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1 Introduction

Many books have now been published about the work of the Bletchley Park
codebreakers during World War II. Outstanding among these are Alan Tur-
ing: The Enigma, by Andrew Hodges [Ho], a sensitive and enormously infor-
mative biography of a genius who made a unique contribution to winning the
war while he was simultaneously inventing the computer; and Codebreakers,
edited by F. H. Hinsley and Alan Stripp [Hin], a series of articles providing
detailed information on the methods employed by the codebreakers of Bletch-
ley Park. Particularly to be commended among the latter is the article by
Professor I. J. (Jack) Good, entitled “Enigma and Fish”, in which Jack, one
of the key members of the teams working first on Naval Enigma and then on
the even more sophisticated Geheimschreiber code (which we called Fish!),
describes the machines employed by the Germans and the machines we de-
veloped to help to read messages encrypted by these machines. It is a great
advantage, of course, for those able, like Jack Good, to provide precise de-
scriptions of these machines and of our methods, that much of the necessary
information has now, at long last, been declassified.

With so many good sources of information available, it would be pointless
to write yet another technical article. On the other hand, there has not been
the same wealth of information available about the more human side of our
activities at Bletchley Park, so perhaps there is a gap to be filled. Of course,
I will only speak for myself. I, too, like Jack Good, worked first on Naval
Enigma (in 1942) and then on Fish until the end of the European War (May,
1945); but I had a period, at the end of 1942 and early in 1943, when I was
withdrawn from the Enigma team and joined the research group actually
trying to understand the modus operandi of the Geheimschreiber machine. I
then was attached to the Testery, but liaised with the Newmanry. The Testery
people largely used hand methods, that is, they did not themselves use the
Colossus machine; but, of course, they routinely used the output of Colossus
to complete the effective decryption of a message. The Newmanry ran the
Colossi.

* The editor (wdj) would like to express his appreciation to Michael Ryan, editor
of Global Intelligence Monthly, for permission to reproduce this article.
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Even though this reminiscence is very informal and personal, it is relevant
to point out that the teams to which I belonged were working on the highest
grade Germany military and diplomatic ciphers. I do not believe that those
working on lower grade (e.g., field) ciphers felt much of the excitement we felt;
and I am sure that those who only came into the picture once the messages
had been deciphered had an entirely different experience from our own.

What then are my most vivid recollections from those days? Let me start
with the recruiting process.

2 The Road to Bletchley Park

It is now common knowledge (see e.g., Hinsley et al., Vol. II [Hin]) that in
October, 1941, four top Bletchley Park cryptanalysts, including Alan Turing,
wrote a letter to Churchill arguing that it was essential to give the highest
priority to the recruitment of codebreakers and the provision of necessary
equipment. Churchill might have reacted like a bureaucrat and said that the
letter should have been properly routed through the corridors of Whitehall —
but he didn’t. He saw the good sense of what was proposed and its urgency;
and he minuted his chief of staff “Action this day”. Thus it came about —
though I did not know this at the time — that an interviewing board came to
Oxford in November, 1941, to look for “a mathematician with a knowledge
of modern European languages”. (Unfortunately, however, the dictates of
security required that the candidates should not be told the nature of the
work they would ge doing — it was my distinct impression that the members
of the interviewing board did not know this themselves.)

Now the British educational system, at the time, being based on the
principle of premature specialization, virtually guaranteed that there would
be no such person, except by chance. !

My tutor recommended me to attend the interview although I was not a
mathematician — merely an undergraduate student of mathematics — and
my knowledge of German was rudimentary, since I had merely been teaching
myself for a year. 2

In the event, I believe I was the only candidate to present himself, and
I was immediately offered a position — in the Foreign Office. However, the
condition was imposed that I must start in January, 1942. This was a blow
as my age group (I was born in 1923) was not due to be drafted till August,
1942. But my experience of training for the Royal Artillery as a student at
Oxford — all university students had to undergo military training — had
convinced me that, if I was conscripted into the Royal Artillery, I would

! There were, of course, many outstanding mathematicians among the Jewish
refugees from Germany and Austria, but they could not be trusted as enemy
aliens!

% 1t could not be doubted that German was the “modern European language” in
question.
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almost certainly die young — of sheer boredom! Thus it did not take me
long to decide that, whatever the secret work I was to undertake at Bletchley
Park, it was certain to be far more interesting than being an artilleryman,
and, much as I regretted losing two terms at Oxford, the sacrifice was surely
worthwhile. How right I was!

So it came about that, on 12 January 1942, I presented myself at the
gates of Bletchley Park and was escorted to Hut 8. I met many people that
day, but I didn’t find out the nature of the work. For one person I met —
none other than Alan Turing himself — asked me if I played chess and added,
when I replied affirmatively, that he had a chess problem he had not been
able to solve and invited me to help him to solve it. Fortunately, I was able to
help him to solve it; and I like to think that the cordial relationship I enjoyed
with Alan Turing for the remainder of his tragically short life (he committed
suicide in 1954, just short of his 42"? birthday) owed much to the fortunate
circumstances of our first meeting. On my second day I discovered that I
was to be involved in the decoding of Naval Enigma, especially of the highly
secret, Offizier messages, and I got my first instructions in the subtle methods
developed by the Hut 8 team of cryptanalysts to achieve an amazingly high
success rate and a remarkable speed of decryption. A uniquely exciting period
of my life had begun!

3 A Tribute to My Colleagues

It goes without saying that my colleagues were all extraordinarily good at
their wartime jobs at Bletchley Park — they were intelligent, quick, inven-
tive, immensely hard-working and always encouraging each other. Almost
all resumed or went on to academic jobs after the war, though some chose
different careers. 3

It is really invidious to pick out any for special praise or mention; yet I
feel I should if only to point to the wide variety of attributes they displayed,
either in common or individually, in addition to their mathematical flair. I
will, rather arbitrarily, confine myself to seven names, which, to avoid gross
favoritism, I will refer to in alphabetical order. Of course, it is understood
that these people made a profound impression on me; most of them have
continued to exert an influence on my life in the postwar years.

Hugh Alexander (C. H. O’D. Alexander, to give him full panoply of ini-
tials) was the British chess champion. He was a most colorful person, with an
attractive personality and striking intelligence. He and Shaun Wylie taught
me much of what I learned about Naval Enigma and the decoding problem in
my early days in Hut 8 — he was at that time in charge of our Section. What
struck me about him then, in addition to the qualities I have mentioned,

3 One, Roy Jenkins, now Lord Jenkins of Hillhead, was Home Secretary in a Labour
Government and is now Chancellor of Oxford University. Another, Peter Benen-
son, founded Amnesty International.
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and his sense of humor, was his complete informality. This, combined with
a total lack of self-regard, I was to come to recognize as the distinguishing
mark of greatness in my colleagues. Unfortunately, I saw very little of Hugh
after leaving Hut 8.

Jack Good (now I. J. Good, Distinguished Professor of Statistics Emeritus
at Virginia Polytechnic Institute) was the nearest any of us came to being
an applied mathematician — I will revert to this point later. He was, in fact,
a probabilist, but he was — and is — a polymath. Both in Hut 8 and in the
Newmanry he was enormously effective and productive, both of decrypts and
ideas. He is possessed of a prodigious and totally accurate memory which
makes him, today, the most reliable, and comprehensive, authority on the
history of those times. His very individual sense of humor, together with the
modesty which was characteristic of all those heroes of long ago, enrich our
friendship, which persists to this day.

Donald Michie (now Professor of Artificial Intelligence at the University of
Edinburgh) was an example of inspired recruitment. He came to the Testery
(though he also liaised very effectively with the Newmanry) as a classical
scholar, but showed remarkable adaptability to our work, acquiring an ability
to think mathematically even though he knew very little mathematics. He
was, and remains, truly brilliant. He became a very close friend of Alan
Turing, Jack Good, myself and many others; and his sunny disposition and
willingness to learn — together with a remarkable ability to do so very quickly
— made him an invaluable colleague. It is perhaps not coincidental that, as
he mutated from classical scholar to become a master of theoretical computer
science, his politics moved simultaneously from right to left (though always
reasonable!)

Max Newman (Professor M. H. A. Newman, F.R.S.) was already a dis-
tinguished topologist when he came to Bletchley Park to head the Section
responsible for the machine aspects of the decryption of Fish, by 1943 cer-
tainly the most important high grade cipher being used by the Germany
military. He was wonderfully effective in this role, and struck up a working
relationship with Alan Turing which was resumed at Manchester University
after the war when, in conjunction with the university electrical engineers
and others at Ferranti, they designed (and built) a computer 4. Both Alan
Turing and I joined his department in 1948 — but at very different levels of
seniority!

Max had excellent ideas, mathematical and administrative; but it is first
and foremost as a facilitator that I remember him. Both in the Newmanry
and in the Mathematics Department at Manchester University, he created
conditions under which we, his colleagues, could work best. He never imposed
on us a chore which could only be justified on bureaucratic grounds. From

4 Max was appointed Fielden Professor of Pure Mathematics at Manchester Uni-
versity in 1945 on leaving Bletchley Park
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his understanding and leadership I benefited enormously — at both places
where he exercised them. See [H] for further remarks about Max Newman.

Alan Turing, it is generally agreed, was a genius. He had already shown
this at Cambridge before the war, when he produced his strikingly original
definition of a computable function in which he introduced the concept of a
universal machine, now always referred to as a Turing machine. What very
few knew then, and somewhat more know now, is that, even in those early
days, his machine was not merely, in his mind, a metaphor but also a blueprint
for a machine which could actually be built, that is, a computer. The history
of the development of these ideas is very well treated in the book by Andrew
Hodges, already referred to.

I will be saying more about Alan Turing later. Let me only add now that
it was an extraordinary, and wonderful, experience to know him; and that he
was the friendliest of men 5.

