Programing o[
Microcontrollers
with X(C8

. Armstrong Subero

Programming

PIC Microcontrollers
with XC8

Armstrong Subero

Apress’

Programming PIC Microcontrollers with XC8

Armstrong Subero
Moruga, Trinidad and Tobago

ISBN-13 (pbk): 978-1-4842-3272-9 ISBN-13 (electronic): 978-1-4842-3273-6
https://doi.org/10.1007/978-1-4842-3273-6

Library of Congress Control Number: 2017962909

Copyright © 2018 by Armstrong Subero

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Technical Reviewer: Logan West
Coordinating Editor: Jessica Vakili
Copy Editor: Kezia Endsley
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3272-9.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3273-6

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s xi
Introduction ... ———————_———_ Xiii
Chapter 1: Preparing for Development.........c.cccennnnemmnnnssssnnnsnssssssnsnns 1
Gathering YOUr HArdWareoccoereecrnsererenesesesesesesse e ses e s sessesessenens 1
MICTOCONTIONIEN ... 2
PrOQrammMErcooeeeceecreseseee s 4
Gathering the SOfIWArEcceveeerc e 6
MPLAB® X IDEocvevrerererererereseesessssssssssssssssssssssssssssssssssssssesesesssssssssssasanas 6

XC COMPIIEIS ..ttt e 7
Setting UP SHOP ..o e 8
MURIMETET ... s 8
OSCillOSCOPE ..c.veveieirere et s e nne s 8
POWET SUPPIY ..ottt s 8
Shopping fOr SUPPLIESevvvvircirirere e 9
CONCIUSION ..ovveeiictrree e p e 13
Chapter 2: The C Programming LanguUageccurressssnnsesssssnnssssssnnnnss 15
C ettt R R A A e e e 15

C Programmingcccccereevereneriesesenesesesessssessssesessssessssesessesessesessssesssssnessssessnns 15

C Program STIUCLUIE........ccoveeerercrre et 16
COMMENLS ... s 17
Variables and Constants ... 17

iii

TABLE OF CONTENTS

Arrays, Pointers, and STrUCTUIES.........cvcvrerevrnrersere s s sesse e ssssessessens 19

00 T=T 1 (0] 22
Controlling Program FIOWc.cceeevvrervenierenensessessessssessessessssessessessessssessessenes 23
Preprocessor DIr€CHIVESccccvvevvererienien s s s 28
ASSEMDIY VS. Gt reresre s e sersessesas e ssessesss e ssessesssssssesseseesssessesassesssnesnees 31
0] T 1 S 32
Chapter 3: Basic Electronics for Embedded Systems.........ccccirnsnannnns 33
L= T 0] 1SS 33
RESISIOIS ...cvieecrccsrrcst et 33
POLENTIOMETEN ... s 36
Digital Potentiometer........ccccovvvvrennrrrre e e 37
PROTOFESISTON. ...t 38
{02 0 - T (0 OO 39
310 1T (0] S 41
TraANSTOIMEIS.....eccceeecereer s e nne e 42
DIOUE ... e 43
)41 o T o TSSOSO 44
Light EMItting DiOdecccoveeeresernesenesersse s s snssesessnnes 45

(I T T o TSSOSO 46
TrANSISTONS ...veeeveeriserr et nrnne s 47
Bipolar Junction TranSiStorscccvveevnresnesenese s 47
Darlington TranSiStorccovecvereseresernesene s 49
Field EffeCt TranSiStor.........coouveeveneresernsessnesess s s ssssesessessssssessnnes 51
Metal Oxide Semiconductor Field Effect Transistor (MOSFET)cocveernne. 51
Junction Field Effect TranSistorccccovvevnenersssnsessnsse s 52
Operational AMPIIfIEr ..o e 53

iv

TABLE OF CONTENTS

Digital EIECIIONICScevverirersie et e e 54
THE AND GALE......cceerererrnrsesese e s sns e 54
THE OR GALE......c.ccccereriecee e 55
THE NOT GAEE......cceerererrrieeese e 55
The NAND GAEE......ccccvererrricrseresrsssese e s 56
THE NOR GALE ... 56
The BUFfEr Gate.........c.curmnmnerinsssse s s 57
THE XOR GAL........cccrererirrrnisesesi e s 57

LOQIC-LEVE] CONVEISION.....ccverrererrerierrersesersersessessssersessessssessessessessssessessessssensessens 58
Run the Entire System 0N 3.3Vccvvvirienninsene e sese s ssesessessesees 59
Use @ Voltage DiVIdEr.........coevvriirieneniirsense s se s s e s s saenns 59
Use a Bi-Directional Logic Level ShIfterccvvievvrnieniennnensensesensssensensenns 60

(00411 L1 R 61

Chapter 4: PIC® Microcontrollersccccseressssssssssssnssssssssssssssssnnssnnas 63

PIC® Microcontrollers OVEIVIEWcocuvererenmrrssessnsesssssssssessssssssssssssssessssssesenns 63
Baseline PIC® MiCroCONIIOIIErSccovererenerreseressesessesessesesessesessesessssessnnes 63
Mid-Range PIC® MiCroCONIIOIIErSccocevererrenmrensesesesessesesessesessesessesensnnes 64
Enhanced Mid-Range PIC® Microcontrollers...........ccoueererenerenserensenessenerennes 64
High-Performance PIC® Microcontrollers............covevrrenerenerenscsensesessenesennes 64

PIC® 16F1717 BIOCK Diagramc.cccvmererenersnsessssesssssssssssessssessssessssessssssesenns 65

Program FIash MEmMOrY.......c.cccoerrininnninsnnsre s s s 66

Random ACCESS MEMOIYccoererierierrerirses s s s 66

L0 T T=T 1T U1 o] 67

IMCLR. ...t s s se e bbb e e e e 68

0] o 68

0nboard Peripherals ... e snes 68
Analog to Digital CONVEIEN.........ccocvrererenerrnsereseserese s s s sessesessesens 68
Digital to ANalog CONVEIETcoceeerrermrenerrresere s s ssnnes 69

TABLE OF CONTENTS

Capture/Compare/Pulse Width Modulation Module..........ccccvevververerensenieraen 69
L] £ 70
0] 1010 T 0] 70
Fixed Voltage REferencCe.......c.cccvverrvnsense s s e 70
Temperature INAICALOFccccvvriererrrrere e eaees 70
EUSART ...ttt 71
CLC ettt b 71
VISSP ...t 71
NCO.... e p e e e e e 71
ZOD ...ttt bR 71
00 SRR 72
Operational AMPIfIErSocvcvirievnrrsrere s e 72
High Endurance FIash BIOCK........c..cccucvverernninsenienenessesesessesessessesessessessesaes 72
The Enhanced Mid-Range CPU COre.c.ccvvvverrerverereesessessesesssssssessessessssesessees 72
POWEI-UP TIME ..c.veiteerererreserserersessssessessessessssessessesssssssessesssssssessesassessessesaes 74
Oscillator Start-Up TIMETccveerrevrreriereresessessesessssessesessesessessessessssssesseees 74
POWEI-0N RESEL.......cciieririncsire e 74
Watchdog TIMEK.......cvecererere e sa e sre e se e sne s 74
Brown-0ut RESEL ..o s 75
(00111 11T 75
Chapter 5: Connecting and Creating.........ccccrnnnsssmmssmmnnnnsssssssssssssnnens 77
Let’'s Get Started ... s 77
A LOOK at Programmersccoouoeeereresesnessesessssessesessssssssssesssssssssssssessssssssssees 77
A LoOK at Programmingccccoovververierenensensesessssessessesssssssessessessssessessessssssessenes 81
Traps fOr BEGINNEIS.....c.ccvveiirirrie et sr e s 86
Additional Information..........c.ccoovvrvrinnnrrrr e ————— 87
[0 0 e 11 S 87

TABLE OF CONTENTS

Chapter 6: Input and Qutputcccccrrniieennmnnsssnnmnsss e ————————— 89
LEt’S BEGIN 1/0.....coereececerie ettt 89
TRIS REGISTEN ...t e e e 89
PORT REGISIENceeeeerieerieer e 91
Output Latch REGISTErSccovvevrreneriernese s s s 91
Analog Select REGISIErScveiiirire e 91
WEAK PUIT-UP ..o sa s sssnsnas 92
Making an LED BIINK........cccvoeveririiriee e serses s sessee e se s ssse e ssessessnesnesae s 92
Using a PUShBULON.........cccoircrr s 110
Seven Segment DISPIAYSccovoeeerenernnerenesesese e 119
Seven Segment Display MUltipleXing.........c.ccovrvnernnernsenesssesnsesessesesesesessesenns 125
Project: Countdown TIMENcccvvcernesenesernsesssese e s snenes 132
Peripheral Pin SEIECT.........ccvevivrierere st sa e ene s 141
{0] T 11T (0] o 142

Chapter 7: Interfacing Actuatorscccuseemnrsssssnnnmsssssnssessssssnnssssnnns 143
INtroducing ACTUALONS........ccceereerecrr e 143
L0 1 o) o] ST 143
SEIVO MOTOK ...t s 148
STEPPEE MOTOK ...cveveeeerere e r e e s ae e e e nnens 157
{0] T 1110 o R 164

Chapter 8: Interrupts, Timers, Counters, and PWMcc.cccnnrrssnnns 165
Introduction to INterruptS ... ———— 165
USING TIMEIS ..ot s 172

Timer 0in TIMer MOUEc.ccoereeereerr e 172
Timer 0 in Counter MOde........cocveeeeeecrrcrerese e 177
Timer 0 With INterruptS......ccc v 183

vii

TABLE OF CONTENTS

USing the CCP MOTUIE.........ccevreverrererrererserersessssesessessesessessessessssessessesssssssessenes 189
Understanding PWIM.........ccoorrinnnnrsin s sessesssessesse s 189
USING PWIM ... 189

Project: Using PWM with @ Motor Driver ... 194

Project: Using CCP and Dedicated PWM with RGB LED.............ccccverierrcnniernenn 200

0] T 1o SR 207

Chapter 9: USART, SPI, and 12C: Serial Communication Protocols....209
Using USART (Universal Synchronous Asynchronous Receiver Transmitter)209

Serial Character LCDcccovevnvennenmneserssesesse s s ssssenens 210
USART t0 PC CommUNICALIONccceveeerrrerireserrese e sesse e sennes 219
TeXt t0 SPEECH ... ——————— 219
Using GPS (Global Positioning SyStems)ccccevvrierennnnneniesssensesesessessessenes 224
NMEA COMMANGScocrerrrirninmsesesssssssssess s s sesssssnsas 224
SOftWArE USART ..ot s 233
Using SPI (Serial Peripheral INterface)........ccvvvrveriernvensenseresessessesesessessessenns 242
Digital Potentiometer........oouvvvriernnnsre e ssesnens 244
Character DiSPlaY.......ccccvverereererserserersesersersessssessessessessssessessesssssssessessessssensessens 249
Character: The Hitachi HD44780 LCDccccovrrnnnsneseresesssesesesesssssneas 249
The SAMSUNG KSO0BEUcceverrerrerererensereressssessessessessssessessesssssssessessens 263
Using the 12C (Inter-Integrated Circuit) Protocolccccceveereccrnicneneccnnne, 263
EEPROM......cvtitctcrstetrrss e 264

L] 0 (e 11 o 276
Chapter 10: Interfacing DiSPlaysccceuusssennnmssssnnnnssssssnsssssssnnnsssssnnns 277
DISPIAYS...c.ervierrrrerrrree e 277
OLED DiSPIAYSeruereererereriersesensessessessssessessessssessessessessssessessessessssessessesssssssessens 278

viii

TABLE OF CONTENTS

TOUCK SCIEEN LCDcvecciriresisscee e 295
ReSIStIVE TOUCH.......cceriiririire e 296
CapaCItiVe TOUCK.......ccvverereererrere s res s s e s s e sa e s saesae e e saennes 297
Selecting a Touch Screen LCD.........cccvcerievrrenvenesesensessesesessesessessssessesseses 297
USiNg the TOUCK LCD.......cvvierverererersereseseesesessessesessessessesssssssessessssessessesnes 298

(00416 11 R 310

Chapter 11: ADC and DACcccervsssmnnsmssssssnssssssssssssssssssssssssssnssssssnns 311

Data CONVEISION........ccovecrercrerree s se e se e 31

ADC (Analog to Digital CONVEIrSioN)cccvvererrsseressesessesessssesessessssssesessesessenens 311

Project: Digital TRErMOMELErccoveerecernresrese e 316

DAC (Digital to ANalog CONVEIEN)ccevevrerrerererrerserersesessesessesessessessessssessessees 322

{0] T 11T (0] o 325

Chapter 12: NCO, Comparator, and FURccussmmmmmssssnssssssssssnsssssnns 327

CLC (Configurable LogicC Cell)........ccuucrrverrenereserinerenesesesesessesessesessesesessesenns 327

NCO (Numerically Controlled OSCIllator)...........ccoveermrencrnsererererese s 330

(0] 10 U= (0] OSSR S 333

FVR (Fixed Voltage REfErence)ccuveverenerrnsesmsesssssessssessseses e ssssessssssensnnes 338

CONCIUSION ...t 342

Chapter 13: Wi-Fi and Bluetooth..........cccccevvnsnssssnmmsnnnnnnsmmsssssssssnnnns 343

Low-Cost Wireless CONNECHIVITY......ccvrvvevrerierierennensererssesseressessssessessessssessessees 343

INtegrating Wi-Ficovcriincrrrn s 343
USING the ESPB266ccceururrrrnrnrrrnrseresesesesesesesesesesesessssssssssssssssssssssssnnas 344
Testing the ESP826B6..........c.cccvrererinernseninesess s sesesss e sessesessssesesesens 344

Project: Wi-Fi Data LOGQErccucrirennnnrenesnsisses s ssssessessenns 345

ix

TABLE OF CONTENTS

Integrating BIUETOOthcccoveviiircr 359
Using the HCO5 Bluetooth ModUIE........ccccveververerenenserseresessesesseseesessessesnes 359
Communicating via BIUEtOOthccccverevvinrrrr e 360

{10 T 1T 10 o O 365

Chapter 14: Watchdog Timer and Low POWETcccuuseensessssnnnnssssnnns 367

Low Power 8-Bit VS 32-Bit.........ccoeerrenerecrerererese e 367

SIEEP MOUE ...t e 368

WatChdog TIMEr ... e 373

Other Ways 10 CONSEIVE POWETccucevverereenenseressesessessessessssessessessessssessessens 378
Reduce the CIOCK FIEQUENCYcccvveververiererirrereresessesessessesessessessessssessessens 379
Reduce the Operating VoItageccccvvererennenieresnsensesesesessesessesessessessens 379
Power External Devices from 1/0 LiNESccorrmnnnmsmsesensnsssssesesssssnnns 379

{0 T 11T (0] o 380

Chapter 15: PIC® Microcontroller Projects........cccrusssmnnsrssssnnnsnssssnns 381

Project: Temperature Controlled Fan...........ccoocvrevrnccrnccnne s 381

Project: TOUCh SCreen CIOCK.........ouorrererenereeseresesessesesesese s s e sesnenes 390

L] e 11 o SR 422

Appendix A: RESOUICESouvusmsmsmsmsmssssssssssssssssssssssssssssssssssssssasasasasas 423
Appendix B: Making Your Own PCBs and Schematics..........ccuusu0ee 425

[117 T SO SRS S 425

AIGIUM Circuit MAKET ..o ssssssssesens 425

SCNBME-IL ...t 426

INA@X.ciiiiissnnnnnnnnnnnnnsssssssnnnnnnnnnnsssssssssnnnnnnnnssssssssnnnnnnnnnsnsssssssnnnnnnnnnnnss 427

About the Author

Armstrong Subero has been tinkering with electronics for as long as he
can remember. The thrill of creating something from the ground up and
watching it work is something that he never tires of. His entire life changed
when he discovered microcontrollers. They were so powerful and simple
and complex all at the same time. When he finished school, he taught
himself programming and, for a while, worked part-time from a home
office. He landed his first job as a systems technologist completely
self-taught and a lot of it was due to his in-depth knowledge and

passion for the microcontroller technology. Armstrong has used many
microcontroller families during the course of his work, but he has an
affinity for PIC® microcontrollers. Armstrong currently works for the
Ministry of National Security in his country. He designs robots and writes
books, blogs, and software on trinirobotics.comand angelstemlabs.org
in his free time.

Introduction

With the onset of the Internet of Things (IoT) revolution, embedded
systems development is becoming very popular in the maker community
and the professional space as well. IoT is a trillion-dollar business. PIC®
microcontrollers are one of the technologies that can be used to develop
IoT devices. This is due to the low cost, wide availability, and low power
consumption of these devices. Additionally, due to the wide range of PIC®
microcontrollers available, there are PIC® microcontrollers that can match
your designs, from 8 pins to over 144 pins. They covers 8-, 16-, and 32-bit
architectures.

People argue that 8-bit architecture is irrelevant in the complex
embedded systems of today. However, 8-bit microcontrollers are here to
stay, even if it is for the simple purpose of learning about microcontroller
architecture. The relatively simple and beautifully engineered architecture
of 8-bit PIC® microcontrollers makes them invaluable for learning
the inner workings of microcontrollers. It is a lot easier to learn all the
registers of these simple 8-bit devices and follow the path of program
execution than with more complex ones. After learning about PIC®
microcontrollers, I found it easy to move on to the more popular 16-bit
and then 32-bit devices. In this book, I hope to share the tips and tricks I
learned along the way.

Why Did | Write This Book?

When I first started programming PIC® microcontrollers, I imagined that
a lot of information would be available on the Internet on which people
could base their designs. Little did I know at the time that programming

xiii

INTRODUCTION

these useful devices would take a lot of work, dedication, and finding code
that actually worked. In addition, when I did find code, it was usually for
ancient PIC® microcontrollers that are NRND or have a lack of modern
peripherals and capabilities. When I finally did find a suitable language in
the name of HI-TECH C for the PIC® microcontroller series, I found out
that XC8 would be released to take its place. Despite being compatible
with HI-TECH C, I realized upon using the compiler that a lot of the code
did not work out of the box and a lot of my libraries had to be rewritten.
This was a time-consuming process and the lack of information on the
language was frustrating, leaving me to think that XC8 was not everything
I expected it to be.

Alot has changed since then. Now I love XC8 and all the features it
provides and I'm thankful that Microchip provides it free of cost. A lot of
people might wonder why I chose XC8 to program PIC® microcontrollers
when other simpler options in BASIC and C exist with a lot of libraries
available. To them I say that even if those languages are easier to use,
there are some versions where the libraries are not open and thus
cannot be examined. In cases where software must receive government
approval, closed libraries are not an option. Also, the knowledge gained
from writing your own libraries is invaluable. Microchip technology
provides the MPLAB® Code Configurator (MCC) that can generate code
to use the onboard peripherals of a lot of PIC® microcontrollers and,
even more recently, for Click boards using the ubiquitous mikroBUS for
communication. The other reason is that by learning to use the compiler
provided by the manufacturer, you avoid the problem of a chip with a killer
new feature not being supported by the manufacturer of a third-party
compiler. For the sake of understanding exactly what is happening, I make
minimal use of the MCC in this book despite its ease of use.

Xiv

INTRODUCTION

Who Is This Book For?

For this book, you will need some basic electronic devices and some
electronic equipment and knowledge of how to use them. I expect that

the reader has knowledge of the C programming language. Knowledge of
variables, loops, and basic data structures will suffice. I also assume you
have knowledge of basic digital electronics. I also make the presumption
that you have used another simpler platform, such as Arduino, since the
focus of this book is on the specifics of the PIC® microcontroller.

A complete newcomer can follow along, but this book is heavy on code,
schematics, and images and focuses less on the theoretical aspects of using
microcontrollers.

What You Will Need for This Book?

You will need a few components to get all the examples up and running.
All of these are covered in Chapter 1. I know of individuals who build
microcontroller circuits in simulation. I recommend building the actual
circuits to gain hands-on experience that will help you in the industry.
Unlike other programming disciplines, embedded systems development
allows you to build things that can be used in our physical world, not just
push pixels around the screen. I have also found it more enjoyable to
prototype circuits, as you also learn valuable skills in circuit design and
troubleshooting that you will have for a lifetime. Although for many people
using a development board is simpler, for those wanting a true “hands-on”
approach to learning, prototyping on breadboards is a valuable skill.

INTRODUCTION

What Will You Learn in This Book?

This book consists of 15 chapters that will help you get on your way to
programming PIC® microcontrollers in XC8.

o Chapter 1 looks at setting up shop, including the
hardware and software necessary to get the most out of
this book.

o Chapter 2 covers the basics of the C programming
language.

o Chapter 3 reviews the basics of electronics.

o Chapter 4 presents the basics of PIC® microcontrollers
and looks at the PIC16F1717.

o Chapter 5 covers the basics of connecting your PIC®
microcontroller to your computer.

o Chapter 6 presents the basics of I/0, including PPS,
interfacing LEDs, push buttons, and seven segment
displays.

e Chapter 7 demonstrates using actuators, DC motors,

SErvaos, and stepper motors.

o Chapter 8 examines the use of interrupts, timers,
counters, and PWM.

o Chapter 9 presents the use of serial communication
protocols, including USART with GPS and GSM, SP],
and I2C.

o Chapter 10 looks at using displays including the
SSD1306 and Nextion touch screen displays.

INTRODUCTION

o Chapter 11 consists of understanding the ADC and
DAC.

o Chapter 12 covers using the onboard peripherals of the
CLC, NCO, Comparator, and FVR.

o Chapter 13 takes us into the wireless connectivity with
Wi-Fi and Bluetooth.

o Chapter 14 demonstrates the use of the low-power
features of the microcontroller, minimizing power
consumption and the WDT.

o Chapter 15 is a project-based chapter where we build
two projects.

Upon finishing this book, I hope that you will have the foundation you
need to take on the world of embedded systems design and build useful
gadgets, IoT devices, and beyond. This is the book I wish I had when I was
getting started with PIC® microcontrollers.

xvii

CHAPTER 1

Preparing
for Development

It would be nice to be able to jump right into building projects and using our
microcontroller. However, before we do so, we need to properly set up our
environment for working. This chapter is catered to people who have used
microcontroller platforms such as Arduino, PICAXE, or Basic Stamp-based
platforms and want to build barebones microcontroller systems. Beginners
should have no trouble following along though. If you have experience
breadboarding circuits or using ICSP tools or have previously used PIC®
microcontrollers, you may skip this chapter. However, I strongly recommend
that you read this chapter, as it provides a lot of insight as to what you need
as well as getting everything prepared.

Gathering Your Hardware

This is the first chapter on your journey to embedded systems design with
PIC® microcontrollers and XC8. The first thing we will do is gather the
necessary components you will need to follow along with this book. Long
gone are the days where a couple thousands of dollars would be needed
to begin microcontroller development. For relatively little money, you can
experiment with microcontroller development. This is especially true of
PIC® microcontrollers, where for a few pennies, you can purchase one of
these ubiquitous beasts.

© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_1

CHAPTER 1 PREPARING FOR DEVELOPMENT

People familiar with programming place emphasis on writing
programs, while people with a background in electronics place emphasis
on building the circuits for the controllers. I have found that both are
equally important and, as you follow along with this book, remember that
not everything can be solved using software. If you correctly learn how
the hardware operates, you could potentially write very little code that
combines hardware in unique ways to get the desired result.

Let’s jump into it and look at the things you will need.

Microcontroller

Although the book generally assumes that you have some experience
with microcontrollers, this section reviews the basic microcontroller
technology. Read this section thoroughly if you're a first-time user of
microcontrollers. The information you learn in this section will not only
be applicable to PIC® microcontrollers, but also to other microcontrollers
you may use.

General-purpose computers such as the smartphones, tablets, laptops,
and desktops are designed to perform a variety of tasks. A laptop or tablet
can be used to read books, watch movies, and even write programs and
web applications. This is because they were designed for that purpose,
thanks to the integration of the microprocessors into these units that allow
them to perform these many different tasks.

The microprocessor, however, is not an island. It is dependent on
supporting circuitry in order to work properly. These include RAM chips,
SSD, and other peripherals. While it is revolutionary, the strength of the
microprocessor is also its shortcoming. Although it can perform general
tasks, it may not be the best solution for performing a single task.

Let’s take the example of an electric toothbrush. If we want to design
a basic electric toothbrush, then some basic considerations must go into
its function. The toothbrush must turn on a motor when the user pushes a
button and alert the user if they have been brushing their teeth too long. In

CHAPTER 1 PREPARING FOR DEVELOPMENT

such an instance, a minimum of processing power is needed to adequately
perform this task. Yes, it is possible to program a board that contains a
4GHz 64-bit processor with 16GB of RAM running the latest OS to do this
task, but that would be akin to using a lawnmower to shave your legs. It
would be better for many reasons to use a microcontroller.

So what exactly is a microcontroller? A microcontroller is a self-
contained unit that has a microprocessor with RAM, ROM, I/0, and a
host of other peripherals onboard. Thus a microcontroller contains all the
processing power necessary to perform the specific task at hand and that
task alone. Back to the toothbrush example, it would be more feasible to
use a 4-bit microcontroller with a few bytes of RAM and ROM to check
the switch, turn on the motor, keep track of how long the user has been
brushing, and sound an alarm if that time exceeds some preset value.

Microcontrollers are used for applications that have specific
requirements such as low-cost, low-power consumption and systems that
require real-time performance. It is thanks to these features that a world
where computers are becoming increasingly ubiquitous is now possible.

At the time of writing, there are 4-, 8-, 16-, and 32-bit microcontrollers.
Anyone looking to start a new design should realistically choose an 8-bit
or a 32-bit microcontroller. Large volume, low-cost, and lowest power
consumption 8-bit devices generally tend to have an edge. Whereas
for higher performance applications, 32-bit devices are the obvious
choice. It is very important that you do not get attached to one particular
microcontroller. There are people who insist that they can do anything
with 8-bits, whereas others only use 32-bit parts. You must realize that
microcontrollers are simply tools applied to the particular task, so it stands
to reason that some tasks are better suited to 8-bit microcontrollers and
others to 32-bit ones.

The microcontroller we use in this book is the 8-bit PIC16F1717
(see Figure 1-1). The PIC® microcontroller was chosen because it has a
relatively simple architecture. Once you understand 8-bit PIC®
microcontrollers, it’s easy to understand more complex micros. I chose this

CHAPTER 1 PREPARING FOR DEVELOPMENT

particular PIC® microcontroller because it is a modern device and has a

lot of onboard peripherals. It also has a relatively large amount of RAM and
program memory and, most importantly, a lot of onboard peripherals. There
are members of its family with the same features that have a smaller pin count.

Figure 1-1. PIC16F1717 in DIP package

A benefit of this particular microcontroller is that, in addition to being
modern, it is produced in a DIP package, which makes it very easy for
prototyping on a breadboard. Therefore, you use it to test your design and
use an SMD version in the final version of your product.

Programmer

A microcontroller is a blank slate without a program. Microcontrollers and
other stored program devices rely on a programmer to load the program to
the chip. I have found that using a microchip makes it easiest to understand
how to program devices. Many device vendors have extremely expensive
tools that are hard to find, even on their own web site! In order to program
PIC® microcontrollers, you need a PICkit™ 3 or an MPLAB® ICD 3.

I personally have used both and highly recommend that you buy an ICD 3.
The reason is that the ICD 3 is much faster and saves you a lot of time in
programming and debugging, especially if you plan on moving up to the
larger devices. However, you should only buy the ICD 3 if you are certain
that you will be working with PIC® microcontrollers for a long time, as

CHAPTER 1 PREPARING FOR DEVELOPMENT

at the time of writing, it costs over $200. The PICkit™ 3 may be used if you
are evaluating the PIC microcontroller series, as it is available for $50.00.
Generally, get the PICkit™ 3 if you are evaluating PIC® microcontrollers and
the ICD 3 if you intend to work with these devices for a while.

Figure 1-2 shows the PICkit™ 3 and Figure 1-3 shows the ICD 3.

3
r
:
b
2
3
=

Figure 1-3. ICD 3

The ICD 3 uses an RJ-11 type adapter. I recommend that you get this
programmer as well as an adapter to allow for easy breadboaring from
RJ-11 to ICSP.

CHAPTER 1 PREPARING FOR DEVELOPMENT

Gathering the Software

The hardware is necessary for building the circuits. However, we are not
fiddling with 555 timers here! We need software to make everything work.
All the software needed to program PIC microcontrollers can be found on
the Microchip Technology web site.

MPLAB® X IDE

I have heard people complain about the old IDE microchip thousands

of times. Let me assure you that MPLAB® X is nothing like MPLAB®

IDE (see Figure 1-4). It is a lot better. Microchip technology has come a
long way. I have used a lot of vendor tools and Microchip offers the most
effective plug-and-play functionality I have come across. Some rather
pricey compilers don’t offer much more over the ones provided for PIC®
microcontrollers. In fact, Microchip even offers an IDE that is cloud based!
This cloud-based MPLAB® Xpress IDE is best suited for new users or if
you want to program the microcontroller on a machine that you need
special permissions for. A good example of this is would-be students or a
corporate environment where going through the IT department would be a
lengthy process.

If you purchased an Xpress evaluation board and are still not sure if
you want to use the PIC® microcontroller, then you may use the cloud-
based IDE to get up and running quickly. However, if you decided on using
PIC® microcontrollers then the on-premises software for microcontroller
development is a lot better. The primary reason is that if something goes
wrong, you can be assured that it is not a connection problem. The other
reason is that as your code grows and your skills develop, you will need all
the features of MPLAB® X, which has the power of NetBeans behind it.
Stick with the on-premises software.

CHAPTER 1 PREPARING FOR DEVELOPMENT

I know there are going to be those among you who prefer to use a
command-line interface and text editor. In fact, I also enjoy that method of
doing things, when there is no IDE available. I like the KISS principle—let’s
not make things more complicated than they need to be. This book takes a
pragmatic approach. IDEs are simple to use. Thus we use them.

O M 0 - o

Pl G Yow Mecspste Sowrve Aefectes Fus Dubug Tasm Tesh Windew Halp Qe tam
HEES D ¢ T b -5 - W o sbakeni] s ¥ e ole &P D
=8

ﬁ'\ MICROCHIP

LEARN & DISCOVER | MY MPLABS X IDE | WHATS NEW

MY MPLAB® X |

Recent Projects Microchip Login

References & Featured Links

* Toums () metcarrs »

Figure 1-4. MPLAB X IDE

XC Compilers

Alot of people don’t value compilers. Many vendors boast about how
easy it is to get started with their chips and pack mouthwatering goodies
into every bite of silicon. However, they make the compilers so expensive
that they aren’t worth it in the end. Microchip offers the XC compilers to
get started with PIC® microcontrollers. The best part is it’s free of charge.
In this book, I focus on XC8. However, be rest assured that once you get
over the learning curve of how this compiler operates, you will be thankful
that you chose to use PIC® microcontrollers. This is because it is easy to
transition from 8- to 16- and 32-bit microcontrollers without having to
learn a totally different environment. The XC8 compiler is available for
download on the Microchip technology web site.

CHAPTER 1 PREPARING FOR DEVELOPMENT

Setting Up Shop

In this book, I interface the microcontroller to a lot of modules and design
a lot of circuits. However, if you want to do likewise, it is very important
that you acquire at least a minimum of equipment to be able to get the
most of this book. Recommended equipment is covered in the following

sections.

Multimeter

The multimeter is a staple of electronics. Therefore I highly recommend
you invest in at least fwo multimeters. The reason you need at least two
is because you need to measure voltage and current at the same time.
For this book, any multimeter that has the ability to measure DC voltage,
current, and resistance should suffice.

Oscilloscope

No electronics workbench, lab, or shop is complete without an
oscilloscope. This device is undoubtedly one on the most important
test instruments you'll have, particularly when you’re working with
microcontroller-based circuits. Even if you do not want a full scope, I
recommend you get the Velleman pocket oscilloscope. It is reasonably
priced and works rather well for basic work.

Power Supply

Make sure to get a good bench power supply. The 1.2v-15v range and at
least a 5 amp rating will suffice.

CHAPTER 1 PREPARING FOR DEVELOPMENT

Shopping for Supplies

When starting with microcontrollers and electronics in general, people
often wonder where they can buy supplies and items. In general, you

can buy most of these items from Amazon, eBay, Digi-Key, Mouser
Electronics, or and AliExpress. I recommend you buy passives from sites
like AliExpress and eBay, as you are likely to get better deals on these in
the Chinese market. However microcontrollers, active devices in general,
and programmers should always be bought from reputable suppliers, as
they may not be genuine or may not function as required. In fact, there are
instances where companies bought chips (namely ATmega328p) from the
Chinese market and it turned out that these chips were total imitations and
did not work.

To sum it all up: be vigilant when purchasing electronic components
and equipment. If it’s too good to be true, then stay away. Do not buy it.

In general you need to set up a basic electronic shop. You need various
resistors, capacitors, and a few semiconductors and of course your basic
side cutters, pliers, and screwdrivers.

Table 1-1 lists the components you need to purchase to get the most
out of this book.

CHAPTER 1 PREPARING FOR DEVELOPMENT

Table 1-1. Recommended Hardware for This Book

Item Quantity Vendors

Product Numbers

ICD 3/PICkit 3 1 Digi-Key Electronics

Mouser Electronics

PIC 16F1717 1 Digi-Key Electronics

Mouser Electronics
ESP8266 Wi-Fi 1 Digi-Key Electronics
Module

Mouser Electronics

Logic Level 2 Digi-Key Electronics
Converter Module

Mouser Electronics

PG164130-ND (PICKit™ 3)
DV164035-ND (ICD 3)

579-PG164130 (PICKit™ 3)
579-DV164035 (ICD 3)

PIC16F1717-1/P-ND
579-PIC16F1717-1/P
1188-1154-ND

909-MOD-WIFI-ESP8266
1568-1209-ND

474-B0B-12009

2n2222 or Similar 2 Digi-Key Electronics ~ 2N3904FS-ND
(2N3904)

Mouser Electronics 610-2N3904
LM34 Temperature 1 Digi-Key Electronics ~ LM34DZ/NOPB-ND
Sensor

Mouser Electronics 926-LM34DZ/NOPB
Nextion 1 ITEAD Studio IM150416002
NX3224T024_11
Touch LCD

Amazon ASIN B015DMP45K

(continued)

10

Table 1-1. (continued)

CHAPTER 1

PREPARING FOR DEVELOPMENT

Item

Quantity Vendors

Product Numbers

SSD1306 OLED 1
(12C)

24LC16B EEPROM 1

HD44780 1
Character LCD

MCP4131 Digital 1
Potentiometer

Amazon ASIN

AliExpress (Various
Sellers)

Digi-Key Electronics
Arrow Electronics

Digi-Key Electronics

Adafruit Industries

Digi-Key Electronics

Arrow Electronics

BO1G6SAWNY

24LC16B-1/P-ND
24LC16B-E/P
1528-1502-ND

181
MCP4131-104E/P-ND

MCP4131-103E/P

SIM800L GSM 1 Amazon ASIN BO1A8DQ53E
Module

AliExpress (Various

Sellers)
UBLOX Neo-6M 1 Amazon ASIN B071GGZDDR
GPS Module

AliExpress (Various

Sellers)
EMIC 2 TTS 1 Parallax Inc. 30016
Module

SparkFun Electronics DEV-11711

(continued)

11

CHAPTER 1

Table 1-1. (continued)

PREPARING FOR DEVELOPMENT

Item Quantity Vendors Product Numbers
Serial LCD Module 1 Parallax Inc. 27977

Digi-Key Electronics ~ 27977-ND
RGB LED 1 Digi-Key Electronics ~ 754-1492-ND

SN754410NE 1

ULN2003 1

Servo Motor 1

5v Stepper Motor 1
Brushed DC Motor 1

Seven Segment 2
Displays

Pushbuttons 5

LEDs 10

1N4001 Diode 2

Mouser Electronics
Digi-Key Electronics
Mouser Electronics
Digi-Key Electronics
Mouser Electronics
Jameco Electronics
Mouser Electronics
Jameco Electronics
Digi-Key Electronics
Mouser Electronics

Digi-Key Electronics

Mouser Electronics
Digi-Key Electronics
Mouser Electronics
Digi-Key Electronics
Mouser Electronics
Digi-Key Electronics

Mouser Electronics

604-WP154A4SUREQBFZW
296-9911-5-ND
595-SN754410NE
497-2344-5-ND
511-ULN2003A
1528-1075-ND
485-154

237825
1528-1150-ND
485-711
754-1467-5-ND

630-HDSP-513E
P8011S-ND
667-EVQ-PACO7K
C503B-RCN-CWO0Z0AA1-ND
941-C503BAANCY0B025
641-1310-3-ND
821-1N4001

12

(continued)

CHAPTER 1 PREPARING FOR DEVELOPMENT

Table 1-1. (continued)

Item Quantity Vendors Product Numbers
10 uF Capacitors 2 Digi-Key Electronics ~ 493-4771-1-ND
Mouser Electronics 647-UCA2G100MPD1TD
1k Resistors 10 Digi-Key Electronics ~ CF14JT1KOOCT-ND
Mouser Electronics 71-PTF561K0000BZEK
10k Resistors 10 Digi-Key Electronics CF14JT10KOCT-ND

Mouser Electronics 279-YR1B10KCC

In addition, you need an HC-05 Bluetooth module, which can be found
on various sellers on AliExpress and Amazon. Make sure to have a bench
to dedicate solely to electronics work and you will also need to buy some
storage containers for all your components. Unlike using platforms, where
everything is on a board that you can simply pack away in a kit, setting up
your chip on a breadboard requires time. Therefore, having a dedicated
workbench will save you a lot of time.

Conclusion

That brings us to the end of the first chapter. In this chapter, we covered
gathering the required hardware and software to get started with PIC®
microcontroller development. This chapter laid the ground work required
to continue your fascinating journey. While you are waiting for your items
to arrive, you may take a look at the next chapter, which focuses on getting
you acquainted with the C programming language.

13

CHAPTER 2

The C Programming
Language

C

C. The language we all love to hate. We've seen C++, Java, C#, Go, Python,
and a host of other languages come and go. Yet C remains. C was, is, and
will be. Assembly used to be the language of choice for programming
8-bit microcontrollers. However, the newer PIC® microcontrollers have
a C-optimized architecture and a lot of memory. Assembly does have
its place and it is still sometimes needed to optimize code. C programs
typically occupy more code space than an equivalent Assembly one. In this
book, I make an effort to maintain KISS principles; therefore, we use the
simpler solution, which is C. So let’s look at some basic C.

This chapter can be skipped if you are a C programming guru, for
anyone else though, it’s best you read this chapter.

C Programming

The C programming language was designed at a time when computing
power was at a fraction of what it is today. Forget gigabytes of memory,
there were kilobytes. Forget gigahertz of computing speed, we are
talking megahertz here. Its sounds familiar, doesn'’t it? Kilobytes of

15
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_2

CHAPTER 2 THE C PROGRAMMING LANGUAGE

memory and a speed measured in megahertz. In fact, it sounds like a
PIC® microcontroller, does it not? That’s essentially why C is ideal for
programming microcontrollers.

C Program Structure

C programs have a structure they must follow. Listing 2-1 is a typical
C program.

Listing 2-1. Typical C Program

/* This is a comment that usually contains information such as
the name of the author, date and program name and details */

// This is where files are included and preprocessor directives
take place

#include <stdio.h> // This is an example of a header file

// This is the main function, all C programs have a main
function and
// This is where program execution begins

int main(void)
{ 7/ opening parentheses very important
printf("Hello World!"); // some code is executed

return 0; // no code is executed after a return statement
} // closing parentheses

As you see, the typical C program has a comment block, include files,
and a main function. As we examine further programs, you will notice that
this template is maintained.

16

CHAPTER2 THE C PROGRAMMING LANGUAGE

Comments

Comments are used in your program to describe lines of code. Comments
are very useful because they help you remember what your code does.
Comments can be used as needed, as they are completely ignored by

the compiler. The C language uses comments that can be written using
forward slashes and asterisks (see Listing 2-2).

Listing 2-2. Comments Using Forward Slashes and Asterisks

/* This is a comment
that can be used
to span multiple lines */

Comments can also be written with two forward slashes and these
occupy one line (see Listing 2-3).

Listing 2-3. Comments Using Two Forward Slashes

// This comment occupies one line

Variables and Constants

Avariable in C is a name used to refer to some location in memory and
allows the programmer to assign a value to that location. Variables can

be changed during the execution of a program unless they are explicitly
declared as constants. Variables must be declared before they are used in a
program (see Listing 2-4).

Listing 2-4. Declaring a Variable

// This is a variable being declared
int A;

17

CHAPTER 2 THE C PROGRAMMING LANGUAGE

After being declared, a variable can be initialized, that is to say, it can
have an initial value assigned to it (see Listing 2-5).

Listing 2-5. Initializing a Variable

// This is a variable having a value assigned
A = 10;

Variables can also be declared and initialized at the same time
(see Listing 2-6).

Listing 2-6. Declaring and Initializing a Variable

// This is a variable being declared and initialized at the
same time.
int A = 10;

In the Clanguage, variables may be of different types. For example,
the variables used to store letters are different from the one used to store
numbers. Table 2-1 shows some of the common variable types available in
the C language.

18

CHAPTER2 THE C PROGRAMMING LANGUAGE

Table 2-1. Common variables

Variable Definition Example

char This variable type is used to store 1 char A = 'A’
single characters.

int This variable type stores integers. 1 int A = 1;

float A float is used to store decimal 1 float A =
numbers and usually hasupto 23 6.1234567890...23
significant figures.

double These are used to store decimal 1 double A =
numbers and usually have up to 52 01234567890123456789...52
significant figures.

Constants Constants can be thought of as 1 const int A = 10;

special variables where the value
cannot be changed. Constants are
declared using the const keyword.

Arrays, Pointers, and Structures
Arrays

In C, an array is a type of data structure that can store several items, known

as elements, of the same array. Arrays are very useful in C and embedded

programming. The use of an array is fundamental when working with PIC®

microcontrollers. An array can be declared with or without a specified size.
Example:

int temperatures[5] = {29, 25, 26, 25, 28};
The same sequence can be written as follows:

int temperatures[] = {29, 25, 26, 25, 28};

19

CHAPTER 2 THE C PROGRAMMING LANGUAGE

Elements of an array are accessed with the first element having an
index of 0. These elements are accessed as follows:

int monday = temperature[0]; // monday will have value 29

You may also assign a value to a single element of an array using the
following:

temperatures[2] = 27; // element 2 now has the value of 27

Pointers

The pointer. Many people have difficulty grasping the simple proposition.
Pointers are powerful. Although I sparingly use pointers in this book, they
are one of the most important C concepts.

Most people are confused as to what a pointer is and its purpose.
A pointer is just another variable. Think of pointers like an int, char,
or float. We know that an int stores numbers, char stores individual
characters, and float stores decimal numbers. However, don’t let the
asterisk and ampersand scare you.

A pointer simply is a variable that stores the memory address of
another variable. It is quite simple to understand. Listing 2-7 shows an
example of how to declare a pointer and common assignment.

Listing 2-7. Declaring a Pointer

// an integer declaration
int num;

// a pointer to an integer
int *num_pointer;

// the pointer now has memory address of the integer 'num'
num_pointer = #

20

CHAPTER2 THE C PROGRAMMING LANGUAGE

See how simple pointers are to use? If you still have difficulty
understanding them, then do some further research. There are entire
books dedicated to the use of pointers.

Structures

You can get by with most simple C programming just by using arrays.
However, when you want to store several data types, you must use a
structure.

The struct keyword is used to declare structures. Listing 2-8 shows
how you declare a structure.

Listing 2-8. Declaring a Structure

struct Speed{
byte slow;
byte normal;
byte fast;

};
To use a struct, you declare a type of the struct (see Listing 2-9).

Listing 2-9. Declaring a Type of Structure

// Declare MotorSpeed of type speed
struct Speed Motorspeed;

You then access a member of a structure with a dot (.) as the member
access operator as follows:

MotorSpeed.slow = 10;

structs are very useful when programming microcontrollers.

21

CHAPTER 2 THE C PROGRAMMING LANGUAGE

Operators

Mathematics and logic are what a CPU thrives on. In C, there are
many symbols that allow the microcontroller to perform logical and
mathematical functions. I briefly go over them in Listings 2-10 through
Listing 2-12.

Listing 2-10. Examples of Arithmetic Operators

// Addition operation adds operands
X+Y;

// Subtraction operation subtracts operands
X-Y;

// Multiplication multiples operands
X *Y;

// Division divides operands
X/,

// Modulus finds remainder after division
X%Y;

// Increment increases value by one
X++;

// Decrement decreases value by one
Y--;
Listing 2-11. Examples of Relational Operators

// Checks for equality
X ==Y,

22

CHAPTER2 THE C PROGRAMMING LANGUAGE

// Checks that values are not equal
X I=Y;

// Determines if first operand is greater than the second
X>Y;

// Determines if first operand is less than the second
X<Y;

// Checks if the left operand is greater than or equal to the
right one
X>=Y,;

// Checks of the left operand is less than or equal to the
right one
X<=Y;

Listing 2-12. Examples of Logical Operators

// Logical AND operator
X 8& Y,

// Logical OR operator
X 1Ys

// Logical NOT operator

1(X)

Controlling Program Flow
if Statement

The if statement is used to make decisions within a program
(see Listing 2-13).

23

CHAPTER 2 THE C PROGRAMMING LANGUAGE

Listing 2-13. Example of an if Statement

if (speed == 200)

{
turnLightOn();

}

else Statement

The else statement allows the programmer to perform another action and
is a complement to the if statement (see Listing 2-14).

Listing 2-14. Example of an else Statement

if(speed == 200)

{
turnLighton();

}

else

{
keepLightOff();

}
else if Statement

Sometimes we need to test for more than two conditions of the program
and that is when we use an else if statement (see Listing 2-15).

Listing 2-15. Example of an else if Statement

if(speed == 200)

{
turnRedLightOn();

}

24

else if (speed == 150)

{

turnYellowLightOn();

}

else

{
}

switch statement

CHAPTER2 THE C PROGRAMMING LANGUAGE

The switch statement is used when we need to compare a variable against

different values (see Listing 2-16). It is used in situations where excessive

if and else if statements would have been used. You must remember to

include break statements within the cases; otherwise, the flow would fall

to subsequent cases until a break statement. The default case is used when

none of the other cases is true.

Listing 2-16. Example of a switch Statement

switch (speed)
{

case 100:
beepOneTime();
break;

case 150:
beepTwoTimes();
break;

case 200:

case 250:
turnOffEngine();
break;

25

CHAPTER 2 THE C PROGRAMMING LANGUAGE

break:
keepEngineRunning();

}

for Loop

The for loop is used when you need to execute a sequence of statements a
number of times (see Listing 2-17).

Listing 2-17. Example of a for Loop

for(int x = 0; x<= 10; x++)

{

spi_send(0x01);

delay ms(1000);

}

while Loop

The while loop repeats a group of statements while the condition
specified is true (see Listing 2-18). while loops are very important in
embedded systems and are typically used to create an infinite loop since
there is usually no operating system to keep the program running. All the
programs in this book utilize an infinite while loop.

Listing 2-18. Example of a while Loop

while(1)
{

readSensor();
checkBattery();
updateDisplay();

}

26

CHAPTER2 THE C PROGRAMMING LANGUAGE

do Loop

The do loop works just like the while loop, except that it checks the
conditions of the loop after execution and it will execute at least once. See
Listing 2-19.

Listing 2-19. Example of do Loop

do
{

temp = readTemperature();
} while(temp < 40);
break Statement

The break statement is used to terminate a loop and, when it’s used, the
statement immediately following the loop is executed (see Listing 2-20).

Listing 2-20. Example of a break Statement

if (temperature > 35)
{

break;
}
continue Statement

The continue statement causes a skip in the rest of the current iteration of
the loop to take place (see Listing 2-21).

Listing 2-21. Example of a continue Statement

for (i = 0; i < 1023; i++)

{

if (i » 100 && i < 400)

27

CHAPTER 2 THE C PROGRAMMING LANGUAGE

{

continue;

}

spi_send(0x02);

}

goto Statement

The goto statement is looked upon with shame. However, there are
instances when an unconditional jump is useful. Although using the goto
statement often leads to spaghetti code, it is useful to understand how it
operates.

The goto statement simply transfers the program flow to a point in
the program that has a label (see Listing 2-22). The one time it may be
necessary to use a goto loop is when there are deeply nested for loops or
if statements.

Listing 2-22. Example of a goto Statement

myLabel:
turnOnSomething();

goto mylabel;

Preprocessor Directives

Before we discuss preprocessor directives, let’s take some time to think

a little about IDEs and compilers. The IDE (Integrated Development
Environment) is basically a program just like your text editor, browser, or
video game. The difference is that the IDE program has a special purpose.
It contains everything you need to develop the program that will run on
your microcontroller. That means it consists of various parts, such as a

28

CHAPTER2 THE C PROGRAMMING LANGUAGE

code editor where you type your code, a debugger that helps you look
for errors in your code, and a lot of other things that simplify the whole
process of development.

One such part in the IDE is the compiler. A compiler converts your
code (in this case written in C) into instructions that the microcontroller
will understand. When this code is compiled, it is converted into
something called an object file. After this step, basically a component
called the linker takes these object files and converts them into the final
file that will be executed by your microcontroller. There may be other steps
in this process of generating the final hex file (program to be written to the
microcontroller), but this is all you need to know.

Now we can understand what a preprocessor directive is. The
preprocessor is another part of the IDE that uses directives, which cause
the C program to be edited prior to compilation.

These preprocessor directives begin with a hash tag symbol. In XC8,
you will encounter preprocessor directives a lot, especially with libraries
that are designed to target more than one chip.

#define

The #define directive is the first we will look at. The #define statement in
C defines macros. This statement is used a lot in embedded programming
and is very useful. Instead of having to keep typing some constant, it is
easier to use the #define directive. This is also useful in instances where
constants may need to be changed.

For example, if we are writing a driver for an LCD that comes in two
compatible variants—128x64 and 128x32—then instead of having to
constantly write those numbers, since the dimensions of the LCD would
remain the same, it is easier to write it as shown in Listing 2-23.

29

CHAPTER 2 THE C PROGRAMMING LANGUAGE

Listing 2-23. Define Macros Using #define

#define LCD_HEIGHT 128
#define LCD WIDTH 64

A little warning though: Remember to omit the semicolon after the
macro as it will generate compiler errors. Another important use of the
#define directive is in the creation of function-like macros. These are
macros that can be used to create a small “function” and are useful for the
creation of small functions that may appear many times in your code. See
Listing 2-24.

Listing 2-24. Example of #define Statement
#tdefine MAX(x, y) ((X) > (Y) 2 (X) : (Y))

The most important use of such functions I have found in practice is
that they do not require a specific type and can use any generic type. In
the example in Listing 2-24, it doesn’t matter if the parameters are int,
float, or double, the maximum would still be returned. Learning to use
the #define directive as it is very important. Sometimes you may see this
referred to as a lambda function.

#if, #ifdef, #ifndef, #elif, and #else

These preprocessor directives are used for conditional compilation in the
program. These directives are important. These directives are commonly
used for debugging and to develop libraries that target multiple chips.
They are straightforward. Listing 2-25 shows how the directives are used.

Listing 2-25. Examples of Preprocessor Directives in Use

#ifdef PIC16F1717
#define SPEED 200
#elif defined (__PIC24F)

30

CHAPTER2 THE C PROGRAMMING LANGUAGE

#define SPEED 300
#else
#define SPEED 100
#endif

Note that the conditional directives must end with an #endif
statement.

#pragma

This is a C directive that in general-purpose programming is used for
machine- or operating system-specific directives. This directive is
most commonly encountered to set the configuration bits of the PIC®
microcontroller (see Listing 2-26).

Listing 2-26. Example of #pragma

#pragma config PLLDIV = 2

Assembly vs. C

There are people who think Assembly is better for 8-bit microcontroller
design. This may have been the case several years ago, but now that
microcontrollers have a C optimized architecture, the need to have
handwritten Assembly is less important now than it was before. The only
case in which you may use Assembly is if you need to generate efficient
code in the free version of the XC8 compiler, you have a chip in a legacy
design that can only use Assembly, or of course you want to learn the
architecture of the microcontroller on a deeper level. However, in this book
I omit the use of Assembly.

31

CHAPTER 2 THE C PROGRAMMING LANGUAGE

Conclusion

This chapter contained a basic overview of the C programming language.
With just the concepts presented here, you can do a lot, as we covered the
most important keywords for our purposes. However, simply knowing the
keywords to a language does not help you master it. It takes practice. If
you are not proficient in the C language, I encourage you to find books and
Internet resources to help you in your journey with the C programming
language. If you are completely new to programming in general, I
recommend you learn the basics. The book I personally recommend is
Beginning C, 5" Edition by Ivor Horton, available from Apress®. There
are also many free resources on the web that teach complete beginner
programming concepts.

