studies of how users carry out
their work, from the ways in which they organize the information around
them (e.g., Kidd 1994; Malone 1983; Mander, Salomon, and Wong
1992), to the ways in which they use existing office technologies such as
whiteboards (Mynatt 1999), to the ways in which they juggle multiple
simultaneous tasks and handle interruptions (e.g., González and Mark
2004), are becoming even more of a prerequisite for the design of new
ubicomp technologies than they were during the PC era. The ubicomp
vision breaks with the previous tradition of creating application designs
based on a single, universal metaphor such as the graphical user interface’s
“desktop”; instead, ubiquitous computing technologies can only achieve
their goal of becoming “invisible” when their design is informed by and
well matched to the context in which they are used.

In this chapter, we outline our agenda and approach for supporting the
concept of “activity” from a user’s perspective in an integrated digital and
physical workplace. This perspective encompasses the context in which
computers are used, the multitude of work artifacts that make up an activ-
ity, and the historical trajectory of an activity over time. We describe five
challenges for matching computation to activity. These are:

activities are multifaceted, involving a heterogeneous collection of
work artifacts;

activities are dynamic, emphasizing the continuation and evolution of
work artifacts in contrast to closure and archiving;

activities are collaborative, in the creation, communication, and dis-
semination of work artifacts;

•

•

•

ch07.indd 196ch07.indd 196 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

Supporting Activity in Desktop Computing 197

activities exist at different levels of granularity, owing to varying dura-
tions, complexity and ownership; and

activities exist across places, including physical boundaries, virtual
boundaries of information security and access, and fixed and mobile
 settings.

We examine ubiquitous computing support for activities in the workplace
from two complementary angles. In the first, we describe our experi-
ences designing the Kimura system, an integrated desktop and interac-
tive whiteboard environment that supports individual knowledge workers
in managing and shifting among multiple work activities. Following a
description of Kimura, we critique its design with respect to the five chal-
lenges. We then examine support for activities from the theoretical per-
spective of activity theory. In particular, we note how recent extensions to
activity theory have addressed theoretical shortcomings similar to our five
challenges and suggest directions for bridging the gap between everyday
practice and systems support. We conclude by considering ways in which
a combination of theoretical and pragmatic perspectives can provide solu-
tions to the five challenges for future system designs.

Kimura: An Activity-Centered Work Environment

Our research seeks to design an office that better supports knowledge
workers—business professionals who interpret and transform information
(Drucker 1973). Successful knowledge workers manage multiple tasks,
collaborate effectively with several colleagues and clients, and manipulate
information that is most relevant to their current task by leveraging the
spatial organization of their work area (Kidd 1994; Malone 1983; Mynatt
1999; Grudin 2001). The diversity of these work practices and the com-
plexity of implementing flexible computing tools make it difficult to meet
all of these workers’ needs.

We have spent several years developing technologies that support
knowledge workers. Our work on the Kimura system has allowed us to
begin exploring different notions of activity both on and off the desktop
(MacIntyre et al. 2001; Voida et al. 2002). Our experiences suggest that
activity may be a useful, unifying framework for ubiquitous computing
environments, but also foregrounds several challenges for future research
in ubicomp environments.

•

•

ch07.indd 197ch07.indd 197 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

198 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

In order to explain the fundamental concepts underlying the design of
the Kimura system, we begin with a brief scenario highlighting unique
aspects of an imagined interaction with the system on a typical workday.
Scenarios like this one have served to focus our designs and define key
user interactions in an activity-centered digital work environment.

Kimura in Practice: A Scenario
Wendy, a knowledge worker, walks into her office Monday morning fol-
lowing a week’s vacation. She scans the piles of paper on her desk and
the contents of her whiteboard, recalling the work that has been waiting
for her.

After quickly surveying the various whiteboard montages that represent
ongoing activities, she annotates the budget plan with “Work on Wed.,
Due Friday” and throws it to the whiteboard’s far side.

The calendar image in the Acme design project montage reminds her of
a design briefing later that day.

She studies the montage for a moment, trying to remember how far
into the design briefing activity she was before she left on vacation. She
sees opaque images of the documents she worked with most recently: her
calendar, an illustration, a presentation file, and a web search page. The
montage also includes several translucent images of past documents—two
important email messages from her group’s client and the original project
proposal. She taps on the montage to load it onto her desktop. The design
briefing documents reappear on her desktop computer, just as she left
them.

After a quick perusal, she resumes her web search for details on an
interesting technology and fine-tunes one of her sketches. After sending
the new sketch to the printer, she decides to spend some time catching
up on the theme ideas for the upcoming open house. Using the desktop
controls to switch activities (and virtual desktops), the montage for the
Acme design activity reappears on her whiteboard, now annotated with a
printer icon, to indicate that a print job is in progress.

As Wendy contemplates her reply to an interesting theme idea from
one of her colleagues, she notices that his face has appeared on her white-
board. Ah, Joe must be in the coffee room. Deciding that a face-to-face
discussion would be more useful than sending another message, she goes
to join Joe for coffee and brainstorming.

ch07.indd 198ch07.indd 198 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

Supporting Activity in Desktop Computing 199

Later that day, she decides to go ahead and start working on some
budget numbers. From the corner of her eye, she notices the softly chang-
ing calendar in the Acme design montage. It is time for the meeting. As
she runs out of the office, she sees the icon for the completed print job.
Grateful that someone—or something—is on top of things, she heads to
the printer on the way to the meeting.

System Design and Implementation
Kimura separates the user’s “desktop” into two regions: the focal region,
on the desktop monitor; and peripheral displays, projected on the office
walls. Each work activity is associated with a unique virtual desktop that
is displayed on the monitor while the user is engaged in the activity. Back-
ground activities are projected as visual montages on the peripheral dis-
play, as shown in figure 7.1.

From Kimura’s point of view, a work activity—such as managing a proj-
ect, participating in a conference, or teaching a class—is modeled as a clus-
ter of documents and a collection of cues representing ongoing interactions
with people and objects related to that activity. We refer to this cluster as the

Figure 7.1
The Kimura system in an office environment, including the monitor and periph-
eral displays.

ch07.indd 199ch07.indd 199 12/4/2006 1:20:15 PM12/4/2006 1:20:15 PM

200 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

activity’s working context. Each working context may have numerous doc-
uments, including text files, web pages, and other application files. A work-
ing context may also have iconic indications of ongoing activity, including
email messages without replies and outstanding print jobs. Kimura auto-
matically tracks the contents of each working context and tags documents
based on their relative importance. As in previous systems, such as Rooms
(Henderson and Card 1986), users define the boundaries of working con-
texts manually—in our case, by creating virtual desktops. We chose this
strategy because these operations are easy for the user to perform and can
be easily monitored to detect working-context changes, and because this
strategy avoids relying on the system to infer these transitions.

Each working context is displayed as a montage of images garnered
from system activity logs (see figure 7.2). These montages are analogous
to the “room overviews” provided by other multicontext window man-
agers. But where these systems show the exact layout of the windows in
each room, our goal is to provide visualizations of past activity in context.
These visualizations help remind the user of past actions; the arrangement
and transparency of the component images automatically create an icon
for the working context. Additionally, montages can serve as anchors for
background awareness information that is gleaned from a context-aware
infrastructure.

The electronic whiteboard—the primary display surface for the mon-
tage visualizations—supports common whiteboard practices (Mynatt
1999). Whiteboards feature an intuitive user interface and are well suited
to supporting informal information management activities. Our system
implementation incorporates existing electronic whiteboard interac-
tion techniques with montages and notification cues (Igrashi et al. 2000;
Mynatt et al. 1999, 2000; Hong and Landay 2000). This allows the user
to annotate montages with informal reminders and to reposition mon-
tages to indicate the respective priority of background activities. Addition-
ally, the whiteboard’s large display area is an ideal, unobtrusive location
to show contextually relevant information about the user’s work activities
and the context information sensed from around the office.

The whiteboard lets users monitor each ongoing work activity, transi-
tion smoothly between activities, access a wide variety of contextual infor-
mation designed to facilitate collaboration, and maintain awareness about
relevant activity changes. Additionally, the interactivity provided by the

ch07.indd 200ch07.indd 200 12/4/2006 1:20:16 PM12/4/2006 1:20:16 PM

Supporting Activity in Desktop Computing 201

electronic whiteboard allows the user to informally annotate and spatially
organize the montages.

The montage design relieves the user of burdens associated with main-
taining a large amount of information—information about each work
activity and its related contextual information—and with synthesizing
that information on the fly from a potentially overwhelming number of
sources. The montages are designed to present this information without
intruding on the user’s focal activity and in a manner that supports the
needs of knowledge workers.

Activity and Context-Awareness in Kimura
The Kimura system allows its users to continue using whatever tools and
practices they would normally use in the course of their work while pro-
viding activity-level support by sensing and responding to the virtual and

Figure 7.2
A montage of a working context, including a number of application windows and
two external context notification cues, representing both virtual (completion of a
print job) and physical context information (the availability of a colleague).

ch07.indd 201ch07.indd 201 12/4/2006 1:20:16 PM12/4/2006 1:20:16 PM

202 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

physical context surrounding the user’s activities. Unlike the majority of
context-aware systems that have generally focused solely on the acquisi-
tion and interpretation of physical context—primarily location—to adapt
an application to a user’s social and physical surroundings, Kimura lever-
ages virtual context—the processes and resources involved in manipulat-
ing digital information—as well.

Our system uses several monitoring components and proxies to acquire
virtual context about the users’ ongoing activities. Our focus is on captur-
ing the users’ interactions with the application and document windows
that are associated with each activity. We have developed a desktop moni-
toring system for Microsoft Windows using the Win32 system hooks API.
When the Kimura system is running, Windows sends notification of low-
level user actions (e.g., opening a window, changing the window focus,
pressing a key, clicking the mouse) to a desktop-monitoring process. The
monitoring process encodes the event and forwards it to a distributed
activity log. Additionally, the desktop monitor creates a screenshot of each
window each time the window system’s input focus changes. The con-
text interpreter integrates these screenshots into the montages so that the
visual representations of the user’s activity can include actual images of
the user’s work. The images, similar to thumbnails, provide more relevant
visual reminders than generic icons or labels. We use metrics, such as the
amount of time a particular window has been in focus and the number of
focus switches between open windows, to determine the size and place-
ment of the screenshot images in the montage visualizations displayed on
the electronic whiteboard.

Kimura also acquires virtual context through an email-monitoring
system, tracking the user’s interaction with colleagues during work activi-
ties. A small process running on the user’s mail server monitors changes in
each of the user’s mailboxes. It monitors all email messages that the user
sends and associates each mail recipient with the active working context.
The process also adds the recipient to a list of individuals with whom the
Kimura user might be trying to connect, and instructs the location-moni-
toring component to actively monitor the availability of that individual by
watching for their presence in public areas of the office.

In addition, Kimura observes the user’s interactions with distributed
peripheral devices over the course of a work activity. We have implement-
ed a printer proxy that records the ID and status of pending print jobs in

ch07.indd 202ch07.indd 202 12/4/2006 1:20:16 PM12/4/2006 1:20:16 PM

Supporting Activity in Desktop Computing 203

a working context. As the status of each print job changes (for example,
a print job is sent to the spooler, prints after being buried in a long queue,
or stalls because the printer is out of paper), the context interpreter adds
a notification cue to the appropriate montage.

Kimura also helps the user reconstruct the environmental circumstances
surrounding a working context and provides cues about the user’s col-
leagues’ location and availability using physical context. In our current
prototype, we simulate a pervasive, location-aware infrastructure (e.g.,
Dey, Abowd, and Salber 2001) with a series of Dallas Semiconductor i-
Button docks distributed throughout the office environment. We designed
our sensor network to detect the arrival and departure of known individu-
als in our augmented office environment, in public areas of the office, and
near peripheral devices (that is, next to the printer). This functionality
lets the system determine the general location of the Kimura user and her
colleagues, and allows the system to infer when those colleagues might
be available for collaboration or when they have joined the user in the
augmented office for an informal meeting.

The Challenges of Supporting Activity in Ubicomp Environments

The design of the Kimura system was based on our understanding of
activity, supplanting the traditional “desktop,” application-and-docu-
ment metaphor, and allowing users to manage their ongoing activities
in the same way that they conceive of and manage their tasks in the real
world. It was also built upon the findings of previous studies of knowl-
edge work, allowing users to organize their work spatially and without
needing to explicitly name or label information in order to work with
it. We developed our designs with the belief that even though ubiqui-
tous computing is changing how, where, and when we work, the desktop
computer will still play a key role in office computing for the foreseeable
future.

However, we made several explicit design decisions to limit the scope,
and therefore the complexity, of our design space for the Kimura project.
For example, we opted to design a system that would be used in one
worker’s personal office, and primarily by that single user. We also rep-
resented activities as “flat” collections of documents, as opposed to hier-
archical representations or representations with variable perspectives, so

ch07.indd 203ch07.indd 203 12/4/2006 1:20:16 PM12/4/2006 1:20:16 PM

204 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

that we would be able to more readily evaluate the montage visualizations
for each activity.

As we continue to work on the next-generation version of the Kimura
system, we are looking to extend the system in ways that emphasize the
mediating role of the digital work environment. Our informal experiences
in using the system suggest that having a mechanism for organizing and
managing one’s own short-term activities is useful, but Kimura would be
even more useful if it could allow users to manage substantially more
numerous and complex activities over the course of months or years and
enable users to coordinate activities among members of a project team.

We are confident that many of the design decisions we initially made
will continue to prove useful as we move forward with the project. For
example, the explosion of recent work on multiple displays in the work-
place (Grudin 2001; Tan and Czerwinski 2003) and large-display group-
ware (Fass, Forlizzi, and Pausch 2002; Huang, Russell, and Sue 2004;
Johanson, Fox, and Winograd 2002; Moran et al. 1996; Streitz et al.
1999) indicate that our intuitions about leveraging the electronic white-
board as an organizing space will continue to prove fruitful. However,
the side effects of our limited design space, such as our system’s relatively
simple representation of activities, the lifecycle of those activities, and the
current means of populating and managing those activity representations
over time may need drastic reconsideration if we are to be successful.

We have identified five challenges for representing and supporting activ-
ity in integrated digital work environments, based on our experiences with
the Kimura system and our attempts to extend its capabilities. The chal-
lenges exist owing in large part to the inherent complexity of human activ-
ity, the technical affordances of the computing tools used in work practice,
and the nature of (and culture surrounding) knowledge work.

Activities are multifaceted One of the primary departures of activity-
centered computing from the traditional “desktop” metaphor is the rec-
ognition that one activity often spans several applications, and includes
many types of documents and information resources. Although the
“desktop” metaphor provided users with interface-level support for mul-
titasking, application software has become so specialized and informa-
tion sources so diverse that a typical desktop window layout, organized
to support a single activity, might consist of dozens of windows spanning

ch07.indd 204ch07.indd 204 12/4/2006 1:20:16 PM12/4/2006 1:20:16 PM

Supporting Activity in Desktop Computing 205

multiple applications—in addition to any real-world artifacts that are
referenced over the course of the activity.

The Kimura system allowed users to organize and manage their work at
the level of activities, as opposed to manually manipulating applications
and documents. Our design was intended to lower the overhead of activity
switching by allowing the user to switch easily between relevant groups
of applications and documents as needed—much the same motivation as
in systems like Rooms (Henderson and Card 1986), Task Gallery, and
GroupBar (Robertson et al., this volume; Robertson et al. 2000; Smith
et al. 2003). Kimura initially associated activities with individual virtual
desktops on the primary desktop computer; the number and contents of
a user’s virtual desktops were used to identify the user’s current activities
and associate applications, documents, and external resources with those
activities.

Supporting the multifaceted aspects of activity in a ubicomp environ-
ment becomes a much more complex proposition. If activity is to be used
as a unifying organizational structure across a wide variety of devices such
as traditional desktop and laptop computers, PDAs, mobile telephones,
personal-server style devices (Want et al. 2002), shared public displays,
and so on, then those devices must all be able to share a common set of
activity representations and use those representations as the organizational
cornerstone for the user experience they provide. Additionally, the activity
representations must be versatile enough to encompass the kinds of work
for which each of these kinds of devices is used. Although this may sound
like an unattainable vision, we have already demonstrated that support
for activity can be added to a platform without dramatically changing the
fundamental nature of its operating system or application software.

Activities are dynamic User studies and intuition both suggest that the
activities that a knowledge worker engages in change—sometimes dra-
matically—over time. Projects and milestones come and go, and the tools
and information resources used within an activity often change over time
as well. Furthermore, activities completed in the past and their outcomes
often impact activities in the present, and ongoing activities will, in turn,
affect activities that will be undertaken in the future. Capturing activity
over the course of time has long been a problem for desktop computing.
For example, saved files frequently contain only the most recent state of

ch07.indd 205ch07.indd 205 12/4/2006 1:20:16 PM12/4/2006 1:20:16 PM

206 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

a document and users must often adopt unusual work practices to cap-
ture and access the document’s history, such as tracking changes using an
auxiliary change-management system such as CVS.1 Another often-cited
observation is that hierarchical filing systems do not readily reflect the
fact that a single resource might be used in different contexts (see, e.g.,
Dourish et al. 2000).

One of our central design decisions in the Kimura system was to base
our representations and visualizations of activity on users’ actual, ongoing
work. As users created new virtual desktops, opened and closed applica-
tions, referenced documents, and interacted with colleagues electronically,
Kimura’s model of the user’s activity would automatically reflect these
changes. Our approach in representing the history of activities was to
provide visualizations that reflected the state of an activity throughout
the entire course of its existence, rather than simply providing a snapshot
of its current state. The document thumbnails within each montage are
sampled both from the most current and the most significant components
of each activity, even if the most significant components are documents
that are no longer open and therefore no longer immediately accessible.
Additionally, the integration of external context notification cues allowed
our visualizations to reflect the dynamic nature of activities as affected by
changes sensed from the “real world.” We felt that in order to provide an
accurate representation of the activity, this holistic view of the activity’s
contents would be invaluable, particularly for resumption of an activity
that had not been active for an extended period of time.

However, some of our implementation decisions also made it difficult to
work with many long-lived activities. In order to maximize compatibility
with all desktop applications and not force users to adopt a small set of
custom-built, “Kimura-aware” applications, we initially opted to track
and manage activity using only window handles, application types, and
window captions. Unfortunately, this imposed the limitation that activi-
ties could be resumed only if their windows were still open and available
(albeit hidden) on the desktop computer. A design decision that was origi-
nally intended to enable more realistic evaluation—system users would
be able to use whatever applications with Kimura that they already used
in the course of their work—actually undermined long-term study of the
system since even powerful, modern computers have practical limitations

ch07.indd 206ch07.indd 206 12/4/2006 1:20:16 PM12/4/2006 1:20:16 PM

Supporting Activity in Desktop Computing 207

about the number of applications and documents that can be open at a
given time.

There are a number of other systems that have been quite successful at
capturing user activity as a function of time and exposing this record to
the user. Although these systems have provided different means for navi-
gating through the temporal record—Designers’ Outpost via a “global
timeline” at the bottom of the display (Klemmer et al. 2002), Flatland
through snappable, per- “segment” time sliders (Mynatt et al. 1999), and
TimeScape by presenting several interactive desktop visualizations (Reki-
moto 1999)—all indirectly support the notion of activity in the interface
by allowing users to restore the interaction state to that of a previous point
in time. Regardless of the specific user-interface technique or techniques
used to expose the interaction history to the user, this general approach
is successful in allowing users to immerse themselves in the context of an
activity from the past and have access to the content that they were using
to accomplish that activity.

Activities are collaborative Most knowledge work is inherently col-
laborative. If activities aren’t centered around synchronous interactions
between multiple members of a project team or the user and some number
of individuals external to his or her immediate workgroup, they almost
certainly draw upon information that was created by others at some ear-
lier point in time. Recognizing the mediating role of the digital work
environment in enabling users to collaborate meaningfully is a critical
step to ensuring the success of these systems.

However, as the large, diverse body of literature in the computer-sup-
ported collaborative work (CSCW) community suggests, supporting effec-
tive collaboration is rarely a trivial undertaking. Technical issues involving
the exchange of information, preservation of state, and graceful opera-
tion in the face of network failures, coupled with social issues regarding
awareness, negotiation about the roles that collaborators will play, and
privacy—to name just a few—abound.

We initially limited the scope of Kimura to one user in order to simplify
our design space and allow us to iterate on our infrastructure implementa-
tion and montage designs with fewer CSCW-related constraints. However,
Kimura was able to detect certain patterns of electronic communication

ch07.indd 207ch07.indd 207 12/4/2006 1:20:16 PM12/4/2006 1:20:16 PM

208 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

and associate individuals with ongoing tasks. We also provided a visual-
ization technique that presented colleague availability as a component of
the montages on the electronic whiteboard, based on information gleaned
from the context-aware infrastructure. This appeared to be a useful initial
step during our informal evaluations of the system.

Looking beyond our single-user implementation of the Kimura system,
there are several design considerations that will be critical in enabling
more robust collaboration support for work activities. First and foremost,
other individuals must be represented as first-class objects in computation-
al models of activity. One potentially useful way to incorporate colleagues
into activity representations is to leverage and visualize the relationships
between ongoing work activities and naturally occurring virtual and real-
world social networks (see, e.g., Nardi, Whittaker, and Schwarz 2002;
Fisher and Nardi, this volume). Additionally, activities need to be repre-
sented in such a way that their contents can be shared, with the caveats
that individual participants in an activity may have very different percep-
tions of the activity, they may bring different resources to play over the
course of the activity, and, particularly for large activities in which many
individual users participate, users themselves may come and go over the
life of the activity.

Moreover, such systems must be designed with the social context of
the workplace in mind; providing support for collaboration requires
somewhat more subtlety than simply exposing all participants’ activity
representations and constituent resources to one another. Participants
may wish to exercise varying degrees of control over how and when their
resources and work processes are shared with their colleagues. They may
also wish to specify how their availability is shared with different col-
leagues. Finally, the organizational structure of the workplace may cause
each collaborator to play different roles in the activity; as a result, each
may need access to different activity representations or meta-information
about the activity and contributions of its participants (Shen and Dewan
1992; Sikkel 1997).

Activities exist at different levels of granularity At any given point in
time, a single user may report being involved in several different activi-
ties, each specified at a slightly different level of granularity. For example,
she might be in the midst of writing a conference paper review, compil-

ch07.indd 208ch07.indd 208 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

Supporting Activity in Desktop Computing 209

ing a list of references for a proposal submission, and working toward a
promotion. The paper review activity lasts only a short time and requires
a unique set of resources—namely, the paper under review. It also might
resemble other activities, for example, a conference paper review at about
the same time last year, and it might take advantage of some resources
affiliated with other activities, such as a repository of research papers
often used for project literature reviews. The proposal submission might
be a substantially longer task involving a broader spectrum of resources
and, often, the input of several colleagues. Striving for the promotion
might require years of work and encompass many other, subordinate
activities.

The idea that activities may exist at different levels of granularity is not a
new one. Boer, van Baalen, and Kumar (2002) provide a model explaining
how an activity at one level of analysis may be modeled as an action—a
component of an activity—at another. This holds true for individual users,
as in the example provided above, but is even more pronounced when
a single activity is viewed from multiple participants’ perspectives. For
example, a manager and a principal investigator might both be involved
in the activity of completing a research project, but their perceptions of
the importance of the activity, the tools, the actors involved, and specific
goals might be quite different.

The Kimura system represented activities based on the contents of a
single virtual desktop on a primary desktop computer, placing few limi-
tations on the contents or lifespan of a tracked activity. Our montage
visualizations were also designed to apply across activities specified at dif-
ferent levels of granularity. The visualization algorithm simply displayed
the longest-used and most recently used window thumbnails associated
with each activity; regardless how long- or short-lived the activity or the
level of granularity at which the user conceptualized it, the documents
with which they would most likely associate the activity were displayed
on the whiteboard.

Of course, supporting activities shared among two or more users com-
plicates the situation. Suppose one user manages her tasks at a high,
project-oriented level, for example, annual project review and teaching,
and another user participating in the same activities manages his tasks
at a much finer granularity, for example, project review demonstration
debugging and preparing computer graphics guest lecture. This scenario

ch07.indd 209ch07.indd 209 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

210 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

is particularly likely when colleagues with different roles (such as a team
member and a manager) collaborate on a single activity. Although it would
be relatively straightforward to provide activity-level support for either of
these users on their own, maintaining a shared representation of each of
the users’ collaborative activities at their preferred granularity, providing
each user with appropriate views of the activities, generating notifications
to each user for relevant changes in the activities, and coordinating chang-
es in the structure of the activities over time become very complex.

Activities exist across places Activities also span place; that is, it is
common for work to take place outside of the immediate office environ-
ment. However, current office technologies sometimes present a very dif-
ferent view of information across different physical and virtual settings.
For example, resources affiliated with a work activity may not be vis-
ible to users who are physically located outside of the workplace, owing
to the presence of a corporate firewall. Even when physically located
within the workplace, collaboration on an activity might not be possible
between colleagues whose computers are connected on different network
subnets, that is, when one is plugged into a wired network and the other
is connected wirelessly.

Furthermore, portable devices currently operate with very different inter-
faces and hierarchies from those of their office environment counterparts.
Where a desktop computer might store complex, detailed representations of
user activities and the resources affiliated with them (and even more so when
augmented with activity-aware applications), PDAs and mobile phones
often store very simple, flat collections of information and require explicit
user action to maintain information synchronization among devices.

We implemented the Kimura system using the Java programming lan-
guage and enabled distributed computing using common TCP/IP network-
ing protocols so that it would be easy to implement visualization clients
and context-awareness providers on a wide variety of devices. Although
we have not yet created information managers for use on PDAs and cell
phones, it would be easy to do so using J2ME virtual machines or by cre-
ating WAP-based web interfaces to the Kimura system using our existing
servers.

Network connectivity-related problems, although beyond the scope of
our current research agenda, constitute a challenge for many ubiquitous

ch07.indd 210ch07.indd 210 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

Supporting Activity in Desktop Computing 211

computing efforts. Technologies like virtual private networks (VPNs),
which allow users outside of a corporate domain to pass traffic through
a secure tunnel to their company’s internal network; zero configuration
networking protocols such as Apple’s Bonjour,2 which allow users to see
and use nearby resources without incurring network setup cost for the
user; and research platforms like Speakeasy, which fosters service interop-
erability and enables ad hoc network bridging (Edwards et al. 2002) are
all helping to lessen the impact of network topology on the visibility and
availability of networked resources for mobile users.

Understanding the Challenges: A Theoretical Framework

In order to address the challenges that we identified for the design of
activity-centered ubicomp work environments, we are conducting more
in-depth field studies to understand the subtleties of users’ conceptualiza-
tion of activity in their day-to-day work practices. However, we are also
looking to theoretical frameworks to understand the role of activity in
these types of environments.

We have already noted that the emergence of ubicomp and integrated
digital work environments has had a dramatic impact on the way that
researchers in human-computer interaction (HCI) and related fields think
about the design of computing environments. Historically, HCI adopted
and adapted knowledge, processes, and techniques from artificial intel-
ligence (AI), cognitive science, and cognitive psychology in the service of
understanding and modeling user behavior, and applied those findings
to the creation of new interfaces and technologies through design prac-
tice. As a result of this lineage, many of the theories and techniques used
in HCI to model users have exhibited a markedly cognitive, “agents as
information processors” flavor; much of the research literature on user
modeling in HCI has been based on the Model Human Processor (Card,
Moran, and Newell 1983), which has its roots in the physical symbol
system hypothesis. Other important user models, such as Norman’s Seven
Stages of Action model (Norman 1990), can trace their heritage back to
Gibson’s systems school of perception (Gibson 1979).

Over the last decade, the focus of the HCI community began to shift
away from the quantitative evaluation of user interfaces based on cogni-
tive models and toward more ecologically informed techniques, including

ch07.indd 211ch07.indd 211 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

212 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

contextual and participatory design (Beyer and Holtzblatt 1998; Kyng
1994). This “user-centered design” movement foregrounded the social
context of technology use and incorporated user feedback and participa-
tion throughout the design process. While this transition has been invalu-
able in producing traditional computer systems that exhibit both usability
and usefulness, ubiquitous computing is providing its own set of challenges
for HCI practitioners. In particular, the fact that most users are only now
beginning to experience the ubicomp vision and integrate this new, unique
class of technology into their work practices suggests that another change
in focus may be on the horizon: “[T]he shift from user-centered design to
context-based design corresponds with recent developments in pervasive,
ubiquitous computing networks and in the appliances that connect with
them, which are radically changing our relationships with personal com-
puting devices” (Gay and Hembrooke 2003).

The changes in how HCI researchers and practitioners are examining
the relationships between users and their devices are not limited to cutting-
edge tangible media computing or immersive environments, however.
Throughout the field, much more work is being done in understanding
users’ existing work practices, often involving traditional desktop com-
puter systems, and in developing better models of users’ interactions with
a variety of computing devices.

One of the frameworks for asking these kinds of questions that has
garnered a great deal of attention in recent years is activity theory. Activ-
ity theory places a strong focus on the mediating role of tools and social
practices in the service of accomplishing goals. Because this seems to
echo the sentiment of the challenges we uncovered in developing activity-
based computing tools, we believe that activity theory can serve as a
useful framework to inform the design of activity-centered digital work
 environments.

Activity Theory and Activity-Centered Design
The origins of activity theory can be traced back to the former Soviet
Union as part of the cultural-historical school of psychology founded by
Vygotsky, Leont’ev, and Luria. Rather than focusing on action as a unit
of analysis, activity theory focuses at the broader level of an activity and
incorporates the social and cultural context of cognition (Halverson 2001;
Leont’ev 1978; Vygotsky 1978).

ch07.indd 212ch07.indd 212 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

Supporting Activity in Desktop Computing 213

In their well-known “activity checklist,” Kaptelinin, Nardi, and Macau-
lay (1999) identified five basic principles of activity theory:

1. Hierarchical structure of activity In activity theory, the unit of analy-
sis is an activity which is directed at an object that motivates the activ-
ity. Activities are composed of conscious, goal-directed actions; different
actions may be taken to complete any given goal. Actions are implemented
through automatic operations, which do not have goals of their own. This
hierarchical structure is dynamic and can change throughout the life of an
activity.

2. Object-orientedness Activity theory holds that humans exist in a
broadly defined objective reality, that is, the things around us have prop-
erties that are objective both to the natural sciences and society and
 culture.

3. Internalization/externalization Activity theory considers both inter-
nal and external actions and holds that the two are tightly interrelated.
Internalization is the process of transforming an external process into an
internal one for the purposes of planning or simulating an action with-
out affecting the world. Externalization transforms internal actions into
external ones and is often used to resolve failures of internal actions and
to coordinate actions among independent agents.

4. Mediation A central tenet of activity theory is that activity is medi-
ated by tools, and that these tools are created and transformed over
the course of the activity so that the culture and history of the activ-
ity becomes embedded in the tools. Vygotsky’s definition of tool is very
broad; one of the tools he was most interested in was language.

5. Development Activity theory relies upon development as one of its
primary research methodologies; that is, “experiments” often consist of
a subject’s participation in an activity and observation of developmen-
tal changes in the subject over the course of the activity. Ethnographic
methods that identify the cultural and historical roots of activity are also
frequently used.

Engeström (1987) provides a classic visualization summarizing the
structure of an activity (figure 7.3). This model is based on three mutual
relationships: that between the actor (subject) and the community (other
actors involved), that between subject and the object (in the sense of
 objective) of the activity, and that between the object and the community.

ch07.indd 213ch07.indd 213 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

214 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

These mutual relationships are mediated by the other components of activ-
ity. For example, the relationship between subject and object is mediated
by tools (mediating artifacts); because of this, the subject’s experience of
the object is constrained by the tools used, and the tools that are created
as a by-product of the activity are directly shaped by the subject and the
object. The tools also embed the culture and history of the other compo-
nents of the activity, such as the social rules governing the community, the
community itself, and the organization of that community (e.g., the roles
of its members), sometimes referred to as the division of labor.

However, Gay and Hembrooke (2003) point out a weakness in the orig-
inal formulation of activity theory: “The model of activity theory . . . has
traditionally been understood as a synchronic, point-in-time depiction of
an activity. It does not depict the transformational and developmental pro-
cesses that provide the focus of much recent activity theory research.”

Boer, van Baalen, and Kumar (2002) provide an interesting suggestion
for how the scope of activity theory can be expanded across time and the
levels of an organization to explain connections between different activi-
ties as well as the influence that an activity may exert upon itself:

Figure 7.3
An adaptation of Engeström’s analysis of activity and mediating relationships.

ch07.indd 214ch07.indd 214 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

Supporting Activity in Desktop Computing 215

Besides the fact that an activity is situated in a network of influencing activity
systems, it is also situated in time. . . . In order to understand the activity system
under investigation, one therefore has to reveal its temporal interconnected-
ness. . . . Rather than analyzing an activity system as a static picture of reality,
the developments and tensions within the activity system need to be described
and analyzed. . . . When analyzing an activity system at a particular contextual
level, one should also take into account its relations with activity systems at other
contextual levels (e.g., economic system, industry, supply chain, organization,
department or production process). . . . The activity system under investigation is
not only affected by activity systems at other contextual levels, it also exerts influ-
ence on them itself (bi-directional twisted arrows in figure [7.4]). This is in line
with Giddens’ theory of structuration which assumes that on the one hand human
action is restricted by institutional properties of social systems, while on the other
hand these institutional properties are the product of human action. (Boer, van
Baalen, and Kumar 2002, authors’ emphasis)

Boer et al. also consider the role that an activity may play in other activi-
ties at different levels of analysis. They suggest that the components of
one activity system may play different roles in more broadly or narrowly
scoped activities that exist in different cultural contexts, for example, on a
project team, in a department, or in an entire corporation (see figure 7.4).

These extensions increase the complexity of the activity theory model
but also help to explain tensions present in real-world systems such as
when one agent plays different roles in two systems that have divergent
goals. Furthermore, this approach provides activity theory with a similar
degree of agility in representing complex, distributed cognition as compet-
ing theoretical approaches, such as distributed cognition (Hutchins 1995).

Nardi (1996) argues that one of the inherent strengths of activity theory
is in its ability to capture the idea of context in user models for HCI, a
notion that is gaining momentum particularly with respect to the ubiq-
uitous computing paradigm and as its own design movement, so-called
 activity-centered design (Gay and Hembrooke 2003). The world that
Gay and Hembrooke envision relies upon design that is not user-centered
(which is currently the dominant view in the HCI community) but activity-
centered, since activity theory provides the right “orientation” for future
classes of interactions mediated by ubiquitous computing devices.

The Intersection of the Pragmatic and the Theoretic

Activity theory is described both as a guiding framework for analyzing
observations of work practice and as a language for communicating those

ch07.indd 215ch07.indd 215 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

216 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

findings within the community of practitioners (Halverson 2001). In the
case of designing activity-centered ubicomp environments, activity theory
can help to shape the definition of activity that such systems seek to sup-
port. It can help to focus and organize field observations of work practices
and smooth the transition from those observations into design specifica-
tions. It can also suggest solutions to some of the most difficult challenges
in supporting activity in these integrated digital work environments.

At its core, activity theory provides a useful model of a single user’s per-
spective on the process of completing some objective. This model reflects
many of the same underlying assumptions that we made going into our work
with the Kimura system, most notably the idea of object- orientedness—that
users mentally organize their work around activities (and their constituent
actions) and that they use a variety of tools in the service of achieving the
objects of those activities. This perspective contrasts with traditional prin-
ciples held by the HCI community, which emphasize the dialogue between
the user and the system rather than the system’s role as one of many medi-
ating tools in the context of an activity. Kimura reflected this change in

Figure 7.4
Relationships between different levels of analysis. (From Boer et al. 2002.
Reprinted with permission. 2002 IEEE.)

ch07.indd 216ch07.indd 216 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

Supporting Activity in Desktop Computing 217

perspective by playing down the application-document metaphor, which
presumes that the user will be able to complete a task within a single appli-
cation. Instead, Kimura presented the user with clusters of applications and
documents augmented with contextual cues sensed from the other virtual
and physical aspects of the work activity. These clusters became the user’s
central point of interaction for managing activity, allowing them to interact
at a level of abstraction above applications and documents but without
requiring adoption of new and unfamiliar tools.

The activity theory framework also helps to expand the ways in which
we study work practices in situ and seek to understand the roles that new
technologies might play as part of users’ activities. Although it is certainly
useful to investigate how tools are being used and the aspects of collabora-
tion that are critical in the workplace, activity theory encourages research-
ers to examine activity from the perspectives of each participant and to
understand the role of social rules and participant roles, in addition to the
use of artifacts and information resources.

But perhaps most compelling are the ways in which activity theory
models interact with the challenges that we identified in our experiences
with Kimura and our survey of other activity-centered ubicomp environ-
ments. Activity theory casts a wide but well-defined net around the mul-
tifaceted nature of activity, suggesting that the user’s colleagues and the
object of the activity are of the utmost importance, but that the tools, social
rules, and roles of collaborators within the community must also be reflect-
ed back to the user as critical components of that activity. The idea that
components of activity reflect their history of use through time suggests
several ways for activity-centered systems to support a dynamic working
landscape; for example, they might capture past activities in an archive for
quick—and potentially automated—reference during related tasks in the
future, and the tools used in previous and ongoing activities (e.g., docu-
ments and information resources) might need to both be available at all
times and tagged with meta-information about how they have been used
in the past. The hierarchical structure of the Boer et al. adaptation of the
activity theory model can help to reconcile the differences in granularity and
the difficulties of supporting collaboration identified in our work; future
activity-centered user interfaces might take advantage of the zoomable user
interface paradigm or feature control over the level of detail (LOD) repre-
sented in the interface to more accurately reflect the depth at which a given
user conceptualizes his own tasks or the tasks of his colleagues.

ch07.indd 217ch07.indd 217 12/4/2006 1:20:17 PM12/4/2006 1:20:17 PM

218 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

While activity theory provides a useful lens for understanding users’
work practices and a language for communicating models of users’ behav-
ior, there are some aspects of work practice that have been shown to be
critical to knowledge work but are not captured in the activity theory
framework. For example, knowledge workers have been shown to rely on
the organization of information used in ongoing activities to accomplish
their work, particularly when the value or role of that information has
not yet been fully determined (Kidd 1994; Malone 1983; Mynatt 1999).
Activity theory does allude to the fact that tools reflect the history of their
use, but it does not place a strong emphasis on this critical component of
knowledge work. This observation implies that supporting activity well
in ubicomp environments will likely require us to draw upon a variety
of activity models and inquiry techniques for understanding how work is
accomplished in the real world.