Henry Whitehead (Professor J. H. C. Whitehead, F.R.S.) has a special
place in my affections, and not only because he was such a lovable man, so
creative a mathematician, and so interesting and diverse a personality. Henry
already had a reputation as a great — but difficult — mathematician when
he came to Bletchley Park. He had done outstanding work in algebraic and
combinatorial topology at Oxford, but his work was not well understood (he
rewrote much of it after the war in the hope of achieving greater clarity).
Nevertheless, he was recognized as an outstanding talent and, after the war,
he was appointed Waynflete Professor at Oxford. He and I had become very
friendly at Bletchley Park — we shared a common attitude to politics, cricket
and beer, among other interests — and, after his return to Oxford, he invited
me also to return to Oxford to become his doctoral student. I accepted his
invitation entirely on the basis of my affection for him and my trust in his
intellectual judgment. ©

Thus Henry exerted a profound influence on my choice of career and hence
on my life. I have never regretted that influence. Very unfortunately, Henry
collapsed and died, suddenly and unexpectedly, on a street in Princeton in
1960 at the age of 55, at the height of his powers — a grievous loss to
mathematics and all his many friends.

Shaun Wylie, like Hugh Alexander, inducted me into the work of Hut 8;
but he and I remained close friends as he also moved to the Newmanry — and,
subsequently, we became colleagues on the faculty of Cambridge University
and wrote a book together, Homology Theory, which became a standard text
among graduate students and algebraic topologists for many years. Shaun is
a man of unmistakable brilliance, matched only by kindness. He is a great
teacher and a very cultured scholar. I have benefited more than I can say from

® This needs to be said, as he has sometimes been presented as awkward and
nervous and uncomfortable in the presence of others.

51 recall asking him “What is algebraic topology, Henry?” He replied, “Don’t
worry, Peter. You’ll love it!” On the strength of that assurance, I decided to
become his student.
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his friendship — and that of his remarkable wife Odette, whom he married
when she was a Wren 7 — a very senior Wren — working in the Newmanry.
Long may they both flourish!

4 The Teaching of Mathematics

I learnt many lessons from my exciting three and a half years at Bletch-
ley Park. I have already hinted at some; thus, for example, I learned of the
friendliness and lack of conceit of good mathematicians, a fact I can now
conclusively confirm after 50 years among academic mathematicians. How-
ever, there is one lesson I learnt, about the teaching of mathematics, which I
regard as crucially important. It does, however, embody a very controversial
principle.

We were, first in Hut 8 and then while working on Fish, a group of some
30 people (at our peak). We were, almost all, mathematicians or would-be
mathematicians. But none of us — with the possible exception of Jack Good
— could be described as applied mathematicians. We were pure mathemati-
cians, in the sense that our main interest and love of research, actual or
intended, lay inside mathematics itself. Yet we were all, at Bletchley Park,
applying mathematics. True, we were not doing conventional applied mathe-
matics — ordinary and partial differential equations, theoretical physics, and
such. We were, of course, using (and developing) some statistical methods but
their theoretical basis was neither new nor terribly profound. If there was one
branch of mathematics which we could be said to be using systematically, it
was mathematical logic. But a better description of our work would be to
say that we were using a mathematical way of thinking in our approach to
the problem at hand — the mathematics itself was not very sophisticated,
but we would have been useless if we had not acquired this ability to think
clearly in mathematical terms. It is also worth adding that we would have
been useless if we had not been strongly motivated, that is, consumed by a
fierce desire to solve the problems the enemy was confronting us with.

What has all this to do with the teaching of mathematics, let us say,
at the university level? To me the obvious implication is that the essential
features of a good mathematics education, designed to enable the student sub-
sequently to use mathematics effectively in his or her chosen occupation are
that it inculcate the ability to think mathematically, that is, that the student
acquire, in Speiser’s phrase, mathematische Denkweise; and that it build in
the student a strong appetite for using mathematics to solve problems which
originate outside mathematics. (Of course, this must then be supplemented
by a real interest in the problem area with which the student is confronted in
his or her chosen profession.) What do not seem to be essential components
of a good mathematics education for the future user of mathematics are (i)
any special attention to the areas of mathematics usually associated with

” Women’s Royal Naval Service.
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the occupation chosen by the student, or (ii) the acquisition of expertise in
the area (of science, engineering, statistics, . . .) to which the mathematics
is to be applied, or, indeed, in any other area. As to (i), it would seem to
me that any part of mathematics could serve to prepare the student to ap-
ply mathematics, provided it is properly taught, that is, taught for genuine
understanding and effective problem-solving and not merely for the acquisi-
tion of knowledge and mechanical skill. As to (ii), I remain convinced that
the experience of applying mathematical reasoning to the study of some dis-
cipline would be very valuable to the student. But time is limited, and we
must make choices; and there can be no case for impoverishing the student’s
mathematical education to provide time to acquire a working knowledge of
some other discipline. As any enlightened employer will tell you, “We can
teach you what we want you to know about our work. What we cannot teach
you is the necessary mathematical know-how.”

5 The Life and Death of Alan Turing

I have already, in this article, testified to my enormous respect for Alan
Turing, whom I have described as an authentic genius; and to my incredible
good fortune in being able to claim him as a friend, despite the vast difference
in our intellectual capacities. His contribution to the work of the Bletchley
Park codebreakers was unique and irreplaceable. This has been attested by
many; and forms a theme of the excellent play “Breaking the Code” by Hugh
Whitemore, and the remarkable novel Enigma by Robert Harris . However,
there is a particular feature of his life and his nature which must be set on
record if one wishes to complete the picture of the man — Alan Turing was a
homosexual. This fact is central to the drama of Hugh Whitemore’s play, and
is there treated very sympathetically; but the details of Turing’s life given in
the play are too far removed from reality for one to rely on this fine work of
fictional drama to provide a basis for an assessment of the man.

In the first place, we, his colleagues at Bletchley Park had no idea that
Alan was a homosexual, since he gave no evidence of this fact throughout his
time at Bletchley Park; indeed, Jack Good has trenchantly and pertinently
remarked “Fortunately, the authorities at Bletchley Park had no idea Turing
was a homosexual; otherwise, we might have lost the war.”

Unfortunately, in the early 1950’s a vigorous campaign was mounted in
Britain against male homosexuals — homosexual acts carried out in private
by adult males were a criminal offense — and in 1952, in circumstances well
described by Andrew Hodges in his biography, Alan Turing was arrested and
brought before a magistrate on a charge of committing this “crime”. The
magistrate recognized that Alan was a very special person — a Fellow of the

8 While Turing’s contribution was unique, our work was no “one-man show” —
contrary to the impression given in these two dramatic reconstructions of Bletch-
ley Park days.
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Royal Society, Reader in Mathematics at Manchester University, holder of the
Order of the British Empire for (unspecified) services to his country during
the war — and tried to be as lenient as possible. Alan was “bound over” —
effectively, a verdict of guilty but with no penalty imposed, on condition that
he underwent hormone treatment whose effect, he later bitterly remarked, was
merely to enlarge his breasts. He lost his security clearance; and the U. S.
authorities treated him as a felon and refused to grant him a visa (he had been
engaged on joint work with Johnny von Neumann). Lonely and depressed,
he committed suicide on June 7, 1954, during the Whitsuntide weekend, by
eating some apple slices he had himself laced with cyanide. Clearly, he know
that, sooner or later, he would find life intolerable and, in his typical way, he
prepared himself and his circumstances for the arrival of that event.

It is shameful that civilized nations should enact vicious legislation capa-
ble of ruining the lives of some of its finest citizens, and then set the forces of
“law and order” to hound those unfortunate people whom they might catch
in their trap. It is alarming to find the same prejudices ? which destroyed
the life of a very great man, to whom all who love freedom and democracy
owe so much, once again manifesting themselves today, doubtless strength-
ened by fears of the AIDS virus and its effects. (Even as I write, the radio
is reporting a case in Wyoming where four young people tortured a student
of the university, Matthew Shepard, till he was close to death, for no other
apparent reason than that he was known to be gay '°. Will we never learn?
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1 Introduction

I have been asked to speak today about some cryptographic work I was
engaged in at Bletchley Park, during the Forties. I was concerned mainly
with a German machine-cipher known in Bletchley as “FISH”. The network
using this system grew to have many links and each link was given the name
of a kind of fish. Thus the first link to be intercepted was called “Tunny” and
I recall such names as “Bream”, “Herring” and “Mackerel” for later links.

The text-book for this lecture is “Code Breakers”, edited by F.H. Hinsley
and Alan Stripp [HS]. It is subtitled “The Inside Story of Bletchley Park.”
Part 3 of this book tells the story of “FISH”. It tells that the first FISH
traffic to be intercepted was on a German Army radio link between Athens
and Vienna from the middle of 1941. Much praise is due to the designers and
operators of the intercepting equipment for producing accurate copies of the
German messages, with few garbled letters and every letter, garbled or not,
in its proper place.

The letters used were those of the International Teleprinter Code. There
were two basic symbols, called at Bletchley “Dot” and “Cross”. They would
equally well have been called “Zero” and “One”. Or, with electrical switches
in mind, “On” and “Off”. Each letter was a sequence of 5 basic symbols, so
there were 32 letters in all. Table 1 sets out this International Code.

In Table 1 the five symbols of a letter are written in a row. It was more
usual at Bletchley to write them in a column. Thus the beginning of a message
in teleprinter code might appear as in Table 2. Here “9” stands for “Word
Space”. When a message or other sequence of letters was written like this
we referred to the five rows as the five “impulses”, five streams of dots and
crosses.

* Professor Tutte, FRS, worked from 1941 to 1945 in the British cryptanalytic
headquarters at Bletchley Park, the most successful intelligence agency in world
history. His work, which combined elements of statistics and combinatorics, was
instrumental in the breaking of FISH, a series of codes that were used by the Ger-
man command for encrypting communications between the highest authorities.
Subsequent cryptanalytic work on FISH included the development of Colossus,
the world’s first electronic computer.
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I started work at Bletchley Park in (I think) May 1941. It was several
months later that I encountered Tunny.

2 On additive ciphers

In an additive cipher we convert the clear message (C) into the cipher message
(Z) by adding to it, letter by letter, a sequence of letters called the key (K).
The addition has to be defined. One method is to number the letters of the
alphabet, in order, from 1 to 26 and then add those numbers mod 26. Thus
(see Table 3),

J+S5=10+19=29=3=C.

In the case of the teleprinter code an obvious method is to add the letters as
5-vectors mod 2. Thus

X X o

X e X
J+S=e4+X=X=C

X e X

[ ] [ ] [ ]

The key we may suppose is a string of letters produced by the cipher machine.
We can write the process of encipherment as an algebraic equation

C+K=2Z.