32

CHAPTER 3

Basic Electronics
for Embedded
Systems

Electronics

The difference between embedded systems designers and software
engineers or IT technicians is the in-depth knowledge of the hardware that
embedded designers possess. Embedded designers must have knowledge
of electronics to effectively design embedded systems. We must remember,
above everything else, that computers are simply complex electronic
devices and microcontrollers are simply miniature computers. Resistors,
capacitors, diodes, and transistors are some of the building blocks of
computer hardware. In order to understand these more complex devices,
itis important to understand the basic electronic components from which
these devices are built.

Resistors

A resistor is used in electronics to impose resistance into circuits. Resistors
are rated by the amount of ohms, which is essentially a measure of the
amount of resistance they provide.

33
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_3

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Resistors are used to reduce the flow of current in a circuit and to reduce
the voltage. They are also used to divide voltages and pull up I/0 lines.

Resistors come in a variety of packages, including an axial package,
radial package, surface mount package, and a type of Single Inline Package
(SIL) called a resistor array. Resistors are passive components and are one
of the simplest types of devices you'll encounter.

Resistors have wattage ratings that must not be exceeded. Typically,
ratings range from 1/8 watt to 2 watts. 1/4-watt resistors are the most
common ones used in embedded systems design. The commonly found
surface mount variety typically have a rating of 1/16 and 1/10 watts.
However, it is best to consult the datasheet for the resistor you are planning
to use.

A datasheet is a document that tells you a little bit about the technical
specifications of a product. For example, a resistor’s datasheet includes
electrical characteristics such as tolerance and operating curve, as well
as the dimensions of the part. This information is very useful when you
are designing a printed circuit board or PCB. For the microcontroller, a
datasheet includes the block diagram (as you'll see in a later chapter) as
well as a lot of other useful information. Datasheets are your friends and
you should always keep them handy. You can get the datasheets from the
manufacturer’s web site. Some component suppliers, such as Digi-Key and
Mouser, also list the datasheets on their product pages.

Resistance is measured in ohms, as shown in Figure 3-1.

()

Figure 3-1. Ohm symbol

34

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Most resistors have four bands. The first two bands are the most
significant digits. The third bands tells you of the power of 10 you have to
multiply by and the final band is the tolerance of the resistor. Usually the
tolerance can be ignored; however, for some applications the tolerance
must be within a very narrow range.

Surface mount resistors typically either use the E24 or E96 type
markings. The E24 has three numbers. The first two numbers are the
significant digits and the third is the index of base 10 to multiply by. For
example, a resistor marked 104 would be 10x10"4, which is 100 kiloohms.
Figure 3-2 shows the resistor schematic symbol and Figure 3-3 shows an
actual resistor.

M\~
—|_}-

Figure 3-2. Resistor schematic symbol

Figure 3-3. Resistor

35

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Potentiometer

A potentiometer is an electronic component used to vary the amount of
resistance in a circuit. The potentiometer is also known as a “pot” and
contains three terminals. A pot is nothing more than a voltage divider
that the user can adjust. A rheostat is another device you may encounter,
and it is simply an adjustable resistor. The two-axis joystick commonly
found in game controllers and volume adjust buttons are common real-
world applications of potentiometers. Figure 3-4 shows the potentiometer
schematic symbol and Figure 3-5 shows an actual potentiometer.

Figure 3-4. Potentiometer schematic symbol

Figure 3-5. Potentiometer

36

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Digital Potentiometer

A digital potentiometer or digipot is a digital version of a potentiometer.
Electronically speaking, it performs the same functions as a potentiometer.
The advantage of the digipot is that microcontrollers can adjust their
resistance using some digital interface protocol, such as SPI or 12C, using
software.

Since they can be controlled via software unlike their mechanical
counterparts, it is possible to adjust the value in ways other than a linear
fashion (typically in a logarithmic fashion). This gives digipots additional
applications such as scaling and trimming of analog signals. The digipot
has a different appearance than a regular potentiometer and they are
packaged to look just like any other IC. The MCP 4131 digipot that we'll be
using in our projects is shown in Figure 3-6. Figure 3-7 shows the digipot
schematic symbol.

Figure 3-6. MCP 4131

37

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

MCP 4131
—CS VDD —
—SCK POB[—
—SDI POW[—
—VSS POA—

Figure 3-7. Digipot schematic symbol

Photoresistor

A photoresistor, also known as a light dependent resistor (LDR) or
photocell, is a type of resistor where the resistance changes with light
intensity. Figure 3-8 shows the photoresistor schematic symbol and
Figure 3-9 shows an actual photoresistor.

4

Figure 3-8. Photoresistor schematic symbol

38

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-9. Photoresistor

Capacitor

Capacitors are used to store electrical energy in an electronic circuit

(see Figure 3-12). Capacitors come in axial, radial, and SMT packages.
They consist of two metal plates separated by an insulator, called the
dielectric. This dielectric material is made of many materials, including
paper, ceramic, plastic, and even air. Capacitance is measured in Farads (F),
although microfarads and picofarads are the commonly used units of
measurement in everyday usage.

The type of dielectric influences the properties of the capacitor and
determines if the capacitor is polarized or non-polarized. Figure 3-10
shows the polarized cap schematic symbols and Figure 3-11 shows the
non-polarized cap schematic symbols.

The most commonly encountered capacitor is the electrolytic
capacitor. This is because they store a relatively large capacitance relative
to their size. They are polarized and care must be taken not to connect
them backward. They come in two varieties—Tantalum and Aluminum.
Aluminum capacitors are easily recognizable since they usually come in
cylindrical tin cans. Tantalum capacitors have a higher capacitance to
weight ratio than aluminum capacitors and are usually more expensive.

39

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Ceramic capacitors are another commonly encountered type of
capacitor in embedded system design. Unlike electrolytic capacitors, they
have the advantage of not being polarized. However, they have a lower
capacitance.

The most prominent use of capacitors in the embedded space is in
filtering the output of power supplies. Many microcontrollers require
filtering capacitors on their power pins. Decoupling capacitors act as a
temporary voltage source for microcontrollers and are very important in
suppressing high-frequency noise on the power supply. When used in
this way, decoupling capacitors are also known as bypass capacitors since
they bypass the power supply. It is important to consult the datasheet to
determine the value of bypass capacitors you should use.

There are many occasions where many intermittent problems in your
circuits can be traced to having a noisy power supply. A power supply is
noisy when there are ripples on the power rail. These ripples are essentially
fluctuations in the supply voltage. If you look at your DC output from a
power supply with an oscilloscope, you will notice these ripples. If they
are too large, they can cause a lot of problems in your circuit and may lead
to undesired operations and, in some cases, damages to the IC and other

sensitive electronics.

L 1+ 1+
=+ T

Figure 3-10. Polarized cap schematic symbols

40

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-11. Non-polarized cap schematic symbols

Figure 3-12. Some capacitors

Inductor

Inductors are used to resist changes in electric current flowing through
it (see Figure 3-14). The most common use of inductors is in filters as an
inductor passes low frequency signals and resists high frequency ones.

The Henry (H) is used to measure inductance. The nanohenry,
microhenry, and millihenry are the most commonly encountered units.
Figure 3-13 shows the inductor schematic symbols.

41

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-13. Inductor schematic symbols

Figure 3-14. Inductor

Transformers

A transformer is a device used to step up or step down voltages in
electronic devices.

Transformers require an alternating current to operate. Figure 3-15
shows the transformer schematic symbols and Figure 3-16 shows an actual
transformer.

42

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

E N S

Figure 3-15. Transformer schematic symbols

Figure 3-16. Transformer

Diode

A diode is a device used to allow current to flow in a particular direction.
When the diode is forward biased, current can flow. When the diode is
reverse biased, current cannot flow. If a certain voltage is applied in the
reverse direction, the diode will break down and allow current to flow
in the opposite direction. Diodes are extremely important in embedded

43

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

devices, as they are imperative to suppressing voltage spikes that can
be present when driving inductive loads. Figure 3-17 shows the diode

+

Figure 3-17. Diode schematic symbol

schematic symbol.

Zener Diode

Zener diodes are devices that operate in the breakdown voltage region
and are used for voltage stabilization, voltage regulation, and as a voltage
reference. Figure 3-18 shows the Zener diode schematic symbol. In
Figure 3-19, you see the Zener diode (glass body) under a regular diode
(black body). You must be aware that regular diodes may also have glass
bodies.

Figure 3-18. Zener diode schematic symbol

44

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-19. Zener and regular diode

Light Emitting Diode

A Light Emitting Diode (LED) is a type of diode that emits light when a
voltage is applied to it. Diodes come in a variety of colors and sizes. The
types encountered are infrared, red, orange, yellow, green, blue, violet,
purple, pink, ultraviolet, and white. There are also bi-color LEDs and
RGB LEDs. There are surface-mount LEDs and of course standard 3mm
and 5mm LEDs that are used in most projects. Seven segment, sixteen
segment, and dot-matrix LEDs are also used in a variety of projects.
Figure 3-20 shows the LED schematic symbols and Figure 3-21 shows
an LED.

/

AR

Figure 3-20. LED schematic symbols

45

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-21. LEDs

Laser Diode

The laser diode (see Figure 3-22) is another type of diode common in
embedded systems. They are low cost and weigh very little, making them
very useful for a variety of projects.

Figure 3-22. Laser diode

46

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Transistors

Transistors are arguably the most revolutionary devices ever invented.
Modern devices would not be possible without the transistor. Transistors
are mainly used for switching and rectification in electronic circuits.
Transistors come in a variety of types, which will be briefly discussed in the

following sections.

Bipolar Junction Transistors

The Bipolar Junction Transistor (BJT) comes in two varieties and may be
either NPN- or PNP-based. These names come from the designation of the
semiconductor material of which it is constructed. A semiconductor with
extra electrons is of the N-type variety and one with fewer electrons is of
the P-type variety. If that semiconductor is stacked in the order of N-type,
P-type, N-type, then you get the NPN variety. Similarly, if it is stacked
P-type, N-type, P-type, then the PNP variety is created.

As mentioned, they come in two varieties—NPN based and PNP based.
These two types of transistors can be differentiated by the direction of the
arrow on the emitter pin in schematic drawings. The PNP type transistor
has the arrow pointing inward, while the NPN variety has the arrow
pointing outward (see Figure 3-23).

Transistors are three pin devices—the collector (C), the base (B), and
the emitter (E). The transistor is used extensively for signal amplifying and
electronic switching. When used for amplification, the transistors convert
a low power signal into one of higher power. The name given to the type
of transistor amplifier is determined by the pin into which the signal to be
amplified enters and exits.

47

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

The most common type of amplifier is the common-emitter type
amplifier. In this mode, the emitter is tied to the ground, the signal entry
point is the base, and the exit point is the collector. This type of amplifier
is commonly used to amplify audio signals since it performs voltage
amplification.

The common-collector is the other type of amplifier configuration of
the transistor. In this mode, the collector is connected to the ground and
the signal enters the base and exits the emitter. This type of amplifier is
used for voltage buffering and current amplification.

The final type of amplifier we will look at is the common-base
configuration, which is rarely used in practice. The base is connected to
the ground with the emitter as the input and the collector as the output.
It has applications as a current buffer. Figure 3-23 shows the transistor
schematic symbols and Figure 3-24 shows some common NPN transistors.

Figure 3-23. Transistor schematic symbols

48

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-24. Commonly used NPN transistors

Darlington Transistor

A Darlington transistor consists of two transistors connected in such a
manner that the current output of the first transistor is further amplified by
the second one. The Darlington pair uses two PNP or two NPN transistors
and a complementary Darlington uses one NPN and one PNP transistor.

They act as a single transistor with a high current gain. This property is
important in embedded applications, as in microcontroller based circuits,
they can use a small amount of current from the microcontroller to run a
larger load. This gives them many uses, such as display drivers and control
of motors and solenoids.

Another Darlington Transistor that you may have to use is the
Photodarlington transistor. This transistor consists of two transistors just
like a regular Darlington. However, they differ in that the first transistor
acts as a photodetector and its emitter is coupled with the base of the
second transistor. Figure 3-25 shows the Darlington transistor schematic
symbols.

The Photodarlington has a high gain but is slower than ordinary
phototransistors.

49

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

® =
® =

Figure 3-25. Darlington transistor schematic symbols

The ULN2003, which will be used to drive small stepper motors in this

book, consists of an array of Darlington transistors. Figure 3-26 shows the

ULN2003 schematic symbol.

18] 1 U15]1C
28] 2 15]] 2C
3B[]3 14]] 3C
48 [] 4 13[] 4C
sB[]s 12[]5C
6B []6 11]] 6C
78([]7 10[] 7C
E[ls 9] com

Figure 3-26. ULN2003 schematic symbol

50

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Field Effect Transistor

Field Effect Transistors or FETs can be either N-channel or P-channel
based and operate in a similar way to bipolar transistors.

Metal Oxide Semiconductor Field Effect
Transistor (MOSFET)

The transistor was the pioneer of modern digital electronics. However, as
time progressed, the Metal Oxide Semiconductor Field Effect Transistor
(MOSFET) has taken over a lot of applications of the transistor and is used
for amplification and switching and in modern integrated circuits.

The MOSFET consists of three pins—Gate (G), Source (S), and
Drain (D)—which are the equivalent of the base, emitter, and collector,
respectively, of the transistor. There is also a fourth pin called the body or
substrate, but it’s usually internally connected.

MOSFETs come in the N-channel and P-channel varieties. MOSFETs
have a major advantage over B]Ts, as they require less voltage to turn on.
Thus, while transistors are current-based devices, MOSFETs are
voltage-based.

MOSFETs must be handled carefully, as they are easily damaged by
static electricity. Figure 3-27 shows the MOSFET schematic symbol.

51

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

A,
fh ®

Figure 3-27. MOSFET schematic symbol

Junction Field Effect Transistor

The Junction Field Effect Transistor (JFET) is used for switching,
amplification, and as a voltage controlled resistor. JFETs are not commonly
used in normal circuit design, but do find use in specialty analog circuits.
BJTs or MOSFETs can do most of what is required.

The JFET also finds use as a voltage controlled switch and as a chopper.
Figure 3-28 shows the JFET schematic symbol.

£

Figure 3-28. JFET schematic symbol

52

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Operational Amplifier

The operational amplifier or op-amp is one of the fundamental building
blocks of analog electronics. I would even go so far as to say that an op-
amp is to analog electronics what a transistor is to digital ones. After you
learn about microcontroller technology, I recommend you take an in-
depth look at op-amps. With knowledge of op-amps and microcontrollers,
you can design very powerful embedded systems. Figure 3-29 shows the
op-amp schematic symbol.

V+

GND

Figure 3-29. Op-amp schematic symbol

As the name implies, the op-amp is used for DC signal amplification.
Itis also used to filter and condition signals as well as for integration,
differentiation, subtraction, and addition.

When looking at op-amp schematic symbols, in addition to the power
supply pins (which are usually omitted), you will see two terminals, one
with the minus sign and the other with the positive sign. The input with
the positive sign is known as the non-inverting input and the one with the

53

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

minus sign is called the inverting input. There is a third pin at the vertex of
the triangular shaped op-amp symbol, known as the output port, and this
pin can allow voltage or current to flow into the device, called sinking, or to
supply current from the device, called sourcing.

Some common applications of op-amps in embedded systems
design is as a buffer for the output of voltage divider voltage references,
instrumentation amplifiers for differential pairs, active low-pass and high-
pass filters, photodiode amplification, and more. In fact, an entire book
can be written on op-amps and their applications!

There are hundreds of op-amps to choose from and I recommend you
prototype with the TL081CP, KIA324, MCP6001, and MCP6002. These op-
amps are great for rapid prototyping. Once you have a working system, you
can determine the best amplifier for your needs.

Digital Electronics

Logic gates are the building blocks of digital circuits. When you combine
several transistors, you get logic gates. I leave it up to you to read about
the intricacies of digital electronics with regard to specific aspects of
sequential and combinational circuits. Some basic gates are described in
the following sections.

The AND Gate

The AND gate is one of the foundational building blocks of digital logic.
The AND gate works by treating two logical inputs and outputs as a logical
high only if both inputs are high. If only one of the inputs is high, then the
output will be a logical low. Figure 3-30 shows the AND gate schematic
symbol.

54

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-30. AND gate schematic symbol

The OR Gate

The OR gate works by outputting a logical high if either of its inputs are

a logical high. If both inputs are a logical high, then the output is also a
logical high. The only time the OR gate outputs a logical low is if both
inputs are a logical low. Figure 3-31 shows the OR gate schematic symbol.

Figure 3-31. OR gate schematic symbol

The NOT Gate

The NOT gate, also known as an inversion gate, produces the exact
opposite of its input. If the input is a logical high, then the output will be a
logical low, and if the input is a logical low, then the output will be a logical
high. Figure 3-32 shows the NOT gate schematic symbol.

55

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-32. NOT gate schematic symbol

The NAND Gate

The NOT AND (NAND) gate is a logical gate that combines a NOT gate
and an AND gate. The only distinguishing feature between the NAND
gate and AND gate is the little circle on the end that symbolizes inversion.
The NAND gate only gives a logical low if both its inputs are logical highs.
Figure 3-33 shows the NAND gate schematic symbol.

Figure 3-33. NAND gate schematic symbol

The NOR Gate

The NOT OR (NOR) gate is a logic gate that combines a NOT gate and an
OR gate. The NOR gate, like the NAND gate, simply inverts the output of
an OR gate and has the same distinguishing feature. Figure 3-34 shows the
NOR gate schematic symbol.

56

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-34. NOR gate schematic symbol

The Buffer Gate

The buffer gate is simply two NOT gates combined. The buffer gate might
seem useless, but in actuality it has a lot of applications with logic-level
conversion, discussed in the next section. Figure 3-35 shows the buffer gate
schematic symbol.

Figure 3-35. The buffer gate schematic symbol

The XOR Gate

The eXclusive OR (XOR) gate is a logic gate that gives a logic low when
both inputs are true or when both inputs are false. It gives a logical high
when both inputs are logically the opposite. Figure 3-36 shows the XOR
gate schematic symbol.

57

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Figure 3-36. XOR gate schematic symbol

Logic-Level Conversion

An important concept to understand in the realm of digital electronics,
especially when pertaining to interfacing microcontrollers, is the logic-
level conversion. Before we discuss ways to convert between logic levels,
we must first understand the concept of a logic level.

As you know in digital systems, data is represented in binary format,
with a 0 representing off or low and a 1 representing on or high. While this
knowledge may be sufficient for programming in general, when you use
physical hardware, you must understand that low is 0 volts and high is the
voltage that the system will recognize as a high signal when compared to
the ground.

Early microcontroller systems used 5 volts as the standard, because
this is the voltage with which the microcontroller and any external
modules operate. Recently, however, the trend has been toward using
3.3vand even 1.8v as the voltage to power these systems. This presents a
problem because a lot of existing modules, like LCDs for example, were
made to use 5 volts, whereas newer microcontrollers typically use 3.3v. The
problem also arises if you have a newer module that uses 3.3vlogic and
your systems runs on 5v logic.

In order to solve this problem, logic-level conversion is in order.
Systems typically have some tolerance with their logic level. What this
means is that if you have a 5v system, it will recognize a 3.3v signal as a
logic high. However, you cannot drive a 3.3v logic-level system with 5 volts,
as this will damage the module.

58

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

To avoid this, there are common ways to covert a 5v logic-level system
to be interfaced with a 3.3 volt logic-level system, discussed next.

Run the Entire System on 3.3v

Although it’s not necessarily a logic-level conversion technique, running
your system on 3.3v will eliminate any additional components being
purchased, thus reducing your bill of materials (BOM) costs. In addition,
running the entire system on 3.3v will lower overall power consumption.
For these reasons, it is recommended that once it is possible, you lower the
overall operating voltage of your system.

The PIC16F1717 and newer microcontrollers are capable of being run
at 3.3v or 5v. In this book, I use 5v as much as possible, simply because a lot
of modules and sensors cater to being used by a 5v system (although this
is slowly changing). If you are an Arduino user, you may have built up your
electronics arsenal with 5v components. Another advantage of 5v is that
they are much less susceptible to being disturbed by noise than 3.3v ones,
because you need more noise to disturb the operation of the 5v circuit.
However, feel free to run your system at 3.3v in your end application.

Use a Voltage Divider

Using a voltage divider is another way to interface between logic-level
signals (see Figure 3-37). As mentioned, if your 3.3v device is transmitting
at 3.3v then you can directly connect this line to the 5v device input.
However, on the transmitting end of the 5v device, it may be necessary to
use a voltage divider to convert the higher logic level to a lower one.

A good resistor combination for this type of circuit is a 1k and 2k pair.
The output would be close to 3.3v. The downside of this system is that it is
best suited for very slow signals. If you are on a tight budget, then this is the
method I recommend.

59

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

+5V

Rl rR2 1K
2K

\Y%

v

3.3v
Figure 3-37. Voltage divider method

Use a Bi-Directional Logic Level Shifter

When you are interfacing between logic levels and a very high speed
conversion needs to be done, it is simple to use a dedicated bi-directional
logic-level shifter to convert between signal levels. For prototyping
purposes, I recommend the ubiquitous logic-level converter modules, as
they are designed for breadboarding and work well (see Figure 3-38). For
moving to a PCB, I recommend the 74LVC245, because they are simple to
use and work really well.

Figure 3-38. Common logic-level converter

60

CHAPTER 3 BASIC ELECTRONICS FOR EMBEDDED SYSTEMS

Conclusion

This chapter looked at basic electronic components commonly found in
embedded systems. We covered various components as well as basic logic
gates and methods of logic-level conversion. This chapter is essential to
understanding how to connect devices and sensors to your microcontroller.
It was a very basic introduction; however, if you understand the content
here, you should be able to construct your own circuits. If you need further
information, there are books available that give a more detailed description
of the components. There is also an app called Logic Gates for Android
devices that allows users to experiment with logic gates.

61

CHAPTER 4

PIC® Microcontrollers

PIC® Microcontrollers Overview

Microchip manufactures 8-, 16-, and 32-bit microcontrollers. In this
chapter, we discuss the 8-bit families. 8-bit PIC® microcontrollers belong
to different groups as microchip classifies them. They groups are baseline,
mid-range, enhanced mid-range, and high-performance. We look at each
of them in this chapter.

Baseline PIC® Microcontrollers

These are at the bottom of the 8-bit Microchip food chain. Baseline PIC®
microcontrollers consists of family members from PIC10, PIC12, and
PIC16. These devices are typically used in applications that need a low pin
count, extremely low power requirements, and contain small programs.
Some members of this family include an onboard oscillator. There are
members of this family that have as few as six pins!

The PIC16F57 is one member of the baseline family that has found
widespread use. The BASIC stamp I uses the PIC16C56 and the BASIC
stamp IT uses the PIC16F57 as its microcontrollers.

63
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_4

CHAPTER 4 PIC® MICROCONTROLLERS

Mid-Range PIC® Microcontrollers

The mid-range family of PIC® microcontrollers have members in the
PIC10, PIC12, and PIC16 families. These devices are used when you need
more features, such as onboard communication peripherals and possibly
core independent peripherals.

Devices such as the PIC16F877, 16F84A, and 16F887 were and
still are very popular with microcontroller enthusiasts and there is a
lot of code available for using these devices. However, unless you are
supporting a legacy design, it is advisable to use the enhanced mid-range
microcontrollers, which have a lot of useful features.

Enhanced Mid-Range PIC® Microcontrollers

The enhanced mid-range core includes members of the PIC12 and PIC16
families. This core was developed by Microchip to be compatible with
the mid-range devices while offering several improvements, including
more program memory, more on-chip peripherals, and of course the C
optimized architecture.

In this book, we focus on the enhanced mid-range family of
microcontrollers. The chip we are using—the PIC16F1717—has a lot of
useful goodies onboard, including analog peripherals.

High-Performance PIC® Microcontrollers

These are the highest performing members of the PIC® 8-bit family

and are members of the 18F family. They feature large Flash program
memory, extended instruction set, and of course integrated protocol
communications such as USB, CAN, and Ethernet. They are intended for
high performance 8-bit devices and have hardware multipliers.

64

CHAPTER 4 PIC® MICROCONTROLLERS

If you need to use USB, I recommend that you use the PIC18F4553
for your USB based projects. Though there are newer versions of the
PIC18 family, this chip has a lot of existing code related to its use for USB
applications, as it is identical to the PIC18F4550. The exception is that
the PIC18F4553 contains a larger resolution analog-to-digital converter.
However, I would generally say that if you require USB, a member of the
PIC24 or PIC32 family provides a lot more powerful features.

PIC® 16F1717 Block Diagram

Now that you have learned about the different types of PIC®
microcontroller families and groups, let’s look at the architecture of the
PIC16F1717 (see Figure 4-1).

Program
Flash M
® fmory RAM (€= PORTA
CLKOUT | Tming =»| PORTB
BXJ<«>| Generation
CLKIN HFINTOSC/ * PORTC
LFINTOGC
B> Oscillator CPU R ——
MCLRX~>
€= NCO
<€ zCD
Op Amps PWM Timer0 Timer1 Timer2 MSSP Comparators
£ £ £ £ * £ & [=
o 1 ¢ l€d FR [oacs| [coes | | Eusarr | | ccs

Figure 4-1. PIC16F1717 block diagram (reprinted with
permission)

65

CHAPTER 4 PIC® MICROCONTROLLERS

Looking at the block diagram shown in Figure 4-1, we see that the
PIC16F1717 is very complex. It consists of a lot of peripherals, which we
will discuss in the next few sections.

Program Flash Memory

The program Flash memory is memory that stores our program and is
made from Flash memory technology. Older chips required UV light to
erase their memory. However, with the advent of Flash-based technology,
microcontrollers are extremely low cost and can be reprogrammed in
seconds. Flash is also a non-volatile form of memory and features a long
data retention. The PIC16F1717 Flash memory has a data retention of
about 40 years!

The 8-bit PIC® microcontrollers’ Flash memory size usually consists
of several kilobytes and, in the PIC16F1717, itis 14KB of program
memory. This can store quite a lot of instructions, as you will see in this
book. Microcontroller systems generally never use more than a couple of
megabytes of program memory.

Random Access Memory

Random Access Memory (RAM), as you know, stores program instructions
to increase the speed of program execution. There are two main types

of RAM—Static RAM (SRAM) and Dynamic RAM (DRAM). There are
other types of RAM, such as FRAM and EERAM; however, they will not be
discussed here.

In your general-purpose computer, you find DRAM in the gigabyte
range being used for memory. However, in microcontrollers, you find
SRAM being used for main memory. General-purpose CPUs do contain
SRAM; however, it is usually found on the processor and used for cache

66

CHAPTER 4 PIC® MICROCONTROLLERS

memory. The major differences are that SRAM retains its data if power is
applied, whereas DRAM needs constant refreshing. SRAM is also faster
than DRAM.

The PIC16F1717 contains 1024 bytes of SRAM. Now, before you
complain about the tiny amount of RAM on this controller, let me tell you
this is quite a lot. Microcontroller programs typically never require more
than a few kilobytes of RAM.

Timing Generation

If you look at the block diagram in Figure 4-1, you see a block entitled
“Timing Generation”. This block contains the HFINTOSC and LFINTOSC,
which are the high-frequency internal oscillator and low-frequency
internal oscillator, respectively. Also, not mentioned here, is the
MFINTOSC (medium frequency internal oscillator). The LFINTOSC
operates at 31kHz and is not calibrated. The MFINTOSC operates at
500kHz and is factory calibrated. The HFINTOSC derives its speed from
the MFINTOSC and runs at a speed of up to 16MHz.

The maximum speed of the PIC16F1717 is 32MHz, which can be
obtained by using the Phase Locked Loop (PLL). PLLs are used to generate
some multiple of the input frequency. The one onboard the PIC16F1717 is
a 4x PLL, which means it will give an output frequency four times the input
frequency.

PLLs have a period of time before they match the frequency and phase
that is expected from them and when this is done the PLL is said to be
locked. The PLL on the PIC16F1717 has a lock time of 2ms.

It is important to note that the HFINTOSC and MFINTOSC, although
calibrated, fall within a margin of 2% of the stipulated frequency. Thus,
if you need extremely accurate timing, an external oscillator would be
required. However, in this book the internal oscillator would suffice.

67

CHAPTER 4 PIC® MICROCONTROLLERS

IMCLR

The 'MCLR pin is used to reset the PIC® microcontroller. When designing
circuits, do not leave this pin floating. This pin must be connected to VDD
if not in use. The circuit used for the IMCLR is shown below.

Ports

If you look at the microcontroller block diagram, you'll notice several ports
marked as PORTA to PORTE. On a microcontroller, there are several pins
sticking out of it. Pins are used to interface the microcontroller to the outside
world. However, inside the microcontroller these pins are controlled by
registers within the microcontroller which are represented by ports.

Onboard Peripherals

The PIC® microcontroller consists of several digital peripherals. These
peripherals are either digital or analog in nature. Microchip recently
introduced a lot of core independent peripherals. Core independent
peripherals require no intervention from the CPU to maintain operation.
Let’s look at these peripherals.

Analog to Digital Converter

The Analog to Digital Converter (ADC) is used to convert analog signals to
digital ones. The ADC converter onboard the PIC16F1717 has a resolution
of 10 bits. What this means is that it can take a signal and break it into

1023 “steps,” with the value of a step being the input voltage divided by the
number of steps.

68

CHAPTER 4 PIC® MICROCONTROLLERS

For example, if we use a 4.096v voltage reference, then we have a
resolution of 4mV per bit. For accurate ADC reading, it is advised to have a
clean power supply and a stable voltage reference.

Digital to Analog Converter

The Digital to Analog Converter (DAC) does the exact opposite of the
ADC. The DAC converts an analog signal to a digital one. The DAC is
typically used to generate sound and waveforms. The PIC16F1717 has two
DACs. DAC1 has a resolution of 8 bits and DAC2 has a resolution of 5 bits.

Capture/Compare/Pulse Width Modulation
Module

The capture/compare/PWM (CCP module) is an important module on the
PIC® microcontroller.

Capture mode is used to measure a particular number of falling
or rising edges of a timer and essentially allows the timing of an event.
Compare mode allows the comparing of the value of the timer to a preset
comparison value. Pulse Width Modulation (PWM) mode generates
a square wave of varying frequency and duty cycle, which can be
determined by the user.

Pulse Width Modulation Module

In practice, I have found that one tends to use PWM more often because of
its use in applications such as lighting and motor control. Even Microchip
has realized the importance of PWM and provides a dedicated PWM
module in addition to the regular CCP modules. The PWM module on the
PIC16F1717 has a resolution of 10 bits.

69

CHAPTER 4 PIC® MICROCONTROLLERS

Timers

Though you may see the word “Timerx” in the block diagram of the
microcontroller, the timers on board the PIC16F1717 can also function
as counters and perform timer/counter functions. Timers are used for
time measurement, pulse generation, and counting pulses, and are also
very accurate time delays. Hence, although you may see these modules
simply referred to as “timers,” bear in mind that they really perform
Timer/Counter functions.

The PIC16F1717 has four 8-bit timers and one 16-bit timer. Timers 0, 2,
4, and 6 are 8-bit and timer 1 is 16-bit.

Comparators

The comparator on the PIC16F1717 compares two voltages and gives a
digital output to indicate which is larger. The comparator has a minimum
hysteresis of 20mV and a maximum of 75mV. It also has a response time of
under 100ns.

Fixed Voltage Reference

The Fixed Voltage Reference (FVR) is used to provide a stable reference
voltage to the comparator, DAC, or ADC. By doing this, the cost of paying
for an external voltage reference is eliminated.

Temperature Indicator

There is a temperature indicator onboard the PIC16F1717 that has a range
from -40 to 85 degrees Celsius. This temperature indicator is useful when
you do not have space on the board for a temperature sensor or you want
to reduce system cost.

70

CHAPTER 4 PIC® MICROCONTROLLERS

EUSART

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter
(EUSART) module is used for serial communications and a lot of external
modules require this interface to communicate with the microcontroller.

CLC

The Configurable Logic Cell (CLC) is a module on the microcontroller that
provides a bit of onboard sequential and combinational logic functions.

MSSP

The Master Synchronous Serial Port (MSSP) module provides two modes
of operation to be configured for use—either for Serial Peripheral Interface
Function (SPI) or Inter-Integrated Circuit (I2C) functions.

NCO

The Numerically Controlled Oscillator (NCO) is used to provide a very
precise and fine resolution frequency at a duty cycle. The NCO on the PIC
16F1717 uses the overflow of a 20-bit accumulator to achieve this function.

ZCD

The Zero Cross Detection module detects the point when there is no
voltage present on the AC waveform. The ZCD module can be used to
detect the fundamental frequency of a waveform and for sending digital
data over AC circuits, such as what is done in X10 systems. The zero cross
detect on the PIC16F1717 has a response time of 1uS.

71

CHAPTER 4 PIC® MICROCONTROLLERS

COG

The Complementary Output Generator (COG) module takes one PWM
signal and converts it into two complementary signals.

Operational Amplifiers

Operational Amplifiers (OPA) or Op Amps are the building block of analog
systems. The PIC16F1717 includes onboard Op Amps. They have a gain
bandwidth product of 2MHz and a slew rate of of 3V per uS, assuming a
VDD of 3.0V.

High Endurance Flash Block

The High Endurance Flash (HEF) cell is designed to be a replacement for
EEPROM, which is present on some microcontrollers. While the regular
flash on the PIC16F1717 can withstand only 10,000 erase and write cycles,
the HEF can withstand 100,000 erase and write cycles. The HEF has a size
of 128 bytes.

The Enhanced Mid-Range CPU Core

Now that you have a basic understanding of the onboard peripherals of the
microcontroller, let’s take a look at the 8-bit CPU core (see Figure 4-2).

72

CHAPTER 4 PIC® MICROCONTROLLERS

A15 —
Configuration 15 Data B 8
ata Bus
Program Counter ,'
Flash 4&
Program
Memory 16-Level Stock RAM
(15-bit)
Pr(l;gursam 14 L™~ Program Memory iF 12 RAMAdd
Read (PMR)
J AMdrMUX N\
Instruction Reg -
I Direct Addr Z, In:x: t
4 5 M12 12
15 BSR Reg
4 { FsRoRey |
// | FSR1 Reg |
15 6 STATUS Reg
7]
3y
Power-up]
4 Timer j&
Instruction Oscillator
Decode and <}={> Start-up Timer
Control
0SC1/CLKIN Power-on
Reset A
g Timing Waterdog
0SC2/CLKOUT Generation < Timer m
Brown-out
@ Reset

Internal
Oscillator
Block
Vco Vss

Figure 4-2. PIC16F1717 core diagram (reprinted with
permission)

73

CHAPTER 4 PIC® MICROCONTROLLERS

Let’s look at what some of these blocks in the core are responsible for.
We will not discuss every detail of the architecture; however, the
components that can be configured in software are discussed in the

following sections.

Power-Up Timer

The power-up timer is responsible for providing a short delay to allow

time for the power supply to reach to the required value. After the time has
passed, the program can begin to execute. The reason for this is that it is a
precaution to prevent adverse effects on program execution. The power-up
timer takes between 40 and 140ms to do this.

Oscillator Start-Up Timer

The oscillator start-up timer (OST) provides a delay (in addition to the one
offered by the power-up timer) to allow the clock to become stable before
program execution begins. The OST counts for a period of 1024 cycles and
is independent of the frequency of the microcontroller.

Power-0n Reset

While the power-up timer and oscillator start-up timer are working, the
power-on reset timer holds the device in reset until the power and clock
stabilize.

Watchdog Timer

The watchdog timer (WDT) automatically resets the processor after a
given period as defined by the user. This is extremely important in order to
allow an application to escape from an endless loop. To keep the program

74

CHAPTER 4 PIC® MICROCONTROLLERS

running, the WDT must be cleared or else the program will not run as
intended. It is therefore important to turn off the WDT when configuring
the microcontroller.

Brown-0ut Reset

The brown-out reset is used to detect a brown-out condition within the
microcontroller. A brown-out condition is one in which there is a drop

in voltage of the power supply. The brown-out reset circuitry holds the
microcontroller in reset until the power supply returns to an acceptable
level. The brown-out reset has a response time of between 1 to 35uS on the
PIC16F1717 before it activates.

Conclusion

In this chapter, we briefly examined the PIC® microcontroller, which

is the main topic of this book. Learn the information presented in this
chapter and learn it well. The chapter covered some of the most important
peripherals onboard the microcontroller as well as provided a general
overview of some of the features of the core.

75

CHAPTER 5

Connecting
and Creating

Let’s Get Started

In this chapter, we look at the process of connecting a PIC® microcontroller
to an In-Circuit Serial Programmer, or ICSP. Some people also call them In-
Circuit Debuggers, since they also have debugging capabilities. We look at the
process of creating and running a new project in MPLAB X as well as creating
source files. Beginners and first-time users of bare-bones microcontrollers
should pay special attention to this chapter because, unlike the Arduino and
other development boards, there is a need to connect the microcontroller to a
programmer to load your program onto the chip. The process is not as “plug
and play” as using a development board. So, let’s get started!

A Look at Programmers

As was explained in Chapter 1, there are different programmers you can
use to program your PIC® microcontroller. The two most popular right
now are the PICkit™ 3 and the MPLAB® ICD 3. (There is also an ICD 4;
however, at the time of writing it does not support all of the PIC® chips
and is not as popular as the aforementioned programmers.) Regardless
of if you purchased an ICD 3 or a PICkit™ 3, the process of connecting the
programmer to your microcontroller is the same.

7
© Armstrong Subero 2018

A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_5

CHAPTER5 CONNECTING AND CREATING

We will not take an in-depth look at the mechanics of how these
programmers work, because in this book, all we will look at is using them
as programmers and will not explore their debugging capabilities. We will
simply treat the programmers as “black boxes” that allow you to load your
program onto the chip. Figure 5-1 shows a closeup of the PICkit™ 3.

Figure 5-1. Closeup of PICkit™3

If you look in the foreground of Figure 5-1, you will see an arrow.
This arrow is the position where you place the wire that is connected
to the IMCLR pin of your microcontroller. Moving across to the left, the
subsequent pins that will be connected are the Vdd pin, Vss pin, PGD
(data) pin, and the PGC (clock) pin. There is also an LVP (low voltage
programming) pin; however, we can safely ignore it for now.

If you are using the ICD 3, I strongly recommend that you buy an
adapter that coverts the RJ-11 type connector on the programmer to
an ICSP-type interface. As a beginner, this will make connecting the
programmer to your various chips and development boards very easy, as
you will be able to simply stick a wire into the connector and connect it to
your chip. Figure 5-2 shows an example of how one of these RJ-11 to ICSP

78

CHAPTER S5 CONNECTING AND CREATING

connectors looks. I also recommend you repeat these steps or connect
the chip to the programmer with the programmer disconnected from your
computer to avoid any mishaps.

Figure 5-2. RJ-11 to ICSP adapter

Once you have set up your programmer, the next step is to connect
the programmer to the physical chip. There are a lot of ways to do this.
However, the simplest way is simply to connect a male to male jumper wire
from the hole on the connector to the target device. Figure 5-3 shows how
to connect the male jumper wire to the ISCP connector. After this process
is done, you can connect the jumper wires to the PIC16F1717, as shown in
Figure 5-4.

79

CHAPTER5 CONNECTING AND CREATING

Figure 5-3. Connecting jumper wires to ICSP connector

PIC16F1717

VPP RB7
—{RAD RB6
—RAL RBS }—
'MCLR —JRA2 RB4 L —
—4RA3 RB3 |—
VDD —{RA4 RB2 }—
—{RAS RB1 |—
VsS —RED RBO |—
—{RE1 VDDl
PGD —{RE2 VSS1
VDD RD7}—
VSS RD6 }—
pec _lra7 Rros|—
—1RAB RD4 }—
—{RCO RC7 }—
—{RC1 RCH }—
—{RC2 RCS5}—
—{RC3 RC4}—
—{RD0 RD3|—
—{RD1 RD2}—

Figure 5-4. Connecting ICSP to PIC16F1717
80

CHAPTER5 CONNECTING AND CREATING
A Look at Programming

After you have connected your programmer to your chip, you can plug

in the USB cable from your programmer to your computer. If no magic
smoke is released, and you have your programmer connected to the
microcontroller, the next step is to write your program and download it to
the microcontroller.

First, open MPLAB® X. You will be presented with the window shown
in Figure 5-5.

£ MPLAS XI0E .00 -] =
Flie [dt View Mavigite Source Refaiter Production Debug Team Tosh Window He Q- |

FEES 0 L . BT = -

Fregects = | nies ©EE

ﬁ'\ MICROCHIP

LEARN & DISCOVER | MY MPLAB® X IDE | WHATS NEW

MY MPLAB® X |
Recent ... Microchip Login

Regtered?

Figure 5-5. MPLAB*°X home screen

Choose File » New Project, as is indicated in the upper-left corner of
the IDE shown in Figure 5-6.

%3 MPLAB X IDE v4.00

File Edit View Navigate Source Refactor Production De

¥] New Project... Ctrl+Shift+N
Y] NewFile.. Ctrl+N
C8 Nnan Draiact Ctele Shifta N

Figure 5-6. Creating a new project

81

CHAPTER5 CONNECTING AND CREATING

Next, choose Microchip Embedded followed by Standalone Project, as
shown in Figure 5-7.

Ch Project
Q, Filter:
Qategories: Projects:
Standoore roec
{2 Other Embedded Existing MPLAB IDE v8 Project
#-2) Samples

(& Prebuilt (Hex, Loadable Image) Prc
(& User Makefile Project
G Library Project

Figure 5-7. Selecting a standalone project

Next, select your device family followed by your device. In this case, it
will be PIC16F1717. Type this into the Device box, as shown in Figure 5-8.

Select Device
Family: All Families v
Device: PIC16F 1717 v

Figure 5-8. Choosing your device

Click Next and then Next again. Select the programmer you will be

using from the Hardware Tools option. In this case, you select either the
PICKkit 3 or the ICD 3, as shown in Figure 5-9.

82

CHAPTER S5 CONNECTING AND CREATING

Select Tool

Hardware Tools
00 ICD 4

@ PICkit2

Q0 PICKit3

O PM3

Figure 5-9. Selecting your hardware tool

Select your compiler. We will be using the XC8 compiler in this
example, so ensure that this option is selected, as shown in Figure 5-10.

Select Compiler

Compiler Toolchains
=) mpasm
© mpasm (v5.75) [C:\Program Files (x86) Microchip \MPLABX \v4.00\mpasmx]
O mpasm (v5.68) [C:\Program Files (x86) \Microchip \MPLABX \v3. 40 \mpasmx]
=-XC8
[$3XC8 (v1.43) [C:\Program Files (x86) WMicrochip\xc8'v 1.43'bin]
Q XC8 (v1.38) [C:\Program Files (x86)WMicrochip\xc8\v1.38\bin]

Figure 5-10. Choosing the XC8 compiler

Select a name for your project and choose a path. Then click the Finish
button. This is depicted in Figure 5-11. Congratulations! You have created a

new project!

83

CHAPTER5 CONNECTING AND CREATING

Select Project Name and Folder
Project Name: My_Project
Project Location: .C:'UJsers\a'mst\DesktopWew Folder | Browse...
Project Folder: .C:wsushrmst"peskbopww Folder\My_Project.X '

Overwrite existing project.
Also delete sources.
[/ Set as main project
[Juse project location as the project folder

Figure 5-11. Naming your project and selecting a path

You should see your new project created, as shown in Figure 5-12.

Projects x | Files

Eﬁ My_Project
@-(if) Header Files
@@ Important Files
@) Linker Files
@0 Source Files
@[Ubraries
#-([@ Loadables

Figure 5-12. Newly created project

84

CHAPTER S5 CONNECTING AND CREATING

Now you are ready to write your program. In order to do this, you
need to create header files and source files. Let’s look at how you create a
source file.

Click the Source Files folder. Then right-click it and choose New.
Create a newmain.c file, as shown in Figure 5-13.

o= “ !]
o L
Ly New > @ Directory... 1
.- Loat New Logical Folder 7 main.c... I
Add Fyictinn tem__ el AccemhhFileine 1

Figure 5-13. Creating a new main file

The process for creating a header file is the same. The difference is
instead of clicking the Source Files folder, you click the Header Files folder
and create a header file instead of a source file.

Your file will be created. We won’t run a program now.

Look the top of the IDE and you'll see the two icons we’ll be using. The
icon with the hammer and broom is the Clean and Build option and the
green arrow is used to run the main project (see Figure 5-14). We use the
Clean and Build button to verify that our program is free of errors. When
you click the Run Main Project icon, the program will be loaded onto the
microcontroller.

Figure 5-14. Clean and Build and Run Icons

85

CHAPTER5 CONNECTING AND CREATING

If you try to run the current project and download it to your
microcontroller, nothing will happen. This is because we haven'’t given the
microcontroller any instructions. In the next chapter, we look at writing a
program to make the microcontroller do something.

Traps for Beginners

When you build your project, you expect that it will be loaded to the

chip. There are some traps, however, that cause beginners to experience
problems. The first trap is that the PICkit® 3 or ICD 3 does not provide
power to your microcontroller by default and I recommend you keep it that
way. Therefore, you need to power the target circuit from its own power
source. The reason for this is when we start using inductive or high-current
loads such as DC motors and servos, for example, we may draw more
current than the programmer can provide.

The other trap you need to look out for is the length of your wires from
the programmer to the chip. Keep these wires as short as possible, which
will ensure that you do not experience any errors when trying to run your
project.

The final trap you need to be careful about is having a noisy power
supply. I recommend you use a dedicated power supply, as it will have
the least amount of noise. Even with a good power supply, I recommend
you still use some smoothing capacitors on the supply rails. Countless
avoidable problems can be traced to having a noisy power supply.

Remember that programming a chip is a complex process and a lot of
things happen in the background. Therefore, anything can go wrong. It is
very important that you pay attention to the output window. It will save
you many hours of frustration.

Remember also to triple check your connections. Sometimes you’ll
accidently connect things the way they ought not be connected. PIC®
microcontrollers are resilient and easy-to-use devices, but there are some
rules you must pay attention to.

86

CHAPTER5 CONNECTING AND CREATING

Additional Information

Should you need more information about how the actual programming of
the PIC microcontroller is carried out, I recommend you look at app note
DS30277. Microchip also provides a lot of information on their web site
about using PIC microcontrollers in general at www.microchip.com. There
are lots of additional resources on the manufacturer’s web site.

Conclusion

This chapter looked at the process of connecting our microcontroller to
our programmer. We also looked at the processes of creating a new project
source file as well as how you would go about building and running a project.

87

http://www.microchip.com/

CHAPTER 6

Input and Output

Let’s Begin 1/0

In the last chapter, we looked at the peripherals available to users of PIC®
microcontrollers. One of the things we saw on the block diagram were
the ports. As was described, the ports are registers that provide access
to the pins of the microcontroller. The ports on the PIC16F1717 can be
used for input or output and can provide access to the many peripherals
onboard the microcontroller. In this chapter, we discuss input and output,
also written as I/O. We use I/0 to interface to LEDs, switches, and seven
segment displays.

Before we look at the code to make this happen, there are some
registers that you must understand, including knowing how to configure
them in order to effectively use I/0O on the microcontroller.

TRIS Register

The first register we examine is the TRIState (TRIS) register. The TRIS
register gets its name from the fact that it can be in three states. It can be
configured for output high, output low, or input. The TRIS register is used
to make a port either an input or an output. To make a port an output,

we write a 0 to the corresponding TRIS register of that port. To make it an
input, we write a 1.

89
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_6

CHAPTER 6 INPUT AND OUTPUT

For example, to set PORTB as an output port, we do the following:
TRISB = 0;

Similarly, if we wanted to make that same port an input port, we do the
following:

TRISB = 1;

It is important to efficiently manage the precious I/O since PIC®
microcontrollers do not contain an infinite number of pins. The DIP
version of the PIC16F1717 used for prototyping contains 40 pins. The
reason I stated this obvious point is to reiterate the fact that I/O must be
properly designated. Thus, it is sometimes necessary to assign one pin on a
particular port to serve either an input or output function. For example, to
set one individual bit (in this case, BIT 0 on PORTB) as an output, we do the
following:

TRISBbits.TRISBO = 0;
Similarly, if we wanted to set one bit as an input, we write:
TRISBbits.TRISB1 = 1;

As you can see from these assignments, Microchip makes it very
easy to access individual I/O on PIC® microcontrollers and configure
their associated registers. There is no need to mess with esoteric pointer
functions or deal with mind-boggling bitwise logic. In fact, accessing
individual pins for I/O operations on PIC® microcontrollers is easiest on a
Microcontroller.

It is imperative to remember that data will not move from the port
register to the pins on the microcontroller unless you give the appropriate
TRIS register some value.

Now let’s look at some other important registers.

90

CHAPTER 6 INPUT AND OUTPUT

PORT Register

We have referred to the ports of the PIC® microcontrollers on several
occasions. On the PIC16F1717, there are a total of five ports ranging from
Ato E. These ports are 8-bit wide and therefore generally these ports have
from bits 0 to 7. The exception to this on the PIC16F1717 is PORTE, which is
a 4-bit wide input port and 3-bit wide output port.

The port register essentially reads the voltage levels of the pins on the
device.

Output Latch Registers

The Output Latch Registers (LAT) are an important and overlooked type
of register related to I/O. Prior to the enhancements made by Microchip to
the PIC16F family, only the 18F family contained LAT registers. The LAT
registers are an improvement on the PORT registers for writing data to
output. The LAT register improves on problems associated with the PORT
register for writing data to the pins. Note that it is advisable to output data
to ports using the LATx register and to read data using the PORTXx register.

This is because, as previously stated, the LAT register improves on
any problems that may occur while simply using the PORT register for
outputting data. The reason you use the PORT register for reading data
from the input pins is because the PORT register reads the actual voltage
level on the pin, whereas a read of the LAT register simply reads the same
without regard for the voltage level of the associated pin.

Analog Select Registers

The analog select registers (ANSEL) are used to enable or disable analog
input functions on a particular pin. When using a particular I/O pin for
output, it is not necessary to adjust the ANSEL register corresponding to

91

CHAPTER 6 INPUT AND OUTPUT

that bit. However, if you want to use a particular I/O pin as an analog input
pin, you must set the corresponding ANSEL register.

Weak Pull-Up

The ports on the PIC16F1717 have internal pull-up resistors. These are
important as they reduce component count by eliminating the need for an
external resistor. The weak pull-up can be used as seen in Listing 6-1.

Listing 6-1. Example of Weak Pull-Up
// First we must enable weak pull-ups globally
OPTION REGbits.nWPUEN = 0;

// Then we configure it for the individual pin, in this PINBO 5
WPUBbits.WPUBO = 1;

Once this is completed, we can connect a switch to the microcontroller
without the need for an external pull-up resistor.

There are also options for other registers associated with the PORT,
including those for input level control, open-drain, and slew rare control.

Making an LED Blink

Finally, we get to the good parts! We look at making an LED blink, which
is essentially the “hello world” of embedded programming. In order to do
this, we first need connect the LED to the pin we intend to use. For this
example, we connect the LED to PIN RD1.

Do not forget to connect a resistor to the LED or else you risk
damaging it.

92

CHAPTER 6 INPUT AND OUTPUT

Let’s review the steps for creating a project in MPLAB X IDE.

1.

Open the IDE. You will be presented with the start
page.
Click the Create New icon.

Select Microchip Embedded followed by Standalone
Project.

Select your device family and device.

Select your programmer. In my case, I use the ICD
3; however, you may use the PICkit™ 3 or another
programmer of your choice.

Select your compiler. In this case, it’s the XC8.
Give your project a name and location.

After your project is created, right-click it and select
New followed by the file of your choice.

If you forget how to create a new project, Chapter 5 provides a step-by-

step guide to the process.

Now you can write some code. Based on what you have learned, you

can use the following steps to set up the microcontroller for I/0. Let’s

review what we must do to make this happen:

1.

3.

Configure the TRIS register to output on a particular
port pin.

Turn off the ANSEL register associated with that
particular pin.

Set the LAT register for that pin.

It would be nice to do this alone, but first there are some things we

must do. As important as software is, the hardware is very important when

designing with microcontrollers. Sometimes a program will compile and

will not run as expected.

93

CHAPTER 6 INPUT AND OUTPUT

First, you connect the LED via a 1K resistor to PIND1, as shown in

Figure 6-1.
PIC16F1717

—VPP RB7 }—

—4 RAO RB6 }—

—1 RA1 RB5 p—

—]RA2 RB4 }—

—] RA3 RB3 }—

—] RA4 RB2 }—

—1RA5 RB1 }—

—] REO RBO }—

—RE1 VDD1}—

—4RE2 VSS1|}—

—{VDD RD7}—

—]VSS RD6 }—

—] RA7 RD5 }—

—] RAG RD4 }—

—JRCO RC7 }—

—1RC1 RC6 }—

—JRC2 RC5 }—

—1RC3 RC4 }—

R1 —RDO RD3 }—
— AAA—— IRD1 RD2 | —

D

Y

Figure 6-1. LED connected to PIC® microcontroller

94

CHAPTER 6 INPUT AND OUTPUT

Even though the hardware is connected, you simply cannot write the
main program and get the code to work. You must first create a file to set
the configuration bits of the microcontroller. Type the code first, then we
will discuss what it does. Create a header file called 16F1717 Internal.h
and enter the code shown in Listing 6-2.