However, theoretical frameworks provide only one perspective on under-
standing the role of activity in ubicomp environments. Another invaluable
resource is the growing body of research literature describing design deci-
sions related to and practical experience resulting from integrating activ-
ity into other kinds of computational tools. Activity is increasingly being
used to organize and manage overloaded communication channels like
email (see, e.g., Bellotti et al. 2003; Gwizdka 2002), as an index into per-
sonal information management on desktop computers (see, e.g., Kapteli-
nin 2003; Kaptelinin and Boardman, this volume), and as a means for
coordinating actions among groups of users (see, e.g., Bardram 2005, this
volume). The results of these experiments will further help to clarify the
issues and challenges related to representing activity in the user interface
and provide the community with a more diverse portfolio of approaches
for modeling activity and exposing those models to system users.

As designers are faced with creating the next generation of integrated digi-
tal work environments, theoretical frameworks such as activity theory and
pragmatic perspectives like those gained from our work on the Kimura system
will both play a key role in informing the design of these systems and over-
coming the challenges presented by supporting real-world work practices.

Notes

1. Http://www.cvshome.org/.

2. Http://developer.apple.com/networking/bonjour/.

ch07.indd 218ch07.indd 218 12/4/2006 1:20:18 PM12/4/2006 1:20:18 PM

Supporting Activity in Desktop Computing 219

References

Abowd, G. D. (1999). Classroom 2000: An experiment with the instrumentation
of a living educational environment. IBM Systems Journal: Special Issue on Perva-
sive Computing 38 (4): 508–530.

Bardram, J. E. (2005). Activity-based computing: Support for mobility and col-
laboration in ubiquitous computing. Personal and Ubiquitous Computing 9 (5):
312–322.

Bellotti, V., Ducheneaut, N., Howard, M., and Smith, I. (2003). Taking email to
task: The design and evaluation of a task management centered email tool. In Pro-
ceedings of the ACM Conference on Human Factors in Computing Systems (CHI
2003), pp. 345–352. Ft. Lauderdale, Florida, April 5–10.

Beyer, H., and Holtzblatt, K. (1998). Contextual Design: Defining Customer-Cen-
tered Systems. San Francisco: Morgan Kaufmann.

Boer, N., van Baalen, P. J. and Kumar, K. (2002). An activity theory approach for
studying the situatedness of knowledge sharing. In Proceedings of the 35th Annual
Hawaii International Conference on System Sciences (HICSS-35 ’02). Big Island,
Hawaii, January 7–10.

Card, S. K., Moran, T. P., and Newell, A. (1983). The Psychology of Human–
Computer Interaction. Hillsdale, N. J.: Lawrence Erlbaum.

Dey, A. K., Abowd, G. D., and Salber, D. (2001). A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware applications.
Human-Computer Interaction Journal 16 (2–4): 97–166.

Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J., Petersen, K., Salisbury,
M., Terry, D. B., and Thornton, J. (2000). Extending document management sys-
tems with user-specific active properties. ACM Transactions on Information Sys-
tems 18 (2): 140–170.

Drucker, P. F. (1973). Management Tasks, Responsibilities, and Practices. New
York: Harper and Row.

Edwards, W. K., Newman, M. W., Sedivy, J. Z., Smith, T. F., Balfanz, D., Smetters,
D. K., Wong, H. C., and Izadi, S. (2002). Using Speakeasy for ad hoc peer-to-
peer collaboration. In Proceedings of the ACM 2002 Conference on Computer
 Supported Cooperative Work (CSCW 2002), pp. 256–265. Minneapolis, Minne-
sota, April 20–25.

Engeström, Y. (1987). Learning by Expanding. Helsinki: Orienta-konsultit.

Fass, A. M., Forlizzi, J., and Pausch, R. (2002). MessyDesk and MessyBoard: Two
designs inspired by the goal of improving human memory. In Proceedings of the
Conference on Designing Interactive Systems: Processes, Practices, Methods, and
Techniques (DIS 2002), pp. 303–311. London, England, June 25–28.

Gay, G., and Hembrooke, H. (2003). Activity-Centered Design: An Ecological
Approach to Designing Smart Tools and Usable Systems. Cambridge, Mass.:
MIT Press.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston:
Houghton Mifflin.

ch07.indd 219ch07.indd 219 12/4/2006 1:20:18 PM12/4/2006 1:20:18 PM

220 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

González, V. M., and Mark, G. (2004). “Constant, constant multi-tasking crazi-
ness”: Managing multiple working spheres. In Proceedings of the ACM Confer-
ence on Human Factors in Computing Systems (CHI 2004). Vienna, Austria,
April 24–29.

Grudin, J. (2001). Partitioning digital worlds: Focal and peripheral awareness in
multiple monitor use. In Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI 2001), pp. 458–465. Seattle, Washington, March
31–April 5.

Gwizdka, J. (2002). TaskView: Design and evaluation of a task-based email
interface. In Proceedings of the IBM Centers for Advanced Studies Conference
(CASCON 2002), pp. 136-145. Toronto, Canada, September 30–October 3.

Halverson, C. A. (2001). Activity theory and distributed cognition: Or, What
does CSCW need to do with theories? Computer-Supported Cooperative Work
(CSCW) 11 (1–2): 243-267.

Henderson, J. D. A., and Card, S. K. (1986). Rooms: The use of multiple virtual
workspaces to reduce space contention in window-based graphical user interfaces.
ACM Transactions on Graphics 5 (3): 211–241.

Hong, J. I., and Landay, J. A. (2000). SATIN: A toolkit for informal ink-based
applications. In Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST ’00), pp. 63–72. San Diego, California, November 6–8.

Huang, E. M., Russell, D. M., and Sue, A. E. (2004). IM Here: Public instant
messaging on large, shared displays for workgroup interactions. In Proceedings
of the ACM Conference on Human Factors in Computing Systems (CHI 2004),
pp. 279–286. Vienna, Austria, April 24–29.

Hutchins, E. (1995). Cognition in the Wild. Cambridge, Mass.: MIT Press.

Igrashi, T., Edwards, W. K., LaMarca, A., and Mynatt, E. D. (2000). An architecture
for pen-based interaction on electronic whiteboards. In Proceedings of the Working
Conference on Advanced Visual Interfaces, pp. 68–75. Palermo, Italy, May 23–26.

Ishii, H., and Ullmer, B. (1997). Tangible bits: Towards seamless interfaces
between people, bits, and atoms. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’97), pp. 234–241. Atlanta, Georgia,
March 22–27.

Johanson, B., Fox, A., and Winograd, T. (2002). The Interactive Workspaces proj-
ect: Experiences with ubiquitous computing rooms. IEEE Pervasive Computing
1 (2): 67–74.

Kaptelinin, V. (2003). UMEA: Translating interacting histories into project con-
texts. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 2003), pp. 353–360. Ft. Lauderdale, Florida, April 5–10.

Kaptelinin, V., Nardi, B. A., and Macaulay, C. (1999). The activity checklist: A
tool for representing the “space” of context. interactions 6 (4): 27–39.

Kidd, A. (1994). The marks are on the knowledge worker. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI ’94), pp. 186–
191. Boston, Massachusetts, April 24–28.

ch07.indd 220ch07.indd 220 12/4/2006 1:20:18 PM12/4/2006 1:20:18 PM

Supporting Activity in Desktop Computing 221

Klemmer, S. R., Thomsen, M., Phelps-Goodman, E., Lee, R., and Landay, J. A.
(2002). Where do web sites come from? Capturing and interacting with design
history. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 2002), pp. 1–10. Minneapolis, Minnesota, April 20–25.

Kyng, M. (1994). Scandinavian design: Users in product development. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems (CHI ’94),
pp. 3–9. Boston, Massachusetts, April 24–28.

Leont’ev, A. N. (1978). Activity, Consciousness, and Personality. Englewood
Cliffs, N. J.: Prentice Hall.

Leibe, B., Starner, T., Ribarsky, W., Wartell, Z., Krum, D., Weeks, J., Singletary,
B., and Hodges, L. (2000). Toward spontaneous interaction with the Perceptive
Workbench. IEEE Computer Graphics and Applications 20 (6): 54–65.

MacIntyre, B., Mynatt, E. D., Voida, S., Hansen, K. M., Tullio, J., and Corso,
G. M. (2001). Support for multitasking and background awareness using interac-
tive peripheral displays. In Proceedings of the 14th Annual ACM Symposium on
User Interface Software and Technology (UIST ’01), pp. 41–50. Orlando, Florida,
November 11–14.

Malone, T. W. (1983). How do people organize their desks? Implications for the
design of office information systems. ACM Transactions on Office Information
Systems 1 (1): 99–112.

Mander, R., Salomon, G., and Wong, Y. Y. (1992). A “pile” metaphor for support-
ing casual organization of information. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’92), pp. 627–634. Monterey,
California, May 3–7.

Moran, T. P., Chiu, P., Harrison, S., Kurtenbach, G., Minneman, S., and van Melle,
W. (1996). Evolutionary engagement in an ongoing collaborative work process: A
case study. In Proceedings of the 1996 ACM Conference on Computer Supported
Cooperative Work, pp. 150–159. Vancouver, Canada, April 13–18.

Mynatt, E. D. (1999). The writing on the wall. In Proceedings of INTERACT ’99,
pp. 196–204. Edinburgh, Scotland, August 30–September 3.

Mynatt, E. D., Igrashi, T., Edwards, W. K., and LaMarca, A. (1999). Flatland:
New dimensions in office whiteboards. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI ’99), pp. 346–353. Pittsburg, Penn-
sylvania, May 15–20.

Mynatt, E. D., Igrashi, T., Edwards, W. K., and LaMarca, A. (2000). Designing
an augmented writing surface. IEEE Computer Graphics and Applications 20
(4): 55–61.

Nardi, B. A. (1996). Studying context: A comparison of activity theory, situat-
ed action models, and distributed cognition. In Nardi, B. A. (ed.), Context and
Consciousness: Activity Theory and Human–Computer Interaction, pp. 69–102.
Cambridge, Mass.: MIT Press.

Nardi, B. A., Whittaker, S., and Schwarz, H. (2002). NetWORKers and their activi-
ty in intensional networks. Computer-Supported Cooperative Work 11: 205–242.

ch07.indd 221ch07.indd 221 12/4/2006 1:20:18 PM12/4/2006 1:20:18 PM

222 Stephen Voida, Elizabeth D. Mynatt, and Blair MacIntyre

Norman, D. A. (1990). The Design of Everyday Things. New York: Doubleday.

Rekimoto, J. (1999). Time-machine computing: A time-centric approach for the
information environment. In Proceedings of the ACM Symposium on User Inter-
face Software and Technology (UIST ’99), pp. 45–54. Asheville, North Carolina,
November 7–10.

Robertson, G., van Dantzich, M., Robbins, D., Czerwinski, M., Hinckley, K.,
Risden, K., Thiel, D., and Gorokhovsky, V. (2000). The Task Gallery: A 3D
window manager. In Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2000), pp. 494–501. The Hague, The Netherlands,
April 1–6.

Shen, H., and Dewan, P. (1992). Access control for collaborative environments. In
Proceedings of the 1992 ACM Conference on Computer Supported Cooperative
Work (CSCW 1992), pp. 51–58. Toronto, Canada, November 1–4.

Sikkel, K. (1997). A group-based authorization model for cooperative systems. In
Proceedings of the Fifth European Conference on Computer Supported Coopera-
tive Work (ECSCW ’97), pp. 345–360. Lancaster, England, September 7–11.

Smith, G., Baudisch, P., Robertson, G., Czerwinski, M., Meyers, B., Robbins,
D., and Andrews, D. (2003). GroupBar: The taskbar evolved. In Proceedings of
OZCHI ’03 (Australian Computer Human Interaction Conference), pp. 34–43.
Brisbane, Australia, November 26–28.

Streitz, N. A., Geißler, J., Holmer, T., Konomi, S., Müller-Tomfelde, C., Reischl,
W., Rexroth, P., Seitz, P., and Steinmetz, R. (1999). i-LAND: An interactive land-
scape for creativity and innovation. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’99), pp. 120–127. Pittsburgh,
Pennsylvania, May 15–20.

Tan, D. S., and Czerwinski, M. (2003). Effects of visual separation and physical
continuities when distributing information across multiple displays. In Proceed-
ings of INTERACT 2003, pp. 252–265. Zurich, Switzerland, September 1–5.

Tran, Q., and Mynatt, E. D. (2002). Cook’s Collage: Two exploratory designs.
Position paper for “New Technologies for Families” Workshop, ACM Conference
on Human Factors in Computing Systems (CHI 2002), Minneapolis, Minnesota.

Voida, S., Mynatt, E. D., MacIntyre, B., and Corso, G. M. (2002). Integrating
virtual and physical context to support knowledge workers. IEEE Pervasive Com-
puting 1 (3): 73–79.

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychologi-
cal Processes. Cambridge, Mass.: Harvard University Press.

Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., and Light, J. (2002).
The Personal Server: Changing the way we think about ubiquitous computing. In
Proceedings of the Fourth International Conference on Ubiquitous Computing
(UbiComp 2002), pp. 194–209. Gothenburg, Sweden, September 29–October 1.

Weiser, M. (1991). The computer for the 21st century. Scientific American 265
(3): 94–104.

ch07.indd 222ch07.indd 222 12/4/2006 1:20:18 PM12/4/2006 1:20:18 PM

Introduction

Conventional computer technology is designed according to an appli-
cation- and document-centered model, partially as a response to users’
needs for specific, targeted applications that support specific tasks and
manipulate particular kinds of information, like writing a letter or making
a budget. This application-centered computing model is deeply embedded
in the hardware, operating systems software, user-interface software, and
the development frameworks available today. It has proven well suited
for office work situated at a desktop, but the personal and task-oriented
approach provides little support for the aggregation of resources and tools
required by higher-level activities. It is left to the user to aggregate such
resources and tools in meaningful bundles according to the activity at
hand, and manual reconfiguration of this aggregation is often required
when multitasking between parallel activities. For example, when writing
a business memo, one would be using a whole set of applications (word
processor, spreadsheet, graphical tools, statistical packages, ERP systems,
etc.), each using a specific set of data and documents. When shifting to
another activity, like reading emails and/or browsing the web, a completely
new configuration of applications, documents, and files are needed. Even
though research has been addressing this challenge and has suggested sys-
tems like Rooms (Henderson and Card 1986), Task Gallery (Robertson
et al. 2000), Kimura (MacIntyre et al. 2001), GroupBar (Schmidt et al.
2003), and Topos (Grønbæk et al. 2001), there is little or no support for
alternating between such activities in most operating systems of today.

Mobile and nomadic work amplify the reconfiguration overhead when
users move from one work context to another, potentially using different

8
From Desktop Task Management to
Ubiquitous Activity-Based Computing

Jakob E. Bardram

ch08.indd 223ch08.indd 223 12/4/2006 1:20:21 PM12/4/2006 1:20:21 PM

224 Jakob E. Bardram

computers and different types of devices. Thus, users are often “tied” to
their personal computer which creates a one-to-one relationship between
such a (personal) computer and the user.

The world of computing is gradually moving into a world of pervasive
and ubiquitous computing where users on the one hand are using a wide
range of heterogeneous devices, like a car, the home entertainment com-
puter, an automatic refrigerator, a mobile phone, and different kinds of
small and large computers. On the other hand, a wide range of publicly
available devices are used by many users, like the refrigerator, a public dis-
play, the TV, and so on. Hence, there is now a many-to-many relationship
between users and computers.

In this chapter I will describe a novel concept for pervasive comput-
ing systems that I call activity-based computing (ABC) (Christensen and
Bardram 2002; Bardram 2005b, 2004). In activity-based computing, the
basic computational unit is no longer the file (e.g., a document) or the
application (e.g., MS Word) but the activity of the user. The end users are
directly supported by computational activities: computational activities
can be initiated, suspended, stored, resumed on any computing device in
the infrastructure at any point in time, handed over to other persons, or
shared among several persons. Furthermore, the execution of activities is
adapted to the usage context of the users, that is, activities are made con-
text-aware. One of our goals is to enable developers of clinical applica-
tions to incorporate support for mobility, interruptions, parallel activities,
cooperation, and context-awareness by designing and deploying their pro-
grams in such a pervasive computing infrastructure running in a hospital.
The ABC framework provides a runtime infrastructure with services sup-
porting these core challenges in medical work as well as a programming
model for developing ABC services and applications.

Prior Work

The concept of activity-based computing is mentioned briefly in Norman’s
book The Invisible Computer (2000). Based on observations of office
users using PCs (Macintosh computers), Norman motivates the need for
collecting applications or components into logical bundles based on the
current activity, for activity resumption, and for sharing of activity spaces.
These ideas were developed at Apple in the early 1990s, and the core tech-

ch08.indd 224ch08.indd 224 12/4/2006 1:20:21 PM12/4/2006 1:20:21 PM

Ubiquitous Activity-Based Computing 225

nological idea was to base such an approach on the OpenDoc standard.
OpenDoc was Apple’s approach to component-based software on the
desktop, like the OLE/COM component approach on the Windows plat-
form. Unfortunately, the project did not get managerial support at Apple
and hence was never realized. Inspiration for this activity-based comput-
ing approach at Apple originated in the Rooms system (Henderson and
Card 1986), the grandfather of all virtual desktop programs. Rooms pro-
vided the mechanisms for arranging the application windows on a desk-
top in logical bundles (i.e., “rooms”) and for easy alternating between
these. Compared to the activity-based computing idea presented in our
approach, the Apple ABC and the Rooms principles were still targeted
for nonmobile, personal computing for office workers at a desktop. The
approach of using the OpenDoc component technology inherently ties the
bundling of components to one physical device, and there is no support
for moving an “activity” from one device to another, or for sharing it, or
parts of it, among collaborating users.1

The concept of activity-based computing has similarities with the task-
driven computing concept in Aura (Sousa and Garlan 2002), including
the focus on support for human tasks, user mobility across heterogeneous
devices, support for context-aware adaptation, and local resource dis-
covery. Activity-based computing has, however, a greater focus on local
mobility within a work setting and not remote mobility as discussed in
Aura. Furthermore, the ABC framework is inherently designed to support
collaboration—asynchronous as well as synchronous—both of which are
absent in the Aura project. In addition, Aura focuses on software architec-
tures for ubiquitous computing middleware and the project has not done
research into the design of user interfaces or the use of such computing
environments. From a user-interface perspective, systems like Task Gallery
for Windows (Robertson et al. 2000), GroupBar (Schmidt et al. 2003), and
Kimura (MacIntyre et al. 2001) have designed ways of handling multitask-
ing in window-based user interfaces. These “virtual desktop” approaches
treat tasks as a cohesive collection of applications. When a user refers to a
particular task, the system automatically brings up all the applications and
documents associated with that task. This relieves the users from launch-
ing and arranging applications and documents individually. In our work,
we extend this notion by modeling an activity as a collection of abstract
services decoupled from applications that can handle such services. This

ch08.indd 225ch08.indd 225 12/4/2006 1:20:21 PM12/4/2006 1:20:21 PM

226 Jakob E. Bardram

decoupling of activities from specific applications allows an activity to be
handed over to and instantiated in different environments using different
supporting applications running on different hosts. This also means that
different users, who participate in the activity, can use their own favorite
application while working on an activity.

From a theoretical and conceptual level, support for “tools and materi-
als” has been the dominant design ideal for the human–computer interac-
tion for many years. This design ideal goes back to the early work on the
Alto at PARC and the Utopia project (Bødker et al. 1987) and has been
conceptually conceived as the “direct manipulation” approach to user-
interface design (Norman and Draper 1986). This design ideal advocates
direct support for what users are doing with their tools (i.e., artifacts)
and the material they are working on (the object of the activity). This
design ideal fits very nicely with the traditional reading of activity theory
(Leont’ev 1978) as referring to the work of carpenters, blacksmiths, and
other craftsmen. This approach was the starting point in design approach-
es for human–computer interaction based on activity theory, as suggested
by Bødker (1991). Moreover, this design ideal and conceptualization of
human activity also incorporates a fundamental skepticism toward work-
flow systems, because such systems incorporate (or materialize, in terms of
activity theory) a conceptualization of human activity as a mental construct
(and in the case of a workflow system a computational construct) that
controls human work. This is in direct opposition to activity theory, which
emphasizes that mental constructs (motives and goals) give direction to the
activity, but the execution of an activity is adapted to the material condi-
tions of the concrete situation at hand—a principle that Suchman (1987)
has termed “situated action.”2 Therefore, the design ideal coming out of
the traditional reading of activity theory advocates support for tools and
materials, which allows users to adapt the execution of an activity (i.e., the
operational level) to the situation in which it is taking place. In this way,
an activity retains its dialectical relationship to the world as something
that on one hand is guided by human cognition (the objective) but on the
other is shaped according to the material conditions of its execution.

Our proposal for activity-based computing (ABC) might sound like a
workflow system that tries to model human activities, including the actions
making up the activity. We even talk about (and are currently working on)
representing the human intent, that is, the objective of the activity as part

ch08.indd 226ch08.indd 226 12/4/2006 1:20:21 PM12/4/2006 1:20:21 PM

Ubiquitous Activity-Based Computing 227

of our computational support. However, ABC should not be seen as an
approach to workflow systems. In activity-based computing, a “computa-
tional activity” is a digital counterpart to a “human activity,” the former
being merely a representation of the latter, which is the activity as defined
by activity theory. Hence, ABC does not attempt to model activities in
order to control the execution of human activities—on the contrary. In a
workflow system computational activity controls and hence defines human
activity. In ABC the human activity defines the computational activity.

Looking closer at the design ideal of creating support for tools and
materials—the mediators and objects of an activity—this is actually also
the case in ABC. Translating the tools and material support into low-
level support for the basic operational-level artifact and objects like icons,
documents, scroll-bars, and so on is not the only option. According to
activity theory, especially the writings of Vygotsky (see Wertsch 1985) and
Engeström (1987), mediators and objects are also higher-level aspects of
human activity. For example, the language and its concepts, production
and work plans, the division of work between people in an organization,
and the rules and laws of a society are all examples of mediators in a
complex modern society. Hence, representations of human activities that
help people coordinate and execute their activities are primary mediators
as well. Similarly, the object of work is not necessarily something physi-
cal like the carpenter’s wooden house, the blacksmith’s horseshoes, or the
hunter’s prey. Objects of modern human activity also include the treat-
ment and care of a patient, creating manufacturing plans for the produc-
tion of cars, and doing scientific research.

As computer technology continues to play an increasing role in our
professional and personal lives, such objects are often digitally represent-
ed and some of them might only have a digital existence, like a com-
puter-aided design/computer-aided manufacturing (CAD/CAM) system
with its production plans or software programs. Hence, there is a need
for computational support for handling this increasing level of complex-
ity and the sheer amount of digital objects and mediators. The goal of
ABC is to provide higher-level tools and material (mediators and objects)
for the handling of human activities, which deals with a large amount
of digital objects. The basic tenets of activity theory, however, still apply
when moving the focus from operational support for tools and material
to higher-level activity and action support. The execution of an activity

ch08.indd 227ch08.indd 227 12/4/2006 1:20:21 PM12/4/2006 1:20:21 PM

228 Jakob E. Bardram

still takes place in a specific material world, and its operations are hence
adapted to the concrete opportunities and conditions of the situation at
hand. This adaptation of the execution of an activity to the concrete mate-
rial conditions of a specific situation is maintained in ABC. Furthermore,
a distinct feature of human activities—as opposed to animal activity—is
their collaborative nature. Hence, humans cooperate by distributing the
actions of an activity among each other, and using mediating artifacts,
including plans, schedules, and rules to coordinate such distributed activi-
ties. Thus, another core aspect of ABC is to support this cooperative nature
of human activity by creating computer-based collaboration artifacts that
mediate collaborative work activities (Bardram 1998).

Empirical Background

The empirical background for the principles in activity-based computing
is extensive field studies of work in Danish hospitals since 1995. When
analyzing clinical work and patient treatment in a hospital—and as part
of this study the use of computer technology—it becomes obvious that
contemporary computers, operating systems, and applications do not
fit well with the interrupted, distributed, nomadic, hectic work found in
many parallel activities in a clinician’s daily work. Personal computers,
laptops, PDAs, and tablet PCs are mostly suited for office workers, who
work relatively uninterrupted on personal tasks for a long period of time
at a fixed location, and often at a desktop. Hence, there is a range of
challenges for contemporary computer technology to be discovered in a
hospital, which makes hospitals a well-suited application and research
area when trying to research and design ubiquitous computing technology
that moves “beyond the desktop.” In this section we will look into some
of these challenges in more details.

Application- and Data-Orientation
The clinicians view their work as consisting of a large set of activities, some
of which are interrelated. Such activities include “Treating Mrs. Pedersen”
and “Educating the intern Mr. Hansen.” The activities are carried out
as a series of actions, which again are realized through a set of concrete
physical operations. For example, the activity of treating Mrs. Pedersen
involves a wide range of actions, like viewing X-ray images, viewing blood

ch08.indd 228ch08.indd 228 12/4/2006 1:20:21 PM12/4/2006 1:20:21 PM

Ubiquitous Activity-Based Computing 229

test results, ordering new blood tests, analyzing blood tests, monitoring
the temperature and pulse of the patient, and prescribing and giving medi-
cine. Clinicians, however, do not think much about such actions. When
interviewing them, these actions are not a primary focus—when describ-
ing their work, they talk about the “treatment of Mrs. Pedersen,” not
about viewing blood test results.

When looking at how clinicians are using computers—in particular elec-
tronic patient records (EPRs)—it is often the case that different actions in
an activity are supported by different computer applications. Hence, the
application for viewing X-ray images is supported by a picture, archiving,
and communication system (PACS), the medicine schema is shown as part
of an EPR, and ordering blood tests is part of a booking and schedul-
ing system. Even though all of these applications are used to support the
same activity—for example, treating a patient—there is little support for
aggregating related sets of applications and services into logic bundles
corresponding to this activity. In essence, most contemporary computer
technology is application- and data-centered.

As a consequence, there is little support for alternating between activi-
ties. Clinicians in a hospital are involved in many concurrent activities and
they constantly switch from one activity to another. Hence, during a ward
round a nurse might be engaged in the care of three patients, while also
supervising an intern and helping some relatives locate their father. In addi-
tion, interruptions are a substantial part of working in a hospital where the
nurses and physicians constantly interrupt each other to talk about a case,
are called on the phone, or must rush to an emergency. It is important to
notice here, that in contrast to many studies of interruptions in office work
(Conaill and Frohlich 1995; Rouncefield et al. 1995), not all interruptions
in a hospital are considered a nuisance, but rather are an essential part of
the tight cooperation taking place in a hectic working environment.

Stationary Work
Most contemporary computer technology is designed for stationary use
at a desktop. However, clinicians working in a hospital are extremely
mobile and most of them do not even have a desk or a chair (Bardram and
Bossen 2005). Furthermore, computers in hospitals are often located in
small offices in the ward, which implies that clinicians have to walk from
work at the patient’s bedside to this office in order to access a computer.

ch08.indd 229ch08.indd 229 12/4/2006 1:20:21 PM12/4/2006 1:20:21 PM

230 Jakob E. Bardram

Therefore, the use of computers and EPRs increases mobility at a hospi-
tal (cf. also Bellotti and Bly 1996). On a more professional level, clini-
cians—physicians as well as nurses—do not consider “using a computer
in a special room” to be a part of their job. Their job has to do with the
treatment and care of patients and the education of students. We have
observed how the introduction of an electronic patient record system had
forced nurses to sit and use personal computers at a desktop (figure 8.1)
(Bardram 2005c), which is not a typical work situation for them. They
disapproved of no longer being able to finish their job at the bedside of
the patient and now having to walk to a computer, log in, start the EPR
system, find the patient, find the record or medicine schema, and make
notes about the treatment of the patient.

Clearly, mobile devices like laptops, tablet PCs, and PDAs connected via
wireless LAN are increasingly being used in hospitals (see, e.g., Bardram,
Kjær, and Nielsen 2003a; Munoz et al. 2003). However, in many cases we
have seen problems with the use of such technology. First of all, laptops

Figure 8.1
Nurses working at a desk in an office.

ch08.indd 230ch08.indd 230 12/4/2006 1:20:22 PM12/4/2006 1:20:22 PM

Ubiquitous Activity-Based Computing 231

and tablet PCs are actually difficult to use without placing them on some
stable horizontal surface. Hence, in most hospitals that have adopted the
use of laptops they are mounted on trolleys and then wheeled around,
and tablet PCs are often placed in the bed with the patient. Second, most
mobile devices available today are not designed for a rugged environment
like a hospital and are too fragile to survive being dropped on the floor.
For example, when a clinician washes his hands and places a tablet PC on
the edge of the sink, it might fall down and break, or the equipment often
becomes wet with all kinds of liquid material, some of which needs to be
extensively washed off and sterilized with alcohol. And finally, clinicians
cannot use mobile equipment during all parts of carrying out an activity
and hence need support for using different devices in the flow of work.

Isolated on Homogeneous Devices
Clinicians roam around using many different computers and devices as
part of carrying out an activity. For example, when a nurse in the office
shown in figure 8.1 gets up to give some medication to a patient, her seat
is typically taken by someone else. Hence, when returning from the patient
she will need to locate another vacant computer, log in, start the EPR
application, find the patient, find the medicine schema, scroll to the medi-
cation in question, and mark that it has been given to the patient. For her
this is quite annoying and time consuming, because she had just spent
the time and effort of establishing this view on the first computer, which
now unfortunately is taken by someone else. In most computer applica-
tions and underlying middleware or operating systems there is little or no
support for transferring user sessions between different computers, so the
computational context for performing an activity must continuously and
manually be reestablished during a work day.

The problem is that applications run isolated on homogeneous devices.
It is difficult to move a set of applications or services from one computer
to another, and even more difficult to move it between different kinds of
devices, for example, from a PDA to a large desktop computer.

Single-User Tasks
The “personal computer” with its operating system is made for single-user
tasks. However, a core aspect of everyday activities is their collaborative
nature—especially in a workplace like a hospital. Owing to the specialized

ch08.indd 231ch08.indd 231 12/4/2006 1:20:22 PM12/4/2006 1:20:22 PM

232 Jakob E. Bardram

nature of medical work, treatment and care are inherently collaborative
activities between specialized medical doctors, nurses, care assistants, and
so on. In the example of treating Mrs. Pedersen, the radiographer takes
the X-ray image, the radiologist describes it, and the physician makes con-
clusions for further treatment based on the images, the description, blood
test results, and previous medical history. The nurse is then responsible
for carrying out the treatment, including preparing and giving medicine to
the patient and documenting it in the medical record. Hence, the compo-
nent actions of an activity are often distributed among cooperating clini-
cians (Bardram 1998). When analyzing the use of paper-based records,
we often find the physician and the nurse looking at and writing on the
same document simultaneously. For example, the medicine schema is used
by the physician to prescribe medicine and by the nurse for documenting
the administration of the medicine to the patient while they are standing
shoulder to shoulder. When using EPRs this collocated collaboration is
often difficult to obtain, resulting in the need for e.g. using two PCs. And
when not working collocated and at the same time, there is no support for
a nurse to relate her “document medicine” action to the “prescribe medi-
cine” action of the physician. They do not share the application.

Collaboration is thus an inherent quality of clinical work and there is
often little support for distributing and congregating the actions of an
activity among the people who are involved in it. Currently, collaboration
is supported by specialized applications “outside” of the applications that
can be used for communication or application sharing.

Insensitive to the Work Context
Computers are inherently insensitive to the working context of their users.
Hence, there is no way in which a computer can take contextual informa-
tion into consideration in the human–computer interaction. This is why
the nurse has to constantly look up the patient in the case illustrated in
figure 8.1—the computer or the EPR simply do not have any information
about her working context, including which patient she is caring for at
the moment. This lack of contextual awareness becomes even more chal-
lenging when mobile equipment is being used in a hospital because the
working context for an application like the EPR is constantly changing
and manual reconfiguration is hence required by the user.

ch08.indd 232ch08.indd 232 12/4/2006 1:20:22 PM12/4/2006 1:20:22 PM

Ubiquitous Activity-Based Computing 233

Activity-Based Computing

To mitigate the challenges to modern computing outlined above, we have
introduced the concept of activity-based computing (ABC). Activity-
based computing is an approach to ubiquitous computing that focuses on
computational support for mobile, collaborative, and distributed human
activities. We argue that support for whole activities, rather than indi-
vidual tasks, is in the roots of ubiquitous and pervasive computing—when
users are dealing with a multitude of heterogeneous computing devices,
the need for supporting the users at the activity level becomes essential. It
will become impossible to get by in a ubiquitous computing world, if one
has to consider rearranging applications and services whenever shifting to
a new computational device and/or activity. Furthermore, the ubiquitous
computing concept of merging computational devices at hand necessitates
the need for these devices to adjust themselves to the users according to
some sense of the users’ context and what he or she is currently doing—
that is, his or her activity.

Activity-based computing has the following core principles, each of
which addresses the challenges identified above.

Activity-centered A “computational activity” collects in a coherent set a
range of services needed to support a user carrying out a certain “human
activity.” For example, the collaborative activity of treating a patient in
a hospital can be modeled in ABC as a computational activity, which
includes services for displaying and manipulating the patient’s medicine
schema, blood test results, recent X-ray images, and so on. This prin-
ciple is illustrated in figure 8.2, which shows how a computational activity
embraces a set of services, each of which handles a specific set of data, like
files, documents, or remote data in servers. This principle addresses the
challenge of application-centered computing and supports interruptions
in work by enabling the user to alternate easily between the activities he
or she is involved in.

Activity suspend and resume A user participates in several activities
and he or she can alternate between these by suspending one activity and
resuming another. Resuming an activity will bring forth all the services
and data that are part of the user’s activity. This principle addresses the
lack of support for interruptions.

ch08.indd 233ch08.indd 233 12/4/2006 1:20:22 PM12/4/2006 1:20:22 PM

234 Jakob E. Bardram

Activity roaming An activity is stored in a distributed infrastructure. An
activity can be suspended on one workstation and resumed on another in
another place. This principle addresses the challenge of mobility.

Activity adaptation An activity adapts to the resources available on the
device that it is being resumed on. This includes network bandwidth, CPU
power, and display size. Consequently, an activity might look quite dif-
ferent whether it is resumed on a wall-sized display or on a PDA. This
principle addresses the challenge of isolated and homogeneous devices.

Activity sharing An activity is shared among collaborating users by
having a list of participants who can access and resume the activity. Two
users, like the nurse and the physician above, can both be working on
the activity and thereby cooperating on the treatment of a patient. Users
can take turns working on an activity by letting one user take over where
another user left the activity; or they can work together at the same time,
collocated or remotely. This principle addresses the challenge of personal
computers and their lack of support for collaboration.

Figure 8.2
A single activity involves many services and applications, which again access a
wide range of data.

ch08.indd 234ch08.indd 234 12/4/2006 1:20:22 PM12/4/2006 1:20:22 PM

Ubiquitous Activity-Based Computing 235

Context-awareness An activity is context aware, that is, it is able to adapt
and adjust itself according to its usage context. Context-awareness can be
used for adapting the user interface to the user’s current work situation—for
example, by showing medical data for the patient currently being treated—
or it can be used in a more technical sense, where the execution of an activ-
ity, and its discovery of services, is adjusted to the resources available in its
proximity. This principle addresses the challenge of context-insensitivity.

A Scenario
Let us consider a list of scenarios that illustrates how activity-based com-
puting might support a physician during a typical day.

The group of physicians at department A are gathered in the large con-
ference room for the morning conference. The purpose of this confer-
ence is to discuss particular severe cases in common—partly to get second
opinions and partly for educational purposes. The conference room is
equipped with two large wall-based displays and there is a display built
into the table. Some of the physicians have PDAs but the use of tablet PCs
has been abandoned because they didn’t fit into a whitecoat pocket. How-
ever, most of the physicians prefer to use public displays scattered around
the hospital and not to carry around computational devices.

Dr. Christensen starts to present a cancer patient—Mrs. Jensen—in a
critical condition. He has prepared the presentation as a “Presentation of
Mrs. Jensen” activity containing relevant medical data, like a historical
view of blood test results, X-ray images of a whole body scan, the medical
record, and the medicine history. He walks up to one of the wall-based
displays, gets automatically logged in, and the activity is resumed, thereby
immediately displaying all the medical views prepared earlier. While pre-
senting the case, one of the senior physicians starts using the display on
the table. Because he is a participant of the activity, he can resume it on the
table. This enables a collaborative session where changes on one display
are reflected on the other. The senior physician highlights a certain blood
test result and asks about this while his highlighting is reflected on the
wall display. Because the participants are in the same room, a voice link
between the two displays is not established.

After the conference, Dr. Christensen walks to the ward to make his
rounds. While walking he is interrupted by a nurse asking about another

ch08.indd 235ch08.indd 235 12/4/2006 1:20:22 PM12/4/2006 1:20:22 PM

236 Jakob E. Bardram

patient. He picks up his PDA and selects from the list of activities the
activity concerning this patient. The activity is resumed on the PDA but
because of the limited screen size and processing power of the PDA, only
part of the services in the activity is resumed. He cannot, for example, see
the X-ray images. Therefore, he moves to a public display in the hallway,
and by approaching this display he is logged in and his current activity
is resumed. Here he can watch the X-ray images and help the nurse to
get on. During the ward rounds Dr. Christensen and a nurse are visiting
patients at their bedside. He uses the built-in display on the bed to look
up medical data about each patient. When he is approaching a patient
and is being logged in, the computer always suggests resuming the activity
that concerns the patient in the bed. It also displays a subtle warning if
Dr. Christensen resumes an activity for another patient than the one he is
visiting right now.

Later during the rounds he gets an invitation to participate in an activity
from the radiologist. He is notified via his PDA. From the description he
can see that the radiologist has analyzed some urgent picture he ordered
this morning on Mrs. Jensen and he rushes to the ward’s conference room
and resumes this activity on the wall display. He enters a real-time activ-
ity sharing session with the radiologist, who provides the answers for Dr.
Christensen.