N 14
O 15
P 16
Q 17
R 18
S 19
T 20
U 21
V 22
10 W 23
11 X 24
12 Y 25
M13 Z 26
Table3.

W O Otk W

CERe=DOomEgQw e
©

Additive ciphers have a well-known weakness. Suppose two messages are
carelessly sent on the same key. Then

Ci+K =2
Co+K = 2Zs.
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Therefore
Cl —Cz :Zl —Zz.

We called such a pair a “depth of two”. If the enemy cryptanalyst has rea-
son to suspect such a depth he subtracts Z5 from Z; and knows that he
probably has C; — Cs. This, with reasonable luck, he can separate into the
two clear messages C; and Cz. He reads them both. Moreover by subtracting
Cy from Z; he can find K. The procedure is to try a likely word, perhaps
like LONDON, in successive positions in Cy calculating the corresponding six
letters of Ca until one finds a position in which those six letters are plausible
as plain text. Perhaps they are then IMPENE. Guessing that this continues
as “IMPENETRABILITY” he writes as follows

C, LONDONTHOUARTTH (E)
IMPENETRABILITY T

Soon he is announcing C; as beginning “London thou art the flour! of cities
all” and Cy “Impenetrability, thats what I say”.

3 HQIBPEXEZMUG

It was the German custom on the TUNNY link to give in the preamble
of each message a sequence of 12 letters. At Bletchley people called this
sequence the “indicator” and guessed that it gave the settings for 12 wheels
in a cipher machine. Occasionally two cipher messages would come with the
same indicator. The cryptanalyst would say “Same settings, therefore same
key. Try it as a depth of two”. There was enough success to identify Tunny
as an additive cipher using the mod 2 addition I have already mentioned.

One day there came two long cipher messages, each about 4000 letters
long, with the same indicator HQIBPEXEZMUG. This depth of two was
successfully read. It proved to be two attempts at the same message, one
having more word-spacing and other punctuation than the other. This obvi-
ously was a great help in the depth-reading. Col. J. Tiltman read this depth
and deduced some 4000 letters of key. Next problem: given that the machine
produced this key, determine the structure of the machine. In the language
of the time and place cryptanalysts sought to “break the Tunny key”.

All this was done before I had any dealings with “Tunny”.

Some three months later, the key still unbroken, Major G. W. Morgan,
head of the Research Section, gave a copy of the key to me and said “See
what you can do with this”.

Now at my pre-Bletchley cryptographic school in London I had learned
that you can sometimes get results by writing out a cipher text on a period
and looking for repeats. I resolved to do this with one or more impulses of
the key. But on what period? I had been given some information about the

! old spelling
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letters of the indicator. There seemed to be 25 possibilities for 11 of these
but only 23 for the last. Perhaps I should try periods of 23 or 25. Or why
not try both at once by writing the impulse on a period of 23 x 25 = 5757
I can’t say that I had much faith in this procedure but I thought it best to
seem busy. So I wrote out the first impulse in 7 rows of length 575 and looked
for repeats of short patterns of dots and crosses, vertical repeats from row to

row.?

As expected there were not significantly many. But then I noticed a lot
of repeats on a diagonal. It seemed that I would have got better results on
a period of 574. So I wrote out the impulse again on that period and found
pleasingly many repeats of dot-cross patterns of length 5 or 6.

Then I tried a period of 41, this being a prime factor of 574, with even
better results. The upshot was that the first impulse of the key was a sum of
two sequences that I named x; and ¥, of dots and crosses. x; was periodic
with period 41. ¥; was basically periodic too, with period 43. But whereas
x1 moved on one place for each letter, ¥; sometimes moved on one place and
sometimes stayed still.

At this stage the whole Research Section joined in to analyse each other
impulse into a x-wheel and a ¥-wheel. In “Code Breakers” it is recorded
that the x-wheels, in order from the first impulse to the 5th, had periods 41,
31, 29, 26 and 23, while the ¥-wheels had periods 43, 47, 51, 563 and 59. A
major discovery was that the x-wheels moved in step. Either all moved on
one place or all stayed still. They moved whenever an 11th wheel showed a
cross. (Period 37.) This 11th wheel moved on one place when a 12th wheel,
of period 61, showed a cross, and the 12th wheel moved on one place for each
letter. The 11th and 12th wheels were called the “motor wheels”.

In “Code Breakers” I am said to have worked out the whole of this by
myself, but that is an exaggeration. Note that the fifth y-wheel had period
23 and the clue from the indicator letter of 23 possibilities was a valid one.

Presumably if T had not noticed the diagonal repeats I would have tried
the method again on the 2nd, 3rd, 4th, and 5th impulses. And on the fifth
it would have worked, the fifth y-wheel having period 23. I suppose I would
have been said to have broken the key by pure analytic reasoning. As it was
I was thought to have a stroke of undeserved good luck. There must be a
moral in this.

A cryptographer might criticize the German x-patterns which contained
too many sequences of 3 or more dots or 3 or more crosses. In the resulting
x-key most of these sequences were stretched out to greater lengths. Hence
in a key impulse sequences of five basic symbols were significantly often the
corresponding part of the x-wheel, or the reverse thereof. The critic must
point out two grave errors, first the poor ¥-patterns and second the sending
of a long depth of two. Either error without the other the Germans would I

2 T hope no one is going to ask why I didn’t use a computer.
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think have got away with. But the two together gave away the structure of
the machine.

With our knowledge of the machine we could work on some keys from
shorter depths. We discovered that in the past there had been a change of
wheel-patterns once a month.

It was early in 1942 that we got an opportunity to attack current traffic.
Then a vulnerable depth came in. It was read and yielded about 1000 letters
of key. I have a vague memory of a depth of 3 at this time, and this may have
been it.

4 Attacks on current traffic

The 1000 letters of new key proved a disappointment. We discovered later
that the Germans had corrected their ¥-error. So the method that had been
so successful with HQIBPEXEZMUG did not work.

Then we received a near-depth, two messages whose indicators agreed
in all but one letter, that letter corresponding to a x-wheel. I advocated
an attempt to read this even though the reading would have to be from 4
impulses only. However the difference between the two keys would be periodic;
after sufficient initial success the messages could be so corrected as to be read
as a true depth. It was a very difficult task requiring skilled linguists. Such
people existed at BP and some of them tackled the near depth. They read
it and got the key, with extra information about the off-set yx-wheel. That
was 30 or so possibilities for its pattern only a few being plausible. With that
extra information it was possible to analyse the key.

It was Alan Turing who not long afterwards solved the problem of analysing
a length of key obtained from an ordinary depth. He would assume the first
two symbols in the y; pattern to be X, or perhaps ee. The possibilities
Xe and XX are not genuine other choices since the reversal of all xy and ¥
patterns leaves the key unaltered. Suppose he assumed eX. Then at each rep-
etition of that part of the y; pattern one can deduce ¥; as either eX, Xe, XX
or ee. If one of the last two he provisionally assumed ¥; had not moved. He
then got the corresponding doublet (2 possibilities) in the other x-wheels and
repeated it through the key according to the y-periods. And so on, making
as few corrections as were necessary for consistency. It is a method requiring
great artistry. I never used it successfully myself. But there were others with
whom it worked well enough.

We were reading only those messages that the German operators were
careless enough to send in depth or near-depth. That was too few to sat-
isfy Bletchley’s customers. We learned however to use known wheel-patterns
to break messages not in depth. Basically a commonly occurring “crib”
like SPRUCHNUMMER, or OBERKOMMANDO9WEHRMACHT would be
“dragged”, that is tried in one position after another until a plausible stretch
of key was obtained. It was plausible if some positions of the y-wheels gave
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plausible ¥ patterns, i.e., not too many occurrences of eXe or X e X. In prac-
tice at least one x-wheel had to have a known setting, that is have the same
indicator letter as in some message already read. So the more messages that
were read, the easier it became to read others.

It was even found possible to break the wheel-patterns for a month from
indicators alone, exploiting stereotyped beginnings and information from in-
dicators as to which wheels in which messages had the same setting. I remem-
ber trying this method myself, getting some initial success but soon losing
control. Then Capt. J. M. Wyllie tried. In civil life he edited the Oxford Latin
Dictionary. “This is just the job for a lexicographer” quoth he. And he broke
the wheel-patterns for a past month, hitherto untouched.

The method was used. But since it required so many messages it was
unlikely to succeed until late in the month. It might be cut short by the
breaking of a depth and then its partial information would help in the reading
of other messages.

In the second half of 1942, with all this progress we thought we were doing
well. And so we went on through 1943.

It could not last. Eventually the Germans, noticing that the indicators
were giving away information that need not be given away, abolished 12-
letter indicators. Instead they gave a simple number. Presumably the operator
looked up the number in a book and found his twelve letters against it.

We could still recognize depths, messages with the same number and, with
luck, get wheel-patterns from them. But how to set those wheel-patterns on
other messages?

5 The statistical method

The question now was as follows. Given a cipher message Z, and given the
corresponding wheel-patterns, how were we to set those wheels so as to deci-
pher the message?

In the ¢th impulse we have

Zi =xi + ¥ +Cy. (1)

For some purposes it is desirable to replace Z; by AZ;. The nth symbol
of AZ; is the sum of the nth and (n + 1)th symbols of Z;. We could call
AZ; a difference. Addition and subtraction are the same in this arithmetic.
Similarly for x;, ¥; and C;. We note that Ay; has the period of x;. Also AY;
is zero whenever ¥ stays still.

Let us write (1) with ¢ = 1 and then with ¢ = 2 and let us add the two
equations

(AZ1 + AZ5) = (Ax1 + Axe) + (AW + Ad,) + (ACL + AC2).  (2)

I derived this equation because I suspected that A¥; + AW, would be mostly
dot. It is always so when ¥ stays still and sometimes so when x does not. I
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calculated that it would be about 70% dot. Note that (Ax; + Ax2) has period
41 x 31 = 1271. AC1 + AC,, constructed from a military German message,
was expected to be 60% dot or a little more. I concluded that AZ;, + AZ,
agreed more often that not with Ayx; + Axs. In favourable cases there might
be as much as 55% agreement. It seemed that to set x; and x» we should
try Ax1 + Axs against AZ; + AZ, in all the 1271 possible relative positions
and pick the one with best agreement.