Listing 6-2. PIC16F1717 Standard Header File

/*

* File: 16F1717 Internal.h

* Author: Armstrong Subero

* PIC: 16F1717 w/X 0SC @ 16MHz, 5v

* Program: Header file to setup PIC16F1717

* Compiler: XC8 (v1.35, MPLAX X v3.10)

* Program Version 2.0

**Separated file into Header and C source file

**Changed comments and layout

*

* Program Description: This program header allows setup of
configuration

* bits and provides routines for setting up internal

* oscillator and includes all devices and MCU modules

*

* Created on January 9th, 2016, 2:50 PM

K3k ok ok ok ok ok ok ok sk sk ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk ok sksk sk ksk sk sk sk sk sk k

KkkorkkRRkkkkokok /

JRRRRRRRR Rk kR Rk kokk kR kokk okt RoRkokk otk ok kokok ok ok

kokook ok ok ok >k ok ok ok ok sk k kokok

*Includes and defines
ok sk skofok sk ok ok sk sk ok sk sk ok sk sk sk ok sk sk sk ok sk sk ok sk sk s sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk stk sk sk ok sk ok ok ok

Froksoksfoksfokskokskkokxk /

95

CHAPTER 6 INPUT AND OUTPUT
// PIC16F1717 Configuration Bit Settings

// CONFIG1
#pragma config FOSC = INTOSC // Oscillator Selection Bits
(INTOSC oscillator:1/0

function on CLKIN pin)

#pragma config WDTE = OFF // Watchdog Timer Enable(WDT
disabled)

#pragma config PWRTE = OFF // Power-up Timer Enable(PWRT
disabled)

OFF // MCLR Pin Function Select
(MCLR/VPP pin function is
MCLR)

#pragma config CP = OFF // Flash Program Memory Code

Protection (Program\memory

#pragma config MCLRE

code protection is disabled)
#pragma config BOREN = OFF // Brown-out Reset Enable
(Brown-out Reset disabled)
#pragma config CLKOUTEN = OFF // Clock Out Enable (CLKOUT
function is disabled.
I/0 or oscillator function
on the CLKOUT pin)
#pragma config IESO = ON // Internal/External Switchover
Mode (Internal/External
Switchover Mode is enabled)
#pragma config FCMEN = OFF // Fail-Safe Clock Monitor
Enable (Fail-Safe Clock
Monitor is enabled)

96

// CONFIG2
#pragma config WRT = OFF

#pragma config PPSIWAY = ON

#pragma config ZCDDIS = ON

#pragma config PLLEN = OFF

pragma config STVREN = ON

#pragma config BORV = LO

#pragma config LPBOR = OFF

#pragma config LVP = OFF

//XC8 Standard Include
#include <xc.h>
#include <stdio.h>
#include <stdlib.h>

CHAPTER 6 INPUT AND OUTPUT

// Flash Memory Self-Write
Protection (Write protection off)

// Peripheral Pin Select one-
way control (The PP\SLOCK bit
cannot be cleared once it is
set by software)

// Zero-cross detect disable
(Zero-cross detect circuit is
disabled at POR and can be
enabled with ZCDSEN bit.)

// Phase Lock Loop enable (4x PLL
is enabled when software sets
the SPLLEN bit)

// Stack Overflow/Underflow Reset
Enable (Stack\Overflow or
Underflow will cause a Reset)

// Brown-out Reset Voltage Selection
(Brown-out\Reset Voltage (Vbor),
low trip point selected.)

// Low-Power Brown Out Reset
(Low-Power BOR is disabled)

// Low-Voltage Programming Enable
(High-voltage\on MCLR/VPP must
be used for programming)

97

CHAPTER 6 INPUT AND OUTPUT

//0ther Includes
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include <math.h>

//For delay routines
#define XTAL FREQ 16000000

//MCU Modules Includes

//Internal oscillator setup

void internal 32();

void internal 16(); //16 MHz
void internal 8();

void internal 4();

void internal 2();

void internal 1();

void internal 31(); //31 kHz

In this book, I use heavily commented code, thus line-by-line
explanation are not included. I do, however, explain the most important
aspects of the code.

This file configures the PIC® microcontroller with options such as
clocks, power-up timers, brown-out resets, and watchdog timers, to
name a few. These options are known as the configuration bits of the
microcontroller. If the configuration bits are not set, the microcontroller
will not run. You can identify the configuration bits by the prefix #pragma
config. If you look below this block, you will see several standard include
files. The one unique to the XC8 compiler is <xc.h> and is required for
every program to be written using the XC8 compiler.

Below this section you will see a define statement: #define _
XTAL_FREQ 16000000. This statement defines the speed at which the

98

CHAPTER 6 INPUT AND OUTPUT

microcontroller runs, which is 16MHz. In order to ensure consistency, in
this book we maintain this frequency throughout.

Moving down, you will notice some custom function declarations.
These declarations allow the user to quickly and effectively change the
speed of the microcontroller as needed.

Next, we look at the file that contains the body of the functions. Create
another file called PIC16F1717_Internal.c and enter the code shown in
Listing 6-3.

Listing 6-3. PIC16F1717 Standard Source File

/*

File: 16F1717_Internal.c

Author: Armstrong Subero

PIC: 16F1717 w/Int OSC @ 16MHz, 5v

Program: Library file to configure PIC16F1717
Compiler: XC8 (vi1.35, MPLAX X v3.10)

Program Version: 1.2

**Added additional comments
*

E o R S N

* Program Description: This Library allows you to setup a
PIC16F1717

*

* Created on January 9th, 2016, 6:45 PM

*/
JRRsskoksokskkokstokskokok stk kool stokskookskokokostokskokoksokstokokosfokskolokstokskokoksfok sokokstok skokokskoksx
Kok ok ok ok >k ok ok ok ok k >k ok sk ok ok >k

*Includes and defines
3k ok 3k 3k Sk ok sk Sk sk sk Sk sk sk ok ok sk Sk ok sk Sk sk sk ke sk sk Sk sk sk Sk ok sk Sk ok sk kesk sk Sk ok sk sk ok sk Sk ok sk sk sk sk sk ok sk sk ok sk sk sk skeok sk skok

KkokokkkoRokkokkkokok

#include "16F1717 Internal.h"

99

CHAPTER 6 INPUT AND OUTPUT

/RRRsoksokskoksk stk ok ok stk skokskkok ok stokstokskokskkok ok stoksokskokskkok ok ok sokskokskokok ok ok sk

kokok kok ok ok ok kok ok sk ok ckok kk

* Function: internal 32()
*

* Returns: Nothing

*

* Description: Sets internal oscillator to 32MHz
*

*

Usage: internal 32()
>k 3k ok ok ok ok ok >k ok ok sk Sk sk ok >k ok ok ok Sk sk sk >k ok sk ok Sk sk ok >k ok sk ok Sk sk sk sk ok sk ok sk sk sk >k sk sk sk sk sk sk ok skook ok sk sk sk sk skosk sk sk k >k

Fokskokskokokstokkokokskokk /

//5et to 32MHz

void internal 32(){

//Clock determined by FOSC in configuration bits
SCSo = 0;

SCS1 = 0;

//Frequency select bits

IRCFO = 0;
IRCF1 = 1;
IRCF2 = 1;
IRCF3 = 1;

//SET PLLx4 ON
SPLLEN = 1;

}

JRRRRRRR Rk kR kkokk otk oRkokk otk Rk kokk otk ook kokok ok ok

kkokook ok ok ok >k ok ok ok sk ok sk kokok

* Function: internal 16()
*

* Returns: Nothing
*

100

CHAPTER 6 INPUT AND OUTPUT

* Description: Sets internal oscillator to 16MHz
*x

* Usage: internal 16()
>k 3k 3k ok ok ok ok >k >k ok ok ok sk >k >k ok ok ok ok sk >k >k >k ok ok Sk sk >k >k ok ok k Sk sk ok >k ok ok ok ok sk >k >k ok ok ok sk sk ok >k ok ok ok ok sk >k k ok sk ok sk k >k

Fokstokskoskokstokkokokskokk /

//5et to 16MHz

void internal 16(){

//Clock determined by FOSC in configuration bits
SCSo = 0;

SCS1 = 0;

//Frequency select bits

IRCFO = 1;
IRCF1 = 1;
IRCF2 = 1;
IRCF3 = 1;

//SET PLLx4 OFF
SPLLEN = 0;
}

/**

kkokook ok ok ok >k ok ok ok sk k sk kokok

* Function: internal 8()
*

* Returns: Nothing
*
* Description: Sets internal oscillator to 8MHz

*

* Usage: internal 8()
stk sk ok k ok

***************/

101

CHAPTER 6 INPUT AND OUTPUT

//Set to 8MHz

void internal 8(){

//Clock determined by FOSC in configuration bits
SCSo = 0;

SCS1 = 0;

//Frequency select bits

IRCFO = 0;
IRCF1 = 1;
IRCF2 = 1;
IRCF3 = 1;

//SET PLLx4 OFF
SPLLEN = 0;

}

JRRsskoksokskkokstokskokokskokosksokstokokosokstokokosfoksokoksokstokokosfok sokokstok sokoksok sokokstok skokok ok
kokok kok ok ok ok kok ok sk ok ckok kk

* Function: internal 4()
*

* Returns: Nothing

* Description: Sets internal oscillator to 4MHz
*

* Usage: internal 4()
3k 3k 3k Sk ok ok sk sk sk 3k 3k 3k 3k Sk Sk Sk ok ok sk sk sk 3k 3k sk Sk Sk Sk ok ok ke sk sk 3k 3k sk sk Sk sk sk skoske sk sk sk sk sk sk sk sk skoskoskoskeosk sk sk sk sk skskskskok

Fokskokskokokstokkokokskokk /

//Set to 4MHz

void internal 4(){

//Clock determined by FOSC in configuration bits
SCSo = 0;

SCS1 = 0;

102

CHAPTER 6 INPUT AND OUTPUT

//Frequency select bits

IRCFO = 1;
IRCF1 = 0;
IRCF2 = 1;
IRCF3 = 1;

//SET PLLx4 OFF
SPLLEN = 0;
}

/RRksoksokskoksk stk ok stokstokskokoskkok ok stokstokskokoskskok ok stokstokskokoskskok ok stoksokoskokoskskok ok skok sk

kokok ok ok ok okook kok ok sk ok kok kk

* Function: internal 2()

Returns: Nothing

EE N

Description: Sets internal oscillator to 2MHz
*

* Usage: internal 2()
>k 3Kk ok ok sk sk >k ok ok ok Sk sk sk >k ok sk ok Sk sk sk sk ok sk sk Sk sk sk >k ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk skeok ok sk sk sk koskoske sk sk sk >k

Fcksoksfoksokskokskokokk /

//Set to 2MHz

void internal 2(){

//Clock determined by FOSC in configuration bits
SCSO = 0;

SCS1 = 0;

//Frequency select bits

IRCFO = 0;
IRCF1 = 0;
IRCF2 = 1;
IRCF3 = 1;

103

CHAPTER 6 INPUT AND OUTPUT

//SET PLLx4 OFF

SPLLEN = 0;

JRFFFEFFA KA AR AFAAAFAAFAAARAA KA AR AAFFAFFAAFAAF KA A F A KA K KA KK
>k kkook ok ok ok >k ok ok ok sk ok >k kkok

* Function: internal 1()

*

* Returns: Nothing

X

* Description: Sets internal oscillator to 1MHz

*

*

Usage: internal 1()
3K 3Kk ok ok sk sk >k ok ok ok Sk sk sk K sk ok ok Sk sk sk sk sk k ok Sk sk sk K sk sk sk sk sk sk sk skeok ok sk sk sk sk sk sk sk sk sk sk kskeok ok sk sk sk koskoke sk sk sk >k

***************/

//Set to 1MHz

void internal 1(){

//Clock determined by FOSC in configuration bits
SCSo = 0;

SCS1 = 0;
//Frequency select bits
IRCFO = 1;
IRCF1 = 1;
IRCF2 = 0;
IRCF3 = 1;

//SET PLLx4 OFF
SPLLEN = 0;

}

104

CHAPTER 6 INPUT AND OUTPUT

JRRRsoksokskoksk stk ok stok stk skokskokok ok sokstokskokoskkok ok stoksokskokskokok ok stokskokskokskorok ok ok sk

Kokokokok sk ok sk kok sk Rk kk ok >k

* Function: internal 31()

*

* Returns: Nothing

*

* Description: Sets internal oscillator to 31kHz
X

*

Usage: internal 31()
>k 3k ok ok ok sk ok >k ok ok sk Sk sk ok >k ok ok ok Sk sk sk >k ok sk ok Sk sk sk >k ok sk ok Sk sk sk >k ok sk ok sk sk ok >k sk sk sk sk sk ok ok ko ok ok sk sk sk sk okosk sk sk k >k

Fokskokskokokskokkokokskokk /

//Set to 31kHz(LFINTOSC)

void internal 31(){

//Clock determined by FOSC in configuration bits
SCSo = 0;

SCS1 = 0;
//Frequency select bits
IRCFO = 0;
IRCF1 = 0;
IRCF2 = 0;
IRCF3 = 0;

//SET PLLx4 OFF
SPLLEN = 0;

}

This file implements the functions necessary to set the speed of the
PIC® microcontroller clock.

Now comes the good part—actually making the LED light. All C
programs, as you know, must contain a main function. Traditionally, the
file containing this function is called main as well. Thus, create a new file
called main.c and input the code, as shown in Listing 6-4.

105

CHAPTER 6 INPUT AND OUTPUT

Listing 6-4. PIC16F1717 Output Source File

/*
* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

* Program: 00 Output

* Compiler: XC8 (vi.38, MPLAX X v3.40)

* Program Version: 1.0

*

*

* Program Description: This Program Allows PIC16F1717 to Turn
on an LED

*

* Hardware Description: An LED is connected via a 10k resistor
to PIN D1

*

* Created November 4th, 2016, 1:00 PM

*/
/**
KK K K K K K oK KK K K K K Kk K

*Includes and defines
Kook ok ook ke ok ook ke ok ko ok ko ok ke ok ok o ok ok ok ok ko ok ko ok ok ok ok ok ok ok Sk ok ok ok

KRR KAI KKKk J

#include "16F1717 Internal.h"

JRERRFAAAAAF KK FAAAAAFF KK FAAAAAFF K AAAAAAF K AAAAAAA KA A K

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

* Function: void initMain()
*

* Returns: Nothing
*

106

CHAPTER 6 INPUT AND OUTPUT

* Description: Contains initializations for main

*

* Usage: initMain()

K oK ok ok oK ok ok oK ok K oK oK oK oK ok oK ok K oK ok K oK ok oK oK ok ok ok ok oK ok ok oK ok oK oK oK oK ok ok oK ok K oK ok ok oK ok ok ok ok ok ok ok ok ok ok K ok ok ok ok k

kAkRARKARR KR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

}

JRERRFAAA AR KRR AAAA AR AAAAA AR A AAAAAFFFFHKAAAAA AR AA K

K 2K K K oK K K ok 5K K K K ok ok ok K K

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
K 2K 3K K oK oK oK K 5K 5K K oK oK K 5K 5K K oK oK oK 5K oK 3K 5K K oK oK oK 5K 3K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 3K K oK oK oK 5K 5K K K oK oK K ok 5k K K ok ok ok ok

***************/
void main(woid) {
initMain();

while(1){
// Set PIND1 High
LATDbits.LATD1 = 1;

}

retuxn;

107

CHAPTER 6 INPUT AND OUTPUT

Compile the program and run it. The LED should light up! If the LED
does not light up, ensure that you tested your connections properly.

Alot of problems can be solved by simply ensuring everything is wired
correctly.

Great, the LED lights up. However, we want the LED to blink. To do
this, you must use the built-in delay macro in XC8. There are options to
delay for clock cycles, milliseconds, or microseconds. To make the LED
blink, we will use the millisecond option. This code is shown in Listing 6-5.

Listing 6-5. PIC16F1717 Flash Source File

/*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: 01_Flash

Compiler: XC8 (vi.38, MPLAX X v3.40)
Program Version: 1.0

¥ % ¥ %X ¥ %X %

*

* O

Program Description: This Program Allows PIC16F1717 to blink
an LED at

* 50% duty cycle

*

* Hardware Description: An LED is connected via a 10k resistor
to PIN D1

*

* Created November 4th, 2016, 1:08 PM

*/

108

CHAPTER 6 INPUT AND OUTPUT
JRARRKAAKIARKAKIAKIARKAAKIARKAAKIAKIAKAAKIARKAAKIARKAAKIAKKA KK
KK FA KK KA KKK A KKK KK

*Includes and defines
2K 2K K K oK oK K K 5K 5K K oK oK oK oK 5K K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK ok ok ok K K Kk K ok ok

kAkRARKARR KR KKKk /

#include "16F1717 Internal.h"

[RARAAA AR AR AA KA AR A ISR A A SRSk kK

KKK KKK KKK KK KKK KKK

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
KoK K ok o ok 3K 3K 3K 3K K 5K K K S ok ok 3k 3K 3K 3K K 5K 5K K K ok ok oK 3K 3K 3K 3K 5K 5K K K Sk ok oK 3K 3K 3K 3K K 5K K K Sk ok ok oK oK 3K 3k 3k ok ok ok ok ok ok ok

KARRFRR KA KAIKK KK/

void initMain(){
// Run at 16 MHz
internal 16();

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

}

[RARAR AR AR KA KA A A RS A KA RIS RS KA SRS R KKk K

ook kkok ko ko

* Function: Main
*

* Returns: Nothing
*

109

CHAPTER 6 INPUT AND OUTPUT

* Description: Program entry point
KK KK K K o oK oK K oK K K oK oK oK K oK K oK oK oK oK K oK K oK K oK oK oK oK K oK oK oK oK oK oK Kok oK oK oK oK oK K oK K K oK K ok kK K ok K ok ok ok ok

KRFAAAAAFKKKKAK
void main(woid) {
initMain();

while(1){
// Toggle LED
LATDbits.LATD1 = ~LATDbits.LATD1;

// delay 500 ms
__delay ms(500);
}

return;

}

The _delay_ms macro allows you to delay a particular period of time.
We use the bitwise NOT operator to toggle the LED.

Using a Pushbutton

Now that we examined the output, let’s look at the input. As mentioned
earlier, the TRIS register must be set to allow the I/O pin to act as an input.
We also use the internal pull-up to avoid the use of an external resistor.

As we did with output, there is also a process to make the pin an input
pin. Here are the steps for configuring a pin as an input using the internal
weak pull-up resistors on the chip:

1. Configure the TRIS register for that pin as an input.
2. Turn off the ANSEL for that particular pin.
3. Enable weak pull-ups globally.

4. Enable the weak pull-ups for that particular pin.
110

CHAPTER 6 INPUT AND OUTPUT

The schematic in Figure 6-2 shows how we connect the switch and
LED. The LED remains connected to RD1 and we now connect the switch
to RBO.

PIC16F1717

—|vPP RB7|—
—|RA0 RB6|—
—|rRA1 RB5|—
—|rRA2 RB4}|—
—|RA3 RB3|—
—|rRA4 RB2}—
—|rRA5 RB1|— st
—|RE0 RBO s
—|RE1 VDD1}|—
—|RE2 VsS1}—
—|vbb RD7}—
—]vss RD6}—
—{RA7 RD5}—
—|RA6 RD4}—
—|rRco RC7}—
—|Rc1 RC6}—
—|rRc2 ReC5|—
—|RC3 RC4}—
~1 —|RDO RD3}—
— AAA——————RD1 RD2}—

Y

L1

\Y4

Figure 6-2. LED with pushbutton connected to a PIC®
microcontroller

111

CHAPTER 6 INPUT AND OUTPUT

Listing 6-6 shows the main code. The header files and configuration
bits are the same as in the last example.

Listing 6-6. PIC16F1717 Pushbutton with Internal Weak Pull-Up

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: 02 Internal Pullups
Compiler: XC8 (vi.38, MPLAX X v3.40)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ % %

Program Description: This Program Allows PIC16F1717 to turn
on an LED based

* on a Pushbutton

*

* Hardware Description: An LED is connected via a 1k resistor
to PIN D1 and a

* switch is connected to PIN BO

*

* Created November 4th, 2016, 1:08 PM

*/
/**
KKK KKK KKK KK KKK KKK

*Includes and defines

K 2K K K oK oK K K 5K 5K K oK oK oK 5K 5K 5K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK oK oK 5K 5K K oK oK oK 5K oK oK K oK oK K ok ok K K Kk K ok ok

kAkRAKA KRR KKKk /

#include "16F1717 Internal.h"

112

CHAPTER 6 INPUT AND OUTPUT
JRARRKAAKIARKAKIAKIARKAAKIARKAAKIAKIAKAAKIARKAAKIARKAAKIAKKA KK
KK FA KK KA KKK A KKK KK

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
KK K oK oK oK 3K 3K 3K K K 5K K 5K 5K oKk ok 3K 3K 3K 3K 5K 5K 5K oK 5K 5K oK oK 3K 3K 3K K 5K 5K K K 5K oK ok oK K 3K 3K K 5K K K K oK oK oK K 3K 3K 3k ok ok kR ok ok ok

kAkRAKAR KRR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

// Enable weak-pullups global
OPTION_REGbits.nWPUEN = 0;

// Enable weak-pullup on PINBO
WPUBbits.WPUBO = 1;

}

113

CHAPTER 6 INPUT AND OUTPUT

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK
KKK KKK KKK KKK KK KKK

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK oK oK oK K oK KoK K oK oK K oK K oK K K oK K oK Kk Kok K ok ok Kk

*RFAAAAAFKKKKAK

void main(woid) {
initMain();

while(1){
// Toggle LED on pushbutton
LATDbits.LATD1 = ~PORTBbits.RBO;

}

return;

}

There may be times when it is necessary to debounce your switch.
Debouncing is when you allow the microcontroller to only recognize
the switch as being pressed once even when it’s pressed multiple times.
Some very poor-quality switches can make multiple contacts on one
button push. This in turn causes the microcontroller to register several
occurrences of the switch being pushed.

There are several options for debouncing, including hardware and
software methods. However, I have found that in practice, high-quality
mechanical pushbuttons being used for prototyping applications do
not necessarily need debouncing, especially for applications as trivial
as ours. However, if you are designing a commercial product, it is highly
recommended that you add debouncing to your switches. Should you

114

CHAPTER 6 INPUT AND OUTPUT

need to debounce your switch, you can do so using the software and the
simple method shown in Listing 6-7. Simply replace the code after the //
Toggle LED on pushbutton comment in Listing 6-6 with this code.

Listing 6-7. Button Debounce Snippet

// Check if switch pressed
if (RBO == 0)

{

// short delay

__delay ms(100);

// if switch still pressed
if (RBO == 0)

{

// turn led on
LATDbits.LATD1 = 1;

}

}

else{
// keep LED off
LATDbits.LATD1 = 0;

}

We use the method of inputting a short delay after the initial button
press is detected, then we recheck the switch before any further action is
performed. If the switch is still closed, we turn on the LED. Note also that
the actual delay time before the recheck may vary according to the switch.
Hence, you should test the delay time to ensure that it is compatible with
your particular pushbutton.

115

CHAPTER 6 INPUT AND OUTPUT

There may also be a time when you don’t want to use the internal weak

pull-up. In this case, you can omit all parts of the code related to setting

up the weak pull-up resistors. Here is how you do that. You add a pull-

up resistor externally, which is connected as shown in the schematic in

Figure 6-3.

PIC16F1717

VPP
RAO
RA1
RA2
RA3
RA4
RA5
REO
RE1
RE2
VDD
VSS
RA7
RAG
RCO
RC1
RC2
RC3
R1 RDO

—AM————{RD1

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RBO
VDD1
V881

+5V

1 0k§

s1 _l_

RD7 |—

RDG6
RD5
RD4
RC7
RCB
RC5
RC4
RD3
RD2

pEY

L1

\Y4

Figure 6-3. Connecting the switch with external pull-up

116

CHAPTER 6 INPUT AND OUTPUT

The only thing that changes in the hardware configuration is the addition
of a pull-up resistor. The standard value of the pull-up resistor is 10k.

As for the software, we will remove the parts of the code that set up the
internal pull-ups for use (see Listing 6-8).

Listing 6-8. PIC16F1717 Pushbutton Without Internal Pull-Up

N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: 03_Pushbutton

Compiler: XC8 (vi1.38, MPLAX X v3.40)
Program Version: 1.0

¥ ¥ %X %X %X % ¥ % %

Program Description: This Program Allows PIC16F1717 to turn
on an LED

* based on a Pushbutton

*

* Hardware Description: An LED is connected via a 10k resistor
to PIN D1 and a

* switch is connected to PIN BO

*

* Created November 4th, 2016, 1:08 PM

*/
JRFKKFAKIAKKAKKIAKKAKKIAKIAKKAAKIAKKAKIAKKAKKFAKIAKKAAKIAKKANK
K 2K K K oK K ok ok 5K K K K ok ok ok %k K

*Includes and defines

KR Ko R A K R KRR AR AR R A KR A F KRR KKK KKK KKK

KARRFRSR KSR KAI KKKk J

#include "16F1717 Internal.h"

117

CHAPTER 6 INPUT AND OUTPUT
JRARRKAAKIARKAKFAKIARKAAKIARKAAKIARKAKAAKKARKAAKIARKAAKKAKKA KK
KK FA KK KA KKK A KKK KK

* Function: void initMain()
*

* Returns: Nothing

*

* Description: Contains initializations for main
*

*

Usage: initMain()
KK K oK oK oK 3K 3K 3K K K 5K K K 5K oKk oK 3K 3K 3K 3K K 5K 5K oK 5K 5k oK oK 3K 3K 3K 3K 5K 5K K K 5K ok ok oK 3K 3K 3K K 5K K K K oK oK oK K 3K 3K 3k ok Kk ok ok ok ok

kAkRAKAR KRR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

}

JRERKFAAAAAFF KK FAAAAAF A FAAAAAFF KK AAAAAAF KK AAAAAAAFF KA AK

K 2K K K oK K ok ok 5K K K K ok ok ok %k K

* Function: Main
*

* Returns: Nothing

118

CHAPTER 6 INPUT AND OUTPUT

*
* Description: Program entry point
koK o K K KKK A KA KA KA KK A KA KA KA KK A KA KA KA KA KA KA KA KKK KKK

KARRFRK KSR KAI KKKk f

void main(woid) {
initMain();

while(1){
// Toggle LED on PUSH Button
LATDbits.LATD1 = ~PORTBbits.RBO;

}

retuxn;

}

Seven Segment Displays

LCDs and OLED displays are undoubtedly the most popular choices for
relaying output to users of embedded systems. Adding a display will add
cost to your system. There will be times when you'll want to give the users
output and mere LED output won't suffice. In such cases, you can use a
seven segment display to give the users a little more information.

Seven segment displays are basically packages that traditionally
contain seven LEDs. If you count the decimal point segment available on
most seven segment displays, it is eight in reality. Each one of the LEDs in
this package is referred to as a segment. Hence the name seven segment
display; see Figure 6-4.

These LEDs can output hexadecimal digits in the form of the digits
0-F. These displays also come in two varieties, which can either be
common anode or common cathode. In this book, we use the common
cathode variety. Figure 6-4 shows how the digits of a common-cathode
seven segment LED are arranged.

119

CHAPTER 6 INPUT AND OUTPUT

!

— p—
QL p——
O pu—

@)
e dcomc Dlg

TTTI

Figure 6-4. A seven segment display pinout

As you see, each pin is associated with a letter A-G, and there is also
a pin for the decimal point marked as DP. There are two pins marked COM.
This is short for “common” and will connect to the ground.

To display numbers on the display, the segments associated with that
pin are turned on. For example, in order to display the number 8, all of the
segments on the LED would be on. These pins would then be connected to
a particular port on the microcontroller. The numbers would then be sent
to the microcontroller port that the seven segment display is connected to.

Since the seven segment display is, after all, a group of LEDs in one
package, you need to connect resistors to each segment of the displays to
ensure that you do not damage them.

Note that if you are using the common anode variety, the hexadecimal
numbers sent to the port will be slightly different. This is because in the
common anode variety, all the LEDs are connected to power instead of
ground.

120

CHAPTER 6 INPUT AND OUTPUT

Now that you have a fair idea about how these displays operate, let’s
look at the schematic for connecting the seven segment display to the
microcontroller (see Figure 6-5). The pins are connected to PORTD, with
A being connected to RDO, B being connected to RD1, and so forth, until
all the pins are connected with the exception of the decimal point pin. The
common is connected to ground.

PIC18FATAT-IIPT
w

1k
R — VPP RB7|—
—{RA0 RBS|—
—{RA1 RB5|—
—{rRA2 RB4|—
—{RrRA3 RB3|—
—|RA4 RB2|—
—{RAS RB1|—
—|RE0 RBO|—
—{RE1 VDD1}—
—|RE2 VSS1|—
—{voD RD7|—
—{vss RDs
—{RA7 RDS5
—{RA6 RD4
—{RrRC0 RCT}—
—{RC1 RCB|—
—|RC2 RC5|—
—|RC3 RC4|—
RDO RD3
RD1 RD2

Figure 6-5. PIC16F1717 with seven segment connected

Now we write the code required for using a seven segment display, as
shown in Listing 6-9.

121

CHAPTER 6 INPUT AND OUTPUT

Listing 6-9. PIC16F1717 Seven Segment Display

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: I01_Seven_Segment

Compiler: XC8 (v1.38, MPLAX X v3.40)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ %

Program Description: This Program Allows PIC16F1717 to drive
single

seven segment display, it displays the hexadecimal

digits 0-F on the seven segment display.

* ¥ % 9Q

* Hardware Description: An seven segment display of the cathode
variety 1is

* connected to port D of the microcontroller via 1k

* resistors.

*

* Created February 16th, 2017, 6:31 PM

*/
JRFRKKFAKIAKKAKKIAKKAKKIAKIAKKAAKIARKAAKIAKKAKKFAKKAKKAAKIAKKANK
K 2K K oK oK K ok ok 5K K K K ok ok ok %k K

*Includes and defines

Koo AR KRR AR A KR A KA KR A KA AR KR A KRR A KRR KKK KKK KK

KARR SRR K IR KKK)

#include "16F1717 Internal.h"

unsigned char Display(unsigned char digit);

122

CHAPTER 6 INPUT AND OUTPUT
JRARRKAAKIARKAKIAKIARKAAKIARKAAKIAKIAKAAKIARKAAKIARKAAKIAKKA KK
KK FA KK KA KKK A KKK KK

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
KK K oK oK oK 3K 3K 3K K K 5K K 5K 5K oKk ok 3K 3K 3K 3K 5K 5K 5K oK 5K 5K oK oK 3K 3K 3K K 5K 5K K K 5K oK ok oK K 3K 3K K 5K K K K oK oK oK K 3K 3K 3k ok ok kR ok ok ok

kAkRAKAR KRR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

// Set PORTD as output
TRISD = 0;

ANSELD = 0;

}

/**

K 2K K oK oK K ok ok 5K K K K ok ok ok %k K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
2K 2K K K oK oK oK K 5K 5K K oK oK oK 5K 5K 5K oK oK oK 5K oK 5K K K oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK oK oK 5K 5K K oK oK oK oK 5K oK K oK oK K ok ok K K ok ok ok ok

kAkRAKAR KRR KKKk /

123

CHAPTER 6 INPUT AND QUTPUT
void main(woid) {

// loop variable
int i;

initMain();

// Keep displaying digits 0-F

// and update it every second

while(1){

for (i = 0; 1 <= 15; i++){

// Now the hex values for the array are derived based on the
type of seven

// segment display. In our case we use the common cathode
version.

// For example to display the number '7', this means that we
must have segments

// a,b and c enabled. This would be "0000111" in binary with a
'1' signifying

// the particular segment. This would equate to 0x07 in hex. So
when

//'0x07" is written to the PORTD.

// based on the iteration of the array by the for loop, we
display each letter

// to PORTD.

LATD = Display(i);
__delay ms(1000);
}

}

return;

}

124

CHAPTER 6 INPUT AND OUTPUT

[ORARAA A A AR A A AR I AR A AR AR AR A RSk kK

KOk KK KK oK Kk Kok K kK Kk K

* Function: unsigned char Display(unsigned char digit)

Returns: unsigned char numbers

¥ % %X %

Description: Function that takes a number and returns its
index in an array
* corresponding to the hexadecimal digit

2K 2K K oK oK oK K K 5K 5K K oK oK 5K 5K 5K 5K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K oK K oK oK K ok ok K K Kk K ok ok

kAkRARKAR KRR KKKk /

unsigned char Display(unsigned char digit)

{

// variable representing numbers
unsigned char numbers;

// an array of the digits O0-F
unsigned char DIGITS[] = {0x3F, 0x06, 0x5B, Ox4F, 0x66, 0x6D,
ox7D, 0x07, Ox7F, Ox6F, 0x77, 0x7C, 0x39, Ox5E, 0x79, O0x71};

// assign index given by user to variable
numbers = DIGITS[digit];

// return it
return numbers;

}

Seven Segment Display Multiplexing

There are times when you’ll want to want to use more than one seven

segment display in your application. One seven segment display typically

uses a full port of your microcontroller (see Figure 6-6). Driving two seven

segment displays would use about 16 pins of your microcontroller! This

is

125

CHAPTER 6 INPUT AND OUTPUT

almost half of the pins on the PIC16F1717. To avoid this, you can either use
a higher pin count microcontroller, which costs more and adds to the total
cost of your system, or you can use multiplexing.

VPP RBT
RAOD REB
RA1 REBS
RAZ RB4
RA3 RB3
RA4 REBE2
RAS RB1
RE0C REO
RE1 VDD1
V551
VDD ROV

ITTTTT

RAT RDS5
RAE RD4
RCO RCT—

|
P._.I
EEEEEEEEE RN
i
%]

RC2 RCS}—

RDO RD3
RD1 RD2

Figure 6-6. PIC16F1717 multiplexed seven segment display

Display multiplexing is the process of using displays in such a way
that the entire display is not on at the same time. What this means for
seven segment displays is that only one digit is on at a time. However, the
microcontroller switches between updating these two displays so quickly
that users cannot detect it. In order to multiplex these displays, we use
transistors to turn the displays on and off.

The major advantage of multiplexing is that it uses less I/O on the
microcontroller. Let’s look at how we can multiplex seven segment displays
on the PIC16F1717 (see Listing 6-10).

126

CHAPTER 6 INPUT AND OUTPUT

Listing 6-10. PIC16F1717 Dual Seven Segment Display

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: I02 Seven_Segment Mul
Compiler: XC8 (v1.38, MPLAX X v3.40)
Program Version: 1.0

Program Description: This Program Allows PIC16F1717 to drive dual
multiplexed seven segment displays, it displays the

numbers from 0 to 99 on the displays depending on

which of two pushbuttons is pressed.

¥ ¥ %X %X X %X X %X ¥ %X *x %X *x

Hardware Description: Dual seven segment displays of the
cathode variety 1is

* connected to port D of the microcontroller via 1k

* resistors. There are two transistors connected in

* common emitter configuration on pins RBO and RB1

* respectively. There are also two pushbuttons connected
* to pins RC4 and RC5.

*

*

Created February 16th, 2017, 9:55 PM
*/
JRFFRARKKAARKKAAAKKAAAKKIAAKKIAAKKKAAKKAAAKKAAAKKKAAKKKAAKKAAK

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

*Includes and defines
Koo ok ok e ok ko ok ke ok ke ok ko ok ok ok ko ok ok ok ok ok ok ko ok ok o ok ok ok ok kR ok ok

KARF SRR KA KR KK KK f

127

CHAPTER 6 INPUT AND OUTPUT
#include "16F1717 Internal.h"
unsigned char Display(unsigned char digit);

// digit one enable
#define DIGITONE LATBO

// digit two enable
#define DIGITTWO LATB1

JRERRFAAAAAFF KKK KAAAAAF KK FAAAAAF A FAAAAAF K AAAAAAF KA AK

KK K K oK K ok ok 5K K K K ok ok ok %k K

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()

KKK KKK K oK K KoK K KoK oK oK K K oK oK K oK 5K KoK oK KoK K oK oK K oK oK K oK 5K KoK oK oK oK K oK oK K oK K KoK K Kk K ok ok Kok ok Kk ok K

KAk SRR KAI KKKk J

void initMain(){
// Run at 16 MHz
internal 16();

// Set PORTD as output
// Analog disabled
TRISD = 0;

ANSELD = 0;

// Set PORTB as output
// Analog disabled
TRISB = 0;

ANSELB = 0;

128

CHAPTER 6 INPUT AND OUTPUT

// Set RC4 and RC5 as input
TRISCbits.TRISC4 = 1;
TRISCbits.TRISCS = 1;

// Turn of analog on C
ANSELC = 0;

// Enable weak-pullups global
OPTION_REGbits.nWPUEN = 0;

// Enable weak-pullup on RC4 and RC5
WPUCbits.WPUC4 = 1;
WPUCbits.WPUC5 = 1;

}

[RARAR AR AR KSR A A AR AR RS KA A ARSI R A SRR K AR kKK

Kok Kok ok ok ok ok kK ok Kok ok ok ok k

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
KK KK K K o oK oK K ok K K oK oK oK K ok K oK oK oK oK K oK K oK K oK oK oK oK K ok oK oK oK K oK K ok K ok oK ok ok K ok K ok oK ok ok ok ok K ok ok ok ok ok ok

KAk KAI KKKk J

void main(wvoid) {

// count variable
int count = 0;

// most significant digit
int MSD;

// least significant digit
int LSD;

initMain();

129

CHAPTER 6 INPUT AND OUTPUT

// Keep displaying digits 0-F
// and update it ever second
while(1){

// If RC4 pressed increment count
if(RC4 == 0){
__delay ms(100);

if (RC4 == 0){
count++;

}

}

// IF RC5 pressed decrement count
if (RC5 == 0)
{

__delay ms(100);

if(RC5 == 0){
count--;

}

}

// Get MSD and LSD
MSD = count/10;
LSD = count%10;

// Display MSD

LATD = Display(MSD);
DIGITTWO = 1;
__delay ms(20);
DIGITTWO = o;

130

CHAPTER 6 INPUT AND OUTPUT

// Display LSD

LATD = Display(LSD);
DIGITONE = 1;
__delay ms(20);
DIGITONE = 0;

// If value invalid set to 0
if (count > 99 || count < 0){
count = 0;

}

__delay ms(1);

}

return;

}

[RARARAA AR KA KA AR A KA F AR A AR SRR AR AR ARk kK Feok K

K 2K K K oK K ok ok 5K K K K ok ok ok K K

* Function: unsigned char Display(unsigned char digit)

Returns: unsigned char numbers

¥ % %X %

Description: Function that takes a number and returns its
index in an array

* corresponding to the hexadecimal digit
KKK KKK KoK K KoK K KK K KK KoK K KoK K KoK K KK KoK K KoK K KoK 5K KK K oK K KoK K KoK K KK K oKk KoKk kK ok kK kK ok

KRFAAAAAFKKKKAK

unsigned char Display(unsigned char digit)

{

// variable representing numbers
unsigned char numbers;

131

CHAPTER 6 INPUT AND OUTPUT

// an array of the digits O0-F
unsigned char DIGITS[] = {0x3F, 0x06, Ox5B, Ox4F, 0x66, 0x6D,
ox7D, 0x07, Ox7F, Ox6F, 0x77, 0x7C, 0x39, Ox5E, 0x79, Ox71};

// assign index given by user to variable
numbers = DIGITS[digit];

// return it
return numbers;

}

This program displays the Most Significant Digit (MSD) by dividing the
current count by 10. The Least Significant Digit (LSD) is found by finding
the modulo of the count and 10. Two pushbuttons are used to increment
and decrement the count. If the user tries to enter a count of more than 99
or less than 0, the counter resets to 0. The program runs in a 1ms loop and
slight jitter can be seen on the seven segment displays.

Project: Countdown Timer

Although we haven’t covered much, we can still build a useful project. We
will use the knowledge we have gained so far to make a basic countdown
timer. The idea is to build a timer that can count down from a value of up
to 99 seconds based on what is set by the user. We will use one button for
incrementing the time, one for decrementing time, and another button to
begin the countdown. The schematic for this circuit is shown in Figure 6-7
and the code is shown in Listing 6-11.

132

CHAPTER 6 INPUT AND OUTPUT

DS I_I [DSLII] i
I 1L
PICLGFL7L7-UPT
u2
2 R}
W\

A e
—Jra1 res|— WG
—Jra2 rB4|— AAA
—{ra3 RB3}— aa
—lraa mB2|— 3
—Jras mm1 AN
—|re0 mBO R7
—{re1 vOD1}— AN
—dre2 wss1]—
—Jvop RO7|—
—Jvss rDB
—{ra7 RDS
—_lras R4
—Jrco re7|—
—Jrc1 res
—JRC2 RCS re 9
—Jrc3 R4

RDO RD3

RDI RD2

L L I
S3
_.-—L- 52 |

Figure 6-7. PIC16F1717 countdown timer project schematic

133

CHAPTER 6 INPUT AND OUTPUT

Listing 6-11. PIC16F1717 Countdown Timer Project Code

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: P01_Countdown_Timer
Compiler: XC8 (v1.38, MPLAX X v3.40)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ %

Program Description: This Program Allows PIC16F1717 to
countdown from a

* time of up to 99 seconds which is determined by the

* user.

*

* Hardware Description: Dual seven segment displays of the
cathode variety 1is

connected to port D of the microcontroller via 1k
resistors. There are two transistors connected in
common emitter configuration on pins RBO and RB1
respectively. There are also two pushbuttons connected
to pins RC4 and RC5 used for decrementing and
incrementing. There is also a button connected to

RC6 used to begin the countdown.

¥ ¥ ¥ %X ¥ % ¥ % %

Created February 16th, 2017, 11:16 PM

*/
/**
Kok ok Kok Kok Kk KKKk

*Includes and defines
KKK KKK KoK K KK K KK K KK KoK K KoK K KK K KK KoK K KoK oK KoK K KK K oK K K oK K KoKk K Kk K oKk Kok ok Kok ok ok kK ok

kAR AKAR KSR KKKk /

134

CHAPTER 6 INPUT AND OUTPUT
#include "16F1717 Internal.h"

unsigned char display(unsigned char digit);
void countDown(unsigned char number);
void showNumber(unsigned char number);

// display port
#define DISPLAYPORT LATD

// digit one enable
#define DIGITONE LATBO

// digit two enable
#define DIGITTWO LATB1

JRERRFAAAAA KK FAAAAAF AR AAAAAAF A AAAAAAFFFFAKAAAAAAFFFHHKAA K

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()

KKK KKK K oK K KoK K KoK K KK K oK oK KoK K KoK K KK K oK K K oK K KoK K KK K oK K KoK ok KoK K KK K oKk Kok ok Kk kK kK ok

KkoRk kKKK R KN KK f

void initMain(){
// Run at 16 MHz
internal 16();

// Set PORTD as output
// Analog disabled
TRISD = 0;

ANSELD = 0;

135

CHAPTER 6 INPUT AND OUTPUT

// Set PORTB as output
// Analog disabled
TRISB = 0;

ANSELB =

// Set RC4, RC5 and RC6 as input
TRISCbits.TRISC4 = 1;
TRISCbits.TRISC5 = 1;
TRISCbits.TRISC6 = 1;

// Turn of analog on C
ANSELC =

// Enable weak-pullups global
OPTION REGbits.nWPUEN = 0;

// Enable weak-pullup on RC4, RC5 and RC6

WPUCbits.WPUC4 = 1;
WPUCbits.WPUC5 = 1;
WPUCbits.WPUC6 = 1;
}

/**

K 2K K ok oK oK ok ok 5K K K K ok ok ok %k K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
K 2K K K oK oK K K 5K 5K K oK oK oK K K 5K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK oK oK 5K 5K K oK oK oK K oK oK K oK oK K ok ok K K Kk ok ok

kAkRARKARR KR KKKk /

void main(woid) {

136

CHAPTER 6

// count variable
unsigned char count = 0;

initMain();
while(1){

// If RC4 pressed increment count
if(RC4 == 0){
__delay ms(100);

if (RC4 == 0){
count++;

}
}

// If RC5 pressed decrement count
if (RC5 == 0)
{

__delay ms(100);

if(RC5 == 0){
count--;

}
}

// If RC6 pressed begin countdown
if (RC6 == 0)
{

__delay ms(100);

if (RC6 == 0){
countDown(count);
}

}

INPUT AND OUTPUT

137

CHAPTER 6 INPUT AND OUTPUT

// If value invalid set to 0
if (count > 99 || count < 0){
count = 0;

}

// show number on display
showNumber (count);

__delay ms(1);
}

return;

}

JRERRFAAAAAF KK FAAAAA R FAAAAAFFFFAKAAAAAFFFFHKAAAAAAFFF KA AN
koo ko ko ok ok ok ok ok ok ok

* Function: unsigned char Display(unsigned char digit)
*

* Returns: unsigned char numbers

*

* Description: Function that takes a number and returns its
index in an array

* corresponding to the hexadecimal digit
KK KK K K o oK oK oK oK K K oK K oK K ok K ok oK oK oK K oK K oK oK oK oK oK oK K ok oK oK oK K oK K ok K ok oK oK oK K ok K ok oK ok ok ok ok ok ok ok ok Kk K

KkRk R KI KKKk)

unsigned char display(unsigned char digit)

{

// variable representing numbers
unsigned char numbers;

// an array of the digits 0-F
unsigned char DIGITS[] = {0x3F, 0x06, 0x5B, Ox4F, 0x66, 0x6D,
ox7D, 0x07,0x7F, Ox6F, 0x77, 0x7C, 0x39, OX5E, 0x79, Ox71};

138

CHAPTER 6 INPUT AND OUTPUT

// assign index given by user to variable
numbers = DIGITS[digit];

// return it
return numbers;

}

[RARAA AR A KA AR AR F A A AR A ARk kK

KK KK KKK KK KK KKK KKK

* Function: void countdown(unsigned char number)
*

* Returns: nothing
*

* Description: Begins a countdown based on number passed to

function
KoK KK o oK o ok oK oK ok K K oK ok oK K ok K oK oK oK oK oK oK K oK oK ok oK K oK oK ok oK oK oK oK oK K ok oK ok

KRRk KR KK KK f

void countDown(unsigned char number)

{

// loop counter
int i;

// begin countdown
for (i = number; i >= 0; i--)

{

showNumber (i);
__delay ms(1000);

}

retuxn;

}

139

CHAPTER 6 INPUT AND OUTPUT

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

KOk KK KK oK Kk Kk KKk Kk K

* Function: void shownumber(unsigned char number)
*
* Returns: nothing
*
*

Description: Displays a number on the port specified
KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK oK oK oK K oK KoK K oK oK K oK K oK K K oK K oK Kk Kok K ok ok Kk

*RFAAAAAFKKKKAK

void showNumber(unsigned char number)
{

// most significant digit

unsigned char MSD;

// least significant digit
unsigned char LSD;

// Get MSD and LSD
MSD = number/10;
LSD = number%10;

// Display MSD

DISPLAYPORT = display(MSD);
DIGITTWO = 1;

__delay ms(20);

DIGITTWO = o;

// Display LSD

DISPLAYPORT = display(LSD);
DIGITONE = 1;

__delay ms(20);

DIGITONE = o;

}

140

CHAPTER 6 INPUT AND OUTPUT

If we had covered interrupts and timers, this project would have been
much more efficient and effective. Currently during the countdown, the
displays flash every second. This is because, since we are using the delay
function, for one second the microcontroller doesn’t do anything. When
you learn about timers in Chapter 8, you can revisit this project and use
one of the onboard timer modules if you want.

Peripheral Pin Select

Though we will not use it in this chapter, let’s take a quick look at the
Peripheral Pin Select (PPS) module. On older PIC® microcontrollers,
the I/0 ports had fixed functions with regard to which peripherals were
accessed by which pins. On newer PIC® microcontrollers, PPS was
introduced to avoid this problem.

As you can see in Figure 6-8, the pins on the PIC16F1717 do not have
a fixed peripheral input and output. This provides enormous possibilities
with regard to board layout and circuit design. Previously to having PPS,
designers had to design their circuit around the chip. While this may still
be true today, the requirement is not as critical, as it is easier to adjust
which pins on the chip you place your peripheral output or input. This
also makes it possible to reconfigure which pins are accessed by the
microcontroller at runtime and also allows an easier path to migration of
legacy designs to newer ones. PPS is a very powerful feature.

141

CHAPTER 6 INPUT AND OUTPUT

veeMCIRRE3 [RB7/ICSPDAT
rRAO 12 RB6/ICSPCLK
RA1 [13 RB5
RA2 []4 RB4
RA3 [15 RB3
RA4 []6 RB2
RAS5 [17 RB1
REO []s RBO
rRe1 [Js 2 Voo
RE2 [T10 g:_ a1[] Vss
Voo []1 ™y RD7
Vss []12 E RD6
RA7 [113 E 28{] RD5
RAG [|14 271] RD4
RCO 115 RC7
RC1 116 25] RC6
rc2 [17 24[] RC5
RC3 [118 231 RC4
RDO []19 RD3
RD1 [120 211 RD2

Figure 6-8. PICI6F1717 pinout

Conclusion

This chapter looked at how to use input and output on a PIC®
microcontroller while looking at its applications of driving LEDs, switches,
and seven segment displays. We covered display multiplexing and you saw
how to build a simple project using what you have learned so far.

142

CHAPTER 7

Interfacing Actuators

Introducing Actuators

So far, we have covered input and output on the PIC® microcontrollers.
In this chapter, we apply the knowledge we learned thus far to control
three common actuators in embedded systems—the DC motor, the
stepper motor, and the servo motor. We incrementally examine these
three actuators based on their ability to be controlled. We start with the
DC motor, which has very coarse control of directionality (forward or
backward) and is the easiest to control. Next, we look at the servo, which
has a greater degree of ability to be controlled, in that it can be positioned
in one of three angles. Finally, the stepper motor has the finest level of
granularity with control being down to very specific degree size.

DC Motor

When introducing actuation into embedded systems, the three most
common types of actuators are pneumatic, hydraulic, and electric. Of
these three, electric-based actuation is the easiest and cheapest to design
and prototype with. A wide spectrum of devices, from electronic locks

to toy cars and robots, use electric motors. Before we look at using an
electric motor, let’s discuss it a bit. There are two types of electric motors.
There are those that are powered by AC current and those that are DC
powered. For the applications, we will look at the DC variety, specifically
the brushed DC motor.

143
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_7

CHAPTER 7 INTERFACING ACTUATORS

DC motors work on the principle of current flowing through a
magnetic field, thereby creating a force. Electric motors are used to convert
electrical energy into mechanical energy. DC motors contain two input
terminals and applying a voltage across these terminals causes the motor
shaft to spin. When positive voltage is applied, the motor spins in one
direction; when negative voltage is applied, it spins in the other direction.
In order to properly interface a DC motor to a microcontroller, we can use
relays, MOSFETs, or transistors. The reason is simple:

Ifyou connect a DC motor directly to the pin of your microcontroller,
you will damage it!

Mind you, PIC® microcontrollers are very difficult to destroy when
compared to other microcontrollers. I have had PIC® microcontrollers that
were smoking and then worked for years after the problem was fixed, and
still work! However, to ensure that you have a happy PIC® microcontroller,
do not connect the motor directly to an I/O pin.

The reason that you cannot connect a motor directly to a PIC®
microcontroller is that an inductive load such as a motor requires a large
amount of current. The I/O pins of a PIC® microcontroller are incapable
of supplying the current required by the motor. In order to interface small
DC motors, such as a small hobby motors or vibration motors commonly
used for haptic feedback in embedded systems, I recommend using a
simple transistor when prototyping. The reason is that when working with
MOSFETs, extra precautions need to be taken to prevent static damage.

So you can prototype with a transistor and use a MOSFET for your final
design.

Figure 7-1 shows how you connect a DC motor to the microcontroller.

144

PIC16F1717

VPP
RAD
RA1

RA2
RA3
RA4
RAS
REO
RE1

RE2
VDD
VSS

RAB
RCO
RC1
RC2
RC3
RDO
RD1

EEEEEEEE NN

I

RE7
RB6
RBS
RB4
RB3
RB2
RE1
RBO
VDD1
VSS1
RD7
RD&

RD4
RC7
RC&
RC5
RC4
RD3
RD2

CHAPTER 7 INTERFACING ACTUATORS

+5V

M m/';)

M1

)

Vv

Figure 7-1. Driving motor with PIC16F1717

The value of the resistor, diode, and capacitors vary according to the

size of the motor. For our purposes, the resistor can be 1k, the diode a

standard 1N4001, and the capacitor a 0.1uF ceramic type. The transistor

can be a 2n2222 or a 2n3904; however, almost any NPN transistor can be

substituted. Be sure to consult the datasheet for your motor.

The code is rather simple, as shown in Listing 7-1.