The next section describes how these scenarios are supported by the ABC
framework.

The ABC Framework

The ABC framework is the current implementation of the principles of
activity-based computing. The main goal of the ABC framework is to
provide a technical platform for the development and deployment of
computer applications that can be used in our activity-based computing
concept.

The components of the ABC framework can be segmented into three
categories: runtime infrastructure, user interface, and programming
model. The runtime infrastructure is the set of components that handles
the computational complexities of managing distributed and collaborative
activities by adapting to the available services or resources in a specific

ch08.indd 236ch08.indd 236 12/4/2006 1:20:22 PM12/4/2006 1:20:22 PM

Ubiquitous Activity-Based Computing 237

environment. The user interface enables the users to access and manipu-
late activities and to use ABC-aware applications in mobile and collabora-
tive working situations. The programming model is a set of interfaces that
enable the construction of new ABC components, which can be deployed
in the runtime infrastructure.

ABC Runtime Infrastructure
This section describes the actual runtime infrastructure that underlies the
ABC framework. Its responsibilities regarding activities are to manage,
store, activate, and distribute activities, manage and distribute shared state
information, ensure synchronization methods on collaborative activities,
and manage collaborative sessions. Figure 8.3 illustrates the ABC runtime
infrastructure. It consists of a range of server processes running on one or
more servers and a range of client processes supporting the execution of
the ABC applications.

Figure 8.3
The ABC runtime infrastructure illustrating both server-side and client-side
 processes.

ch08.indd 237ch08.indd 237 12/4/2006 1:20:22 PM12/4/2006 1:20:22 PM

238 Jakob E. Bardram

The server part of the ABC infrastructure is built in a scalable manner
and the different processes making up the activity server can thus be
deployed on different hosts. The ABC infrastructure consists of the fol-
lowing key processes.

Activity Store This handles the persistence of activities by providing
an interface to create, delete, and assess activities and templates for new
activities by reference or query. The store keeps track of which activity
the user is currently engaged in and the usage history for a user, enabling
the user to step forward and backward in the list of activities.

Activity Manager This manages the runtime behavior of an activity by
enabling activities to be created, initialized, paused, resumed, and final-
ized by clients. The manager keeps track of ABC clients who register with
the manager, and it provides a subscribe-publish-notify interface which
can be used to notify clients about relevant changes to activities running
of a specific client.

Collaboration Manager This handles the real-time requirements for syn-
chronous collaboration among active participants within an activity. To
do this it manages a session object for each ongoing collaborative activ-
ity currently activated by one or more users at different host machines,
including the same user on several hosts. Basically, a session notifies its
active participants if the session or its associated activity changes. Typical
changes are entrance, movement, and departing of users in a session and
changes to the state of an activity. Parties interested in listening to chang-
es to a session can add a Session Listener to the session. A central listener
on session objects is the client-side Session Manager described below.

Context Service This acquires, stores, and manages context information
in the infrastructure. The context service acquires context information via
context monitors (not illustrated) and provides both a request-response
and an event-based publish-subscribed mechanism for clients to access
such context information. This context-awareness infrastructure builds
on the Java Context-Awareness Framework (JCAF) (Bardram 2005a).

Activity Discovery Component (ADC) This tries to discover relevant
activities on behalf of the users. The ADC constantly monitors changes
in the context service and based on a set of first-order logic rules it is
capable of creating new activities, which are sent to the activity manager
(Christensen 2002).

ch08.indd 238ch08.indd 238 12/4/2006 1:20:23 PM12/4/2006 1:20:23 PM

Ubiquitous Activity-Based Computing 239

Activity Controller This is the link between the client and the server.
A client’s Activity Controller registers at one or more Activity Managers
and maintains a link to the Activity Bar, the user interface to the ABC
infrastructure (see figure 8.5), which via the controller gets a list of activi-
ties for a user. The Activity Controller can also be remotely controlled
by the Activity Manager, which can force the client to change user, for
example. The Activity Controller is also notified about relevant events
from the server processes. For example, if the current user is invited to
participate in another activity, the Activity Controller is notified and an
appropriate signal can be made to the user via the bar. When an Activity
Controller activates an activity, the local State Manager is notified, which
in turn uses the Registry to look up appropriate ABC application, which
can handle the services collected in the activity.

In the scenarios above, there is a server cluster running the activity server
processes of activity store, manager, and collaboration manager, and a
central context service. Each client deployed in the hospital, including all
the public displays and the PDAs, run the client part of the infrastructure,
including the activity controller, state manager, session manager, and ser-
vice registry. Applications that are able to handle different service requests
are registered in the service registry. Each user is registered in the context
service, which works as a directory service.3 When an ABC client is idle, it
shows a blank screen. When the user logs in on a machine using name and
password or proximity-based user authentication (Bardram, Kjær, and
Pedersen 2003b) the activity controller on this computer loads a list of the
user’s activities and shows them in the activity bar (see the next section on
the GUI of ABC). It also requests from the activity manager the user’s cur-
rent activity and resumes this on the client. When an activity is resumed,
the activity controller iterates through the activity’s set of services, and
for each service description the controller asks the local service registry
if there is a local application that can handle this service description. If a
matching service application is found, the state manager is given a handle
to this application and the state manger spawns a separate thread launch-
ing the application and hands over the state information part of the ser-
vice description to the application. The application is then responsible for
restoring the correct state of the service. For example, a medicine schema
application should show the medicine data for the correct patient and
scroll to the correct place in the schema.

ch08.indd 239ch08.indd 239 12/4/2006 1:20:23 PM12/4/2006 1:20:23 PM

240 Jakob E. Bardram

When the user selects another activity or logs out, the activity control-
ler asks the state manager for the activity state. The state manager iterates
through all the running applications and for each asks for state information
and returns this state information to the controller. This state information
is saved in the activity, which is handed over to the activity manger. The
manager stores the activity in the activity store and updates the history.

This basic state management mechanism also supports real-time activ-
ity sharing. If two or more participants of an activity are online on dif-
ferent hosts simultaneously, then state changes on one client are saved to
the server, which then via the collaboration manager broadcasts this state
change to the other online participants. On each client, state is then man-
aged as described above. Collaborative widgets like the voice link and the
tele-pointers are initialized, managed, and finalized by the client’s session
managers. For example, tele-pointers are set up in a peer-to-peer fashion
between clients in the same session, and are not replicated as state infor-
mation to the server (see Bardram 2005b for details).

The ABC User Interface
The ABC user interface for desktop PCs, tablet PCs, and wall-based com-
puters is illustrated in figure 8.4. This screen shoot shows how a radiology
conference activity would look like. The main user interface components
are the activity bar, the collaboration frame, examples of ABC applica-
tions, and the tele-pointers.

The activity bar is the central user-interface component representing
access to the ABC framework. Figure 8.5 shows the bar in details. From
the left, the bar has the following groups of buttons: (i) a “Start” button4
for launching ABC-aware applications (those registered in the service
registry); (ii) two buttons for creating and finalizing activities; (iii) two
buttons for inviting participants to this activity and for showing the col-
laboration frame (no. 2 in figure 8.4); (iv) two buttons for moving for-
ward and backward in the history of activities, and a dropdown box to
select an activity from the list of active activities; (v) the “lamp” icon,
which is used to notify the user about new activities added to his list or
changes to existing ones; (vi) one button to start the activity recorder, and
buttons for enabling and disabling sound and microphone; and (vii) the
login button, which shows the current user’s name and can be used to log
users in and out.

ch08.indd 240ch08.indd 240 12/4/2006 1:20:23 PM12/4/2006 1:20:23 PM

Ubiquitous Activity-Based Computing 241

Let us investigate how the ABC user interface supports the core prin-
ciples of activity-based computing as presented earlier.

Activity centered As illustrated in figure 8.2, an activity is made up of a
set of services that again manipulates a set of data. In the user interface,
activities are immediately accessible from the activity list or by moving
forward or backward in the activity history using the forward and back-
ward buttons. A user is always working within an activity, that is, there
is always an activity resumed. We call this the “active activity.” When the
user logs in, the last used activity is resumed and restored to the exact
same state as it was suspended previously—potentially on another device.
A service is mapped to an application. In figure 8.4, the “Radiology image
viewer” service is mapped to the “ABC X-ray viewer” application (no. 3

Figure 8.4
The user interface of the ABC framework containing the activity bar at the
bottom; the collaboration frame on the right hand side; two ABC applications,
one showing radiology images and the other the patient’s medicine chart; and a
tele-pointer from a remote user. The name of the activity is shown in the selection
box in the activity bar, showing that this activity is about a patient of the name
Mrs. Pedersen.

ch08.indd 241ch08.indd 241 12/4/2006 1:20:23 PM12/4/2006 1:20:23 PM

242 Jakob E. Bardram

in figure 8.4). An application that supports a specific service is able to
pass on state information concerning this service and reestablish its state
accordingly. This includes getting access to the data elements, whether
they are stored in the activity or accessible on a distributed file system or
a server. In the X-ray viewer case, the X-ray images are stored on a hospi-
tal image server and the activity holds state information about where and
how to access these. State information for most applications also includes
size and position of the window.

Services are added to an activity by launching them from the Start
menu and are removed by closing the window. When the activity is
suspended, all state information, including data references, is stored
in the activity, which is sent to the activity manager in the underlying
 infrastructure.

Activity roaming Because activities are persistently stored in the under-
lying infrastructure via the activity store, the activity can be distribut-
ed across different ABC-enabled devices. Activity roaming is governed
through a set of lifecycle events:

Registry—when the ABC client starts up, this client is registered in the
activity manager.

Login—when a user logs in, the client requests a list of this user’s activities
from the activity manager.

Figure 8.5
The Activity Bar.

ch08.indd 242ch08.indd 242 12/4/2006 1:20:23 PM12/4/2006 1:20:23 PM

Ubiquitous Activity-Based Computing 243

Resume—when the user resumes an activity by, for example, selecting it
from the activity list, the activity is fetched from the activity manager and
its services are mapped to locally available applications, which are started
and restored according to the state information in the activity.

Suspend—when an activity is suspended, all services return to their cur-
rent state, which is stored in the activity and handed back to the activity
manager.

Logout—when the user logs out, the active activity is suspended and the
user’s activities are removed from the activity list.

Unregistry—when the ABC client is stopped, it is unregistered at the activ-
ity manager.

If the user is roaming between two identical devices—for example,
between two desktop PCs—then activities are restored to look exactly the
same, including window size and position. This feature was considered
essential by all the involved clinicians because it enabled them to move
around inside the hospital while maintaining the exact look and feel of
their workspace. One of the major complaints about the existing client-
server systems was a significant overhead associated with restoring the
user session when moving between computers because only clinical data
were stored on servers, not the user sessions. The primary drawback of
restoring the exact size and position of all windows is that desktop PCs
(and similar devices like a tablet PC) may have different display resolu-
tions, ranging from 1024 × 768 to 1600 × 1200. Thus, you could have
situations where parts or whole windows are not visible when you move
from a large to a small screen. In reality, however, the clinicians did not
consider this a problem since all machines and screens in a hospital were
often of the same kind. Nevertheless, this is a problem that we are address-
ing in our current work.

Activity adaptation From a user-interface perspective, activity adapta-
tion is handled by the applications running locally and implements the
different services. If a local application maps to a service type, then this
application is given the service state information, and by parsing this state
information it decides how to restore the service on this specific device.
On some devices, window size and position may be used or adapted (e.g.,
adjusted to fit the screen resolution); on other devices, this information

ch08.indd 243ch08.indd 243 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

244 Jakob E. Bardram

may be ignored (e.g., on a PDA that shows all services full screen); some
services simply cannot be supported, like the X-ray viewer application
shown in figure 8.4 which is not available on PDAs.

Activity sharing Activity sharing is supported by having several partici-
pants associated with the same activity. The collaboration frame (no. 2 in
figure 8.4) lists the current activity’s participants. Collaboration between
these participants is supported in three ways. Asynchronous collabora-
tion is supported by allowing participants to resume an activity in turn,
that is, participants can take turns working on an activity. Because state
is saved in an activity, one participant takes over the activity exactly as
another participant left it when suspending it. Furthermore, by using the
activity-roaming mechanisms, different users can resume activities in dif-
ferent places. To allow simple communication between participants, an
activity chat exists (not shown in figure 8.4). The chat is specific to the
activity and saves a conversation between participants. This chat is saved
persistently as a part of the activity’s state information.

Synchronous collaboration takes place if two or more participants
resume the same activity on different devices at the same time. In this
case, the active participants engage in a synchronous conference session
handled by the collaboration manager on the server side and the session
manager on the clients’ side. The collaboration mechanisms ensure that
the activity, including its state information, is synchronized between all
participating users. From the user-interface perspective, this means that
user-interface state information is synchronized, including window posi-
tion, size, and the state of the individual services. In addition to synchro-
nizing user-interface state information between participating peers, the
collaboration mechanisms also include a voice link between the partici-
pating peers, as well as tele-pointers.

The user-interface support for synchronous collaborative activity shar-
ing is illustrated in figure 8.6, which shows the top frame of an ABC
application and two tele-pointers. Because we want to support users who
are active in the same activity at the same time but who focus on different
parts of the activity, the ABC framework does not enforce strict What-
You-See-Is-What-I-See (WYSIWIS). Hence, two different users can have
focus in two overlapping windows without disturbing each other. The top
frame of each window just reveals which window each user has focus in

ch08.indd 244ch08.indd 244 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

Ubiquitous Activity-Based Computing 245

by showing the user’s name and decorating the frame with a user-specific
color. This enables one user to say things like “have a look at this,” and
the other user will know which window is being referred to and can bring
this window into focus. The tele-pointers reveal the name of the user and
the hostname of his or her machine. We attach the hostname because the
same user can be active in the same activity on different clients at the same
time—a feature that turned out to be used quite often during our evalua-
tion sessions.

Synchronous collaboration is often evident in a hospital, typically in
conference situations. The ABC framework allows for clinical desktop
conferences across several computers. This may take place collocated, as
in the scenario above where the group of physicians are participating in
the conference using different devices. Or it may take place where par-
ticipants are separated from each other, as in the scenario where medi-
cal doctors who cannot attend the “real” radiology conference can listen
in remotely by participating in the “radiology conference” activity run-
ning in the radiology conference room. In the ABC framework this would
imply that the remote medical doctors can see the X-ray images being
shown on the large display in the radiology conference room, can see the
radiologist’s gestures with the mouse via the tele-pointers, and can listen
using the voice link. The medical doctors are, however, also active par-
ticipants in the conference and may ask questions, use their tele-pointers
to indicate areas of an X-ray image, and may rearrange or bring up new
medical data from the EPR.

The third type of collaboration supported by the ABC framework
is temporal collaboration. Temporal collaboration is a mixture of syn-
chronous and asynchronous collaboration, which allows participants
to collaborate across time almost as if they were together at the same

Figure 8.6
Collaboration widgets in the ABC user interface. On the left, the top frame of a
window is decorated with the color and username of the user(s) currently having
focus in this window. On the right, two tele-pointers are shown.

ch08.indd 245ch08.indd 245 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

246 Jakob E. Bardram

time. In the user interface, temporal collaboration is supported by the
ABC memoplayer, shown in figure 8.7. This memoplayer is an activity
recorder that is able to record the unfolding of an activity in time and
captures activity state information, mouse events, and sound. Technically,
the activity recorder is using the same mechanisms as those used in the
synchronous desktop conference, but instead of streaming state events,
mouse events, and sound to another computer, these data are streamed to
a persistent data object stored in the activity store. The activity recorder
can hence be used for recording a multimedia message for other partici-
pants in the activity, which later can be fetched from the activity manager
and replayed on the same or another computer. Other participants can
then reply by recording their continued use of the activity, while think-
ing aloud. In the example shown in figure 8.7, the first user (Jakob E.
Bardram) initiated a discussion which was then responded to by two
other users (John Jensen and Diana Roderiqeus) and is now back with
the first user.

Temporal collaboration is essential in most medical work. It is often
difficult to ensure that two or more clinicians can meet at the same time,
and a wide range of mechanisms for leaving messages is used in hospitals.
These mechanisms involve voice recorders, post-it notes, and answering
machines. Activity recording is designed to support this kind of messag-
ing within the activity, thereby ensuring that the message is recorded and
replayed in the correct activity context. In this way, clinicians can leave
multimedia messages that are directly related to a specific task they col-
laborate on.

Figure 8.7
The Activity Recorder, used for recording and replaying the unfolding of
 activities.

ch08.indd 246ch08.indd 246 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

Ubiquitous Activity-Based Computing 247

Activity and context awareness Once we support the work in a hospi-
tal by modeling activities, providing awareness about the unfolding of
activities becomes essential. Keeping a peripheral awareness on how an
activity is progressing, what other participants are doing, and whether
there are issues that require attention become important in an activity-
based computing environment. The current user interface supports this
kind of activity awareness through two mechanisms; one is the lamp icon
illustrated in figure 8.5 and the other is the ability to send messages to the
user’s activity-enabled mobile phone. The lamp icon is used to notify the
user about changes to activities other than the one he or she is engaged
in right now. The lamp icon will light up and play a sound if the current
user receives a new activity, is invited to participate in another activity,
or if a new recording has been added to an activity. These events are
also sent to the user’s mobile phone which provides him with simple
 activity-awareness while not using a computer. The mobile phone, how-
ever, supports only the display of basic activity information and is hence
used merely to take a look at an activity that has been changed. The user
may then decide to resume this activity on a nearby computer to have a
closer look or to participate in an activity-sharing session. This support
for activity awareness is admittedly rather limited and we are currently
working on extending it.

As illustrated in figure 8.3, a context service is a core component in the
ABC infrastructure. Context information is added to this context service
from various sources, including the ABC clients which hand over informa-
tion about who is logged in at the different computers and which activity
is currently active. Other context information, such as location and status,
comes from other sources. This kind of context information is shown in
the collaboration frame in figure 8.4.

The most interesting use of context information is, however, for activity
discovery (Christensen 2002). The activity-discovery component (ADC) in
figure 8.3 stores a set of first-order logic rules that is constantly evaluated
against the context information available in the context service. The ADC
is able to recognize different typical activities based on changes in context.
For example, if a nurse picks up a medicine container for a specific patient
in the pharmacy, then the ADC reasons that an activity containing medical
information for this patient is useful for the nurse. Using an activity fac-
tory, the ADC then creates the appropriate activity for the user’s current

ch08.indd 247ch08.indd 247 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

248 Jakob E. Bardram

context and pushes it to the activity manager. If the nurse is online, the
activity manager then notifies her ABC client, and in the user interface,
the nurse will now see the notification lamp light up in the activity bar
and will hear a small sound. This notifies her about the new activity, and
by clicking on the lamp icon she can see and resume the proposed activ-
ity. To support contingent situations—for example, where the nurse is
holding two medicine containers for two patients—more activities can
be created and are listed when pressing the lamp icon. In this way the
nurse can choose which activity is most relevant to her current context,
or choose not to use any of the suggestions but stay in the current one.
Hence, we have tried to make activity discovery as nondisruptive as pos-
sible while still notifying the user. We call this designing for nonintrusive
context-awareness.

The ABC Programming Model
The runtime infrastructure both supports the programming model and
makes use of it. The programming model is intended for programmers
to extend the ABC framework by adding new types of activities, com-
ponents, applications, or collaborative widgets. The programming model
consists of a range of interfaces that the programmer can implement and
add to the runtime infrastructure. Together, these interfaces make up the
distributed extension of the standard ABC functionality included in the
ABC framework. Among the interfaces that make up the ABC program-
ming model are the following:

The Activity interface, which defines a way of creating custom types of
activities. For example, in our ABC-based implementation of an electronic
patient record there is an EPRActivity, which is able to handle EPR spe-
cific activities, including being related to a specific patient.

The Activity Store, Activity Manager, and Collaboration Manager inter-
faces, which make up the interfaces of the Activity Server. Normally, appli-
cation programmers would access these interfaces using the client layer’s
Activity Controller, but these interfaces are available for the programmers
to make their own client layer functionality or new user interfaces.

The Stateful Application interface, which enables the programmer to
create client-side applications that can participate in the ABC runtime
infrastructure.

•

•

•

ch08.indd 248ch08.indd 248 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

Ubiquitous Activity-Based Computing 249

The event and notification interfaces, which are used to subscribe to
changes to certain components. The most used ones are the Activity Listener
interface for listening to changes to activities, the Session Listener interface
for listening to changes to collaborative real-time sessions, and the Entity-
Listener interface used for listening to changes in context information.

The Session Manager and the Session interfaces, which can be custom-
ized for special purposes in the real-time collaboration support in the
infrastructure.

A key design invariant in the ABC framework is that applications are state-
ful, which implies that they can hand over and restore their own state. The
runtime infrastructure collects, manages, distributes, and synchronizes this
state information across the movement of users between physical machines
and in the participation in synchronous collaborative sessions. The collec-
tion of state information from all applications running in an environment
is saved in the activity, and hence the activity can be assumed to always
contain the shared state. The State Manager guarantees this invariant: it
is a singleton process running on the client-side and it creates the link
between the Activity Controller (and hence the Activity Managers running
as server processes) and the applications running on the client machine.

The programming model provides interfaces and a default implementa-
tion of stateful applications and UI components. In order to help applica-
tion programmers to build ABC-aware applications that can handle state
information, the programming model contains stateful user-interface com-
ponents. In the Java-based version of the ABC framework, these stateful
user-interface components are wrappers to Swing components (Bardram
2005b). For example, we have extended core Swing components such as
JFrame, JScrollPane, and JComboBox to set and get state information.
These user-interface components are intended to make state management
easy to implement for application programmers. By using these ABC
Swing components, the programmer needs not worry about user-interface
state, but merely has to manage application-specific state information.

Implementation Status
The ABC framework described above is version 3, which has been imple-
mented in the Java 2 Standard Edition version 1.4 (J2SE), using Java RMI
as its distribution mechanism and the Java Media Framework (JMF) for

•

•

ch08.indd 249ch08.indd 249 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

250 Jakob E. Bardram

audio-broadcast between devices; all ABC-aware applications are written
in the Java Swing user-interface framework. We have created a special
ABC Swing library that enables programmers to create ABC-aware appli-
cations (Bardram 2005b). Version 3 runs on both Microsoft Windows
and Linux owing to the platform independence provided by Java. The
ABC client interface illustrated in figure 8.4 is designed to run on wall-
sized displays, tablet PCs, and desktop computers.

Version 3 does not fully support small devices (the Java 2 Micro Edi-
tion, J2ME), such as PDAs or mobile phones. However, the scaled-down
client can run on a PDA and a mobile phone, which show only the basic
details of an activity (its name, participants, and involved services). A user
can activate an activity on the small devices, which has the effect that
this activity is resumed when approaching a full-scale ABC client, like the
wall-based display. Version 3 does not support native applications such
as Word, Emacs, or PowerPoint, and all ABC-aware applications need to
be developed using the ABC programming API (see Bardram 2005b for
details)—or at least wrappers for native application need to be made in
the ABC API.

Currently, we are implementing version 4 of the ABC framework based
on the .NET framework. This version is integrated into the Windows
operating system. We are, for example, replacing the Windows taskbar
with our own “Activity Bar” and are providing support for native Win-
dows applications to be part of the ABC framework. In addition, the tight
synchronous communication paradigm in Java RMI has been replaced
with a loosely coupled, asynchronously publish-subscribe infrastructure,
which makes it more robust to general failures and exceptions. We are
also working on implementing ABC clients for PDAs and mobile phones,
which can participate in activity roaming and activity sharing.

Discussion

It is difficult to directly evaluate a runtime infrastructure with a corre-
sponding programming framework—especially when we are researching
completely new types of ubiquitous computing technology (Abowd and
Mynatt 2000). Nevertheless, in order to evaluate whether the conceptual
principles of activity-based computing and their technical incarnation
really help users manage a complex ubiquitous computing environment,

ch08.indd 250ch08.indd 250 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

Ubiquitous Activity-Based Computing 251

we have implemented an electronic patient record on top of the ABC
framework and have been using this in a number of design and evaluation
sessions with clinicians from the University Hospital of Aarhus. We have
conducted eleven such workshops where for a whole day clinicians were
asked to co-design, use, evaluate, and test the framework. A common
method in our design workshops was to let the clinicians role-play a
number of clinical scenarios (Bødker and Christiansen 1997), trying out
different design alternatives. In the design of real-time activity sharing, we
applied walkthrough methods very similar to the method of Groupware
Walkthrough (Pinelle and Gutwin 2002). In addition, we conducted four
whole-day evaluation workshops with clinicians who had never before
seen the ABC framework or been introduced to the concepts of activ-
ity-based computing. All workshops were video-recorded and the tapes
were later analyzed by categorizing “interesting” conceptual and usability
issues.

The general impression from our series of evaluation workshops was
that the clinicians gave very positive feedback on the basic concepts of
activity-based computing. With its support for mobility, interruption,
parallel work, collaboration, and user-interface adaptation based on con-
text-awareness, the computing platform deliberately addresses some of
the core challenges they face in their daily clinical work (Bardram 2004).
Many comments and suggestions for improvement have been incorpo-
rated in the framework along the way, and the present version of the ABC
framework hence materializes a considerable amount of design knowledge
obtained in close cooperation with many clinicians. Limitations in the
current design and implementation of activity-based computing support,
however, also surfaced during these evaluation sessions. We want to dis-
cuss some of the limitations here in greater details because they point to
our current work on improving support for activity-based computing.

Difficulties of separating one activity from another were a recurrent
issue during our evaluation sessions: When does a “Prescribe medicine for
Mrs. Hansen” stop being a prescription activity and become a “Document
medicine given for Mrs. Hansen”? In several cases, we observed that one
activity just transformed into another without the user selecting or creating
a new activity. Hence, the “Prescribe medicine for Mrs. Hansen” activity
sometimes also evolved into a “Check medicine for Mr. Pedersen” activity,
because a nurse would just select Mr. Pedersen as the current patient in the

ch08.indd 251ch08.indd 251 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

252 Jakob E. Bardram

EPR, even though she was working in the activity devoted to Mrs. Hansen.
Several suggestions for accommodating these “activity-separation” prob-
lems have been designed (Bardram 2004). These include the use of activity
templates, to create the activity post hoc instead of before beginning to
use an activity, to bookmark an activity as it unfolds (this could be done
automatically, e.g., when the user switches between patients), and to use
the programming model to model an EPR activity. Such an activity would
ensure a tight connection between an activity and a patient, thereby help-
ing users to avoid switching patients in the middle of an activity—an issue
that was deemed rather critical during the evaluations.

From a theoretical point of view, the problem of separating one activity
from another is closely tied to the matter of identifying real-world activi-
ties in activity theory. One central concern within activity theory is to be
able to analytically distinguish one activity from another. This is basically
done by looking at the motive or objective of the activity. Hence, asking
“why” people are doing something can reveal the identity of individual
activities. In a clinical setting, the objective is often tied to the treatment
and care of a specific patient, and the technical proposal of creating com-
putational activities that are tied to a patient therefore seems appropriate.
Seen from this perspective, it is questionable whether the “prescription”
and “documentation” of medicine for Mrs. Hansen actually belong to
two different activities or are instead two actions within the same. If the
latter is the case—and we believe it is—then what we call “activities”
in the ABC framework might from an activity-theoretical point of view
rightly be called actions. This also corresponds to the notion of distrib-
uting actions within an activity among collaborating people, where the
physician is responsible for prescribing medicine and the nurse for the
documentation.

The problem of separating activities from one another is also tied to
the scalability problem (Bardram 2004). In a real-world setting a clinician
may be involved in dozens if not hundreds of activities. The current imple-
mentation of the activity-based computing principles in the ABC frame-
work does not scale in its user interface. For example, the list of activities
in the activity bar quickly gets too long to be practical. The present linear
ordering of activities does not scale in a conceptual manner, either. How
would users conceive of so many activities with no way of relating them to
each other or to some contextual information? There is a potential danger

ch08.indd 252ch08.indd 252 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

Ubiquitous Activity-Based Computing 253

that we are just moving the burden of navigating and managing large
amounts of digital data from more traditional tools, such as an electronic
patient record, to the activity-based computing framework.

These empirical and theoretical challenges in separating activities, the
relations between activities and actions, and the scalability of activities
have made us consider how activity-based computing might be improved.
Our current suggestions focus on three design ideas: (i) to represent human
intent in activity-based computing support, (ii) to support relationships and
viewpoints in an activity space, and (iii) to support native applications.

In the same line as we have represented human activity, we believe that
it would be worthwhile to represent the human activity’s objective as part
of the computational representation of an activity. Clearly, this would only
be a weak representation of an activity’s human motivation, but it would
be an externalization that would help users manage activities. Further-
more, sharing (i.e., externalizing and internalizing) the common objective
of an activity is essential in cooperative work, where collaborating people
align their individual actions according to a common objective (Leont’ev
1978; Bardram 1998). But the most promising use of representing the
objective of an activity lies in the support for pro-activity—to have com-
puters be active instead of reactive in their relation to users. Pro-activity
and adaptation are essential but challenging aspects of ubiquitous com-
puting. Going beyond the current support for context-awareness and base
pro-active adaptation on a representation of the intent or objective of an
activity seems a promising step to take in activity-based computing. We
are, for example, working on extending the context-aware functionality
of showing a default patient activity when a certain patient is approached
to show a whole range of interrelated activities, which are all related to
the treatment of this patient.

The support for sharing an activity space is intended to help users orga-
nize, manage, and relate a large amount of interrelated activities (of which
some may be actions, i.e., subsumed under other activities). In our current
work we are designing a hypermedia structure with a network of activi-
ties and related actions—that is, a large web of interrelated activities and
actions upon which users can apply different viewpoints. Currently the
ABC framework only supports a user-specific viewpoint into available
activities—that is, a user can get a list of his activities. This viewpoint can
be extended to support other viewpoints related to, for example, time,

ch08.indd 253ch08.indd 253 12/4/2006 1:20:24 PM12/4/2006 1:20:24 PM

254 Jakob E. Bardram

location, context, patient, colleague, or type of disease. We are, further-
more, creating support for copying, cloning, merging, splitting, and link-
ing activities.

Finally, the support for native applications seems like a natural step to
take for several empirical and theoretical reasons. Empirically the evalu-
ations showed that users had problems with adjusting or using an unfa-
miliar electronic patient record (i.e., the one we implemented on top of
the ABC framework) (Bardram 2004). Even though the ABC framework
and its programming model can be seen as a new set of foundation classes
for programming user applications on a certain platform (i.e., the oper-
ating system), it is still important to consider how existing applications
and systems may be integrated as part of the activity-based computing
platform. Hence, support for native applications is quite essential from
an empirical-practical viewpoint. This argument is also backed up from a
theoretical viewpoint since keeping with familiar applications helps users
to realize activities as being routines on the operational level of an activ-
ity. From a more technical point of view, however, dealing with existing
applications that are not built to support activity-based computing can be
rather cumbersome. It is, for example, rather difficult to get and set state
information in many applications; it is difficult to migrate one application
across heterogeneous devices; and it is difficult to use applications made
for desktop use in an activity-based ubiquitous computing environment.
As a result, our current work is devoted to a double strategy of both
trying to make technological fixes for legacy applications and designing
a programming model and a set of foundation classes for building native
activity-based applications.

Conclusion

In this chapter we have presented our work on activity-based comput-
ing. The notion of activity-based computing aims at moving computing
technology for everyday use beyond the desktop in a double sense—both
physically away from the desktop on which most computers are placed
today, and conceptually away from the desktop user-interface metaphor
of supporting individual applications. Many suggestions for what we call
activity-based computing have been proposed and researched and this
approach embodies many intriguing suggestions for addressing most of the

ch08.indd 254ch08.indd 254 12/4/2006 1:20:25 PM12/4/2006 1:20:25 PM

Ubiquitous Activity-Based Computing 255

core shortcomings in contemporary personal computing. Activity-based
computing thus seems to be a good candidate as a new design ideal in the
creation of future computing infrastructures and operating systems that
move beyond the desktop. Based on our experience in designing, imple-
menting, and evaluating such an activity-based computing infrastructure,
we have suggested the six principles of activity-based computing, which
are to support: (i) activity-centered collection of applications, services,
and data; (ii) suspension and resumption of activities, (iii) activity roam-
ing between distributed computing devices; (iv) activity adaptation to the
available resources on heterogeneous computing devices; (v) activity shar-
ing among several participants within the same activity; and (vi) context-
awareness by enabling activities to adapt to the their execution context.

Based on our experience in having a large number of clinicians evaluate
our ABC framework, we believe that addressing the challenges of sepa-
rating activities and handling large amounts of them are essential in the
further development of activity-based approaches to ubiquitous comput-
ing. As discussed in the early work on the Rooms system (Henderson
and Card 1986) these challenges also emerged in the use of virtual desk-
tops, where it was not uncommon for a user to have difficulties setting up
which applications actually belonged to which room. It may also apply,
for example, to the task-based approaches in Kimura (MacIntyre et al.
2001) and Aura (Sousa and Garlan 2002), where the notion of “intent” is
mentioned but does not seem to play any role in the computer technology.
Similarly, workflow systems are often criticized for their strict separation
of one activity from another. This does not resemble real-world activities,
which often are highly interrelated, with no strict boundaries, and which
often serve several purposes (i.e., activities are poly-motivated according
to activity theory; see Kaptelinin 1996). Therefore, researching how sup-
port for activities can incorporate support for such interlinked activities
with fuzzy boundaries is a core challenge in activity-based approaches to
ubiquitous computing.

The concepts and technologies for activity-based computing have
emerged from our experimental research into devising ubiquitous com-
puting infrastructures for clinical work in large hospitals. As argued in the
introduction, this is a particularly challenging environment for computing
technology and is therefore ideal for researching ubiquitous comput-
ing architectures and platforms. Clinical work is characterized by the

ch08.indd 255ch08.indd 255 12/4/2006 1:20:25 PM12/4/2006 1:20:25 PM

256 Jakob E. Bardram

 necessity of handling a huge amount of medical data in the treatment of
just one patient, of which there are thousands; a high degree of mobility;
many parallel and interrupted work activities; a high degree of coopera-
tion; the use of many medical applications and digital material; and the
use of many heterogeneous devices. Electronic patient records are built on
top of existing computer technology (operating systems and middleware
layers) and are thus typically designed according to the desktop model
of computing, which these contemporary technologies embody. Present-
day clinical systems therefore do not support the above-mentioned core
aspects of clinical work, and hence they are often inadequate in daily use.
We do believe, however, that activity-based computing is a viable comput-
ing principle outside the medical setting of a hospital. Many work situa-
tions are characterized by handling large amounts of digital data, mobility,
parallel and interrupted work, and cooperation. Even in an office envi-
ronment, activity-based computing support might be very useful, and we
believe that it also would be beneficial as a programming environment,
even though mobility is not always as prevalent here.

Theoretically, we have argued that despite its name activity-based com-
puting is not another workflow system—on the contrary. The “compu-
tational activity” in activity-based computing is a means for collecting,
managing, distributing, and sharing material and tools that are related
to each other within a specific activity. As human activities increasingly
involve the manipulation of digital material, there is a profound need for
computational tools that can help users to manage this large amount of
digital material in a manner that reflects the activity itself. A fundamen-
tal part of this need includes support for the distribution and integration
of actions among collaborating people. Hence, support for activity-based
cooperation is essential in such a ubiquitous computing platform that goes
beyond today’s personal desktop model of computing.

Acknowledgments

We would like to thank all the clinicians who have given us their valu-
able time. Henrik B. Christensen was involved in outlining some of the
initial thoughts on activity-based computing (at that time called activity-
centered computing) and Claus Bossen was part of the field studies of
hospital work. This work was financially supported by the Danish Centre

ch08.indd 256ch08.indd 256 12/4/2006 1:20:25 PM12/4/2006 1:20:25 PM

Ubiquitous Activity-Based Computing 257

for Information Technology Research (CIT) and the Competence Centre
ISIS Katrinebjerg. Currently the ABC project is supported by the Danish
Research council under the NABIIT program.

Notes

1. Norman mentions support for “sharing activity spaces.” However, since none
of these concepts was ever realized it is difficult to judge what is exactly meant by
this. The Rooms system does not support the movement of rooms between devices
or any kind of collaboration.

2. A detailed discussion of the relationships between activity theory, plans, situ-
ated actions, and workflow systems can be found in Bardram 1997.

3. This is done in our prototype solution. In a real-world deployment scenario
we would clearly have to cooperate with a real directory server and use, e.g., the
LDAP interface for interoperability.

4. We borrowed the “Start” icon from the Windows taskbar to help users recog-
nize its purpose.

References

Abowd, G. D., and Mynatt, E. D. (2000). Charting past, present, and future
research in ubiquitous computing. ACM Transactions on Computer–Human
Interaction (ToCHI) 7 (1): 29–58.

Bardram, J. E. (1997). Plans as situated action: An activity theory approach to
workflow systems. In Proceedings of the Fifth European Conference on Computer
Supported Cooperative Work, pp. 17–32. Lancaster, U. K, September 7–11.

Bardram, J. E. (1998). Collaboration, coordination, and computer support—An
activity theoretical approach to the design of computer supported cooperative
work. Ph.D. dissertation, Department of Computer Science, Aarhus University,
Aarhus. Daimi PB-533.

Bardram, J. E. (2004). Activity-based computing—Principles, implementation, and
evaluation. Technical report, University of Aarhus, Centre for Pervasive Health-
care. Submitted to ToCHI, April 2004.

Bardram, J. E. (2005a). The Java context awareness framework (JCAF)—A ser-
vice infrastructure and programming framework for context-aware applications.
In Proceedings Pervasive Computing: Third International Conference, PERVA-
SIVE 2005, pp. 98–115. Munich, Germany, May 8–13.

Bardram, J. E. (2005b). Activity-based computing: Support for mobility and col-
laboration. Ubiquitous Computing—Personal and Ubiquitous Computing 9 (5):
312–322.

Bardram, J. E. (2005c). The trouble with login: On usability and computer security.
Ubiquitous Computing—Personal and Ubiquitous Computing 9 (6): 357–367.

ch08.indd 257ch08.indd 257 12/4/2006 1:20:25 PM12/4/2006 1:20:25 PM

258 Jakob E. Bardram

Bardram, J. E., and Bossen, C. (2005). Mobility work: The spatial dimension
of collaboration at a hospital. Computer Supported Cooperative Work 14 (2):
131–160.