Extensions of the method would set the other x-wheels.

I remember explaining the method to Gerry Morgan and Max Newman.
There were rapid developments. Post Office engineers in consultation with
applied mathematicians mechanized the process using first electrical relays
and then vacuum tubes. This was the way to Bletchley’s pioneering electronic
computer “Colossus”. In those days telephones and the associated engineering
problems were the responsibility of the Post Office.

Soon x-wheels were being set on current messages and Bletchleyites spoke
of the process of “dechiing”.

After dechiing there remained the sum C + ¥. Since C and ¥ each had its
peculiarities this could be broken somewhat in the manner of a depth. Or you
could say it was the old process of “dragging”, simplified by all the x wheels
having been set. The process was called “depsiing”. Or, when unsuccessful
“deep sighing”. This process was carried out by hand, mostly by members of
the W.R.N.S.

It occurred to me that with a sufficiently long message this statistical
method might be strengthened so as to find the unknown wheel-patterns.
One day, having received a message 15,000 letters long I tried out the idea.
It worked. I remember reporting to Major Tester, head of the appropriate
Section (known as the Testery) with the news of “the first machine to be
broken on a depth of one”.

Statisticians at BP, notably Jack Good greatly strengthened the method
and the famous Colossus computers were programmed to apply it. Now dep-
siing became a more tricky process being done with initially unknown psi
patterns, which had to be determined in the process. For this work would
normally be done in the absence of any helpful depth.

Meanwhile the Germans began to change the wheel-patterns every day
and to make the ¥ movement depend partially on the y-wheels, or even on
the past plain text. But production at Bletchley continued up to the end of
the European War.

It appears from the work at Bletchley that the main weakness of the
Tunny machine was that the five ¥-wheels kept in step. They either all moved
on one place or they all stayed still. Turing’s method and the statistical
method all depended on this, and so did dragging in the days of indicators.
The mere fact that the cipher was additive was also a weakness since depths
could be read however subtle the machine. I suppose there was a switch
allowing an effortless return to the initial position. With such as switch it
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would have been hard to avoid sending an occasional depth, especially in
times of emergency, strain and overwork.

There was another teleprinter cipher machine that we called “Sturgeon”,
used by the Luftwaffe. It mixed the five impulses more thoroughly than did
Tunny. There was a permutation of the five impulses in the course of key
construction.

“Code Breakers” explains why the authorities decided to concentrate on
Army Tunny rather than Air Force Sturgeon. One reason: resources were
limited and it seemed better to make a full scale attack on one cipher system
than to make half-hearted attacks on both. Another reason: Enigma was
supplying much information about the German Navy and Air Force but little
about the Army.

To which I might add that though we found out how Sturgeon worked we
failed to think of a way to apply that knowledge to the reading of messages.
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Sturgeon, The FISH BP Never Really Caught
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1 Introduction

The German armed forces employed three different types of teleprinter cipher
machines during the Second World War, the Lorenz machines SZ40 and SZ42
also called Tunny by Bletchley Park (BP), the Siemens Schlisselfernschreib-
maschine (SFM) T52, and the one-time-tape machine T43, also manufactured
by Siemens. The Lorenz machines, which existed in three different models,
S740, SZ42a, and SZ42b, are well known as the machines that were broken
at BP with the aid of Colossus. The Siemens T52 existed in four functionally
distinct models, T52a/b, T52¢ and T52ca — which was a modified version
of the T52c machine, T52d, and T52e, all going under the BP code name
of Sturgeon, while the Siemens T43 probably was the unbreakable machine
that BP called Thrasher. The T43 machine came into use relatively late in
the war and appears to have been used only on a few selected circuits.

This paper will, for the first time in the open literature, explain in de-
tail the events that led to BP breaking the Sturgeon machines. In 1964, the
Swedish Under-Secretary of State Erik Boheman first revealed that Sweden
had broken the German Geheimschreiber (T52) during the Second World
War. [4] In 1967, David Kahn gave further details about this achievement.
[16] However, it was only in 1984, when Hinsley et al. published part one
of the third volume of “British Intelligence in the Second World War,” that
it was officially acknowledged that BP also had experienced some success
against the Siemens T52. [13] Previously, many authors had confused the T52
with the Lorenz SZ40/42 machines and had erroneously linked the Siemens
T52 to Colossus. Since 1982, Donald Davies has published detailed informa-
tion about the electrical and mechanical construction of the machines. [6-8]
And Wolfgang Mache has through his contacts and interviews with former
Geheimschreiber operators and technicians presented the evolutionary his-
tory of the Siemens T52 machines. [17-19] Apart from Sir Harry Hinsley’s
and Professor Tutte’s [22] references to BP’s attack against the T52 there
has so far not been any detailed account of this part of BP’s history. It is
hoped the present paper will fill this void.

The first section of this paper gives a short overview of the German
teleprinter cipher machines and their use, followed by a short section ex-
plaining how and when BP first encountered the Sturgeon traffic. The third

* This article represents the views of the author but not necessarily those of his
employer or any other third party.
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section explains the cryptographic principle used by the Siemens T52 ma-
chines. Here, for the first time, the “Pentagon” is introduced and an explana-
tion is given of how important this device was for BP’s attack against the first
T52 model it encountered. The following two sections continues the historical
presentation of BP’s attack on the T52 and its struggle to keep abreast with
the German cryptographers continuous changes to the machines. For the first
time, it is revealed that BP broke the T52d, a machine with irregular code
wheel movement. This was indeed a major achievement. Sections seven and
eight explain what knowledge BP gained from the captured machines and
the information they acquired through both FISH and Enigma decodes. The
section entitled The Cryptanalytical Problem gives new and detailed crypt-
analytical information about the structure of the T52 key generators and how
this information was used to attack the machines. A constructed example of
how to perform an attack on T52 messages in depth! concludes this section.

2 The Machines and Their Use

All the German teleprinter cipher machines were on-line machines. This
means that when an operator types his plain text message on the transmit-
ting machine, A, the same plain text appears immediately on the receiving
machine, B. Neither of the operators ever sees the cipher text. The Lorenz
machines were from their inception designed to be suitable for use on high
frequency radio circuits operating in the 3 to 30 MHz bands. Radio signals
in this frequency range are affected by both slow and fast fading, Doppler
shift and multipath propagation which can easily play havoc with the digital
teleprinter signals. All these machines used the standard teleprinter speed of
that time, 50 Baud, which results in an element time of 20ms. They were
asynchronous machines using a start and stop pulse for each transmitted char-
acter. The SZ40/42 machines had a better receiver design than the T52 and
were therefore more successful in reconstituting severely distorted teleprinter
pulses. Towards the end of the war Lorenz worked on the development of
an improved machine, the SZ42c, which applied the cryptographic process
directly to the radio signal itself.? It was used in conjunction with a contin-
uously operating, synchronous teleprinter which maintained its speed with
the help of a crystal controlled oscillator. The SZ42¢ was an advanced design
and the German engineers were clearly leading in this area.

It may therefore seem that technical reasons led to the Lorenz machines
being used on radio teleprinter circuits. However, the author believes that lo-

! Two or more cipher texts or messages are said to be in depth when the texts have
been aligned such that the entire texts or parts thereof have been enciphered by
the same key. This process, that messages are enciphered by the same key, can
occur when a cipher machine or system is used incorrectly or from the use of
keys that have been constructed wrongly.

2 “Buropean Axis Signal Intelligence in World War II — Vol.2”, 1 May 1946, A
TICOM Publication released under the US Freedom of Information Act (FOIA).
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gistics are more likely to have been the reason. The Lorenz SZ40/42 machines
were a German Army development, while from an early stage the T52 ma-
chines were adopted by the Air Force and the Navy. The T52 machines were
only allowed to remain on board naval ships while they were in harbour. It is
evident that they would mainly be connected to the well developed telegraph
line network which covered the most of German occupied territory. This was
also the situation for the machines used by the German Air Force. On the
other hand, a large part of the German Army tended to be continually on
the move and it was relatively seldom that they could connect their machines
to the fixed telegraph network. With time the T52 machines also appeared
on radio circuits. Initially they were used on radio relay connections using
frequencies in the VHF and UHF range, while later they would also appear
on circuits in the HF (3-30 MHz) area.

3 The First Encounter

BP first observed Siemens T52 traffic in the summer and autumn of 1942.
Most of the traffic passed on a radio link between Sicily and Libya, which BP
called the “Sturgeon” link. [1] In the same period there was also another link
from the Aegean to Sicily that BP called “Mackerel”. The operators on these
links were in the habit of sending a large number of cipher text messages using
the same machine settings. When using the machine, they sent a short cipher
text, followed by some operator chat in clear text. They then transmitted in
clear the signal “UM UM” (Umschalten — switch over) and the cipher text
continued but with the machine set to its initial setting. These interruptions
and operator exchanges were frequent and the cipher texts in depth would
continue to accumulate. The depths allowed the BP cryptanalysts to analyse
the machine in detail and they soon discovered that the machine had 10
code wheels whose patterns appeared to be fixed. At least that was their
assumption based on the intercepts during September and October and the
first two days of November. After that, the Sturgeon link and its traffic came
to an end. In the period before September the interception was too bad to
allow any of the traffic to be read.

4 The Cryptographic Principle

The analysis of the intercepts showed that the Sturgeon machine was using
two operations, a modulo two addition (XOR) and a permutation of the
resulting five teleprinter code elements. The modulo two key was called the
subtractor and represented by the symbol X' while the permutation key was
called the permutor and represented by II. The cryptographic algorithm,
transforming a plain text character P into its cipher text character C, is
given by

C=I/Paox) (1)
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where @ signifies modulo two addition. The plain text character is first added
to the subtractor modulo two and the permutor then permutes the result.
On reception the inverse permutation took place before the addition of the
subtractor, which gives

P=Cll'oXx (2)
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Figurel. SFM T52’s functional diagram.

A schematic diagram of the basic operations of all the T52 machines
is given in Fig.1. The ten rectangles of varying heights symbolize the ten
code wheels whose circumference carried bit patterns of different lengths.
The wheels were bakelite disks with protrusions which were sensed by one
or more electrical contacts. A more modern analogy for the code wheels is
shift register sequences of different lengths. In Fig. 1 the length of the code
wheel sequences is written above each of the ten wheels. The code wheels
were labelled A to K from right to left, omitting I. These wheel identities are
used later in Fig. 4 which gives a description of the wheel stopping logic for
the Th2d machine.