145

CHAPTER 7 INTERFACING ACTUATORS

Listing 7-1. PIC16F1717 Motor Control

/*
* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

* Program: 07 Motor

* Compiler: XC8 (vi.38, MPLAX X v3.40)

* Program Version: 1.0

*

*

* Program Description: This Program Allows PIC16F1717 to Turn
on a Motor

*

* Hardware Description: As per schematics
*

* Created November 4th, 2016, 1:00 PM
*/
/**

KoK K K oK K K ok 5K K K K ok ok ok K K

*Includes and defines
KKK KKK KoK K KoK K KK K KK KoK K KoK K KoK K KK K oK K KoK oK KoK 5K KK K oK K KoK K KoK K KK K Kok Kok kK ok kK kK ok

KRFAAAAAFKKKKAK

#include "16F1717 Internal.h"

[RARAR ISR A A KA KA AR AR AR A KNI AR A NSRS KA AR R K A KKKk

sokokokokokokokokok ko ko ok ok k

* Function: void initMain()
*

* Returns: Nothing
*

146

CHAPTER 7 INTERFACING ACTUATORS

* Description: Contains initializations for main
*

* Usage: initMain()
2K 2K K K oK oK K K 5K 5K K oK oK oK oK 5K K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK ok ok ok K K Kk K ok ok

kAkRARKARR KR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

// Set PIN DO as output
TRISDbits.TRISDO = 0;

}

JRRRRRRk kR kot Rk kokok kot kokkokok kiR kokskokok stk kokskokok otk o ok
sk

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
3kokok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok Sk sk sk ok ok ok ok Sk sk sk ok ok sk ok ok sk ok ok ok ok ok ok sk sk ok sk ok ok ok sk skok sk ok ok sk ok sk sk kok

******/
void main(void) {
initMain();
// Turn motor on for 5 seconds
while(1){
LATDO = !LATDO;
__delay ms(5000);

}

return;

147

CHAPTER 7 INTERFACING ACTUATORS

This should suffice for driving small motors for trivial applications.
If we look at the code, the line that is responsible for actually turning the
motor on is LATDO = !LATDO. Just like in the LED program, this line drives
the pin high for a period of five seconds, which turns the transistor on.
When the while loop runs again, the pin outputs low, which turns the
transistor off for a period of five seconds. You see even a simple application
such as blinking an LED can be modified to perform other tasks in the real
world. This is the power of microcontrollers. The five second on and off
time is user determined and you may modify it as you see fit. If you want to
have the motor turn in the other direction, you could do this by modifying
the circuit and simply switching the terminals of the motor. To do so,
connect the positive terminal to the ground and connect the negative
terminal to the emitter of the transistor.

However, since we are using a microcontroller, I recommend that
you use intelligent controls to modify the direction of the motor. In a
later chapter, we will cover Pulse Width Modulation (PWM). In that same
chapter, we will look at controlling a motor using the PWM on the PIC®
microcontroller to control a motor driver.

Servo Motor

Now that you have a fair understanding of the DC motor, let’s look at the
servo motor. There are many different types and sizes of servos. There
are AC servos typically used for industrial applications and DC servos
commonly used for smaller applications. In fact, there are servos that are
used exclusively for robots and are known as robotic servos. They have
ridiculous torque for their size.

148

CHAPTER 7 INTERFACING ACTUATORS

When we speak of forque, we are talking about the maximum force
the servo can output. The servo typically has three wires. One wire is
connected to power, the other to ground, and the last is known as the
signal wire and is connected to the pin of the microcontroller. We will not
go into the intricacies of the internals of how servo motors are constructed.
For our purposes, all we need to know is that a servo contains control
circuitry inside. Therefore, all we need to do is tell this control circuitry
what position to move the servo motor to.

To tell the servo motor what position to go to, we send a pulse on the
signal wire. According to the width of the pulse (essentially how long the
pulse is high), the motor will turn to the desired location. A servo motor
can either move to one of three angles—O0 degrees, 90 degrees, or 180
degrees.

There is one exception to this, which is the continuous rotation servo.
It can rotate a full 360 degrees.

The technique of varying the width of a pulse is known as Pulse Width
Modulation and we will discuss it in later chapters. For now, just know that
we control the servo by changing the duration of the pulse on its signal
wire. For simple applications, I recommend metal servos, as they have
more torque for their size and are more accurate and durable.

You connect the servo motor as shown in Figure 7-2.

149

CHAPTER 7 INTERFACING ACTUATORS

PIC16F1717-UPT
U
— VPP RB7
RAO RB6
—RA1 RBS
—RAZ RB4
—RA3 RB3
—{ RA4 RB2
—{RAS5 RB1
—REO RBO
—RE1 VDD1
—RE2 VSS1
— VDD RD7
—]VSss RD6
— RA7 RD5
— RAG RD4
—RCO RC7
—RC1 RC6
—{RC2 RC5
RC3 RC4
RDO RD3
— RD1 RD2

Frrrrrrrrrrrrrrrrrnl

+5V

Figure 7-2. Driving servo with PIC16F1717

Create a file called Servo.h and use the code in Listing 7-2.

Listing 7-2. Servo Header File

/*
File: Servo.h

¥ % ¥ % %

150

Author: Armstrong Subero

PIC: 16F1717 w/Internal 0SC @ 16MHz, 5v
Program: Header file to control a standard servo
Compiler: XC8 (v1.38, MPLAX X v3.40)

CHAPTER 7 INTERFACING ACTUATORS

* Program Version 1.0
*

* Program Description: This program header will allow you
control a standard

* servo.
*

*
* Created on January 14th, 2017, 9:15 PM

*/

JREFRRR KRRk kR ok kR Rok kR kok kR kR kbR kkk Kok kR sk kK okk koK o
3k ok 3k 3k ok >k sk ok >k sk ok >k skok sk kok

*Includes and defines
3k ok 3k 3k ok 3k sk Sk sk sk ok sk sk ok ok sk Sk ok sk Sk sk sk ke sk sk ok sk sk Sk ok sk Sk sk sk Skesk sk Sk sk sk sk sk sk Sk sk sk Sk sk sk sk sk sk sk sk sk skeok sk skek sk skok

***************/

#include "16F1717_Internal.h"

void servoRotateo(); //0 Degree
void servoRotate90(); //90 Degree
void servoRotate180(); //180 Degree

Now you have to create a source file called Servo.c, which contains the
code in Listing 7-3.

Listing 7-3. Servo Source File

Vo

* File: Servo.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

* Program: Library file to configure PIC16F1717
* Compiler: XC8 (v1.38, MPLAX X v3.40)

* Program Version: 1.0

*

151

CHAPTER 7 INTERFACING ACTUATORS

* Program Description: This Library allows you to control a
standard servo

*

* Created on January 14th, 2017, 10:41 PM

*/

#include "16F1717 Internal.h"

[RARAAA AR AA KA A A S AR A A KA A AR KA Sk kK
KKK KKK KKK KKK KK KKK

* Function: void servoRotateo()
*

* Returns: Nothing
*

* Description: Rotates servo to 0 degree position
*
KKK KKK K oK oK KoK 5K KoK K oK K K oK oK K oK 5K KoK oK KK K oK K K oK oK KoK 5K KoK oK oK oK K oK oK K oK 5K KoK K Kk K ok ok Kk ok Kok ok Kk

KkoR SRR KRR KKK K /

void servoRotateo()
{

unsigned int i;
for(i=0;i<50;i++)
{

RDO = 1;

__delay us(700);
RDO = 0;

__delay us(19300);
}

}

152

CHAPTER 7 INTERFACING ACTUATORS

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK
KKK KKK KKK KKK KK KKK

* Function: void servoRotate90()
*

* Returns: Nothing
*

* Description: Rotates servo to 90 degree position
*
KR Ko R K R AR R AR AR A KR A KR AK AR F KKK KKK KKK

KRR SRR KAR KKK KK /

void servoRotate90() //90 Degree
{

unsigned int i;
for(i=0;i<50;i++)

{

RDO = 1;
__delay us(1700);
RDO = 0;

__delay us(18300);

}
}

[ORARAA AR AR A AR ISR ARSI AR A A AFFAR A ARk kK
KKK KKK KKK KKK KK KKK

* Function: void servoRotate90()
*

* Returns: Nothing
*

* Description: Rotates servo to 180 degree position
*
KKK K KK KoK K KoK oK KoK K oK K K oK oK 5K oK 5K KoK 5K KoK K oK oK K oK 5K K oK 5K K oK oK oK oK K oK K K oK K KK K Kk K ok ok Kok ok Kok kK

KRR SRR KA KRR KKK /

153

CHAPTER 7 INTERFACING ACTUATORS

void servoRotate180() //180 Degree
{

unsigned int i;

for(i=0;i<50;i++)

{

RDO = 1;

__delay us(2600);

RDO = 0;

__delay us(17400);

}

Listing 7-4 provides the main code.

Listing 7-4. Servo Main File

N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Internal 0SC @ 16MHz, 5v
Program: 102 Servo_Motor

Compiler: XC8 (v1.38, MPLAX X v3.40)
Program Version: 1.0

¥ ¥ %X %X %X % X % %

Program Description: This demonstrates using a servo on a pic

microcontroller
*

* Hardware Description: A MG90s microservo is connected to PIN
RDO

*

* Created January 14th, 2017, 10:30 PM
*/

154

CHAPTER 7 INTERFACING ACTUATORS

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK

KK KK KKK KK Kk KKk KKK

*Includes and defines
2K 2K K K oK oK K K 5K 5K K oK oK oK oK 5K K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK ok ok ok K K Kk K ok ok

kAkRARKARR KR KKKk /

#include "16F1717 Internal.h"
#include "Servo.h"

SRR KKK KKK KKK KKK KKK AR AR AR KKK
koo ok ok ok ok ok ok ok ok

* Function: void initMain()
*

* Returns: Nothing

*

* Description: Contains initializations for main
*

*

Usage: initMain()
3K 3K 3K K oK K K K K 3K 3 oK oK K 5K K K K oK K K K 3K K K oK K K 5K 3K K oK oK oK K 5K K K oK oK K oK 5K 3K K K oK K K K K K K K K ok ok K ok ok ok ok ok

KkoRk AR KAR KKKk J

void initMain(){
// Run at 16 MHz
internal 16();

11117777777777777777
// Configure Ports
1111711777777777777

// Make DO Output
TRISDbits.TRISDO = 0;

// Turn off analog
ANSELD = 0;

}

155

CHAPTER 7 INTERFACING ACTUATORS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK
KKK KKK KKK KKK KK KKK

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK oK oK oK K oK KoK K oK oK K oK K oK K K oK K oK Kk Kok K ok ok Kk

*RFAAAAAFKKKKAK

void main(woid) {
initMain();

// Rotate servo 0 - 90 - 180
while(1){

servoRotateo();
servoRotate9o();
servoRotate180();

return;

}
}

Once all goes well, the servo shaft will move along a 180-degree arc at
90-degree increments, starting at 0 degrees.

One caveat I should mention about actually using servo motors is that
if you buy the cheap variety, or even the high-quality plastic ones, they
may not actually start at 0 degrees and end at 180 degrees.

156

CHAPTER 7 INTERFACING ACTUATORS

Stepper Motor

The stepper motor is the next topic of our actuator trio. Stepper motors are
crucial to industrial applications and robotics. Stepper motors are used in
many devices, including printers and CNC control, where very precise and
controlled movement is needed.

The stepper motor has multiple coils which, when organized together,
are called phases. Each phase is turned on sequentially, causing the
stepper motor to rotate. The distance between each step is known as the
step angle. Two major windings exist for the coils of the stepper motor. One
is known as the unipolar and the other as the bipolar. The basic difference
between the two is that, in the unipolar stepper motor, there is coil with a
center tap per phase, whereas a bipolar motor has one winding per phase.
In this book, we focus on the unipolar variety.

There are three main ways to drive a stepper motor. There is the wave
drive, the full-step drive, and the half-step drive.

In the wave drive mode, only a single phase is activated at a time. This
results in the wave drive mode using less power than other modes, but at
the cost of loss of torque. The half-step drive mode alternates between two
phases on and a single phase on. This increases angular resolution but
lowers the torque. The full-step drive mode allows for two phases to be on
at a time, thus allowing for maximum torque.

Thus, when designing with stepper motors, there is a tradeoff between
torque, power consumption, and angular resolution.

The popular method for driving stepper motors though is to use the
full-step drive mode; therefore, this is the method we will use in this book.
In order to drive the stepper motor, we must use a driver to give the stepper
motor the power it needs. For small stepper motors, you can use H-bridges
or Darlington transistor arrays. We will use the Darlington array since from
my experience they are simpler to use.

157

CHAPTER 7 INTERFACING ACTUATORS

The IC we will use that contains these packages is the ULN2003A. The
ULN2003A contains seven Darlington pairs and will be adequate for our
purposes. The ULN2003A includes fly back diodes and can work up to
50V with a single output providing 500mA. These specifications make it
a popular choice for driving small stepper motors. The motor we will use
in this example is a four-phase unipolar stepper motor rated at 5v. The
motor also has a holding torque of 110g-cm and a step angle of 7.5 degrees
and requires a current of 500mA. Motors with similar specifications can
be purchased from a variety of online suppliers; just ensure you buy one
where the datasheet is easily accessible; otherwise, you may not know
which wire does what. The circuit in Figure 7-3 indicates how you connect
a stepper motor to the microcontroller.

158

CHAPTER 7 INTERFACING ACTUATORS

PIC16F1717-UPT
u1

=V

—{VPP RB7}— m1
—RAO RB6 }— 3
—]{RA1 RB5 }— 3 @
—]RA2 RB4 }—
—]RA3 RB3}—
—]{RA4 RB2 }—
—]RA5 RB1}—
—{REO RBO }—
—{RE1 VDD1}—
—]RE2 VSS1}—
—{VDD RD7}—
—VSS RD6 }—
— RA7 RD5 }—
— RAB RD4 }— PIN 4 ouT 4
—RCO RC7 }—
_lrct rce L —PIN5 OUT 5}—
— RC2 RC5}— IN6 OUT 6—
—]RC3 RC4 |— :l

RDO RD3 IN7 ouT 7f—

RD1 RD2 UIi

\Y%

Figure 7-3. Stepper Motor Connection

159

CHAPTER 7 INTERFACING ACTUATORS

The code in Listing 7-5 is rather straightforward and drives the stepper
in full-step mode.

Listing 7-5. Stepper Main File

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Internal 0SC @ 16MHz, 5v
Program: I03 Servo Motor

Compiler: XC8 (vi.38, MPLAX X v3.40)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ % %

Program Description: This demonstrates using a unipolar
stepper motor with a

* pic microcontroller.

*

* Hardware Description: A Sinotech 25BY4801 4 phase unipolar
stepper motor

* is connected to PORT D of the microcontroller with a

* ULN2003A darlington transistor array used as a driver

for the stepper motor.

Connections are as follows:

*

3

*

*

* The ULN2003A is connected to the microcontroller as
* shown below:
*
'3
*
*

IN1 --> RDO

IN2 --> RD1
IN3 --> RD2

160

CHAPTER 7 INTERFACING ACTUATORS

INg --> RD3

The Stepper motor is connected to the ULN2003A as
follows:

= 0UT1
Black = 0OUT2
Red = OUT3

*
*

*

*

*

* White
*

*

* Yellow = OUT4
*
*

Created January 15th, 2017, 12:05 AM
*/
/**
KK 3K ok ok K ok ok ok ok ok ok ok K ok ok

*Includes and defines
KK KK K K o oK oK K oK K K oK oK oK K ok K ok oK oK oK K oK K oK oK oK oK oK oK K ok oK oK ok oK oK K ok K ok ok ok ok ok ok K ok ok ok ok ok ok K ok ok ok ok ok ok ok

KAk SRR AR KKKk f

#include "16F1717 Internal.h”

[RARARAS AR AR A A AN A RSSO S KA AR AR R KKk K

K 2K K K ok K ok K K K K Kk ok K K K

* Function: void initMain()

*

* Returns: Nothing

*

* Description: Contains initializations for main
*
*

Usage: initMain()
K 3K 3K e o K ok ok K 3 ke ok ok ok oK K 3 K ok ok K ok K 3 e ok ok ok K 3K 3k K ok ok K ok K K ok ok K ok K K 3k ke ok ok ok K K Kk ok ok ok ok ok ok K ok ok ok ok

KAkkRAKAR KSR KKKk

161

CHAPTER 7 INTERFACING ACTUATORS

void initMain(){
// Run at 16 MHz
internal 16();

11111717777777777777
// Configure Ports
1117111777777777777

// Make DO Output
TRISD = 0;

// Turn off analog
ANSELD = 0;

}

Y i e e e e e e b Bl b L b b b L L bt

sokokokokokokokokkkok ok ko k

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
KoK KK oK oK o ok oK oK ok oK oK oK ok ok K ok K ok ok ok oK K oK oK oK oK ok oK K oK oK ok oK oK oK ok ok K ok K ok

***************/
void main(wvoid) {
initMain();

while(1){

LATD = 0b00001001; // Step 1
__delay ms(500);

LATD = 0b00000101; // Step 2
__delay ms(500);

162

CHAPTER 7 INTERFACING ACTUATORS

LATD = 0b00000110; // Step 3
__delay ms(500);

LATD = 0b00001010; // Step 4
__delay ms(500);

}

return;

}

If you look in the main while loop in Listing 7-5, you'll notice that the
lower four bits of PORTD keep changing. In case you are wondering what is
going on here, here is how it works. Remember we said that in full-drive
step mode, the motor turns on two phases at a time? Well, if you revisit
the schematic in Figure 7-3, you will notice that each phase of the stepper
motor is connected to a pin of the microcontroller. Now I mentioned that
the coils are center tapped in the unipolar variety stepper motor and, if
you look at your schematic, this is shown in Figure 7-3. Therefore, two
phases need to be turned on at a time, since in actuality current only flows
in half the winding of the stepper motor at a time. Thus, if you look at the
code, you will notice that two output pins are high at a time. This ensures
that by energizing half windings of the two coils within the stepper motor
alternately, you get the full 360 degree rotation of the motor.

If you are still having trouble understanding how this works, there are
excellent resources on the web that go in-depth into the intricacies of the
operation of stepper motors. In this book, however, you can safely ignore
all the details of operation. As long as you verify with your datasheet that
you have connected the stepper motor as shown in Figure 7-3, this code
will work with unipolar stepper motors of any size.

Do not worry if your stepper motor runs hot. Stepper motors use a
lot of current, and they use the same amount of current when they are
stationary and running, so do not panic; this is completely normal.

163

CHAPTER 7 INTERFACING ACTUATORS

Conclusion

This chapter looked at interfacing actuators to the PIC® microcontroller,
including DC motors, stepper motors, and servo motors. These form the
foundation for applications of PIC® microcontrollers in areas such as
robotics and motor control.

164

CHAPTER 8

Interrupts, Timers,
Counters, and PWM

Introduction to Interrupts

Interrupts are one of the simplest concepts related to microcontrollers. Let
me explain interrupts as simply as possible by referring to everyday life.
Imagine that you need to wake up at 6:00 am. There are two ways to know
when you have to wake up. One way is to keep checking the clock until it’s
6:00. However, if you do that, then you will not be able to focus on the task
at hand, which is getting sleep. The other thing you can do is set your clock
to alarm to alert you that it’s 6:00. In both scenarios, you will be aware of
when it’s 6:00; however, the second method is more effective as you can
focus on the task at hand, which is getting sleep.

Taking this analogy back to microcontrollers, the first method of
continually checking your clock is the polling method. The second method
of the clock alerting you when the time has reached is the interrupt
method. Interrupts are assigned priorities. For example, if you are on
the phone with someone and your significant other calls you, you could
interrupt your call, speak with your significant other, and then resume your
call. This is because your significant other is more important to you and is
therefore assigned a greater priority.

165
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_8

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

In the same way, the microcontroller assigns priorities to each
interrupt. An interrupt with a higher priority takes precedence over a lower
priority one. The microcontroller can also mask an interrupt, which is the
name given to the way a microcontroller ignores a particular interrupt call
for service.

The interrupt service routine, also known as the interrupt handler,
is essentially the piece of code that the microcontroller executes when
an interrupt is invoked. The time the microcontroller takes to respond
to the interrupt and begin executing its code is known as the interrupt
latency. For the PIC16F1717, the interrupt latency is between three to five
instruction cycles.

The interrupt could have many sources, that is to say things that can
cause the CPU to be interrupted, and this can include timers and other
onboard peripherals, even an external pin.

Now I could go into a lot of details of how interrupts work. There is a
lot of information written about that and you will find a lot of resources on
the Internet if you're interested. In this book, I take a pragmatic approach.
Let’s look at the interrupt in action, shown in Listing 8-1. In this case, we
look at the external interrupt as use a pushbutton to trigger an interrupt
(see Figure 8-1).

166

CHAPTER 8
PIC16F1717

—{ VPP RB7
—{ RAOQ RB6
—] RA1 RB5
—]RA2 RB4
—]RA3 RB3
—{ RA4 RB2
—{ RAS RB1
—|RED RBO
—{RE1 VDD1
—{RE2 VS31
—{ VDD RD7
—Vss RD6
—] RA7 RD5
—]RAB RD4
—]{ RCO RC7
—] RC1 RC6
—]RC2 RC5
—]RC3 RC4
R1 —|rRo0 RD3
—AWW———ROT RD2

s1 _l_

A

L1

\%

Figure 8-1. External interrupt circuit

Listing 8-1. External Interrupt Code

/*
Fle: Main.c
Author: Armstrong Subero

ECEE R S

PIC: 16F1717 w/Int OSC @ 16MHz, 5v
Program: 07 _Interrupt External
Compiler: XC8 (v1.38, MPLAX X v3.40)

R4

INTERRUPTS, TIMERS, COUNTERS, AND PWM

167

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

* Program Version: 1.0
*

*
* Program Description: This Program Allows PIC16F1717 to toggle
an LED based

* on the state of a pushbutton interrupt
*

* Hardware Description: An LED is connected via a 10k resistor
to PIN D1 and
* another LED is connected to PIN D2 and a switch is

* connected to PIN BoO
*

* Created November 4th, 2016, 8:10 PM

*/
/**
K 3K K KKK K K K K KKKk K kK

*Includes and defines
2K 2K K oK oK oK oK K 5K K K oK oK oK oK oK 5K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK ok 5K 5K K oK oK oK K oK oK K oK oK K ok ok K K K ok ok ok

kAkRAKAR KR KKKk /

#include "16F1717 Internal.h"

[RARAAA AR AR AR A AR A I AR A AR AR A RSk kK

KK KK KKK Kk Kk KKK KKK

* Function: void initMain()
*

* Returns: Nothing
*

* Description: Contains initializations for main
*

* Usage: initMain()

168

CHAPTER 8

INTERRUPTS, TIMERS, COUNTERS, AND PWM

2K 2K 2K oK oK oK oK K 5K 5K K oK oK oK K K 5K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK oK 5K K oK oK oK K ok oK K oK oK ok ok ok K K Kk ok ok

kAkRAKAI KR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

[11777777777777777777777
/// Configure Ports
[11177777777777777777777

// Set PIN D1 and D2 as output
TRISDbits.TRISD1 = 0;
TRISDbits.TRISD2 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

// unlock PPS

PPSLOCK = OX55;
PPSLOCK = OxAA;
PPSLOCK = 0x00;

// Enable weak-pullups global
OPTION_REGbits.nWPUEN = 0;

// Enable weak-pullup on PINBO
WPUBbits.WPUBO = 1;

L117777777777777777777777

169

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

/// Configure Interrupts
I1717777777777777777777/

// Set Interrupt pin to pin BO
INTPPSbits.INTPPS = 0b01000;

// lock PPS

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCK = 0x01;

// Trigger on falling edge
OPTION REGbits.INTEDG = 0;

// Clear external interrupt flag
INTCONbits.INTF = 0;

// Enable external interrupt
INTCONbits.INTE = 1;

// Enable global interrupt
ei();
}

Y o e e e e e e e L L e L e L b e

KOk KK KKk Kk Kok KKk Kok K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point

KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K oK K K oK K oK K oK oK oK oK KoK K oK K oK oK oK oK K oK K K K K K Kk Kok Kk ok ok Kk

RRFAAAAAFKKKKAK

void main(woid) {
initMain();

170

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

while(1){

LATDbits.LATD1 = ~LATDbits.LATD1;
__delay ms(500);

}

return;

}

JRERRRAA AR KRR AAA AR AAA AR AAA AR AAAA AR KA A K
sokokokokokokokokokok ok ko ko

* Function: void interrupt isr(void)
*

* Returns: Nothing
*

* Description: Interrupt triggered on pushbutton press
Kook ok ook ke ok ko ok ok ok ok ko ok ok ok ke ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok

KARR SRR KI KKKk J

void interrupt isr(woid){
// Clear interrupt flag
INTCONbits.INTF = 0;

// Toggle led
LATDbits.LATD2 = ~LATDbits.LATD2;

}

Now that you have a fair understanding of how external interrupts
work, we can move on to an interrupt being triggered by some internal
mechanism. In this case, we will use an onboard timer to trigger the

interrupt. However, we must first look at the operation of timers.

171

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

Using Timers

A timer on a microcontroller can count either regular clock pulses (thus
making it a timer) or it can count irregular clock pulses (in this mode it is
a counter). The PIC16F1717 has five timers. These are Timer 0, Timer 1,
and Timers 2, 4, and 6. The timer we will use is Timer 0. We will use this
timer because it is ubiquitous among 8-bit PIC® microcontrollers. Since
timers can also be used as counters, we sometimes refer to them as timer/
counters.

The timer needs a clock pulse to tick. This clock source can either
be internal or external to the microcontroller. When we feed internal
clock pulses, the timer/counter is in timer mode. However, when we
use an external clock pulse, the timer is in counter mode. Timer 0 on the
PIC16F1717 can be used as an 8-bit timer/counter.

A Timer 0 will increment every instruction cycle unless a prescaler
is used. The prescaler is responsible for slowing down the rate at which
Timer 0 counts. The timer has a software selectable prescale value and has
eight values from 2-256.

Timer 0 in Timer Mode

We first look at using Timer 0 in timer mode. In order to use the timer,
some housekeeping needs to be done. In this mode, we need to clear the
TMROCS bit of the option register. We will then assign a prescaler and to do
so, we need to clear the PSA bit of the option register. In this example, we
use Timer 0 to flash an LED at precisely 1Hz. To do so, connect the LED to
the microcontroller, as shown in Figure 8-2 with RD1 connected to the LED

via a 1k resistor.

172

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

PIC16F4747

VSS

AN EENNEEEE NN
8

R1

FETTTrrr T rrrrrrrrrd

Figure 8-2. Precise LED Flash circuit

Listing 8-2 shows the main code.

Listing 8-2. Timer 0 Timer Mode

/>l<

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: 04_TimerO

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0
*
*

173

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

* Program Description: This Program Allows PIC16F1717 to flash
an LED at 1 Hz

* on TimerO overflow
*

* Hardware Description: An LED is connected via a 10k resistor
to PIN D1

*

* Created November 4th, 2016, 4:14 PM

*/
JRFARARRKIAARKKAAKKAAAKKIAAKKIAARKIAAKKAAAKKAAAKKKAAKKKAAKKAAK
KK 3K K ok K ok ok K ok 3k K ok Kk ok ok K

*Includes and defines
KK oK ok o oK o ok oK oK ok oK oK oK ok oK K oK K ok oK ok oK K oK oK oK oK oK oK K oK oK ok oK oK oK oK ok K ok oK ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

KARR ARSI KAIKK KK)

#include "16F1717 Internal.h"

// Counter variable
int count = 0;

/**

K 2K K ok oK oK ok ok 5K K K K ok ok ok %k K

* Function: void initMain()

*

* Returns: Nothing

*

* Description: Contains initializations for main
*
*

Usage: initMain()
sk o o o ok ok ok sk ko ke kK K K K K K K K K KKK KKK o o o o o o o o o o o o o ok ok ok ok ok ok ok ke ok sk sk k

KARFFRSR KSR KAI KKKk J

174

CHAPTER 8

void initMain(){
// Run at 16 MHz
internal 16();

11117777777777777777777
/// Configure Ports
1111111777777777777777

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

11117177777777777777777
/// Configure TimerO
I117777777777777777777

// Select timer mode
OPTION_REGbits.TMROCS = 0;

// Assign Prescaler to TIMERO
OPTION_REGbits.PSA = 0;

// Set Prescaler to 256
OPTION REGbits.PSO = 1;
OPTION REGbits.PS1 = 1;
OPTION REGbits.PS2 = 1;

INTERRUPTS, TIMERS, COUNTERS, AND PWM

175

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

// Zero Timer
TMRO = 0;
}

JRERRFAAAAAFFK KK FAAAAAFF KA FAAAAAF A FAAAAAF K AAAAAAFF KA AN

K 2K K oK oK K ok ok 5K K K K ok ok ok ok K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
2K 2K 3K K oK oK oK K 5K K K oK oK 5K 5K 5K 5K K oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 5K K oK oK oK 5K 5K oK K oK oK K ok ok K K Kk ok ok

***************/
void main(woid) {
initMain();
while(1){

// When timer overflows TMRO interrupt flag will be equal to 1
while (INTCONbits.TMROIF != 1);

// Reset flag after overflow
INTCONbits.TMROIF = 0;

// Increment count
count++;

// Value = fclk / (4 * 256 * 256 * fout)
//|-- Frequency out (in Hz)

//|-- Prescaler value

// Value = 16 000 000 / (262 144)

// Value =61.04 for 1 s

176

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

// Turn on LED for 1 second on timer overflow
if (count == 61){

LATDbits.LATD1 = 1;

count = 0;

}

// Else turn LED off
else {
LATDbits.LATD1 = 0;

}
}

retuxn;

}

Timer 0 in Counter Mode

Now we look at using the timer in counter mode. In order to use the timer
in counter mode, we need to set the TMROCS bit of the option register. The
steps for assigning the prescaler are the same as for a timer. This code also
is the first in the book to utilize the PPS. The PPS in this case is used to
designate which pin will be used to count the external clock pulses. The
sequence for assigning a peripheral to a pin using PPS is as follows:

1. Unlock the PPS.
2. Assign the peripheral to the pins.
3. Lockthe PPS.

You must follow these steps to correctly use the PPS. The global
interrupt enable must be configured appropriately, as is shown in the code
in Listing 8-3. There is also a function to read Timer 0. When the counter
on Timer 0 reaches a particular value, the LED is turned on.

177

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

The connections are very simple, as shown in the schematic in

Figure 8-3.
PIC16F1717
m
—VPP RB7}—
—]RAO REG }— R2
—|rRA1 RB5|— ""‘g
—RA2 RB4|—
—RrRA3 RB3|—
—|RA4 RB2|—
—RA5 RB1}— $1
—|RED RBO —
—RE1 VDD1 |—
—RE2 VSS1}—
—VvDD RD7}—
—VSS RDB}—
—{ RA7 RD5 p—
—|RA6 RD4}—
—RCO RC7|—
—RC1 RCB }—
—RC2 RC5}—
—RC3 RA|l—
R1 —RD0O RD3}—
— AAA———— RD1 RD2 }—

)

\Y4

Figure 8-3. Counter circuit

L1

Listing 8-3 provides the code.

Listing 8-3. Timer 0 Counter Mode

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

178

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

Program: 05_Counter
Compiler: XC8 (vi1.38, MPLAX X v3.40)
Program Version: 1.0

¥ % ¥ %X ¥ %

Program Description: This Program Allows PIC16F1717 to turn
on an LED after

* the counter module on TimeO reaches a specified value

* which is detected from external pulses given via a

* switch on RBO.

*

* Hardware Description: An LED is connected via a 1k resistor
to pin RD1 and

* a switch is connected to pin RBO

*

* Created February 23rd, 2017, 5:22 PM

*/
/**
KKK KKK KKK KKK KK KKK

*Includes and defines

K 2K K K oK oK K K 5K 5K K oK oK oK K 5K 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK K oK oK K oK oK K ok ok K K Kk ok ok

kAkRAKAR KRR KKKk /

#include "16F1717 Internal.h"

[RARAAA AR AR A A KA S A AR A A AR RS RS KA R kKK

KK KK KKK KK KK KKK KKK

* Function: void initMain()
*

* Returns: Nothing
*

179

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

* Description: Contains initializations for main
*

* Usage: initMain()
2K 2K K K oK oK K K 5K 5K K oK oK oK oK oK 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK K ok ok K K Kk ok ok

kAkRARKA KR KKK KK /

void initMain(){
// Run at 16 MHz
internal 16();

[1177777777777777777777
/// Configure Ports
[111777777777777777777

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

[1177777777777777777777
/// Configure TimerO
1177777777777777777777

// Select counter mode
OPTION REGbits.TMROCS = 1;

// Assign Prescaler to TIMERO
OPTION REGbits.PSA = 1;

180

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

bool state = GIE;

GIE = 0;
PPSLOCK = OX55;
PPSLOCK = OXAA;

PPSLOCKbits.PPSLOCKED

0x00; // unlock PPS

TOCKIPPSbits.TOCKIPPS

0x08; //RB0O->TMRO:TOCKI;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED

0x01; // lock PPS
GIE = state;

// Zero Timer
TMRO = 0;

// Enable timer0 interrupts and clear interrupt flag
INTCONbits.TMROIE = 1;
INTCONbits.TMROIF = 0;

}

[RRAARAR SRS ARSI Rk kK

KK KK KKK KK KK KKK KKK

* Function: int ReadTimer(void)

*

* Returns: int readVal;

*

* Description: Returns the value of TimerO
*
*

Usage: int x;
KRR AR A KR A KR AR A KKK KKK A A KKK F KKK KKK KKK KKK

KARK SRR K I KKKk f

181

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

uint8_t ReadTimero(void)

{

// Read value variable
uint8_t readvVal;

// Set variable to timero value
readVal = TMRO;

// return value
return readVal;

}

JRERRFAAAAAF KK RAAAAAF KK AAAAAAF K FAAAAAF K AAAAAAAF KA AK

K 2K K K oK K ok ok 5K K K K ok ok ok >k K

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
2K 2K K oK oK oK oK K 5K K K oK oK 5K 5K 5K 5K oK oK oK 5K oK 5K K oK 5K oK oK 5K 5K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK K ok 5k K K Kk ok ok

kAkRkKAI KRR KKKk /

void main(woid) {
initMain();

// count variable
uint8_t count;

while(1){

// read timer with count
count = ReadTimero();

// if counter has value of 5
if (count == 5){

182

CHAPTER 8

// turn LED on
LATDbits.LATD1 = 1;

// short delay to see LED on
__delay ms(2000);

// zero timer
TMRO = 0;
}

else

{
// keep LED off

LATDbits.LATD1 = 0;

}
}

retuxn;

}

Timer 0 with Interrupts

INTERRUPTS, TIMERS, COUNTERS, AND PWM

Now we look at using Timer 0 with interrupts. The code is very simple if

you have been following along up to this point, and we will use it to blink

an LED every second while simultaneously responding to the pushbutton

to toggle another LED. This example demonstrates an important

application of interrupts, performing an action in a very deterministic

manner.

The circuit is shown in Figure 8-4.

183

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

PIC16F 1717

VPP
RAO
RA1
RAZ2
RA3
RA4
RAS

RE1 V
RE2 V
VDD
VSS
RAT7
RAB
RCO
RC1
RC2
RC3

NN

R1
RD1

|

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RBO
DbD1
S51

+5v

R2

1Dk§

AP

\Y%

L1

Figure 8-4. Timer interrupt circuit

Listing 8-4 provides the code.

Listing 8-4. Timer 0 with Interrupt

/*
* File: Main.c
* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

* Program: 06_Interrupts

184

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

* Compiler: XC8 (vi.38, MPLAX X v3.40)

* Program Version: 1.0

*

*

* Program Description: This Program Allows PIC16F1717 flash an
LED at a rate

* of 1 Hz while responding to a pushbutton input using

* a timer0 interrupt
*

*
* Hardware Description: An LED is connected via a 1k resistor
to PIN D1 and

* another LED connected to PIN D2 switch is connected

* to PIN Bo
*

* Created November 4th, 2016, 7:15 PM
*/
/**

KK KK KKK Kk Kok KKK KKK

*Includes and defines
K 2K K K oK oK K K 5K 5K K oK oK oK K 5K 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK K oK oK K oK oK K ok ok K K Kk ok ok

kAkRAKAR KRR KKKk /

#include "16F1717 Internal.h"

[RARAAA AR AR A A KA S A AR A A AR RS RS KA R kKK

KK KK KKK KK KK KKK KKK

* Function: void initMain()
*

* Returns: Nothing
*

185

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

* Description: Contains initializations for main
*

* Usage: initMain()
2K 2K K K oK oK K K 5K 5K K oK oK oK oK oK 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK K ok ok K K Kk ok ok

kAkRARKA KR KKK KK /

void initMain(){
/1777777777777 77777777
// Configure Ports
117777777777777777777

// Run at 16 MHz
internal 16();

// Set PIN D1, D2 as output
TRISDbits.TRISD1 = 0;
TRISDbits.TRISD2 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

[1177777777777777777777
// Configure TimerO
[117777777777777777777

// Select timer mode
OPTION_REGbitS.TMROCS = 0;

// Assign Prescaler to TIMERO
OPTION REGbits.PSA = 0;

186

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

// Set Prescaler to 256
OPTION REGbits.PS = 0b111;

// enable TimerO interrupt
INTCONbits.TMROIE = 1;

// enable global interrupts
ei();
}

Y o e e e e e e L L Bl e B b Ll b L bt

ook kR ko ok k

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
KK K K oK K o o oK oK oK K K oK ok oK K oK K ok oK oK oK K oK K oK oK oK oK K oK oK ok oK oK oK oK oK K ok K ok

KkoRR kKRR KR KK KK)

void main(woid) {

initMain();

while(1){

// Toggle LED on PUSH Button
LATDbits.LATD1 = ~PORTBbits.RBO;
}

return;

}

Y o e e e e L L L Bl b B b Ll b e bt

ook ko ok ko ko ok

* Function: void interrupt isr(void)
*

187

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

* Returns: Nothing
*

* Description: TimerO interrupt at a rate of 1 second
2K 2K K K oK oK K K 5K 5K K oK oK oK oK oK 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK K ok ok K K Kk ok ok

kAkRARKA KR KKK KK /

void interrupt isr(wvoid)

{

static int count = 0;

// Reset flag after overflow
INTCONbits.TMROIF = 0;

TMRO = 0;

// Increment count
count++;

// Value = fclk / (4 * 256 * 256 * fout)
// |-- Frequency out (in Hz)

// [-- Prescaler value

// Value = 16 000 000 / (262 144)

// Value 61.04 for 1 s

// Turn on LED for 1 second on timer overflow
if (count == 61){

LATDbits.LATD2 = 1;

count = 0;

}

// Else keep LED off
else {
LATDbits.LATD2 = 0;

}
}

188

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

Using the CCP Module

The PIC16F1717 comes with onboard Capture/Compare/PWM (CCP)
modules. The capture mode times the duration of an event. The compare
mode triggers an external event after a certain amount of time has passed.
We will focus on the PWM. If you need to utilize capture or compare
functions, consult the datasheet.

In the last chapter, we briefly examined using PWM for controlling a
servo. In this section, we look at using PWM with dedicated hardware.

Understanding PWM

Pulse Width Modulation (PWM) describes a type of signal that can be
produced by a microcontroller. However, in order to understand PWM,
we must first understand the concept of the duty cycle. A digital signal can
be 5v (high) or Ov (low). The amount of time a signal is high is described
as the duty cycle of that signal. This is expressed as a percentage. For
example, if during a given period of time, a signal is high half of the time
and low the other half, it will have a duty cycle of 50%.

Using PWM

Let’s look at using the PWM on the CCP module. A timer is required to use
the PWM module. Since Timer 0 is used for so many things, we will use
Timer 6 to be the PWM timer.

The PWM module is very important and has a lot of uses. The most
popular uses are for light dimming, motor speed control, and generating a
modulated signal. In this example, we will use the PWM module to dim an
LED. We will run the LED at 50% duty cycle.

Figure 8-5 shows the circuit.

189

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

Ly

PIC16FATAT
—{vep RB7|—
—|RAO RB6|—
—|RrRA1 RB5|—
—|RrRA2 RB4|—
—{RA3 RB3}—
—|RrRA4 RB2|—
—rRA5S RBI|— g
—|RED RBO|—AAA—
—|RE1 vDD1|—
—|rRE2 VsS1|—
—|voo RO7T|— ’C‘)
—|vss Ros|— ¥
—|RrRA7 RD5|—
—|RA6 RD4|—
—|Ro0 RC7T}—
—|Rct Res|—
—|RC2 RC5}— 4
—|Rc3 RCA—
—RDO RO3 |—
—{RD1 RD2}—

Figure 8-5. PWM circuit

The code is shown in Listing 8-5.

Listing 8-5. CCP PWM

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: 20 PWM

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0

*

*

190

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

* Program Description: This Program uses the PWM module of the

PIC16F1717
*

*

* Hardware Description: An LED is connected to PINBO
*

* Created November 7th, 2016, 5:20 PM

*/
/**
Kok kR kKKK KKKk

*Includes and defines
KKK KKK KoK K KK K KK KKK KoK K KoK K KK K KK KoK K KoK K KK K KK K oK K KoKk KoK K Kk KoKk Kok ok Kok ok ok ok ok ok

KAkRAKAR KR KKKk

#include "16F1717 Internal.h"

Y o e e e e L L e L b L b e

Kok Kok Kok ok Kk Kok K kK Kok K

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()

2K 2K K K oK oK K K 5K 5K K oK oK oK K 5K 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K oK K oK oK K ok ok K K Kk ok ok ok

kAkRAKA KR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

191

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

// Setup PINBO as output
TRISBbits.TRISBO = 0;

111177777177777777777
// Configure Timer6
111117777777777777777

// Select PWM timer as Timer6
CCPTMRSbits.C1TSEL = 0b10;

// Enable timer Increments every 250 ns (16MHz clock) 1000/
(16/4)
// Period = 256 x 0.25 us = 64 us

// Crystal Frequency
// PWM Freq = --------mmmmmmmm -
// (PRX + 1) * (TimerX Prescaler) * 4

//PWM Frequency = 16 000 000 / 256 * 1 * 4
//PWM Frequency = 15.625 kHz

// Prescale = 1

T6CONbits.T6CKPS = 0b0O;
// Enable Timer6
T6CONbits.TMR6ON = 1;

// Set timer period
PR6 = 255;

// Configure CCP1
// LSB's of PWM duty cycle = 00
CCP1CONbits.DC1B = 00;

// Select PWM mode
CCP1CONbits.CCP1IM = 0b1100;

192

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

PPSLOCK = OX55;
PPSLOCK = OXAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

// Set RBO to PWM1
RBOPPSbits.RBOPPS = 0b01100;

PPSLOCK = 0x55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS
}

[RARARA AR AR AR S ARSI ARSI ARk kK

KK KK KKK KK KK KKK KKK

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
K oK ok ok ok ok ok oK ok oK oK ok ok oK ok ok ok ok oK ok ok oK ok oK oK ok ok ok ok oK ok ok oK ok oK oK ok ok ok ok oK ok K oK ok ok oK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k

***************/
void main(woid) {
initMain();

while(1){
// Run at 50% duty cycle @ 15.625 kHz
CCPRIL = 127;

}

return;

}

The code also contains a formula for calculating the frequency of the
PWM module, which is important for applications such as motor control.

193

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

Project: Using PWM with a Motor Driver

In the previous chapter on interfacing actuators, we looked at a simple way
of driving a motor. In this section, we look at the typical way of driving a
motor, which is to use a dedicated motor driver, IC. Using a dedicated IC
allows us to easily control the speed and direction of the motor and offers
better general control of the motor.

The motor driver that we will use is the common SN754410, which has
two H-Bridges onboard and can handle up to 36 volts at 1A per driver. In
addition to having decent specs, this driver is also low cost, which makes it
an attractive option for general-purpose applications.

When teaching someone to do something the first time, it is nice to
provide a lot of hand-holding. After all, beginners need a lot of hand-
holding to properly understand concepts. In this project, however, I let you
do alittle research to complete it. I provide the connections in the text as
well as in the code, and your job is to connect the motor driver and motor
to the microcontroller without a schematic. Think you can handle that?
Let’s begin!

The motor is connected as follows:

e 1:Enables motor one, connect to 5v

e 2:Connects to forward PWM channel (motor 1)
e 3:Motor1 +

e 4-5:GND

e 6:Motor1l

e 7:Connects to reverse PWM channel (motor 1)
e 8:+VE Motor Power In

e 12-13: GND

e 16:5v

194

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

We will run the motor for five seconds in one direction, turn it off for
two seconds, and then run it again for five seconds in the other direction.
The code is provided in Listing 8-6.

Listing 8-6. PWM Motor

/>l<

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Internal 0SC @ 16MHz, 5v
* Program: 104 H Bridge

* Compiler: XC8 (v1.38, MPLAX X v3.40)

* Program Version: 1.0
*

*

* Program Description: This demonstrates using a SN754410
H-Bridge with a

* DC motor with a PIC microcontroller.

*

* Hardware Description: A generic brushed hobby DC motor is
connected to the

* SN754410 as per standard connections. The PWM signals
* are emanating from RBO and RB1 for forward and reverse
* signals respectively.

*

*

* Created January 15th, 2017, 11:36 AM

*/

195

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

/**
KKK KKK KKK KKK KK KKK

*Includes and defines

2K 2K K K oK oK K K 5K 5K K oK oK oK oK oK 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK K ok ok K K Kk ok ok

kAkRARKA KR KKK KK /

#include "16F1717 Internal.h"

[RARAAA AR AA KA A A S AR A A KA A AR KA Sk kK
KKK KKK KKK KKK KK KKK

* Function: void initMain()
*

* Returns: Nothing
*

* Description: Contains initializations for main
*

* Usage: initMain()
KoK K ok oK o 3K 3K 3K 3k K 5K K K 5K ok ok ok 3K 3K 3K K 5K K K oK ok ok oK 3K 3K 3K 3K 5K 5K K K oK ok oK oK 3K 3K 3K K K K K Kk ok ok oK oK 3K 3k 3k ok ok ok ok ok ok ok

KARKFRSR KSR KAI KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

/1777777777777 777777
// Configure Ports
1177777777777777777

// Set PIN BO as output
TRISBbits.TRISBO = 0;

// Set PIN B1 as output
TRISBbits.TRISB1 = 0;

196

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

// Turn off analog
ANSELB = 0;

111177177777777777777
// Configure Timer6
111177777777777777777

// Select PWM timer as Timer6 for CCP1 and CCP2
CCPTMRSbits.C1TSEL = 0b10;
CCPTMRSbits.C2TSEL = 0b10;

// Enable timer Increments every 250 ns (16MHz clock) 1000/
(16/4)
// Period = 256 x 0.25 us = 64 us

// Crystal Frequency
//PWM Freq = -----cmmmmmmm o
//(PRX + 1) * (TimerX Prescaler) * 4

//PWM Frequency = 16 000 000 / 256 * 1 * 4
//PWM Frequency = 15.625 kHz

// Prescale = 1

T6CONbits.T6CKPS = 0b0O;
// Enable Timer6
T6CONbits.TMR6ON = 1;

// Set timer period
PR6 = 255;

[1177777777777777777777777
// Configure PWM
[111777777777777777777777

// Configure CCP1

197

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

// LSB's of PWM duty cycle = 00
CCP1CONbits.DC1B = 00;

// Select PWM mode
CCP1CONbits.CCP1IM = 0b1100;

// Configure CCP2

// LSB's of PWM duty cycle = 00
CCP2CONbits.DC2B = 00;

// Select PWM mode
CCP2CONbits.CCP2M = 0b1100;

L111717777777777777777777777777
// Configure PPS
L111171777777777777777777777/

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

// Set RBO to PWM1
RBOPPSbits.RBOPPS = 0b01100;

// Set RB1 to PWM2
RB1PPSbits.RB1PPS = 0b01101;

PPSLOCK = 0x55;
PPSLOCK = OXAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

}

198

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK
KKK KKK KKK KKK KK KKK

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
KK KK K K oK K oK K oK KK oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK K K oK KoK KoK K K oK oK oK K oK K K oK K oK Kk Kok K ok kK ko

*RFAAAAAFKKKKAK

void main(void) {

initMain();

while(1){

// Run at approx. 20% duty cycle @ 15.625 kHz for 5 sec

// Forward
CCPR1IL = 192;
CCPR2L = 0;

__delay ms(5000);

CCPR1L = 0;
CCPR2L = 0;

__delay ms(2000);

// Reverse
CCPR1L = o0;
CCPR2L = 192;

__delay ms(5000);

}

return;

}

199

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

Project: Using CCP and Dedicated PWM
with RGB LED

As was previously mentioned, an important use of PWM is in lighting
applications. In this project, we will use the PWM to drive a tri-color
LED. A tri-color LED (RGB LED) consists of three LEDs in a single package.
By varying the intensity of each of these three colors, any other color can
be generated.

We will use the PWM to change the average voltage flowing through
each individual LED and let our persistence of vision do the rest.

In the code in Listing 8-7, we also utilize the built-in PWM module of
the PIC® microcontroller and we use a dedicated PWM3 channel.

Listing 8-7. PWM RGB

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Internal 0SC @ 16MHz, 5v
Program: I08 RGB_LED

Compiler: XC8 (vi.41, MPLAX X v3.55)
Program Version: 1.0

¥ ¥ %X X ¥ ¥ ¥ % %

Program Description: This demonstrates using a RGB LED with
PIC16F1717

Hardware Description: A RGB LED is connected as follows:
Red - RBO

Green - RB3

Blue - RB2

¥ ¥ %X X% ¥ %

200

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

*

* Created Tuesday 18th, April, 2017, 11:53 AM

*/
JRFKKKFAKIAKKAKKIAKKAKKIAKIAKKAAKIARKAAKIAKKAKKFAKKAKKAAKIAKKANK
K 2K K K oK oK ok ok 5K K K K ok ok ok ok K

*Includes and defines

Koo A KRR AR AR AR KRR A AF AR AF KKK KKK KKK

KARF SRR KAI KKKk)

#include "16F1717 Internal.h"

/*

Value for PWM1

*/

void PWM1_LoadDutyValue(uint16_t dutyValue) {

// Writing to 8 MSBs of pwm duty cycle in CCPRL register
CCPR1L = ((dutyvalue & 0x03FC) >> 2);

// Writing to 2 LSBs of pwm duty cycle in CCPCON register
CCP1CON = (CCP1CON & OxCF) | ((dutyvValue & 0x0003) << 4);

}

/*

Value for PWM2

*/

void PWM2_LoadDutyValue(uint16_t dutyValue) {

// Writing to 8 MSBs of pwm duty cycle in CCPRL register
CCPR2L = ((dutyValue & 0x03FC) >> 2);

// Writing to 2 LSBs of pwm duty cycle in CCPCON register
CCP2CON = (CCP2CON & OxCF) | ((dutyvValue & 0x0003) << 4);

}

201

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

/*

Value for PWM3

*/

void PWM3 LoadDutyValue(uint16_t dutyValue) {

// Writing to 8 MSBs of PWM duty cycle in PWMDCH register
PWM3DCH = (dutyValue & 0x03FC) >> 2;

// Writing to 2 LSBs of PWM duty cycle in PWMDCL register
PWM3DCL = (dutyValue & 0x0003) << 6;

}

/*

Value for RGB LED

*/

void RGB_LoadValue(uint16_t red, uint16_t green, uint16_t blue)
{

PWM1_LoadDutyValue(red);
PWM2_LoadDutyValue(green);
PWM3_LoadDutyValue(blue);

}

[RARAAS AR ARSI A RSSO A NSRS KA AR AR R KKk K

K 2K K K ok K K ok K K K Kk ok ok K K

* Function: void initMain()

*

* Returns: Nothing

*

* Description: Contains initializations for main
*

*

Usage: initMain()
3K 3K 3K e o Sk ok ok K 3 e ok ok ok oK K 3 ok ok ok ok ok K 3 e ok ok ok K 3K 3k K ok ok K ok K K ok ok K ok 5k 3K 3k ok ok ok ok K K K ok ok ok ok ok Kk ok ok ok ok

*RFAAAAAFKKKKAK

202

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

void initMain(){
// Run at 16 MHz
internal 16();

11117777777777777777
// Configure Ports
1117111777777777777

// Set PIN BO as output
TRISBbits.TRISBO = 0;

// Set PIN B1 as output
TRISBbits.TRISB1 = 0;

// Set PIN B2 as output
TRISBbits.TRISB2 = 0;

// Turn off analog
ANSELB = 0;

111177777777777777777
// Configure Timer6
111777777777777777777

// Select PWM timer as Timer6 for CCP1 and CCP2
CCPTMRSbits.C1TSEL = 0b10;
CCPTMRSbits.C2TSEL = 0b10;

// Enable timer Increments every 250 ns (16MHz clock) 1000/
(16/4)
// Period = 256 x 0.25 us = 64 us

// Crystal Frequency
//PWM Freq = ----ccmmmmmmmmo e
//(PRX + 1) * (TimerX Prescaler) * 4

203

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

//PWM Frequency
//PWM Frequency

// Prescale = 1
T6CONbits.T6CKPS

// Enable Timer6
T6CONbits.TMR6ON

16 000 000 / 256 * 1 * 4
15.625 kHz

0b00;

1

// Set timer period

PR6 = 255;

1171777777777 7777777777777

// Configure PWM

11177777777777777777/7777

// Configure CCP

1

// LSB's of PWM duty cycle = 00
CCP1CONbits.DC1B = 00;

// Select PWM mode
CCP1CONbits.CCP1IM = 0b1100;

// Configure CCP

2

// LSB's of PWM duty cycle = 00
CCP2CONbits.DC2B = 00;

// Select PWM mode

CCP2CONbits.CCP2M = 0b1100;

// Configure PWM 3

// PWM3EN enabled, PWM3POL active high

PWM3CON = 0x80;

204

CHAPTER 8

// PWM3DCH 127

PWM3DCH =

// PWM3DCL
PWM3DCL =

// Select
CCPTMRSbit

Ox7F;

192
0xCo;

timer6
s.P3TSEL = 0b10;

1111777777777/ 77777777777/7777

// Configu
1177777777

PPSLOCK
PPSLOCK

re PPS
117777777/ 77///7/7/

0x55;
OxAA;

INTERRUPTS, TIMERS, COUNTERS, AND PWM

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

// Set RBO

RBOPPSbits.