Bardram, J. E., Kjær, T. K., and Nielsen, C. (2003). Supporting local mobility
in healthcare by application roaming among heterogeneous devices. In Proceed-
ings of the Fifth International Conference on Human Computer Interaction with
Mobile Devices and Services, pp. 161–176. Udine, Italy, September 8–11.

Bardram, J. E., Kjær, R. E., and Pedersen, M. Ø. (2003). Context-aware user
authentication—Supporting proximity-based login in pervasive computing. In
Proceedings of Ubicomp 2003: Ubiquitous Computing, pp. 107–123. Seattle,
Washington, October 12–15.

Bellotti, V., and Bly, S. (1996). Walking away from the desktop computer: Distrib-
uted collaboration and mobility in a product design team. In Proceedings of the
1996 ACM Conference on Computer Supported Cooperative Work, pp. 209–218.
Boston, Massachusetts, November 16–20.

Bødker, S. (1991). Through the Interface: A Human Activity Approach to User
Interface Design. Hillsdale, N. J.: Lawrence Erlbaum.

Bødker, S., and Christiansen, E. (1997). Scenarios as springboards in design. In
Bowker, G., Gasser, L., Star, L., and Turner, W. (eds.), Social Science Research,
Technical Systems, and Cooperative Work, pp. 217–234. Hillsdale, N. J.: Law-
rence Erlbaum.

Bødker, S., Ehn, P., Kammersgaard, J., Kyng, M., and Sundblad, Y. (1987). A
UTOPIAN experience: On design of powerful computer-based tools for skilled
graphical workers. In Bjerknes, G., Ehn, P., and Kyng, M. (eds.), Computers and
Democracy: A Scandinavian Challenge, pp. 251–278. Aldershot: Averbury.

Christensen, H. B. (2002). Using logic programming to detect activities in perva-
sive healthcare. In Proceedings of International Conference on Logic Program-
ming. Copenhagen, Denmark, July 29–August 1.

Christensen, H. B., and Bardram, J. E. (2002). Supporting human activities—
Exploring activity-centered computing. In Proceedings of Ubicomp 2002: Ubiqui-
tous Computing, pp. 107–116. Göteborg, Sweden, September 29–October 1.

Carroll, J. (ed.) (1995). Scenario-Based Design: Envisioning Work and Technol-
ogy in System Development. New York: John Wiley and Sons.

Engeström, Y. (1987). Learning by Expanding: An Activity-Theoretical Approach
to Developmental Research. Helsinki: Orienta-Konsultit Oy.

Grønbæk, K., Gundersen, K., Mogensen, P., and Ørbæk, P. (2001). Interactive
Room support for complex and distributed design projects. In Proceedings of the
Interact ’01, pp. 407–414. Tokyo, Japan, September 1–5.

Henderson, J. A., and Card, S. (1986). Rooms: The use of multiple virtual work-
spaces to reduce space contention in a window-based graphical user interface.
ACM Transactions on Graphics (TOG) 5 (3): 211–243.

Kaptelinin, V. (1996). Computer-mediated activity: Functional organs in social
and developmental contexts. In Nardi, B. (ed.), Context and Consciousness: Activ-

ch08.indd 258ch08.indd 258 12/4/2006 1:20:25 PM12/4/2006 1:20:25 PM

Ubiquitous Activity-Based Computing 259

ity Theory and Human–Computer Interaction, pp. 45–68. Cambridge, Mass.:
MIT Press.

Leont’ev, A. N. (1978). Activity, Consciousness, and Personality. Englewood
Cliffs, N. J.: Prentice-Hall.

MacIntyre, B., Mynatt, E. D., Voida, S., Hansen, K. M., Tullio, J., and Corso,
G. M. (2001). Support for multitasking and background awareness using interac-
tive peripheral displays. In Proceeding of ACM User Interface Software and Tech-
nology 2001 (UIST01), pp. 11–14. Orlando, Florida, November 11–14.

Munoz, M., Rodriguez, M., Favela, J., Gonzalez, V., and Martinez-Garcia, A.
(2003). Context-aware mobile communication in hospitals. IEEE Computer 36
(8): 60–67.

Norman, D. A. (2000). The Invisible Computer: Why Good Products Can Fail,
the Personal Computer Is So Complex, and Information Appliances Are the Solu-
tion. Cambridge, Mass.: MIT Press.

Norman, D. A., and Draper, S. (eds.) (1986). User-Centered System Design.
 Hillsdale, N.J.: Lawrence Erlbaum.

O’Conaill, B., and Frohlich, D. (1995). Timespace in the workplace: Dealing with
interruptions. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 262–263. Denver, Colorado, May 7–11.

Pinelle, D., and Gutwin, C. (2002). Groupware walkthrough: Adding context to
groupware usability evaluation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 455–462. Minneapolis, Minnesota,
April 20–25.

Robertson, G., Dantzich, M. van, Robbins, D., Czerwinski, M., Hinckley, K.,
Risden, K., Thiel, D., and Gorokhovsky, V. (2000). The Task Gallery: A 3D
window manager. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’00), pp. 494–501. The Hague, The Netherlands,
April 1–6.

Rouncefield, M., Viller, S., Hughes, J., and Rodden, T. (1995). Working with
constant interruption: CSCW and the small office. Information Society 11 (4):
173–188.

Smith, G., Baudisch, P., Robertson, G. G., Czerwinski, M., Meyers, B., Robbins,
D., Horvitz, E., and Andrews, D. (2003). Groupbar: The taskbar evolved. In Pro-
ceedings of OZCHI 2003. Brisbane, Australia, November 26–28.

Sousa, J. P., and Garlan, D. (2002). Aura: An architectural framework for user
mobility in ubiquitous computing environments. In Proceeding of the 3rd Work-
ing IEEE/IFIP Conference on Software Architecture. Montreal, Canada, August
25–30.

Suchman, L. (1987). Plans and Situated Actions: The Problem of Human-Machine
Communication. Cambridge: Cambridge University Press.

Wertsch, J. (1985). Vygotsky and the Social Formation of Mind. Cambridge,
Mass.: Harvard University Press.

ch08.indd 259ch08.indd 259 12/4/2006 1:20:25 PM12/4/2006 1:20:25 PM

ch08.indd 260ch08.indd 260 12/4/2006 1:20:25 PM12/4/2006 1:20:25 PM

IV
Reflections on the Desktop Metaphor and
Integration

ch09.indd 261ch09.indd 261 12/4/2006 1:20:27 PM12/4/2006 1:20:27 PM

ch09.indd 262ch09.indd 262 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

Part IV, the last part of the book, focuses on two general issues related
to the desktop metaphor and the design of integrated digital work envi-
ronments. One of these issues, discussed in the chapter by Ravasio and
Tscherter, is how users understand and interpret the desktop metaphor.
The metaphor is oriented toward different categories of people involved
in the analysis, design, and use of computer systems, including research-
ers, designers, and users. Of all these categories users are arguably the
most important target audience for the metaphor, but surprisingly little
is known about how they, as opposed to the other categories, understand
and employ the metaphor. Another issue considered in part IV is that of
general approaches to the integration of work environments. Can inte-
gration be accomplished by extending one particular application until it
allows users to carry out all types of tasks? This question is discussed in
the chapter by Kaptelinin and Boardman.

The discussion in the chapter by Ravasio and Tscherter is based on
empirical studies conducted by the authors. The aim of the studies was
to understand the “theories” users develop in their everyday work in
environments based on the desktop metaphor. Through observations and
interviews the researchers discovered a number of conceptual problems
emerging in the everyday use of modern computer technologies and their
integration in physical office environments. The origins of the problems
can be traced to difficulties with understanding very basic things about
how desktop systems work. The authors provide numerous examples of
how the desktop metaphor breaks down and prevents people from using
some of the available functionality of computer technologies. In particu-
lar, it was found that less experienced users were often not aware that the

Introduction to Part IV

ch09.indd 263ch09.indd 263 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

desktop was a part of the file system and can be used to store files and
folders.

The chapter illustrates the importance of combining design-based
research with empirical studies on the use of existing technologies. Empiri-
cal analysis of actual problems and work practices of people who use
these technologies can reveal problems located in the blind spots of studies
conducted with novel technologies and advanced users. For instance, as
presented in the chapter, the perspective of “common users” (who are not
necessarily technology experts) on critical system features can be quite dif-
ferent from that of researchers or designers. Therefore, it is important to
check novel design ideas against the concerns of the target end users.

In the second chapter of part IV, Kaptelinin and Boardman differentiate
between two approaches to integrating work environments: (a) applica-
tion-centric integration, that is, creating a “mega-application” that allows
users to work with different types of information objects; and (b) work-
space-level integration, which supports the coordinated use of multiple
applications within a unified workspace. An example of an application-
centric integration is adding functionality to email to transform it into
a general-purpose task-management environment. The chapter discusses
strengths and weaknesses of such a development for email and provides
arguments in favor of an alternative to application-centric integration,
a workspace-level support for integration of several tools. Two systems
developed by the authors, UMEA and WorkspaceMirror, are presented to
illustrate the notion of workspace-level integration.

264 Introduction to Part IV

ch09.indd 264ch09.indd 264 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

The Desktop’s Ups and Downs

Thirty years after its invention, the desktop metaphor—the metaphor par
excellence to facilitate access to an integrated digital work environment—
still represents the standard portal to current mainstream systems. At least
commercially, alternatives are virtually nonexistent—perhaps with excep-
tion of PalmOS for PDAs. At its start, the desktop metaphor was intended
to simplify poorly structured but common tasks and operations practiced
by office workers (Johnson et al. 1989). Over the years, however, personal
computers were introduced into areas with no relation to traditional office
work, and with even less obvious routines to be supported. The desktop
was adapted accordingly in order to keep pace with these developments.
Consequently, many problems encountered today by users of commercial
digital work environments stem from an overly concrete metaphor that no
longer complies (and possibly never did) with the rules of the real world
from which it originated. Despite or maybe because of updated desktop
versions, personal computers nowadays still do not live up to the flex-
ibility, powerfulness, and seamlessly integrated working procedures once
formulated for the Dynabook (Kay and Goldberg 1977) that are claimed
to have become reality.1

Motivation and Aims of This Chapter
While a solid base of knowledge dealing with users’ requirements for desk-
top-like systems exists, important issues still remain to be addressed. For
example, outstanding issues include that (1) little is known about the use
of the screen real estate; (2) so far, work environments have been regarded
as a collection of individual components and not as an integrated whole

9
Users’ Theories of the Desktop Metaphor,
or Why We Should Seek Metaphor-Free
Interfaces

Pamela Ravasio and Vincent Tscherter

ch09.indd 265ch09.indd 265 1/17/2007 11:24:37 AM1/17/2007 11:24:37 AM

266 Pamela Ravasio and Vincent Tscherter

whose aim is to support work activities; and (3) consequently, only select-
ed issues have been addressed in the design and development of novel sys-
tems, which, again, have been pursued in almost complete exclusion from
one another. Accordingly, our aims for this chapter are the following:

First—to provide knowledge on the use of the actual desktop, that is,
the screen real estate, in the context of work practices. As the screen real
estate is the entry portal to current systems, it is the most visible repre-
sentative facility of a system and, notably, a decidedly user-owned area.
However, thus far little information is known about this area, which, from
our point of view, makes it necessary to fill this gap.

Second—to provide insights on how user experiences in the physical
work environment “office” and the electronic work environment “desk-
top system” relate to and depend on one another.

The two environments have often been looked at as two sides of the same
coin in that they complement and support each other in users’ efforts to
work with and organize information and together they comprise a whole.
Nonetheless, unlike a typical coin, one of the environments is weighted
more heavily than the other. Normally the physical office still serves as the
primary environment as it is more heavily relied on and is therefore seen
as the reference base for the other. After all, a large part of the goal for
desktop computers was to become a fullfledged electronic version of the
physical office. While this position might have been useful at the start of
“desktop” computers, current computers can do more than merely repro-
duce the goals of the physical office, and can open new doorways to work
with information and to the tools needed to manage it. Accordingly, it
seems relevant to identify how the two environments compare and influ-
ence one another. For instance, with the emergence of reliable indexing
mechanisms, some users started to store their information in a “pool”
rather than hierarchically. Additionally, a significant portion of users have
followed a “keep everything—you never know” strategy when collecting
and storing information. These approaches were unthinkable in the past
in the physical office environment.

These two approaches necessarily lead to the question of why research
achievements thus far have had little or no impact on commercial systems.
Although this is a question without any definite answer, we will try to
analyze aspects of the issue that may be part of the answer. Therefore, this
chapter revolves around the following central questions:

ch09.indd 266ch09.indd 266 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

Why We Should Seek Metaphor-Free Interfaces 267

What can we learn in general from users’ work with present com-
mercial systems? How can this knowledge influence the development of
novel future systems? (Section entitled “Practices, Problems, and Desktop
 Systems”)

Given that from the users’ perspective, integrated digital work environ-
ments are the electronic counterparts to physical offices, does this relation-
ship lead to possibly unwanted mutual influences between the physical
and the electronic “office”? (Section entitled “The Cohabitation of the
Physical and the Electronic Office”)

What can be said generally that is relevant with respect to design issues
for future developments of integrated digital work environments? (Section
entitled “Design Approaches”)

We address these questions by reporting on results from two different
studies of ours (Ravasio, Guttormsen-Schär, and Krueger 2004; Ravasio
2004) and by discussing and concluding on the subsequent implications
for ongoing work on future desktop systems.

Background: A Brief History of the Use of Desktop Systems
In an attempt to determine relevant requirements for electronic office
information systems, Malone (1983) investigated physical, paper-based
offices. He indicated that in addition to the commonly known files and
folders, “piles” existed as a manner of organizing information quickly
and informally. Malone also pointed out four problematic issues that were
addressed repeatedly in systems in the subsequent decades, such as those
represented in this book:

Users prefer spatial over logical classification Vicente, Hayes, and Wil-
liges (1987) proved that people with low spatial ability suffer from ori-
entation problems in hierarchical file systems. The value of spatial layout
(and therefore also classification) for knowledge work, that is, the devel-
opment and acquisition of knowledge, was discussed by Kidd (1994).

Access to information occurs normally by several attributes Kwasnik
(1991) showed that (physical) document classification depended not only
on document attributes (i.e., the author, the title, etc.), but more impor-
tantly, on situational factors (context). As a result of her study, she also
compiled a list of context-dependent categories along which her subjects
classified personal documents. Barreau (1995) repeated the study for the

•

•

•

ch09.indd 267ch09.indd 267 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

268 Pamela Ravasio and Vincent Tscherter

personal computer (instead of the physical office) and found that ordering
strategies were similar in electronic and physical offices. The amount of
results dealing with searching the local system has turned out to be rather
limited. The topic has so far only been touched by Barreau and Nardi
(Barreau and Nardi 1995; Nardi and Barreau 1997), while the remaining
work has concentrated on the traditional type of information retrieval
(e.g., Bates 1979; Sutcliffe, Ennis, and Watkinson 2000).

Information can rarely be classified unambiguously into a single category
Kaptelinin (1996) examined organization strategies that users applied
within file systems in more detail, particularly those in place for project
work. He noted the following problematic issues: (1) the lack of user sup-
port to track down and plan personal activities; (2) the lack of a facility for
the support of temporary file configurations; and (3) the inability of the
system’s file information to recreate its context. Once personal computers
had finally become widespread and the Internet accessible to untrained,
“average” users, a total of 22 users were interviewed by Barreau (1995)
and Nardi, Anderson, and Erickson (1995) in a study that addressed com-
puter working practices. They concluded that (Barreau and Nardi 1995;
Nardi and Barreau 1997) there were three generic types of information:
ephemeral, working, and archived. Not only in physical offices, but also
in electronic offices, file placement had an important reminder function.
Information collections were in general not well maintained; and manual
search procedures were favored over reluctantly used built-in search tools.
They were also able to show that the hierarchical file system and its naming
mechanisms were used to engrave reminders for later “orientation.”

Classification is a hard task The acts of information acquisition and
classification, respectively, are to some extent the beginning and the end
of many activities in personal information spaces (Landsdale 1988). Nev-
ertheless, they have so far been investigated only to a limited extent. In the
same context, Abrahams et al. (Abrahams and Baecker 1997; Abrahams,
Baecker, and Chignell 1998) analyzed the use of bookmarks. Their results
correlate with Malone’s in that they noticed the problems involved when
labeling or managing the semantic organization, and that bookmarks
also served as mnemonic devices to remember sequences of browsing ses-
sions. Furthermore, they stated that most users thought of the information
available on the web as divided into “my bookmarks” and “the cloud of
unmapped sources.”

ch09.indd 268ch09.indd 268 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

Why We Should Seek Metaphor-Free Interfaces 269

Through dedicated research on email, Pliskin (1989), Whittaker and Sidner
(1996), and Bälter (1997) managed to define a range of different email user
categories: prioritizers, archivers, no-filers, spring-cleaners, frequent- filters,
and folderless cleaners. More recently, Ducheneaut and Bellotti (2001)
showed that email was a so-called habitat, that is, a facility used to accom-
plish and organize a wide range of professional and private activities.

In our own investigations, we studied the use of the desktop itself (i.e.,
the screen real estate) and tried to identify the range of problems users
encountered in their daily work with computers (Ravasio, Guttormsen-
Schär, and Krueger 2004). The insights gained were incorporated into
the development of an interface prototype (Ravasio et al. 2003) and into
a study that analyzed the mutual influences of the physical and the elec-
tronic office on one another during the acts of document classification
and retrieval (Ravasio 2004). The following sections present a selection of
insights, experiences, and reflections drawn from these studies.

Together, the information allows us to observe that computers have indeed
changed office-based working processes in a variety of ways. Nevertheless,
offices still remain “paper-based” (Whittaker and Hirschberg 2001).

Practices, Problems, and Desktop Systems

Desktop systems support activities ranging from information acquisition
to its classification, the usage and thereby compilation of new information,
and finally, the information’s classification. While support for the actual
working tasks is left to individual applications, there are basic activities
that need to be supported by the environment itself, that is, not by third-
party software. Among these activities are the organization and retriev-
al of locally stored pieces of information, annotating and commenting,
reviewing, and also versioning. We investigated the following two related
questions within this context (Ravasio, Guttormsen-Schär, and Krueger
2004): (1) How is the so-called electronic desktop actually perceived, and
for what is it used? and (2) Why do users consider the classification and
retrieval of their own information to be difficult?

To answer these questions, we conducted 16 semi-structured interviews
following guidelines. All of the interviews took place at the interviewees’
work spaces in their familiar working environments. Interview questions
were asked while the interviewees sat in front of their computers, with a

ch09.indd 269ch09.indd 269 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

270 Pamela Ravasio and Vincent Tscherter

video camera positioned to an interviewee’s right, in order to capture the
voices of both the interviewee and interviewer. The group of interview
candidates comprised 12 Windows and 4 Macintosh computer users: 5
researchers (from the fields of health at work, visual perception, electrical
engineering, and augmented reality), 2 research managers who also had
lecturing duties, 2 business managers, 2 secretaries, 2 students, 1 full-time
lecturer, 1 teacher, 1 programmer; the group consisted of 7 males and 9
females. The subsequent sections discuss the answers we found to the two
aforementioned questions.

The Screen Real Estate’s Use
As originally conceived, the actual desktop represents a user-owned area
par excellence. Technically, though, it is just another folder within the file
system that has some special properties, including its display in the screen
real estate using spatial arrangements. The use of such a strong metaphor
as a desktop not only offers the opportunity to adapt it to the users’ needs
and tastes, but more importantly, it allows for low- and medium-skilled
users to progress quickly with their own system. However, this original
intention does not correspond with the present situation as we observed
that the use of the screen real estate depended strongly on the users’ skills.
Low-skilled users were not aware that the screen plane could be used as
location for data storage and that it eventually would form part of the file
system. Medium- and high-skilled users, on the other hand, employed the
desktop consciously and quite extensively for their purposes and adjusted
it according to their working needs. Therefore, skill remains an important
criterion in handling this interface well and efficiently.

Nonexpert users also felt repeatedly irritated by the similarities in func-
tionality between their folder hierarchy and the desktop, and they were
surprised that simple actions had different effects from what they had
expected. One medium-skilled user, for example, dragged his whole “My
Documents” folder hierarchy (left side of the Windows Explorer) to the
desktop, thinking this would allow him to gain an overview of the tree’s
hierarchical structure only. However, as he dragged the hierarchical tree
to the desktop he eventually noticed, of course, that this action resulted
in moving the entire hierarchy, including its content, to the desktop. A
fact that contributed to this irritation is the system’s misuse of the screen
real estate for its own purposes—be it the storage of shortcuts to newly

ch09.indd 270ch09.indd 270 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

Why We Should Seek Metaphor-Free Interfaces 271

installed programs or the display of reminders of system activities (e.g.,
the tray) without an explicit requirement by the user. Typically, users did
not dare to interfere and throw an unwanted item away, thinking that
otherwise needed resources (such as the application to which there is a
referring shortcut) would “magically” disappear from the computer.

Both medium- and high-skilled users employed the screen real estate
first and foremost as temporary storage location. To serve this goal, the
screen real estate was organized by each individual user in patterns that
were intended to support his or her fast visual orientation (figures 9.1 and
9.2). The patterns themselves took the shape of simple geometric forms
such as squares, circles, and so forth, and were organized by document

Figure 9.1
On this expert PC user’s screen, different kinds of geometric shapes are distin-
guishable, as are groups sorted by file format and use. For instance, a square of
program shortcuts is visible in the lower left corner and in the lower right corner
is a collection of batch file shortcuts. The Windows taskbar is located to the left,
since the (right hand) mouse can then be “thrown” at it, and causes less physical
effort to complete a task.

ch09.indd 271ch09.indd 271 12/4/2006 1:20:29 PM12/4/2006 1:20:29 PM

272 Pamela Ravasio and Vincent Tscherter

type, topic, and so on. Proximity represented a topic-wise or type-wise
relationship. Since the desktop served as temporary storage, it also became
crowded over time and needed to be cleaned up or reorganized occasion-
ally. Once a desktop was reorganized, its content was sorted out along
the following three criteria: (1) temporary information remained on it;
(2) information useful in the long run was filed away to “archive” folders;
and (3) working information was either filed into folders containing ongo-
ing work or reorganized on the desktop at a special location. Again, these
criteria comply with the three generic types of information already found
by Barreau and Nardi (1995).

Spatial arrangement was sometimes relied upon even within the hier-
archically structured folders of the file system. In particular, it was relied
upon as long as the total amount of stored information and the amount
stored in each individual folder did not seem too large from the individu-
al’s point of view. For instance, some users knew that a particular folder

Figure 9.2
This expert Mac user has customized the “Dock” by adding folder shortcuts to
it. He also uses a spatial arrangement of documents and folders that provides
efficient access to frequently used resources.

ch09.indd 272ch09.indd 272 12/4/2006 1:20:31 PM12/4/2006 1:20:31 PM

Why We Should Seek Metaphor-Free Interfaces 273

within an opened Explorer window would be the second from the top or
the third from the left in the second row from the bottom.

Overall, we agree with the critique articulated by Halasz and Moran
(1982) that concrete metaphors—in this case the desktop—do not help
novices to come to terms with computers. Still, we think the critique
extends to all but expert users of computer systems. The mental model
induced by a metaphor—the desktop—can hardly compare to its real-
world counterpart of the physical office. Average users are not in a situa-
tion to judge how technical and other requirements affect the metaphor’s
correspondence with its counterpart. As a result, it is at least as hard for
novices to learn the conventions of this mixture of conforming and non-
conforming features in addition to the functionality of the computer itself.
More advanced users have memorized these differences, but this fact does
not help them to actually “understand” the system on which they are
working. For them, learning is coupled with continuing to memorize even
more conventions.

Classification and Retrieval
While a physical office allows for a variety of ways to achieve tasks of
classification and retrieval of information, the hierarchical folder struc-
ture and the possibility of naming files and folders reduce this variety to
an indispensable minimum. This lack of flexibility makes it very difficult
for the user to leave his or her marks of acquired and tacit knowledge
that will serve to allow for tracking down specific pieces of information
in the future. Therefore, users necessarily invest a fair amount of effort in
order to define, organize, and maintain these hierarchies, and to transfer
as much knowledge as possible. Hence, they invest their efforts into the
one place where, in their opinion, the knowledge cannot be lost and will
be retrievable: the folder hierarchy and its naming schema.

Nonetheless, the problematic issues with respect to organization start
even before a physical office space or a computer comes into play. These
issues are prominent in the educational setting; for example, for teach-
ers introducing novices to the use of computers, one of the most difficult
hurdles (Reichmuth 2004) is that for some, neither offices nor computers
assist in organization. These users think about information or documents
so differently that the kind of structured organization required in either of
these environments does not mean anything to them.

ch09.indd 273ch09.indd 273 12/4/2006 1:20:31 PM12/4/2006 1:20:31 PM

274 Pamela Ravasio and Vincent Tscherter

Organizational efforts go hand in hand with efforts to archive impor-
tant resources. Here, the aim is to guarantee the “constant” access to rel-
evant sources (web pages, articles, reports, but also picture, sound, and
video material, etc.) even when the web service in question may be down.
Therefore, users try to make their information accessible for themselves by
storing it locally. Likewise, their archive embodies a library role for them:
It is seen as a collection of results and products that in turn can be reused
directly without amendments, or alternatively, serve as reference material.

However, archives are useful only if they contain pure essentials and
are not scattered with outdated, obsolete, or irrelevant material. For
this reason, maintenance turned out to be a serious activity performed
regularly by medium and advanced users. Maintenance guarantees that
only valuable reminders and pieces of information that have not lost
their relevance are kept while the rest is sorted out as soon as it becomes
obsolete. Typically, maintenance was performed at project “milestones,”
when useful and important resources (e.g., the actual results and the rel-
evant documentation) were kept while the rest was discarded. The ages
of archived (i.e., nonworking) files were found to range roughly from six
months to eight years, with diminishing quantities in older parts of the
archives. The latter fact supports the finding that maintenance is not only
performed, but that older parts of the archive are cleaned up repeatedly
over the years, until they were found to consist of “pure essentials.” Occa-
sionally, we saw that older or very voluminous parts of an archive were
outsourced to external storage media such as DVD, and subsequently
“stored” on physical shelf space.

While the aim of classification is to engrave knowledge on the file
system in order to create and leave hints so that information is findable
again, its counterpart retrieval consists of the development of strategies
that try to decipher these hints in order to reacquire the information pre-
viously stored away. It is important to note that retrieval within the local
system is always an attempt to find information that is known to be there
because it was handled at some point in the past; this is in contrast to web
search tools or database retrieval tools that aim at retrieving a closest,
previously unknown, match to information, given some specific criteria.
This contrast could be one plausible explanation as to why built-in search
tools are used only reluctantly—it is not a “closest match” that users are
seeking, but rather a 100 percent hit.

ch09.indd 274ch09.indd 274 12/4/2006 1:20:31 PM12/4/2006 1:20:31 PM

Why We Should Seek Metaphor-Free Interfaces 275

Additionally, it seems that the use of search tools is cognitively demand-
ing because the search criteria (“fields”) employed are not those that
people habitually use as they think, act on, and remember pieces of infor-
mation during working activities. Consequently, search tool results tend
to be poor. Based on these experiences, users end up favoring manual
search. At the same time, this is to them a way to brush up their knowl-
edge of their personally engraved organization, with no more (cognitive)
effort than using the tool.

The following is the final question to be answered in this context: What
do information-access procedures look like from different users’ perspec-
tives? In our study, all interviewees searched by accessing their categories
directly as a first choice. As a next step, the interviewees reviewed all of
their folders one by one, in a logical order, giving priority to folders that
may contain the file in question, though without consulting each individ-
ual file contained therein. If at this point the specific piece of information
had not yet been found, the interviewees finally proceeded to check all files
in the folders in question, manually and individually. If the search was not
successful up to this point, the procedure was restarted at the first step.

Problematic issues Classification and retrieval of information require tre-
mendous cognitive effort. While an immediate solution to this problem is
not within sight (though there are some promising developments; see, e.g.,
Copernic Technologies 2004), it is clear that efforts are needed to reduce
this load. One cause that intensifies the cognitive load is the system-sided
separation of the various information classes, such as bookmarks, emails,
and files. Users think of their data as one single body of information. The
existent separation increases the difficulty of filing pieces of information
and finding them again. It is necessary to reunite all user-owned data at
a single storage location within the environment with a simple storage
mechanism that allows and supports the user creating and engraving rela-
tionships between pieces of information in accordance with his or her
thought process. However, such a linkage mechanism must not consist
simply of “hyper-linking” information (which would mean potentially
linking everything with everything else—an approach known to have a
devastating effect on a person’s orientation capabilities [Conklin 1987]),
but would rather aim at joining items that belong together from the user’s
point of view.

ch09.indd 275ch09.indd 275 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

276 Pamela Ravasio and Vincent Tscherter

There is even less support for automatically compacting or summariz-
ing personal information collections and archives, let alone for sharing
information resources or working with them collaboratively. However,
this fact results in the central advantage that maintenance activities, typi-
cally relocating and discarding pieces of information, are extremely easy
tasks to perform, with hardly any inherent problems. If information were
related to other information within the system (or even worse, at remote
locations) through sharing or collaboration, “deleting” would no longer
be a trivial issue. The situation would be even worse if different versions
of a document were taken into account for the definition of the relations
between various pieces of information.

While present commercial systems are primarily content-oriented (i.e.,
focusing on the actual information encapsulated in a specific document),
working with a PC can also be task-oriented (focused on the task to be
accomplished) or context-oriented (focused on various documents, pro-
grams, and tasks at hand concurrently). Since a user switches continu-
ously between working modes, equal support must be provided for each
mode. However, regardless of whether the activities on a PC system are
looked at from a task-, context-, or content-oriented point of view, they
can be assigned to one of three alternating phases, namely: (1) informa-
tion acquisition from either local or remote sources; (2) actual work con-
sisting of handling and transforming information previously acquired;
and finally (3) the reclassification of both the original resources as well
as the work’s product (Landsdale 1988). While the act of information
classification is supported by the environment itself, support for informa-
tion acquisition as well as ongoing (“transforming”) work is primarily
outsourced to application programs. As a consequence, the system side
and the application side need to be looked at in almost sheer exclusivity
from one another.

Because of the desktop’s focus on document management, support for
ongoing work activities is almost nonexistent. For instance, the environ-
ment offers hardly any commenting, annotation, versioning, or global
user-friendly search facility. Built-in search tools are typically based on
metadata and, until today, have remained hardly appreciated by the aver-
age user. Since there is technically no way around working with metadata
in retrieval tools, we would need to know how “user-friendly” metadata
would look and its makeup in order to truly advance in the direction of

ch09.indd 276ch09.indd 276 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

Why We Should Seek Metaphor-Free Interfaces 277

system-sided support for automatic searching as well as for linkage or
classification.

The work users complete within their systems is normally directly relat-
ed to situational aspects (context) of immediate filing or accessing a piece
of information. It is at this point that, no matter how well designed strate-
gies for system-sided support for content- or task-oriented work may be,
they are seriously challenged as soon as contextual issues enter the field.
Context is something that can be foreseen or structured only with much
difficulty, if at all. Therefore, the goal must be to design handy, easy-
to-use, “on-the-fly” procedures that enable and support actual users to
“reveal” their perception of context.

Practices and Problems: Conclusion
By original design, the desktop is a user-owned area. It should be a place
where users, and only users, are able to engrave personal preferences and
tastes, and the system should by no means misuse the area—including
by way of installer routines that store shortcuts on it! The implications
of how medium- and high-skilled users may own the screen real estate
is apparent in figure 9.1. The particular user depicted in figure 9.1 not
only ordered icons and documents according to criteria best suited for the
work at hand, but also included a personal photograph to decorate the
desktop’s background.

Current commercial desktop systems are still designed primarily for
document management. Support for the act of thinking, the compilation
or generation of new information, is not its aim. Consequently, support
for this act within the core system itself is rudimentary, and normally dele-
gated to application programs. It is up to each user to get something out of
a collection of individual documents and the range of third-party applica-
tions that he or she uses. While this may make sense from a task-oriented
point of view, it barely helps the fact that without suitable comprehensive
support available independent of specific applications, individual pieces of
information eventually remain just that: isolated isles of knowledge. Spe-
cifically, this in turn means that a truly context-oriented view of a user’s
information is a “mission impossible.”

It is important to keep in mind that users are aware that the value of a
collection of pieces of information is larger than the sum of the values of
each individual piece. However, they are also aware that the additional

ch09.indd 277ch09.indd 277 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

278 Pamela Ravasio and Vincent Tscherter

benefit in the form of implicit relations and tacit knowledge exists solely
“in their brain,” that is, that it is not contained either in the individual
piece of information, within the collection in its entirety, or in the system.
Experience tells them that at some point the system is not of much help to
get informed in order to produce results.

The ultimate goal is to bring information-handling “closer” to the user.
For instance, instead of separating pieces of user information into differ-
ent parts of the whole system, they should become integrated, both with
respect to their storage location as well as with respect to the representa-
tion of their overall value. Nevertheless, the resources manipulated by the
system and those manipulated by the user must be separated from one
another in such a way that the former does not interfere with the latter
(and also vice versa for average users).

Finally, any kind of support that will help to engrave tacit and acquired
knowledge into the permanent structures of the user’s information orga-
nization, which may be reusable by both applications and services when
needed, is useful and appreciated. Small, useful facilities have the potential
for high impact: Annotations, versioning, format conversion, easy-to-use
search, and so on are examples that we have mentioned. Many more could
be conceived, especially if collaborative issues are also taken into account,
which we have left out entirely throughout this chapter. Still, what can be
learned from existing facilities is that as long as their use implies as much
cognitive or physical effort as doing the same task by hand, these facilities
will simply not be used.

The Cohabitation of the Physical and the Electronic Office: Results of a
Qualitative Experiment

Since the use of computers has become increasingly widespread, more
paper than ever before is being consumed in printouts, books, reports, and
so forth (Sellen and Harper 2002). This raises the question of whether the
physical office still serves above all as the primary reference for orienta-
tion on how to handle its virtual counterpart, the desktop computer, and
whether as a consequence the physical and the virtual offices influence
each other mutually.

In a qualitative experiment (Ravasio 2004),2 we investigated the basic
procedures of “office” work after having filtered out the individual’s per-

ch09.indd 278ch09.indd 278 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

Why We Should Seek Metaphor-Free Interfaces 279

sonal context. Two groups of ten participants each were presented with
either an unfamiliar office (i.e., a real office belonging to somebody else) or
with an unfamiliar computer organization (i.e., an image copy of a com-
puter really in use). The participants were of the following backgrounds: 4
computer scientists, 1 PC supporter, 7 students (2 business, 1 linguistics, 1
psychology, 3 environmental science), 1 electrical engineer, 1 physiothera-
pist, 1 chemist, 1 manager, 1 psychologist, 1 lawyer, 2 secretaries.

Two sets of documents had previously been extracted from each of the
environments. During the experiment, the participants were then initially
asked to search for the first set of documents, and later to classify the
second set within the environment to which they had been assigned.

Our aim was to extract the average user’s principles (document descrip-
tors, tactics, and rules) applied in information orientation and handling,
and to see if these showed a dependence or influence from one office envi-
ronment onto the other respective environment. Each user session was
videotaped, the tapes transcribed and subsequently evaluated, and were
manually counterchecked by two individuals based on a previously gener-
ated codebook.

The next section provides a closer look at the issue of mutual influences
of the two office environments on each other in light of the results we
obtained in this qualitative experimental study.

The Art of Office Organization
In a physical office that belongs to another person, users are apparently
able to orient themselves almost at “first sight” and locate needed docu-
ments quickly—a phenomenon on which our participants each comment-
ed independently during our experiment. As matter of fact, in the setting
of the unfamiliar (physical) office, we were able to observe that the par-
ticipants indeed appeared to have an understanding of its organization
after merely a few minutes. There seemed to exist conventions, or a “quiet
understanding,” about typical storage locations specific to a range of dif-
ferent types of information and documents.

The same “quiet understanding” did not seem to exist in the electronic
world—either with respect to the organization of the file system nor to
the screen plane. Here, a continuous effort to infer and draw conclusions
about the logical whereabouts of a piece of information was noticeable.
Widely understandable clues or conventions were either entirely absent

ch09.indd 279ch09.indd 279 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

280 Pamela Ravasio and Vincent Tscherter

or represented unsatisfactorily, so that the users’ needs, expectations, and
goals were not met. Occasionally, clues and hints drawn from the physi-
cal office were used, such as number-coding or color-coding folders. Still,
these approaches failed in their intended purpose to engrave or “external-
ize” one’s own organizational structure and to make it comprehensible to
other persons as well as to a “future self.”

Therefore, to some extent, users tried to use similar, sometimes even
identical, conventions, structures, and procedures to organize both of
their working environments (i.e., the physical office and the electronic
file system). In our experiment, this became apparent when comparing
the tactics and rules the participants applied in each of the environments
while classifying or retrieving documents, and in crosschecking them with
the users’ own comments on their proceedings. However, the users’ intents
often did not work out as expected, which caused them visible confusion
in that they could not identify a reason for the failure; it was therefore nei-
ther clear to them how the confusion could have been avoided nor what
alternative approaches might have been. It is here that a range of funda-
mental conceptual differences between the two environments manifested
in the way the participants proceeded and organized themselves. We were
able to prove this fact by comparing the transcripts of actions and state-
ments from the two environments.

Our experimental comparison revealed that many organizational con-
cepts and ideas have been mutually absorbed from one of the environ-
ments into the other. We conclude that owing to its physical nature, in
the real-life office environment the limitations and drawbacks, but also
the benefits, of these “adoptions” became apparent to computer novices
and experts alike. In the electronic environment of a computer, however,
only experts were able to judge the implications. The lack of conceptual
knowledge led novices and medium-skilled users rapidly to accept incor-
rect assumptions, which in turn caused them to have fundamental prob-
lems in their organizational habits and procedures with their computers.