Below the wheels, the plug connections that make up the main inner key
are shown connecting each of the ten wheels to the various elements of the
XOR and transposition circuits. The figure is an accurate representation of
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the functioning of the T52a/b and T52d machines. In these two models each
code wheel consisted of four identical cams, each fitted with a changeover
contact which was used in either the XOR circuits or the transposition circuits
of the transmitter and receiver part of the machine. The plugs connected to
the code wheel contacts were labelled with the corresponding wheel identities
A to K, each wheel being equipped with two plugs, one red and the other
black. The corresponding sockets in the transposition circuit, ten in total,
were labelled from 1 to 10. Sockets 1 and 2, 3 and 4, etc. were paired together
but we will see later that any of the two plugs of a given wheel can be plugged
into any of the transposition sockets. Further, the red/black order had no
electrical significance and the two plugs could be swapped. The ten sockets
in the XOR circuit were labelled with Roman numerals from I to V in pairs,
where each socket in a pair carried an additional a or b label, e.g. sockets
Ia and Ib. For the XOR circuit the plug order had to be strictly adhered to
and the two plugs of a given wheel had to be plugged to the sockets with the
same Roman numeral pair, e.g. red K would plug to ITa and black K to IIb.
If the plugs of a given wheel were connected to two different Roman socket
pairs a short circuit of the + 60 volt signalling supply would be the result.

The T52¢/ca and T52e machines modified this relatively complex circuit
by using relays with multiple contact sets for the functions in the XOR and
transposition circuits. These so-called SR relays were controlled via a logic
circuit driven by the cam contacts on four different code wheels. On these
machines the code wheels had one single cam on each wheel; the other three
cams became superfluous and were therefore removed. The relays SR1-SR5
were used in the permutation circuit, while SR6—SR10 made up the substitu-
tion circuit. The machines also did away with the flexible transposition circuit
of the T52a/b and d models which allowed full freedom in the configuration
of the circuit as will be explained later. The T52¢/ca and T52e machines
used a standard configuration of the transposition units which were wired
permanently in place.

Instead of changing wheel order by plugging, these machines used ten
switches, one for each wheel, which could be set to one of ten positions labelled
1,3,5,7,9, L, II,LII, IV, and V. There were no longer any pairs of plugs and
sockets such that the previous paired designations, e.g. 1-2 and ITa—IIb would
be represented simply by respectively 1 and II. The ten outputs from the
wheel order selection circuit carried the same labels as the switch positions;
here the outputs are called the output channels. Any of the ten wheels could
be connected to any of the ten output channels via the ten switches with the
restriction that a given output channel could only be selected once. If this rule
was not obeyed a short circuit of the + 60V supply would occur. Furthermore,
the labels had lost their previous meaning of Arabic numerals belonging to
the transposition circuit and the Roman numerals belonging to the XOR
circuit. Instead the three machines, T52¢, ThH2ca and T52e, controlled each
of the SR relays via a wheel combination logic which consisted of the modulo
two sum of four different output channels. The wheel combination logic for
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the T52c¢ has previously been published by Donald Davies in his paper on the
T52 machines [7] and is reproduced here in Fig.2. The wheel combination
logic was different on each of the three machines. The logic for the T52e
machine has also been published by Donald Davies in his paper on the T52e
machine, [6] while the logic for the T52ca machine will be presented later.
The information in Fig.2 has also been compared with information from the
archives of the Swedish signal intelligence organization, FRA,? and found to
be correct.

Code Wheel Outputs
135 79|IITIIIVV
SR1 [ X X X X
SR2| XX X X
SR3 XX X X
SR4 X XX X
SR5 |X Xl X X
SR6 XX X X
SR7| XX X
SR8 |X X X
SR9 |X XX X
SR10 X XX X

Relays

Permutor

Subtractor

Figure2. Wheel combination logic for T52c.

The T52¢ and Th2ca machines introduced yet another complexity, the
message key unit. This unit, which consisted of 15 transposition units and
which will be introduced later, was connected between the code wheel cam
contacts and the wheel order selection circuit. Its function was to further
permute the order of the wheels before their contacts were selected in the
wheel order selection circuit which was the main inner key. As explained
later, a new setting of the message key unit would be selected for each new
message. This meant that even if the main inner key would remain the same
the wheels would still have a different function for each new message.

The T52d and e models also had irregular movement of the code wheels,
a so-called stop-and-go movement. The movement of each wheel was con-
trolled by contacts on two of the other wheels. These two machines also had
a switchable autokey* element where the third bit of each plain text character
would control the movement of the wheels in addition to the control given
by the wheels themselves.

3 FRA, Forsvarets Radioanstalt. See [3,23].
4 Autokey or autoclave is where a part of the key is generated from the plain text
or the cipher text.
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Here is how the machine works in an example as shown in Fig. 1. First, a
plain text character, B say, will be represented by its Baudot code equivalent
10011 or xeex X° as given in the Baudot alphabet in Fig. 5. The plain text
character B is then added bitwise modulo two to the subtractor character,
F say, and the result routed through the transposition circuit, which is con-
trolled by the permutor character, I say. The resulting cipher text character
is Z. The two key characters, F and I, are determined from the code wheel
setting and the inner key configuration once the plain text character B enters
the machine. In addition, the figure shows that an element of the transposi-
tion circuit, the transposition unit, is active when the controlling bit is 0 or,
as BP said, a dot.

Figure3. The Pentagon

The analysis of the T52 key generator showed that the 10 code wheels
were combined in fours. They named this circuit the “Pentagon”. The author
has not been able to find any documentary information about the Pentagon,
however, largely inspired by Professor William Tutte’s beautiful little book
on graph theory, [21] he thinks he has found the answer.

The graph in Fig. 3 is constructed from the wheel combining logic in Fig. 2.
The code wheel output channels are labelled 1,3,5,7,9 and I, II, 1T, IV, V. A
cross in the row for one of the SR relays means that the control of the relay
depends on the marked output channels, e.g. the function for the SR4 relay
is given by

SRA=T®9pI®IV (3)

5 BP used the terms cross and dot to describe the Baudot code elements mark and
space, logical 1 and 0.
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In the graph in Fig.3 the SR relays are represented by the vertices and the
controlling wheel output channels by the edges which join in a given vertex.
The advantage of the graph is that it quickly shows the relationship between
the different SR relays; it clearly shows the topology of the circuit. The
symmetry of the graph is such that it is highly likely that it corresponds to
what BP called the Pentagon.

The Pentagon was cryptographically a weak device. Only four different
subtractors could be associated with a given permutation. Furthermore, the
subtractor character was always even, i.e. the 5 code impulses always summed
to zero. [1] Therefore the plain text character was even whenever the cipher
text character was even, and odd whenever the cipher text character was
odd. For the cryptanalyst this was similar to the Enigma’s peculiarity that
no letter can encipher to itself, and it was of great help in reading depths
and placing cribs.

The first Sturgeon message to be read was at a depth of 40, an almost
incredible depth, which clearly shows that the German operators had no idea
of the detailed functioning of the machine and that they must have disobeyed
orders or been wrongly instructed. Eventually, with the detailed knowledge of
the limitations imposed by the Pentagon device, depths of four or five could
be read fairly easy. The 10 code wheels were set once a day and this initial
setting remained in force during the whole day. However, the machine was
equipped with a small crank which allowed the operator to easily bring the
machine back to its initial code wheel settings. This was the main reason for
the large number of messages in depth. With this knowledge, it was possible
to read messages at depths of two or three as soon as the daily wheel settings
had been recovered. When they could make a guess at a crib of about six
letters even single messages could be broken with the help of the Pentagon
limitations.

The different messages were sent using different wheel orders. There was
some form of message key device that changed the connections between the
code wheels and the Pentagon. However, as the machine was brought back to
its initial position, the binary streams from each of the wheels were always the
same. Five letters were given as a message key, and these always came from
the reduced alphabet: PST U W XY Z. A letter could appear more than once
in the group of five — once the indicator WWWWW was even observed. BP
noticed that when two indicators agreed in n positions, then usually but not
always, 2n of the wheels had the same function in the Pentagon. However,
this rule did not apply to indicators sent on different days. The indicator
system of this machine was never broken cryptanalytically.

Comparing the above description with what is known about the different
Siemens T52 models it is evident that BP was confronted with the T52c
machine. [6-8,17-19] This machine had a code wheel combination logic like
the one described for the Pentagon. It also had a message key unit with five
levers that could be set in eight different positions indicated by the letters P
ST UW XY Z. Like the T52a/b, the ¢ model also had the small crank that
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allowed the code wheels to be brought back to an index position. This was
a conceptual error in this model as the main reason for this wheel resetting
mechanism was to allow the operator to set the message key easily on the
wheels. The T52a/b machines were not equipped with a message key unit like
the T52c¢ and therefore the message key was set directly on five of the code
wheels. The 10 wheels were therefore brought back to the initial position
and the five wheels selected as message key wheels would be set to their
new position. It is debatable whether even this limited wheel resetting on
the T52a/b was a good idea. However, it is evident that the complete wheel
resetting used on the Th2c machines was a blunder of some magnitude.

The Sturgeon and Mackerel links came to an end with the second battle
of El Alamein which started at the end of October 1942. One other signal
transmitted on a T52c machine was intercepted later in November. It was
believed to have come from the Caucasus. It consisted of the usual messages
in depth and was successfully attacked. The messages dealt with the situation
on the Russian front. That was the last appearance of traffic from a T52c
machine.

5 The Reappearance

In the first six months of 1943 other teleprinter links appeared which also used
“UM UM”. Some of the links were known to use the Tunny machine and from
this moment it was often difficult to distinguish between links using the two
machines. Both types of link gave only a QEP number for the indicator. The
only exception to this rule was a link named Salmon where some groups of
letters were sent, apparently as indicators. They were quite different from
the normal Sturgeon indicator groups. Messages on Salmon, which linked
Konigsberg and Mariupol, were intercepted from 11 January to 6 February
1943. The machine was of a much simpler construction than the Pentagon
machine and there was no combination of the wheels. Five of the wheels made
up the subtractor key while the other five wheels constituted the permutor
key. The messages consisted mainly of operator chat.