// Set RB1

RB1PPSbits.

// Set RB2

RB2PPSbits.

PPSLOCK
PPSLOCK

to PWM1
RBOPPS = 0b01100;

to PWM2
RB1PPS = 0b01101;

to PWM3
RB2PPS = OXOE;

0x55;
OxAA;

PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

}

205

CHAPTER 8 INTERRUPTS, TIMERS, COUNTERS, AND PWM

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

KOk KK KK oK Kk Kk KKk Kk K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK oK oK oK K oK KoK K oK oK K oK K oK K K oK K oK Kk Kok K ok ok Kk

*RFAAAAAFKKKKAK

void main(woid) {
initMain();

// All channels initially 0
PWM1_LoadDutyValue(0);
PWM2_LoadDutyValue(0);
PWM3_LoadDutyValue(0);

while(1){

// Red
RGB_LoadValue(512, 0, 0);
__delay ms(1000);

// Green
RGB_LoadValue(0, 512, 0);
__delay ms(1000);

// Blue
RGB_Loadvalue(o, 0, 512);
__delay ms(1000);

// Yellow
RGB_LoadValue(192, 192, 0);
__delay ms(1000);

206

CHAPTER 8

// Purple

RGB_LoadValue(192, 0, 192);
__delay ms(1000);

// Aquamarine

RGB_LoadValue(0, 512, 512);

__delay ms(1000);

}

return;

}

Conclusion

INTERRUPTS, TIMERS, COUNTERS, AND PWM

This concludes this chapter, where we looked at a few more onboard

modules of the PIC® microcontroller. We looked at interrupts, which allow

the microcontroller to instantly jump to a specific task, timers, which count

regular clock pulses, counters, which count irregular pulses, and PWM,

which is very useful in microcontroller applications such as lighting and

motor control.

207

CHAPTER 9

USART, SPI, and 12C:
Serial Communication
Protocols

In this chapter, we look at using serial communication protocols. The most
ubiquitous of these are USART, SPI, and 12C, which I will be explaining in
this chapter. This is one chapter you do not want to skip, as we cover using
sensors, GPS, GSM, and a host of other things. So, grab a bottle of water
and sit down. This will be a long one.

Using USART (Universal Synchronous
Asynchronous Receiver Transmitter)

The Universal Synchronous Asynchronous Receiver Transmitter (USART)
is my favorite communication protocol. The reason it is my favorite is
because it is the simplest to use. It is possible for an embedded systems
designer to understand every detail of the USART protocol. Sometimes you
may see USART being written as just “UART”. For our applications, they do
pretty much the same thing. USART is just an enhanced UART protocol,

as the missing “S” (synchronous) requires clocking to be synchronous and

209
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_9

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

adds a little complexity to your design. Therefore, we will use the USART
module asynchronously in compliance with KISS.

The USART module onboard the PIC® microcontroller can be used
synchronously or asynchronously. When used asynchronously, all the
communication takes place without a clock. This saves an I/O pin as in this
mode only the transmit and receiver lines are required. The asynchronous
mode is the type of communication we will use. Synchronous mode allows
the module to be used with a clock and is not as widely used, thus we will
not discuss it in this book.

An important consideration for USART is the baud rate. The baud rate
of the USART specifies the rate at which the USART transfers data. A baud
rate of 2400 means that the USART can transfer a maximum of 2400 bits
per second.

Serial Character LCD

We begin our usage of USART by sending signals to a serial LCD module.
The serial LCD module we will use is the Parallax 2x16 LCD (see Figure 9-1). In
this example, we write text and commands to the LCD. The Parallax datasheet
provides information about the commands that must be sent to the LCD.

This LCD module has selectable baud rates of 2400, 9600, and 19200.
This LCD also includes a built-in piezo speaker and has a backlight.

Figure 9-1. Parallax serial LCD

210

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

Let’s take a look at the code for setting up the USART module
(see Listing 9-1). We first create a header file that contains several function
prototypes. After you run the code in this section, download the datasheet
from Parallax for the LCD and experiment using the built-in piezo speaker.
I guarantee that you will be using USART like a pro in no time.

In addition, I have deliberately left out schematics for interfacing these
modules so that you will download the datasheets and find out how they
work. All these modules require connecting four wires to them to get them
to work and the serial LCD requires connecting three. Come on, you're
smart—you can figure it out!

There is one trap for beginners with USART. The TX line is connected
to RX and the RX line is connected to TX.

Listing 9-1. EUSART Header

N
*

File: EUSART.h

Author: Armstrong Subero

PIC: 16F1717 w/X 0SC @ 16MHz, 5v
Program: Header file to setup PIC16F1717
Compiler: XC8 (vi.35, MPLAX X v3.10)
Program Version 1.0

Program Description: This header sets up the EUSART module
Created on November 7th, 2016, 7:00 PM

¥ % ¥ %X ¥ %X X %X %

*/
/**
* Function Prototype

KA AR AR A ARSI RS F ARSI KA R KRR KKK)

char EUSART Initialize(const long int baudrate);
uint8_t EUSART Read(void);
char EUSART Read Char(char *output);

211

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

void EUSART Write(uint8_t txData);
void EUSART Write Text(char *text);
void EUSART Read Text(char *Output, unsigned int length);

Then we create the source file that implements these functions, as
shown in Listing 9-2.

Listing 9-2. EUSART Source

* File: EUSART.c
* Author: Armstrong Subero
* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: Library file containing functions for the EUSART
module
Compiler: XC8 (vi.38, MPLAX X v3.40)
Program Version: 1.1
*Added additional comments

* Program Description: This Library allows you to use the
EUSART module of the

* PICi6F1717
*

* Created on November 7th, 2016, 7:10 PM

*/
/***
*Includes and defines

KA AR AR AR A RIS AR A AR F AR KA RS SRR ARSI KKK KK /

#include "16F1717 Internal.h"
#include "EUSART.h"

212

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

JRRRsoksokskoksk stk ok stokstok skokskkok ok stokstokskokskkok ok stokstokskokskokok ok stoksokskokskokok ok ok sk

Function: char EUSART Initialize (const long int baudrate)
Returns: Nothing

*x
*
*
*
* Description: Initializes the EUSART module
*

*x

Usage: EUSART Initialize()
skl sk sk sk skkkok /

char EUSART Initialize(const long int baudrate)
{
unsigned int x;
x = (_XTAL_FREQ - baudrate*64)/(baudrate*64);
if(x>255)
{
x = (_XTAL_FREQ - baudrate*16)/(baudrate*16);
BRGH = 1;
}
if(x<256)
{
SPBRG = x;
SYNC = 0;
SPEN = 1;
TRISC7 = 1;
TRISC6 = 1;
CREN
TXEN
return

}

return 0;

1
R R R
-

. e

e

213

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

* Function: char EUSART Read (void)

*

* Returns: Nothing

*

* Description: Reads the EUSART module
*
*

Usage: EUSART Read()
SR KKKKKHKHKK |

uint8_t EUSART Read(void)

{
RC1STAbits.SREN = 1;
while(!PIR1bits.RCIF)
{
}
if(1 == RC1STAbits.OERR)
{
// EUSART error - restart
RC1STAbits.SPEN = 0;
RC1STAbits.SPEN = 1;
}
return RC1REG;
}

// Read Char
char EUSART Read Char(char *Output)

{
Output = EUSART Read();

return Output;

214

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK

* Function: char EUSART Write (uint8 t txData)
*

* Returns: Nothing

*

* Description: Writes to the EUSART module

*
*

Usage: EUSART Write(x)
SRR K KKK KKK |

void EUSART Write(uint8_t txData)

{
while(0 == PIR1bits.TXIF)
{
}
TX1REG = txData; // Write the data byte to the USART.
}
void EUSART Read Text(char *Output, unsigned int length)
{
int i;
for(int i=0;i<length;i++)
Output[i] = EUSART Read();
}

JRERRFAAAAAF KK RAAAAAFF KK AAAAAAFFFFKHKAAAAAAF K KAAAAAFF KA A K

* Function: char EUSART Write Text (char *text)
*

* Returns: Nothing
*

215

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

* Description: Writes text the EUSART module
*

* Usage: EUSART Write Text("Some String")

etokstoksfoksfokskorskskokstoksokskokoskoskok ok stoksokskokok ok stoksokskokoskoskok ok stokskokoskokok ok ok skokskoksk /

void EUSART Write Text(char *text)
{
int i;
for(i=0;text[i]!="\0";i++)
EUSART Write(text[i]);

Now we create the main file that communicates with the LCD, as
shown in Listing 9-3.

Listing 9-3. Main Source

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: I04_Serial LCD

Compiler: XC8 (vi.38, MPLAX X v3.40)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ % %

Program Description: This Program Allows PIC16F1717 to
communicate via the

* EUSART module to a 16x2 serial LCD.
*

*

* Hardware Description: A Parallax 16x2 LCD is connected to PIN
RB2 of the

216

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

* microcontroller as follows:
*

*
* Created November 7th, 2016, 7:05 PM

*/
/**

*Includes and defines
**/

#include "16F1717 Internal.h"
#include "EUSART.h"
Y o e e e e L b Ll e b b Ll b Lt bt

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
**/

void initMain(){
// Run at 16 MHz
internal 16();

111177777777777777777
// Setup PINS
11117717777777777777

TRISBbits.TRISB2 = 0;
ANSELBbits.ANSB2 = 0;

217

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

111777777777777777777

// Setup EUSART

11177777777777777777

PPSLOCK = 0x55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RB2PPSbits.RB2PPS = 0x14 //RB2->EUSART:TX;
RXPPSbits.RXPPS = 0x0B; //RB3->EUSART:RX;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

}

[RRAARARAR A AR AR ARSI ARk kK

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
**/

void main(woid) {
initMain();

// Initialize EUSART module with 19200 baud
EUSART Initialize(19200);

while(1){

// Send command
// Turn backlight on
EUSART Write(17);

218

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

// Send text
EUSART Write Text("Hello");

// Send every 2 seconds
__delay ms(2000);

}

return;

}

USART to PC Communication

When you need to communicate with a PC, you can use a serial to USB
converter. There are some microcontrollers that have USB onboard;
however, USB communication is very complex and requires the users to
write their own stack or use (sometimes unreliable) stacks provided by
the manufacturer. By using a UART to USB bridge, you can avoid a lot of
headaches. The CP2104 is excellent and I highly recommend it.

Text to Speech

We will now look at voice synthesis using a Text to Speech (TTS) module.
The TTS modules convert text into a spoken voice. The TTS module we will
use is the EMIC 2 TTS module (see Figure 9-2). This module is very easy

to use. It allows the user to select many voices and produces a voice that is
very simple to understand. After you have finished running the code in this
section, download the datasheet for the module. Experiment with different
voices and play around with the module a little. This is good practice. Once
you have read the datasheets of the modules and sensors, you can create
your own libraries and code, without becoming stuck if you cannot find a
library online.

219

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Figure 9-2. EMIC 2 TTS module

The header file remains the same. The main code is shown in Listing 9-4.

Listing 9-4. TTS Main Code

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: 21_EUSART

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0

*

*

*

Program Description: This Program Allows PIC16F1717 to
communicate via the

* EUSART module to a EMIC 2 TTS module.
*

*

220

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

* Hardware Description: A EMIC 2 TTS module is connected to the
PIC16F1717 as
* follows:

*

RB2-> SIN;
RB3-> SOUT;

*
*
*
* The other pins on the EMIC2 TTS are connected as per
* datasheet.

*

*

Created February 25th, 2017, 9:55 PM
*/
/**

*Includes and defines
**/

#include "16F1717 Internal.h"
#include "EUSART.h"
/**

* Function: void initMain()
*

Returns: Nothing
*

* Description: Contains initializations for main
*

* Usage: initMain()
***/

221

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

void initMain(){
// Run at 16 MHz
internal 16();

// Setup PINS
TRISBbits.TRISB3 = 1;
ANSELBbits.ANSB3 = 0;

TRISBbits.TRISB2 = 0;
ANSELBbits.ANSB2 = 0;

111177777777777777777
// Setup EUSART

/177777777777/7/7/7/7
PPSLOCK = 0x55;
PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RB2PPSbits.RB2PPS = 0x14; //RB2->EUSART:TX;
RXPPSbits.RXPPS = 0x0B; //RB3->EUSART:RX;

PPSLOCK = 0x55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS
}

[RARAA AR A A A KA KA A I AR AR RS AR AR A KA A KKK

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
***/

222

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

void main(woid) {
initMain();

char readEmic;

// Initialize EUSART module with 9600 baud
EUSART Initialize(9600);

// give the module time to stabilize
__delay ms(3000);

// Send CR in case system is up
EUSART Write(13);

while(1){

// If TTS module is ready
if (EUSART Read() == 58){

// Say something

EUSART Write(83);

EUSART Write Text("Hello");
EUSART Write(13);

__delay ms(500);

}

}

return;

}

223

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Using GPS (Global Positioning Systems)

Now we look at using GPS (Global Positioning System). GPS is a system
that utilizes satellites to determine the position to a GPS receiver, which
receives a signal from these satellites. I simply cannot cover GPS in its
entirety in this book, since it would just confuse everything. If you want to
know how GPS works in detail, browse the Internet. Once you are satisfied,
come back and learn how to use the module. A good feature of GPS is that
is does not require an active Internet connection or cellular network in
order to work.

In this example, we look at using the U-BLOX NEO-6M GPS module, as
itis very easy to use and, at the time of this writing, is widely available and
extremely low cost (see Figure 9-3).

Figure 9-3. U-BLOX NEO-6M GPS module

NMEA Commands

In order to use the GPS module effectively, we must understand how
the NMEA data transmitted by the GPS module works. NMEA stands
for National Marine Electronics Association and that body produced

a specification that allows the GPS receiver to give the time, position,
and velocity data that the user can parse. The GPS receiver sends these
commands as sentences in a particular format.

224

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

For the GPS receiver, these sentences all begin with a $ symbol
followed by five letters. The first two letters are always GP followed by
three other letters, which tell us what the sentence is about. For example,
the sentence we are interested in is the GLL, which stands for Geographic
Latitude and Longitude. The GLL type sentence has the following format:

$GPGLL,1123.01,N,1234.00,W,000111,A,*65

The $GPGLL tells us the type of NMEA sentence it is. The fragment
1123.01, N tells us a position of latitude that’s 11 degrees and 23.01
minutes North. Similarly, 1234.00, W indicates a position of Longitude 12
degrees and 34.00 minutes West.

In order to extract the information about the position of the receiver,
we need to create a buffer to store the information as it comes in. Then we
need to eliminate any invalid data and use the C language strstr function,
which is provided by XC8, to determine if the string we are looking for is
present in the buffer.

I'have a challenge for you. The code in Listing 9-5 has been written
to display the coordinates to a HD44780 LCD (we cover this later in the
chapter). Modify it to print to your serial LCD instead. (If you don’t want to
do this, that is understandable and you may turn to Chapter 8, where the
display is covered in full.)

Listing 9-5. GPS Main Code

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: 21_EUSART

* Compiler: XC8 (vi.38, MPLAX X v3.40)
* Program Version: 1.0

*

*

225

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

* Program Description: This Program Allows PIC16F1717 to
communicate via the
* EUSART module to a NEO-6M GPS module and display Latitude
* and Longitude Coordinates on an L(D.
*
* Hardware Description: A NEO-6M GPS module is connected to the
PIC16F1717 as
follows:

*

*

* PPS -> NC

* RXD -> TX

* TXD -> RX

* GND -> GND
* VCC -> VCC
*

*

*

Created April 18th, 2017, 12:51 PM
*/
Y i e e e e b b L B b L b b bt bt

*Includes and defines
**/

#include "16F1717 Internal.h"
#include "EUSART.h"

#include "LCD.h"

#include <string.h>

// Variables
volatile char c;
volatile char d;

char* data;

226

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

static char uartBuffer[300];
int i;

char* terminator;
char conversionString[8];

double lat = 0.0;
double lon = 0.0;
double *longitude = &lon;
double *latitude = ⪫

// Function prototype
void read gps();
/**

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
**/

void initMain(){
// Run at 16 MHz
internal 16();

// Setup PINS
TRISBbits.TRISB3 = 1;
ANSELBbits.ANSB3 = 0;

TRISBbits.TRISB2 = 0;
ANSELBbits.ANSB2

]
o
-

227

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

TRISD = 0;
ANSELD = 0;
PORTD = 0;

1111777777777777777777

// Setup EUSART

111777777777777777777

PPSLOCK = 0x55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RB2PPSbits.RB2PPS = Ox14; //RB2->EUSART:TX;
RXPPSbits.RXPPS = OxOB; //RB3->EUSART:RX;

PPSLOCK = OX55;
PPSLOCK = OXAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

INTCONbits.GIE = 1;
INTCONbits.PEIE = 1;

// set up UART 1 receive interrupt
PIE1bits.RCIE = 1;

}

[ORARAAA A A KA A A A A KA AR A I AR A RIS AR SR A A KA A kKK

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
**/

228

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

void main(woid) {
initMain();
Led Init();
Lcd Clear();

// Initialize EUSART module with 9600 baud
EUSART Initialize(9600);

// give the module time to stabilize
__delay ms(100);

while(1){
Lcd_Set Cursor(1,1);

read gps();

// Write Latitude
Lcd Write Float(*latitude);

Lcd_Set Cursor(2,1);

// Write Longitude
Lcd_Write Float(*longitude);

__delay ms(2000);
Lcd Clear();

}

return;

}

229

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

Function: void read gps()
Returns: Pointers to lat and lon

*
*
*
*
* Description: Function to read the GPS module
*
*

Usage: read gps()

KRFAAAAFF KRR AAA AR AAAAA AR AAAAAAFF A AAAAAAF KK KAAAANK

void read gps(){

// Read characters from UART into buffer
for(i=0; i<sizeof(uartBuffer)-1; i++)

{

d = EUSART Read Char(c);

uartBuffer[i] = d;

}

// Last character is null terminator
uartBuffer[sizeof(uartBuffer)-1] = '\0';

// Look for needle in haystack to find string for GPGLL
data = strstr(uartBuffer, "$GPGLL");

// if null exit
if(data == NULL)
{

return;

}

// Find terminator

terminator = strstr(data,",");

230

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

// if null exit
if(terminator == NULL)
{

return;

}
// If the first byte of the latitude field is ',', there is no

info

// so exit
if(data[7] == ',")
{

return;

}

L1111177777777777777777777777777777/
// Search buffer data for Latitude
// and Longitude values
L111117777777777777777777777777777

data = terminator+i1;

terminator = strstr(data,",");

if(terminator == NULL)
{

return;

}

memset (conversionString,0,sizeof(conversionString));
memcpy (conversionString, data, 2);
*latitude = atof(conversionString);

data += 2;
*terminator = '\0’';
*latitude += (atof(data)/60);

231

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

data = terminator+1;
terminator = strstr(data,",");
if(terminator == NULL)

{

return;

}

if(*data == 'S")

{

*latitude *= -1;

}

data = terminator+i1;

terminator = strstr(data,",");

if(terminator == NULL)

{

return;

}

memset (conversionString,0,sizeof(conversionString));
memcpy (conversionString, data, 3);

*longitude = atof(conversionString);

data += 3;
*terminator = '\0';
*longitude += (atof(data)/60);

data = terminator+1;
terminator = strstr(data,",");
if(terminator == NULL)

{

retuxn;

}

232

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

if(*data == 'W')
{
*longitude *= -1;

}
}

Software USART

The PIC16F1717 only has one USART module that users can use in their
applications. Now there may be situations where you need to use more
than one USART module for your application. In this case, you may
need to redesign your circuitry and utilize a chip that has more features.
However, this is not as simple as it sounds, because you may already be
familiar with the chip you are using for your application and may not
want to bear the costs associated with using a larger chip. In such cases,
it may be useful to use a software USART (also called a “bit-banged”)
implementation.

The bit-banged USART we use in this example works reliably up
to about 2400 baud rate. Higher bit rates may be unstable and may not
function as intended.

GSM Module

We will look at an application of the bit-banged USART using a GSM
module. We will use the SIM 800L module (see Figure 9-4), which is very
popular at the time of writing and is very simple to use.

233

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Figure 9-4. SIM800L module

AT Commands

In a previous section, we looked at data structured in NMEA format, which
is the type of data commonly given by GSM modules. In this section, we
look at using AT (attention) commands. AT commands are commonly
used to control modems. Here are some commonly used AT commands for
controlling the SIM 800L module:

e AT: Check to see if the module is working correctly. If it
is, it will return OK.

o AT+CREG?: Get information about network registration.
If the modules returns +CREG: 0,1, then everything is
fine.

e AT+IPR=9600: Change the baud rate. For example,
changing the 9600 to 2400 in the example would set the
baud rate to 2400.

The other AT commands are used for things like sending and receiving
messages, calls, accessing the GPS features, among others. In this
example, we will focus solely on sending text messages, so the commands
for sending texts are shown in the code in Listing 9-6. Again another
challenge—modify the code in Listing 9-6 to run with the serial LCD

234

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

instead of the character LCD. If you don’t want to do this, you can instead
turn to the section later in this chapter entitled “Character: The Hitachi
HD44780 LCD” and use the code of the character LCD in that section.

Listing 9-6. GSM Main Code

/>l<

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: I08 GSM

Compiler: XC8 (v1.38, MPLAX X v3.40)

* Program Version: 1.0
*

*

* Program Description: This Program Allows PIC16F1717 to
communicate with a

* SIM80OL GSM module and send an SMS message.
*

*

* Hardware Description: A SIM80OL GSM module is connected as
follows:

*5v -> 5V
*GND -> GND
*YDD -> NC
*SIM TXD -> RX
*SIM RXD -> TX

*GND -> GND
*

*

* Created April 18th, 2017, 1:11 PM
*/

235

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

*Includes and defines
KAARKKAARKKAAAKKIAAKKIAAKKKAAKKKAAKKAAAKKKAAKKKAAKKKAAKKKAANK |

#include "16F1717 Internal.h"
#include "LCD.h"

// Setup for soft UART

#define Baudrate 2400 //bps

#define OneBitDelay (1000000/Baudrate)

#define DataBitCount 8 // no parity, no flow control

#define UART RX LATEbits.LATE0// UART RX pin

#define UART TX LATEbits.LATE1 // UART TX pin

#define UART_RX_DIR TRISEO// UART RX pin direction register
#define UART_TX _DIR TRISE1 // UART TX pin direction register

//Function Declarations

void InitSoftUART(wvoid);

unsigned char UART Receive(wvoid);

void UART Transmit(const char);

void SUART Write Text(char *text);

void SUART Write Char(char a);

void SUART Read Text(char *Output, unsigned int length);

[RARAAA AR AR AR A AR A I AR A AR AR A RSk kK

* Function: void initMain()

*

* Returns: Nothing

*

* Description: Contains initializations for main
*
*

Usage: initMain()
SRR KKKKKKHKHKK |

236

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

void initMain(){
// Run at 16 MHz
internal 16();

// Setup pins
TRISD = 0x00;
ANSELD = 0x00;
PORTD = 0x00;

TRISE = 0;
ANSELE = 0;
}

[RARAAA AR A AN AR AR S ARSIk kK

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
**/

void main(woid) {
initMain();

Led Init();
__delay ms(1000);

InitSoftUART(); // Initialize Soft UART
__delay ms(1000);

while(1){

// Send commands to module
SUART Write Text("AT+CMGF=1\r\n");
__delay ms(1000);

237

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

SUART_Write_Text("AT+CMGS=\"0009999\"\r\n"); // replace number
__delay ms(1000);

// Message to send
SUART Write Text("Test");
__delay ms(1000);

UART Transmit((char)26);
__delay ms(1000);

// Notify user message sent
Lcd Clear();

Lcd Set Cursor(1,1);
__delay ms(100);

// Write String
Lcd Write String("Sent");

__delay ms(2000);

}

retuxn;

}

/*

* Init SW UART

*/

void InitSoftUART(woid) // Initialize UART pins to proper
values

{
UART _TX = 1; // TX pin is high in idle state

UART_RX_DIR
UART_TX_DIR

}

1; // Input
0; // Output

238

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

/*

* Receive via SW UART

*/

unsigned char UART Receive(void)
{

// Pin Configurations

// GP1 is UART RX Pin

unsigned char DataValue = 0;

//wait for start bit
while(UART RX==1);

__delay us(OneBitDelay);
__delay us(OneBitDelay/2); // Take sample value in the mid of
bit duration

for (unsigned char i = 0; i < DataBitCount; i++)

{

if (UART RX == 1) //if received bit is high
{

DataValue += (1<<i);

}

__delay us(OneBitDelay);

}

// Check for stop bit
if (UART RX == 1) //Stop bit should be high

{
__delay_us(OneBitDelay/2);

return DataValue;

}

else //some error occurred !

239

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

{
__delay us(OneBitDelay/2);

return 0x000;
}
}

/*

* Transmit via SW UART

*/

void UART Transmit(const char DataValue)

{

/* Basic Llogic

TX pin is usually high. A high to low bit is the starting bit and
a low to high bit is the ending bit. No parity bit. No flow control.
BitCount is the number of bits to transmit. Data is transmitted
LSB first.

*/
// Send Start Bit

UART TX = 0;
__delay us(OneBitDelay);

for (unsigned char i = 0; i < DataBitCount; i++)

{
//Set Data pin according to the DataValue

if(((DataValue>>i)&0x1) == ox1) //if Bit is high

{
UART TX = 1;

}

240

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

else //if Bit is low

{

UART TX = 0;

}

__delay us(OneBitDelay);
}

//Send Stop Bit

UART _TX = 1;

__delay us(OneBitDelay);
}

/*

* Write text via SW UART
*/

void SUART Write Text(char *text)
{

int i;

for(i=0;text[i]!="\0";i++)
UART Transmit(text[i]);
}

/*

* Read text via SW UART

*/

void SUART Read Text(char *Output, unsigned int length)
{

int i;

for(int i=0;i<length;i++)

241

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

{

Output[i] = UART Receive();
}
}

/*

* Write Char via SW UART

*/

void SUART Write Char(char a)

{
UART Transmit(a - 0x128);

}

Using SPI (Serial Peripheral Interface)

Serial Peripheral Interface (SPI) is another type of serial communication
protocol commonly used in embedded systems and present on the
PIC® microcontroller. SPI is a very important protocol and is widely
implemented on a variety of sensors. Unlike USART, where very few
applications require a clock, in SPI a clock is present in all applications
because SPI uses synchronous data transfer.

The device in the SPI communication that generates the clock is
known as the master and the other is known as the slave. SPI always only
has one master device, although there can be many slaves. SPI has several
lines: Serial Clock (SCK), Master Out Slave In (MOSI), Master In Slave Out
(MISO), and Slave Select (SS). If there is only one slave device connected
to the SPI bus, then this line may be left low as SP1 is active low.

One of the major disadvantages of SPI is that it uses a lot of I/O lines.
Although SCK, MOSI, and MISO remain the same regardless of the
number of slave devices on the bus, an additional SS line must be used
for each slave device that is connected to the bus. The advantage of SPI
is that it can transfer millions of bytes of data per second and is useful

242

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

when interacting with devices such as SD cards, which would require data
transfer at very high speeds.

In learning to use the SPI peripheral available on the PIC®
microcontroller, we will use an MCP4131 digital potentiometer with the
PIC® microcontroller.

The code for the SPI was generated using the Microchip Code
Configurator. There are a lot of tutorials on how to use the MCC, so I
leave it up to you to learn on your own. I also leave you to figure out how
to connect the SPI lines. Here’s a hint though—read the datasheet of the
MCP4131. You need to make a few modifications to the names of the
functions as per the header file. You must modify the names to match
those as shown in the header file.

Listing 9-7 shows the modified header file from MCC for the SPI.

Listing 9-7. SP1 Header

/*

* File: SPI.h

* Author: Armstrong Subero

* PIC: 16F1717 w/X 0OSC @ 16MHz, 5v

* Program: Header file for SPI module
* Compiler: XC8 (vi.38, MPLAX X v3.40)
*

* Program Version 1.0

*

*

Program Description: This program header provides function
prototypes for

* SPI module on PIC16F1717
*

*
*
* Created on November 7th, 2016, 5:45 PM
*/

243

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

*Includes and defines
KAARKKAARKKAAAKKIAAKKIAAKKKAAKKKAAKKAAAKKKAAKKKAAKKKAAKKKAANK |

#include "16F1717 Internal.h"
#define DUMMY _DATA 0x0

void SPI Initialize(wvoid);

uint8_t SPI Exchange8bit(uint8_t data);

uint8_t SPI Exchange8bitBuffer(uint8_t *dataln, uint8_t buflen,
uint8_t *dataOut\

);

bool SPI IsBufferFull(weid);

bool SPI HasWriteCollisionOccured(void);

void SPI ClearWriteCollisionStatus(woid);

Digital Potentiometer

The digital potentiometer we use to demonstrate the use of the SPI bus is
the MCP4131. The MCP4131 is a 7-bit device, giving a total of 129 different
values, and is controlled via SPI. In this example, we send commands to
the device and the device adjusts its resistance. The change in resistance is
visible by connecting the POW pin of the device to an LED via a 1k resistor.
The resistor will then vary in brightness.

Listing 9-8 provides the main code.

Listing 9-8. Main Code

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: 22_SPI

*

Compiler: XC8 (v1.38, MPLAX X v3.40)

244

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

* Program Version: 1.0
*

*

* Program Description: This Program Allows PIC16F1717 to
communicate via the

* SPI interface
*

*
* Hardware Description: A HD44780 LCD is connected via PORTD
and a MCP4131

* digital potentiometer is connected as follows:
*

* Vss --> Vss

*vdd --> Vdd

*SS --> RD1

* SCK --> RC3

* SDI --> RC5

* POB --> GND

* POW --> LED via 1k resistor
* POA --> Vdd

*

*

*

Created November 10th, 2016, 4:42 PM
*/
/**

*Includes and defines
**/

#include "16F1717 Internal.h"
#include "LCD.h"
#include "SPI.h"

245

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

void digiPot write(int i);

[RARAA AR A A AN AR A AR KA A NSRS KA AR KA Rk Fok K

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()
**/

void initMain(){
// Run at 16 MHz
internal 16();

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Setup PORTD
TRISD = 0;
ANSELD = 0;

// Initialize LCD
Led Init();
__delay ms(100);
Lcd Clear();

// Setup PORTC for SPI
ANSELCbits.ANSC3 = 0;
ANSELCbits.ANSC4 = 0;

246

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

ANSELCbits.ANSC5

0;

TRISCbits.TRISC3 = 0;
TRISCbits.TRISC4 = 1;
TRISCbits.TRISC5 = 0;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

SSPDATPPSbits.SSPDATPPS = 0x14; //RC4->MSSP:SDI;
RC3PPSbits.RC3PPS =0x10; //RC3->MSSP:SCK;
RC5PPSbits.RC5PPS =0x11; //RC5->MSSP:SDO;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

// Initialize SPI
SPI_Initialize();

}

/*******>I<>I<>I<>I<>l<>l<******>I<>I<>I<>I<>l<>l<*****>I<>I<>I<>I<>I<>l<**************************

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
HAKKAK KA KARKARAKKARAKKARAAKAKFAKARKARAKKARAKKARAKAKFAKAKKAKAKK

void main(void) {
initMain();

// Digipot variable
int i;

247

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Lcd_Set Cursor(1,1);

__delay ms(5);

Lcd_Write String("SPI Ready");
__delay ms(1000);

Lcd Clear();

while(1){

// Seven bit resolution
for (i = 0; 1 <= 128; i++){
// Write Value

digiPot write(i);

// Write to LCD

Lcd Set Cursor(1,1);
__delay ms(5);

Lcd Write Integer(i);
__delay ms(250);

Lcd Clear();

}
}

retuxn;

}

[ORARAAA AR A KA A A A A AR A A I AR AR AR A AR AR SRS AR RS kKK

* Function: Main

*
* Returns: Nothing

*

* Description: Writes a particular value to a MCP4131 digital
potentiometer

*

* Usage: digiPot write(x);
**/

248

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

void digiPot write(int i){
// Set SS Low
LATDbits.LATD1 = 0;

// Slave address
SPI_Exchange8bit(0x00);

// Data
SPI_Exchange8bit(i);

// Set SS High
LATDbits.LATD1 = 1;

}

Character Display

Although the focus of the next chapter is displays, we utilize a simple
character LCD to demonstrate the I12C protocol.

Character: The Hitachi HD44780 LCD

The Hitachi HD44780 is known as the industry standard character
LCD. The reason is simple—the HD44780 is very easy to use. The LCD
is used to display characters to users. The most commonly used display
type is the 2x16 variety, which displays up to 16 characters on two lines.
The LCD is essential for any embedded toolbox and makes an excellent
prototyping display.

The LCD commonly has 14 pins; however, LCDs that have a backlight
have 16 pins. I recommend the version with the backlight. Download the
datasheet for your particular display to determine which version display
you have.

Let’s look at the code for using the HD44780 LCD.

First, Listing 9-9 shows the header file.

249

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Listing 9-9. HD44780 Header File

~N
*

File: LCD.h

Author: Armstrong Subero

PIC: 16F1717 w/X 0SC @ 16MHz, 5v
Program: Header file to

Compiler: XC8 (v1.38, MPLAX X v3.40)
Program Version 1.1

*Added additional comments

¥ % ¥ %X ¥ %X ¥ %X %

Program Description: This program header provides routines
for controlling

* a STD HITACHI HD44780 and compatible L(Ds
*

* Hardware Description:
*

* RS ---> RD2

* R/W ---> GND

* EN ---> RD3

* D4 ---> RD4

* D5 ---> RD5

* D6 ---> RD6

* D7 ---> RD7

*

*

* Created on November 7th, 2016, 11:56 PM
*/

250

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

[ORARAA A A AR A A AR I AR A AR AR AR A RSk kK

*Includes and defines
KAARKKAARKKAAKKIAAKKIAAKKKAAKKKAAKKIAAKKKAAKKKAAKKKAAKKKAANK |

// STD XC8 include
#include <xc.h>

#define RS RD2 //Register Select (Character or Instruction)

#define EN RD3 //LCD Clock Enable PIN, Falling Edge Triggered

// 4 bit operation

#define D4 RD4 //Bit 4
#define D5 RD5 //Bit 5
#define D6 RD6 //Bit 6
#define D7 RD7 //Bit 7

// function prototypes

void
void
void
void
void
void
void
void
void
void
void

Next is the source file, provided in Listing 9-10.

Lcd Port(char a);

Lcd_Cmd(char a);

Lcd Clear();

Lcd Set Cursor(char a, char b);
Led Init();

Lcd Write Char(char a);

Lcd Write String(const char *a);
Lcd_Shift Right();

Lcd Shift Left();

Lcd_Write Integer(int v);

Lcd Write Float(float f);

251

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Listing 9-10. HD44780 Source File

~N
*

File: L(D.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

Program: Library file to configure PIC16F1717
Compiler: XC8 (v1.38, MPLAX X v3.40)

Program Version: 1.1

*Added additional comments

¥ % ¥ %X ¥ %X ¥ %X %

Program Description: This Library allows you to interface
HD44780 and

* compatible L(CDs
*

* Created on November 7th, 2016, 11:55 AM
*/

#include "LCD.h"
#include "16F1717 Internal.h"

[RARARAS AR AR A AN A KA RIS AN RSN AFARARFFR KKKk

* Function: void Lcd Port (char a)
*
* Returns: Nothing
*
*

Description: LCD Setup Routines
e e e e e e L e B b Ll L L L

void Lcd Port(char a)

{
if(a & 1)
D4 = 1;

252

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

else
D4 = 0;

if(a & 2)
D5 = 1;
else

D5 = 0;

if(a & 4)
D6 = 1;
else

D6 = 0;

if(a & 8)
D7 = 1;
else

D7 = 0;

}

Y o e e e e e L e Ll e L e Ll L

* Function: void Lcd Cmd (char a)
*
* Returns: Nothing
*
*

Description: Sets LCD command
**/

void Lcd Cmd(char a)

{
RS =0; // =>RS =0
Lcd Port(a);

EN=1;, //=>FE=1
__delay ms(1);
EN=0; //=>E=0

—

253

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

* Function: void Lcd Clear()
*

* Returns: Nothing
*

* Description: Clears the LCD
**/

void Lcd Clear()
{

Lcd Cmd(0);

Lcd Cmd(1);

}

Y o e e e e L e Bl e Ll e Ll b b bt

* Function: void Lcd Set Cursor(char a, char b)
*

* Returns: Nothing
*

* Description: Sets the LCD cursor position
**/

void Lcd Set Cursor(char a, char b)

{

char temp,z,y;
if(a == 1)

{

temp = 0x80 + b - 1;
z = temp>>4;

y = temp & OxOF;

Lcd Cmd(z);

Lcd Cmd(y);

}

254

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

else if(a == 2)

{
temp = 0xCO + b - 1;
z = temp>>4;

y = temp & OxOF;
Lcd Cmd(z);

Led Cmd(y);

}

}

Y o e e e e e e L e Bl e L b Ll b L e

* Function: void Lcd Init()
*
* Returns: Nothing
*
*

Description: Initializes the LCD
**/

void Lcd Init()
{
Lcd_Port(0x00);
__delay ms(10);
Lcd Cmd(0x03);
__delay ms(3);
Lcd_Cmd(0x03);
__delay ms(10);
Lcd _Cmd(0x03);
1117777777777/ 77777777777777777777777/777777777777777
Lcd _Cmd(0x02);
Lcd _Cmd(0x02);
Lcd_Cmd(0x08);
Lcd_Cmd(0x00);

255

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Lcd _Cmd(0x0C);
Lcd_Cmd(0x00);
Lcd_Cmd(0x06);

}

[RARAAA AR AR A AR AR ARSI ARSI Ak kK

* Function: void Lcd Write Char (char a)
*
* Returns: Nothing
*
*

Description: Writes a character to the LCD
**/

void Lcd Write Char(char a)

{

char temp,y;

temp = a&0xOF;

y = adoxFo;

RS = 1; // => RS = 1
Lcd_Port(y>>4); //Data transfer

EN = 1;

__delay us(20);
EN = 0;
Lcd_Port(temp);
EN = 1;

__delay us(20);
EN = 0;

}

256

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK

* Function: void Lcd Write String (const char *a)
*

* Returns: Nothing
*

* Description: Writes a string to the LCD
**/

void Lcd Write String(const char *a)

{

int i;
for(i=0;a[i]!="\0";i++)
Lcd Write Char(a[i]);

}

/**

* Function: void Lcd Shift Right()
*

* Returns: Nothing
*

* Description: Shifts text on the LCD right
KAKKAFAKIAKKAAKIAKKAKIAKKAKIAKKAKIAKKAAKIAKKAKFAKKAKKIAKKAK |

void Lcd Shift Right()

{
Lcd _Cmd(0x01);

Lcd_Cmd(0x0C);
}

257

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

* Function: void Lcd Shift Left()
*

* Returns: Nothing
*

* Description: Shifts text on the LCD left

KA AR AR AR A ARSI AR SRS KA R KRR KK /

void Lcd Shift Left()

{
Lcd _Cmd(0x01);

Lcd_Cmd(0x08);
/**

* Function: void Lcd Write Integer(int v)
*

* Returns: Nothing
*

* Description: Converts a string to an integer
**/

void Lcd Write Integer(int v)

{

unsigned char buf[8];

Lcd Write String(itoa(buf, v, 10));
}

258

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

[ORARAA A A AR A A AR I AR A AR AR AR A RSk kK

* Function: void Lcd Write Float(float f)
*
* Returns: Nothing
*
*

Description: Converts a string to a float
**/

void Lcd Write Float(float f)
{

char* bufi1;
int status;

bufi1 = ftoa(f, &status);

Lcd Write String(bufii);
}

Finally, Listing 9-11 provides the source code that goes through all the

routines.

Listing 9-11. HD44780 Main

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: 15 HD44780 LCD

Compiler: XC8 (vi.38, MPLAX X v3.40)
Program Version: 1.0

¥ ¥ %X X %X ¥ %X %

259

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

* Program Description: This Program Allows PIC16F1717 to
interface to

* HD44780 and compatible LCDs

*

* Hardware Description: An HD44780 compatible LCD is connected
to PORTD of

* the microcontroller as follows:
*

* RS ---> RD2

* R/W ---> GND

* EN ---> RD3

* D4---> RD4

* D5---> RD5

* D6---> RD6

* D7---> RD7

*

*

* Created November 7th, 2016, 11:05 AM

*/
JRFFRAKRKKAAKKKAAKKKAAKKIAAKKIAAKKKAAKKKAARKKIAAKKKAAKKKAAKKAAK

*Includes and defines
**/

#include "16F1717 Internal.h"
#include "LCD.h"
JRFFRARKKAARKKAAKKAAAKKAAAKKIAAKKKAAKKAAAKKIAAKKIAAKKKAAKKAAK

* Function: void initMain()
*

* Returns: Nothing
*

260

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

* Description: Contains initializations for main

*

* Usage: initMain()
**/

void initMain(){
// Run at 16 MHz
internal 16();

TRISD = 0x00;
ANSELD = 0x00;
PORTD = 0x00;

}

JRERRFAAA AR KRR AAAA AR AAAAA AR A AAAAAFFFFHKAAAAA AR AA K

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
KA AR AR A KA F KA ARSI ARSI RS KA R KRR KKK)

void main(woid) {
initMain();
Led_Init();

int a;

int c;

float b;

while(1){
Lcd Clear();
Lcd_Set Cursor(1,1);

261

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

// Write String
Lcd Write String("PIC16F1717");

// Shift it left

for(a=0;a<15;a++)
{

__delay ms(500);

Led Shift Left();
}

// Shift it right
for(a=0;a<15;a++)
{

__delay ms(500);
Lcd_Shift Right();
}

Lcd Clear();
Lcd_Set Cursor(1,1);

// Write Integer

for (c = 0; c < 100; c++){
Lcd Write Integer(c);
__delay ms(300);

Lcd Clear();

__delay ms(15);

}

// Write Float

for (b = 0.0; b <= 5; b+= 0.5)
{

Lcd Write Float(b);

__delay ms(300);

Lcd Clear();

262

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

__delay ms(15);
}

__delay ms(1000);

}

return;

}

The Samsung KS0066U

The code in Listing 9-11 works on HD44780 and compatible LCDs,
including the Samsung KS0066U and was tested on both displays.

Using the 12C (Inter-Integrated Circuit)
Protocol

We now look at the final protocol presented in this chapter, the 12C
(Inter-Integrated Circuit) protocol. There are a lot of tutorials that go in
depth into the I2C protocol and thus I will not attempt to give a detailed
explanation of it. There are some things that you must first know in order
to use this protocol effectively.

The 12C protocol is widely used. When compared to SPI, 12C uses
fewer (only two) lines but communication occurs at a slower rate and it is
a very complex protocol. The example we look at is reading and writing an
EEPROM. This is an important application because the PIC16F1717 does
not have an onboard EEPROM.

12C is unique when compared to the other protocols we have discussed
so far in that only one line is used for data flow. On the I12C bus, the device
known as the master is used to communicate with another device, known
as the slave. The master can communicate with the slave because each
device on the slave has its own address.

263

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

The lines used for the communication with the slave are the serial
clock line (SCL) and serial data line (SDA). In order for I12C to work,
the lines must be connected to VCC using pull-up resistors. There are
calculations that can be used to determine the value of these resistors by
working out the capacity of the lines. In practice, however, I have found
that either 4.7K or 1 K resistors do the job quite adequately.

These pull-up resistors are required because 12C devices pull the signal
line low but cannot drive it high, and the pull-up resistors are there to
restore the signal line to high.

The speed most I12C devices use to communicate is either 100kHz or
400kHz. The protocol transmits information via frames. There are two
types of frames available—an address frame, which informs the bus which
slave devices will receive the message, followed by data frames containing
the actual 8-bit data. Every frame has a 9th bit, called the acknowledge
(ACK) or not acknowledge (NACK) bit, which is used to indicate whether
the slave device reads the transmission.

Every 12C communication from the master starts with the master
pulling the SDA line low and leaving the SCL line high. This is known as
the start condition. Similarly, there is a stop condition, where there is a
low-to-high transition on SDA after a low-to-high transition on SCL with
SCL being high.

EEPROM

The example we use for I12C is interfacing the microcontroller with an 12C
based EEPROM device. The header file is shown in Listing 9-12.

Listing 9-12. 12C Header

/*

* File: I2C.h

* Author: Armstrong Subero

* PIC: 16F1717 w/X 0SC @ 16MHz, 5v

264

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

Program: Header file to setup PIC16F1717 I2C
Compiler: XC8 (vi1.35, MPLAX X v3.10)
Program Version 1.2

Separated file into Header and C source file
Used non-mcc code

¥ % ¥ %X ¥ % ¥ %

Program Description: This program header will allows set up
of I2C

*

* Created on September 12th, 2016, 7:00 PM

*/

[RARARA AR KA KA AN A KA KSR A AR SRR AR KAk kR Fok K

*Includes and defines
**/

#include "16F1717 Internal.h"

void I2C Init(woid);

void Send I2C Data(unsigned int databyte);

unsigned int Read I2C Data(veoid);

void Send I2C ControlByte(unsigned int BlockAddress,unsigned
int RW bit);

void Send I2C StartBit(woid);

void Send I2C StopBit(woid);

void Send I2C ACK(void);

void Send I2C NAK(woid);

265

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

The source file is shown in Listing 9-13.

Listing 9-13. 12C Source

N
*

File: I2C.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

Program: Library file to configure PIC16F1717 I2C module
Compiler: XC8 (v1.38, MPLAX X v3.40)

Program Version: 1.1

*Added additional comments

¥ ¥ ¥ %X ¥ % ¥ % %

Program Description: This Library allows you to control

PIC16F1717 I2C
*

* Created on November 12th, 2016, 7:05 AM

*/

#include "I2C.h"

void I2C Init(woid){
//**\

Kok KKK KKK

// Setup MSSP as I2C Master mode, clock rate of 100Khz
VA oot e e e e e b e b b b b Bl b B b il b L L

sokokokok ok ok k

SSPCONbits.SSPM=0x08;// I2C Master mode, clock = Fosc/(4 * (SSPADD+1))
SSPCONbits.SSPEN=1; // enable MSSP port

266

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

[/ ORI A ARSI AR AR ARSI A KA A SRS RS AR AR KK |

KOk KK KKK KKKk kK

// The SSPADD register value is used to determine the clock
rate for I2C

// communication.

// Equation for I2C clock rate: Fclock = Fosc/[(SSPADD +1)*4]
//

// For this example we want the the standard 100Khz I2C clock
rate and our

// internal Fosc is 16Mhz so we get: 100000 = 16000000/

[(SSPADD+1)*4]

// or solving for SSPADD = [(16000000/100000)-4]/4

// and we get SSPADD = 39

SSPADD = 39; // set Baud rate clock divider

[/ ARAFRRKAKAKAKAA AR AR KA KIS AR A KSR S AR AR AR R ARk |

KKKk KKk Kk Kk kK

__delay ms(10); // let everything settle.
}

//**\
Kok kKKK kK

// Send one byte to SEE

[| FFRRRKKAARKKAAKKKAAKKAAAKKIAAKKIAAKRKAAKKAAKKAAAKKKAAKKKAK |

kKKK KKk kK

void Send I2C Data(unsigned int databyte)

{
PIR1bits.SSP1IF=0; // clear SSP interrupt bit

SSPBUF = databyte; // send databyte
while(!PIR1bits.SSP1IF); // Wait for interrupt flag to go high
indicating transmission is complete

}

267

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

//**\
KKK KKK KK

// Read one byte from SEE
//**\

KKKk KKK K

unsigned int Read I2C Data(void)

{

PIR1bits.SSP1IF=0; // clear SSP interrupt bit
SSPCON2bits.RCEN=1;// set the receive enable bit to initiate a read
of 8 bits from the serial EEPROM

while(!PIR1bits.SSP1IF);// Wait for interrupt flag to go high
indicating transmission is complete

return (SSPBUF); // Data from EEPROM is now in the SSPBUF so
return that value

}

Voo e e e b e b b b Bl b L bl il bt L

Kok KK KKk K

// Send control byte to SEE (this includes 4 bits of device

code, block select bits and the R/W bit)
et e

KRR KR AR

Kok KKK KKK

// Notes:

// 1) The device code for serial EEPROMs is defined as '1010'
which we are using in this example

// 2) RW_bit can only be a one or zero

// 3) Block address is only used for SEE devices larger than 4K,
however on

// some other devices these bits may become the hardware
address bits that

268

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

// allow you to put multiple devices of the same type on the
same bus.
// Read the datasheet on your particular serial EEPROM device

to be sure.
//**\

dokokokokok ok k

void Send I2C ControlByte(unsigned int BlockAddress,unsigned
int RW bit)

{

PIR1bits.SSP1IF=0; // clear SSP interrupt bit

// Assemble the control byte from device code, block address
bits and R/W bit

// so it looks like this: CCCCBBBR

// where 'CCCC' is the device control code

// 'BBB' is the block address

// and 'R' is the Read/Write bit

SSPBUF = (((0b1010 << 4) | (BlockAddress <<1)) + RW bit);
// send the control byte

while(!PIR1bits.SSP1IF);// Wait for interrupt flag to go high
indicating transmission is complete

}

//**\
Kkok gk kKoK

// Send start bit to SEE
//**\

sokokokokok ok k

269

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

void Send I2C StartBit(woid)

{

PIR1bits.SSP1IF=0; // clear SSP interrupt bit
SSPCON2bits.SEN=1; // send start bit

while(!PIR1bits.SSP1IF); // Wait for the SSPIF bit to go back
high before we load the data buffer

}

[) FFRRFAKIAKKAAKIAKKAAKIAKKAAKIARKAKIAKKAAKIAKKAKIAKKAKKIAFHKHN |
Kok KKKk kK

// Send stop bit to SEE

[) FFRRFKKAKKAAKIAKKAKIAKKAAKIARKAFKIAKKAKIAKKAKIAKKAKKIAKHKHN |
Kok KKK Kk kK

void Send I2C StopBit(woid)

{

PIR1bits.SSP1IF=0; // clear SSP interrupt bit
SSPCON2bits.PEN=1; // send stop bit

while(!PIR1bits.SSP1IF);// Wait for interrupt flag to go high
indicating\

transmission is complete

}

//**\
Kok ok ok kK ok k ok

// Send ACK bit to SEE
//**\

dokokokokok ok k

270

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

void Send I2C ACK(woid)

{

PIR1bits.SSP1IF=0; // clear SSP interrupt bit
SSPCON2bits.ACKDT=0; // clear the Acknowledge Data Bit - this
means we are sending an Acknowledge or 'ACK'
SSPCON2bits.ACKEN=1; // set the ACK enable bit to initiate
transmission of the ACK bit to the serial EEPROM
while(!PIR1bits.SSP1IF); // Wait for interrupt flag to go high
indicating transmission is complete

}

[) FFRRFKKIAKKAFAKIAKKAKIARKAAKIARKAKKIAKKAKIAKKAKIAKKAKKIAKHKAN|
Kok KKK Kk kK

// Send NAK bit to SEE

[) FFRRFKRIAKKAAKIAKKAKIARKAKIARKAFKKIAKKAKKIARKAKKIAKKAKKAAKHKHN|
kKKK KKKk

void Send I2C NAK(void)

{

PIR1bits.SSP1IF=0; // clear SSP interrupt bit
SSPCON2bits.ACKDT=1; // set the Acknowledge Data Bit- this
means we are sending a No-Ack or 'NAK'

SSPCON2bits.ACKEN=1; // set the ACK enable bit to initiate
transmissi on of the ACK bit to the serial EEPROM
while(!PIR1bits.SSP1IF); // Wait for interrupt flag to go high
indicating transmission is complete

}

271

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Now for at the main code, shown in Listing 9-14.