Organization in a physical office is eventually a middle course in useful-
ness between searching and filing activities and the particular individuals
needs. Mainstream computer systems implicitly assume that their users
store documents and pieces of information according to the same con-
cepts and ideas (criteria) as they apply to retrieve them. This assump-
tion, however, is incorrect. The differences we found between the act of

ch09.indd 280ch09.indd 280 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

Why We Should Seek Metaphor-Free Interfaces 281

classification and retrieval were decidedly more distinct than the differ-
ences found between the two “office” environments. Furthermore, the
weak but existing support for user work within mainstream system cores
is restricted to the area of information organization and inherently leads
a user to focus on optimal filing. Indeed, searching on a computer is a far
more demanding task than filing, extremely error-prone and cognitively
very difficult. Consequently, existing personal, but probably also collab-
orative, document- and information-management systems belong entire-
ly to the group of systems that are intended for “good” classification;
this has a devastating effect on individual productivity owing to failed
retrieval attempts. This also raises the fundamental question of whether,
for instance, existing information- and document-management systems
(both personal and collaborative) are as suitable and productivity enhanc-
ing as they were expected to be when designed, implemented, and rolled
out to consumers.

Mutual Influences: A Meta-Reflection
A metaphor is “a figure [of speech] in which a word or phrase is applied
to an object or action that it does not literally denote in order to imply a
resemblance” (Collins and Co. Ltd. 1998). Therefore, it is not surprising
that the individual understanding of the metaphoric figure and its real-life
counterpart manifest a mutual influence. Although the metaphor and its
real-life counterpart do not resemble each other in depth, the relationship
between the two may have only few inherent problems. Nevertheless, if the
metaphor is used to explain the details of its real-life counterpart, the belief
in an intuitive “natural” approach that completely relies on previous expe-
riences and knowledge necessarily leads to misunderstandings. A metaphor
by definition represents only a part of a whole, not the full details.

A somewhat similar mechanism applies if the electronic organization of
information is the focus of attention. Users try to reuse the same strategies
that are valid in the physical office in the context of the electronic world,
regardless of whether or not they are actually suitable and applicable.
Therefore, an influence of the physical organization of an office on the
electronic organization of the hierarchical file system at this point seems
only plausible.

On the other hand, the younger generation of users in particular also
has extensive experiences in the electronic environment, and has developed

ch09.indd 281ch09.indd 281 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

282 Pamela Ravasio and Vincent Tscherter

strategies that serve well in this context. In this scenario a practice transfer
to the physical office also seems to be plausible.

It certainly can be said that the organization of the physical office also
suffers from drawbacks and is not itself the ultimate solution to the issue
of information organization. That is why, for instance, libraries do not
function according to these approaches, but require specialized person-
nel and procedures. Moreover, the understanding of clues embedded in
a personal environment changes over time since the immediate working
situation (context) of a person evolves. Clues embedded in the physical
office are generally coarser (i.e., less precise) than those embedded in the
electronic office and thereby less affected by changes in the office owner’s
(working) situation. As a result, they retain their meaning over longer
periods of time. On the other hand, clues that are embedded in the hierar-
chical file organization because they are precise, fine-grained, and closely
related to the state of a user’s ongoing work lose much of their message
over time. This phenomenon could mean that given the users’ habits and
long-term experiences, the physical office may well serve as a point of
departure from which to learn better organization by looking at both its
advantages and drawbacks.

Admittedly, the impact of the extensive use of a real-life metaphor is
hardly foreseeable. The extent to which users may be able to perceive par-
allels from the metaphor to its real-life counterpart cannot be controlled in
its entirety. This gives rise to a potentially huge range of inherent problems
founded in this resemblance or dissemblance. Therefore, we think that the
application of metaphors is justified only where their use and range of
allusions is limited and can be controlled well (such as was the case with
the Dynabook, whose designers said that it should be as responsive “as
an instrument” [Kay and Goldberg 1977]). Abstract approaches, such as
graphs, seem a better option in the long run, since they do not have any
inherent significance or thereby predefined functional schemes—at least
not to the average user.

Existing mainstream systems represent their original designers’ focus;
this aim was to facilitate the way information was organized while keep-
ing the fundamental concepts unchanged, without considering what
would best serve users other than themselves. Going forward, a different
approach is needed: (1) It must be known what concept should be sup-

ch09.indd 282ch09.indd 282 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

Why We Should Seek Metaphor-Free Interfaces 283

ported before identifying how to support it; and (2) more effort has to be
invested in teaching users how to beneficially use these concepts.

Design Approaches

The essence of a personal integrated digital work environment is formed
by the user’s pieces of information encapsulated within files or records.
A user works with his pieces following a wide range of possible working
“policies,” such as those already identified in research and subsequently
listed in this section. The “policies” share the commonality that each
supports a particular perspective on the data while the user is organizing
working tasks, processes, and procedures, which, again, are driven by
his or her basic need to (re-)acquire, process, organize, and (re-)distrib-
ute information. Therefore, the success or failure of future systems will
depend on how well the different views are integrated with one anoth-
er. If even a single common goal or task can be accomplished only in
a complicated and awkward manner, the system will not be accepted
and widely used unless no alternative options (as is presently the case)
exist. The integrated digital work environments developed in the past
decades represent four different, but complementary policies, or views
(figure 9.3):

Content-centered view These systems focus on optimizing the user-
related system behavior with respect to content, that is, documents and
other pieces of information. Examples are the MIT Semantic File System
(Gifford et al. 1991), Haystack (Adar, Karger, and Stein 1999), Presto
(Dourish et al. 1999), Stuff I’ve Seen (Dumais et al. 2003), and Microsoft’s
WinFS system (Microsoft, Inc. 2004).

Task-centered view These systems’ focus lies on the activities performed
in order to achieve work goals. Documents are just one of several tools
and resources required in order to achieve the task. Systems that fall
into this category include Task Gallery (Robertson et al. 2000), UMEA
(Kaptelinin 2003), Soylent (Fisher and Dourish 2004), and Contact Map
(Nardi et al. 2001).

Context-centered view In such a system, the influence of situational
issues and past actions on the present goals and activities of an indi-
vidual user are addressed by the concept of personal role management

ch09.indd 283ch09.indd 283 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

284 Pamela Ravasio and Vincent Tscherter

(Plaisant and Shneiderman 1994) or the Kimura system (Voida, Mynatt,
and MacIntyre 2002).

Time-centered view In this system, ongoing as well as past and future
work can also be naturally represented in a time-lined manner. Lifestreams
(Freeman and Fertig 1995) is a state-less concept (i.e., time is used in
first place to “line” documents up), while Timescape (Rekimoto 1999)
presented us with a stateful approach (i.e., the visual file configurations
depend on the point in time of viewing).

Other views could be thought of, such as “collaboration-centered” or
“version-centered.” While all of these views have in common that they
tried to come up with new conceptual ideas for the system’s handling and
user interface, a common abstract model is so far lacking. Each implemen-
tation implicitly defined its respective, proprietary model in sole accor-
dance with the individual view to be realized. This means that one of the
central system design questions that remains to be answered is: “Is there
such a thing as a common abstract model that can underlie all conceptu-
ally possible views? And what would it look like?”

In the past, most if not all developments have tied their user-interac-
tion designs in one way or another to the structures predominant in the
technical and physical base of their system core. The desktop metaphor
is, while probably the most infamous example, certainly not the only one.
However, from a software-engineering point of view, user experience and
system core are independent from one another. The core system offers all
the desirable power and options needed to design the user experience,

Figure 9.3
Known approaches represent one of several possible views of basically the same
system. However, missing so far is a common understanding and the definition of
what the underlying abstract model of the various views must be.

ch09.indd 284ch09.indd 284 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

Why We Should Seek Metaphor-Free Interfaces 285

but it leaves entirely unaffected the ways in which this happens. In other
words: the structures and paradigms inherent in the core system are inde-
pendent of what the user sees, or is made to experience. Nelson (1990)
simply called this the virtuality of a computer system.

Several “on-board” tools that will necessarily come along with any
future system have been mentioned throughout this book. Many more
are currently being developed “out there.” In the rest of this chapter, we
would like to revisit two of the first-hour “on-board” tools—annotations
on the one hand, and desktop search on the other—in order to find out
what they already offer and in what direction they will evolve as a conse-
quence of their deficiencies.

Annotations
An annotation is “a note added in explanation, etc., of some (esp. lit-
erary) work” (Collins and Co. Ltd. 1998). Annotations and comments
are tools for work with documents and serve, among other things, as
“reminders,” highlighting mechanisms, emphasis, and for text correc-
tion and review remarks. In principle, one should be able to annotate
“everything” within a system (to some extent even recursively, which
means annotation can be annotated). They are a user-definable, tech-
nically spoken unstructured category of document metadata. Currently,
annotations are coupled with a given document or application, usually
with both. This implies that annotations are encapsuled within docu-
ments and are not generally accessible or useful unless they belong to the
document on which work is being done. More particularly, application-
specific support for annotations and commenting varies largely and only
coincides at a very basic level.

In the foreseeable future, the range of basic annotation and comment
types available to the user will not differ greatly from those already in use
today; commenting, text highlighting, text underlining and crossing-out,
support for “handwritten” remarks and reviewing will remain prevalent.
The main difference, however, will be that annotations and comments will
be administrated centrally and uniformly from within the environment
itself and will be linked to the resource that they describe. Consequently,
they will always be handled in the same or at least very similar manner
throughout the whole system, independent of the specific application used.
This demonstrates how not only “normal” documents can be annotated,

ch09.indd 285ch09.indd 285 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

286 Pamela Ravasio and Vincent Tscherter

but also “special” ones, such as emails, to-do lists, diaries, and even web
pages for exclusively personal use. Annotations and comments that exist
within a system will be dynamically filterable according to criteria that are
understandable and useful to the individual user (i.e., other than is often
the case in today’s search tools).

In the long run, the user will need to be able to embed his or her tacit
knowledge, as well as acquired insights, into the comments and annota-
tions. Decades back, Luhman’s file-card box was a tool invented to orga-
nize this type of knowledge. How would an electronic counterpart of such
a file-card box need to be designed in order to preserve its simplicity and
efficiency while still using the advantages computers offer? At this stage,
the system would still take care of the most basic services in order to leave
them independent of application. However, small tools may exist (and
they always will!) to help otherwise repetitive tasks, such as “refactor-
ing” one particular type of comment into finer-grained entities across the
whole collection of annotations.

Yet at this point it is important to note that there is a “thin red line”
that must not be crossed: Annotations and comments, and their respec-
tive handling, must not become yet another inherent metaphor embedded
within a larger environment, appearing to be like its real-life counterpart,
while still being sufficiently different so as to confuse its users. Therefore,
re-creating the physical annotation facility identically and in every detail
in an electronic environment is not the goal. The goal must be to offer
basic, useful, and valuable electronic annotation and commenting facili-
ties that address the users’ requirements well.

Desktop Search
In the past decades, the information collected by each individual person
has grown exponentially (Sweeney 2001) and at least at a similar rate as
the price for storage per entity has fallen (following Moore’s Law [Moore
1965]; Grimm 1998). However, today we are still using the same concept
(hierarchies of directories and files) and the same metaphor to organize
as well as access both the countless pieces of information stored to our
increasingly capacious hard drives and the virtually limitless information
accessible on the web. Finding information on the web is not a challenge
anymore. Will desktop search solve the problem of retrieving local informa-
tion and simultaneously make the user’s task of classification obsolete?

ch09.indd 286ch09.indd 286 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

Why We Should Seek Metaphor-Free Interfaces 287

While classification serves to organize pieces of information and emboss
tacit and acquired knowledge on this organization, information access
aims to (re-)use existing information in order to pursue specific goals,
such as writing reports, by compiling existing information and generating
new information. Problems habitually confronted in such situations sound
as follows: “I need to write an email to all people who formed part of the
project team X back in 1994.” Access procedures, as used and enforced
by the systems facilities today, do not support a straightforward approach
to access the relevant information efficiently.

It is only common sense that any kind of filing will support “overview,
context and detail on demand” (Shneiderman 1996). That is, pieces of
information and the relationships between them should initially be view-
able or perceivable at a distance, stressing their embeddedness within the
entire collection. Second, a close-up perspective should also be viewable
that shows all details of the individual piece under exclusion of most con-
textual aspects and relationships; the exception would be the most fun-
damental ones that continue to be important for efficient work (such as
the reference documents used to compile a report). While this description
might sound at first like the description of yet another metaphor—it is
not! It merely describes how a user should be able to work with and view
his or her data, and what basic facilities would (and should) be available.

However, the questions that arise at this point are: According to what
criteria and categories are the relationships between pieces of information
built? To what extent and in what way can they be made independent
from the preferences of the individual? How can “context” be defined in
a way that it is useful to the individual without being either too limited or
too broad? If, for instance, relationships are defined through metadata, as
is often the case, it is important to know what the “metadata” of a docu-
ment are from a user’s perspective, that is, according to which criteria
users create the relationships with which they later work.

Although older information is generally less useful, we think that
archives will not entirely disappear because of both personal preferences
and the fact that some businesses are legally required to keep them. Par-
ticularly for the latter case, if a system is going to be used in a specific
application domain such as accounting, it needs to be determined where
and to what extent support can happen automatically. Many of the clas-
sification and access procedures happen, for instance, through largely

ch09.indd 287ch09.indd 287 12/4/2006 1:20:32 PM12/4/2006 1:20:32 PM

288 Pamela Ravasio and Vincent Tscherter

standardized routines. Therefore, while organization of personal informa-
tion is a tricky issue owing to its lack of “obvious” structure, in industry
and business applications domain-inherent characteristics may determine
organizational procedures. This in turn makes it easier for designers to set
up a “useful” system.

Yet another issue will be raised as soon as “versioning” is commonly
available. While versioning solves a range of problematic issues inherent in
the organization of archived or temporary information, it is questionable
whether the partition of user information into the three kinds of infor-
mation (temporary, working, archived) will be subject to a fundamental
change. It is possible that the archive as such will no longer exist explicitly
and the physical act of file deletion to maintain an archive will disappear
as well (versioning would resolve the problem of potential “dead” links
in this context). Still, as in the physical office, temporary and working
information will always be actively compiled, while archives will just turn
out to be “collections not used for a longer period.”

Design Approaches: Conclusion
A sizable portion of people who use computers out there are low- or
medium-skilled users. They have different needs and ideas from those of
power users as to what a system should be able to do and how work
should be accomplished. In the world of reading and writing, such users
would be considered semiliterates—they have never truly been taught how
to use computers efficiently, but they use them extensively nonetheless.
Alan Kay said that:

One of the problems with the way computers are used in education is that they are
most often just an extension of this idea that learning means just learning accepted
facts. But what really interests me is using computers to transmit ideas, points
of view, ways of thinking. You don’t need a computer for this, but just as with a
musical instrument, once you get onto this way of using them, then the computer
is a great amplifier for learning. (Kay 2003)

We think that the same idea can be applied to the use of computers at
work. The computer has been introduced in order to make work, and in
particular office work, more efficient. However, its use and benefits to
fundamentally expand—or change—previously existing possibilities have
never become a reality, and the user’s “return on investment” efforts will
continue to be limited as long as there is a basic lack of knowledge on

ch09.indd 288ch09.indd 288 12/4/2006 1:20:33 PM12/4/2006 1:20:33 PM

Why We Should Seek Metaphor-Free Interfaces 289

how to use computers. Using computers is a literacy that has to be taught
properly in order to be beneficial. So far, it is clear that efforts to spread
this new “literacy” among a wider public have failed.

The pursuit of a “new” metaphor—though of course, we would actu-
ally like to get away from metaphors entirely!—has so far followed two
directions: (1) Research has explored a range of occasionally radical
approaches to come up with novel designs of integrated digital work envi-
ronments; (2) commercial systems have again followed what can be char-
acterized best as “the way of small enhancements,” which unfortunately
often resulted in packing even more desirable features into an already
overloaded system.

Although the route of small enhancement might not lead to the funda-
mental paradigm shift needed and aimed at in this context, the idea to start
system optimization by improving individual aspects that are perceived as
nerve-wracking by average users is not half-bad. In the beginning, such
small improvements certainly seem like they are not directly related to
problems caused by the desktop metaphor. However, small enhancements
offer the opportunity to study users in their working environment, that
is, to view their working logic while they are focused on the work to be
accomplished. For most people, a computer is still a black box that they
handle based on an action-reaction principle without actually knowing or
even understanding what exactly is happening behind the curtains. These
users, though, are a source of insight and knowledge that has the potential
to lead to novel approaches, for it is here that inconsistent (but according
to experts and semi-experts, already totally absorbed) inherent conven-
tions manifest their problematic results most clearly. Collaboration with
such users will lead to discarding the basic concepts related to the desktop
metaphor and to conceiving something that may initially be abstract, but
eventually would become more consistent and closer to the users’ needs.

The systems described in this book show that a range of well-founded
approaches exists. However, the critical point that remains is the often
inherent coupling to a real-world metaphor, which will eventually face
the same problems as the desktop does owing to encountered inconsisten-
cies with the real office, its physical counterpart. As it is, if the presented
concepts and achievements were to be teamed up in an effort to integrate
them, one would necessarily have to come up with novel representational
ideas, as it is unlikely for one to find them in the real world.

ch09.indd 289ch09.indd 289 12/4/2006 1:20:33 PM12/4/2006 1:20:33 PM

290 Pamela Ravasio and Vincent Tscherter

Concluding Remarks

The desktop metaphor’s invention was a result of the idea that computer
systems as such are too complicated in nature to be understood by non-
expert users, and that therefore something simpler was needed to explain
them. This in turn resulted in the following situation: while workstations
remained efficient for expert users who are happy only if provided with
a command line, the workstations’ principles which are not always con-
sistent to an outsider’s eye remained unchanged and obscure to average
users. Moreover, further inconsistencies were introduced owing to the dif-
ferences between the real-life counterpart of the interface metaphor and
the environment it was intended to explain. The metaphor was an attempt
to circumvent the necessity of teaching computer novices the concepts and
fundamentals of computing that are required for at least some basic idea
of the black box’s (that is, the computer’s) internal procedures. We would
argue that it takes beginners as much or less effort to learn how to handle
computers without metaphors, provided that the system itself behaves
consistently. The desktop metaphor, in particular, has made assumptions
on how we would use computers that have never corresponded with either
the system’s or the user’s realities.

Therefore, the fundamental issue is not to come up with a more clever
metaphor in order to better disguise inconvenient system-sided concepts,
but to change the concepts themselves. Accordingly, the goal must be to
develop an environment that is itself consistent while considering users’
ways of working in each individual aspect. Separating the questions of
technical concepts and feasibility entirely from considerations as to how
working with the system should occur is the first step. Each of these aspects
is, at this point, still a challenge in its own rights. This notion is even
more enhanced if the consequent collaboration of interface and system
designers, software engineers, and actual end-users is taken into account.
After all, users’ requirements are often inherently or explicitly much more
demanding than those with which we ourselves would be content.

Notes

1. During the work on this chapter Pamela Ravasio and Vincent Tscherter were
post-doctoral researchers at the Swiss Federal Institute of Technology, Zurich,
Switzerland.

ch09.indd 290ch09.indd 290 12/4/2006 1:20:33 PM12/4/2006 1:20:33 PM

Why We Should Seek Metaphor-Free Interfaces 291

2. Similar research settings were discussed in McDonald and Schvaneveldt 1988
and have been used in a range of studies, such as Hayhoe 1990; Lohse et al. 1994;
and Carlyle 1999. The qualitative experiment was defined for the social sciences in
Kleining 1986. A methodical transfer to HCI is discussed in Ravasio, Guttormsen-
Schär, and Tscherter 2006.

References

Abrahams, D., and Baecker, R. (1997). How people use WWW bookmarks.
Paper presented at the ACM Conference on Computer–Human Interaction
(CHI) 1997.

Abrahams, D., Baecker, R., and Chignell, M. 1998. Information archiving with
bookmarks: Personal web space construction and organisation. Paper presented at
the ACM Conference on Computer–Human Interaction (CHI) 1998.

Adar, E., Karger, D. R., and Stein, L. (1999). Haystack: Per-user information envi-
ronment. Paper presented at the 8th International Conference on Information and
Knowledge Management (CIKM ’99), Kansas City, Missouri.

Bälter, O. (1997). Strategies for organising email messages. Paper presented at the
HCI 1997, London.

Barreau, D. K. (1995). Context as a factor in personal information manage-
ment systems. Journal of the American Society for Information Science 46 (5):
327–339.

Barreau, D. K., and Nardi, B. A. (1995). Finding and reminding: File organization
from the desktop. SIGCHI Bulletin 27 (3):39–43.

Bates, M. J. (1979). Information search tactics. Journal of the American Society
for Information Science 30 (4): 205–214.

Carlyle, A. 1999. User categorisation of works: Toward improved organisation of
online catalogue displays. Journal of Documentation 55 (2): 184–208.

Collins and Co. Ltd. (ed.) (1998). Collins English Dictionary: Millennium Edition
(fourth edition). Glasgow: Harper Collins.

Conklin, J. (1987). Hypertext: An introduction and survey. IEEE Computer 20
(9): 17–41.

Copernic Technologies. (2004). Copernic: Software to search, find, and manage
information. Retrieved from http://www.copernic.com/en/products/desktop-
search/index.html/.

Dourish, P., Edwards, W. K., LaMarca, A., and Salisbury, M. (1999). Presto: An
experimental architecture for fluid interactive document space. ACM Transactions
on Computer–Human Interaction 6 (2): 133–161.

Ducheneaut, N., and Bellotti, V. (2001). Email as a habitat: An exploration of
embedded personal information management. ACM Interactions 8 (5): 30–38.

Dumais, S., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R., and Robbins, D.C.
(2003). Stuff I’ve Seen: A system for personal information retrieval and re-use.
Paper presented at the SIGIR 2003, Toronto, Canada.

ch09.indd 291ch09.indd 291 12/4/2006 1:20:33 PM12/4/2006 1:20:33 PM

292 Pamela Ravasio and Vincent Tscherter

Fisher, D., and Dourish, P. (2004). Social and temporal structures in everyday col-
laboration. Paper presented at the Conference on Human Factors and Computing
Systems (CHI) 2004, Vienna, Austria.

Freeman, E., and Fertig, S. (1995). Lifestreams: Organizing your electronic life.
Paper presented at the AAAI Fall Symposium: AI Applications in Knowledge and
Retrieval, Cambridge, Mass.

Gifford, D. K., Jouvelot, P., Sheldon, M. A., and O’Toole, J. W. (1991). Semantic
file systems. Paper presented at the 13th ACM Symposium on Operating Systems
Principles.

Grimm, B. T. (1998). Price indexes for selected semiconductors, 1974–1996.
Survey of Current Business 78 (February): 8–24.

Halasz, F., and Moran, T. P. (1982). Analogy considered harmful. Paper presented
at the ACM Conference on Computer-Human Interaction (CHI) 1982, Gaithers-
burg, Maryland.

Hayhoe, D. (1990). Sorting-based menu categories. International Journal of Man–
Machine Studies 33: 677–705.

Johnson, J., Roberts, T. L., Verplank, W., Smith, D.C., Irby, C. H., Beard, M.,
and Mackey, K. (1989). The Xerox Star: A retrospective. IEEE Computer 22
(9): 11–26.

Kaptelinin, V. (1996). Creating computer-based work environments: An empiri-
cal study of Macintosh users. Paper presented at the ACM SIGCPR/SIGMIS ’96,
Denver, Colorado.

Kaptelinin, V. (2003). UMEA: Translating interaction histories into project con-
text. Paper presented at the ACM Conference on Computer–Human Interaction
(CHI) 2003, Ft. Lauderdale, Florida.

Kay, A. (2003). The Dynabook revisited—A conversation with Alan Kay. Online
Symposium. The Book & The Computer. Retrieved from http://www.honco.net/
os/kay.html/.

Kay, A., and Goldberg, A. (1977). Personal dynamic media. IEEE Computer 10
(3): 31–41.

Kidd, A. (1994). The marks are on the knowledge worker. Paper presented at the
ACM Conference on Computer–Human Interaction (CHI) 1994, Boston, Mass.

Kleining, G. 1986. Das Qualitative Experiment [The qualitative experiment].
Kölner Zeitschrift für Soziologie und Sozialpsychologie 38 (4): 724–750.

Kwasnik, B. H. (1991). The importance of factors that are not document attri-
butes in the organisation of personal documents. Journal of Documentation 47
(4): 389–398.

Landsdale, M. (1988). The psychology of personal information management.
Applied Ergonomics 19 (1): 55–66.

Lohse, G. L., Biolsi, K., Walker, N., and Rueter, H. H. 1994. A classification of
visual representation. Communications of the ACM 37 (12): 36–49.

ch09.indd 292ch09.indd 292 12/4/2006 1:20:33 PM12/4/2006 1:20:33 PM

Why We Should Seek Metaphor-Free Interfaces 293

Malone, T. W. (1983). How do people organize their desks? Implications for the
design of office information systems. ACM Transactions on Office Information
Systems 1 (1): 99–112.

McDonald, J. E., and Schvaneveldt, R. W. (1988). The application of user knowl-
edge to interface design. In Guindon, R. (ed.), Cognitive Science and Its Applica-
tion for Human–Computer Interaction, pp. 289–338. Hillsdale, N. J.: Lawrence
Erlbaum.

Microsoft, Inc. (2004). The Windows File System. Microsoft. Retrieved from
http://msdn.microsoft.com/Longhorn/understanding/pillars/winfs.htm/.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Elec-
tronics 38 (8): 114–117.

Nardi, B., Anderson, K., and Erickson, T. (1995). Filing and finding computer
files. Paper presented at the East-West Conference on Human–Computer Interac-
tion, Moscow, Russia.

Nardi, B. A., and Barreau, D. (1997). “Finding and reminding” revisited: Appro-
priate metaphors for file organisation on the desktop. SIGCHI Bulletin 29 (1).

Nardi, B. A., Whittaker, S., Isaacs, E., Creech, M., Johnson, J., and Hainsworth, J.
(2001). ContactMap: Integrating communication and information through visual-
izing personal social networks. Communications of the ACM 49(4):89–95.

Nelson, T. (1990). The right way to think about software design In Laurel, B.
(ed.), The Art of Human–Computer Interface Design. Addison-Wesley.

Plaisant, C., and Shneiderman, B. (1994). The future of graphic user interfaces:
Personal role managers. Paper presented at the People and Computers IX.

Pliskin, N. (1989). Interacting with electronic mail can be a dream or a nightmare:
A user’s point of view. Interacting with Computers 1 (3): 259–272.

Ravasio, P. (2004). Personal Information Organisation: Studies on User-Appropri-
ate Classification and Retrieval Strategies and Their Implications for Information
Management Systems Design. Aachen, Germany: Shaker Verlag. (Also doctoral
dissertation 15579, Swiss Federal Institute of Technology, Zürich, Switzerland.)

Ravasio, P., Guttormsen-Schär, S., and Krueger, H. (2004). In pursuit of desk-
top evolution: User problems and practices with modern desktop systems. ACM
Transactions on Computer–Human Interaction (TOCHI) 11 (2): 156–180.

Ravasio, P., Guttormsen-Schär S., and Tscherter, V. (2006). The qualitative experi-
ment in HCI: Definition, occurrance, value, and use. Submitted.

Ravasio, P., Vukelja, L., Rivera, G., and Norrie, M. C. (2003). Project InfoSpace:
From information managing to information representation. Paper presented at the
Interact 2003—Ninth IFIP TC13 International Conference on Human–Computer
Interaction, Zürich, Switzerland.

Reichmuth, A. (2004). Difficulties in teaching computer use to novices [personal
communication]. Zurich, Switzerland. August 21, 2004.

Rekimoto, J. (1999). TimeScape: A time machine for the desktop environment. Paper
presented at the ACM Conference on Computer–Human Interaction (CHI) 1999.

ch09.indd 293ch09.indd 293 12/4/2006 1:20:33 PM12/4/2006 1:20:33 PM

294 Pamela Ravasio and Vincent Tscherter

Robertson, G., Dantzich, M. v., Robbins, D., Czerwinski, M., Hinckley, K., Risden,
K., Thiel, D., and Gorokhovsky, V. (2000). The Task Gallery: A 3D window man-
ager. Paper presented at the ACM Conference on Computer–Human Interaction
(CHI) 2000.

Sellen, A. J., and Harper, R. H. R. (2002). Introduction to The Myth of the Paper-
less Office. Cambridge, Mass.: MIT Press.

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for infor-
mation visualizations. Paper presented at the IEEE Visual Languages, Boulder,
Colorado.

Sutcliffe, A. G., Ennis, M., and Watkinson, S. J. (2000). Empirical studies of end-
user information searching. Journal of the American Society for Information Sci-
ence 51 (13): 1211–1231.

Sweeney, L. (2001). Information explosion. In Zayatz, L., Doyle, P., Theeuwes, J.,
Lane, J. (eds.), Confidentiality, Disclosure, and Data Access: Theory and Practical
Applications for Statistical Agencies. Washington, D.C.: Urban Institute.

Vicente, K. J., Hayes, B. C., and Williges, R. C. (1987). Assaying and isolating
individual differences in searching a hierarchical file system. Human Factors 29
(3): 349–359.

Voida, S., Mynatt, E. D., and MacIntyre, B. (2002). Supporting collaboration in
a context-aware office computing environment. Paper presented at the 4th Inter-
national Conference on Ubiquitous Computing (UbiComp 2002), Gothenburg,
Sweden.

Whittaker, S., and Hirschberg, J. (2001). The character, value, and management
of personal paper archives. ACM Transactions on Computer–Human Interaction
8 (2): 150–170.

Whittaker S., and Sidner, C. (1996). Email overload: Exploring personal informa-
tion management of email. In Proceedings of the 1996 ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI ’96), pp. 276–283. Vancouver,
British Columbia, Canada, April 13–18.

ch09.indd 294ch09.indd 294 12/4/2006 1:20:33 PM12/4/2006 1:20:33 PM

Introduction

This chapter emerged from the authors’ participation in a computer-
 supported cooperative work (CSCW) conference workshop that discussed
possibilities for redesigning email (Gwizdka and Whittaker 2002). Each
of us presented position papers asserting that a key priority in redesigning
email should be to improve integration between email and other appli-
cations (i.e., “workspace-level integration”) rather than transforming
email itself (Boardman, Sasse, and Spence 2002; Kaptelinin 2002). To our
surprise, we found ourselves to be the only champions of a workspace-
level approach. The other participants advocated that expanding email,
making it more sophisticated and powerful by adding advanced features
and functionalities (i.e., an “application-centric” approach), was the way
to face current challenges. As the authors’ views were highly compatible,
we decided to develop our arguments further and present them more sys-
tematically. This resolution eventually resulted in this chapter.1

In this chapter, we contrast two design perspectives for improving sup-
port for personal information management: (1) application-centric and
(2) workspace-level. Our point of departure is to use recent email research
as an example of the application-centric design perspective.

Email research is motivated by two main arguments. First, although
there have been some low-level changes to the email user interface, today’s
email applications have remained broadly unchanged over the past two
decades (Bälter 2000; Ducheneaut and Bellotti 2001; Neustaedter, Brush,
and Smith 2005). Second, empirical studies have shown that email users
experience a number of serious problems, which build up over time.

10
Toward Integrated Work Environments:
Application-Centric versus Workspace-Level
Design

Victor Kaptelinin and Richard Boardman

ch10.indd 295ch10.indd 295 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

296 Victor Kaptelinin and Richard Boardman

Many users experience email overload (Whittaker and Sidner 1996).
This term describes the difficulties users encounter in monitoring the end-
less stream of incoming mail, as well as prioritizing, filing, and finding
messages. Relevant messages are often difficult to find, which means that
important information may be missed. In addition, the above problems
are complicated by security concerns, such as spam and viruses. Despite
these problems, email has been remarkably successful and has become a
habitat for many users, that is, an environment where they spend much
of their work and leisure time (Ducheneaut and Bellotti 2001). However,
current email applications do not provide adequate support for the range
of tasks that users now carry out in email, that is, they do not support task
management (Whittaker and Sidner 1996; Whittaker 2005).

The above arguments are often interpreted as an indication that email
needs to be redesigned (e.g., Bälter 2000; Ducheneaut and Bellotti 2001;
Bellotti et al. 2003). Many designers have argued that email, created for
another era of computer use, is out of sync with the needs of today’s users,
and that its antiquated design is in need of massive revision. One possible,
and currently the most popular, approach to deal with user problems is
to embed extra functionality within email applications, such as support
for task management (Bellotti et al. 2003). This is an “email-centric”
approach; it focuses primarily on email and aims to make email a work-
space of its own.

Our position, presented in this chapter, is based on a different interpreta-
tion of the same arguments. The arguments per se are difficult to disagree
with, but they do not necessarily point to an application-centric design
focus. In this chapter we present and discuss an alternative approach, which
emphasizes the need to improve the integration of email with the other
applications that make up the larger-scale personal digital workspace. In
contrast to the email-centric perspective, this approach is concerned with
improving support for user activities across the workspace as a whole. In
the following discussion we will refer to this approach as “workspace-
level integration.” Such a perspective, as witnessed by this book, is gain-
ing ground in human–computer interaction (HCI) research (see also, e.g.,
Henderson and Card 1986; Robertson et al. 2000; Dragunov et al. 2005).

Empirical studies (e.g., Bälter 1998) do show that current email applica-
tions are not powerful enough to provide support for many activities such
as task management. However, this does not necessarily mean that new

ch10.indd 296ch10.indd 296 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

Toward Integrated Work Environments 297

features should be added to email. In some cases, appropriate support
may already exist in other applications. For instance, a user composing a
letter may not be satisfied with the basic formatting features provided by
the email program she uses, while another user might like to edit a digi-
tal photograph, which he wants to attach to an email. In these cases an
obvious solution would be to employ another application, such as a word
processor or an image editor. Ideally those would be conveniently inte-
grated with the email application. We highlight such an integrating design
perspective as an alternative to the predominant route of embedding more
functionality into email.

At this point, we would like to emphasize that we do not question the
need and value of innovative designs promoting the evolution of email.
Undoubtedly, numerous ideas that are being developed in current email
research are likely to make email more usable and useful. What we do
question is the fruitfulness of focusing purely at such an application- centric
level, that is, separating the design of applications from the design of the
(digital) workspace as a whole. A recurrent topic in this chapter is the
need to combine or at least coordinate these two perspectives. We mostly
focus here on potential advantages of one of these perspectives, namely,
workspace-level integration. However, this emphasis partly reflects an
intentional bias: it aims to counter the prevalence of the application-cen-
tric approach in current email research. Ideally, in our view, application-
centric design and workspace-level design should both be employed as
complementary approaches.

The rest of the chapter is organized into five sections. The second sec-
tion deals with the email-centric approach, describing its underlying ideas,
providing examples of recent work, and highlighting its limitations. In
the third section, we present the contrasting workspace-level approach,
its rationale and implications for email research. Again email is used as
an example of the application-centric approach to contextualize our theo-
retical discussion. We present email as one component of the wider vir-
tual workspace, and discuss the need for coordination between email and
other applications to provide better support for higher-level user activi-
ties. The next two sections describe two research projects that are aimed
at providing workspace-level support for user activities: (1) the UMEA
system based on the creation of project contexts through interaction his-
tory, and (2) the WorkspaceMirror system that allows a user to share

ch10.indd 297ch10.indd 297 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

298 Victor Kaptelinin and Richard Boardman

organizational categories between email and other applications involved
in personal information management (PIM). Finally, we summarize the
key points from each section, and then discuss the relationship between
the application-centric and workspace-level design perspectives.

The Application-Centric Approach

In this section we highlight the limitations of the application-centric per-
spective, centered on the example of email. First, we summarize research
aimed at adding new functionality to email and developing it into a
full-scale work environment. In our view, this research runs the risk of
transforming email beyond recognition, obtaining new benefits at the
expense of its core advantages. Furthermore, we argue that such email-
centric research is based on an inherently piecemeal view. Not only does it
increase the already high complexity of email interfaces, but it also ignores
the wider context of user needs beyond the boundaries of email.

The Email-Centric Approach to Task Management
Email is the most successful CSCW application to date, and millions rely
on it in their daily communications. As mentioned above, it has been
observed that email is not simply a tool, but rather a habitat where indi-
viduals spend much of their work and personal lives (Ducheneaut and
Bellotti 2001). The key reasons why email has become an attractive alter-
native to other communication media are its high speed, low cost, and
asynchronous nature.

Since email is ubiquitous, it is hardly surprising that much research
has been conducted on email (e.g., Mackay 1988; Whittaker and Sidner
1996; Bälter 1998; Ducheneaut and Bellotti 2001; Bälter and Sidner 2002;
Gwizdka 2002; Bellotti et al. 2003; Neustaedter, Brush, and Smith 2005;
Neustaedter et al. 2005). The main findings from this body of research
can be summarized as follows. First, researchers have discovered a diver-
sity of individual strategies employed by email users, in particular, in filing
processed messages. Second, they have identified a number of common
user problems, such as difficulties in processing, organizing, and filing
 messages. Third, many studies have clearly showed that email has out-
grown its original raison d’être and is now used for many “noncore”

ch10.indd 298ch10.indd 298 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

Toward Integrated Work Environments 299

tasks, that is, tasks beyond communication. For instance, Whittaker and
Sidner (1996, p. 276) observe that:

email has evolved to a point where it is now used for multiple purposes: document
delivery and archiving, work task delegation, and task tracking. It is also used for
storing personal names and addresses, for sending reminders, asking for assis-
tance, scheduling appointments, and for handling technical support queries.

In particular, Whittaker and Sidner (1996) highlight two primary func-
tions for which email has been adopted: (1) task management and (2) per-
sonal archiving.

Observations of diverse strategies, problems, and unanticipated uses are
generally interpreted as an indication that users require extra functionality
to be added to email. Mackay (1988, p. 352) claims “it is important to
look for powerful primitives that support the flexible extension of mail
to support different kinds of individual and group work.” Whittaker and
Sidner (1996) also emphasize the need to redesign email to support filing
and task management. They outline three directions for potential devel-
opment, each of which exploits the organizing of messages into conversa-
tional threads: (a) allowing the user to view and manipulate entire threads
associated with a selected message, (b) clustering semantically related doc-
uments to assist in filing incoming messages, and (c) message threading
and clustering to better support task management by grouping messages
related to current tasks. In their view, organizing messages into conver-
sational threads and allowing the user to directly manipulate the threads
opens up a range of new possibilities for integrating email and task man-
agement. Formally, conversational threads are structured clusters of email
messages, which share a particular subject line. At the same time, threads
are collections of thematically related information resources—not just
messages but also embedded URLs and attached files—typically utilized
in carrying out a certain task. Therefore, a message thread is a formally
identifiable representation of a task that can be used for accessing the
body of resources related to that task (e.g., meeting details in a reminder
message), or checking the task status (e.g., whether a pending message has
been received).