Even though the new machine was simpler than the Pentagon machine
(T52c¢), it was more difficult to break. The absence of the Pentagon meant
that the parity of the cipher letter was no longer the same as the parity of
the corresponding plain text letter. And instead of having only 60 different
alphabets this new machine had 960. From this description it is evident that
the machine must have been the T52a/b.

In May 1943, a new link, codenamed Sardine by BP, started to oper-
ate between Sicily and Sardinia. This link was never broken. Later in the
year, two operator log books were captured which contained references to
the intercepted traffic on the Sardine link. Time, numbers and priority codes
corresponded to those of the intercepted traffic. Also the same type Luftwaffe
addresses that had earlier been used on Sturgeon appeared on this link.
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A new link codenamed Halibut by BP appeared in July 1943. The link,
which operated between Konigsberg and Munich,® ceased to operate in Au-
gust but reappeared in a changed form in 1944. In its first period, from July
to August, a few depths of four and one of five were found. One depth of four
from August was read and was found to have been enciphered in the same
way as the depths that had earlier appeared on Salmon (T52a/b). Like the
Salmon messages it consisted of operator chat. However, the July depth of
five resisted all attempts to break it. It only succumbed a year later, in June
1944, to a sustained attack. It then turned out that it was enciphered on a
new machine, the T52d.

6 A Historic Achievement

This break constituted the first break of the T52d machine, a machine simi-
lar in construction to the T52a/b but with irregular, stop-and-go, code wheel
movements. The Halibut message did not use the autokey element, Klar-
textfunktion, of this machine but in June 1944 other Sturgeon links were
suspected of using this machine with the autokey function. The break was
nevertheless an outstanding achievement. The T52d was completely broken
from reading a depth of five for a part of the message, while for the remain-
der it was only a depth of four. [12] From BP’s subsequent analysis of the
machine a depth of four appeared to be the absolute minimum. How was
it possible to break such a complicated machine from only one message in
depth of four and five? One answer is that BP was not confronted with a
completely new machine. It was mainly the stop-and-go code wheel move-
ments which differentiated this machine from the T52a/b. The code wheels
themselves had the same patterns as on the T52a/b and T52c machines. It
would turn out later that all the machines in the T52 series used the same
code wheel patterns. The patterns were fixed and no changes were ever made
to them. This constituted a very serious weakness of these machines.

The break itself was a manual operation, but assisted by a large number
of catalogues which showed the possible alphabets that resulted from an
assumption of a plain-cipher text pair of characters. BP did not develop a
machine to assist in deciphering. All the operations were done by hand so
that even developing the subtractor and permutor keys from a given wheel
order and setting was a very slow and tedious process. BP also tried to use
masks and inverse probability calculations, but it is not known if this was
successful. As will be shown later, the permutation circuit only produced
30 out of the 120 possible permutations. Thirty-two permutations should
have been possible with the five double changeover contacts used for the

6 A list of FISH links in one of the Fried reports gives the link as operating between
Memel and Konigsberg. [10] However, as the distance between Memel (Klaipeda)
and Konigsberg is only 120 km, mainly over water, the use of an HF link does
not sound right.
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permutation function, but / and Z produced identical permutations, as did
T and E.7

The break was a success, but it also showed the difficulty this machine pre-
sented cryptanalytically. BP launched a substantial research effort to under-
stand the T52d machine fully and to explore possible cryptanalytical attacks
against it. BP realised that solutions through depths could not be relied upon
in the future because of the increasing use of the autokey function. Another
problem that presented itself was how to differentiate between this traffic and
ordinary Fish traffic generated by the Lorenz SZ40/42 machines. BP hoped
to find statistical techniques that would allow it to identify the traffic.

Wheel

D Longth Controlled by
K 47 E crosses, D dots®
J 53 K crosses, A dots
H 59 K dots, J crosses
G 61 J dots, H dots
F 64 H crosses, G crosses
E 65 G dots, F crosses
D 67 F dots, E dots
C 69 F dots, E dots
B 71 F dots, E dots
A 73 F dots, E dots

® Dot and cross are BP parlance for 0 and 1, space
and mark.

Figured. Wheel stopping logic for T52d.

It is not known how long the July 1943 message was but it is nevertheless
an extraordinary feat to have fully deduced the “motor wheel” logic of the
T52d. In contrast with the Lorenz SZ40/42, the T52d did not have separate
“motor wheels.” Instead, each “motor” was formed by the modulo two addi-
tion of two other wheels, sometimes with inverted logic for one or both of the
wheels. The “motor” or wheel stopping patterns were read from a different
part of the code wheels than those used for the subtractor and permutor
keys. And of course the movement of these wheels was again controlled by
others. Four of the wheels, with the lengths 73, 71, 69 and 67, were controlled
in parallel by two of the other wheels. This was presumably done to ensure a
periodicity of at least 73 - 7169 - 67 = 23961 009. The wheel stopping logic
as derived cryptanalytically by BP is given in Fig.4. [11] The figure shows

" BP replaced the six teleprinter control characters carriage return, line feed, letter
and figure shift, space, and null with the special characters 3,4,8,+,9, and /. See
the teleprinter alphabet in Fig. 5 and Appendix A of [23].
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how the movement of a given wheel depends on two other wheels, e.g. the K
wheel, which is the leftmost wheel in the machine and with a sequence length
of 47, will not move if there is a cross (1) on the E wheel and a dot (0) on the
D wheel. The other wheels have similar relationships to two other wheels.

The deciphered messages referred to experiments with a machine the op-
erators called T52d, which gave BP the final proof that it had broken a new
Sturgeon model. Later two captured T52d machines were found to contain the
same logic as had been derived cryptanalytically from the Halibut message.

In September 1943, the link named Conger appeared between Athens and
Berlin. Hundreds of messages were sent and all were in depth so there was
no great difficulty in reading them. However, their intelligence value was nil.
The messages contained only operator chat.

Conger contained references to the T52b, a machine that had previously
been captured in Tunisia. By correlating the recovered code wheel sequences
with those of the actual machine it was found that the initial position corre-
sponded to that of all wheels set to one. The wheels were used in the order of
their periods, while the operation of the machine corresponded to what had
earlier been observed on Salmon, and in the August Halibut messages. In
November, similar Conger messages in depth were sent; this time the wheels
were all set to two.

The description of the Conger usage is frankly amazing and shows a com-
plete disregard for applying secure keying instructions for the machines. It
would seem that the machines were used by operators who had never read
the instructions and who had not been issued with operational keys for these
machines. One also gets the very strong impression that the majority of these
links were not operational links, but reserve channels kept open mainly with
operator chat and test messages. However, their usage was cryptographically
damaging to the machines.

Both Conger and Halibut reappeared early in 1944 in a slightly changed
form. The new Halibut messages were all short, while earlier they had often
been very long. Conger, on the other hand, often contained long messages.
Depths, in this case messages with the same QEP number, of up to four oc-
curred. However, the messages had no repeats, which strongly indicated that
the autokey function was being used. This hypothesis was further supported
by the intercept logs which contained phrases like “Mit KTF 7 and “Ohne
KTF 7 where KTF was the abbreviation for “Klar Text Funktion”. BP did
find one depth of two without the autokey function, but a depth of two was
considered to be unbreakable.

Shortly afterwards it was decided to cease the interception of links using
the Sturgeon machines as it was considered to be unprofitable. In the autumn
of 1944 many Tunny links, which also used an autokey element, ceased to
use this function and Enigma messages were found ordering the Sturgeon
operators to stop using autokey on the T52d and T52e machines. During the
same period, one day’s traffic on Conger was intercepted. It was found to
be in depth of two and without the autokey function. However, there are no
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further indications that a lot of effort was invested in the Sturgeon machines
and their traffic.

7 The Captures

The first Sturgeon machine to be captured was a T52b which was found
in Tunisia. It was discovered that the code wheels on this machine moved
regularly and that they did not combine. It was therefore evident to BP that
it was not the Pentagon machine (the first Sturgeon type of machine to be
intercepted and broken).

Later a full technical description of a machine which combined the func-
tions of the T52a/b and T52¢ was captured on Elba. It appeared from this
description that the TH2c¢c machine was related to the Pentagon machine as
it combined the code wheels in fours. However, the number of alphabets was
found to be 256 instead of 60 as for the Pentagon machine. It will be shown
later that this T52c machine was the modified version, T52ca. The T52a/b
mode showed that the machine could have been used for the Salmon, August
Halibut messages and the early Conger traffic.

The Elba description also showed that the T52¢c machine was equipped
with a wheel permuting mechanism corresponding to the message key unit
described earlier. It was found that the unit consisted of five levers each of
which controlled three switches out of a set of 15. Each switch interchanged
two wheels in its active position and left their order unaffected in the inac-
tive position. A switch was active or inactive depending on the position of
the controlling lever, but the correlation of active switch position and lever
position was different for the three switches controlled by a given lever. This
circuit has been described in Donald Davies’ paper on the T52 machines. [7]

In addition, it was found that all the machines were equipped with a set of
switches or plugs which constituted the main inner key setting. The switches
or plugs selected which of the ten code wheels controlled a given functionality
in the cryptographic process. After the capture of the Elba description, an
actual machine of this type was captured at Naples. This was clearly a T52c
machine, but the message key unit with the five levers had been removed.
It was noted that the machine was very similar to the first captured T52b
machine; the TH2b also had room for a message key unit although none was
actually fitted. Yet another machine was captured at Naples. On this machine
the original type number, T52b, had been altered to T52d. This machine
was equipped with the wheel stopping logic and had a switch to enable or
disable the autokey function KTF. Without KTF the code wheels had the
same movement as the one derived cryptanalytically from the July Halibut
message. When the KTF was active, the wheel movement logic became more
symmetrical and the third impulse of the clear text governed part of the logic.
Two of the wheels were controlled by a plain text cross (1), while two others
were controlled by a dot (0). This logic has also been described in detail by
Donald Davies. [6-8]
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Later yet another T52d machine was captured, which had been altered
from a T52a. Comparing this machine with the T52b, it became obvious that
the two models must have been very similar. It is known from German sources
that the only real difference between the two machines was that the T52b was
fitted with extra filters to reduce interference to radio installations. [18,20]

Together with the T52c machine description captured at Elba, allied forces
also captured two key book pages, one for the T52d, and one for the T52a/b
and T52c¢ machine. One side of each page gave the table for 3 June 1944,
while on the other side was the table for 4 June. Each table consisted of 25
rows labelled with the letters from A to Z, omitting J. A similar table for
the T52d/e machine is reproduced in Appendix A. The message key QEP
FF OO PP AA ZZ VV CC MM HH UU corresponded to setting the leftmost
code wheel to 19, as can be found in column 1, row F. The wheel to its right
is set to 11 as given in column 2, row O etc. The complete code wheel setting
for this message key was: 19 11 56 31 59 33 13 46 02 25.