Listing 9-14. Main File

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

* Program: 24 _I2C

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0

*

*

*

Program Description: This Program Allows PIC16F1717 to
communicate via the

* T2C interface
*

*x

* Hardware Description: A HD44780 LCD is connected via PORTD
and a 24LC16B

* EEPROM chip is connected to the I2C bus
*

*
* Created November 10th, 2016, 8:02 PM

*/
/**
*Includes and defines

Fkokstoksfoksfokskokoskskoksokstoksfokskokoskskok ok sokstokskokoskskoksokstokstokskokosk ok ok stokskokskokosk ok skokskok /

#include "16F1717_Internal.h"
#include "LCD.h"
#include "I2C.h"

272

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

JRRRsoksokskoksk stk ok stokstok skokskkok ok stokstokskokskkok ok stokstokskokskokok ok stoksokskokskokok ok ok sk

*Includes and defines
krkRokkkkRkk kR ok kR ok kR ok kR ok kKRR kR kKR kR Rk kR Rk kK ok

int block address = 0x00; // Set the EEPROM block address
that we will write the data to
int word address = 0x00; // Set the EEPROM word address that
we will write the data to
int eeprom data = 0x09; // This is the data we are going to write
int incoming_data;

JRRRRRRR Rk kR kkokk otk oRkokk otk Rokkokk otk o ookkokok ok ko ok

* Function: void initmain(void)
*
* Returns: Nothing
*
*x

Description: Initializations for main
**/

void initmain(void){
internal 16();

// Setup pins for I2C
ANSELCbits.ANSC4
ANSELCbits.ANSC5 =

| 1}
o O
- e A

TRISCbits.TRISC4 = 1;
TRISCbits.TRISCS = 1;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RC4PPSbits.RC4PPS =0x0011; //RC4->MSSP:SDA;
SSPDATPPSbits.SSPDATPPS =0x0014; //RC4->MSSP:SDA;

273

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

SSPCLKPPSbits.SSPCLKPPS =0x0015; //RC5->MSSP:SCL;
RC5PPSbits.RC5PPS =0x0010; //RC5->MSSP:SCL;

PPSLOCK = OX55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS
//Setup for LCD

TRISD = 0;

ANSELD = 0;

//Setup LCD
Led Init();
__delay ms(1000);
Lcd Clear();

}

JRsksoksfokskokoskskokstokstok ok skokoskskok ok stokstokskokosk stk ok stokstokskokoskskok ok stoksokoskokoskskok ok skok sk

* Function: void main(void)
*

* Returns: Nothing
*

* Description: Program entry point
**/

void main(void)

{

initmain();

I12C_Init();

Lcd_Set Cursor(1,1);

Lcd_Write String("I2C Ready");
__delay ms(1000);

Lcd Clear();

274

CHAPTER 9 USART, SPI, AND 12C: SERIAL COMMUNICATION PROTOCOLS

while (1)

{

11111117 77777771071117717177177
// Write EEPROM
[17171777111171771711711777777

Lcd_Set Cursor(1,1);

Lcd Write String("Write");
__delay ms(1000);

Lcd Clear();

Send I2C StartBit(); // send start bit

Send I2C ControlByte(block address,0); // send control byte
with R/W bit\

set low

Send I2C Data(word address); // send word address

Send_I2C Data(eeprom data); // send data byte

Send I2C StopBit();// send stop bit

__delay ms(200);

[111117771177771117771117111177
// Read EEPROM
[1I1117777711771777111111177717

Lcd Set Cursor(1,1);

Lcd Write String("Read");
__delay ms(1000);

Led Clear();

Send_I2C StartBit(); // send start bit

Send_I2C ControlByte(block address,0); // send control byte
with R/W bit set low

Send_I2C Data(word address); // send word address

275

CHAPTER 9 USART, SPI, AND I12C: SERIAL COMMUNICATION PROTOCOLS

Send I2C StartBit(); // send start bit

Send_I2C ControlByte(block address,1); // send control byte
with R/W bit set high

incoming data = Read I2C Data(); // read data coming back from

the EEPROM
Send_I2C NAK(); // send NACK to tell EEPROM we don't want any
more data
Send I2C StopBit();

Lcd_Set Cursor(1,1);

Lcd Write Integer(incoming data);
__delay ms(1000);

Lcd Clear();

}
}

Conclusion

In this chapter, we looked at USART, SPI, and 12C, which are the
fundamental communication protocols of microcontroller-based systems.
We also looked at GPS, GSM, LCDs, and a host of other things. Once you
understand these communication protocols, you can easily interface your
microcontroller to a host of sensors. At this point you can do quite a lot;
however, keep reading because the next few chapters will take your skills to
another level.

276

CHAPTER 10

Interfacing Displays

Displays

So far we have looked at using LEDs, seven segment displays, serial
character LCDs, and parallel character LCDs to relay information to users.
To design modern embedded systems, users demand more. Many users,
thanks to the smartphone revolution, expect to be able to interact with
their devices using touch displays. In addition, OLED technology is rapidly
replacing LCD technology. For these reasons, this chapter looks at going a
bit further and using OLEDs and touch screen LCDs (see Figure 10-1).

Figure 10-1. Modern smartphone

277
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_10

CHAPTER 10 INTERFACING DISPLAYS

OLED Displays

We begin the chapter by looking at the use of the Organic Light Emitting
Diode (OLED) displays. OLEDs are my favorite type of displays. This is
because they have high contrast, use relatively little power, and do not
require extra power considerations for backlighting. We use the SSD1306
in this chapter (see Figure 10-2); it is a small LCD that is rather simple to
interface. It also consumes relatively little power. In fact, using this display
with a PIC16F1717, LED, and logic-level converter, I have been able to

get power readings as low as 5mA! In practice, [have found it to use less
power than a HD44780 LCD with backlighting. In addition, it uses less I/O
because it’s a serial LCD using the 12C protocol, so it uses only two I/0
lines.

In order to use the display, we need to provide a sequence of
commands. This will initialize the display. The sequence in the code will
enable the OLED to turn on. Enabling the charge pump is very important,
and initially when I was developing the library, this caused a lot of
problems. The sequence provided in the example code works.

Next, we will set the row and column coordinates of the OLED. The
other functions draw characters and strings and contain functions for
displaying integers and floating point numbers.

Most libraries for the SSD1306 utilize a buffer. However, the
PIC16F1717 does not have the RAM, as a buffer would require 1024 bytes
of RAM. The total RAM of the PIC16F1717 is 1024 bytes, so such a buffer is
out of the question. This means that graphics are not available without a
proper buffer. However, that is not necessary, as most applications with a
small display do not require graphics. Displaying text and characters works
great on the OLED.

278

CHAPTER 10

Figure 10-2. The SSD1306 OLED

Listing 10-1 provides the header file.

Listing 10-1. OLED Header File

N
*

File: oled.h

Author: Armstrong Subero

PIC: 16F1717 w/X 0SC @ 16MHz, 5v

Program: Header file to setup PIC16F1717 I2C
Compiler: XC8 (v1.35, MPLAX X v3.10)

Program Version 1.3

Separated file into Header and C source
Replace fixed hex with macros

Added additional comments

¥ ¥ %X %X X %X ¥ %X ¥ %X *x %

SSD 1306 OLEDs
*

INTERFACING DISPLAYS

Program Description: This program header will allow setup of

279

CHAPTER 10 INTERFACING DISPLAYS

* Created on March 10th, 2017, 8:00 PM
*/

// Define OLED dimensions
#define OLED WIDTH 128
#define OLED HEIGHT 64

// Define command macros

#define OLED SETCONTRAST 0x81
#define OLED DISPLAYALLON RESUME 0xA4
#define OLED DISPLAYALLON OXA5
#define OLED NORMALDISPLAY 0xA6
#define OLED INVERTDISPLAY OxA7
#define OLED DISPLAYOFF OXAE
#define OLED DISPLAYON OxAF
#define OLED SETDISPLAYOFFSET 0xD3
#define OLED SETCOMPINS OxDA
#define OLED SETVCOMDETECT 0xDB
#define OLED SETDISPLAYCLOCKDIV 0xD5
#define OLED SETPRECHARGE 0xD9
#define OLED SETMULTIPLEX OxA8
#define OLED SETLOWCOLUMN 0x00
#define OLED SETHIGHCOLUMN 0x10
#define OLED SETSTARTLINE 0x40
#define OLED MEMORYMODE 0x20
#define OLED COLUMNADDR 0x21
#define OLED PAGEADDR 0x22
#define OLED _COMSCANINC oxCo
#define OLED COMSCANDEC 0xC8
#define OLED SEGREMAP 0xAo
#define OLED CHARGEPUMP 0x8D

// Header file
#include "16F1717 Internal.h"

280

CHAPTER 10 INTERFACING DISPLAYS

// Function declarations

void OLED Command(uint8_t temp);
void OLED Data(uint8_t temp);

void OLED Init();

void OLED YX(unsigned char Row, unsigned char Column);
// *warning!* max 4 rows

void OLED PutChar(char ch);

void OLED Clear();

void OLED Write String(char *s);
void OLED Write Integer(uint8_t i);
void OLED Write Float(float f);

Listing 10-2 provides the source for the display driver.

Listing 10-2. OLED Source

N
*

File: oled.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: Library file for SSD 1306 OLED
Compiler: XC8 (v1.38, MPLAX X v3.40)
Program Version: 1.1

*Added additional comments

¥ % ¥ %X ¥ %X ¥ %X %

Program Description: This Library allows you to control the
SSD 1306 OLED

*
* Created on March 10th, 2017, 8:05 PM
*/

#include "oled.h"
#include "I2C.h"
#include <string.h>

281

CHAPTER 10 INTERFACING DISPLAYS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK
KKK KKK KKK KKK KK KKK

* Function: const uint8 t OledFont[][8]

*

* Returns: Nothing
*
* Description: 2 Dimensional array containing the the ASCII

characters
*

K 2K K K oK oK K K 5K K K oK oK oK 5K 5K K oK oK oK oK oK 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 5K K oK oK oK K 5K oK K oK oK K ok ok K K Kk ok ok ok

kAkRAKAR KRR KKKk /

const uint8_t OledFont[][8] =

{
{0x00,0x00,0x00,0x00,0%x00,0x00,0x00,0x00},
{0x00,0x00,0x5F,0x00,0x00,0x00,0x00,0x00},
{ox00,0x00,0x07,0x00,0x07,0x00,0x00,0x00},
{ox00,0x14,0x7F,0x14,0x7F,0x14,0x00,0x00},
{0x00,0x24,0x2A,0x7F,0x2A,0x12,0x00,0x00},
{0x00,0x23,0x13,0x08,0x64,0x62,0x00,0x00},
{ox00,0x36,0x49,0x55,0x22,0x50,0x00,0X00},
{ox00,0x00,0x05,0x03,0x00,0x00,0x00,0x00},
{ox00,0x1C,0x22,0x41,0x00,0x00,0x00,0x00},
{0x00,0x41,0x22,0x1C,0x00,0x00,0x00,0x00},
{0x00,0x08,0x2A,0x1C,0x2A,0x08,0x00,0x00},
{0x00,0x08,0x08,0x3E,0x08,0x08,0x00,0x00},
{0x00,0xA0,0x60,0x00,0x00,0x00,0x00,0x00},
{0x00,0x08,0x08,0x08,0x08 ,0x08,0x00,0x00},
{0x00,0x60,0x60,0x00,0x00,0x00,0x00,0x00},
{0x00,0x20,0x10,0x08,0x04,0x02,0x00,0x00},
{0x00,0x3E,0x51,0%x49,0x45,0x3E,0x00,0x00},
{0x00,0x00,0x42,0x7F,0x40,0x00,0x00,0x00},

282

CHAPTER 10

{0x00,0x62,0x51,0x49,0x49,0x46,0x00,0x00},
{ox00,0x22,0x41,0x49,0x49,0x36,0x00,0x00},
{ox00,0x18,0x14,0x12,0x7F,0x10,0x00,0x00},
{ox00,0x27,0x45,0x45,0x45,0x39,0x00,0x00},
{0x00,0x3C,0x4A,0x49,0x49,0x30,0x00,0x00},
{ox00,0x01,0x71,0x09,0x05,0x03,0x00,0x00},
{ox00,0x36,0x49,0x49,0x49,0x36,0x00,0x00},
{0x00,0x06,0x49,0x49,0x29,0x1E,0x00,0x00},
{ox00,0x00,0x36,0x36,0x00,0x00,0x00,0x00},
{0x00,0x00,0xAC, 0x6C,0x00,0x00,0x00,0x00},
{0x00,0x08,0x14,0x22,0x41,0x00,0%x00,0x00},
{ox00,0x14,0x14,0x14,0x14,0x14,0x00,0x00},
{0x00,0x41,0x22,0x14,0x08,0x00,0x00,0x00},
{ox00,0x02,0x01,0x51,0x09,0x06,0x00,0x00},
{ox00,0x32,0x49,0x79,0x41,0x3E,0x00,0x00},
{0x00,0x7E,0x09,0x09,0x09,0x7E,0x00,0x00},
{ox00,0x7F,0x49,0x49,0x49,0x36,0x00,0x00},
{ox00,0x3E,0x41,0x41,0x41,0%x22,0x00,0x00},
{ox00,0x7F,0x41,0x41,0x22,0x1C,0x00,0x00},
{ox00,0x7F,0x49,0x49,0x49,0x41,0x00,0x00},
{ox00,0x7F,0x09,0x09,0x09,0x01,0x00,0x00},
{ox00,0x3E,0x41,0x41,0x51,0x72,0x00,0x00},
{0x00,0x7F,0x08,0x08,0x08,0x7F,0x00,0x00},
{ox00,0x41,0x7F,0x41,0x00,0x00,0x00,0x00},
{0x00,0x20,0x40,0x41,0x3F,0x01,0x00,0x00},
{ox00,0x7F,0x08,0x14,0x22,0x41,0x00,0x00},
{0x00,0x7F,0x40,0x40,0x40,0x40,0x00,0x00},
{ox00,0x7F,0x02,0x0C,0x02,0x7F,0x00,0x00},
{0x00,0x7F,0x04,0x08,0x10,0x7F,0x00,0x00},
{0x00,0x3E,0x41,0x41,0x41,0x3E,0x00,0%x00},
{ox00,0x7F,0x09,0x09,0x09,0x06,0x00,0x00},

INTERFACING DISPLAYS

283

CHAPTER 10 INTERFACING DISPLAYS

{0x00,0x3E,0x41,0x51,0x21,0x5E,0x00,0x00},
{ox00,0x7F,0x09,0x19,0x29,0x46,0x00,0x00},
{ox00,0x26,0x49,0x49,0x49,0x32,0x00,0x00},
{0x00,0x01,0x01,0x7F,0x01,0x01,0x00,0x00},
{ox00,0x3F,0x40,0x40,0x40,0x3F,0x00,0x00},
{ox00,0x1F,0x20,0x40,0x20,0x1F,0x00,0x00},
{0x00,0x3F,0x40,0x38,0x40,0x3F,0x00,0x00},
{0x00,0x63,0x14,0x08,0x14,0x63,0x00,0x00},
{0x00,0x03,0x04,0x78,0x04,0x03,0x00,0x00},
{0x00,0x61,0x51,0%x49,0x45,0x43,0x00,0x00},
{0x00,0x7F,0x41,0x41,0x00,0x00,0x00,0x00},
{ox00,0x02,0x04,0x08,0x10,0x20,0x00,0x00},
{ox00,0x41,0x41,0x7F,0x00,0x00,0x00,0x00},
{0x00,0x04,0x02,0x01,0x02,0x04,0x00,0x00},
{ox00,0x80,0x80,0x80,0x80,0%x80,0%x00,0x00},
{0x00,0x01,0x02,0x04,0x00,0x00,0x00,0x00},
{ox00,0x20,0x54,0x54,0x54,0x78,0x00,0x00},
{ox00,0x7F,0x48,0x44,0x44,0x38,0x00,0x00},
{ox00,0x38,0x44,0x44,0x28,0x00,0x00,0x00},
{ox00,0x38,0x44,0x44,0x48,0x7F,0x00,0x00},
{ox00,0x38,0x54,0x54,0x54,0x18,0x00,0x00},
{ox00,0x08,0x7E,0x09,0x02,0x00,0x00,0x00},
{ox00,0x18,0xA4,0xA4,0xA4,0x7C,0x00,0x00},
{0x00,0x7F,0x08,0x04,0x04,0x78,0x00,0x00},
{ox00,0x00,0x7D,0x00,0x00,0x00,0x00,0x00},
{ox00,0x80,0x84,0x7D,0x00,0x00,0x00,0x00},
{0x00,0x7F,0x10,0x28,0x44,0x00,0x00,0x00},
{ox00,0x41,0x7F,0x40,0x00,0x00,0x00,0x00},
{0x00,0x7C,0x04,0x18,0x04,0x78,0x00,0x00},
{ox00,0x7C,0x08,0x04,0x7C,0x00,0x00,0x00},
{ox00,0x38,0x44,0x44,0x38,0x00,0x00,0x00},
{0x00,0xFC,0x24,0x24,0x18,0x00,0x00,0x00},

284

CHAPTER 10

{0x00,0x18,0x24,0x24,0xFC,0x00,0x00,0x00},
{0x00,0x00,0x7C,0x08,0x04,0x00,0x00,0x00},
{ox00,0x48,0x54,0x54,0x24,0x00,0x00,0x00},
{0x00,0x04,0x7F,0x44,0x00,0x00,0x00,0x00},
{ox00,0x3C,0x40,0x40,0x7C,0x00,0x00,0x00},
{ox00,0x1C,0x20,0x40,0x20,0x1C,0x00,0x00},
{0x00,0x3C,0x40,0x30,0x40,0x3C,0x00,0x00},
{0x00,0x44,0x28,0x10,0x28,0x44,0x00,0x00},
{0x00,0x1C,0xA0,0xA0,0x7C,0x00,0x00,0x00},
{0x00,0x44,0x64,0x54,0x4C,0x44,0x00,0x00},
{0x00,0x08,0x36,0x41,0x00,0x00,0x00,0x00},
{ox00,0x00,0x7F,0x00,0x00,0x00,0x00,0x00},
{0x00,0x41,0x36,0x08,0x00,0x00,0x00,0x00},
{ox00,0x02,0x01,0x01,0x02,0x01,0x00,0x00},
{ox00,0x02,0x05,0x05,0x02,0x00,0x00,0x00},

};

INTERFACING DISPLAYS

/**

K 2K K oK oK K ok ok K K K K ok ok ok ok K

* Function: void OLED Command(uint8 t temp)

*

* Returns: Nothing
*

* Description: sends commands to the OLED
*

KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K oK K oK K oK K oK K oK oK K oK KoK K oK oK oK oK K oK K K K K oK Kk Kok Kk ok ok Kk

*RFAAAAAFKKKKAK

void OLED Command(uint8_t temp){

Send_I2C StartBit(); // send start bit

Send_I2C Data(0x3C << 1); // send word address

Send _I2C Data(0x00);

285

CHAPTER 10 INTERFACING DISPLAYS

Send I2C Data(temp); // send data byte
Send I2C StopBit(); // send stop bit

}

JRERRFAAAAAFFK KK FAAAAAFF KA FAAAAAF A FAAAAAF K AAAAAAFF KA AN

K 2K K oK oK K ok ok 5K K K K ok ok ok ok K
* Function: void OLED Data (uint8 t temp)
*

* Returns: Nothing
*

* Description: sends data to the OLED
*
KKK KKK KoK K KoK K KK KKK KoK K KoK K KK K KK KoK K KoK K KoK K KK KoK K KoKk KK K Kk K oKk Kok ok Kok ok ok kK ok

KAkkRAKAR KR KKKk /

void OLED Data(uint8_t temp){

Send I2C StartBit(); // send start bit
Send_I2C Data(ox3C << 1); // send word address
Send I2C Data(0x40);

Send I2C Data(temp); // send data byte
Send_I2C StopBit(); // send stop bit

}

/**

KKK K oK oK K 3K K K K K Kk K ok Kk
* Function: void OLED Init ()
*

* Returns: Nothing
*

* Description: Initializes OLED
*

286

CHAPTER 10 INTERFACING DISPLAYS

2K 2K 2K oK oK oK oK K 5K 5K K oK oK oK K K 5K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK oK 5K K oK oK oK K ok oK K oK oK ok ok ok K K Kk ok ok

kAkRAKAI KR KKKk /

void OLED Init() {

OLED Command(OLED DISPLAYOFF); // OXAE

OLED Command(OLED SETDISPLAYCLOCKDIV); // 0xD5
OLED Command(0x80); // the suggested ratio 0x80
OLED Command(OLED SETMULTIPLEX); //0xA8
OLED_Command(0x1F);

OLED _Command(OLED SETDISPLAYOFFSET); // 0xD3
OLED_Command(0x0); // no offset
OLED_Command(OLED_SETSTARTLINE | 0x0); // line #0
OLED_Command(OLED_CHARGEPUMP); // 0x8D
OLED_Command(OxAF);
OLED_Command(OLED_MEMORYMODE); //0x20

OLED Command(0x00); //0x0 act like ks0108

OLED Command(OLED SEGREMAP | 0x1);
OLED_Command(OLED_COMSCANDEC);

OLED Command(OLED _SETCOMPINS); // OxDA

OLED Command(0x02);
OLED_Command(OLED_SETCONTRAST); // 0x81
OLED_Command(0x8F);

OLED _Command(OLED SETPRECHARGE); // 0xd9

OLED Command(0xF1);
OLED_Command(OLED_SETVCOMDETECT); // 0xDB
OLED_Command(0x40);

OLED Command(OLED DISPLAYALLON RESUME); // OxA4
OLED_Command(OLED_NORMALDISPLAY); // 0xA6

OLED Command(OLED DISPLAYON); //--turn on oled panel

}

287

CHAPTER 10 INTERFACING DISPLAYS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

KOk KK KK oK Kk Kk KKk Kk K

* Function: void OLED YX(unsigned char Row, unsigned char
Column)
*

* Returns: Nothing
*

* Description: Sets the X and Y coordinates
*
K 2K K K oK oK K K 5K K K oK oK oK 5K 5K K oK oK oK oK oK 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 5K K oK oK oK K 5K oK K oK oK K ok ok K K Kk ok ok ok

kAkRAKAR KRR KKKk /

void OLED YX(unsigned char Row, unsigned char Column)

{
OLED_Command(0xBO + Row);

OLED Command(0x00 + (8*Column & OxOF));
OLED Command(0x10 + ((8*Column>>4)80x0F));

}

/**

KKK K oK oK K 3K K K ok K Kk K ok K
* Function: void OLED PutChar(char ch)
*

* Returns: Nothing
*

* Description: Writes a character to the OLED
*

KK KK K K oK oK oK K oK K K oK o oK K oK K oK oK oK oK K oK K K oK K oK K oK K oK oK oK oK KoK K oK K oK oK oK oK K K K K oK K oK Kk Kok K ok ok Kk

KRFAAAAAFKKKHKAK

void OLED PutChar(char ch)
{

288

CHAPTER 10

if ((ch<32) || (ch>127)){
ch=""

}
const uint8_t *base = &0ledFont[ch - 32][0];

uint8_t bytes[9];
bytes[0] = 0x40;
memmove(bytes + 1, base, 8);

Send I2C StartBit(); // send start bit

INTERFACING DISPLAYS

Send I2C Data(ox3C << 1); // send word address

Send_I2C Data(0x40);
int i;
for (i = 1; i <= 8; i++){

Send_I2C Data(bytes[i]);
}

Send I2C StopBit(); // send stop bit
}

JRERRFAAA AR KR RAAAA AR FAAAAAFFFFAKAAAAAFF K AAAAAA KA A K

KK K K oK oK oK 3K 3K K ok K ok Kk Kk ok ok
* Function: void OLED Clear()
*

* Returns: Nothing
*

* Description: Clears the OLED
*

2K 2K 2K oK oK oK K ok 5K 5K K oK oK oK oK oK K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K K oK K ok ok K K K ok ok ok

KAkRAKAR KR KKKk /

289

CHAPTER 10 INTERFACING DISPLAYS

void OLED Clear()
{

for (uint16_t row
for (uint16_t col
}

}

}

JRERRFAAAAAF KK KAAAAAF KK FAAAAAAF K AAAAAAF K AAAAAAFF KA AK

0; row < 8; row++) {
0; col < 16; col++) {

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

* Function: void OLED Write String(char *s)
*

* Returns: Nothing
*

* Description: Writes a string to the OLED
*

KK KK K K oK K oK K K KK oK K oK KK K oK oK oK oK K oK K K oK K oK K oK K K K K oK oK oK K oK K oK oK K oK K oK K K oK K oK Kk Kok Kk ok ok Kk

KAkRAKAR KR KKKk /

void OLED Write String(char *s)

{
while (*s) OLED PutChar(*s++);

}

[RARAA SRS A AN A KA SRS AR ARSI AFARAFAFR AR AR dok K

K 2K K K K K K ok K K K Kk ok K K K

* Function: void OLED Write Integer (uint8 t i)
*

* Returns: Nothing
*

* Description: Writes an integer to the OLED
*

290

CHAPTER 10 INTERFACING DISPLAYS

2K 2K 2K oK oK oK oK K 5K 5K K oK oK oK K K 5K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK oK 5K K oK oK oK K ok oK K oK oK ok ok ok K K Kk ok ok

kAkRAKAI KR KKKk /

void OLED Write Integer(uint8_t i)
{

char s[20];

itoa(s, i, 10);

OLED Write String(s);

OLED Write String("");

}

Y o e e e e e e L b Bl e B b Ll b

KKK KKK KKK KKK KK KKK
* Function: void OLED Write Float(float f)
*

* Returns: Nothing
*

* Description: Writes a float to the OLED
*

K 2K 3K K oK oK oK K 5K K K oK oK oK 5K 5K K oK oK oK 5K 5K 3K K K 5K oK 5K 5K 3K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 3K K oK oK oK 5K 5K 3K K oK oK K ok ok K K ok ok ok ok

KARFSR SRR KAI KKKk)

void OLED Write Float(float f)
{

char* bufi11;
int status;

bufi1 = ftoa(f, &status);

OLED Write String(bufi1);
OLED_Write String("");

}

291

CHAPTER 10 INTERFACING DISPLAYS

Finally, we have the main code, shown in Listing 10-3.

Listing 10-3. Main Code

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: I08_SSD1306

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0

*

*

Program Description: This Program Allows PIC16F1717 to be
connected to a

* SSD1306 via the I2C bus. It demonstrates writing strings

* together with writing integers and floating point

* numbers.

*

* Hardware Description: A SSD1306 based OLED is connected to a
PIC16F1717 via

* a logic level converter to a SSD1306 based OLED as
* follows:

*

* GND --> GND

* VCC --> VCC

* SCL --> RC5

* SDA --> RC4

*

*

Created Friday 10th March, 2017, 8:05 PM
*/

292

CHAPTER 10 INTERFACING DISPLAYS

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK

KK KK KKK KK Kk KKk KKK

*Includes and defines
2K 2K K K oK oK K K 5K 5K K oK oK oK oK 5K K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK ok ok ok K K Kk K ok ok

kAkRARKARR KR KKKk /

#include "16F1717 Internal.h"
#include "I2C.h"

#include "oled.h"

#include <string.h>

Y o e e e e e e L b Bl e B b Ll b
Kok ok ok ok ok ok ok ok ok ok ok ok kK ok k

* Function: void initMain()
*

* Returns: Nothing

*

* Description: Contains initializations for main
*

*

Usage: initMain()
2K 2K 2K K oK oK oK ok 5K K K oK oK oK oK oK 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK oK oK oK 5K K oK oK oK oK oK oK K oK oK K ok ok K K K ok ok ok

kAkRAKAR KR KKKk /

void initMain(){

// Run at 16 MHz
internal 16();

111777777777777777777
// Setup I2C
111777777777777777777

// Setup pins for I2C
ANSELCbits.ANSC4 = 0;
ANSELCbits.ANSC5 = 0;

293

CHAPTER 10 INTERFACING DISPLAYS

TRISCbits.TRISC4 = 1;
TRISCbits.TRISC5 = 1;

PPSLOCK = OX55;
PPSLOCK = OXAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RC4PPSbits.RC4PPS = 0x0011; //RC4->MSSP:SDA;
SSPDATPPSbits.SSPDATPPS = 0x0014; //RC4->MSSP:SDA;
//RC5->MSSP:SCL;

PPSLOCK = OX55;

PPSLOCK = OXAA;

PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS
}

JRERRFAAA AR R AAAA AR AAAAA AR K AAAAAFFFFHKAAAAAAFFFHHKAAK

K 2K K K oK K K ok 5K K K K ok ok ok ok K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
K 2K 3K K oK oK K K 5K K K oK oK 5K 5K 5K K oK oK oK 5K oK 3K K K oK oK 5K 5K 5K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 3K K oK oK oK 5K 5K K K oK K K ok ok K K Kk ok ok

KRR KA KAI KKKk /

void main(woid) {
initMain();

// Initialize I2C
I2C_Init();

__delay ms(100);

// Initialize OLED
OLED Init();

294

CHAPTER 10

// clear OLED
OLED Clear();

// variables for counting
int count = 0;
float dec = 0.0;

while (1) {

[11117777777777777777
// Strings
[111777777777777777

__delay ms(100);

}

__delay ms(100);
OLED Clear();

}

return;

}

Touch Screen LCD

INTERFACING DISPLAYS

Thanks to the smartphone revolution, every user wants a screen that they

can touch and interact with. It is for this very reason that I chose to include

interfacing touch screens in this book. Smartphones have encouraged

wide availability of touch screens. Many people think that you need a lot

of processing power to use touch screens. In the past this was true, but

with the advent of intelligent display modules, this is no longer the case.

Intelligent displays have a processor onboard that handles drawing and

updating the display. The application processor can thus interact with

295

CHAPTER 10 INTERFACING DISPLAYS

the display using simple commands. What this means is that even 8-bit
microcontroller solutions can utilize a touch screen display.

When integrating touch-based displays into your design, it is
important to consider the following factors:

o The touch screen must have a GUI interface that can be
developed quickly.

o The touch screen must be easy to integrate into your
projects.

e The touch screen must be cost-effective.

In addition to these factors, we must also examine the types of touch
displays that are available on the market today. There are two main types
of touch displays available—resistive touch screens and capacitive touch
screens. We take a look at each of these types of displays in the next
sections.

Resistive Touch

The resistive touch screen essentially consists of two layers of flexible
sheets, which are then placed on a piece of glass. These sheets are clad in a
substance that has a certain resistance and kept apart by small dots. When
a part of the screen is pressed, the two layers are pressed together and this
change in resistance at that touch point is measured.

Resistive touch screens require a hard object to press them together,
such as a stylus, fingernail, or a sufficiently hard object. A major advantage
of a resistive touch screens is that they can be used through electrically
insulating materials such as when wearing gloves. A major disadvantage is
that they are not as responsive as capacitive touch screens.

296

CHAPTER 10 INTERFACING DISPLAYS

Capacitive Touch

The human body is known to have electrical properties. One of these
properties is the fact that the human body is a conductor. Capacitive touch
screens exploit this aspect of the human body. The capacitive touch screen
consist of glass covered with a conductive material. When the material is
touched, it produces a change in capacitance, which is measured and used
to determine where the touch took place.

A major advantage of capacitive touch screens is that they are very
responsive and a major disadvantage is that, unlike resistive touch screens,
they cannot be used through electrically insulating materials.

Selecting a Touch Screen LCD

Now that you have a basic understanding of the factors to be determined
when selecting a touch screen and have learned about the types of touch
screens, you can select a touch screen to use in your project. The Nextion
series of displays (see Figure 10-3) were chosen for this example because they
have an editor tool that enables you to quickly develop the GUI. They also
communicate via the ubiquitous UART protocol and are some of the lowest
cost displays available on the market today. They are resistive touch screens.
Before you continue with this section, I highly recommend you go through
the tutorials on the Nextion web site at https://nextion.itead.cc/.

| -

-—_'__._._———

Figure 10-3. Nextion display
297

https://nextion.itead.cc/

CHAPTER 10

INTERFACING DISPLAYS

Using the Touch LCD

Here are the steps required to use the Nextion type displays:

1.

2.

3.

4,

Create the layout in your photo editor of choice.
Add widgets to your layout with the Nextion Editor.
Add code to those widgets via Nextion Editor.

Read information sent from the display by the
microcontroller.

Creating a Layout

The first step is to create the layout of your choice (see Figure 10-4). If

you want to use solid colors only in your design, you do not need to use

any photo editing software to create a layout. However, if you plan on

adding a decent looking background to your design, you will need images.

I recommend that you purchase images from the many sites available

that provide such a service. This will ensure that you are not violating any

copyrights and you will have high-quality images.

Figure 10-4. Layout of the design

298

CHAPTER 10 INTERFACING DISPLAYS

Adding Widgets

The next important step in working with a touch screen is adding widgets
to your application (see Figure 10-5). This can be done in the editor. We
will add text and use a checkbox, although other types of widgets are
available. Using the editor is very straightforward, and if you need to learn
how to use it, there are a lot of tutorials on the web.

igm w1 e gt @ wmy § et B B r B ¥ e S o

ZAPN im0 PERLN

— g =

e - ekt b
-

R |

Ee EXE |

. oMY — ‘TE_?’"—- .-... v"_--. N :'

- A - 3
= - e

(2424

Figure 10-5. Adding widgets

Adding Code

The touch screens we are using are intelligent displays. Thus, code can be
written on the display itself and sent to the microcontroller. The Nextion
editor includes a section for adding code to the display. If you are unsure
how to add code, you can follow along with the tutorials on the web site to
learn how to do so.

The code is added to each widget (see Figure 10-6). The print
command in the editor allows you to print a string of characters when a
particular touch event of that particular widget is triggered. In this example
they are blulbpressed, motopressed, planpressed, and connpressed. So,
to add bulbpressed, for example, you would type print bulbpressedin
the editor.

299

CHAPTER 10 INTERFACING DISPLAYS

rmmb: Qg F et Mo B¢ v Xirom Moy, Wi s
‘m m T T——
T s
EE R
r ¥ £

e TE———
[T

2

Figure 10-6. Adding code

Figure 10-7 shows the result you get after all the widgets have been
added to your design.

=S
+
Cl3
-

Figure 10-7. Final result

300

CHAPTER 10 INTERFACING DISPLAYS

Reading on the Microcontroller

Next on the microcontroller side, we will read the code sent by the display
(see Listing 10-4).

Listing 10-4. Touch Screen Code

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int OSC @ 16MHz, 5v
* Program: 31 _Touchscreen

* Compiler: XC8 (vi.41, MPLAX X v3.55)
* Program Version: 1.0
*
*
*

Program Description: This Program Allows PIC16F1717 to
communicate with a
* NX3224T024_0112.4 inch Nextion Display. The display
* communicates with the microcontroller via UART and
* sends messages to the microcontroller which is displayed
* on the SSD1306 OLED
*
* Hardware Description: A Nextion 2.4 inch touch screen and
SSD1306 OLED is
* connected to the microcontroller as per header file.
*
* Created April 15th, 2017, 9:30 PM
*/

301

CHAPTER 10 INTERFACING DISPLAYS

/**
KKK KKK KKK KKK KK KKK

*Includes and defines

2K 2K K K oK oK K K 5K 5K K oK oK oK oK oK 5K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK K ok ok K K Kk ok ok

kAkRARKA KR KKK KK /

#include "16F1717 Internal.h"
#include "EUSART.h"

#include "oled.h"

#include <string.h>

#include <stdbool.h>

// buffer for UART
char buf[50];

// Function prototypes
void touchscreen command(char* string);

void moto_func(char* buf);
void plan_func(char* buf);
void conn_func(char* buf);
void bulb func(char* buf);

111171177777777777777777777/
// Bool support
I11177777777777777777777777

typedef unsigned char bool;

#define true 1
#define false 0

// boolean for current state
bool on = false;

302

CHAPTER 10 INTERFACING DISPLAYS

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK

KK KK KKK KK Kk KKk KKK

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
KK K oK oK oK 3K 3K 3K K K 5K K 5K 5K oKk ok 3K 3K 3K 3K 5K 5K 5K oK 5K 5K oK oK 3K 3K 3K K 5K 5K K K 5K oK ok oK K 3K 3K K 5K K K K oK oK oK K 3K 3K 3k ok ok kR ok ok ok

kAkRAKAR KRR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

// Setup pins for EUSART
TRISBbits.TRISB2 = 0;
ANSELBbits.ANSB2 =

|
O
-

TRISBbits.TRISB3
ANSELBbits.ANSB3 = 0;

1]
=
-

// Setup pins for I2C
ANSELCbits.ANSC4 =
ANSELCbits.ANSC5 =

| |
o O
e e

TRISCbits.TRISC4 = 1;
TRISCbits.TRISC5

1]
=
- e

L1117777777777777777777
// Setup Serial Comms
1111717777777777777777/
PPSLOCK = 0x55;

303

CHAPTER 10 INTERFACING DISPLAYS

PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RC4PPSbits.RC4PPS = 0x0011; //RC4->MSSP:SDA;
SSPDATPPSbits.SSPDATPPS =0x0014; //RC4->MSSP:SDA;
SSPCLKPPSbits.SSPCLKPPS =0x0015; //RC5->MSSP:SCL;
RC5PPSbits.RC5PPS = 0x0010; //RC5->MSSP:SCL;
RB2PPSbits.RB2PPS = 0x14;

//RB2->EUSART:TX;

RXPPSbits.RXPPS = Ox0B; //RB3->EUSART:RX;

PPSLOCK = 0x55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS
}

Y o e e e e e Bl e L b Ll b L

Kok Kok koK ok Kk Kok Kok ok Kok k

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
KK KK K K oK oK oK K oK K K oK oK oK K oK K oK oK oK oK K oK K oK K K oK K oK K oK oK oK oK oK oK K oK K oK oK oK oK K oK K oK K K ok Kk K ok Kk ok ok Kk

RRFAAAAAFKKKKKK
void main(woid) {
initMain();

// Initialize I2C
I2C_Init();
__delay ms(500);

// Initialize OLED
OLED Init();

304

CHAPTER 10

// clear OLED
OLED Clear();

__delay ms(1000);

// Initialize EUSART module with 9600 baud
EUSART Initialize(9600);
__delay ms(2000);

// Dim Touchscreen
OLED YX(0, 0);
OLED Write String("Dim Screen");

touchscreen_command("dim=30");

// Update Touchscreen
OLED_YX(0, 0);
OLED Write String("Update Screen");

touchscreen_command("t3.txt=\"16\"");
OLED Clear();
while(1){

// Read EUSART
EUSART Read Text(buf, 11);

// Check for which checkbox triggered
bulb_func(buf);
moto_func(buf);
plan_func(buf);
conn_func(buf);

}

return;

}

INTERFACING DISPLAYS

305

CHAPTER 10 INTERFACING DISPLAYS

/*

Send commands to Touchscreen

*/

void touchscreen command(char* string)
{

EUSART Write Text(string);

EUSART Write(OxFF);

EUSART Write(OxFF);

EUSART Write(OxFF);

__delay ms(1000);

}

/*

Bulb Function Routines
*/

void bulb func(char* buf)
{

char* bulbi1;

bulb1l = strstr(buf, "bulb");

if (bulbl == NULL)
{

retuxn;

}

else

{

if (lon){

OLED YX(0, 0);

OLED Write String("Bulb On");
__delay ms(1000);

OLED Clear();

306

CHAPTER 10
on = true;
}
else {

OLED_YX(0, 0);

OLED_Write_ String("Bulb Off");
__delay ms(1000);

OLED Clear();

on = false;
}
}
}

/*

Motor function Routines
*/

void moto_func(char* buf)

{

char* moto1;
motol = strstr(buf, "moto");

if (motol == NULL)
{

return;

}

else

{

if (lon){

OLED_YX(0, 0);

OLED Write String("Motor On");

INTERFACING DISPLAYS

307

CHAPTER 10 INTERFACING DISPLAYS

__delay ms(1000);
OLED Clear();

on = true;
}
else {

OLED_YX(0, 0);

OLED Write String("Motor Off");
__delay ms(1000);

OLED Clear();

on = false;
}

}
}

/*

Plant function routines
*/

void plan_func(char* buf)

{

char* planti;

plantl = strstr(buf, "plan");

if (plant1 == NULL)
{

return;

}

else

{
if (lon){

308

CHAPTER 10

OLED_YX(0, 0);

OLED Write String("Plant On");
__delay ms(1000);

OLED Clear();

on = true;
}
else {

OLED YX(0, 0);

OLED_Write String("Plant Off");
__delay ms(1000);

OLED Clear();

on = false;
}
}
}

/*

Connection Function Routines
*/

void conn_func(char* buf)

{

char* conni;

connl = strstr(buf, "conn");

if (conni == NULL)
{

retuxn;

}

INTERFACING DISPLAYS

309

CHAPTER 10 INTERFACING DISPLAYS

else

{

if (lon){

OLED_YX(0, 0);

OLED Write String("Connected");
__delay ms(1000);

OLED Clear();

on = true;
}
else {

OLED YX(0, 0);

OLED Write String("Disconnected");
__delay ms(1000);

OLED Clear();

on = false;

}
}
}

Conclusion

In this chapter, we looked at using OLED and touch screen displays.

Although other types of displays are available, users now expect to be able

to touch their displays to interact with them. In addition, OLED technology

is rapidly taking the place of traditional LCD displays. At this point, I am

confident that you can interface your microcontroller to any type of display

that will be thrown at you.

310

CHAPTER 11

ADC and DAC

Data Conversion

Many times when you're working with microcontrollers, you might need
to use analog to digital and digital to analog converters. Devices that are
responsible for data conversion between digital and analog forms are
ubiquitous in our modern world. Devices like smartphones, drones, and
televisions depend on data conversion to work. Converters are crucial to
the operation of most modern devices.

ADC (Analog to Digital Conversion)

Analog to digital conversion (ADC) is one of the most important onboard
modules of the PIC® microcontroller. The reason is very simple—we live
in an analog world. Computers process all their information in digital
format; however many transducers, which when electronic are called
sensors, output their values as voltage. The ADC converts these analog
voltages into a digital representation that the processor can understand.
The ADC has a specific number of bits of resolution. These can be
from 8 to 32 bits. The higher the resolution of the ADC, the greater the
number of steps there will be from the minimum voltage to the maximum
voltage. The PIC16F1717 has a 10-bit resolution ADC. What this means is

311
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_11

CHAPTER 11 ADC AND DAC

that the ADC can read a voltage in steps from 0 to 1023. Here is the code to
interface the ADC:

In this example, we use a potentiometer connected to the
microcontroller to demonstrate the use of the ADC module. The
potentiometer will vary the voltage between 5v (step 1023) down to Ov
(step 0), which is connected to a pin that has been configured for analog
input on the PIC® microcontroller.

Listing 11-1 provides the code to interface the ADC.

Listing 11-1. ADC Source

/*

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: 16 ADC

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0

*

*

*

Program Description: This Program Allows PIC16F1717 to
demonstrate the on

* board 10 bit ADC module. A 10k potentiometer is

* connected to PIN RAO and a 10 bit (0 - 1023) conversion

* result is displayed on the LCD.

*

*

* Hardware Description: An HD44780 compatible LCD is connected

to PORTD of the
* microcontroller as follows:

*
* RS ---> RD2
* R/W ---> GND

312

CHAPTER 11 ADC AND DAC

* EN ---> RD3

* D4 ---> RD4

* D5 ---> RD5

* D6 ---> RD6

* D7 ---> RD7

*

* A 10k pot is connected to PIN RAO.
*

*

*

Created November 7th, 2016, 11:05 AM

*/
/**
K 3K K K KK K K K K K Kk ok K K K

*Includes and defines
2K 2K 2K oK oK oK oK K 5K K K oK oK oK oK oK K K oK oK oK oK 5K K K oK oK oK oK 5K K oK oK oK oK oK 5K K oK oK oK ok oK 5K K oK oK oK ok ok oK K K oK K ok ok K K K K ok ok

kAkRAKAR KR KKKk /

#include "16F1717 Internal.h"
#include "LCD.h"

/**

K 2K K oK oK K ok ok 5K K K K ok ok ok %k K

* Function: void initMain()

*

* Returns: Nothing

*

* Description: Contains initializations for main
*
*

Usage: initMain()
sk ok o o o ok ok ok sk ok ke ke kK K K K K K K KKK KKK o o o o ok o o o o o o o o o ok ok ok ok ok ok ok ok ok sk ke ke

KARR SRR KRR KKK)

313

CHAPTER 11 ADC AND DAC

void initMain(){
// Run at 16 MHz
internal 16();

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Setup PORTD
TRISD = 0;
ANSELD = 0;

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

// Set A0 as input
TRISAbits.TRISAO = 1;

// Set A0 as analog
ANSELAbits.ANSAO = 1;

[1111117777777777777
// Configure ADC
1117711777777777777

// Fosc/32 ADC conversion time is 2.0 us
ADCON1bits.ADCS = 0b010;

// Right justified
ADCON1bits.ADFM = 1;

// Vref- is Vss
ADCON1bits.ADNREF = 0;

314

CHAPTER 11 ADC AND DAC

// Vref+ is Vdd
ADCON1bits.ADPREF = 0b0O;

// Set input channel to ANO
ADCONObits.CHS = 0b00000;

// Zero ADRESL and ADRESH
ADRESL = 0;
ADRESH = 0;

// Initialize LCD
Led Init();
__delay ms(100);
Lcd Clear();

}

JRERRFAAA AR IR AAAA AR FAAAA AR AAAAAAFFFFAKAAAAAA A A A K

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
K 2K 3K K oK oK K K 5K 5K K oK oK 5K 5K 5K K oK oK oK 5K oK 3K K K 5K oK 5K 5K 5K K oK oK oK 5K K 5K K oK oK oK oK 5K 3K K oK oK oK 5K 5K K K oK K K ok ok K K ok ok ok ok

KARKFRSR KSR KAI KKKk /

void main(woid) {
initMain();

// variable to store conversion result
int result;

while(1){

// Turn ADC on
ADCONObits.ADON = 1;

315

CHAPTER 11 ADC AND DAC

// Sample CHO

__delay us(10);
ADCONObits.GO = 1;

while (ADCONObits.GO nDONE);

// Store ADC result
result = ((ADRESH<<8)+ADRESL);

// Write result to LCD
Lcd Set Cursor(1,1);
__delay ms(5);

Lcd Write Integer(result);

// Update every second
__delay ms(1000);
Lcd Clear();

}

return;

}

Project: Digital Thermometer

In this section, we look at building a digital thermometer using the PIC®
microcontroller. The ADC onboard the microcontroller will read the

LM34 temperature sensor and output the corresponding voltage (see
Figure 11-1). The LM34 has a scale factor of 1 degree Fahrenheit for every
10 millivolts. Thus, in order to convert the voltage to temperature, there are
three stages. The steps are as follows:

1. Gettheresults according to the scale factor.
2. Convert that result to Fahrenheit.

3. Convert Fahrenheit to Celsius.

316

CHAPTER 11 ADC AND DAC

The code is pretty straightforward, as shown in Listing 11-2.

Listing 11-2. Temperature Code

N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: P01_Temperature

Compiler: XC8 (vi1.41, MPLAX X v3.55)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ %

*Program Description: This Program gives a reading in Celsius
based on the

* output of a LM34 temperature sensor. The output is

* displayed on an OLED.

*

* Hardware Description: A LM34 is connected to PIN EO and a
SSD1306 OLED 1is

* connected to the I2C bus.

*

*

* Created March 22nd, 2017, 8:15 PM

*/
/**

KK KK KK KKK Kk KKK KKK

*Includes and defines
K 2K K K oK oK K K 5K 5K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K oK K oK oK K ok ok K K Kk ok ok

kAkRAKAI KRR KKKk /

317

CHAPTER 11 ADC AND DAC

#include "16F1717 Internal.h"
#include "I2C.h"
#include "oled.h"

JRERRFAAAAAFFK KK FAAAAAFF KA FAAAAAF A FAAAAAF K AAAAAAFF KA AN

K 2K K oK oK K ok ok 5K K K K ok ok ok ok K

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()

KKK KoK K K oK oK KoK 5K KoK K oK K K oK oK K oK 5K KoK oK K K 5K oK oK K oK 5K K oK 5K KoK oK oK oK K oK oK K oK K KK K Kok K ok kK ok ok Kok ok K

KARR ARSI KAIKK KK)

void initMain(){
// Run at 16 MHz
internal 16();

111117177777777777777
// Setup I2C
111171177777777777

// Setup pins for I2C
ANSELCbits.ANSC4 = 0;
ANSELCbits.ANSC5 = 0;

TRISCbits.TRISC4 = 1;
TRISCbits.TRISCS = 1;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

318

CHAPTER 11

RC4PPSbits.RC4PPS =0x0011; //RC4->MSSP:SDA;
SSPDATPPSbits.SSPDATPPS =0x0014; //RC4->MSSP:SDA;
SSPCLKPPSbits.SSPCLKPPS =0x0015; //RC5->MSSP:SCL;
RC5PPSbits.RC5PPS =0x0010; //RC5->MSSP:SCL;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

11171177777777777777
// Configure ADC
1117717777177777777

// Fosc/32 ADC conversion time is 2.0 us
ADCON1bits.ADCS = 0b010;

// Right justified
ADCON1bits.ADFM = 1;

// Vref- is Vss

ADCON1bits.ADNREF = 0;
// Vref+ is Vdd
ADCON1bits.ADPREF = 0b0O;

// Set input channel to ANO
ADCONObits.CHS = 0xO05;

// Zero ADRESL and ADRESH
ADRESL = 0;
ADRESH = 0;

ANSELEbits.ANSEO = 1;

}

ADC AND DAC

319

CHAPTER 11 ADC AND DAC

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

KOk KK KK oK Kk Kk KKk Kk K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK oK oK oK K oK KoK K oK oK K oK K oK K K oK K oK Kk Kok K ok ok Kk

*RFAAAAAFKKKKAK
void main(woid) {
initMain();
// Initialize I2C
I2C_Init();

// Initialize OLED
OLED Init();

// clear OLED
OLED Clear();

// result to store ADC conversion
float result;

// variables for conversion
float conversioni0;

float farenheit;

float celsius;

while(1){

// Turn ADC on
ADCONObits.ADON = 1;

320

CHAPTER 11

// Sample CHO

__delay us(10);
ADCONObits.GO = 1;

while (ADCONObits.GO nDONE);

// Store ADC result
result = ((ADRESH<<8)+ADRESL);

// 10 bit conversion
conversion10 = (result * 5000)/1024 ;

// to Fahrenheit
farenheit = conversion10 / 10;

// to Celsius
celsius = (farenheit - 32) * 5/9;

// Display temperature
OLED_YX(0, 0);
OLED Write String("Temp: ");

OLED YX(1, 0);
OLED Write Integer((imt)celsius);

// Update every second
__delay ms(2000);

}

return;

}

ADC AND DAC

321

CHAPTER 11 ADC AND DAC

Figure 11-1. Temperature results

DAC (Digital to Analog Converter)

In addition to an ADC module, the PIC16F1717 also provides a DAC
onboard. The digital to analog converter (DAC) is the brother of the ADC,
except it does the exact opposite. Instead of converting an analog signal to
a digital one, as its name suggests, it converts a digital signal to an analog
one. The PIC16F1717 has two onboard DACs and they include an 8-bit
DAC and a 5 bit-DAC. In this example, we use the 8-bit DAC to output a
waveform on pin RA2, which can be viewed with an oscilloscope.

Listing 11-3 shows the code to use the DAC onboard the PIC16F1717

and generate a waveform.

322

CHAPTER 11 ADC AND DAC

Listing 11-3. DAC Source

/*
* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int OSC @ 16MHz, 5v

* Program: 14 DAC_8 Bit

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0

*

X

* Program Description: This Program Allows PIC16F1717 DAC1 to
generate a

* waveform on PIN RA2

*

*

* Hardware Description: An Oscilloscope probe is connected to

pin RA2
*

*
* Created November 7th, 2016, 10:08 AM

*/

JREFRRR KRRk Rk kR Rk kR ok kR ok kKRR kR kKRR kR Rk kR Rk kK
3k ok 3k 3k ok 3k sk ok >k skook sk kok >k kok

*Includes and defines
ok sk skofok ok sk sk ok sk sk sk ok sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok sk sk sk ok sk sk ok sk sk ok sk sk sk ok sk sk ok sk sk ok sk sk kok ok

Froksoksfoksfokskokskokokxk /

#include "16F1717 Internal.h"

JRRRRRRRR Rk kR kokk otk Rk kokk kot Rokkokk otk o ookkokk ok ok

koK ok ok ok ok >k ok ok ok sk k sk kokok

323

CHAPTER 11 ADC AND DAC

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()

Kok sk ok ok sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk skosk sk sksk sk sksk sk sksk sk sk skosk sk ksk sk ks sk sk k
orkRok kR Rokk KKKk /

void initMain(){

// Run at 16 MHz

internal 16();

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;
TRISDbits.TRISD2 = 0;

// Turn off LED
LATDbits.LATD1 = 0;
LATDbits.LATD1 = 0;

[117171111111111111177
// Configure DAC
[11711111111111111177

// DAC enabled
DAC1CONObits.DACIEN = 1;

// DACOUT pin enabled

DAC1CONObits.DAC10E1 = 1;
// +ve source is Vdd
DAC1CONObits.DAC1PSS = 0;

324

CHAPTER 11 ADC AND DAC

// -ve source is Vss
DAC1CONObits.DACINSS = 0;

// Initial output is ov
DAC1CON1bits.DACIR = O;

}

JRRRsoksokskoksk stk ok sfokstok skokskkok ok stokstokskokoskskok ok ok stokskokoskskok ok stoksokeskokoskoskok ok skok sk

kokok ok ok ok okook sk ok ok sk ok kok ko

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
3k3kok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok sk sk sk ok sk ke sk ok sk ok sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk skok sk ok sk sk sk skok sk sk sk sk sk sk sk kok

skkkkokokokokokokokokokok /
void main(woid) {
initMain();

while(1){
DAC1CON1++;

}

return;

}

Conclusion

This chapter looked at using the onboard ADC and DAC of the PIC®
microcontroller. You saw how to used these modules to create a
thermometer and generate a simple waveform.