The directions indicated by Whittaker and Sidner (1996) have had a sig-
nificant influence on subsequent email research. For example, the display-
ing of conversational threads has been explored through empirical studies

ch10.indd 299ch10.indd 299 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

300 Victor Kaptelinin and Richard Boardman

of both traditional and innovative visualization techniques (Smith, Cadiz,
and Burkhalter, 2000; Venolia and Neustaedter, 2003) However, the area
of greatest interest has been that of providing efficient task management
support within email.

The general idea of using email for task management is not new. It
was clearly articulated, for instance, by Mackay (1988). Moreover, it has
been implemented in familiar software products, such as Microsoft Out-
look, which combines an email client with a suite of PIM tools: calendar,
address book, tasks, notes, and journal. The new contribution made by
Whittaker and Sidner (1996) was their analysis of design implications
following from the observation that individuals typically develop ad hoc
procedures for using messages in the inbox as implicit reminders rather
than using a dedicated tool. Whittaker and Sidner noted that much of
a user’s inbox reflects ongoing projects and includes information items
critical for task management. In a sense, the inbox is an analogue of the
working memory. Users do not make use of dedicated task management
software—but instead adopt email for this purpose (see, e.g., Bellotti and
Smith 2000).

Bellotti et al. (2003) have investigated the potential of threads for task
management. They describe a hybrid email/task management tool called
TaskMaster, centered on the concept of a “thrask”—a cross between
“thread” and “task”—defined as a threaded task-centric collection of
resources. The user interface features three panes: (a) a list of thrasks,
resembling a regular inbox with the exception that whole thrasks are
represented as folder icons (cf. Whittaker and Sidner 1996); (b) a list of
objects that make up a thrask, which includes not only messages but also
attached files and embedded URLs; and (c) the content of the selected
object. Each object can be assigned a PIM attribute, such as a deadline,
reminder, or action. One advantage of using threads as task-related collec-
tions is that collections can be created automatically using the metadata
already contained in messages, such as subject lines and reply sequences.
A similar strategy was employed in the design of the TimeStore system
(Yiu et al. 1997; Gwizdka 2002), where messages were organized along
two dimensions—subject and time—to facilitate the monitoring of indi-
vidual tasks.

The potential of using other email message attributes for task manage-
ment has been investigated within the ContactMap system (Nardi et al.

ch10.indd 300ch10.indd 300 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

Toward Integrated Work Environments 301

2002; Fisher and Nardi, this volume). ContactMap organizes informa-
tion resources around the user’s contacts (thus employing email’s “sender”
attribute). Pictorial representations of contacts on the desktop allow users
to create a spatial map of their social world which can be employed as an
organizing principle for their entire workspace.

Although not proposed as a task management tool, the Bifrost system
(Bälter and Sidner 2002) implements certain features that make it rel-
evant here. The rationale behind this design is to reduce information and
communication overload by automatically classifying incoming email into
prioritized groups (see also Neustaedter et al. 2005). By default, Bifrost
highlights two groups of high priority messages: (a) those that include
fragments of text from the user’s current calendar entries, and (b) those
received from prespecified senders. These two classification strategies
attempt to yield messages that are related to ongoing user tasks.

Currently the HCI/CSCW research community appears to be predomi-
nantly optimistic regarding the integration of task management func-
tionality within email. The potential limitations of this approach seldom
become an object of discussion. However, we argue that these limitations
are significant.

Problems with the Application-Centric Approach
In this section we discuss the limitations of the application-centric
approach. Again, we focus on efforts to integrate task management with
email. Some of the problems we discuss are related specifically to email,
such as the issue of preserving the core advantages of the application.
Other problems are more general, such as those related to the increased
complexity of the user interface, resulting from the bloating of email. In
addition, we point out that such an application-centric (more specifically,
email-centric) approach may have a detrimental effect on the coherence of
the digital workspace as a whole. In particular we discuss how the email-
centric approach does not consider how email is coordinated with other
applications. We argue that such considerations are crucial for the design
of digital work environments.

Diluting the key strengths of email Email has several key features that
may be lost as new functionality is added. Many email-centric designs
involve dividing the single flow of incoming messages, typical of current

ch10.indd 301ch10.indd 301 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

302 Victor Kaptelinin and Richard Boardman

email applications, into groups or threads. This feature can help the
user cope with email overload by hiding the detail of individual mes-
sages, many of which are often closely related. However, such separa-
tion makes it harder to obtain an overview of the entire incoming flow.
This in turn may lead to the user missing important information.

Let us consider the TaskMaster user interface. In the “Thrasks” pane
the items are organized in a quasi-chronological order. If a new message
does not belong to any of the existing thrasks, it is added to the list as the
first (or the last) item, much like in existing email applications; but if the
new message is recognized as belonging to an existing thrask the message
is placed in the appropriate thrask folder instead. The thrask folder in
that case changes its appearance to indicate that a new message has been
received. However, if the thrask folder is not currently visible the message
may remain unnoticed, unless the user scrolls down.

Of course, automatic distribution of messages in folders can play an
important positive role, for instance filtering spam. However, several
empirical studies have found that email users dislike filters (Whittaker
and Sidner 1996; Bälter 1998), and prefer single-track views of com-
munication to threaded views (Smith, Cadiz, and Burkhalter 2000).
Furthermore, much of the appeal of the email-centric approach to task
management lies in automatic linking of resources to tasks on the basis
of information that can be extracted from messages, such as “sender”
or “subject” attributes. However, there is no one-to-one correspondence
between the formal attributes of a message and its relation to a specific
task. For instance, a particular contact may be involved in a number of
projects. In addition, people do not always make sure the subject cor-
responds exactly to the content of a message. For instance, a person may
use the “reply” function to send a new message to a colleague without
bothering to change the subject line. Also, a single message can be related
to a number of tasks.

The above arguments do not imply that accurate automatic classifi-
cation of task-related resources is not desirable. However, the issue of
the practical usefulness of the classification needs to be further explored
through empirical studies of real-life use patterns. Arguably, there is scope
for design solutions that can cope with problems created by inaccurate
classification.

ch10.indd 302ch10.indd 302 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

Toward Integrated Work Environments 303

Bloating of email Another downside of adding task management func-
tionality to email is the resulting increase in the complexity of the user
interface. We argue that such an increase is likely to create problems for
users. Current email applications, like many other computer applications,
are already overloaded with unused functionality. A study of the use of
email in an academic laboratory, conducted by Bälter (1998), highlighted
a variety of problems caused by increased tool complexity. It was found
that even users with a background in computer science experienced dif-
ficulties with moving messages between mailbox folders, and distributing
the use of email between work and home.

Redesigning email by radically extending it with sophisticated features
not directly related to the basic functionality of the tool will only com-
pound the problem. We argue that increased complexity will have a par-
ticular impact on less technical users.2 Advanced functionality, although
appreciated by power users, may pose a challenge for many others.

Cross-application integration Email is not the only digital environment
“inhabited” by users during their work and leisure time. People may
spend hours at a time in the contexts of other applications, such as word
processors, programming environments, or chat rooms. Understanding
how people use a multiplicity of habitats requires understanding how
technologies support higher-level tasks—tasks that can be meaningfully
defined independently of the applications with which they are carried out.
An example of a higher-level task is canceling a scheduled meeting. To
define the task one needs to describe the group of people to be informed,
the reason for cancellation, and so forth. The task can be accomplished
in a variety of ways, such as sending an email, using an instant messaging
system, making phone calls, physically meeting other persons, or “meet-
ing” them in a chat room. Which tool is to be used, if any, is of second-
ary importance. Higher-level tasks are contrasted with lower-level tasks,
which are specific to particular technologies. Lower-level tasks, such as
creating a new mailbox, only make sense in relation to a particular tool.

Higher-level tasks often involve the use of many types of information
resources managed across a range of applications. The resources relevant
to a particular task may be received via email (e.g., messages, attachment
files, and embedded links) or may be created by the user herself. A key
aspect of performing higher-level tasks is therefore the coordination of

ch10.indd 303ch10.indd 303 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

304 Victor Kaptelinin and Richard Boardman

 multiple applications, such as email and the file system explorer. When
carrying higher-level tasks people need to switch between their digital
 subhabitats.

The need for cross-application coordination is recognized within the
email-centric approach. However, this need is addressed in an application-
centric manner. For instance, in the TaskMaster system users can manu-
ally add resources from other applications to email. The usefulness of the
system depends, therefore, on how many additional resources the user
needs to add manually. If most resources are included automatically, the
overhead may be insignificant. In contrast, if the user needs to spend sub-
stantial time manually adding resources to thrasks, the system may become
unusable. The amount of manually added resources will depend on the
applications people use outside email. In an empirical study conducted by
Czerwinski, Horvitz, and Wilhite (2004) it was found that tasks, which
can be described as “email,” constitute 23 percent of all tasks in the group
of knowledge workers taking part in the study. The large proportion of
“non-email” tasks (i.e., tasks that were not explicitly described as “email”)
can be interpreted as an indication that subjects carried out most of their
task outside email. Therefore, a hybrid “email—task management” system
may be a help or a hindrance depending on the use of other applications.

The need to explore alternative approaches This section has discussed
some potential limitations of the application-centric approach using email
as an example. Since email research is still in its infancy (Gwizdka and
Whittaker 2002), it is too early to tell whether or not these potential limi-
tations can be successfully overcome. Similar arguments can also be made
in other application contexts. What can be claimed with certainty, how-
ever, is the need to explore a variety of possible approaches. In the long
run, it might be a combination of approaches that will prove to be the
most promising.

Toward Workspace-Level Integration

Application-Centric versus Workspace-Level Design Perspectives
Is email, in its current form, a dinosaur or a timeless classic? In lieu of the
previous discussion, it is clear that email is neither. On the one hand, email
in its traditional form appears to serve its core functions well enough to

ch10.indd 304ch10.indd 304 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

Toward Integrated Work Environments 305

continue to be one of the most commonly used computer applications. On
the other hand, email has been a victim of its own success. Apparent prob-
lems and unexplored potential associated with the current use of email
indicate the need to explore new directions for design. The application-
centric approach, discussed in the previous section, is an attempt to deal
with these challenges by making email more advanced and powerful.

Here we advocate a contrasting perspective, based on the analysis of
user needs at a higher level, that of the digital workspace as a whole.
From this workspace-level perspective, the designer’s key aim is to pro-
vide support for better integration between email and other applications
(see figure 10.1). These two perspectives can thus be differentiated by the
designer’s scope of concern:

Application-centric: The designer’s primary aim is the optimization of an
independent application. The main design concern is what features and
functions should be added to the application to make it more powerful.

Workspace-level: The designer’s aim is to optimize how well the distinct
applications work together within a workspace as a whole. A workspace
can be defined as a spatial, temporal, and logical organization of resources
that support higher-level tasks.

Figure 10.1
A comparison of the application-centric and workspace-level design perspectives.

ch10.indd 305ch10.indd 305 12/4/2006 1:20:36 PM12/4/2006 1:20:36 PM

306 Victor Kaptelinin and Richard Boardman

The workplace-level perspective underlies many systems described
in this book. However, in research and development related to specific
applications—for instance, in email research—the application-centric per-
spective currently appears to be dominant. Digital workspaces contain
information objects such as documents, messages, images, and music, and
applications that support the production and consumption of informa-
tion objects during communication, writing, and reading. Activities taking
place in digital environments are integral parts of larger-scale activities
that span the physical and digital domains. Accordingly, digital work-
spaces are integral parts of larger-scale physical-virtual environments. If
the workspace-level perspective is adopted, the designers’ key questions
include: What are the unique core functions served by each application
that distinguish them from other applications? How can such functions
be preserved and enhanced when designing new systems? Conversely,
how can a particular application contribute to the increased utility and
usability of other applications? How should the workspace as a whole
be designed to facilitate the integrated use of distinct applications and to
provide optimal synergy between them?

In this section we address some of the issues identified earlier from a
workspace-level perspective. We use email as a context for our discus-
sion. We analyze email and its role in the workspace from three different
perspectives: (1) support of higher-level user tasks, (2) collaboration, and
(3) information processing.

Roles and Functions of Email within the Workspace as a Whole

Support for higher-level tasks When people use email in support of
higher-level tasks, for example, creating a digital photo album or working
on a course assignment, the employment of multiple applications is the
rule rather than an exception. Information resources received via email
may need to be transferred to other applications. A phone number in a
message may be stored in an address book, a digital picture may be edited
with an image processing program, and so forth. The emphasis on sup-
porting high-level activities, involving a variety of applications, gives pri-
ority to flexible solutions based on dynamic constellations of tools. Such
tool constellations should be available under diverse conditions but yet
provide consistent support for users’ activities.

ch10.indd 306ch10.indd 306 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

Toward Integrated Work Environments 307

Collaboration support Early empirical studies on the use of email for
task management focused on the division of labor within a group, rather
than management of an individual user’s tasks (Mackay 1988). Email is
a prototypical example of a CSCW application, and therefore appears to
be ideally suited for supporting collaborative task management. A pos-
sibility to integrate task management and collaboration support is one of
the main arguments behind the email-centric approach (Mackay 1988;
Bälter 1998). Although a highly successful tool for asynchronous and
primarily textual communication, email does not provide support for
other aspects of collaboration. Much collaboration takes place in collo-
cated teams, where the emphasis is on face-to-face formal and informal
meetings, phone calls, and so forth, rather than email communication.
Collaborators often need to combine email with other technologies that
provide additional functionality, such as access to shared archives, joint
editing of objects in a shared workspace, or synchronous communica-
tion. A significant part of remote collaboration is currently carried out
over the phone, in collaborative web environments, via videoconferences,
and so forth. Essential as it is, email is often just one of the diverse tech-
nologies used to support collaboration.

Digital work environments as information-processing systems One
useful analogy that can help identify the main advantages of email is
portraying the workspace as an abstract information-processing system.
General architectures of information processing systems typically include
the following components: (1) input–output processes, such as percep-
tual and motor systems; (2) long-term memory; and (3) working memory
(Newell, Rosenbloom, and Laird 1989). Information received through
sensory inputs is processed, that is, perceived, recognized, and classified.
It may be stored in long-term memory for later use, translated into work-
ing memory, transformed into motor responses, and hence used to solve
the problem at hand.

Here, the information-processing system model is used to describe the
notion of the workspace (see figure 10.2). Information enters the work-
space through different “inputs” and is processed in a variety of ways
to produce “outputs,” which are eventually sent out to the world. For
a traditional office worker it was typical to have “in” and “pending”
trays for incoming documents and documents currently being processed

ch10.indd 307ch10.indd 307 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

308 Victor Kaptelinin and Richard Boardman

(Malone 1983). As well as information authored by a user, digital work-
spaces receive information from the world through sensors, networks,
and portable memory devices such as digital cameras. They also distribute
information through the same channels. The files and cabinet folders of
a physical office, as well as files and folders typical of digital workspaces,
often function as long-term memory, even though they can be used for
temporary storage of information related to work in progress. The physi-
cal and digital desktops are analogous to working memory, where infor-
mation needed to solve a problem is activated and ready at hand.

Despite the obvious limitations of the above analogy, it is useful when
specifying the role and function of email in a digital workspace. First of
all, it illustrates how email supports all three components of the system,
to varying degrees.

Input–output Email is a key tool supporting this component of the
model. However, it is not the only one. Other ways to exchange informa-

Figure 10.2
Abstraction of the digital workspace as an information-processing system.

ch10.indd 308ch10.indd 308 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

Toward Integrated Work Environments 309

tion with the world include downloading files from the web, filling in
web forms, using IM systems, copying information to or from servers,
exchanging files via FTP, and so forth. It is difficult to compare, in terms
of both volume and importance, information sent or received via email
with information sent or received via other channels. Perhaps it would
be safe to say that at least in some cases the most important information
is exchanged with the use of tools other than email. Especially notable is
the ever-increasing share of the web in supplying information for current
digital workspaces. Indeed, email itself may also be fragmented across
multiple desktop and web-based clients.

Paradoxically, however, heavy information traffic beyond email does
not undermine the key role of this tool. Quite the opposite: the more
intensive and diverse information exchange is at the workspace, the more
important email becomes for the exchange. Many user actions performed
outside email, such as making a travel arrangement via Internet, result
in notifications or confirmations sent to the user’s email address. This is
because email has become the de facto tool supporting a single attention
focus of the user, which helps the user to keep track of the most important
interactions and events taking place in the world.

Long-term storage Email has its own storage system consisting of mail-
boxes and messages. The mailbox hierarchy can be used as an archive of
email messages and attachment files. Therefore, email contributes to a
long-term storage component of digital workspaces. However, many other
tools contribute to this functionality as well. The file system, to-do lists,
URLs (favorites), as well as other application-specific information hierar-
chies and archives constitute other parts of long-term storage.

Working memory/problem workspace Workspaces can be set up to
solve specific problems, containing the necessary resources, organized so
that the user can easily access them when needed. Workspaces are often
spatially organized in 2D (Henderson and Card 1986) or 3D (Robin-
son et al. 2000) environments. Workspaces typically contain ephemeral
objects, which have a lifetime measured in hours or days. The meaning
of an ephemeral object is determined by a temporary need, and so such
objects quickly become obsolete (Barreau and Nardi, 1995). Even though
“Working memory/problem workspace” is indicated in figure 10.2 as

ch10.indd 309ch10.indd 309 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

310 Victor Kaptelinin and Richard Boardman

one component of the model, there are in fact a number of task-specific
workspaces corresponding to the various interleaved tasks the user is
working on. Therefore, to effectively accomplish their tasks, the users
must maintain several foci of attention and switch between them when
necessary.

Problem workspaces do not have a uniform structure. Their organiza-
tion depends on a number of factors including the nature of the problem,
the preferences of the user, and the time required to manage the work-
spaces. For example, to create a letter the user may just need to open a
word processor. To carry out a more advanced task the user may need to
open several word processor windows, a browser window for searching
information on the web, an image-processing tool, and so on. Also, if the
user can only work on a problem for a limited time, he can decide to focus
on a specific subproblem, which may require a very basic workspace com-
pared to the workspace needed to work on the problem as a whole. For
instance, when creating a web photo album a user may decide to rename
picture files first to give them meaningful names. To carry out this subtask
the user only needs a viewing program. To accomplish other phases of the
higher-level task the user may need to put together an advanced work-
space including a variety of tools and information objects.

Moreover, the user may work on the task in different physical contexts,
such as at the office, at home, or on a trip. These partial contributions to
a particular task must be coordinated in order to complete the work.

Problem-specific workspaces, corresponding to the “Working memory”
component of the above model, need to be highly flexible. The user may
have to maintain several foci of attention, dividing her time and effort
between several tasks and the corresponding workspaces. Thus it is impor-
tant that the user should be allowed to focus on a specific problem while
temporarily ignoring other problems. The structure and content of prob-
lem-specific workspaces is not predetermined but rather emerging and
situated. To support the selective and flexible organization of resources,
digital work environments allow for spatial organization. Placing objects
in certain locations serves as a way to create ad hoc configurations pro-
viding an easy access to necessary resources (e.g., Robertson et al., this
volume). The above analysis indicates that email may not be an effective
tool for this purpose. Traditionally, email is based on a linear organization
of messages, which makes it especially suitable for maintaining a single

ch10.indd 310ch10.indd 310 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

Toward Integrated Work Environments 311

focus of attention and thus supporting the “input–output” processes.4 For
those users who do not delete messages email can also serve as a rather
useful long-term storage. However, the tool is not especially good at pro-
viding the user with selective and flexible configurations of resources,
unless their requirements conveniently map onto message threads.

Implications for Email Redesign Strategy: Coordination versus Expansion
To account for the success of email, one has to consider not only the
tool—its functionality, interface, and technical implementation—but
external factors as well. One can claim that it is likely email has become
so attractive to billions of people because it is fast, ubiquitous, and often
free, and that its design has always been of secondary importance. How-
ever, external factors do not explain why the specific implementation of
email as a single-thread list of messages—the design that is currently often
considered problematic—has become so popular. We already discussed
two aspects of the classic email design, which constitute its key advan-
tages: the asynchronicity of email as a communication tool and its support
of a single focus of attention. In this section we will argue that the “clas-
sic” email design also provides (1) accessibility and (2) compatibility with
other tools and tasks.

Perhaps, the most remarkable characteristic of email is its support for
an enormous range of users and activities. The same tool is used by people
of different ages, socioeconomic status, and occupations for all imagin-
able purposes: shopping, dating, keeping in touch with friends and family,
telemarketing, job announcements and applications, project management,
collaborative writing, customer service, political actions, and so forth. The
purposes and patterns of electronic communication can be very different
for different groups of people, but all of them invariantly find email useful
and reasonably well integrated into their everyday practices.

Another remarkable aspect of email is that this “habitat” coexists with
other applications and environments, some of which are likely to be “hab-
itats” too, such as web browsers, IM systems, and programming environ-
ments. Email is used to send links to web pages, itineraries produced by
ticket reservation systems, or documents created with a word processor.
Interestingly enough, email does not seem to compete with other commu-
nication tools. While other types of programs, such as a web browser or a
word processor, tend to become “the” tool for web browsing or creating

ch10.indd 311ch10.indd 311 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

312 Victor Kaptelinin and Richard Boardman

documents, email in many cases supports and complements rather than
substitutes other communication tools. For instance, email is used on a
regular basis by the authors of this essay to get notifications of received
voice messages, initiate a conversation with an IM program, or send login
details for a website.

Therefore, the role of email in the wider digital work environment is
threefold. First, email is a communication tool that supports user aware-
ness of important events, of what is going on in the world, and enables the
user to respond to these events. Such awareness helps users decide on the
priority of their tasks and assures that critically important information is
not overlooked. For a successful functioning of a digital work environment
it is important that a balance is struck between concentrating on a task and
monitoring the world. Second, when the user works on a certain task, or
problem, email serves as a tool that provides access to some of the resources
necessary to carry out the task (messages and attachment files) and thereby
contributes to management of task-related resources. Third, email contrib-
utes to the long-term storage of information in a work environment.

In this chapter we claim that developing email into a task management
tool, in other words taking steps toward making it a general-purpose
work environment, is associated with two problems. The first is the coor-
dination with the other tools and information objects that may be needed
when working on a task. In some cases, such as collaborative writing (cf.
Ducheneaut and Bellotti 2001), coordination with non-email resources
may not be a major obstacle. However, as discussed above, many problem-
specific workspaces involve a diverse range of resources. For instance, a
travel agent using a ticket reservation system can use email extensively
in addition to the system. The ticket reservation system may constitute a
work environment featuring advanced task management tools. It would
be hard to replicate such specific functionality in email. Therefore, trans-
ferring email into a task management system may require more than
simply extending its functionality. Successful integration of email and task
management within one system may mean a transformation of a general
tool into a specialized tool suitable for a limited range of activities and a
limited group of users.

The second potential problem is the impact on the core strengths of
email—employing email as a task-management tool may make it a less
effective communication tool. As shown in the previous section, problem

ch10.indd 312ch10.indd 312 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

Toward Integrated Work Environments 313

workspaces and communication (“input–output”) components of digital
work environments are associated with different, even opposite, require-
ments. Elaborate spatially organized workspaces, supporting multiple foci
of attention, may be effective for task management but less effective for
communication than traditional single-focus linear email systems.

In our view a redesign strategy for email should aim at preserving the
key features of email that make it such a remarkably successful communi-
cation tool, namely: (1) single attention focus, (2) a simple to follow linear
structure, and (3) the possibility to check email from virtually any con-
nected computer device. The most important problems to be addressed
in future email research include, in our view: (1) filtering out or hiding
irrelevant (or less relevant) information, (2) providing flexible visualiza-
tions, and (3) improving security.

However, we would argue that rather than focusing on email alone,
designers should capitalize on its core advantages by maximizing the
integration of email with other applications within virtual work environ-
ments. However, the consideration of integration often plays a minor part
in standard HCI methodology. In the next two sections we describe two
ongoing research projects intended as examples of concrete design explo-
rations based on the notion of integration. We begin with describing the
UMEA system based on the creation of project contexts through inter-
action history. After that we present the WorkspaceMirror system that
allows a user to share organizational categories between email and other
tools involved in personal information management.

Each system aims to provide workspace-level support for user activities.
Empirical and theoretical motivation for each design is presented as well
as findings from their evaluation, focusing on how they influence PIM
practices across multiple applications. Both systems represent a shift in
the design approach from embedding extra functionality in specific tools
to providing integration across tools.

Example System A: UMEA

Background
The UMEA (user-monitoring environment for activities) system aims to
provide low-overhead support for a user’s higher-level tasks, or projects.
Carrying out a project typically involves setting up and maintaining a

ch10.indd 313ch10.indd 313 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

314 Victor Kaptelinin and Richard Boardman

project context, that is, arranging necessary resources so they are read-
ily available when working on the project. Computer users often spend
considerable time and effort finding and opening documents, web pages,
email messages, contact details, and so on, to be able to carry out their
work. As repeatedly emphasized throughout this book, conventional
virtual work environments provide little support for managing project
contexts, especially when projects span several applications and require
multiple types of information objects (e.g., Plaisant et al., this volume;
Voida, Mynatt, and MacIntyre, this volume). Since users often switch
between different activities and work contexts (Czerwinski, Horvitz,
and Wilhite 2004), this lack of support can cause substantial work
 disruptions.

The UMEA system addresses this problem by automatically creating
project contexts as by-products of a user’s work on respective projects.
Project contexts are understood here as configurations of resources, asso-
ciated with a project, which can be accessed by the user without undue
effort. The UMEA system identifies information objects related to a proj-
ect and conveniently organizes them to minimize time and effort needed
to switch between projects or to continue working on a project after a
break. More specifically, the underlying aims of the system are as follows:
(a) make it possible for the user to directly indicate a higher-level task,
that is, a project; (b) monitor user activities and track resources employed
when carrying out the project; and (c) automatically organize and update
these resources to make them easily available to the user when he or she
resumes working on the project.

The design approach behind the system is based on both theoretical con-
siderations and empirical studies. The theoretical perspective informing the
system is activity theory (e.g., Kaptelinin and Nardi 2006). Activity theory
maintains that technologies need to be designed to mediate meaningful
human activities, rather than merely support low-level application-specific
tasks. Empirical studies of how people use desktop work environments
have reported numerous phenomena of everyday use that cannot be easily
accounted for by underlying assumptions of the design of the environ-
ments (Barreau and Nardi 1995; Kaptelinin 1996). In particular, it was
found that system features intended to support management of project-
related resources, provided by a popular operating system, were not actu-
ally used for that purpose (Kaptelinin 1996).

ch10.indd 314ch10.indd 314 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

Toward Integrated Work Environments 315

System Overview
The UMEA system is an application running on Microsoft Windows. The
most important feature of the system is the creation of interaction histo-
ries and their conversion into project contexts (see figure 10.3). Project
histories comprise various interaction events, such as opening a folder,
updating a document, or sending an email message. Each event is tagged
to a project that was active at the time the event took place. Project-tagged
interaction history thus identifies the set of resources that were employed
by the user when working on a project. These resources are divided into

Figure 10.3
Translating an example interaction history into a project context.

ch10.indd 315ch10.indd 315 12/4/2006 1:20:37 PM12/4/2006 1:20:37 PM

316 Victor Kaptelinin and Richard Boardman

four groups: documents, folders, URLs, and contacts (email addresses).
Resources of each group are compiled into project-specific lists. The lists
are organized sets of pointers that can be used to access a resource by
selecting it from a pop-up menu. Selecting a document or a folder opens
the corresponding information object, selecting a URL opens a web page,
and selecting a contact opens a new email “compose” window with the
contact’s email address inserted.

The system can run in either the foreground or background. In the fore-
ground mode the system presents users with an overview of their proj-
ects. The user can set up a new project or make one of the projects active
by selecting it on a menu. After that the user can open a project-related
resource by choosing it on a pop-up menu. The system also provides the
user with a number of PIM tools: a calendar, notes, and to-do lists. The
to-do lists, notes, and entries to the calendar are automatically linked to
specific projects. In the background mode the system passively monitors
interaction events. The events are stored in the interaction history with proj-
ects tags. If an event is associated with a new resource, that is, a resource
that has not yet been used within the currently active project, this resource
is added to the appropriate list. Adding a resource to a list does not change
the resource itself, so the same resource can be used in multiple projects.

First Experiences with the System
Empirical evidence about actual system use was gathered from two sourc-
es: the experience of its author, who used the system on an everyday basis
for several months, and an empirical study, in which a group of eight users
evaluated the system over a period of two to six weeks. The user group
consisted of eight native Swedish speakers, from 21 to 51 years old, and
included undergraduate and graduate students, university teachers, a pro-
grammer, and a secretary.

Most participants positively evaluated both the underlying approach
and the current version of the system. The advantages of the system,
mentioned by the participants, included: (a) access to various types of
resources related to a project “from within one place;” (b) the provision
of an overview of ongoing projects; (c) the ability to switch back and forth
between projects; and (d) the help provided by the system in recalling the
context of a project, which made it easier to resume working on the proj-
ect after an interruption.

ch10.indd 316ch10.indd 316 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

Toward Integrated Work Environments 317

Two main problems with the system were reported. First, there was a
need to manually clean up resource lists and/or interaction histories from
time to time to delete irrelevant items. The problem was caused mostly
by system’s automatic unselective inclusion of all information objects
employed by the user, even if the resources were not relevant to the project
at hand. Second, some participants experienced difficulties understanding
the user interface and the functionality of the system. Those users who
were provided with brief (5–10 minute) face-to-face introductions did not
mention this problem. However, participants who downloaded the system
with minimal explanations, and had to learn how to use it though trial
and error, reported initial confusion.

Task Management and Email Use in UMEA
Preliminary empirical evaluation of UMEA indicated that this tool was
used separately from email. As mentioned above, the system allows the
sending of messages from a project context by selecting an email address
from the automatically compiled list of project-related contacts. However,
participants did not use this functionality. This can be partly explained
by the fact that some of the participants used email clients that were not
supported by UMEA (the system only supported Microsoft Outlook).
Another possible reason was that users did not see any tangible benefits
from using email within UMEA because of the limited support for email-
related activities (sending a new message to a person from an automati-
cally created contact list was the only supported function). In everyday
collaboration new emails do not constitute the majority of messages.
Email messages are often sent as replies to previous emails and constitute
a communication thread, which helps to retain the context of communica-
tion (Whittaker and Sidner 1996).

The second version of the UMEA system, which was developed to
overcome some of the limitations of the first version, includes more
email-related features. In this version, the items in the “Contacts” list are
submenus. By selecting a contact the user has the choice of not only send-
ing a message to the contact, but also of viewing (a) a prespecified number
of the most recent messages received from the contact, or (b) a prespeci-
fied number of the most recent messages sent to the contact (see figure
10.4). The rationale for these new features is to allow the user to reply to
project-related messages.

ch10.indd 317ch10.indd 317 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

318 Victor Kaptelinin and Richard Boardman

Even though the new version of UMEA supports more advanced access
to email functionality from within a project context, this support is still
basic. However, even this implementation of the system illustrates an
example of the workspace-level design approach. If email communica-
tion is employed when the user focuses on a specific project and does not
want to be distracted by information related to other projects, the user can
perform some tasks, such as getting a list of recent messages received from
a colleague or sending a new message to a person involved in the proj-
ect, without switching to the email habitat. Future work in that direction
can result in a more developed understanding of project-embedded use
of email. The UMEA system can be further developed by implementing a
number of additional features, such as linking email threads to a project,
or the automatic compilation of project mailing lists.

The difference between the email-centric approach and the workspace-
level approach (illustrated here by the UMEA system) regarding the inte-
gration of email and task management can be summarized as follows.
According to the email-centric approach, the user’s work on higher-level
tasks is email-driven. Users are assumed to monitor incoming messages,
switch between tasks when necessary, and bring additional resources to
email if these resources cannot be accessed in the context of the email
tool. The UMEA system, on the contrary, is based on the assumption
that the use of email—as well as any other application—is determined by
the goals of the user. The system aims to facilitate the use of information
objects and the functionality of various tools, including email while car-
rying out a higher-level task, without forcing the user to switch between
 applications.

Figure 10.4
Extended email features of the second version of the UMEA system.

ch10.indd 318ch10.indd 318 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

Toward Integrated Work Environments 319

It is acknowledged that different approaches may be more suitable for
different categories of users. For some users an extension of the email tool
may be the best way to support their practices. However, at least some,
and probably most, users can benefit from having certain email features
available on demand. Some commercial software has taken steps in this
direction. For example, a relatively recent extension of the standard func-
tionality of Microsoft Office applications is the “Send to” command of
the “File” menu. This command opens an empty email message with the
current document as an automatically included attachment, and provides
an on-demand use of email.

Example System B: WorkspaceMirror

This section provides a second example of the workspace-level design
approach, describing the empirical motivation, design, and evaluation of
WorkspaceMirror (WM), an integration mechanism that allows an indi-
vidual to share organizational hierarchies across PIM tools.

Empirical Motivation
Many studies have observed the problems encountered by users in organiz-
ing information objects (e.g., Malone 1983; Whittaker and Sidner 1996).
Since most previous studies in this area have focused on specific tools,
such as email, the second author was motivated to perform an explor-
atory cross-tool study of personal information management practices for
25 users across their file, email, and bookmark collections (Boardman
2001, 2004; Boardman and Sasse 2004). The study provided evidence
that users may benefit from sharing the folder structures used to organize
items between PIM tools. Key findings included:

Most participants organized files most extensively, with deeper folder
hierarchies, and fewer unfiled items compared to the other collections. On
average, participants had 49 file folders, as opposed to 37 in email, and
12 in bookmarks.

Many of the users who filed items in two or more collections had creat-
ed significant numbers of folders that appeared in multiple tool contexts.
Such folder overlap suggests that certain user activities are cross-tool and
involve the organization of multiple types of information. However, with

•

•

ch10.indd 319ch10.indd 319 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

320 Victor Kaptelinin and Richard Boardman

the current generation of PIM tools, each type of information must be
organized separately.

Several participants complained about the effort of managing multiple
collections of personal information separately, and expressed annoyance
that it was not possible to manage their files and email together in the
same set of folders. For example, one commented: “They’ve got very dis-
tinct usages and purposes but to me it would be easy if I could have every-
thing in one location.”

Some participants had attempted to manually perform folder- mirroring—
maintaining identical folder structures across one or more collections.
These participants reported that it was hard to keep the folder structures
synchronized, and that they tended to diverge over time: “All of them [my
folder structures] started off with an identical folder structure, but over
time they’ve diverged somewhat.” Therefore most had abandoned manual
folder-mirroring because of the amount of effort involved: “I maintained
my usability knowledge base [a set of folders mirrored between the web
bookmark and email collections] for 6 months but it was too much hassle
and I got out of practice.”

Some participants mentioned problems when looking for an item while
they were not sure which collection it was in. In particular, retrieval prob-
lems were caused by the compromised ability to manage files as attach-
ments within the email collection. Several participants also mentioned that
retrieval problems were exacerbated by the existence of different organi-
zational structures in each tool.

These findings lead to the question of what benefits might be offered by
sharing one folder hierarchy between PIM tools. In other words, do users
really need the flexibility to develop distinct classification schemes for dif-
ferent types of personal information? For example, would users be able
to leverage organizational investment in their file system across to tools
where they tended to develop fewer folders?

The study also provided evidence that sharing organizational structure
between tools may not be appropriate. Folder overlap was in many cases
partial, and often limited to certain types of folders such as those relating
to projects. In other words, there was some variation in organizational
behaviour across the three tools for many participants. Furthermore, some
users did not rely on folders and instead relied on sort and search mecha-
nisms, particularly in email.

•

•

•

ch10.indd 320ch10.indd 320 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

Toward Integrated Work Environments 321

Design
In order to explore the potential of sharing folder structures between PIM
tools, the second author designed a software prototype, WorkspaceMirror
(WM), which allows users to mirror changes to folder structures between
three collections of personal information: files, email, and web bookmarks
(Boardman 2004; Boardman and Sasse 2004). In other words, if a change
is made to the folder structure in one collection, it is replicated in the
folder structures of the other collections. The prototype mirrored three
types of structural change: (1) creating a new folder, (2) deleting a folder,
and (3) renaming a folder. Note that each PIM tool still contained a dis-
tinct folder structure.

WM has been implemented on Microsoft Windows and synchronizes
changes made to the folder hierarchies in three tools: (1) email folders in
Outlook, (2) the user’s document area in the file system, and (3) book-
mark folders stored under “Favorites.” The tool works in one of two
modes: automatic or prompted. In prompted mode the creation, deletion,
or renaming of any folder causes a dialogue box to be displayed asking the
user if he wants to replicate the operation in the other two tools.

Note that WM should not be considered as an attempt to develop an
alternative to hierarchical organization. Limitations of the hierarchy such as
single-inheritance (Dourish et al. 1999) are beyond the scope of the design.
Also, it should also be noted that the prototype does not provide alterna-
tive means for interacting with folder structures. The user interacts with the
three PIM tools as before (e.g., via direct manipulation, or the command-
line). The design can be considered as a step toward the full unification of
personal information management that has been proposed in systems such
as Lifestreams (Freeman and Gelernter, this volume) and Presto (Dourish
et al. 1999). However, such revolutionary technologies have been criticized
for a lack of evaluation (Boardman 2004; Boardman and Sasse 2004). In
contrast, a prime aim of this work was to facilitate evaluation by pursu-
ing an incremental design based on relatively modest changes to standard
software. This has the advantage of enabling evaluation in real user work-
spaces with minimal disruption to the users concerned.

Evaluation
An initial evaluation of WM was carried out with eight users to deter-
mine whether the design was workable. This was directed at investigat-
ing whether the folder-mirroring mechanism would help users manage

ch10.indd 321ch10.indd 321 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

322 Victor Kaptelinin and Richard Boardman

 multiple types of information more effectively. A major challenge was
the lack of any accepted evaluation methodology regarding PIM tools
(Whittaker, Terveen, and Nardi 2000). The limitations of traditional per-
formance-based measures of usability for complex, ongoing, interleaved
activities such as PIM (Dillon 2001), led the researcher to steer away from
a task-based experiment. Instead the evaluation was based on a longer-
term field study.