The corresponding table for the T52¢ machine is reproduced in Appendix
B. The same method of indicating the code wheel setting applies to this
table, but in addition the lever settings for the message key unit are in the
first five columns. The same QEP message as above would give the code
wheel settings: 47 23 09 27 34 45 26 09 02 48 here, with the message key
levers at: p t p s x. The use of these tables and the method of disguising
the code wheel settings that were transmitted as QEP numbers or letters
changed several times throughout the war, but the tables themselves largely
retained their original structure and layout. The main instructions for the
use of teleprinter cipher machines, Wehrmacht Schliisselfernschreibvorschrift
(SFV) [9], indicate there were three basic key tables in use, Fernschreibgrund-
schlissel (main inner key), Fernschreibwalzenschliissel (code wheel key), and
Fernschreibspruchschliissel (message key). An example of the Fernschreib-
grundschliissel for the T52d is reproduced in Appendix C.

8 Intelligence From Decodes

References to the Sturgeon machines were frequent in both Tunny and Enig-
ma traffic. In 1942 the decodes referred only to the T52a/b and T52¢ ma-
chines. The Wehrmacht SF'V as referred to above was issued on 1 December
1942 and also refers only to the T52a/b, T52c and SZ40 type of cipher ma-
chines. It is therefore very likely that these were the only machines available
in 1942. BP also appears to have captured a copy of the Wehrmacht instruc-
tions some time before November 1944.

On 17 October 1942 a message® from C.S.0.° Luftflotte 2 to Fliegerfiihrer
Afrika mentioned that T52c¢ had inadequate security. It gave orders that

8 Message on the Luftwaffe’s Red (the main Air Force) key, 121-2-3, 17/10, 6610.
The author has so far not been able to trace any of these messages.
9 C.8.0. = Chief Signal Officer.
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“Secret” and “Secret Commands Only” (probably translation of Geheime
Kommandosache — Top Secret) are to be enciphered on Enigma before being
sent over Sdgefisch (Sawfish) links.

This message passed between stations served by the Sturgeon link using
the T52c¢ machine. Nevertheless, seemingly important messages continued
to pass over this link without being previously enciphered on the Enigma.
However, many Enigma messages also passed over this link before it ceased
operation on 2 November 1942.

This message doubting the security of the T52c stands in contrast with
the Wehrmacht SF'V which contains a clear instruction not to use the T52a/b
over radio and radio relay connections (Richtstrahlverbindungen). The T52c
was the only machine authorized for use over radio and radio relay links.
However, we have seen that the Luftwaffe for some reason did not obey these
instructions and that they used the T52b machine for practice messages on
the Salmon, Halibut and Conger links. This shows that Luftwaffe cipher
officers must have been unaware of the close links and similarities between
the different T52 models and that they did not see the danger these practice
transmissions were to the other machines.

In February 1943, decodes show that the Germans suddenly had discov-
ered that something was seriously wrong with their Sdgefisch machines. A
message from Madrid to Paris'® said that the T52 was very badly compro-
mised and that enemy decipherment was possible. “Secret” and “Top Secret”
messages were no longer to be sent over the T52.

On 18 February 1943, a new set of instructions for using the T52 machines
were issued:!!

1. The indicator systems in use with the T52a/b and c are cancelled.

2. Henceforth the ten wheel settings are to be given instead and sent
on a specific emergency key.

3. A new method of indicating the settings of the five message key
levers is to be used.

4. The device for setting back all the wheels to the so-called zero
position is to be removed.

Point four of these new instructions shows that the Germans had finally
discovered the faulty operator practice of sending many messages on the
same key due to the facility for doing so offered by the T52 wheel resetting
mechanism. Apparently they also suspected some weakness in the use of the
message key procedure and therefore introduced new, temporary measures.
They would later abandon the use of QEP numbers and use the QEP struc-
ture with ten bigrams that has already been presented in the previous section.
It is not clear why this was considered a better procedure but it is possible it

19 Message on the Abwehr link Madrid-Paris, RSS 6713/2/43.
' Message on the Army’s Bullfinch 1T (Italy) key, 1735/18/2/43.
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offered more flexibility in choosing messages keys than the previous method
using QEP numbers.
On 19 February, yet another message'? gave further instructions:

1. T52a/b is not to be used for “Secret” and “Top Secret” messages,
except when other means are not available.

2. If teleprinter links are used there must be previous encipherment
on Enigma.

3. After the changes to the T52¢, and after a change in the indi-
cator system, “Secret” and “Top Secret” messages may again be
forwarded without previous encipherment on Enigma.

In March two messages'? said that traffic on the Aptierte (adapted) T52c
no longer needed to be enciphered on the Enigma. From then on there were
references to the TH2ca, which probably stands for T52¢ Aptierte. Then fi-
nally on 14 June 1943 there was a message'* to the Naval Communications
Officer in Sulina and other addressees that said: “On the completion of the
adaptation to SFM T52c, the designation T52ca will no longer be used. The
designation T52c¢ only is to be used from now on.” The changes made to
the T52c concerned the wheel combining logic which BP had found to be of
such great help when breaking the Pentagon machine. This indicates that the
Germans must have made a detailed analysis of the machine and found this
part of the logic to be particularly weak.

The knowledge of German security evaluations and analysis of their own
cipher machines has not yet been fully declassified and released. It is there-
fore not yet possible to give a detailed picture of what the Germans knew
and suspected with respect to the security of their crypto systems. However,
it is known that Dr. Eric Hiittenhain, the chief of the cryptanalytic research
section of OKW/Chi (Oberkommando der Wehrmacht/Chiffrierabteilung),
examined the T52a/b machine in 1939.% He found that this machine had an
extraordinarily low degree of security and could be broken with about 100
letters of cipher text without a crib. This study could have resulted in the
Wehrmacht SF'V instruction prohibiting the use of the T52a/b on any form
of radio channel. However, it is perhaps more likely the discovery by the Ger-
mans on 17 June 1942 of the Swedish success in breaking this machine led
to the restriction. [23] OKW/Chi suggested changes in the machine, includ-
ing ways of producing non-uniform code wheel stepping but for engineering
reasons Siemens refused to accept these changes. Instead a new machine, the
T52c, was produced which overcame some of the more obvious weaknesses of
the earlier model. The T52c was studied by the Army cryptanalyst, Doering,

2 Message on the Army’s Merlin (Southern Europe) key, 19/2/43.

13 Message on the Luftwaffe’s Red key, Nos. 322/4 and 387/7 of 6 March 1943.

14 Naval message 14/6/43, 77, Mediterranean.

15 «“FEuropean Axis Signal Intelligence in World War II — Vol.3”, 1 May 1946, A
TICOM Publication released under the FOIA.
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from OKH/Gen d Na (Oberkommando des Heeres/General der Nachrichten
Aufklirung) in 1942. He showed that it could be broken on a text of 1000
letters. This study was apparently assisted by cryptanalytical machinery in
use by OKW/Chi, but it is not known how involved Dr. Hiittenhain and his
people were in the actual study and its recommendations. The investigations
resulted in the design and production of the T52d. The security analysis of
the T52d was continued, mainly by Doering, and early in 1943 he showed that
this machine was also insecure. This resulted in the production of the T52e.
However, it was known that both the T52d and T52e machines were open to
attacks through messages in depth and that at a depth of ten messages could
be read without a crib.

However, the cries of alarm from the German cryptographers were not
heard, or at least not acted on, by the German Army and Air Force. In the
summer of 1942 the totally insecure model T52a/b was still in use and the
equally insecure T52c was being distributed. The Army’s position was that
the teleprinter traffic went over land lines and could not be intercepted, hence
there were no need to worry about inadequate security. Evidence of tapping
of the teleprinter lines that appeared in Paris in 1942 and 1943 gave the Army
a serious jolt and the Army’s signal authorities were forced to reconsider their
views on teleprinter cipher security. However, it was too late and the newly
developed T52e was only slowly being introduced at the end of 1944.

The first reference to the T52d machine appeared in the decodes in Octo-
ber 1943.1% Subsequently, there were frequent references to all three models,
T52 a/b, ¢, and d. From September 1944 onwards, there were also references
to the newly developed machine T52e. Traffic from this machine was never
observed or at least identified as such by any of the allied cryptanalytical
services and the machine remained unknown to them until the end of the
war.

9 The Cryptanalytical Problems

On 29 July 1944 Captain Walter J. Fried, the US Army Signal Security
Agency’s (SSA)!7 liaison at BP, sent his report No. 68, [12] which he devoted
entirely to the Sturgeon problem, to the SSA headquarters at Arlington Hall.
He started the report with the following assessment: “The problem of solving
current traffic seems completely hopeless. The only feasible method of solv-
ing messages enciphered on the ThH2d machine seems to be through depths.
Sometimes the “motor” action is switched off and this gives rise to several

6 Message on the Luftwaffe’s Red key, 279/0, 4/10/43.

17 The agency went through a number of changes in both name and organization
during the period 1939-1945. It was named Signal Intelligence Service, Signal
Security Division, Signal Security Service, Signal Security Branch, etc. before it
was redesignated Signal Security Agency on 1 July 1943, later to be changed to
Army Security Agency on 15 September 1945.
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possible techniques of solution.'® For the most part, however, the problems
which seem capable of solution are comparatively trivial. The fundamental
difficulty of the general problem arises from the fact that that a crib does not
yield key.”

To give a better feeling for the fundamental cryptanalytical problems I will
attempt to give an overview of what is involved in breaking the T52 machines,
and how certain features of the machine hampered this task, while other fea-
tures made it easier for the cryptanalyst. The basic algorithm of the machine
has already been explained. To recapitulate, a five element teleprinter plain
text character will first be added modulo two to a five element subtractor
character and then permuted under the control of another five element per-
mutor character as given by the encipherment formula (1).