325

CHAPTER 12

NCO, Comparator,
and FVR

CLC (Configurable Logic Cell)

The Configurable Logic Cell (CLC) is a module designed by Microchip
that provides basic configurable logic for PIC® microcontrollers. This
includes the basic gates and D and JK flip-flops and D and SR latches. This
means that with the CLC, you can combine logic internal and external

to the chip to produce a particular function. The CLC can even wake the
microcontroller up from sleep.

Microchip provides many examples to use the CLC and they will
not be repeated in this book; instead, we look at a simple example. In
this example, we demonstrate the CLC by configuring it as a four-input
AND gate.

The inputs of the CLC are each connected to switches. If any of the
switches is pressed, the respective input of the AND gate becomes a logic
low and the LED is switched off.

We will begin by selecting the CLC option from the MCC Device
Resources (see Figure 12-1).

327
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_12

CHAPTER 12

I MPLAS XIE w400 - 00_Prcject : et

NCO, COMPARATOR, AND FVR

Fle [dt View Mavigatc Source Refuiter Produchion Debup Team Tests Window Mo

FEES DE v

W oekep

Projects | nies THee] =] B[Swntfage x| WUBKSre 2| (Frans x| PLDE Cole Conbutty =
Project Resources Ganerane System Module @l
i 1 By St Heaf 1
[e | [Regiuters | 4 o
et W e £ by Sevwp | 53 Pegiters |
i + INTERNAL OSCLATOR
Sysiem blociely Curent Syatem docke 330 ki

Device Resources
» o
L
* il Compansicr
» DAL

|00 Project - Dashb... | maind) - Ravigater | Yersoms [HCE) =
Versions
* MPLAR® Code Configumntes (Pluge v136
* Libwanes
* Mhcsechip Techralogy, e,
¥ Mecroceatrolers aod Perpherals
® P/ PICI2 S PICHS S PICIE MICUs. (vLAS)
B PECIA PRI 7 PCIIMM MU (1357)
» PCIIME MU [1.38)
¥ SoRtadse
B bt Boatieader Libeary n2200
B LN Libeary 22
* mlewch Capactve Sonamng Libary (2000

&

Oeslater Sawes INTCSC cestater: VO unstion o CLON pin

Spuers Cock ekt [rosc [-]

Ienama Claci [o0case | = | @ =rL canseie Frequency
Extora Clock
[pibrabied] Sctimare Pl Erabled

(2] Lome-veiiags programmng Enstie

» WoT

Wakthdeg Temer Enabie | W sisasied

Wekchdsg Times Postscater | 109530

Cutput | Pin Mg e [HEE] & |

Figure 12-1. MCC screen

Next, double-click the CLC peripherals option from the Project

Resources tab. Set the mode to 4-input AND and ensure that the output is

not inverted. At each of the four OR gates, you will notice four lines marked
with X. Click the first, second, third, and fourth of these and select the
inputs as CLCIN1, CLCIN2, CLCIN3, and CLCIN4, respectively, as shown

in Figure 12-2.

Mede | 4-input AND

CLEING (ELOINOPPS)] - |——K-

CLONT [SLCINIPPS) | = l[

CLOMZ (CLONZRPS) | = }
L

CLEING (CLONaPES) u—a

Figure 12-2. Selecting inputs

328

CHAPTER 12 NCO, COMPARATOR, AND FVR

Figure 12-3 shows the finished setup.

CLEING (CLEINGEPS)] - —

CLOINT (CLINTRRS

l CLEINZ (CLEIN2PPS) I; p > D—,i
% §
e

CLOING (CLOINIPPS)] =

Figure 12-3. Finished setup

Choose Pin Manager: Package and Pin Manager: Grid and select your
input and output pins, as shown in Figure 12-4.

Output | Pin Mamager: Grd [HEC] = =
Pocage [Por [- | | PaMes [2]3]4]5|6|7]14|w33]34)25]36)97|38]20 40 15|16 | 17| 8] 23|24 |25 |26 | 19 20 21 22|20 28 |20 0| 8 | 9 | 0]
. - N7 Y JSS_ F— Pt PO | BT | fatEX,
Module Function | Diection [0[1|2 34 [s]e[7fo[1]2]3[4]s|6][7]o|r]2|3]|4]s][s][r[o]n]2/2]4][s]6[7]0][1]2]:
act [CCIOUT Jeutout I A T T T T S A A b ww®® |
acte et wlblbiblwiwiwlwl | | | |]|] eS| | L L

oy [3W |inet IR RN NN | RN T A | |

acmz |imet L L R ol A e e e

L3 input ‘i‘i‘h‘h"ﬁ‘h‘i‘hl ‘hla:h‘h"h"hi‘h"-

e Lo [[I | [| ||

Figure 12-4. Selecting pins

Click Generate and program! That’s it! There is no main code to be
written by the developer. The MCC makes it very easy for a developer;
however, in this book I deliberately avoided the use of the MCC to allow
you to get a good understanding of the underlying hardware. In the case of
the CLC, the MCC has a visual configuration tool that is very simple to use.

329

CHAPTER 12 NCO, COMPARATOR, AND FVR

NCO (Numerically Controlled Oscillator)

The PIC® microcontroller has always been a cut above the rest in

matters relating to onboard peripherals. The Numerically Controlled
Oscillator (NCO) is one such peripheral that was introduced to PIC®
microcontrollers. The output of the NCO is a square wave that’s dependent
on the input clock and the value given for the increment postscaler.

The NCO, like the CLC, operates independently from the core, which
means that once it is set up in this example, we won't have any code to
write. All you have to do to see this square wave is connect the probe to the
output pin. This process is really straightforward. If you have never used an
oscilloscope, it’s best to consult you user manual. There are also plenty of
resources on the web showing you how to use your oscilloscope. If you are
using a Velleman pocket oscilloscope, connect the ground to the ground
rail first and leave the attenuation at 1x. The scope will do the rest.

Let’s write some code to generate a square wave, as shown in Listing 12-1.

Listing 12-1. NCO Source

Vi

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: 27 NCO

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0

*

*

* Program Description: This Program Allows PIC16F1717 to use
the NCO

*

330

CHAPTER 12 NCO, COMPARATOR, AND FVR

* Hardware Description: An oscilloscope probe is connected to
PIN Co

*

* Created November 4th, 2016, 1:00 PM

*/
/**

ook kR ok ko k

*Includes and defines
KKK KKK KoK K KK K KK K KK KoK K KoK K KK K KK KoK K KoK K KoK K KK K oK K KoK K KoK K KK K Kok Kok kK ok ok koK ok ok

KRFAAAAAFKKKKAK

#include "16F1717 Internal.h"

[RARAR AR AR KSR A A AR AR RS KA A ARSI R A SRR K AR kKK

Kok Kok ok ok ok ok kK ok Kok ok ok ok k

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
2K 2K K K oK oK oK ok 5K 5K K oK oK oK K K K oK oK oK oK K 5K 5K oK oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK K oK oK K oK oK K ok ok K K Kk K ok ok

kAkRAKARR KR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

1177777777777/ /77
// Set UP NCO
1111777777777777

331

CHAPTER 12 NCO, COMPARATOR, AND FVR

TRISCbits.TRISCO = 0x00; // Port C as digital output port
ANSELC = 0;

bool state = GIE;

GIE = 0;

PPSLOCK = 0x55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RCOPPSbits.RCOPPS = 0x03; //RCO->NCO1:NCO10UT;

PPSLOCK = OX55;
PPSLOCK = OXAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

GIE = state;
LATCbits.LATCO = 0;

// Enable NCO
NCO1CONbits.N1EN = 1;

// Operate in Fixed Duty cycle mode
NCO1CONbits.N1PFM = 0;

// Output signal active high
NCO1CONbits.N1POL = 0;

// Clock is 16 MHz
NCO1CLKbits.N1CKS = 0bo01;

// NCO increment
NCO1INC =0x3334;

}

332

CHAPTER 12 NCO, COMPARATOR, AND FVR

[ORARAA A A AR A A AR I AR A AR AR AR A RSk kK

KOk KK KK oK Kk Kok K kK Kk K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK K K oK oK oK KoK K oK oK K oK K oK K K oK K K Kk Kok K ok ok Kk K

*RFAAAAAFKKKKAK

void main(woid) {
initMain();

while(1){
// Connect scope to RCO
}

return;

}

Comparator

A comparator is a device that compares two analog voltages and outputs
the difference between them. Essentially, a comparator outputs either

a high or a low based on the voltages as its inputs. A comparator can be
thought of as a crude 1-bit analog to digital converter since it is converting
an analog representation of voltages into a format that can be interpreted
by a digital system.

The PIC® microcontroller has a comparator onboard. This comparator
operates independently. In the following example, we put the CPU to sleep
while the comparator is running. The comparator can also have its output
directed internally or externally. In the example in Listing 12-2, we make
the comparator output externally available.

333

CHAPTER 12 NCO, COMPARATOR, AND FVR

Listing 12-2. Comparator Source

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: 12_Comparator

Compiler: XC8 (vi.41, MPLAX X v3.55)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ %X %

Program Description: This Program uses the onboard comparator
module of

* the PIC microcontroller. When the voltage at Vin+ is

* more than the voltage at Vin- the comparator outputs a

* logic level high and vice versa.

*

* Hardware Description: An LED is connected via a 10k resistor
to PIN RA3 and

* the output of a 1k voltage divider is fed into the

* - input (PIN RA0) of the comparator with the + input
* (PIN RA2) being the output of a 10k pot is fed into
* the positive end.

*

* Created March 24th, 2017, 12:48 PM

*/

Y o e e e e L L Bl e B b Ll b L

sokokokokokokokokok kR ok ko k

*Includes and defines
KKK KKK K oK K KoK K KK K KK K oK K KoK K KK K KK K oK K K oK K KK K KK K KK KoK K KoK K KK K Kok Kok ok Kok ok Kk ok ok

KRR AKAR KSR KKKk /

#include "16F1717 Internal.h"

334

CHAPTER 12 NCO, COMPARATOR, AND FVR

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK

KK KK KKK KK Kk KKk KKK

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
KK K oK oK oK 3K 3K 3K K K 5K K 5K 5K oKk ok 3K 3K 3K 3K 5K 5K 5K oK 5K 5K oK oK 3K 3K 3K K 5K 5K K K 5K oK ok oK K 3K 3K K 5K K K K oK oK oK K 3K 3K 3k ok ok kR ok ok ok

kAkRAKAR KRR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

L117777777777777777777
// Setup Comparatori
111777777777777777777

//
// RAO = C1INO-
//

// Set as input
TRISAbits.TRISAO = 1;

// Set analog mode on
ANSELAbits.ANSAO = 1;

//
// RA2 = C1INo+
//

// Set as input
TRISAbits.TRISA2

1]
=
- e

335

CHAPTER 12 NCO, COMPARATOR, AND FVR

// Set analog mode on
ANSELAbits.ANSA2 = 1;

TRISAbits.TRISA3 = 0;

//
// RA3 = C10UT
//
PPSLOCK = 0x55;
PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS
RA3PPSbits.RA3PPS = 0x16; //RA3->CMP1:C10UT;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

TRISAbits.TRISA3 = 0;

L111777777777777777777777
// configure comparatori
111171177777777777777777/

// enable comparator
CM1CONObits.C10N = 1;

// output not inverted
CM1CONobits.C1POL = O;

// normal power mode
CM1CONObits.C1SP = 1;

// asynchronous output
CM1CONObits.C1SYNC = O;

336

CHAPTER 12

// turn on zero latency filter
CM1CONObits.C1ZLF = 1;

//Enable comparator hysteresis (45 mV)
CM1CONObits.C1HYS = 1;

// + in = C1IN+ pin
CM1CON1bits.C1PCH = 0b0O;

// - in = C1IN- PIN
CM1CON1bits.CaINCH = 0bo0O;
}

NCO, COMPARATOR, AND FVR

JRERRFAAA AR FAAAAAF K FAAAAAFFFFAAAAAAAFFFFHKAAAAAAFFFHHKAA K

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point

2K 2K 3K K oK oK K K 5K 5K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK 5K oK oK 5K 5K K 5K oK oK 5K oK 5K K oK oK oK oK 5K 3K K oK oK oK 5K 5K 5K K oK oK K ok ok K K ok ok ok ok

***************/
void main(wvoid) {
initMain();

while(1){
// Have the CPU sleep!
SLEEP();

}

retuxn;

}

337

CHAPTER 12 NCO, COMPARATOR, AND FVR

FVR (Fixed Voltage Reference)

The next module we look at is the Fixed Voltage Reference (FVR). The FVR
provides a stable voltage reference that is independent of the voltage source.
The FVR can be configured as a voltage to a number of modules onboard
the PIC® microcontroller. However, in the example in Listing 12-3, we use
the FVR as an input into the positive reference of the onboard comparator.

In this case, we reconfigure the comparator to accept its positive
voltage input to the FVR, which has been set to provide an output of 2.048v.
If the voltage drops below this value, the change is reflected on an LED
connected to the comparator output.

Listing 12-3. FVR Source

Vo

* File: Main.c

* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
* Program: 13_FVR

* Compiler: XC8 (v1.38, MPLAX X v3.40)
* Program Version: 1.0

*

*

*

Program Description: This Program utilizes the FVR to provide
a reference for

* the positive input of the comparator.

*

*

Hardware Description: An LED is connected via a 10k resistor
to PIN RA3 and
* the output of a 10k pot is fed into the - input
* (PIN RA0) of the comparator.

*

338

CHAPTER 12 NCO, COMPARATOR, AND FVR

* Created March 24th, 2017, 1:30 PM

*/
/**
Kok ok kKR kKKK

*Includes and defines
KKK KKK KoK K KK K KK KKK KKK KoK K KK KKK KKK KoK K KKK KK KKK KKK KKK KK KKK KKK KKk KKKk

KRFAAAAAFFKKKAK

#include "16F1717 Internal.h"

Y o e e e e e e e e L L Bl e Ll b Ll bbb L bt

ook ko k ok ok ko k

* Function: void initMain()
*

* Returns: Nothing

*

* Description: Contains initializations for main
*

*

Usage: initMain()
KK K 5K oK oK 3K 3K 3K K 5K 5K 5K 5K 5K oK oK 3K 3K 3K 5K 5K 5K 5K oK 5K 5K 5K oK 3K 3K K 5K 5K 5K 5K 5K 5K 5K oK 3K K 3K 5K 5K 5K 5K oK oK oK oK oK K K K K Kk Kk kK ok ok

kAkRAKAR KKK Kk /

void initMain(){
// Run at 16 MHz
internal 16();

1171777777777/ 77777777
// Setup Comparatori
111777777777777777777

//
// RA1 = C1IN1-
//

339

CHAPTER 12 NCO, COMPARATOR, AND FVR

// Set as input
TRISAbits.TRISAO = 1;

// Set analog mode on
ANSELAbits.ANSAO = 1;

//
// RA3 = C10UT
//
PPSLOCK = 0x55;
PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RA3PPSbits.RA3PPS = 0x16; //RA3->CMP1:C10UT;
PPSLOCK = 0x55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

TRISAbits.TRISA3 = 0;

L1117777777777777777777777
// configure comparatori
L111177777777777777777777

// enable comparator
CM1CONObits.C10N = 1;

// output not inverted
CM1CONObits.C1POL = 1;

// normal power mode
CM1CONObits.C1SP = 1;

// hysteresis disabled
CM1CONObits.C1HYS =0;

340

CHAPTER 12 NCO, COMPARATOR, AND FVR

// asynchronous output
CM1CONObits.C1SYNC = O;

// turn on zero latency filter
(M1CONObits.C1ZLF = 1;

// Set IN+ to fixed voltage reference
CM1CON1bits.C1PCH = 0b110;

// - in = C1IN- PIN (CIOUT = 1 if < 2.048v)
CM1CON1bits.CINCH = 0b0O;

L11177777777777777777777777
// Configure FVR
1111171171777777777777777/

// Enable the FVR
FVRCONbits.FVREN = 1;

// Output 2.048v to comparators
FVRCONbits.CDAFVR = 0b10;

}

/**

KK KKK KK KK KK KKK KKK

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
2K 2K K K oK oK K ok 5K 5K K oK oK oK oK 5K K oK oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK ok oK oK K oK oK ok ok ok K K Kk ok ok ok

kAkRAKARR KKK KKKk /

void main(woid) {
initMain();

341

CHAPTER 12 NCO, COMPARATOR, AND FVR

while(1){
// Put the CPU to sleep!
SLEEP();

}

return;

}

Conclusion

This chapter looked at some of the important new peripherals that are
onboard the PIC® microcontroller. These include the Configurable Logic
Cell (CLC), Numerically Controlled Oscillator (NCO), Comparator, and
Fixed Voltage Reference (FVR).

342

CHAPTER 13

Wi-Fi and Bluetooth

Low-Cost Wireless Connectivity

In this chapter, we look at the basics of Bluetooth with the low-cost HC05
Bluetooth module. The chapter also discusses using Wi-Fi and the device
that took the embedded market by storm, the ESP8266.

Integrating Wi-Fi

Wi-Fi is a type of protocol used for wireless networking. Wi-Fi allows a
device to communicate over TCP/IP wirelessly. The most important parts
of the Wi-Fi network are the Wireless Access Point (AP), which is the
epicenter of the communications, and a station, which is a device that has
the ability to connect to an access point. In your home or office, this access
point usually allows you to connect to the Internet.

Each device on your Wi-Fi network is assigned a MAC address, which
is a unique 48-bit value that allows a particular node on a network to
distinguish itself from another node.

One of the benefits of Wi-Fi is that it allows you to set up a network
more cheaply and easily than when using a wired network. In the
embedded systems context, it is easier to integrate Wi-Fi into your
systems versus Ethernet since the Wi-Fi module we will examine is readily
available. Writing your own TCP/IP tasks takes a lot of work.

In this section, we examine one of the simplest ways to integrate
networking into your embedded systems.

343
© Armstrong Subero 2018

A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_13

CHAPTER 13 WI-FI AND BLUETOOTH

Using the ESP8266

The ESP8266 is a little device that can be used for Wi-Fi communication.
This little part is very inexpensive and is ridiculously inexpensive on the
Chinese market. The ESP8266 can act as an access point or as a station
within a Wi-Fi network. The ESP8266 was revolutionary in that it allowed
embedded designers and makers to add wireless connectivity to their
devices at a very low cost, with nothing else in that price range existing at
the time it appeared.

Testing the ESP8266

The ESP8266 has a built-in processor that allows you to communicate with
it via AT commands. Let’s look at some of these commands, which can be
used to control the ESP8266.

Table 13-1 lists some commands that you can use to test your ESP8266.

Table 13-1. Some ESP8266 AT Commands

Command Function

AT Tests if the AT system works OK.

AT+RST Resets the module.

AT+GMR Prints the version of the firmware installed
on the ESP8266.

AT+CWMODE? Wi-Fi mode of the ESP8266.

AT+CWJAP = SSID, PWD Connects to SSID with the password specified.

AT+CWLAP Lists all available access points.

344

CHAPTER 13 WI-FI AND BLUETOOTH

Project: Wi-Fi Data Logger

In this project, we use the PIC16F1717 to send wireless data over Wi-Fi,
which can be viewed in any web browser. We will set up the ESP8266 in
server mode for a single connection. The PIC16F1717 does not have the
RAM, ROM, or processing power to build a full web page. Since it only
uses a baud rate of 9600 to communicate with the ESP8266, it would take
too long to send a full web page and perform all the necessary checks to
ensure that the ESP8266 is receiving commands. A web page would also
use a good portion of the onboard storage of the microcontroller.

To compensate for this limitation, we will send the minimum
commands necessary to set up the ESP8266 as a web server. We will also
use the watchdog timer. The WDT will be used initially at a timeout of
4 seconds to ensure that the server starts up properly. Parsing all the
required strings sent by the ESP8266 would add extra overhead. After the
server is set up, the watchdog timer will be set to have a higher timeout of
128 seconds, up from the original 4 seconds.

The output of the ESP8266 can be viewed in any web browser once you
get the IP address via your router. In your web address bar, type the IP of
the device followed by :80/ and wait for it to load.

The schematics are shown in Figure 13-1.

345

CHAPTER 13 WI-FI AND BLUETOOTH

vad

LM34

VCC OUTGND]

PICI6FIT1TAPT
13}

L1111

LI LIl IIll

VPP
RAD
RA1

RAZ
RA3
RA4
RAS
REQ
RE1

RE2
VDD
V8§
RAT
RAB
RCO
RC1

RC2
RC3
RDO
RD1

RET
REB
RBES
RE4
RE3
RB2
RE1
REO
VDD1
VSS51
RD7
RD&
RD5
RD4
RCT
RC&
RC5
RC4
RD3
RD2

[TTT

LLC

3.3y Ydd

ESP8266

aND vee

(GPIO15

PlO2

T

ouTo

ouT2

ouTs

S5D1306

SDA SCL VCC GND

[T {i; [TTTTTTT

Figure 13-1. Wi-Filogger schematics

Take a look at the code in Listing 13-1.

Listing 13-1. Wi-Fi Logger Source

/*

* File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

Program: P03_IoT WiFi

Program Version: 1.0

*
*
*
* Compiler: XC8 (vi.41, MPLAX X v3.55)
*
*
*
*

Program Description: This Program gives a reading in Celsius

based on the

* output of a LM34 temperature sensor which is then sent

346

CHAPTER 13 WI-FI AND BLUETOOTH

via WiFi using the ESP8266 ESP-12-F the output of which
can be read in a web browser. The program uses the
watchdog timer initially with a timeout of 4s then

once the server is operational has a timeout of 128s
after which the server will reboot.

¥ ¥ ¥ %X %X % %

Hardware Description: A LM34 is connected to PIN EO and a
SSD1306 OLED 1is

* connected to the I2C bus. The ESP8266 is connected as
follows:

vcc-> Ve

TX-> RB3

RD-> RB2

GPIO15-> GND

GPIO2-> VCC

REST-> VCC

EN-> VCC

vc-> vcc

*

External interrupt is connected to PINBO

¥ % ¥ %X ¥ %X ¥ %X ¥ %X *x %

Created March 31st, 2017, 10:57 AM
*/
/**

KK KK KKK KK KK KKK KKK

*Includes and defines
K 2K K K oK oK K K 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K K oK oK oK 5K 5K K oK oK oK 5K 5K 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K oK K oK oK K ok ok K K Kk K ok ok

kAkRARAI KRR KKKk /

#include "16F1717 Internal.h"
#include "I2C.h"
#include "oled.h"

347

CHAPTER 13 WI-FI AND BLUETOOTH

#include "EUSART.h"
#include <string.h>

// Buffer for UART transactions
char buf[50];

// Function prototypes
float Read Temperature();
void server Initialize();

Y o e e e e e e b Bl e b Ll b L bt

sokokokokokokokokok kR ok ok ko ok

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()

K oK ok ok ok ok ok oK ok oK oK ok oK oK ok oK ok K oK ok oK oK ok oK oK ok ok ok ok oK ok ok oK ok oK oK ok ok ok ok oK ok ok oK ok ok oK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K

kAkRAKAR KR KKK Kk

void initMain(){
// Run at 16 MHz
internal 16();

111177777777777777777
// Set up All Serial
[1111177777777777777

// Set up pins for I2C
ANSELCbits.ANSC4 = 0;
ANSELCbits.ANSC5 = 0;

TRISCbits.TRISC4 = 1;
TRISCbits.TRISCS = 1;

348

CHAPTER 13 WI-FI AND BLUETOOTH

PPSLOCK = OX55;
PPSLOCK = OXAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RC4PPSbits.RC4PPS =0x0011; //RC4->MSSP:SDA;
SSPDATPPSbits.SSPDATPPS =0x0014; //RC4->MSSP:SDA;
SSPCLKPPSbits.SSPCLKPPS =0x0015; //RC5->MSSP:SCL;
RC5PPSbits.RC5PPS =0x0010; //RC5->MSSP:SCL;

// Set up pins for EUSART
RB2PPSbits.RB2PPS = 0x14; //RB2->EUSART:TX;
RXPPSbits.RXPPS = 0x0B; //RB3->EUSART:RX;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

[1111177777777777777
// Configure ADC
[117777777777777777

// Fosc/32 ADC conversion time is 2.0 us
ADCON1bits.ADCS = 0b010;

// Right justified
ADCON1bits.ADFM = 1;

// Vref- is Vss

ADCON1bits.ADNREF = 0;
// Vref+ is Vdd
ADCON1bits.ADPREF = 0b0O;

// Set input channel to ANO
ADCONObits.CHS = 0x05;

349

CHAPTER 13 WI-FI AND BLUETOOTH

// Zero ADRESL and ADRESH
ADRESL = 0;
ADRESH = 0;

// Set EO as ADC input channels
ANSELEbits.ANSEO = 1;

111777777777777777777
// Set up EUSART Pins
111777777777777777777

// Set up PINS
TRISBbits.TRISB3
ANSELBbits.ANSB3 = 0;

1]
=
- e

TRISBbits.TRISB2 = 0;
ANSELBbits.ANSB2

1}
o
-

L111111777777777777777777777777777
// Configure watchdog timer
L111177777777777777777777777777777

// Set watchdog timeout for 4 seconds
WDTCONbits.WDTPS = 0b01100;

TRISDbits.TRISD1 = 1;
ANSELDbits.ANSD1 = 1;

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

L111777777777777777777777
/// Configure Interrupts
111117177777777777777777

350

CHAPTER 13

// unlock PPS

PPSLOCK = OX55;
PPSLOCK = OxAA;
PPSLOCK = 0x00;

// Set Interrupt pin to pin BO
INTPPSbits.INTPPS = 0b01000;

// lock PPS

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCK = 0x01;

// Trigger on falling edge
OPTION_REGbits.INTEDG = O;

// Clear external interrupt flag
INTCONbits.INTF = 0;

// Enable external interrupt
INTCONbits.INTE = 1;

// Enable global interrupt

ei();

}

WI-FI AND BLUETOOTH

[RARARF KA A AR AR AR A KA RSSO AR SR KA SRR RS RS KRR KKK

K 2K K K oK K K ok 5K K K K K ok K K K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point

SRR KKK KKK KKK KKK KKK AR AR AR AR KK

KRR KKK KK KK)

351

CHAPTER 13 WI-FI AND BLUETOOTH

void main(woid) {
initMain();

// Initialize I2C
I2C_Init();
__delay ms(500);

// Initialize OLED
OLED Init();

// clear OLED
OLED Clear();

__delay ms(1000);
CLRWDT();

// Initialize EUSART
EUSART Initialize(9600);

// Indicate start of server
OLED_YX(0, 0);

OLED Write String("START SERVER");
__delay ms(2000);

CLRWDT();

// Initialize the sever
server Initialize();

// temperature variable
float temp;

while(1){

// Clear OLED
OLED Clear();

352

CHAPTER 13

111177777 777777777777777777777777
// Read and Display temperature
I1171177777777777777777777777777
temp = Read Temperature();

OLED_YX(0, 0);

OLED Write String("Temperature:");
OLED YX(1, 0);

OLED_Write Integer(temp);

__delay ms(1000);

OLED Clear();

[11111777777777777777777777777777
// Convert temperature to string

L1111177777777777777777777777777

char* buffii;

int status;

buffi1 = itoa(&status, temp, 10);
strcat(buffi1, "\r\n");

L11111777777777777777777777777777
// Wait for connection request
[11117777777777777777777777777777
EUSART Read Text(buf, 20);

L111117777777777777777777777777777777/
// Display some of the received data
L111177777777777777777777777777777777/
OLED YX(1, 0);

OLED Write String(buf);

__delay ms(3000);

OLED Clear();

WI-FI AND BLUETOOTH

353

CHAPTER 13 WI-FI AND BLUETOOTH

1117777777777 777777777777777777777777777777
// Send the temperature as 2 bytes of data
L11177777777777777777777777777777777777777
OLED_YX(0, 0);

OLED Write String("Sending Data");

EUSART Write Text("AT+CIPSEND=0,2\r\n");
__delay ms(5000);

EUSART Write Text(buffi1);

EUSART Read Text(buf, 10);
OLED_YX(1, 0);

OLED Write String(buf);
__delay ms(3000);

OLED Clear();

111777777777 77/77/7/7777/
// Close connection
11177777777 /77//77/77/777

EUSART Write Text("AT+CIPCLOSE=0\r\n");
__delay ms(1000);

EUSART Read Text(buf, 10);
OLED YX(1, 0);

OLED Write String(buf);
__delay ms(3000);

OLED Clear();

// Reset EUSART
RC1STAbits.SPEN = 0;
RC1STAbits.SPEN = 1;

// one this is complete clear watchdog
CLRWDT();

}

354

CHAPTER 13 WI-FI AND BLUETOOTH

retuxn;

}

[ORARAAA A A A KA AR A AR A KA KA I AR AR ARSI ARSI A KA kKK

KOk KK KK ok Kk Kok Kk ok Kok K

* Function: void interrupt isr(void)
*
* Returns: Nothing
*
*

Description: Interrupt triggered on pushbutton press
KKK KKK KoK K KK K KK KKK KoK K KoK K KK K KK KoK K KoK K KoK K KK KoK K KoK K KoK K KK KoKk KoKk Kok ok kK ok ok

*RFAAAAAFFIKKAK

void interrupt isr(woid){
// Clear interrupt flag
INTCONbits.INTF = 0;

// Set watchdog timeout for 4 seconds
WDTCONbits.WDTPS = 0b01100;

// Re-initialize server
server Initialize();

}

[ORARAIK A A KA A A AR AR A IR KAR AR ARSI AR SRS R ARk KK

Kok KOk KK ok Kk Kok Kok ok Kok K

* Function: void server Initialize(void)

Returns: Nothing

R R S

Description: Sets up ESP8266 as single connection server on

port 80
ok ok o K Ko KK KR K KKK A KA K KA KKK KA K KA KKK KA K KKK KKK

KRR KA KSR KK KK)

355

CHAPTER 13 WI-FI AND BLUETOOTH

float Read Temperature()
{

float conversioni0;
float farenheit;
float celsius;
float result;

// Turn ADC on
ADCONObits.ADON = 1;

// Sample CHO

__delay us(10);
ADCONObits.GO = 1;

while (ADCONObits.GO nDONE);

// Store ADC result
result = ((ADRESH<<8)+ADRESL);

// 10 bit conversion
conversion10 = (result * 5000)/1024 ;

// to Fahrenheit
farenheit = conversion10 / 10;

// to Celsius
celsius = (farenheit - 32) * 5/9;

return celsius;

[RARARAR SRRSO ARSI AR SRS KRk kK

KK KK KKK KK KK KKK KKK

* Function: void server Initialize(void)
*

* Returns: Nothing
*

* Description: Sets up ESP8266 as single connection server on port 80

356

CHAPTER 13 WI-FI AND BLUETOOTH

2K 2K 2K oK oK oK oK K 5K 5K K oK oK oK K K 5K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK oK 5K K oK oK oK K ok oK K oK oK ok ok ok K K Kk ok ok

kAkRAKAI KR KKKk /

void server Initialize()

{

111177777777 77777777777

// Send AT Command

1111777777777 77777777777
CLRWDT();

OLED_YX(0, 0);

OLED_Write String("Sending AT");
EUSART Write Text("AT\r\n");
EUSART Read Text(buf, 11);

OLED YX(1, 0);

OLED Write String(buf);
__delay ms(3000);

OLED Clear();

L111117777777777777777777777777
// Enable Single Connection
L111177777777777777777777777777

CLRWDT();

OLED_YX(0, 0);

OLED_Write String("Sending CIPMUX");
EUSART Write Text("AT+CIPMUX=0\r\n");
EUSART Read Text(buf, 15);

OLED_YX(1, 0);

OLED Write String(buf);
__delay ms(3000);

OLED Clear();

CLRWDT();

357

CHAPTER 13 WI-FI AND BLUETOOTH

L117777777777777777777777777777777

// Configure as server on port 80
1117777777777 7777777777777777777/
OLED_YX(0, 0);

OLED Write String("Sending CIPSERVER");
EUSART Write Text("AT+CIPSERVER=1,80\r\n");

EUSART Read Text(buf, 15);
OLED YX(1, 0);
OLED Write String(buf);

__delay ms(3000);
OLED Clear();

CLRWDT();

// Set watchdog timeout for 128 seconds
WDTCONbits.WDTPS = 0b10001;

}

The output to the web browser is shown in Figure 13-2.

Figure 13-2. Output to the web browser

358

CHAPTER 13 WI-FI AND BLUETOOTH

Integrating Bluetooth

Bluetooth is another wireless protocol we will examine. Bluetooth can
replace wired communication between electronic devices with the
attributes of low-power consumption and low cost. These traits make it
lucrative for the embedded systems designer, since they go hand in hand
with general embedded development.

A few years ago, it would have been very expensive to add Bluetooth
connectivity to your system, because the modules available to the average
developer were relatively expensive. Thanks to its popularity, the cost of
adding Bluetooth connectivity to a project has rapidly declined.

The primary reason for this is due to the creation of low-cost Bluetooth
modules by companies and manufacturers in the Chinese market. One
such low-cost module is the HC05 Bluetooth module, shown in Figure 13-3.

Figure 13-3. HCO5 Bluetooth module

Using the HCO05 Bluetooth Module

Using the HCO5 is very simple. You simply connect the RX and TX pins of
the module to the microcontroller through a logic-level converter. The Vcc
and GND pins of the HC05 are connected to 5v and GND, respectively.

359

CHAPTER 13 WI-FI AND BLUETOOTH

AT Mode

It is possible to place the HCO05 in AT mode by pressing the small button on
the module while it is powering on. Older versions of the modules enter
the AT mode in a different way; therefore, I recommend you check the
method that works for your particular module. Note that the baud rate for
AT mode is 38400. Table 13-2 shows some AT commands for your module.

Table 13-2. Some HC05 AT Commands

Command Function

AT Checks to ensure module is working.
AT+VERSION? Gets version.

AT+ORGL Restores to original state.
AT+NAME=“MYNAME” Sets device name.

AT+UART Gets UART configuration.
AT+PSWD=“1234" Sets password.

Communicating via Bluetooth

The code for receiving commands for the HCO5 is very simple. We will

use this code to toggle an LED. When the ONPR command is sent to the
module, the microcontroller turns the LED on. When OFFPR is sent to the
module, the microcontroller turns the LED off. We will use the C needle in
a haystack command, called strstz, to search the received command for
ON or OFF.

The commands can be sent from a PC or a mobile device. On a PC or
Android, when pairing the device, enter the default passcode 1234. On a
PC, the device shows up as a COM port. I recommend the Termite program
by CompuPhase to communicate via Bluetooth. On Android, there are a lot
of Bluetooth terminals; however, I recommend an app named Bluetooth

360

CHAPTER 13 WI-FI AND BLUETOOTH

Terminal HCO05, which works quite well and has preset buttons to make
things simple. This module does not work with iOS.
Listing 13-2 provides the code.

Listing 13-2. Bluetooth Control Source

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: I19 Bluetooth HCO5
Compiler: XC8 (vi1.41, MPLAX X v3.61)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ %X %

Program Description: This Program Allows PIC16F1717 to

communicate via
*

*

* Hardware Description: A HC-06 is connected to the PIC16F1717
as follows:

RX->RB3
TX->RB2

¥ % ¥ % %

Created May 15th, 2017, 5:00 PM
*/
/**

KK KK KKK KK KK KKK KKK

*Includes and defines
2K 2K K K oK oK K 5K 5K K K oK oK oK 5K 5K 5K oK oK oK 5K 5K 5K K oK oK oK oK 5K 5K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 5K K oK oK oK 5K 5K oK K oK oK K ok ok K K Kk K ok ok

kAkRAKAR KRR KKKk /

361

CHAPTER 13 WI-FI AND BLUETOOTH

#include "16F1717 Internal.h"
#include "EUSART.h"
#include <string.h>

#define LED LATDbits.LATD1

Y o e e e e e e L Bl b L b Ll b b

sokokokokokokokokkokok ok ko ok ok

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()

KK KK K K oK K oK K K K K oK K oK KK K oK oK K oK K oK K K oK K oK K oK K oK oK oK oK oK oK K oK K oK oK K oK K oK K K oK K oK Kk Kok Kk ok Kk

kAR AKAR KR KKKk /

void initMain(){
// Run at 16 MHz
internal 16();

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Set up PORTD
TRISD = 0;
ANSELD = 0;

// Set up pins for EUSART
TRISBbits.TRISB2 = 0;
ANSELBbits.ANSB2 = 0;

362

CHAPTER 13 WI-FI AND BLUETOOTH

TRISBbits.TRISB3 = 1;
ANSELBbits.ANSB3 = 0;

[17177777777777777777
// Set up EUSART

11171117111171177717
PPSLOCK = OX55;
PPSLOCK = OXAA;

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RB2PPSbits.RB2PPS = 0x14; //RB2->EUSART:TX;
RXPPSbits.RXPPS = 0x0B; //RB3->EUSART:RX;

PPSLOCK = 0x55;

PPSLOCK = OxAA;

PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS
}

JRERRFAAA AR K AAAA AR FAAAA AR AAAAAAFFFFAAAAAAAFF KA A K

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
K 2K 3K K oK oK K K 5K 5K K oK oK 5K 5K K K oK oK oK 5K oK 3K K oK 5K oK 5K 5K 5K K oK oK oK 5K 5K 3K K oK oK oK 5K 5K 3K K oK oK oK 5K 5K K K oK K K ok 5k K K ok ok ok ok

KARKFRSR KSR KAI KKKk f

void main(woid) {
initMain();

// Initialize EUSART module with 9600 baud
EUSART Initialize(9600);

363

CHAPTER 13 WI-FI AND BLUETOOTH

char buf[20];
char* ON;
char* OFF;

while(1){

// Send start so we'll know it's working
EUSART Write Text("Start");

// Read UART messages
EUSART Read Text(buf, 4);

// Test received string
ON = strstr(buf, "ON");
OFF = strstr(buf, "OFF");

// If ON string, turn LED on
if (ON)

{

EUSART Write Text("LED ON");
LED = 1;

}

// If OFF string, turn LED off
else if(OFF)

{

EUSART Write_Text("LED OFF");
LED = 0;

}

}

return;

}

364

CHAPTER 13 WI-FI AND BLUETOOTH

Conclusion

This chapter looked at using Bluetooth and Wi-Fi and using the PIC®
microcontroller with the ESP8266. Bluetooth and Wi-Fi are arguably two
of the most important wireless protocols available today. The information
presented in this chapter was just enough so that you will be able to add
these protocols to your own systems.

365

CHAPTER 14

Watchdog Timer
and Low Power

Low Power 8-Bit vs 32-Bit

One cannot write a book on 8-bit microcontrollers without writing
alittle about low power. The argument has always been that 8-bit
microcontrollers are superior to 32-bit ones in relation to low power. The
reason is simple. A 32-bit microcontroller has more transistors, thus it
requires more power to work. The argument for the 32-bit microcontroller
is that if it is a computationally intensive task, then the 32-bit
microcontroller would have an advantage, as it will take less time to do the
processing. I say that you don’t need to use a machete to peel an orange.
Yes, it will get the job done, but it is not the right tool for the task—in fact,
itis over-engineering. Being a good embedded systems designer means
using the right tool for the task. Problem solving involves applying the
most relevant tool for the task to the problem at hand. In many instances,
we do not need the power of a 32-bit microcontroller and in such cases
using an 8-bit microcontroller is the logical choice.

The PIC® microcontroller has Microchip’s Extreme Low Power (XLP)
technology built-in. What this means is that there are modes on the PIC®
microcontroller that allow it to enter a very low power state.

367
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_14

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

Sleep Mode

The PIC® microcontroller can be put into sleep mode by using the SLEEP
instruction. When this happens, the microcontroller enters a low power
mode and conserves power. We will write an application that utilizes the
SLEEP instruction of the PIC16F1717 (see Listing 14-1). In this application,
the microcontroller will turn an LED on for five seconds, and then go to
sleep. The microcontroller will then be woken up by using an external
interrupt on PINBO.

By waking up the microcontroller only when we want it to perform
some function and then putting it back to sleep, we can reduce power
consumption. This is important in cases where devices are battery
powered. A remote control is a good application of this, since the user
only uses it when he wants to turn something on or off and then puts it
back down. In such cases, it is not feasible to keep the microcontroller
energized, and putting the microcontroller into sleep and then having it
turn on when the user pushes a button will save a considerable amount of
power.

Using the Sleep function is not limited only to battery-powered
devices. Another application of this circuit is in devices where there is
an ecofriendly button. You too can make ecofriendly devices by having a
device go into sleep mode after a certain period of inactivity. For example,
after someone uses a printer, it may be unnecessary to have it running and
consuming power. The printer can be made ecofriendly by powering down
after a certain amount of time, which is done via timers that you already
know about. The printer can then be turned on again using the ecofriendly
button.

368

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

Listing 14-1. Sleep Demonstration

/*

* File: Main.c
* Author: Armstrong Subero

* PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

* Program: 08 Sleep

* Compiler: XC8 (vi.38, MPLAX X v3.40)

* Program Version: 1.0

*

*

* Program Description: This demonstrates sleep mode on a
PIC16F1717 using

* an external interrupt to wake from sleep mode

*

* Hardware Description: An LED is connected via a 10k resistor
to PIN D1 and

* another LED is connected to PIN D2 and a switch is

* connected to PIN BO

*

* Created November 4th, 2016, 8:43 PM

*/
JRFKKKFAKIAKKAKIAKKAKKIAKIAKKAAKIAKKAKIAKKAKKIAKIAKKAAKIAKKANK
K 2K K oK oK oK ok ok 5K K K K ok ok ok >k K

*Includes and defines
Koo ok ke ok ke ok ook ko ok ok ko ok ok ok ko ok ok ok ok ko ok ko ok ok ook ok ok ok ok ok ok

KARR SRR K IR KKK)

#include "16F1717 Internal.h"

JRERRFAAAAAF KA RAAAAAFF IR FAAAAAAFF A AAAAAAFFFFHKAAAAAAAF KA AN

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

369

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()

KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK oK oK oK K oK KoK K oK oK K oK K oK K K oK K oK Kk Kok K ok ok Kk

*RFAAAAAFKKKKAK

void initMain(){
// Run at 16 MHz
internal 16();

111177177777777777777777
/// Configure Ports
L11177777777777777777777

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;
TRISDbits.TRISD2 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

// Set PIN BO as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

// unlock PPS

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCK = 0x00;

370

CHAPTER 14

// Enable weak-pullups global
OPTION_REGbits.nWPUEN = 0;

// Enable weak-pullup on PINBO
WPUBbits.WPUBO = 1;

L117777777777777777777777
/// Configure Interrupts
111777777777777777777777

// Set Interrupt pin to pin BO
INTPPSbits.INTPPS = 0b01000;

// lock PPS

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCK = 0x01;

// Trigger on falling edge
OPTION REGbits.INTEDG = 0;

// Clear external interrupt flag
INTCONbits.INTF = 0;

// Enable external interrupt
INTCONbits.INTE = 1;

// Enable global interrupt
ei();
}

WATCHDOG TIMER AND LOW POWER

[ORARAAA A A AR A A A AN I AR AR SRS A KA A kKK

KK KK KK oK Kk Kk K kK KKK

* Function: Main
*

* Returns: Nothing

371

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

*

* Description: Program entry point
ko o K Ko KKK A KA KA KA KK A KA KA KA KK A KA KA KA KK KA KKK KKK KK

KRR KSR KAI KKKk f

void main(woid) {
initMain();

int x;

while(1){

// Turn LED on for 5 seconds

LATDbits.LATD1 = 1;
__delay ms(5000);

LATDbits.LATD1 = 0;

// Sleep
SLEEP();

}

return;

}

[RARARAS AR KA KA A AN A KA RS AN RS RS A RS FAF R ARF Rk R Feok K

K 2K K K oK K ok ok 5K K K K ok ok ok K K

* Function: void interrupt isr(void)
*

* Returns: Nothing
*

* Description: Interrupt triggered on pushbutton press
KR AR AR A KR AR KR A KA KR A KA KR A KRR A KKK AK KKK KKK KKK KKK

KRR KAI KKKk f

372

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

void interrupt isr(woid){
// Clear interrupt flag
INTCONbits.INTF = 0;

// Toggle led
LATDbits.LATD2 = ~LATDbits.LATD2;

}

Watchdog Timer

The watchdog timer (WDT) is a type of timer onboard PIC®
microcontrollers that periodically reset the device. What this means is that
the watchdog timer, like any other timer, will count a particular period of
time. When the CLRWDT (clear watchdog timer) command is issued, the
watchdog timer will not reset the microcontroller. If a certain amount of
time passes as determined by the user, and the WDT is not cleared, then
the device will be reset.

The WDT is very important for systems that are inaccessible or are
very difficult for a person to get to in case of a malfunction. For example,
in space applications it would be impossible for a human to interact with
arobot that is exploring the surface of a planet or the moon. In such cases,
the onus is on the device to reset itself to ensure continual operation.

It is important to note that improper use of the watchdog timer can be
the source of a lot of system bugs. For example, if you use another timer to
reset the watchdog timer, the system will not reset as expected on failure,
as the other timers will run independent of the CPU.

It is also important, when designing with the watchdog timer, to set the
interval at which the timer resets to the shortest possible value. This will
ensure that your system is back to proper operation as soon as possible.

373

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

The code example in Listing 14-2 shows how we use the watchdog
timer. It is very similar to the sleep example, except we use the WDT to
break the microcontroller out of an infinite while loop. To prove that the
program is working, a heartbeat LED flashes and an external interrupt can
be used to flash the WDT LED. The watchdog timer runs in the background
and, when it is reset, it turns on another LED.

Listing 14-2. WDT Demonstration

~N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: 09 Watchdog Timer

Compiler: XC8 (v1.38, MPLAX X v3.40)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ %X %

Program Description: This demonstrates using the watchdog
timer on a

* PIC16F1717 to break out of an infinite loop
*

*

* Hardware Description: An LED is connected via a 10k resistor
to PIN D1 and

* another LED is connected to PIN D2 and a switch is

* connected to PIN Bo

*

* Created November 4th, 2016, 9:04 PM

*/

374

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK

KK KK KKK KK Kk KKk KKK

*Includes and defines
2K 2K K K oK oK K K 5K 5K K oK oK oK oK 5K K K oK oK oK oK 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK oK oK oK 5K 5K K oK oK oK oK oK oK K oK oK ok ok ok K K Kk K ok ok

kAkRARKARR KR KKKk /

#include "16F1717 Internal.h"

[RARAAA AR AR AA KA AR A ISR A A SRSk kK
KKK KKK KKK KKK KK KKK

* Function: void initMain()
*

* Returns: Nothing
*

* Description: Contains initializations for main
*

* Usage: initMain()
KoK K ok o ok 3K 3K 3K 3K K 5K K K S ok ok 3k 3K 3K 3K K 5K 5K K K ok ok oK 3K 3K 3K 3K 5K 5K K K Sk ok oK 3K 3K 3K 3K K 5K K K Sk ok ok oK oK 3K 3k 3k ok ok ok ok ok ok ok

KARRFRR KA KAIKK KK/

void initMain(){
// Run at 16 MHz
internal 16();

[17777777777777777777777
/// Configure Ports
I1717777777777777777777/

// Set PIN D1 as output
TRISDbits.TRISD1 = 0;
TRISDbits.TRISD2 = 0;

// Turn off LED
LATDbits.LATD1 = 0;

375

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

// Set PIN B0 as input
TRISBbits.TRISBO = 1;

// Configure ANSELBO
ANSELBbits.ANSBO = 0;

// unlock PPS

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCK = 0x00;

// Enable weak-pullups global
OPTION REGbits.nWPUEN = 0;

// Enable weak-pullup on PINBO
WPUBbits.WPUBO = 1;

111171177777777777777777/
/// Configure Interrupts
1111777 77777777777777777

// Set Interrupt pin to pin BO
INTPPSbits.INTPPS = 0b01000;

// lock PPS

PPSLOCK = OX55;
PPSLOCK = OxAA;
PPSLOCK = 0x01;

// Trigger on falling edge
OPTION_REGbits.INTEDG = 0;

// Clear external interrupt flag
INTCONbits.INTF = 0;

// Enable external interrupt
INTCONbits.INTE = 1;

376

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

// Enable global interrupt
ei();

L111117777777777777777777777777777
// Configure watchdog timer
L111777777777777777777777777777777

// Set watchdog timeout for 2 seconds (prescale = 65536)
WDTCONbits.WDTPS = 0b01011;

}

JRERRFAAAAAF KKK KAAAAAF K FAAAAAFF A AAAAAA R AAAAAAFF KKK AN

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
K 2K K K oK oK K K 5K K K oK oK oK 5K 5K K oK oK oK 5K oK 5K K oK 5K oK oK 5K 5K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 3K K oK oK oK 5K 5K oK K oK oK K ok 5k K K ok ok ok ok

KARRFRR KA KAIKK KK/

void main(woid) {
initMain();

int x;
while(1){

// If WDT timeout occurred turn on error LED
if (ISTATUSbits.nTO){

}

// flash heartbeat LED
LATDbits.LATD2 = 1;
__delay ms(1000);
LATDbits.LATD2 = 0;

377

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

for(;;){
// infinite loop
}

}

return;

[ORARAA A A AR A A A A ARSI AR ARSI AR A RS RS ARFRKA kKK

KK KK KKK Kk Kk KKK KKK

* Function: void interrupt isr(void)
*
* Returns: Nothing
*
*

Description: Interrupt triggered on pushbutton press
KKK KKK KoK K KoK K KK K KK KoK K KoK K KK K KK KoK K KoK K KoK K KK KoK K KoK K KoK K KK KoKk Kok ok Kk ok kK kK

KRFAAAAAFKKKHKAK

void interrupt isr(woid){
// Clear interrupt flag
INTCONbits.INTF = 0;

// Toggle led
LATDbits.LATD2 = ~LATDbits.LATD2;

}

Other Ways to Conserve Power

In this section, we look at other ways to conserve power on PIC®
microcontrollers. We take several steps to reduce power consumption. We
look at three universally applicable ways to reduce power consumption

of embedded devices. These three methods are tried and true and are

378

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

guaranteed to lower power consumption. In fact, the first two methods
can also be applied to general-purpose processors as well. Many people
use over-clocking, under-clocking, and under-voltage to reduce power
consumption, usually with relatively little performance losses.

Reduce the Clock Frequency

To reduce the power consumption on the microcontroller, consider
running the microcontroller at 31kHz. Running the device at such low
power reduces power consumption for tasks that are not computationally
intensive. If a particular application requires a lot of CPU power, then
running it at a low clock speed may actually be counterproductive since

it will take a long time to complete its task and thus will be on for longer.
Itis an art to find the balance between computational speed and power
consumption. Generally, however, the lower the clock speed, the lower the
power consumption.

Reduce the Operating Voltage

Another way to reduce the power consumption on the microcontroller

is to reduce the power from the usual 5 volts to 3.3 volts. That way,

the microcontroller consumes less power as the voltage is lower. The
disadvantage is that if your system has sensors that run at a higher voltage,
you may need to add logic-level converters, which increases the design
complexity.

Power External Devices from 1/0 Lines

If the power consumption of the device is less than the maximum the
microcontroller can source, it’s best to drive the devices directly from the
microcontroller. This method reduces power consumption; however, it is

at the tradeoff of utilizing I/O pins.

379

CHAPTER 14 WATCHDOG TIMER AND LOW POWER

Conclusion

This chapter looked at specific ways to reduce power consumption on the
PIC® microcontroller, including using sleep mode as well as using the
watchdog timer.

380

CHAPTER 15

PIC® Microcontroller
Projects

In this chapter, we look at building two projects using the PIC®
microcontroller. The first is a classic microcontroller project involving

a temperature controlled fan. The second project shows how far
microcontroller technology has progressed and what is now possible with
8-bit bare metal systems by building a simple touch screen clock, a project
that a few years ago would have required a 32-bit microcontroller.

Project: Temperature Controlled Fan

The first project involves building a temperature controlled fan. The LM34
temperature sensor output is converted to Celsius values, and when a
particular threshold voltage is reached, the microcontroller turns on the
fan. Once the temperature is within the normal values, the string "Temp 0K"
is displayed on the OLED. When the temperature crosses a certain value,
the string "Warning!!" is displayed on the OLED.

Figure 15-1 shows the schematics of the temperature controlled fan.

381
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6_15

PIC® MICROCONTROLLER PROJECTS

CHAPTER 15

VCC GND SDA sCL

ll

LOGIC LEVEL CONV.