Eight colleagues tested WM in prompted mode for an average of 69
days each, providing feedback via diaries and weekly interviews. We
also correlated this qualitative data with fortnightly logs of their evolv-
ing folder hierarchies to track their usage of any mirrored folders. The
data was triangulated to build up a rich picture of the user’s attitude to
WM and investigate whether it influenced their PIM practices. The use
of colleagues as participants is justified as follows. First, it was hoped
that the study could leverage the existing trust between the researcher
and his colleagues—avoiding possible privacy problems of working with
strangers’ personal data. Second, they were all technologically aware
and ready to work with beta software. A third reason was pragmatic:
it was easy to meet with them to carry out interviews and to install
 software.

Usage of WM varied widely between participants, partially owing to
tool incompatibilities for some users, and is described in depth by Board-
man (2004). Six of the participants mirrored folder creations between
PIM tools (average 7 each, min: 1, max: 26). All mirrored events related
to folder creations. No participants used WM to mirror a folder delete or
folder rename event, except to test the prototype. Most mirrored folders
were located high up in most participants’ folder structures (average depth
in the folder structure was 1.83 [SD: 0.89]). Across all participants, the
most common types of mirrored folders were project (40%) and event
(22%).5 Participants varied in terms of which tools they performed mir-
roring between. The most common source collection was files (64% of
mirrored folders), followed by bookmarks (21%), and email (14%).
The most common trajectories were “files to email” (45% of all events),
“bookmarks to files and email” (16% of all events), and “files to book-
marks” (13% of all events). The remaining two participants made no
use of WM. However, they both ran WM on their computers to test its
robustness, and they provided qualitative feedback.

ch10.indd 322ch10.indd 322 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

Toward Integrated Work Environments 323

Qualitative Feedback: Pros and Cons of Folder-Mirroring
The aim of the evaluation was to investigate whether the participants
would use WM to share folder structures between the three PIM tools.
A range of positive and negative feedback was received regarding the
tested version of WM. Two of the heaviest users observed and welcomed
the increase in consistency between the folder structures over time and
described how it helped them manage information for a variety of proj-
ects. Both suggested that mirroring lead to easier navigation, for example:
“It’s easier to navigate with a mirrored structure, compared to three differ-
ent ones.” Three participants who performed more limited mirroring also
acknowledged the benefits of an increase in consistency.

Four participants indicated that mirroring was useful between all three
tools, while the remaining four indicated that it was most worthwhile
between files and emails. Note that all members of this second group
placed little importance on mirroring folders to/from their bookmark
 collections.

A general theme mentioned by all eight participants was that mirror-
ing should not follow a one-to-one mapping between PIM tools because
of differing organizational requirements. In many cases, participants had
more complex organizing requirements in their file collections compared
to email and bookmarks. For example, one commented:

It doesn’t make sense to create an email folder for every single publication so I just
have a single submissions folder that goes across the publications and has, let’s say,
at the moment maybe 30 entries or so. In my H-drive [file collection] on the other
hand, every single publication is a project—and deserves its own folder because it
consists of much more files than just the five emails.

Participants observed that there was not always a direct one-to-one
mapping between their folder requirements in each tool. Seven partici-
pants suggested that mirroring was particularly appropriate for top-level
folders. One said, for example:

Images related to my project and all the substructure of that project . . . it’s very
difficult to see why you’d want to mirror all that [to files and bookmarks]. Once
you’ve mirrored there [at the top level]—you might not want to mirror it further
down. I think it would work at that level. Here are the projects I’m working on.
Here are the emails about that project. And here are web links related to the proj-
ect. That makes sense to me.

However, many participants welcomed the chance to reflect on the rel-
evance of organizational decisions made in one tool to other contexts.

ch10.indd 323ch10.indd 323 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

324 Victor Kaptelinin and Richard Boardman

Occasionally mirrored folders were not always used for the storage of
items in all tools, but the testers indicated that the improved organiza-
tional consistency outweighed the side effect of increased clutter. The users
also reported lower management overheads and easier retrieval of filed
items. However, no attempt has yet been made to confirm these results
objectively.

Two participants noted difficulties in accommodating WM within an
existing personal information environment where differing file, email,
and bookmark folder structures had already been developed. One par-
ticipant noted that he would need to perform a significant reorganization
of his workspace to make WM worthwhile. Although he reported plan-
ning to do so, he had not done it over the course of the study. Another
suggested that WM would be most appropriate when setting up a new
computer:

I’d say you get you’d get some seriously different results if you installed WM on
someone with a brand new computer about to start to using it. . . . I think you’d
get a very different dynamic, and you might even get a completely different usage
out of the same person. . . . Most of my pre-organization had already occurred by
then, reasonably quickly after purchasing the computer.

Feedback also included a number of design requests that are under con-
sideration for future versions. This section focuses on the most common
area of feedback—the need to make mirroring more selective. This points
to a trade-off between organizational consistency (having the same folder
structure in different tools) and cross-tool organizational flexibility (being
able to organize different types of information in different ways). Sev-
eral participants welcomed the increase in consistency, indicating that it
made navigation easier. However, increasing consistency constrains users
to organize different types of information in the same way. Overall, most
participants favored flexibility over consistency. However, seven par-
ticipants said that mirroring folders across all tools made sense in some
cases—in particular, top-level folders. A key reason for the bias in favor of
flexibility was the need for different organizational requirements between
tools. For many participants, email and bookmarks tended to be based
on shallow, one-layer folder structures, while files were organized within
deep, branching structures. Therefore they saw little need to mirror all
low-level file folders to email and bookmarks.

ch10.indd 324ch10.indd 324 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

Toward Integrated Work Environments 325

Discussion
WM offers a second example of workspace-level design. The initial evalu-
ation indicated the potential benefits of the design, although the trade-off
between consistency and reduced flexibility warrants further investigation.
The study indicates that folder mirroring has potential, especially for top-
level folders. In this way it highlighted how information organizing, an
important day-to-day user activity, is a cross-workspace activity, currently
supported by application-specific functionality. WM illustrates a first step
toward providing cross-workspace support for information organizing
across multiple applications, and the potential benefits that may result.

The formative redesign of WM is outside the scope of this chapter.
However, based on the response from the participants, the next step would
certainly be to limit mirroring to top-level folders by default. Furthermore,
participants varied in terms of which tools they found it useful to mirror
folder structures between. Although overall files-to-email was the most
common mirroring pattern, several participants mirrored mainly between
files and bookmarks. Therefore, a customization facility to select the PIM
tools between which to mirror would also be worth investigating.

Conclusion

This chapter contrasts two design perspectives: (a) an application-centric
approach, for example, extending the functionality of email to include
task management features, and (b) a workspace-level approach, where
the aim is to improve the integration of distinct applications. The differ-
ence between the approaches can be defined in terms of their relative foci.
Whereas the email-centric approach, as a particular case of a more general
application-centered approach, focuses on an individual tool, the work-
space-level integration approach encompasses multiple tools.

Higher-level tasks transcend the boundaries of a single application and
typically require coordination of multiple applications to work on an
activity. In addition, a user will typically perform multiple activities within
a digital work environment. Furthermore, users will often be interrupted,
switch between activities, start new ones, resume, abandon, or suspend
activities, and so forth. Environments need to be designed to support all
these types of coordination. Therefore, the design of environments implies

ch10.indd 325ch10.indd 325 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

326 Victor Kaptelinin and Richard Boardman

a design perspective different from that of application-specific design. This
perspective received less attention and is less elaborated upon than appli-
cation-centric design (see the introduction by Kaptelinin and Czerwinski,
this volume).

Currently, much of the work on personal information environments is
 application-centric. In our view, this tendency could be usefully balanced
with more attention to the design of the workspace as a whole. In this
chapter we have argued that specific tools should not be studied, designed,
and evaluated in isolation from the rest of the workspace.

Both the application-centric approach and the workspace-level approach
have their respective advantages and disadvantages. As we discussed ear-
lier in the chapter, an application-centric approach can offer the benefits
of optimizing one specific user interface. For example, in the case of email,
recent work has extended the inbox to act as a to-do list, and provided
intuitive access to some task-related resources, such as messages, files,
and web links. However, we have discussed how such email extensions, as
well as increasing interface complexity, may also require the user to make
a substantial investment of time and effort in manually linking resources
to email. Thus, adding new functionality may have a side effect of making
the monitoring of incoming messages more difficult. In addition, the use-
fulness of email as a task-management tool depends critically on how
other tools are used; for instance, if the user relies heavily on web-based
collaboration support, then email may constitute a relatively minor source
of information for task management at the individual workspace level.

The workspace-level integration approach is based on the assumption
that email, or any other application, is not the whole story. Instead, we
urge that it should be considered a subhabitat within the wider work-
space. In the case of email, this means that email should retain the primary
function of providing a focus of attention for communicating with the
“outside world.”

This chapter presented two examples of mechanisms or “metatools”
that improve integration between applications. Both systems described in
this chapter illustrate the workspace-level design perspective. The systems
themselves are relatively lightweight and can be learned quickly. Both sys-
tems let the user decide how to work, and do not prescribe how the users
should go about their everyday activities. If the systems are not employed,
users can follow their habitual work routines without experiencing any

ch10.indd 326ch10.indd 326 12/4/2006 1:20:38 PM12/4/2006 1:20:38 PM

Toward Integrated Work Environments 327

further inconveniences. The overall organization of a work environment
remains flexible; users can make changes to their environments relatively
easily. For instance, if the user decides to switch to another email program
that he thinks is more consistent with his work practices, he can do that
without a major restructuring of the workspace.

We do not claim that workspace-level integration is problem-free.
The special-purpose integration systems described in this chapter do not
explicitly suggest more advanced work practices to the user. Therefore,
their usefulness may not be immediately apparent. Furthermore, the sys-
tems present new elements in the user’s workspace, which require atten-
tion and learning. Even though the systems were deliberately designed to
minimize extra cognitive load associated with their use, some effort will
be required on the user’s part.

It should be noted that although we have contrasted the pros and cons
of the application-centric and workspace-level perspectives, these perspec-
tives are not mutually exclusive. For instance, email could be extended
with new functionalities while at the same time becoming better integrated
with other tools. As this book indicates, there is a growing understanding
in the HCI community that the traditional focus on individual applica-
tions is not sufficient. It reflects a fundamentally piecemeal approach in
research and development, resulting in workspaces populated by massive-
ly complex applications, each attempting to provide a complete user habi-
tat. However, as we have discussed, this can result in unused functionality,
and coordination breakdowns. A balanced approach, combining design at
both the application and workspace levels appears to be the only way to
make digital work environments truly habitable.

Notes

1. During the work on this chapter Richard Boardman was a graduate student
at the Department of Electronic and Electrical Engineering, Imperial College
London.

2. A general comment that can be leveled at the major of work in the field of PIM
and task management in general is that there is too much focus on the needs of
technically experienced users. Most empirical research and design has focused on
the needs of knowledge workers.

3. Note that the terms application and tool are used interchangeably in this
 chapter.

ch10.indd 327ch10.indd 327 12/4/2006 1:20:39 PM12/4/2006 1:20:39 PM

328 Victor Kaptelinin and Richard Boardman

4. Systems such as Bifrost (Bälter and Sidner 2002) or SNARF (Neustaedter et
al. 2005) divide the inbox into several parts containing different types of mes-
sages. These systems are deliberately designed to make sure the user is aware
of all received emails; they do not undermine but rather support maintaining a
single focus of attention by suggesting optimal strategies of dealing with incoming
 messages.

5. These aggregate figures are biased toward those participants who mirrored
more folders. Please see Boardman 2004 for more analysis on a user-by-user
basis.

References

Bälter, O. (1998). Electronic mail in a working context. Doctoral thesis, TRITA-
NA-9820, Royal Institute of Technology, Stockholm, Sweden.

Bälter, O. (2000). A keyboard-level analysis of email message organization. In Pro-
ceedings of the 2000 ACM Conference on Human Factors in Computing Systems,
pp. 105–112. The Hague, the Netherlands, April 1–6.

Bälter, O., and Sidner, C. (2002). Bifrost Inbox Organizer: Giving users control
over the Inbox. In Proceedings of the Second Nordic Conference on Human–
Computer Interaction (NORDICHI’02), pp. 111–118. Aarhus, Denmark, Octo-
ber 19–23.

Barreau, D., and Nardi, B. (1995). Finding and reminding: File organization from
the Desktop. ACM SIGCHI Bulletin 27: 39–43.

Bellotti, V., Ducheneaut, N., Howard, M., and Smith, I. (2003). Taking email to
task: The design and evaluation of a task management centered email tool. In
Proceedings of the CHI 2003 Conference: Human Factors in Computing Systems,
pp. 345–352. Ft. Lauderdale, Florida, April 5–10.

Bellotti, V., and Smith, I. (2000). Informing the design of an information manage-
ment system with iterative fieldwork. Proceedings of the Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 227–237.
New York City, New York, August 17–19.

Boardman, R. (2001). Category overlap between hierarchies in user workspace. In
Proceedings of the Eighth IFIP TC 13 International Conference on Human–Com-
puter Interaction (INTERACT’01), Tokyo, Japan, July 9–13.

Boardman, R. (2004). Improving tool support for personal information manage-
ment. Unpublished Ph.D. thesis, Department of Electrical and Electronic Engineer-
ing, Imperial College London.

Boardman, R., and Sasse, M. A. (2004). “Stuff goes into the computer and doesn’t
come out”: A cross-tool study of personal information management. In Proceed-
ings of the 2004 ACM Conference on Human Factors in Computing Systems,
pp. 583–590. Vienna, Austria, April 24–19.

Boardman, R., Sasse, M. A., and Spence, B. (2002). Life beyond the mailbox: A
cross-tool perspective on personal information management. Position paper for

ch10.indd 328ch10.indd 328 12/4/2006 1:20:39 PM12/4/2006 1:20:39 PM

Toward Integrated Work Environments 329

workshop “Redesigning Email for the 21st Century” at the CSCW 2002 Confer-
ence (New Orleans, Louisiana, November 16, 2002). Http://peach.mie.utoronto.
ca/people/jacek/emailresearch/CSCW2002/submissions/UK-IC-boardman- sasse-
spence-cscw2002-final.pdf.

Bødker, S. (1991). Through the Interface: A Human Activity Approach to User
Interface Design. Hillsdale, N. J.: Lawrence Erlbaum.

Christensen, H., and Bardram, J. (2002). Supporting human activities—exploring
activity-centered computing. In Borriello, G. and Holmquist, L.-E. (eds.), Proceed-
ings of the 4th International Conference, UbiComp 2002, pp. 107–116. Lecture
Notes in Computer Science 2498. Berlin: Springer.

Czerwinski, M., Horvitz, E., and Wilhite, S. (2004). A diary study of task switch-
ing and interruptions. In Proceedings of the 2004 ACM Conference on Human
Factors in Computing Systems, pp. 175–182. Vienna, Austria, April 24–19.

Dillon, A. (2001). Beyond usability: Process, outcome, and affect in HCI. Cana-
dian Journal of Information Science 26(4): 57–69.

Dourish, P., Edwards, W. K., LaMarca, A., and Salisbury, M. (1999). Presto: An
experimental architecture for fluid interactive document spaces. ACM Transac-
tions on Computer Human Interaction 6 (2): 133–161.

Dragunov, A. N., Dietterich, T., G., Johnsrude, K., McLaughlin, M., Li, L., and
Herlocker, J. L. (2005). TaskTracer: A desktop environment to support multi-task-
ing knowledge workers. In Proceedings of the 10th International Conference on
Intelligent User Interfaces, pp. 75–82. San Diego, California, January 10–13.

Ducheneaut, N., and Bellotti, V. (2001). Email as habitat: An exploration of
embedded personal information management. interactions 8 (5): 30–38.

Fertig, S., Freeman, E., and Gelernter, D. (1996). Lifestreams: An alternative to the
desktop metaphor. In Conference Companion of the 1996 ACM SIGCHI Confer-
ence on Human Factors in Computing Systems (CHI’96), pp. 410–411. Vancou-
ver, British Columbia, Canada, April 13–18.

Gwizdka, J. (2002). Reinventing the inbox—supporting the management of pend-
ing tasks in email. In Extended Abstracts of the 2002 ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI’2002), pp. 550–551. Minneapo-
lis, Minnesota, April 20—25.

Gwizdka, J., and Whittaker, S. (2002). Redesigning email for the 21st century. A
CSCW’2002 workshop report. Http://emailresearch.org/.

Henderson, A., and Card, S. (1986). Rooms: The use of virtual workspaces to
reduce space contention in a window-based graphical user interface. ACM Trans-
actions on Graphics 5: 211–243.

Huynh, D., Karger, D., and Quan, D. (2002). Haystack: A platform for creating,
organizing, and visualizing information using RDF. Http://haystack.lcs.mit.edu/
papers/computer-network-2002.pdf/.

Kaptelinin, V. (1996). Creating computer-based work environments: An empirical
study of Macintosh users. Proceedings of the ACM SIGCPR/SIGMIS’96 Confer-
ence, pp. 360–366. Denver, Colorado, April 11–13.

ch10.indd 329ch10.indd 329 12/4/2006 1:20:39 PM12/4/2006 1:20:39 PM

330 Victor Kaptelinin and Richard Boardman

Kaptelinin, V. (2002). Putting work to email or putting email to work? Position
paper for workshop “Redesigning Email for the 21st Century” at the CSCW 2002
Conference (New Orleans, Louisiana, November 16, 2002). Http://peach.mie.
utoronto.ca/people/jacek/emailresearch/CSCW2002/submissions/UMEA-Kapteli-
nin_CSCW_2002_workshop.pdf.

Kaptelinin, V. (2003). UMEA: Translating interaction histories into project con-
texts. In Proceedings of the 2003 ACM Conference on Human Factors in Comput-
ing Systems, pp. 353–360. Ft. Lauderdale, Florida, April 5–10.

Kaptelinin, V., and Nardi, B. (2006). Acting with Technology: Activity Theory and
Interaction Design. Cambridge, Mass.: MIT Press.

Lansdale, M. (1988). The psychology of personal information management.
Applied Ergonomics 19 (1): 55–66.

Mackay, W. (1988). More than just a communication system: Diversity in the
use of electronic mail. In Proceedings of the 1988 ACM Conference on Com-
puter-Supported Cooperative Work (CSCW’88), pp. 344–353. Portland, Oregon,
September 26–28.

Malone, T. (1983). How do people organise their desks? Implications for the
design of office information systems. ACM Transactions on Office Information
Systems 1 (1): 99–112.

Moran, T. (2003). Activity: Analysis, design, and management. In Ivrea Sympo-
sium on Foundations of Interaction Design, 12–13 November 2003, Italy. Http://
www.interaction-ivrea.it/en/news/education/2003–04/symposium/index.asp/.

Nardi, B., Whittaker, S., Isaacs, E., Creech, M., Johnson, J., and Hainsworth, J.
(2002). Integrating communication and information through ContactMap. Com-
munications of the ACM 45: 89–95.

Neustaedter, C., Brush, A. J. B., and Smith, M. A. (2005). Beyond “From” and
“Received”: Exploring the dynamics of email triage. In Extended Abstracts of
the 2005 ACM SIGCHI Conference on Human Factors in Computing Systems,
pp. 1977–1980. Portland, Oregon, April 2–7.

Neustaedter, C., Brush, A. J. B., Smith, M. A., and Fisher, D. (2005). The social
network and relationship finder: Social sorting for email triage. Paper given at the
Second Conference on Email and Anti-Spam (CEAS 2005). Stanford, California,
July 21–22. Http://www.ceas.cc/2005/index.html/.

Newell, A., Rosenbloom, P. S., and Laird, J. E. (1989). Symbolic architectures
of cognition. In Posner, M. (ed.), Foundations of Cognitive Science, pp. 93–131.
Cambridge, Mass.: MIT Press.

Norman, D. (1998). The Invisible Computer: Why Good Products Can Fail, the
Personal Computer Is So Complex, and Information Appliances Are the Solution.
Cambridge, Mass.: MIT Press.

Plaisant, C., and Shneiderman, B. (1995). Organization overviews and role man-
agement: Inspiration for future desktop environments. In Proceedings of the 4th
IEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, pp. 14–22. New York.

ch10.indd 330ch10.indd 330 12/4/2006 1:20:39 PM12/4/2006 1:20:39 PM

Toward Integrated Work Environments 331

Raskin, J. (2000). The Humane Interface. Reading, Mass.: Addison-Wesley.

Robertson, G., van Dantzich, M., Robbins, D., Czerwinski, M., Hinckly, K.,
Risden, K., Thiel, D., and Gorokhovsky, V. (2000). The Task Gallery: A 3D
window manager. In Proceedings of the 2000 ACM Conference on Human Factors
in Computing Systems, pp. 494–501. The Hague, the Netherlands, April 1–6.

Segal, R., and Kephart, J. O. (1999). MailCat: An intelligent assistant for orga-
nizing email. In Proceedings of the Third Annual Conference on Autonomous
Agents, pp. 276–282. May.

Smith, M., Cadiz, J. J., and Burkhalter, B. (2000). Conversation trees and threaded
chats. Proceedings of the 2000 ACM Conference on Computer Supported Coop-
erative Work, pp. 97–105. Philadelphia, Pennsylvania, December 2–6.

Venolia, G., and Neustaedter, C. (2003). Understanding sequence and reply rela-
tionships within email conversations: A mixed-model visualization. Proceedings of
the 2003 ACM Conference on Human Factors in Computing Systems (CHI 2003),
pp. 361–368. Ft. Lauderdale, Florida, April 5–10.

Whittaker, S. (2005). Supporting collaborative task management in email. Human
Computer Interaction 20: 49–88.

Whittaker, S., and Sidner, C. (1996). Email overload: Exploring personal informa-
tion management of email. In Proceedings of the 1996 ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI’96), pp. 276–283. Vancouver,
British Columbia, Canada, April 13–18.

Whittaker, S., Terveen, L., and Nardi, B. (2000). Let’s stop pushing the envelope
and start addressing it: A reference task agenda for HCI. Human Computer Inter-
action 15: 75–106.

Yiu, K. S., Baecker, R., Silver, N., and Long, B. (1997). A time-based interface for
electronic mail and task management. In Proceedings of the Seventh International
Conference on Human–Computer Interaction (HCI International ’97), pp. 19–22.
San Francisco, California, August 24–29.

ch10.indd 331ch10.indd 331 12/4/2006 1:20:39 PM12/4/2006 1:20:39 PM

ch10.indd 332ch10.indd 332 12/4/2006 1:20:39 PM12/4/2006 1:20:39 PM

Conclusion

ch11.indd 333ch11.indd 333 12/4/2006 1:20:41 PM12/4/2006 1:20:41 PM

ch11.indd 334ch11.indd 334 12/4/2006 1:20:41 PM12/4/2006 1:20:41 PM

The ubiquitous use of the desktop metaphor as the primary means of
interacting with information is perhaps the earliest, and arguably the most
profound, landmark of user interface design. Ironically, such a success is
both a great past achievement and a difficult future challenge to over-
come. The computing technologies and user experiences available in our
current web-driven world are evolving rapidly. In fact, the strict concept
of the desktop metaphor is already a “straw man” notion, but it can help
us characterize where we were and where we are going. We are already
in midflight from the desktop to the next metaphor. Although we cannot
be sure where we are going, we can discern different dimensions in which
things are changing.

The research presented in this book represents some of the most prom-
ising recent efforts to move beyond desktop-metaphor-based computing.
In this concluding chapter we reflect and comment on seven dimensions
along which we see future integrated digital work environments chang-
ing, as experienced by users, from today’s computing environment. Our
analyses and speculations are based on the chapters in this book and our
own research, as well as the HCI literature and information technology
trends in general. We conclude this book in very broad strokes in the spirit
of trying to capture major themes.

Here, in a nutshell, are the dimensions of change that we will examine:

1. The basic change is that personal information is being liberated from
the constraints of the desktop metaphor. It is being dispersed in the net-
worked world in what we might call a “personal information cloud.”

2. Several other kinds of changes follow from the first. The desktop
metaphor standardized, and thus limited, the ways information could be

11
Beyond the Desktop Metaphor in Seven
Dimensions

Thomas P. Moran and Shumin Zhai

ch11.indd 335ch11.indd 335 12/4/2006 1:20:41 PM12/4/2006 1:20:41 PM

336 Thomas P. Moran and Shumin Zhai

presented. New ways of organizing personal information are spawning a
great variety of new representations and visualizations.

3. The desktop metaphor was designed for a standardized computational
form, that of the workstation and laptop. The proliferation of new forms
of computing devices both requires and exploits the information cloud to
allow information to “follow the user” rather than the existing forms.

4. The desktop metaphor is built around keyboarding and pointing. The
multiplicity of devices of different sizes and functions forces designers to
develop new modes and modalities of physical interaction techniques.

5. Not only is information being liberated from the desktop, but so also are
software applications. Functional computations delivered as services from
servers make these functions available independent of specific devices.

6. The desktop metaphor creates a personal office isolated from others
except through limited channels. More and more personal information
clouds are intersecting in richer ways to facilitate collaborating with other
participants in large-scale social communities.

7. The desktop metaphor creates an arena focused on a variety of generic
office tools geared to low-level interaction tasks. Future computational
work environments should be centered instead around the user’s meaning-
ful activities, which requires an explicit representation of the concept of
activity in the information cloud.

Note that these seven dimensions are not exhaustive; and they are dimen-
sions of change, such as moving from rigid to more adaptive representa-
tions. But these seven seem most related to the body of work exhibited
in this book. In what follows we reflect and comment on each of these
dimensions, relate them to each other and to the chapters in this book,
and conclude with a brief review on where we stand on the future of per-
sonal computing.

Dimension 1: From the Office Container to the “Personal Information
Cloud”

The desktop metaphor was originally invented to support office work. The
metaphor is really a personal office metaphor. The metaphorical desktop
itself is a display screen with various office-relevant objects—documents
(overlapping windows), folders (icons), and tools (e.g., printer icons)—in

ch11.indd 336ch11.indd 336 12/4/2006 1:20:41 PM12/4/2006 1:20:41 PM

Beyond the Desktop Metaphor in Seven Dimensions 337

a freeform arrangement. There is also a metaphorical file system orga-
nized as a hierarchy of folders and files, rather like file cabinets. Further,
there is a metaphorical mail-based inbox, providing a route for messages
and attached documents to enter and leave the office.

The dominant feature of the desktop metaphor is that information is
contained in the office, in both a cognitive and a physical sense. Users
understand that information objects have a place: on the desktop, in a
folder, in the inbox, and so on. But there is also a physical reality to
the containment notion—the digital information is actually stored in the
physical memory of the personal computer. The metaphor enables the
user to understand and manage the information in the computer’s physi-
cal store. However, there is a growing trend to interact with information
outside the metaphorical office. Workers in business settings have for a
long time been using file servers to retrieve, back up, share, and archive
information. The World Wide Web has made remote information acces-
sible within the metaphorical office. Much information does not have to
be stored in the office machine for it to be readily available. And people
are not just retrieving, but also putting information on the web. Millions
of people use hosted email services. The evolution of the web to “Web
2.0” is enabling people not only to retrieve, but also to create personal
content and annotations on the web. So, personal information such as
email is now commonly stored outside of the office machine.

But there is also a deeper cognitive trend in the way users understand
how to manage their information. There is great cognitive comfort in
the idea of containment—that a document is contained in some folder, a
known place where it is located and can be found. The desktop metaphor
is based on these familiar notions of containment and place. But these
notions are being eroded by the ability to effectively search for informa-
tion, first on the web and now on the desktop itself. Users do not have to
be concerned about where information is if they can effectively get at it
by search.

We do not believe that search will be the only method to locate infor-
mation. There are strong individual preferences in relying on search. For
example, some people do not create email folders at all, and rely on search-
ing their inbox. Others are “frequent filers” (Whittaker and Sidner 1996).
There are good reasons to pay the cost of manually structuring informa-
tion, such as organizing and planning benefits (Jones et al. 2005).

ch11.indd 337ch11.indd 337 12/4/2006 1:20:41 PM12/4/2006 1:20:41 PM

338 Thomas P. Moran and Shumin Zhai

Structuring information does not require containment; it only requires
reference—the ability to create descriptions that can reference information
objects. While this is inherently a more abstract notion than containment,
people are gaining experience with the concept every day in using the web.
The web emphasizes references (links) between pages and deemphasizes
the notion that the information is contained in places (but it does not
totally eliminate the notion of places, i.e., servers).

There is an interesting analogy between information and money. Money
can also be kept in a place (at home or in a bank), or it can be place-
less. Although there was also a great deal of cognitive comfort in keeping
money “under the mattress,” eventually most people gave up such a com-
fort and accepted the fact that their money is dispersed within financial
institutions, which in turn loan and invest the money all over the world. It
is practically unknowable where each individual’s money precisely is. All
that matters is that one can get it or transfer it on demand.

As users disperse and “destructure” their personal information, there
is less need for the desktop metaphor to organize the information. We
believe that the metaphor is being replaced by more abstract and sophis-
ticated organizers, based on over a decade of experience of millions of
people with information technology. Thus let us use the term personal
information cloud to refer to the “working set” of information that is
relevant to the individual and his work. We are not promoting this term
as a profoundly new notion; it is just a convenient label for our use here.
We do not claim that a “cloud” is a particularly useful metaphor for either
users or designers. In contrast to the desktop metaphor, which was con-
sciously designed by the first user-interface designers, the personal infor-
mation cloud will probably not be “designed” at all, but rather will evolve
as a set of organizing principles based on the collective experiences of
those using and developing the web.

This collective personal information cloud is what people need to inter-
act with, not with a particular device or metaphor; the latter are mediators
of this interaction. There are several requirements the personal informa-
tion cloud must meet in order to be useful:

1. Personal: It should contain most if not all information that is relevant
to the individual and his activities.

2. Persistent: It should be preserved.

ch11.indd 338ch11.indd 338 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

Beyond the Desktop Metaphor in Seven Dimensions 339

3. Pervasive: It should be always accessible from a variety of devices,
programs, and services—that is, it should “follow the individual.”

4. Secure: The information should be secure and private at an appropri-
ate level. This is a significant issue when information is not held locally
(although holding information locally is not in itself assurance of privacy
in a networked world).

5. Referenceable: Each information object in the cloud should ideally
have a unique ID (or permalink) and support a protocol for retrieval.

6. Standardized: The information needs to be in standard formats so that
it is usable by a variety of devices, programs, and services.

7. Semantic: The cloud should be based on an extensible scheme of
semantically rich metadata, so that it can be understood by a variety of
programs and services in different contexts.

Many of the other dimensions follow naturally from this notion of a
personal information cloud: new information representations, new device
forms, and new interaction techniques. Social interactions and activity
management can also be better enabled by a personal information cloud.

Dimension 2: From the Desktop to a Diverse Set of Visual
Representations

The most noticeable feature of today’s personal computing environment
is its visual interface, which is based on the desktop metaphor, and a set
of GUI (graphical user interface) rules and conventions to represent infor-
mation objects and regulate interaction behavior. As a virtual world, the
“physics” of the conventional desktop to some extent resembles the real
world, including constant scale, continuity, fixed place (of file location),
and “Newton’s first law” (“an object at rest stays at rest until acted upon
by force” or “objects on the desktop stay where the user places them”).
Today’s desktop computing environments also organize information hier-
archically into files within folders. Most computer users have lived digi-
tally in this virtual world for more than a decade.

Much of this book is devoted to issues such as how successful is today’s
desktop interface, how users in fact use it (Ravasio and Tscherter, this
volume), and, especially, what alternative representatives there are (Free-
man and Gelernter’s’s chronological Lifestreams representation, Karger

ch11.indd 339ch11.indd 339 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

340 Thomas P. Moran and Shumin Zhai

on Haystack, Robertson et al. on Scalable Fabric and the Task Gallery
that use varying scale 2D projection and 3D objects to represent informa-
tion objects respectively, Voida et al.’s work on extending the 2D desktop
surface to wall displays so that montages of windows and objects can
be continuously and visibly represented, and Kaptelinin and Czerwinski’s
introductions, all in this volume).

When the number of functions, programs, and files for an average
user was relatively small, the desktop metaphor and the point-and-click
style of GUI interface had an obvious advantage: users could interact
with information objects by visual recognition and reaction, easing the
burden of learning and memory. Furthermore, owing to de facto stan-
dardization, certain GUI conventions, even some unnatural ones (such as
double- clicking to open a file), have become second nature to most users.
However, the rapidly growing number of functions, applications, and
files (hundreds if not thousands), puts strain on the desktop interface, at
least in its conventional form. To relieve the strain, desktop search, which
enables the user to find files in the local computer without navigating the
desktop folder hierarchy, is gaining acceptance. Alternative or extended
forms of information representation guided by different metaphors may
also gain eventual acceptance. We do not believe that today’s GUI conven-
tions can be supplanted by one simple alternative representation having
dramatically larger capacity, greater consistency, and the same level of
ease-of-entry. More likely, in the future a variety of advanced visual rep-
resentations may be adapted to specific problem domains and different
device forms, complementing the basic conventional desktop metaphor.

Dimension 3: From Interaction with One Device to Interaction with
Information through Many Devices

The term “desktop” in computer jargon has multiple interrelated mean-
ings. One is as the top-level “folder” in the hierarchical organization of
files and applications in a personal computer. Another is as a set of visual
representation conventions loosely guided by the metaphor. But the term
also frequently refers to computers that take the form of a “workstation,”
typically resting on a desk (and by extension, on the lap). Leveraging the
economies of scale, this form of computer (commonly known as the per-
sonal computer or PC) revolutionized computing and freed it from the

ch11.indd 340ch11.indd 340 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

Beyond the Desktop Metaphor in Seven Dimensions 341

much less accessible mainframe and timesharing computers. Personal
computers give individual users the flexibility of installing and configur-
ing their own software environments. Recall the discussions of dimension
1 on information containment in office metaphor: the drawback of relying
on PCs as the sole information processor is that personal information is
trapped in one fixed device (the PC), limiting mobility and flexibility. This
is particularly evident for non-office-workers; recall Bardram’s observa-
tion of the inconvenience of the location and form restriction imposed by
today’s desktop and laptop computers for doctors and nurses (Bardram,
this volume).

While desktop and laptop computers will continue to be impor-
tant platforms of personal computing, non-desktop computers, such as
smart handsets, tablets, and electronic white boards, will complement
today’s unipolar desktop personal computers to a far greater extent than
today. Consistent with visions of ubiquitous and pervasive computing,
all networked digital devices and appliances in many different forms can
potentially be connected and hence become interfaces to the personal
information cloud. Potentially everyday objects or appliances (Norman
1998) can also be “powered” by the information cloud. For example, an
electronic restaurant menu, once opened by a particular individual, can
be connected to the individual’s information cloud that keeps track of her
diet history, preferences, and restrictions.

There are many user-interface design challenges when the same infor-
mation can flow in and out of very different devices. How can the same
information outflow from different physical devices have enough invari-
ance in appearance and behavior, so that the user can easily identify it and
interact with it? How can a unified and logically consistent user experi-
ence be provided independent of a device’s specific form factor? What
can be done to ensure the user has a coherent and consistent human-
 information interaction experience? For example, a user should be able
to interact with his or her calendar events whether the computer at hand
is a desktop PC or a smart handset. Separating the data model from its
view has long been recognized as an important principle in computing
in general and in user-interface design in particular (Wiecha et al. 1990).
Initiatives at the W3 consortium in areas such as device independence may
lay groundwork for achieving transformational user interfaces (Paterno
and Santoro 2003; Calvary et al. 2003); but many difficult challenges

ch11.indd 341ch11.indd 341 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

342 Thomas P. Moran and Shumin Zhai

call for further significant HCI research efforts. For example, can a truly
usable user interface be designed independent of the specific form factors
of a device? How can we counter the arguments that a good user-interface
design has to consider the specific physical form factors of a device? Is
there a fundamental set of interaction vocabularies that can be imple-
mented in a variety of device forms so that information can be presented
interactively on any device that supports such a set of vocabulary? These
issues will be even harder to resolve than hardware-independent software
development, which has proven very difficult.

Another important topic along the dimension of device diversity is the
development of principles, technologies, and infrastructure to support
teaming multiple devices with different input and output modalities to
form a gestalt user experience, so users could opportunistically utilize the
best features of more than one device or information channel to accom-
plish a task (Ahn and Pierce 2005; Yin and Zhai 2005).

Dimension 4: From Mouse and Keyboard to a Greater Set of Physical
Interaction Devices and Modalities

An integral part of the desktop interaction experience is the contribution of
physical input devices, in particular the mouse as a pointing device and the
keyboard as a device for inputting text and evoking commands (e.g., func-
tion keys). Almost all software today is designed to rely on these devices.
As the personal information cloud model and multiple device forms begin
to evolve, the mouse and keyboard can no longer be the only form of
physical interaction device. However, the explicit or implicit assumptions
of a pointing device and a keyboard are so broadly and deeply adopted in
today’s software development that even the Windows Tablet PC, which is
quite similar to traditional desktop and laptop computers in form and size,
is markedly more difficult to use than its predecessors. Developing novel,
potent yet practical interaction methods that are suited to non-desktop
forms of computing is a rare opportunity for the user-interface research
field, a field that in general values novelty, often at the cost of practicality
and real-world impact. Developing novel yet practical interaction methods
is a difficult challenge, since the novel interaction methods are expected to
match the performance of the mouse and keyboard, but without making
use of the same long learning curve. Experienced computer users have

ch11.indd 342ch11.indd 342 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

Beyond the Desktop Metaphor in Seven Dimensions 343

spent years improving their typing and desktop interaction skills, so that
even some artificial conventions have become natural to most users. For
non-keyboard-based input methods to gain acceptance by users, deep
research and careful design have to be invested in developing them. Lever-
aging users’ existing desktop experience and skill, interaction methods
that are “transplants” from the conventional desktop may provide a safe
path. Paradoxically, such transplants are often poor replications of the
desktop experience, inhibiting the full potential of non-desktop computing
devices. For example, when using a pen to interact with a point-and-click
style of a desktop graphic user interface, actions that are rather simple for
a mouse-based interface, such as a double click, become more awkward,
while the dexterity and expressive power of a pen go wasted.

Pen-gesture-based input methods have long attracted both researchers
(e.g., Kurtenbach and Buxton 1994) and product developers (e.g., Go,
Apple Newton, Palm Pilot, and Windows Tablet PC). Although pen-based
interaction methods still have a long way to go before they can truly take
advantage of the dexterity of the pen and yet be self-revealing enough to
be compelling to novices, many research projects in the user-interface field
show promise (Hinckley et al. 2005). In our own lab we have been devel-
oping interaction models that use pen-crossing action as a counterpart to
mouse pointing (Accot and Zhai 2002; see also Apitz and Guimbretiére’s
work on CrossY, in Apitz and Guimbretiére 2004) and a new way of
entering text and command using ShapeWriter (also known as SHARK
shorthand). Shape writing takes advantage of the fluidity and dexterity of
the pen in making gestures; the human ability in perceiving, remembering,
and producing geometric patterns; and modern computing capabilities in
processing statistical constraints to efficiently enter text and commands on
nonconventional computers (Zhai and Kristensson 2003; Zhai, Kristens-
son, and Smith 2005).

As devices become more diverse, the interaction modalities may move
beyond pointing, typing, or even pen input. Voice and eye-gaze are two
modalities that may be taken advantage of in certain situations (Oviatt 2003).
Multimodal interfaces could be particularly effective if contextual informa-
tion can be drawn from sensing and the personal information cloud, so that
these modalities are used cooperatively to their respective advantages.

Progress in the dimension of new input methods faces the challenge
of overcoming users’ existing mental models, skill sets, and habits. (This

ch11.indd 343ch11.indd 343 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

344 Thomas P. Moran and Shumin Zhai

also holds for dimension 2 and perhaps many others.) Making changes
concerning the interlock of user skills acquired under a set of conven-
tions tends to be very difficult. Using the QWERTY keyboard as a prime
example, Paul David argues for a “path dependence” or “lock-in” theory,
dubbed qwertynomics, in which an accidental sequence of events may
lock technology development into a particular irreversible path (David
1985). The opponents of qwertynomics argue that the qwerty keyboard
has not been replaced because there is no convincingly superior alterna-
tive to the QWERTY layout, citing human factors research (Liebowitz
and Margolis 1990). Regardless of the strength of arguments on either
side, innovation concerning user interaction clearly has to either tap users’
existing skills and behavior or offer dramatic advantages over convention-
al practice. Today new forms of computer devices clearly demand alterna-
tive input and output methods, but they have to be well researched to be
 successful.

Dimension 5: Software and Computing Functions Move from
Applications to Services

Today most of the computing functions are delivered through applications
residing on the personal computer. An alternative approach is gaining
momentum in the computer industry: server-based computing functions
(services) delivered through the internet to a personal device, with internet
search being the most successful example. Other examples include web-
based email services. There are several factors that favor such a shift. First,
the trend to being always connected (e.g., today’s push in many cities for a
municipal wireless local area network) enables the viability of the service
model. Second, conventional applications have gotten too complex for
most people to make use of or even to know about all of their functions.
Web-based services tend to be much simpler and “under-featured,” per-
haps because services can’t download huge bundles of code or because
these services are young and not yet “enriched.” Software services are
forced to ask what is really needed, thus enforcing simplicity, which could
mean more stable functions. Third, with AJAX (asynchronous java and
xml) technologies, web user-interfaces can be very GUI-like, and therefore
easier to use and more familiar in appearance and behavior. Fourth, unlike
applications that are difficult to deploy frequently, services can be updated

ch11.indd 344ch11.indd 344 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

Beyond the Desktop Metaphor in Seven Dimensions 345

seamlessly (although software service providers really should be consid-
erate of users’ familiarity with their interface and refrain from forcing
new looks and behaviors on the user every month). Finally, with services
users tend to have more choices, since they’re easier to find and try out;
and potentially users can combine finer-grained services to their individual
needs. The shift from applications to services obviously requires a differ-
ent economic model for business (to date advertising has been the main
economic enabler). It also has to overcome privacy and security hurdles.

The shift from application to services also is evolving in parallel with,
but faster than, the evolution from personal desktop computing to the per-
sonal information cloud model. Together they may significantly influence
the form of future integrated digital work environments. Software services
should be able to adapt to a variety of individual devices as needed. In
a ubiquitous computing world, a variety of devices, including desktop
computers, handsets, specialized appliances, or in-car computers, could
be used to accomplish a task. How could these devices team up effectively
in an ad hoc fashion as the user moves around? Applications residing on
these devices communicating with each other in a peer-to-peer fashion is
one possibility (Newman et al. 2002). Another possibility is to support
a variety of personal or public devices from software services. Based on
personal identification sensing or user log in, services in the network could
virtually track what devices are being used by an individual, coordinate
these devices, and deliver information suited to each of the devices being
used. Such a user- (ID-) centered integration approach has been demon-
strated in our FonePal system (Yin and Zhai 2005, 2006) in which tele-
phony voice menus are visually displayed on the user’s computer screen
via an instant messaging infrastructure based on the user’s IDs.

Dimension 6: From Personal to Interpersonal to Group to Social
Interaction

The desktop metaphor supports the individual in managing his working
set of personal information. But the individual doesn’t live in isolation.
Although personal information consists of information that is relevant to
the person, most of it is not created by the person himself, but by other
people. A person’s communication with others, such as email or instant
messaging, is not only personal, but interpersonal. The metaphor provides

ch11.indd 345ch11.indd 345 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

346 Thomas P. Moran and Shumin Zhai

an inbox for such communication and also for exchanging information
artifacts; but these communications are kept and managed on each per-
son’s desktop. Interpersonal interaction, by which we mean interactions
targeted to specific other people, is not distinguishable from purely per-
sonal interaction. The desktop can accommodate a range of interpersonal
tools. Collaboration (or interaction) with a group or team is where we
begin to step outside the desktop metaphor. Collaboration is most often
supported by some form of “place,” such as a “teamroom,” where infor-
mation is shared. What makes such a place separate from the personal
desktop is that the management of the place is shared with others. (Note
that here we are not distinguishing how the place is supported architectur-
ally, such as by client-server or peer-to-peer.)

The next level is to engage in more overt social interaction. One aspect
of social interaction is to treat people as focal points in the personal infor-
mation cloud. This is well illustrated by ContactMap and Soylent (Fisher
and Nardi, this volume). ContactMap helps a person to explicitly manage
his relationships with others, creating a personal social network. To do
this we need persistent representations of people and their identities in the
personal information cloud. Given people objects, we can organize infor-
mation around people, such as a history of communications and shared
objects. Notice the kinship with Lifestream (Freeman and Gelernter, this
volume). Further, as illustrated in Soylent (Fisher and Nardi, this volume)
we can use this same information to infer groupings of people into social
and work contexts.

A second aspect of social interaction is making more information (which
used to be personal or interpersonal) more easily available in a wider
social context. There seems to be a trend here. More and more services
are being created on the web that encourage people to disclose informa-
tion publicly. People are putting out information and opinions on personal
blogs that are available to an unknown public. People are contributing to
various collaborative open-source projects, such as Wikipedia. People are
tagging information, such as web pages and documents and photos, and
making these tags public to create a system of social tagging for indexing
information, often called “folksonomies.” Thus more information in the
personal information cloud is being made public to combine with that of
others—creating public information clouds consisting of the intersections
of personal information clouds. Perhaps this is a fad, or perhaps the web

ch11.indd 346ch11.indd 346 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

Beyond the Desktop Metaphor in Seven Dimensions 347

is evolving into a “culture of participation” where public information is
created that is greater than the sum of personal contributions.

Important new social dynamics are emerging, and these must be taken
into account, since they will strongly shape the future of integrated digital
work environments.

Dimension 7: From Low-Level Tasks to Higher-Level Activities

The desktop metaphor provides a set of generic tools for users to work on
the information objects in the office. These tools, or applications, support
a set of common low-level tasks, such as editing a document, sending an
email, organizing a folder, and so on. It is up to the user to select tools
and use these tools and objects to accomplish higher-level objectives, or
activities. People think of work in terms of activities (Gonzalez and Mark
2004), for example, writing a book chapter, and over time perform a series
of tasks to carry out the activities, for example, starting a new chapter file,
gathering related materials in a folder, emailing the book editor, setting a
due date in the calendar, editing the chapter, finding references in related
papers, printing the chapter, and so on. The desktop metaphor affords
great flexibility in organizing the activity, but it offers little help in manag-
ing the activity. The activity involves heterogeneous tools and objects scat-
tered throughout the desktop. Many tools do not work well together; for
instance, a reference in an email has to be cut and pasted into the chapter
file lest it be forgotten.

Many chapters in this book can be seen as supporting work at the activ-
ity level. The Group Bar, Scalable Fabric, and the Task Gallery (Robertson
et al., this volume) attempt to enhance the user’s ability to manage their
activities beyond individual windows and applications. Haystack (Karger,
this volume) provides ways to express relationships between disparate
objects to organize them better for activities. Lifestreams (Freeman and
Gelernter, this volume) replaces the desktop with a stream of document-
based actions that can be organized into activities. The notion of roles
(Plaisant et al., this volume) can be seen as kinds of activities. UMEA
(Kaptelinin and Boardman, this volume) is an explicit activity management
system, and their WorkspaceMirror can also be seen this way, as indeed can
their general notion of Workspace-Level Design. Kimura (Voida et al., this
volume) is explicitly designed to support activities by representing them as

ch11.indd 347ch11.indd 347 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

348 Thomas P. Moran and Shumin Zhai

montages of document images on a wall display. Finally, the activity-based
computing system (Bardram, this volume) develops an explicit architec-
ture and services to support activities in a hospital setting.

The notion of activity is an important concept across the social, behav-
ioral, and management sciences. Most HCI researchers refer to activity
theory’s formulation of activity (e.g., Nardi 1996). But there are other
relevant perspectives: distributed cognition (Hutchins 1994), linguistics
(Clark 1996), and organizational behavior, which calls them routines
(Pentland and Feldman 2005). Activity is also becoming an important ana-
lytic construct for understanding usage context in system design (Gay and
Hembrooke 2003; Moran 2003; Moran, Cozzi, and Farrell 2005; Nardi
1996). But more important here is to see that people have to manage their
activities and that integrated digital work environments need to support
this activity management (Moran, Cozzi, and Farrell 2005).

Therefore, we agree with Bardram that the activity concept should be
made a first-class computational construct that can be used to support
human activity. Further, we believe that development of a standard repre-
sentation of activity, called “unified activity” by Moran, Cozzi, and Far-
rell (2005), could provide a semantic foundation to enable integration
across diverse work-support systems. A represented activity is straight-
forward. Activities are objects with some descriptions (objective, status)
related to the people involved, the resources used, and the bounding
events. Activities are also related to other activities (such as subactivities).
Activity descriptions are fundamentally relational metadata for group-
ing and organizing elements around human activities (Dragunov et al.
2005; Kaptelinin 2003). How do activity descriptions relate to the per-
sonal information cloud? Activity descriptions are the part of the personal
information cloud that organizes that information around the semantics
of activity—how the information is used and what it is useful for—or the
“personal activity cloud.”

A standard activity construct can have many benefits. First, it provides
objects around which to aggregate the resources to carry out activities,
and also suspend and resume activities. Activities are shared information
and thus can provide coordination and awareness among collaborators,
as illustrated in the Bardram and Voida et al. chapters in this volume,
and also by ActivityExplorer (Muller et al. 2004). Activities are explicit
representations that people can operate on, thus providing a focus for

ch11.indd 348ch11.indd 348 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

Beyond the Desktop Metaphor in Seven Dimensions 349

reflecting on and planning activities. If activities are represented as they
are carried out, then they provide a valuable record of experience, which
can be reused (“how did George do it last month?”). Another powerful
method of reuse is to create activity patterns, perhaps by “cleaning up”
activity experience records to capture “best practices.” It should be noted
that activity representations are very different from descriptions of formal
workflow process in that the former are malleable descriptions under the
control of the people using them, and thus are adaptable to varying situa-
tions. Activity descriptions could complement workflow systems if prop-
erly integrated (Moran, Cozzi, and Farrell 2005).

There are at present only a few research prototypes of activity-support
systems (Dragunov et al. 2005; Kaptelinin 2003; Moran, Cozzi, and Far-
rell 2005; Bardram, this volume; Voida et al., this volume), and these have
produced as many questions as conclusions. There are many challenges
to shifting users to an activity-centric mode of working. How are activ-
ity descriptions going to be created? Can they be automatically identified
from monitoring action streams, as many chapters in this book discuss
(Kaptelinin and Boardman, Voida et al., and Bardram, this volume)? It
is well known that current automated methods are not accurate enough
and require considerable manual “clean up” to make the results useful
(Kaptelinin 2003). Can we do better? Can we create an attractive cost–
benefit continuum? It would be extremely easy for users to create crude
but useful activity descriptions (e.g., a threaded email conversation could
be converted to an initial activity description by a single gesture). Activity
descriptions would be further developed because they provide a flexible
service for resource sharing, planning, and awareness. Another incentive
for using activity descriptions is that they can be generated from activity
patterns, providing an initial structure and advice. But can we make it easy
enough to create useful activity patterns at a useful level of abstraction?
And how can we make the patterns available in appropriate contexts?
These are just a few of the remaining open questions.

Where Do We Stand?

The theme of this book is that the computing world is moving beyond
the desktop metaphor. It is not exactly clear where it is going, but the
seven dimensions presented above articulate a design space that is being

ch11.indd 349ch11.indd 349 12/4/2006 1:20:42 PM12/4/2006 1:20:42 PM

350 Thomas P. Moran and Shumin Zhai

explored; they chart the course we are on. The diversity of these dimen-
sions suggests that progress will not be uniform along all the dimensions.
Research and industry will push forward on different dimensions based
on creative insights and commercial opportunities.

We have observed that the desktop metaphor is a caricature of the
current state, since we are clearly already well beyond the strict concept
of the desktop. So, where do we stand? Let us consider each dimension
 separately:

1. Personal information cloud: Personal information has already started
dispersing. Many users store their emails, calendar, and documents on the
web. However, the correct shape of a personal information cloud model
will take many years to evolve. What is not yet clear is who will provide
the service to maintain and deliver the personal information cloud. The
providers could be reputable corporations or open source organizations.
Probably there will not be complete end-to-end host providers. Rather, the
personal information cloud would be organized by a set of services that
glue and coordinate a user’s information from multiple hosts and servers.

2. Diverse representations: The conventional desktop metaphor and GUI
continue to dominate, although it is increasingly complemented by desk-
top search and other new functions. New form factors for information
devices are beginning to challenge the status quo and demand alternative
forms of information representation.

3. Device multiplicity: We can already see many forms of comput-
ing devices, ranging from handsets to embedded computers in cars on
the market. However, these devices are largely isolated from each other.
Achieving a transformational user-interface design so that the diverse
forms of devices can all be powered by the personal information cloud
and deliver much greater value is still at the very early research stage.

4. New interactions and modalities: The use of voice as an interaction
modality has finally developed into practical applications in telephony
systems. Many other input methods (e.g., telephone-pad-based input)
are alternatives to traditional mouse and keyboards and are already fre-
quently employed by mobile users, although existing methods tend to be
rather inefficient or even clumsy. User-interface innovations in this area
have the ability to unlock the full potential of mobile and other forms of
 computing.

ch11.indd 350ch11.indd 350 12/4/2006 1:20:43 PM12/4/2006 1:20:43 PM

Beyond the Desktop Metaphor in Seven Dimensions 351

5. Software as services: Software services are rapidly gaining acceptance
in the computer industry owing to market forces. Already enough services
are available on the web for an individual to do serious work (and most
of these are free, at least in limited forms), although some desktop func-
tionality is still useful to glue all the services together. This dimension will
mostly be led and driven by the intense competition in the information
technology industry.

6. Social interaction: Social software is surprisingly popular. It is chang-
ing the way information is communicated (e.g., blogs), and it is chang-
ing the way we think of the web and large-scale social cooperation (e.g.,
Wikipedia). This dimension is based largely on early research efforts (e.g.,
wikis) and is now being driven mostly by innovative experiments and
evolutionary progress based on wide adoption.

7. Activity-centric computing: The general notion that software should
be more activity-centric is widely held. Current desktop environments
are slowly evolving in this direction, as are some enterprise collaboration
environments. Beyond such incremental changes, research is still mainly
exploratory, such as the work exhibited in this book. There are research
challenges in this dimension: the architecture for activity-centric comput-
ing, standards for activity representation, and the user experience being
activity-centric versus being tool-centric and/or inbox-centric. From this
research we can expect to see some public experiments and commercial
offerings in the near future.

This book presents several research innovations that explore significant
steps to the future beyond the desktop, as well as the rationale for the
directions they represent. We have tried to add some perspective to the
work here by laying out seven dimensions of change that they all partici-
pate in. Although some of the dimensions are strongly driven by the fast
pace of commercial innovations on the web, all the dimensions present
significant research challenges. Research can guide future integrated digi-
tal work environments by articulating human needs and capacities and
exploring and evaluating technologies to meet them. The field of human–
computer interaction has not had a greater opportunity to influence the
broad computing industry, and indeed how people work and live in the
world, since the desktop metaphor and graphical user interface were first
developed.

ch11.indd 351ch11.indd 351 12/4/2006 1:20:43 PM12/4/2006 1:20:43 PM

352 Thomas P. Moran and Shumin Zhai

Acknowledgments

We thank our colleagues at the IBM Research for creating an intellectually
stimulating environment and for many discussions that have shaped our
thinking on the future of human–computer interaction.

References

Accot, J., and Zhai, S. (2002). More than dotting the i’s—Foundations for cross-
ing-based interfaces. Proceedings of CHI 2002: ACM Conference on Human Fac-
tors in Computing Systems, CHI Letters 4 (1): 73–80.

Ahn, J., and Pierce, J. S. (2005). SEREFE: Serendipitous file exchange between
users and devices. In Proceedings of Mobile HCI, pp. 39–46. Salzburg, Austria,
September 19–22.

Apitz, G., and Guimbretiére, F. (2004). CrossY: A crossing-based drawing appli-
cation. In Proceedings of UIST—The 17th ACM Symposium on User Interface
Software and Technology, pp. 3–12. Santa Fe, New Mexico, October 24–27.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vander-
donckt, J. (2003). A unifying reference framework for multi-target user interfaces.
Interacting with Computers 15 (3): 289–308.

Clark, H. H. (1996). Using Language. Cambridge: Cambridge University Press.

David, P. A. (1985). Clio and the Economics of QWERTY. American Economic
Review 75: 332–337.

Dragunov, A. N., Dietterich, T. G., Johnsrude, K., McLaughlin, M., Li, L., and
Herlocker, J. L. (2005). TaskTracer: A desktop environment to support multi-task-
ing knowledge workers. In Proceedings of International Conference on Intelligent
User Interfaces, pp. 75–82. San Diego, California, January 10–13.

Gay, G., and Hembrooke, H. (2003). Activity-Centered Design: An Ecological
Approach to Designing Smart Tools and Usable Systems. Cambridge, Mass.: MIT
Press.

Gonzalez, V., and Mark, G. (2004). Constant constant multitasking craziness:
Managing multiple working spheres. In Proceedings of ACM CHI2004 Confer-
ence on Human Factors in Computing Systems, pp. 113–120. Vienna, Austria,
April 24–29.

Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiére, F. (2005). Design and
analysis of delimiters for selection-action pen gesture phrases in Scriboli. In Pro-
ceedings of CHI 2005: ACM Conference on Human Factors in Computing Sys-
tems, pp. 451–460. Portland, Oregon, April 2–7.

Hutchins, E. (1994). Cognition in the Wild. Cambridge, Mass.: MIT Press.

Jones, W., Phuwanartnurak, A. J., Gill, R., and Bruce, H. (2005). Don’t take my
folders away! Organizing personal information to getting things done. In Proceed-

ch11.indd 352ch11.indd 352 12/4/2006 1:20:43 PM12/4/2006 1:20:43 PM

Beyond the Desktop Metaphor in Seven Dimensions 353

ings of ACM CHI2005 Conference on Human Factors in Computing Systems,
Extended Abstracts (short paper), pp. 1505–1508. Portland, Oregon, April 2–7.

Kaptelinin, V. (2003). UMEA: Translating interaction histories into project con-
texts. In Proceedings of ACM CHI Conference on Human Factors in Computing
Systems, pp. 353–360. Ft. Lauderdale, Florida, April 5–10.

Kurtenbach, G., and Buxton, W. (1994). User learning and performance with
marking menus. In Proceedings of CHI: ACM Conference on Human Factors in
Computing Systems, pp. 258–264. Boston, Massachusetts, April 24–28.

Liebowitz, S. J., and Margolis, S. E. (1990). The fable of the keys. Journal of Law
and Economics 33.

Moran, T. P. (2003). Activity: Analysis, design, and management. In G. C. S. a.
S. B. e. Sebastiano Bagnara and Lawrence Erlbaum Inc. (eds.), Symposium on the
Foundations of Interaction Design, Interaction Design Institute, Ivrea, Italy. To
appear in Theories and Practice in Interaction Design.

Moran, T. P., Cozzi, A., and Farrell, S. P. (2005). Unified activity management: Sup-
porting people in eBusiness. Communications of the ACM (December): 67–70.

Muller, M. J., Geyer, W., Brownholtz, B., Wilcox, E., and Millen, D. R. (2004).
One-hundred days in an activity-centric collaboration environment based on
shared objects. In Proceedings of ACM CHI 2004 Conference on Human Factors
in Computing Systems, pp. 375–382. Vienna, Austria, April 24–29.

Nardi, B. A. (ed.). (1996). Context and Consciousness: Activity Theory and
Human–Computer Interaction. Cambridge, Mass.: MIT Press.

Newman, M., Izadi, S., Edwards, K., Sedivy, J., and Smith, T. (2002). User interfac-
es when and where they are needed: An infrastructure for recombinant computing.
In Proceedings of ACM Symposium on User Interface Software and Technology,
pp. 171–180. Paris, France, October 27–30.

Norman, D. A. (1998). The Invisible Computer: Why Good Products Can Fail,
the Personal Computer Is So Complex, and Information Appliances Are the Solu-
tion. Cambridge, Mass.: MIT Press.

Oviatt, S. (2003). Multimodal interfaces. In Sears, J. J. A. (ed.), Handbook of
Human–Computer Interaction, pp. 286–304.

Paterno, F., and Santoro, C. (2003). A unified method for designing interactive
systems adaptable to mobile and stationary platforms. Interacting with Comput-
ers 15 (3): 349–366.

Pentland, B. T., and Feldman, M. S. (2005). Organizational routines as a unit of
analysis. Industrial and Corporate Change 14 (5): 793–815.

Whittaker, S., and Sidner, C. (1996). Email overload: Exploring personal informa-
tion management of email. In Proceedings of ACM CHI ’96 Conference on Human
Factors in Computing Systems, pp. 276–283. Vancouver, Canada, April 13–18.

Wiecha, C., Bennett, W., Boies, S., Gould, J., and Greene, S. (1990). ITS: A tool
for rapidly developing interactive applications. ACM Transactions on Information
Systems 8 (3): 204–236.

ch11.indd 353ch11.indd 353 12/4/2006 1:20:43 PM12/4/2006 1:20:43 PM

354 Thomas P. Moran and Shumin Zhai

Yin, M., and Zhai, S. (2005). Dial and see: Tackling the voice menu navigation
problem with cross-device user experience integration. In Proceedings of UIST
2005—18th ACM Symposium on User Interface Software and Technology,
pp. 187–190. Seattle, Washington, October 23–26.

Yin, M., and Zhai, S. (2006). The benefits of augmenting telephone voice menu
navigation with visual browsing and search. In Proceedings of CHI 2006: ACM
Conference on Human Factors in Computing Systems. Montreal, Canada, April
22–27.

Zhai, S., and Kristensson, P.-O. (2003). Shorthand writing on stylus keyboard.
Proceedings of CHI 2003, ACM Conference on Human Factors in Computing
Systems, CHI Letters 5(1): 97–104.

Zhai, S., Kristensson, P.-O., and Smith, B. A. (2005). In search of effective text
input interfaces for off the desktop computing. Interacting with Computers 17
(3): 229–250.

ch11.indd 354ch11.indd 354 12/4/2006 1:20:43 PM12/4/2006 1:20:43 PM

H. Ross Baker
Chicago, Illinois

Jakob E. Bardram
Department of Computer Science
University of Aarhus
Denmark

Patrick Baudisch
Microsoft Research
Redmond, Washington

Richard Boardman
Google
Mountain View, California

Mary Czerwinski
Microsoft Research
Redmond, Washington

Nicolas B. Duarte
Penn State University
University Park, Pennsylvania

Danyel Fisher
Microsoft Research
Redmond, Washington

Eric Freeman
Walt Disney Parks and Resorts
Online
North Hollywood, California

David Gelernter
Department of Computer Science
Yale University
New Haven, Connecticut

Aydin Haririnia
Ph.D. candidate, Biochemistry
University of Maryland
College Park, Maryland

Eric Horvitz
Microsoft Research
Redmond, Washington

Victor Kaptelinin
Department of Informatics
Umeå University
Sweden

David R. Karger
Department of Electrical Engineer-
ing and Computer Science
Computer Science and Artificial
Intelligence Laboratory
MIT
Cambridge, Massachusetts

Dawn E. Klinesmith
SEMM—Department of Civil and
Environmental Engineering
University of California, Berkeley
Berkeley, California

Contributors

contributors.indd 355contributors.indd 355 12/4/2006 1:20:45 PM12/4/2006 1:20:45 PM

356 Contributors

Blair MacIntyre
GVU Center, College of
 Computing
Georgia Institute of Technology
Atlanta, Georgia

Brian Meyers
Microsoft Research
Redmond, Washington

Thomas P. Moran
IBM Almaden Research Center
San Jose, California

Elizabeth D. Mynatt
GVU Center, College of
 Computing
Georgia Institute of Technology
Atlanta, Georgia

Bonnie Nardi
School of Information and Com-
puter Sciences
University of California, Irvine
Irvine, California

Catherine Plaisant
HCIL/UMIACS
University of Maryland
College Park, Maryland

Pamela Ravasio
Department of Frontier Informatics
Graduate School of Frontier
 Sciences
University of Tokyo
Japan

Daniel Robbins
Microsoft Research
Redmond, Washington

George Robertson
Microsoft Research
Redmond, Washington

Ben Shneiderman
Department of Computer Science
University of Maryland
College Park, Maryland

Greg Smith
Microsoft Research
Redmond, Washington

Desney Tan
Microsoft Research
Redmond, Washington

Vincent Tscherter
PH Solothurn
Solothurn
Switzerland

Leonid A. Velikovich
Microsoft
Redmond, Washington

Stephen Voida
GVU Center, College of
 Computing
Georgia Institute of Technology
Atlanta, Georgia

Alfred O. Wanga
Silver Spring, Maryland

Matthew J. Westhoff
Severna Park, Maryland

Shumin Zhai
IBM Almaden Research Center
San Jose, California

contributors.indd 356contributors.indd 356 12/4/2006 1:20:45 PM12/4/2006 1:20:45 PM

Abrahams, D., 268
Activity theory, 146, 194, 197, 212–

218, 226, 314, 348
Activity. See also Unifi ed activity

the basic computational unit,
224 (see also Activity-based
computing)

challenges for representing and
supporting, 205–211

as collection of abstract services, 225
and the desktop metaphor, 203
a foundational concept in design, 9
a framework for ubiquitous

computing, 194, 196
human vs. computational, 194, 227
modeling, 199
working context of, 200

Activity-based computing (ABC), 9–10,
193, 224–259. See also Norman’s
activity-based computing

Activity-centered design, 215. See
also Activity-based computing;
Activity-centric computing;
Norman’s activity-based
computing

Activity-centric computing, 351. See
also Activity-based computing
(ABC); Activity-centered design

Anderson, K., 268
Application-centric design, 295,

298–306, 325–327. See also
Workspace-level design; Cross-
application integration

Applications, software
bloating, 61, 303

and services, 344–345,351
and tasks, 57–61, 229

Archiving, 22, 25, 274
automatic, 25, 31

Aura project, 225, 255

Baker, H., 168
Baker, N., 97
Bälter, O., 303
Bardram, J., 193–194, 257, 348
Barreau, D., 22, 42–43, 155, 267–268,

272
Bedersen, B., 46
Bellotti, V., 54, 95, 155, 171, 269,

300, 312
Bifrost (system), 301, 328
Boardman, R., 10, 61, 95, 263–264,

327–328
Bødker, S., 226
Boer, N., 209, 214–215, 217
Bossen, C., 256

Card, S., 6, 102
Carroll, J., 21
Carulli, T., 46
Categorization, 21, 24. See also

Classifi cation and retrieval; Filing
and fi nding; Naming, documents
and tasks

Christensen, H., 256
Classifi cation and retrieval, 273–277.

See also Categorization; Filing
and fi nding; Naming, documents
and tasks

Codd, E., 68

Index

index.indd 357index.indd 357 12/4/2006 1:19:44 PM12/4/2006 1:19:44 PM

358 Index

Collaboration and communication,
2, 5, 8, 141, 171, 193, 228, 307,
345–347, 351

ContactMap (system), 9, 141–142,
156, 173–176, 184–189, 283, 301

Cozzi, A., 348
Cross-application integration, 303–

304, 306
Czerwinski, M., 304

Data Mountain (system), 103, 116,
124, 132

Designers’ Outpost (system), 207
Desktop metaphor. See also Desktop

systems
advancement, 3 (see also Taskbar,

Microsoft Windows)
breaking away from, 45
inconsistency, 4, 290
Lifestreams as an alternative, 19
limitations, 6, 20, 102, 144, 228, 232
and the physical offi ce, 3, 266,

278–283, 336
a “straw man,” 335
success factors, 1–2
and transparent information

storage, 15–16, 24
Desktop search, 45, 286–288
Desktop systems, 2–4. See also

Desktop metaphor
Diversity of visual representations,

339–340, 350
Duarte, N., 168
Ducheneaut, N., 155, 171, 269, 312
Dumais, S., 21
Dynabook, 265, 282

Elastic Windows (system), 103, 149
Email

core strengths, 312–313
as habitat, 296, 298, 311
overload, 295
and personal archiving, 171
and task management, 171

Email-centric approach, task
management, 296. See also
Application-centric design

Engeström, Y., 213, 227

Enhanced Email for People (EE4P)
(system), 180. See also Soylent

Erickson, T., 268
External interruptions, 102

Farrell, S., 348
Filing and fi nding, 21. See also

Categorization; Classifi cation and
retrieval; Naming, documents and
tasks

Fisher, D., 10, 51, 141
Flatland (system), 116, 207
Fleischer, R., 189
Focus plus context, 15, 115
Foundational concepts, design of work

environments, 7
Freeman, Elisabeth, 46
Freeman, Eric, 10, 15, 39, 46, 51
Friendster (system), 173

Gay, G., 214–215
Gelernter, D., 10, 15, 39, 51
Gibson, J., 211
GroupBar (system), 9–10, 15–17, 104–

115, 132–133, 205, 223, 225, 347
Groupware Walkthrough method, 251
Guttormsen-Schär, S., 59, 95

Halasz, F., 273
Haririnia, A., 168
Hayes, B., 267
Haystack (system), 9–10, 15–17,

49–99, 347
Hembrooke, H., 214–215
Henderson, A., 6, 102
Heston, C., 189
Horvitz, E., 304

Information access vs. information
display, 2–4, 8. See also Focus
plus context

Integrated digital work environments,
defi nition, 7

Integration of information from
different sources, 57–58, 101,
145–146, 266, 314. See also
Multiple information hierarchies;
Personal information cloud

index.indd 358index.indd 358 12/4/2006 1:19:46 PM12/4/2006 1:19:46 PM

Index 359

Interaction history
in email, 181
and generic history, 82
project-tagged, 315
task-specifi c, 82

Kaptelinin, V., 10, 61, 95, 213, 263–
264, 268

Karger, D., 10, 15
Kay, A., 288
Kidd, A., 267
Kimura (system), 8–10, 193, 195–223,

225, 255, 284, 347
Klinesmith, D., 168
Krueger, H., 59, 95
Kumar, K., 209, 214
Kwasnik, B., 267

Landauer, T., 21
Lansdale, M., 6, 20–22
Lee, H., 168
Leont’ev, A., 212
Lifestreams (system), 6, 9–10, 15–17,

19–48, 95, 284, 321, 347
Luhman’s fi le-card box, 286
Luria, A., 212

Macaulay, C., 213
MacIntyre, B., 193
Mackay, W., 299
Malone, T., 6, 20,-21, 43–44, 267–

268
Metaphors, software design, 23, 273,

289–290. See also Virtuality
Model Human Processor, 211
Moran, T., 10, 273, 348
Multiple information hierarchies,

1–2, 5, 8, 319–320. See also
Integration of information
from different sources; Personal
information cloud

Multiple technologies, integration,
1, 9, 25, 195, 205, 223–224,
340–342, 350

Multitasking, 2, 8, 102, 145–146,
225. See also Task

Myers, B., 102
Mynatt, E., 193

Naming, documents and tasks, 24,
30, 115–118, 125, 132–133.
See also Categorization;
Classifi cation and retrieval; Filing
and fi nding

Nardi, B., 10, 22, 42–43, 51, 141,
155, 171, 213, 215, 268, 272

Nelson, T., 23–24, 285
Norman, D., 6, 211, 224–225, 257
Norman’s activity-based computing, 6,

224–225. See also Activity-based
computing (ABC)

Norman’s Seven Stages of Action
model, 211

Novel interaction methods, 342–344,
350

ObjectLens (system), 95
Organizational overviews, 147. See

also Personal Role Management
Orienteering, information fi nding,

59–60
OVAL (system), 95

Pad++ (system), 6, 103
Personal information cloud, 335–

339, 350. See also Multiple
information heirarchies;
Integration of information from
different sources

Personal role, 144, 148, 153. See also
Personal Role Management

Personal Role Management, 6, 9, 141,
170, 173, 283, 347

Personal social network, 173
Pervasive computing, 6, 224. See also

Ubiquitous computing
Plaisant, C., 10, 51, 142, 168, 173
Pliskin, N., 269
Presto (system), 95, 283, 321

Questionnaire for User Satisfaction
(QUIS), 41

Ravasio, P., 10, 59, 95, 263, 290
Really Simple Syndication (RSS),

53–54
Reminding, desktop systems, 22, 25

index.indd 359index.indd 359 12/4/2006 1:19:46 PM12/4/2006 1:19:46 PM

360 Index

Resource Description Framework
(RDF), 66–69

REVERE (system), 95
Robertson, G., 10, 15
Rooms (system), 5–6, 102, 134, 146,

200, 205, 223, 225, 255

Scalable Fabric (system), 8–10, 15–17,
104, 115–122, 133, 347

Schwarz, H., 171
Screen real estate, 265, 270–273
Semantic File System, 283
Semantic Web, 92–94, 163
Shneiderman, B., 141, 149
Sidner, C., 22, 154, 269, 299
SNARF (system), 328
Social workscape, 172
Soylent (system), 9, 141, 156, 173,

176–189, 283. See also Enhanced
Email for People (EE4P) (system)

Soylent Green (movie), 189
Stuff I’ve Seen (system), 187, 283
Suchman, L., 226

Task(s)
and activities, 347–349
defi ned by users, 101
defi nition, 144
higher-level vs. lower-level, 303–304
and interaction histories, 82
management, 102
organizing principle for design, 15
and projects, 144, 314
and roles, 144
switching, 107, 229

Taskbar, Microsoft Windows, 3, 104,
110, 113–115

Task Gallery (system), 9–10, 15–17,
104, 122–133, 205, 223, 225,
283, 347

3D Rooms (system), 103
Time, organizing principle for design,

15, 29–30
TimeScape (system), 207, 284
Topos (system), 223
Tscherter, V., 10, 263, 290

Ubiquitous computing, 194–196, 224.
See also Pervasive computing

UMEA (system), 9, 264, 283, 313–
319, 347

Unifi ed activity, standard
representation, 348. See also
Activity

Users’ needs and preferences, 49,
56–58

Utopia project, 226

van Baalen, P., 209, 214
Velikovich, L., 168
Vicente, K., 267
Virtual desktop, 102–103, 225
Virtuality, software design, 23, 285.

See also Metaphors, software
design

Virtual private networks (VPNs), 211
Voida, S., 193–194, 348
Vygotsky, L., 212, 227

Wanga, A., 168
Web Forager (system), 103
Web 2.0, 337
Weil, F., 46
Weiser, M., 196
Westhoff, M., 168
Whittaker, S., 22, 154, 171, 269, 299
Wilhite, S., 304
Williges, R., 267
WinCuts (system), 96
Windows management systems, 102
WinFS (system), 283
Work environment as information-

processing system, 307–311
Workspace-level design, 296, 347. See

also Application-centric design;
Cross-application integration

WorkspaceMirror (system), 9, 264,
319–325, 347

Zhai, S., 10
ZoomScapes (system), 116

index.indd 360index.indd 360 12/4/2006 1:19:46 PM12/4/2006 1:19:46 PM

	Contents
	Acknowledgments
	1 Introduction: The Desktop Metaphor and New Uses of Technology
	I Designing Out of the Box
	Introduction to Part I
	2 Beyond Lifestreams: The Inevitable Demise of the Desktop Metaphor
	3 Haystack: Per-User Information Environments Based on Semistructured Data
	4 Explorations in Task Management on the Desktop
	II The Social Dimension of Personal Environments
	Introduction to Part II
	5 Personal Role Management: Overview and a Design Study of Email for University Students
	6 Soylent and ContactMap: Tools for Constructing the Social Workscape
	III From Tasks to Activities
	Introduction to Part III
	7 Supporting Activity in Desktop and Ubiquitous Computing
	8 From Desktop Task Management to Ubiquitous Activity-Based Computing
	IV Reflections on the Desktop Metaphor and Integration
	Introduction to Part IV
	9 Users’ Theories of the Desktop Metaphor, or Why We Should Seek Metaphor-Free Interfaces
	10 Toward Integrated Work Environments: Application-Centric versus Workspace-Level Design
	Conclusion
	11 Beyond the Desktop Metaphor in Seven Dimensions
	Contributors
	Index