—i3v W

{GND GND

ouT IN1

ouTZ INZ

VPP
RAD
RA1
RA2
RA3
RA4
RAS

RE1

VDD
V§S
RAT
RAG

RC1

RD1

EREFEEEEEVEEEEEEEEE

L

SNT54410

M1EN

T
I

) I ——
1

75 FWD
W1 PIN{

GND

M1PIN2

M1RVR

+ MPWR

M2R\R f—

M2 PINA e

GND ——

GND |—t

M2PIN2f—

M2FWD p—

M2EN—

M1

LM34

VCC OUT GND

Figure 15-1. Temperature controlled fan schematics

382

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

Listing 15-1 shows the main code for the temperature controlled fan.

Listing 15-1. Temperature Controlled Fan

N
*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Internal 0SC @ 16MHz, 5v
Program: P04 _Temp Fan

Compiler: XC8 (vi1.41, MPLAX X v3.55)
Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ %

Program Description: This project builds a temperature
controlled fan. When

* the temperature rises above 35 Celsius a fan turns on

* until the temperature drops to 35 Celsius or below.

*

* Hardware Description: A generic brushed hobby DC motor is
connected to the

* SN754410 as per standard connections. The PWM signals

* are emanating from RBO and RB1. The LM34 temperature

* sensor is connected to PIN REO and an SSD1306 based

* OLED is connected as per header file.
*
*
*

Created April 18th, 2017, 4:36 PM
*/
/**

KK KK KKK KK KK KKK KKK

*Includes and defines
2K 2K 3K K oK oK oK K 5K 5K K oK oK 5K 5K 5K 5K K oK oK 5K 5K 5K K oK 5K oK oK 5K 5K K oK oK oK 5K 5K 3K K oK oK oK oK 5K 5K K oK oK oK 5K 5K oK K oK oK K ok ok K K Kk ok ok

kAkRARAIR KRR KKKk /

383

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

#include "16F1717 Internal.h"
#include "I2C.h"
#include "oled.h"

JRERRFAAAAAFFK KK FAAAAAFF KA FAAAAAF A FAAAAAF K AAAAAAFF KA AN
koo ko ko ok ok ok ok ok ok ok

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main

*

* Usage: initMain()

KKK KoK K K oK oK KoK 5K KoK K oK K K oK oK K oK 5K KoK oK K K 5K oK oK K oK 5K K oK 5K KoK oK oK oK K oK oK K oK K KK K Kok K ok kK ok ok Kok ok K

KARR ARSI KAIKK KK)

void initMain(){
// Run at 16 MHz
internal 16();

11117777777777777777777/
// Configure PWM Ports
11117111777777777777777/

// Set PIN B0 as output
TRISBbits.TRISBO = 0;

// Set PIN B1 as output
TRISBbits.TRISB1 = 0;

// Turn off analog on PORTB
ANSELB = 0;

384

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

[11777777777777777777
// Configure Timer6
[11777777777777777777

// Select PWM timer as Timer6 for CCP1 and CCP2
CCPTMRSbits.CATSEL = 0b10;
CCPTMRSbits.C2TSEL = 0b10;

// Enable timer Increments every 250 ns (16MHz clock) 1000/
(16/4)
// Period = 256 X 0.25 us = 64 us

// Crystal Frequency
J/PWM Freq = -------mmmmmmm e
//(PRX + 1) * (TimerX Prescaler) * 4

//PWM Frequency = 16 000 000 / 256 * 1 * 4
//PWM Frequency = 15.625 kHz

// Prescale = 1

T6CONbits.T6CKPS = 0b0O;
// Enable Timer6
T6CONbits.TMR6ON = 1;

// Set timer period
PR6 = 255;

[1177777777777777777777777
// Configure PWM
[117777777777777777777777

// Configure CCP1

// LSB's of PWM duty cycle = 00
CCP1CONbits.DC1B = 00;

385

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

// Select PWM mode
CCP1CONbits.CCP1IM = Ob1100;

// Configure CCP2

// LSB's of PWM duty cycle = 00
CCP2CONbits.DC2B = 00;

// Select PWM mode
CCP2CONbits.CCP2M = 0b1100;

111777777777777777777
// Setup I2C
1111777777777777777

// Setup pins for I2C
ANSELCbits.ANSC4 = 0;
ANSELCbits.ANSC5 = 0;

TRISCbits.TRISC4 = 1;
TRISCbits.TRISCS = 1;

L11171777777777777777777777777
// Configure PPS
L111171777777777777777777777/

PPSLOCK = 0x55;
PPSLOCK = OXAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

// Set RBO to PWM1
RBOPPSbits.RBOPPS = 0b01100;

// Set RB1 to PWM2
RB1PPSbits.RB1PPS = 0b01101;

386

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

RC4PPSbits.RC4PPS =0x0011; //RC4->MSSP:SDA;
SSPDATPPSbits.SSPDATPPS =0x0014; //RC4->MSSP:SDA;
SSPCLKPPSbits.SSPCLKPPS =0x0015; //RC5->MSSP:SCL;
RC5PPSbits.RC5PPS =0x0010; //RC5->MSSP:SCL;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

11171177777777777777
// Configure ADC
1117717777177777777

// Fosc/32 ADC conversion time is 2.0 us
ADCON1bits.ADCS = 0b010;

// Right justified
ADCON1bits.ADFM = 1;

// Vref- is Vss

ADCON1bits.ADNREF = 0;
// Vref+ is Vdd
ADCON1bits.ADPREF = 0b0O;

// Set input channel to ANO
ADCONObits.CHS = 0xO05;

// Zero ADRESL and ADRESH
ADRESL = 0;
ADRESH = 0;

// ADC Input channel PIN EO
ANSELEbits.ANSEO = 1;

}

387

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS
Y R e
HKAAKAKAAK KKK AR KK

* Function: Main
*

* Returns: Nothing
*

* Description: Program entry point
KK KK K K oK K oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK oK oK oK K oK KoK K oK oK K oK K oK K K oK K oK Kk Kok K ok ok Kk

*RFAAAAAFKKKKAK

void main(woid) {
initMain();

// Initialize I2C
I2C_Init();

__delay ms(500);
// Initialize OLED
OLED_Init();
__delay ms(1000);
// clear OLED

OLED Clear();

// result to store ADC conversion
float result;

// variables for conversion
float conversioni0;

float farenheit;

float celsius;

388

CHAPTER 15

// PWM Off
CCPR1L = 0;
CCPR2L = 0;

OLED_YX(0, 0);
OLED_Write String("Init");

while(1){

// Turn ADC on
ADCONObits.ADON = 1;

// Sample CHO

__delay us(10);
ADCONObits.GO = 1;

while (ADCONObits.GO nDONE);

// Store ADC result
result = ((ADRESH<<8)+ADRESL);

// 10 bit conversion
conversion10 = (result * 5000)/1024 ;

// to Fahrenheit
farenheit = conversion10 / 10;

// to Celsius
celsius = (farenheit - 32) * 5/9;

// Display temperature
OLED_YX(1, 0);
OLED Write Integer((imt)celsius);

// Update every second
__delay ms(2000);

PIC® MICROCONTROLLER PROJECTS

389

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

// If temperature is more than 35C turn on fan
if ((int)celsius > 35){

// Forward
CCPR1IL = 127;
CCPR2L = 0;

// clear OLED
OLED Clear();

OLED_YX(0, 0);
OLED Write String("Warning!!");
}

// If less turn off fan
else{

OLED YX(0, 0);

OLED Write String("Temp OK");
CCPR1L =0;

CCPR2L =0;

}

}

return;

}

Project: Touch Screen Clock

In this section, we make a basic touch screen clock. We use the DS1302
timekeeper. Though there are many modern Real Time Clock Calendar
(RTCC) ICs on the market, the beauty of the DS1302 is that it uses a non-
standard protocol. The DS1302 uses a protocol called the “three wire
interface” This is not necessarily a bad thing, because if your 12C and SPI
bus are occupied, you can used this RTCC on any available pin.

390

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

We will use the Nextion 2.4 touch LCD as the display. The interrupt
on the PIC® will update the time on the display every five seconds. This
is acceptable as it gives the microcontroller sufficient time for the touch
screen to react to other user events.

The clock consists of two screens. The first screen will display the time
and date to the user. The second screen will allow the user to set the time
and date.

Let’s create the first screen, as shown in Figure 15-2.

Figure 15-2. Screen 1

Now create the second one, as shown in Figure 15-3.

Figure 15-3. Screen 2

391

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

Open the Nextion Editor and add touch hotspots, as shown on screen

1 in Figure 15-4.

p0
VIUIN |
clock date

00

energy

Figure 15-4. Nextion Editor on screen 1

The clock hotspot opens the second page. The green (leaf) icon sends
the text enerpressed and the text under it keeps the default label t0. The
other text labels are added and renamed month, date, and time. Feel free
to customize the layout according to your needs.

Use the editor to make screen 2 look like Figure 15-5.

392

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

p0
m5 m0 mi

m2 m3

Figure 15-5. Nextion Editor Screen 2

The second screen has text views t0, t1, t2, and t3, representing
the hours, minutes, date, and month. Each is overlaid by hotspots that
send m0, m1, m2, and m3, which send hourpressed, minspressed,
datepressed, and monthpressed, respectively. The hotspot at the bottom
(m4) is used to set the current time. It is very important and sends the text
setppressed (not a typo; be sure to use the double p).

Figure 15-6 shows the schematics for this project.

393

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

+5Y

PIC16F171

TOUCH SCREEN

1302

vCC2 VCCT pey
X1 x1 SCLK

GND

LLLLLLLLLLLILLLll]
AR2Z
=
EEELE
TT1
-

—

<
g
[T

Figure 15-6. Clock schematics

This project contains a lot of code. Let’s break it down. The first thing
we need to add is a header file for bool support, as shown in Listing 15-2.

Listing 15-2. Bool Support

~N
*

File: bool support.h

Author: Armstrong Subero

PIC: 16F1717 w/X 0SC @ 16MHz, 5v

Program: Header file to setup PIC16F1717 I2C
Compiler: XC8 (vi.35, MPLAX X v3.10)
Program Version 1.0

¥ ¥ %X %X %X % %X %

Program Description: This program header will allow addition
of simple bool

* support to XC8

*

* Created on March 10th, 2017, 8:00 PM

*/

394

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

111171717777777777777777777/
// Bool support
L11117777777777777777777777

typedef unsigned char bool;

#define true 1
#define false 0

// boolean for current state
bool on = false;

Next, we add a header file for setup, as shown in Listing 15-3.
This is necessary. Due to the size of the program, we will separate the

initialization from the main file.

Listing 15-3. Setup Header

~N
*

File: setup.h

Author: Armstrong Subero

PIC: 16F1717 w/X 0SC @ 16MHz, 5v

Program: Header file to setup PIC16F1717 I2C
Compiler: XC8 (v1.40, MPLAX X v3.55)

Program Version 1.0

¥ ¥ %X X %X ¥ %X %

Program Description: This program header will allow setup of

SSD 1306 OLEDs
*

* Created on April 21st, 2017, 2:25 PM
*/

#include "16F1717 Internal.h"

void initMain();

395

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

The next step is to create a header file for the touch screen, as shown in
Listing 15-4.

Listing 15-4. Touch Screen Header

~N
*

File: touchscreen.h

Author: Armstrong Subero

PIC: 16F1717 w/X 0SC @ 16MHz, 5v

Program: Header file to setup PIC16F1717 I2C
Compiler: XC8 (v1.40, MPLAX X v3.55)

Program Version 1.0

¥ ¥ %X %X ¥ % %X %

Program Description: This program header provide function
prototypes for

* sending commands to a Nextion Touch Display

*

* Created on April 21st, 2017, 2:25 PM

*/

#include "16F1717 Internal.h"
#include <string.h>

// Function prototypes
void touchscreen command(char* string);
void touchscreen data(char* cmd, char* string2);

The RTCC header (see Listing 15-5) and source (see Listing 15-6) are
created. Notice that the three-wire interface can be used on any pin. The
DS1302 provides its data in BCD format. It is necessary therefore to create
functions to allow the conversion to and from that format.

396

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

Listing 15-5. DS1302 Header

~N
*

File: ds1302.h

Author: Armstrong Subero

PIC: 16F1717 w/X 0SC @ 16MHz, 5v

Program: Header file to setup PIC16F1717 I2C
Compiler: XC8 (vi.41, MPLAX X v3.55)

Program Version 1.0

¥ % ¥ %X ¥ %X ¥ %

Program Description: This program header allows the control
of a DS1302

* time keeper chip

*

* Created on April 18th, 2017, 11:40 PM

*/

#include "16F1717 Internal.h"

#define CE RDO

#define SCLK RD1

#define IO RD2

#define Data_Tris TRISD2

typedef unsigned char byte;

void DS1302 Reset();

void DS1302 WriteByte(unsigned char W Byte);

unsigned char DS1302 ReadByte();

void DS1302 Initialize(byte sec, byte min, byte hr, byte day,
byte date, byte mth, byte year);

unsigned char get bcd(unsigned char data);

unsigned char get dec(byte var);

397

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS
Listing 15-6. DS1302 Source

/*

* File: ds1302.c

* Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

* Program: Library file for ds1302 RTCC
* Compiler: XC8 (vi.38, MPLAX X v3.40)
* Program Version: 1.1

**Added additional comments

*

* Program Description: This Library allows you to control the
ds1302

*

* Created on April 18th, 2017, 11:40 PM
*/

#include "ds1302.h"

/**

K 2K K oK oK K ok ok 5k K K K ok ok ok %k K

* Function:void DS1302 Reset()
*

* Returns: Nothing
*

* Description: Resets the DS1302
*

KK KK K K oK oK oK K oK K K oK K oK KoK K oK oK oK oK K oK K K K K oK K oK K oK oK oK oK K oK K ok K K oK K ok K oK K K oK K K Kk Kok ok ok ok Kk K

KRFAAAAAFKKKKKK

void DS1302 Reset()

{
SCLK = 0;

398

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

CE = 0;
CE =1,
}

JRERKFAAAAAFFK KK FAAAAAFF KK IAAAAAFF KK FAAAAAF K AAAAAAFF KA AN

K 2K K K oK oK ok ok 5K K K K ok ok ok ok K

* Function: unsigned char DS1302 WriteByte(unsigned char W Byte)
*

* Returns: Nothing
*

* Description: Writes a byte of data into the DS1302
*

KK KK KK oK K oK K K KK oK o oK KK K K oK oK oK K oK K K K K oK K oK K K K oK oK oK oK K oK K oK oK K oK K K K K oK K oK Kk Kok Kk ok ok Kk K

KAkRAKAR KR KKKk

void DS1302 WriteByte(unsigned char W Byte)
{

unsigned char i;

for(i = 0; i < 8; ++1i)

{

I0 = 0;

if(W Byte & 0x01)
{

10 = 1; /* set port pin high to read data */
}

SCLK = 0;

SCLK = 1;

W_Byte >>= 1;

}

}

399

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

[ORARAAA A KA AA KA A AR A I AR R A ARSI Ak kK

KOk KK KK oK Kk Kk KKk Kk K

* Function: unsigned char DS1302 ReadByte()

*

* Returns: Nothing
*

* Description: Reads a byte of data from the DS1302
*
KR o A KR AR KR AR KR KR A AR AF AR AR F KKK KKK KKK

KARF SRR KAIKK KK f

unsigned char DS1302 ReadByte()
{

unsigned char i;
unsigned char R Byte;
unsigned char TmpByte;

R_Byte = 0x00;

Data Tris = 1;

10 = 1;

for(i=0; i<8; ++1i)
{

SCLK = 1;

SCLK = 0;

TmpByte = (unsigned char)IO;
TmpByte <<= 7;

R_Byte >>= 1;
R Byte |= TmpByte;
}

Data_Tris = 0;
return R Byte;

}

400

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

[HORARAA AR A KA A A A A AR A A A AR S AR ARAFRARA AR Sk kK

KK KK KKK KK Kk KKk KKK

* Function: void DS1302 Initialize(byte sec, byte min, byte hr,
byte day, byte date,
byte mth, byte year)

*

* Returns: Nothing
*
* Description: Initializes the DS1302 with time/date specified

by user
*

KK Kok oK oK o ok oK oK oK K K oK oK oK K ok K ok ok oK oK K oK oK oK oK ok ok ok oK oK ok oK oK oK K ok K ok K ok

KkRR SRR KAI KKKk J

void DS1302 Initialize(byte sec, byte min, byte hr, byte day,

byte date,

byte mth, byte year)

{

byte seci = get bcd(sec);
byte min1 = get_bcd(min);
byte hr1 = get bcd(hr);
byte dayl = get bcd(day);

byte date1l = get_bcd(date);
byte mthi = get bcd(mth);
byte yearl = get bcd(year);

DS1302_Reset();

DS1302_WriteByte(0x8e); /* control register */
DS1302_WriteByte(0); /* disable write protect */
DS1302_Reset();

DS1302_WriteByte(0x90); /* trickle charger register */
DS1302_WriteByte(Oxab);/* enable, 2 diodes, 8K resistor */

401

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

DS1302_Reset();

DS1302_WriteByte(Oxbe);/* clock burst write (eight registers)
*/

DS1302_WriteByte(sec1);

DS1302_WriteByte(min1);

DS1302_WriteByte(hr1);

DS1302_WriteByte(datel);

DS1302_WriteByte(mth1);

DS1302_WriteByte(day1);

DS1302_WriteByte(year1);

DS1302_WriteByte(0); /* must write control register in burst
mode */

DS1302_Reset();

}

[ORARAAAK AR A AR A A A A AR A I AR AR AR A AR AR SRS AR Ak kK
KKK KKK KKK KKK KK KKK

* Function: unsigned char get bcd(unsigned char data)
*

* Returns: number in BCD format for RTCC
*

* Description: Converts decimal time into BCD format
*
Koo A KR KR AR KR A KKK A KR A KRR A F AR F KKK KKK KKK KKK

KRR KSR AR KKKk J

unsigned char get bcd(unsigned char data)

{

unsigned char nibh;
unsigned char nibl;

nibh=data/10;
nibl=data-(nibh*10);

402

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

return((nibh<<4)|nibl);
}

unsigned char get dec(byte var)

{

unsigned char var2;

var2 = (var »> 4) * 10;
var2 += (var & 15);

return varz;

}

We also need to create source files for the touch screen (see Listing 15-7)
and the setup headers (see Listing 15-8) we declared earlier.

Listing 15-7. Touch Screen Source

N
*

File: touchscreen.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

Program: Library file for Nextion Touchscreen
Compiler: XC8 (vi.41, MPLAX X v3.55)

Program Version: 1.0

¥ % ¥ %X ¥ %X ¥ %

Program Description: This Library allows you to send commands
to the Nextion

* touchscreen

*

* Created on April 21st, 2017, 2:30 PM

*/

#include "touchscreen.h"
#tinclude "EUSART.h"

403

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

/*

Send commands to Touchscreen

*/

void touchscreen command(char* string)
{

EUSART Write Text(string);

EUSART Write(OxFF);

EUSART Write(OxFF);

EUSART Write(OxFF);

__delay ms(1000);

}

void touchscreen data(char* cmd, char* string2)
{

EUSART Write Text(cmd);

EUSART Write Text(string2);

EUSART Write(OxFF);

EUSART Write(OXFF);

EUSART Write(OxFF);

__delay ms(100);

}

Listing 15-8. Setup Source

/*

File: setup.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v

Program: Library file for Nextion Touchscreen
Compiler: XC8 (vi.41, MPLAX X v3.55)

Program Version: 1.0

¥ % ¥ %X ¥ % %

404

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

* Program Description: This Library allows you to setup for the
clock

*

* Created on April 21st, 2017, 2:30 PM

*/

#include "setup.h"
#include "ds1302.h"
#include "oled.h"
#include "EUSART.h"
#include "touchscreen.h"

JRERRFAAA AR KR AAAA AR AAAA AR AAAAAAFFFFAAAAAAA KA A K

K 2K K K oK K ok ok 5K K K K ok ok ok ok K

Function: void initMain()
Returns: Nothing

*
*
*
*
* Description: Contains initializations for main
*
*

Usage: initMain()
3K 3K 3K K o K K K K 3K K oK oK K 5K K K K oK K K oK 3K 3K K oK K K 3K 3K 3K K oK K K 5K 3K K K oK K oK 5K 3K K K oK K K K K K ok K ok ok ok K K ok ok ok ok

KRFAAAAAFKKKKAK

void initMain(){
// Run at 16 MHz
internal 16();

// Setup pins for EUSART
TRISBbits.TRISB2 = 0;
ANSELBbits.ANSB2 =

|
o
e

TRISBbits.TRISB3 = 1;
ANSELBbits.ANSB3 = 0;

405

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

111177777777777777777
// Setup Serial
[1111777777777777777

// Setup pins for I2C
ANSELCbits.ANSC4 =
ANSELCbits.ANSC5 =

| |
o O
e e

TRISCbits.TRISC4 = 1;

TRISCbits.TRISCS = 1;
PPSLOCK = OX55;
PPSLOCK = OXAA;

PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

RC4PPSbits.RC4PPS = 0x0011; //RC4->MSSP:SDA;
SSPDATPPSbits.SSPDATPPS =0x0014; //RC4->MSSP:SDA;
SSPCLKPPSbits.SSPCLKPPS =0x0015; //RC5->MSSP:SCL;
RC5PPSbits.RC5PPS = 0x0010; //RC5->MSSP:SCL;

RB2PPSbits.RB2PPS = 0x14; //RB2->EUSART:TX;
RXPPSbits.RXPPS = 0x0B; //RB3->EUSART:RX;

PPSLOCK = 0x55;
PPSLOCK = OxAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS

// Setup RTCC pins
TRISD = 0;
ANSELD = 0;

// Initialize I2C
I2C_Init();

__delay ms(500);

406

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

// Initialize OLED
OLED Init();

__delay ms(500);

// Dim Touchscreen
OLED_YX(0, 0);
OLED_Write String("Init");

__delay ms(1000);
// clear OLED
OLED Clear();
__delay ms(500);

// Initial time and date

byte sec = 51;
byte min = 59;
byte hr = 23;
byte day = 2;

byte date = 30;
byte month = 4;
byte year = 17;

// Initialize DS1302
DS1302_Initialize(sec, min, hr, day, date, month, year);

//Initialize EUSART module with 9600 baud
EUSART Initialize(9600);
__delay ms(2000);

// clear OLED
OLED Clear();

407

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

[1177777777777777777777
// Configure TimerO
[117777777777777777777

// Select timer mode
OPTION_REGbitS.TMROCS = 0;

// Assign Prescaler to TIMERO
OPTION REGbits.PSA = 0;

// Set Prescaler to 256
OPTION REGbits.PS = 0b111;

// enable TimerO interrupt
INTCONbits.TMROIE = 1;

// enable global interrupts
ei();

}

Finally, we have the main code in Listing 15-9. The interrupt routine

updates the display date and time every five seconds. There is a “green”

function that lessens the brightness of the display. The main code is simply

a series of checks of the buffer read from UART. If any of the string we want

to be sent by the touch screen is detected, then the display is updated

accordingly.

Listing 15-9. Main Code

/*

File: Main.c

Author: Armstrong Subero

PIC: 16F1717 w/Int 0SC @ 16MHz, 5v
Program: P05 Clock

Compiler: XC8 (vi.38, MPLAX X v3.40)

R R

408

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

* Program Version: 1.0
*

*

* Program Description: This Program creates a clock using the
PIC17F1717

* microcontroller and the DS1302. The display is

* the intelligent Nextion 2.4 LCD. There are two screens

* the main screen displays. The main screen displays the

* time and date. The second screen allows the user to set

* the current time and date.
*

* Hardware Description: The DS1302 is connected to the
microcontroller as

* follows:

*

* CE -> RDO

* SCLK -> RD1

*I0 -> RD2
*

*

*

Created April 21st, 2017, 7:11 PM

*/
JRFFRARRKIAARKKAAKKAAKKIAAKKKAAKKKAAKKKAAAKKAAAKKKAAKKKAAKKAAK
K 2K K oK oK K ok ok 5K K K K ok ok ok ok K

*Includes and defines

Koo ok ke ok ke ok ko ok ke ok ke e ok ko ok ok ok ke o ok ok ok ok ok o ok ke ok ok ok ok ok ok ok ok Sk ok ok ok

KARR SRR KAIKK KK J

#include "16F1717 Internal.h"
#include "I2C.h"

#include "oled.h"

#include "ds1302.h"

409

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

#include "EUSART.h"
#include "setup.h"
#tinclude "touchscreen.h"

#include "bool support.h”

#include <string.h>

// Variables for date and time
unsigned char yri, mn1, date1l, dy1, hri, minil, seci;

unsigned char yr2, mn2, date2, dy2, hr2, hr3,

// Arrays for int to ascii conversion

char
char
char
char
char
char
char
char

// Arrays to hold date, month and time string

char
char
char
char
char
char
char

min_arr[8];

hr arr[8];
dt_arr[5];
minute arr[10];
hour arr[10];
date arr[10];
mth_arr[10];
month_arr[10];

time_string[10];
date string[10];
hour string[10];
min_string[10];

date1l string[10];
month_string[10];
mth_string[10];

// String constants for commands

const char screen_time[] = "time.txt=";
const char screen date[] = "date.txt=";
const char screen mth[] = "month.txt=";
const char screen hour[] = "to.txt=";
const char screen mins[] = "t1.txt=";

410

min2, sec2;

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

const char screen datel[] = "t2.txt=";

const char screen month[] = "t3.txt=";

// Array containing months

const char* months[] = {"MMM", "JAN", "FEB", "MAR", "APR",
"MAY", "JUN",

“juL", "AUG", "SEP", "OCT", "NOV", "DEC"};

// buffer for UART
chaxr buf[50];

// Variables to store values for min, hour, month and date

unsigned char x = 1;
unsigned char y = 0;
unsigned char m = 1;
unsigned char d = 1;

// energy efficient function
void green(char* buf);

[RARRAR SR AR AR SRS S A ARSI ARSI ARk kK

KK KK KKK KK KK KKK KKK

* Function: Main

*

* Returns: Nothing
*

*

Description: Program entry point
K oK ok ok ok ok ok oK ok oK oK ok oK oK ok oK ok ok oK ok ok oK ok oK oK ok oK ok ok oK ok ok oK ok oK oK ok ok ok ok ok ok ok oK ok ok oK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K

kAkRAKAR KR KKKk /

void main(woid) {
initMain();

char* houri;
char* mini;

411

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

char* date3;
char* monthi;
char* seti;

while(1){

// Read EUSART
EUSART Read Text(buf, 11);

// Check for if energy save enabled
green(buf);

111777777 77777777/7777/777

// Check buffer for each

// string from display
111777777 777/7777/77//777
houri = strstr(buf, "hour");
minl = strstr(buf, "mins");
date3 = strstr(buf, "date");
monthl = strstr(buf, "month");
set1 strstr(buf, "set");

[11117777777777777777

// If minute found
[1111777777777777777

if (min1)

{

// Convert date and time to strings
itoa(minute arr, y, 10);

Stl’pr(min_StIing) ") ;

// If less than 10 pad with a 0
if (y < 10){

412

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

strcat(min_string, "0");
strcat(min_string, minute_ arr);
}

// Else show min as 1is

else

{

strcat(min_string, minute arr);

}

strcat(min_string, "\"");

if (y < 59){
Y+

}

else {
y = 0;
}

// Write time
touchscreen data(screen mins, min_string);

}

[11111777777777777777
// If hour found
11171177777777777777
if (hour1){

// Convert date and time to strings
itoa(hour arr, x, 10);

strcpy(hour_string, "\"");
strcat(hour_string, hour arr);
strcat(hour_string, "\"");

413

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

if (x < 12){
X++;

// Write time
touchscreen_data(screen_hour, hour string);

}

11777777777777777777

// If date found
I177777777777777777

if(date3)

{

// Convert date and time to strings
itoa(date arr, d, 10);
strcpy(date1l string, "\"");
strcat(date1l_string, date_arr);

strcat(date1l string, "\"");

if (d < 31){
d++;

// Write time
touchscreen_data(screen_datel, datel string);

}

414

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

[117777771777777777
// If month found
[117777711777777777

if(month1)
{

// Convert date and time to strings
itoa(month arr, m, 10);

strcpy(month_string, "\"");
strcat(month_string, month_arr);
strcat(month_string, "\"");

if (m < 12){
m++;

}

else {

// Write time
touchscreen_data(screen_month, month_string);

}

[1177777777777777777777
// If user pressed set
[117777777777777777777

if (set1){
// Initial time and date
byte sec = 00;

byte min = y-1;
byte hr = x-1;

415

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

byte day = 2;
byte date = d-1;
byte month = m-1;
byte year = 17;

// Re-Initialize DS1302 with new values
DS1302 Initialize(sec, min, hr, day, date, month, year);
touchscreen_command("page 0");

}
}

retuxn;

}

Y i e e e e L e L e L b Ll b b

Kok Kok Kok ok ok kK ok Kok ok Kok k

* Function: void green (char* buf)
*

Returns: Nothing
*

* Description: Enables or disables green feature of display
KK KK K K oK o oK oK ok K K oK K oK K ok K ok oK oK oK K oK K oK oK oK oK oK oK K ok oK oK oK oK oK K ok K ok oK ok ok K ok K ok oK K ok Kk K ok ok ok ok Kk ok

KAk ARSI K KKKk J

void green(char* buf)

{

char* greeni;
greenl = strstr(buf, "ener");

if (greenl == NULL)
{

return;

}

416

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

else

{

if (lon){
touchscreen_command("t0.txt=\"ON\"");
__delay_ms(100);
touchscreen_command("dim=30");
__delay ms(100);

on = true;
}
else {

touchscreen_command("t0.txt=\"OFF\"");
__delay ms(100);
touchscreen_command("dim=100");
__delay ms(100);

on = false;
}

}
}

/**
KoK K ok oK oK ok ok 5k oK K K ok ok ok %k K

* Function: void interrupt isr(void)
*

* Returns: Nothing

*

* Description: TimerO interrupt at a rate of approx. 5 seconds
that updates

* the time on the display
Kook ok ok ook ok ok ke ok ko ok ok ok ko ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok

KRR KA KSR KK KK)

417

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

void interrupt isr(woid)
{

// Start count at 0
static int count = 0;

// Reset flag after overflow
INTCONbits.TMROIF = 0;

// Zero timer
TMRO = 0;

// Increment count
count++;

// Value = fclk / (4 * 256 * 256 * fout)
//[-- Frequency out (in Hz)

//|-- Prescaler value

// Value = 16 000 000 / (262 144)

// Value = 61.04 for 1 s

// Therefore 305 for approx 5 secs

if (count == 305){

117777777777 77/7777/77/77777/
// Read DS1302 clock burst
1117777 77/7777/7777//7/7777/

DS1302_Reset();
DS1302_WriteByte(OxBF);

secl

DS1302_ReadByte();
minl = DS1302_ReadByte();
hri = DS1302_ReadByte();
date1l = DS1302_ReadByte();
mnl = DS1302_ReadByte();
dy1 = DS1302 ReadByte();
yrl = DS1302_ReadByte();

418

CHAPTER 15
DS1302_Reset();

1111111777777777777777777/

// Convert all BCD data

// to Decimal time format

I111171771777777777777777/

// Year
yr2 = get dec(yrl);

// Month
mn2 = get dec(mnl);

// Date
date2 = get dec(datel);

// Hour
hr2 = get dec(hri);

// Minute
min2 = get dec(minl);

// Seconds
sec2 = get dec(secl);

1117777777777/ 777777777/777
// Convert 24 hr to 12 hr
// format

111777777 77777777777777/777

if (hr2 <= 12 8& hr2 > 0){

hr3 = hr2;

}

else if (hr2 >= 13 & hr2 < 24)
{

hr3 = (hr2-12);

}

PIC® MICROCONTROLLER PROJECTS

419

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

else {
hr3 = 12;

}

111177777 7777777777/77777/777
// Convert date and time

// to strings

/11777777 7777777/777//7777/77

itoa(min_arr, min2, 10);
itoa(hr arr, hr3, 10);
itoa(dt_arr, date2, 10);

[1177777777777777777777777
/// Create date string
[1117777777777777777777777

strcpy(date_string, "\"");
strcat(date_string, dt_arr);
Strcat(datE_StIing) "\ll n) ;

1111777777777 77777777777777

// Create month string
I117777777777777777777777/
strcpy(mth_string, "\"");
strcat(mth_string, months[mn2]);
strcat(mth_string, "\"");

L1117777777777777777777777
// Create time string
L1111777777777777777777777

strcpy(time_string, "\"");
strcat(time_string, hr arr);
strcat(time_string, ":");

420

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

// If less than 10 pad with a 0
if (min2 < 10){
strcat(time_string, "0");
strcat(time_string, min arr);

}

// Else show min as is
else

{

strcat(time_string, min arr);

}

strcat(time_string, "\"");

// Write time
touchscreen_data(screen_time, time string);

// Write month
touchscreen data(screen mth, mth_string);

// Write date
touchscreen_data(screen_date, date string);

// Reset count
count = 0;

}

else {
/ No need to do anything

}
}

The final results are shown in Figures 15-7 and 15-8.

421

CHAPTER 15 PIC® MICROCONTROLLER PROJECTS

Figure 15-7. Screen 1

Figure 15-8. Screen 2

Conclusion

At last, the finale. This chapter we looked at building two projects using
the PIC® microcontroller. It first covered building a simple temperature
controlled fan followed by a touch screen clock.

You have now reached the end of this book. I hope you learned enough
that you can successfully build your own projects. Happy tinkering!

422

APPENDIX A

Resources

This book covered the process of learning to work with PIC®
microcontrollers. Once you complete the book, you will be very proficient
at programming 8-bit microcontrollers and your skills and understanding
will be directly applicable to other families of microcontrollers you will
work with. This appendix lists some resources for working with PIC®
microcontrollers so that you do not have to reinvent the wheel.

On my GitHub, there are a lot of projects, some presented here and
others not, that work with the PIC16F1717 microcontroller:

https://github.com/ArmstrongSubero/PIC16-Projects

The MPLAB® Xpress code examples are all modifiable and work with
the microcontroller presented in this book:

https://mplabxpress.microchip.com/mplabcloud/example

Microchip Technology Inc. also provides embedded code source that
has a few noteworthy libraries:

http://www.embeddedcodesource.com/

423
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6

https://doi.org/10.1007/978-1-4842-3273-6
https://github.com/ArmstrongSubero/PIC16-Projects
https://mplabxpress.microchip.com/mplabcloud/example
http://www.embeddedcodesource.com/

APPENDIXA RESOURCES

There is also the developer help resource that provides information
about the different microcontrollers made by Microchip Technology Inc.:

http://microchipdeveloper.com/

MikroElektronika provides a lot of code examples on their community
that you can view here:

https://1libstock.mikroe.com/

424

http://microchipdeveloper.com/
https://libstock.mikroe.com/

APPENDIX B

Making Your Own
PCBs and Schematics

Once you have built the circuits in this book, you may be wondering how
to make your own circuit diagrams and produce PCBs with your designs.
The topic of designing PCBs and using schematic diagrams deserves a
book itself, and there are books available that detail the process of creating
your own. However, this appendix provides links to resources that will get
you started making your own diagrams and PCBs.

Fritzing

If you are new to schematic and PCB design, I recommend that you use
Fritzing. Fritzing allows beginners to easily get started. Fritzing is free and
they also provide a production service. You can learn how to design PCBs
with Fritzing here:

http://fritzing.org/learning/

Altium Circuit Maker

Let’s be realistic, Fritzing is designed for the Arduino ecosystem. For
that reason, I recommend, if you want to make your own PCBs and
schematics, that you use Circuit Maker. It is designed for makers, after all.

425
© Armstrong Subero 2018
A. Subero, Programming PIC Microcontrollers with XC8,
https://doi.org/10.1007/978-1-4842-3273-6

https://doi.org/10.1007/978-1-4842-3273-6
http://fritzing.org/learning/

APPENDIXB MAKING YOUR OWN PCBS AND SCHEMATICS

Also, it provides a good path to upgrading to a more professional tool like
Altium Designer, one of the best EDA tools on the market. You can find
information about Circuit Maker here:

http://www.altium.com/circuitmaker/overview

Scheme-it

What if you are interested only in drawing schematics? Then I recommend
you use Scheme-it from Digi-Key. It is an online tool that allows you to
create your own schematics easily and then save them as images. You can
use Scheme-it here:

https://www.digikey.com/schemeit/project/

426

http://www.altium.com/circuitmaker/overview
https://www.digikey.com/schemeit/project/

Index

A

Acknowledge (ACK), 264
Actuators, 143
DC (see DC motor)
servo motor
driving servo
(PIC16F1717), 149-150
header file, 150-151
main file, 154-156
PWM, 149
robotic servos, 148
signal wire, 149
source file, 151-154
stepper motor
bipolar, 157
connection, 158-159
main file, 160-163
phases, 157
popular method, 157
step angle, 157
ULN2003A, 158
unipolar, 157
Analog select registers (ANSEL), 91
Analog to digital conversion (ADC)
description, 311
digital thermometer project
source code, 317

© Armstrong Subero 2018

steps, 316
temperature results, 322
source code, 312-316
Analog to Digital Converter
(ADC), 68

B

Bipolar Junction
Transistor (B]JT), 47
Bluetooth
AT mode, 360
vs. communication, 360
HCO05 modules, 359
low-cost modules, 359

C

Capacitor, 39
Capture/Compare/PWM (CCP),
69, 189
Character display
Hitachi HD44780 LCD, 249-250,
252-255, 257-258, 260-262
Samsung KS0066U, 263
Comparator, 333
Complementary Output Generator
(COG) module, 72

427

A. Subero, Programming PIC Microcontrollers with XC8,

https://doi.org/10.1007/978-1-4842-3273-6

https://doi.org/10.1007/978-1-4842-3273-6

INDEX

Configurable Logic Cell (CLC), 71
input selection, 328
MCC device resources, 327-328
pins selection, 329
setup, 329
Conserve power, 378
clock frequency, 379
I/0 lines, 379
operating voltage, 379
power external devices, 379
Countdown timer project, 132
C programming language, 15
arrays, 19
vs. assembly, 31
comments, 17
operators, 22
overview, 15
pointers, 20
preprocessor directives
#define, 29
hex file, 29
IDE program, 28
#if, #ifdef, #ifndef, #elif, and
#else, 30
object and linker, 29
#pragma, 31
program flow
break statement, 27
continue statement, 27
do loop, 27
else if statement, 24
for loop, 26
goto statement, 28
if statement, 23

428

switch statement, 25
while loop, 26
program structure, 16
structures, 21
variables and constants, 17

D

Darlington transistor, 49
Data conversion, 311
Data logger project, 345
DC motor
driving motor (PIC16F1717), 145
MOSFETs, 144
PIC16F1717 motor
control, 146
PIC® microcontrollers, 144
pneumatic, hydraulic and
electric motors, 143
principle, 144
Dielectric materials, 39
Digital electronics
AND, 54
buffer gate, 57
NAND, 56
NOT, 55
OR, 55
XOR, 57
Digital thermometer project
source code, 317
steps, 316
temperature results, 322
Digital to analog converter (DAC),
69, 322, 324-325

Diode
laser diode, 46
light emitting diode, 45
schematic symbol, 44
regular diode, 45
zener diode, 44
Display interface
modern smartphone, 277
OLED (see Organic Light
Emitting Diode (OLED))
touch screen
capacitive, 297
code, 299-300
factors, 295
layout creation, 298
microcontroller, 301
nextion display, 297
output result, 300
resistive, 296
selection, 297
steps, 298
widgets, 299
Dynamic RAM (DRAM), 66

E

Electronics

capacitor, 39

digital circuits (see Digital
electronics)

diode (see Diode)

inductor, 41

logic-level conversion

bi-directional logic level

shifter, 60

INDEX

entire system 3.3v, 59
microcontroller
systems, 58
voltage divider, 59
non-polarized cap, 41
Ohm symbol, 34
operational amplifier, 53
potentiometer (see
Potentiometer)
resistors, 33
sourcing, 54
transformers, 42
transistors, 47
Enhanced Universal Synchronous
Asynchronous Receiver
Transmitter (EUSART), 71
eXclusive OR (XOR) gate, 57
eXtreme Low Power (XLP)
technology, 367

F

Field effect transistors (FETs), 51
Fixed voltage
reference (FVR), 70, 338

G

Global positioning system (GPS)
AT, 234-238, 240-241
NMEA, 224-225, 227-230, 232
SIM800L, 234
U-BLOX NEO-6M GPS, 224
USART, 233

429

INDEX

H

Hardware
DIP package, 4
embedded systems design, 1
ICD 3,5
microcontroller, 2
PICkit 3, 5
programmer, 4
High endurance flash (HEF), 72
High-frequency internal oscillator
(HFINTOSC), 67

Inductor, 41
Input and output (I/O) operations
analog select registers, 91
countdown timer project, 132
LAT registers, 91
LED blink
flash source file, 108
“hello world’, 92
microcontroller, 93
MPLAB X IDE, 93
output source file, 106
PIC16F1717 standard header
file, 95
PIC® microcontroller, 94
source file, 99
PORT register, 91
PPS module, 141
pushbutton
debouncing, 114-115
external pull-up, 116

430

internal pull-up, 117
internal weak pull-up,
112-113
PIC® microcontroller, 111
pull-up resistors, 110
seven segment displays (see
Seven segment displays)
TRIS register, 89
weak pull-up, 92
Inter-Integrated Circuit (12C)
EEPROM device, 263, 264,

266-268, 270-273, 275-276

SCL, 264

Interrupts
external circuit, 167
handler, 166
latency, 166
polling method, 165

J, K
Junction Field Effect Transistor
(JFET), 52

Laser diode, 46
Light dependent
resistor (LDR), 38
Light emitting diode (LED), 45
Logic-level conversion
bi-directional logic level
shifter, 60
entire system 3.3v, 59

microcontroller systems, 58
voltage divider, 59
Low-frequency internal oscillator
(LFINTOSC), 67
Low power 8-bit vs. 32-bit, 367

Master In Slave Out (MISO), 242
Master Out Slave In (MOSI), 242
Master Synchronous Serial Port
(MSSP), 71
MCLR pin, 68
Medium frequency internal
oscillator (MFINTOSC), 67
Metal Oxide Semiconductor Field
Effect Transistor
(MOSFET), 51
Microchip Code Configurator
(MCC), 243-244
Microcontroller technology
32-bit devices, 3
definition, 3
electric toothbrush, 2-3
general-purpose
computers, 2
laptop/tablet, 2
PIC16F1717 (DIP package), 3-4
requirements, 3
Motor driver project, 194
MPLAB® X IDE, 6
Multimeter, 8

INDEX

N

Not acknowledge (NACK), 264

NOT AND (NAND) gate, 56

Numerically Controlled Oscillator
(NCO), 71, 330

O

Op-amp schematic symbols, 53
Operational Amplifiers (OPA),
53-54, 72
Organic Light Emitting Diode
(OLED) displays
header file, 279
main code, 292
source code, 281
SSD1306, 278-279
Oscillator start-up timer (OST), 74
Oscilloscope, 8
Output Latch Registers (LAT), 91

PQ

Peripheral Pin Select (PPS)
module, 141

Phase Locked Loop (PLL), 67
Photocell, 38
Photoresistor, 38
PIC® 16F1717 block diagram, 65
PIC® microcontrollers

baseline, 63

enhanced mid-range

431

INDEX

PIC® microcontrollers (cont.)
brown-out reset, 75

CPU core, 72
oscillator start-up timer, 74
PIC16F1717, 64, 73
power-up timer, 74
watchdog timer, 74
flash memory program, 66
high-performance, 64
IMCLR pin, 68
mid-range, 64
onboard peripherals
ADC converter
onboard, 68
CCP module, 69
CLC, 71
COG module, 72
comparators, 70
DAC converts, 69
FVR, 70
high endurance flash
block, 72
MSSP module, 71
NCO, 71
operational amplifiers, 72
temperature indicator, 70
timers, 70
ZCD module, 71
PIC16F1717, 65
ports, 68
random access
memory, 66
timing generation, 67
PORT register, 91

432

Potentiometer
digital/digipot, 37
digipot schematic symbol, 37-38
MCP 4131, 37
Power supply, 8
Power-up timer, 74
Program Flash memory, 66
Programmers
clean and build and run icons, 85
device, 82
file creation, 85
hardware tool, 83
ICSP to PIC16F1717, 80
MPLAB® X home screen, 81
new project creation, 81, 84
path project and selection, 84
PICkit™ 3, 77, 78
RJ-11 to ICSP adapter, 79
standalone project, 82
traps, 86
wires to ICSP connector, 80
XC8 compiler, 83
Pulse Width Modulation (PWM)
CCP modules, 69, 189
motor driver, 194
RGB LED, 200

R

Random Access Memory (RAM), 66
Real Time Clock Calendar
(RTCC), 390
Resistors, 33
RGB LED, 200

S

Serial clock line (SCL), 264
Serial data line (SDA), 264
Serial Peripheral Interface (SPI)
digital potentiometer, 244-248
master, 242
MCC, 243-244
PIC® microcontroller, 242
Servo motor
driving servo (PIC16F1717), 150
robotic servos, 148
header file, 150
main file, 154
source file, 151
Seven segment displays
connections, 121
LCDs and OLED
displays, 119
multiplexing, 125
pinout, 120
source code, 121
Shopping for supplies, 9-13
Slave Select (SS), 242
Sleep mode, 368
Software
MPLAB® X IDE, 6
XC compilers, 7
Static RAM (SRAM), 66
Stepper motor
connection, 159
main file, 160
popular method, 157
step angle, 157

INDEX

ULNZ2, 158
unipolar, 157

T

Temperature controlled fan project
Celsius values, 381
main code, 383
schematics, 382

Text to Speech (TTS) module,

219-220, 222-223

Timers
counter mode, 177
counters, 172
interrupts, 183
LED flash circuit, 173
timer mode, 172

Timerx, 70

Touch screen clocks
bool support, 394-395
clock schematics, 393
screens, 391
DS1302 header, 397
DS1302 source, 398
header file, 396
main code, 408
nextion editor, 392
results, 421
RTCC, 390
setup header, 395
setup source, 404
source code, 403

Transformers, 42

TRIState (TRIS) register, 89

433

INDEX

U

Universal Synchronous
Asynchronous Receiver
Transmitter (USART)

PIC® microcontroller, 210

serial character LCD, 210-212,
214, 216-218

TTS modules, 219-220, 222-223

\'

Voltage divider method, 59

w

Watchdog timer (WDT), 74, 373
Wi-Fi

434

data logger, 345

ESP8266, 344

MAC address, 343

protocol, 343

web browser, 358

Wireless Access Point (AP), 343

XY

XC compilers, 7

y4

Zener diode, 44
Zero Cross Detection (ZCD)
module, 71

	Table of Contents
	About the Author
	Introduction
	Chapter 1: Preparing for Development
	 Gathering Your Hardware
	 Microcontroller
	 Programmer

	 Gathering the Software
	 MPLAB® X IDE
	 XC Compilers

	 Setting Up Shop
	 Multimeter
	 Oscilloscope
	 Power Supply
	 Shopping for Supplies

	 Conclusion

	Chapter 2: The C Programming Language
	 C
	 C Programming
	 C Program Structure
	 Comments
	 Variables and Constants
	 Arrays, Pointers, and Structures
	 Arrays
	 Pointers
	 Structures

	 Operators
	 Controlling Program Flow
	 if Statement
	 else Statement
	 else if Statement
	 switch statement
	 for Loop
	 while Loop
	 do Loop
	 break Statement
	 continue Statement
	 goto Statement

	 Preprocessor Directives
	 #define
	 #if, #ifdef, #ifndef, #elif, and #else
	 #pragma

	 Assembly vs. C
	 Conclusion

	Chapter 3: Basic Electronics for Embedded Systems
	 Electronics
	 Resistors
	 Potentiometer
	 Digital Potentiometer

	 Photoresistor
	 Capacitor
	 Inductor
	 Transformers
	 Diode
	 Zener Diode
	 Light Emitting Diode
	 Laser Diode

	 Transistors
	 Bipolar Junction Transistors
	 Darlington Transistor
	 Field Effect Transistor
	 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
	 Junction Field Effect Transistor

	 Operational Amplifier
	 Digital Electronics
	 The AND Gate
	 The OR Gate
	 The NOT Gate
	 The NAND Gate
	 The NOR Gate
	 The Buffer Gate
	 The XOR Gate

	 Logic-Level Conversion
	 Run the Entire System on 3.3v
	 Use a Voltage Divider
	 Use a Bi-Directional Logic Level Shifter

	 Conclusion

	Chapter 4: PIC® Microcontrollers
	 PIC® Microcontrollers Overview
	 Baseline PIC® Microcontrollers
	 Mid-Range PIC® Microcontrollers
	 Enhanced Mid-Range PIC® Microcontrollers
	 High-Performance PIC® Microcontrollers

	 PIC® 16F1717 Block Diagram
	 Program Flash Memory
	 Random Access Memory
	 Timing Generation
	 !MCLR
	 Ports
	 Onboard Peripherals
	 Analog to Digital Converter
	 Digital to Analog Converter
	 Capture/Compare/Pulse Width Modulation Module
	 Pulse Width Modulation Module

	 Timers
	 Comparators
	 Fixed Voltage Reference
	 Temperature Indicator
	 EUSART
	 CLC
	 MSSP
	 NCO
	 ZCD
	 COG
	 Operational Amplifiers
	 High Endurance Flash Block

	 The Enhanced Mid-Range CPU Core
	 Power-Up Timer
	 Oscillator Start-Up Timer
	 Power-On Reset
	 Watchdog Timer
	 Brown-Out Reset

	 Conclusion

	Chapter 5: Connecting and Creating
	 Let’s Get Started
	 A Look at Programmers
	 A Look at Programming
	 Traps for Beginners
	 Additional Information
	 Conclusion

	Chapter 6: Input and Output
	 Let’s Begin I/O
	 TRIS Register
	 PORT Register
	 Output Latch Registers
	 Analog Select Registers
	 Weak Pull-Up
	 Making an LED Blink
	 Using a Pushbutton
	 Seven Segment Displays
	 Seven Segment Display Multiplexing
	 Project: Countdown Timer
	 Peripheral Pin Select
	 Conclusion

	Chapter 7: Interfacing Actuators
	 Introducing Actuators
	 DC Motor
	 Servo Motor
	 Stepper Motor
	 Conclusion

	Chapter 8: Interrupts, Timers, Counters, and PWM
	 Introduction to Interrupts
	 Using Timers
	 Timer 0 in Timer Mode
	 Timer 0 in Counter Mode
	 Timer 0 with Interrupts

	 Using the CCP Module
	 Understanding PWM
	 Using PWM

	 Project: Using PWM with a Motor Driver
	 Project: Using CCP and Dedicated PWM with RGB LED
	 Conclusion

	Chapter 9: USART, SPI, and I2C: Serial Communication Protocols
	 Using USART (Universal Synchronous Asynchronous Receiver Transmitter)
	 Serial Character LCD
	 USART to PC Communication
	 Text to Speech

	 Using GPS (Global Positioning Systems)
	 NMEA Commands
	 Software USART
	 GSM Module
	 AT Commands

	 Using SPI (Serial Peripheral Interface)
	 Digital Potentiometer

	 Character Display
	 Character: The Hitachi HD44780 LCD
	 The Samsung KS0066U

	 Using the I2C (Inter-Integrated Circuit) Protocol
	 EEPROM

	 Conclusion

	Chapter 10: Interfacing Displays
	 Displays
	 OLED Displays
	 Touch Screen LCD
	 Resistive Touch
	 Capacitive Touch
	 Selecting a Touch Screen LCD
	 Using the Touch LCD
	 Creating a Layout
	 Adding Widgets
	 Adding Code
	 Reading on the Microcontroller

	 Conclusion

	Chapter 11: ADC and DAC
	 Data Conversion
	 ADC (Analog to Digital Conversion)
	 Project: Digital Thermometer
	 DAC (Digital to Analog Converter)
	 Conclusion

	Chapter 12: NCO, Comparator, and FVR
	 CLC (Configurable Logic Cell)
	 NCO (Numerically Controlled Oscillator)
	 Comparator
	 FVR (Fixed Voltage Reference)
	 Conclusion

	Chapter 13: Wi-Fi and Bluetooth
	 Low-Cost Wireless Connectivity
	 Integrating Wi-Fi
	 Using the ESP8266
	 Testing the ESP8266

	 Project: Wi-Fi Data Logger
	 Integrating Bluetooth
	 Using the HC05 Bluetooth Module
	 AT Mode

	 Communicating via Bluetooth

	 Conclusion

	Chapter 14: Watchdog Timer and Low Power
	 Low Power 8-Bit vs 32-Bit
	 Sleep Mode
	 Watchdog Timer
	 Other Ways to Conserve Power
	 Reduce the Clock Frequency
	 Reduce the Operating Voltage
	 Power External Devices from I/O Lines

	 Conclusion

	Chapter 15: PIC® Microcontroller Projects
	 Project: Temperature Controlled Fan
	 Project: Touch Screen Clock
	 Conclusion

	Appendix A: Resources
	Appendix B: Making Your Own PCBs and Schematics
	 Fritzing
	 Altium Circuit Maker
	 Scheme-it

	Index