0 1 2 3 4 5
/IE4 93T/ ASDZIRLNHOUJWFYBCPGMKQ+XV|8
1|le o 0o 0 0 e 0o 0 0 00 o o 0 o .
2|le|® o 0o 0 o 0o 0 o 0o 0 LI I ) . .
3|le|e @ o o0 L) o o . o0 . . .
4ileje o @ oo o L) . ° . ° . . °
Slleje © o @ o 0o 0 o o . o o . . .

“l#|3 # # #5(- " #+84) , *x9|7T#2*67:0x*x .[(1#/=|#

@ In the figure shift row control characters and other special functions are marked
with #, while the national special characters are marked with *.

Figure5. International Telegraph Alphabet No. 2 in class order

A simple way of representing the relationship between the four elements
P, C, X and IT is through a 32 x 32 x 32 cube. One of the elements P, C or X
can be placed in the cube and the other three elements along the three axes.
IT cannot be placed inside the cube as it is not uniquely defined by P, C and
. The cube can then be cut by planes along any of the axes and it will then
be represented by 32 squares slices each of the size 32 x 32 x 1. The choice
of the representation will entirely depend on the problem to be solved. It is
now easily seen that a plain text character from the 32 element teleprinter
alphabet will be transformed into a cipher text character through 32 - 32 =
1024 cipher alphabets. However, this theoretical limit was seldom achieved
in practice. If we analyse the basic permutation circuit used in the T52¢ and
T52e machines we will find that / and Z produce identical permutations, as
do T and E. This means that, instead of producing 32 permutations, the

18 The author’s studies of the T52d and e models have not revealed any possibility
of switching off the “motor” or wheel stopping function on these machines. It
is more likely the observed absence of wheel stopping was due to the use of the
T52a/b machine.
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circuit only generate 30 unique permutations. Therefore these machines only
have 32 - 30 = 960 cipher alphabets. However, this was only achieved in the
T52e. In the TH2c and TH2ca machines the wheel combination logic reduced
the number of cipher alphabets even further.

Subtractor
/IE4A493TIASDZIRLNHO|[UJWFYBCPGM|KQ+XV|8
/| * * * *

E
4
9
3
T
A * % K X
S * % K K
D * * * *
YARS * * *
I|x * * *
R * * * *
L * x ok ok
o|N * * * *
S|H * x ok *
EO * * * *
EU
aJ
W
F
Y
B
C
P
G
M
K * * * *
Q% * * *
+ * * * *
X * * * *
') * * * %
8

Figure6. Alphabet distribution for T52c.

Before we use the cipher squares in our analysis it is useful to introduce
the concept of Baudot classes. The class of a Baudot character is defined
as the number of crosses (or 1’s) that it contains. It is clear that we have
six classes labelled from 0 to 5 inclusive. There are various ways of arranging
these classes but the method used here is the one used at BP, and is shown in
Fig.5. The Baudot classes are indicated in the top row with the letter shift
alphabet used by BP in the row below. The Baudot control characters have
been given the special BP values as previously indicated in footnote 7 on
page 11. Below the alphabet are the five bits of each character’s Baudot code
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value indicated by dots and crosses. The bottom row shows the corresponding
figure shift characters.

Using computer simulations, the T52c’s wheel combination logic has been
analysed: a plot of the 32 x 32 permutor/subtractor square is given in Fig. 6.
The alphabets along the permutor and subtractor axes are in the Baudot
class order: an asterisk indicates the existence of an alphabet. We see that
there are no alphabets in the odd classes 1, 3 and 5. All the alphabets are
clustered in the even classes 0, 2 and 4. This is a confirmation of BP’s finding
that the parity of the subtractor character was always even. We further see
that there are 16-4 = 64 alphabets which, with our knowledge of the reduced
permutor alphabet, gives a total number of 60 cipher alphabets. As the parity
of the characters T and E is odd, the doublet T—E is not possible. Only the
doublet /—Z exists, hence we get 15-4 = 60 cipher alphabets. We also see that
for each permutor character there are only four possible subtractor characters
as mentioned by BP. The plot clearly shows that this machine was extremely
insecure.

Code Wheel Outputs
135 79(TIHIIIIVV
SR1 X XX X
SR2 |X X X X
SR3 X X
SR4 | X X X
SR5 | X X X X
SR6 | X X X X
SR7 XX X X
SR8| XX X X
SR9 XX |X X
SR10| XX X X

Relays

Permutor
>
<A

Subtractor

Figure7. Wheel combination logic for T52ca.

The wheel combining logic of the modified T52ca machine has been recon-
structed using data from the FRA archives. The truth table is given in Fig. 7
while the corresponding permutor/subtractor plot is in Fig.9. In the plot
in Fig.9 the alphabets are in the binary order, not the Baudot class order,
since such a representation shows more clearly the inherent structure of the
wheel combining logic. As we can see, the alphabets are well spread out and
are no longer exclusively of even parity. However, the linear structure is there
and changing one single entry in the truth table will drastically change both
the structure and number of possible alphabets. Each permutor character is
associated with eight subtractor characters, which is twice as many as for the
T52¢ logic. However, if we plot the permutor/subtractor square in Baudot
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class order, we find that when a permutor character is even, the alphabets
have an even subtractor character, and when the permutor character is odd,
so is the subtractor. This information can still be exploited by the cryptana-
lyst. The possible number of alphabets is 32-8 = 256 but, due to the reduced
permutor alphabet, there are only 240 unique cipher alphabets.

1 1 10 10
10 C D C D o1
8 8 9 9
s 20 C D C D 02 g
= 6 6 7 7 m
o 'O ISR =
5 30 - - ©3 3
=}
= 40 C D C D o4 O
2 2 3 3
50 C D C D 05
'A =—0 A
. !
| .
. !
? |
I B =&/—O B |
| .
. !
| .
. !

Permutation Unit

Figure8. SFM T52’s transposition circuit.

The T52a/b and T52d machines use the same layout of the transposi-
tion!? circuit as the T52c and T52e, but instead of using relays for the trans-
position units, these machines directly use the cam contacts on each coding
wheel. What distinguishes the a/b and d models from the others is that the
transposition units, which consisted of double changeover contacts, were not
wired permanently into the transposition circuit. Each of the five contact sets
was equipped with two plug connections which were then plugged into the
transposition circuit. Figure 8 shows the layout of the transposition circuit
together with the circuit of a single transposition unit. The figure shows that
there are two possible contact points in each Baudot bit or element branch.

The connection 1-3 means that either the A or B plug of a transposition
unit will connect to the socket marked with 1’s, while the other plug will go
to the socket marked with 3’s. If A goes to socket one, the left part of the A
plug will plug into the left-hand side of socket one, while the right part of the
A plug goes to the right-hand side of the socket. In this particular case, bit
one will end up in position five when the transposition unit is inactive, while

19 The terms transposition circuit and transposition unit reflect the cryptographic
usage; mathematically speaking the circuit performs a permutation.
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Subtractor
/E4A9SIU3DRINFCKTZLWHYPQOBG+MXVS

* * * * * * * *
* * * * * * * *

Permutor
DL HEB+OQWOOIURIE=SEONHARQTNZOGIOWSHWNO > D EN
*
*
>*
>*
*
>*
>*
>*

Figure9. Alphabet distribution for T52ca.

in the active position bit one will leave on the branch connected to socket
ten. Its final position will depend on the connection that is made from socket
ten.

There are 9-7-5-3-1 = 945 different ways that the five contact sets can be
inserted into the transposition circuit. Computer simulations show that each
of these 945 connection variants results in unique permutation sets. However,
the majority of the permutation sets, a total of 561, are degenerate in the
sense that each set contains only from 1 to 16 unique permutations.

The set with only one single permutation is a special case — it contains
the identity permutation, hence no transposition takes place. There are fur-
ther variants on this where one, two or three of the Baudot character pulses
will not be permuted. There are in total 300 cases where one pulse remains
in place, 80 cases where two pulses are fixed and 20 instances where three
pulses are unaffected. All of these cases belong to the set of the degenerate
permutations. Figure 10 gives an overview of the distribution of the different
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permutation sets. The figure shows that among the remaining 384 permuta-
tion sets, 24 sets have 27 unique permutations, 240 sets have 30 permutations
and 120 sets contain all the 32 permutations. Figure 10 shows that of the de-
generate sets only the sets with 10 and 12 unique permutations also have
normal permutations, in the sense that none of the bits remain in place. All
the other degenerate sets have one or more bits that are not affected by the
permutations.

Number of Unique Permutations in a Set
Bits Stuck|[[ 1 [ 2 [ 4 [ 5[ 6 [10]12[14]16]27] 30 [ 32 |[Total
1 bit 60 30 |180] 30 300
2 bits 20 | 60 80
3 bits 20 20
5 bits 1 1
None 40 [ 120 24 1240(120|| 544

| Total [ 1]20]60]20]60]40[150[180] 30 ] 24 [240][120]] 945 ]

Figurel0. Permutation distribution for T52d.

Looking at the Wehrmacht SFM T52d Key table reproduced in Appendix
C, it can be shown that all the connections in this table belong to the two
groups with 30 and 32 unique permutations. This means that in reality only
360 permutation sets were used by the German cryptographers during the
period this key list was in use. It also means that there are not always only 960
cipher alphabets — there can be as many as 1024. This might be an indication
that the Germans were aware of the fact that not all of the permutations
could be used for cryptographic purposes. This knowledge may have been of a
relatively recent nature. The T52a/b machine may have been used earlier with
connections which resulted in degenerate permutation sets. When the Swedish
cryptanalyst Lars Carlbom analysed the transposition circuit, he found four
main permutation families, of which two could be divided further into three
sub-groups. One of these families, he said, consisted of connections where
one of the transposition units was inactive or disconnected. It is not possible
to disconnect a transposition unit and still expect the machine to function,
but Lars Carlbom did not know this as he had never seen a T52 machine.
He based his analysis entirely on cryptanalytical evidence. In practice, what
happened was that an input impulse exited the transposition circuit at the
same level as it entered; hence no Baudot element permutation was taking
place. The identity permutation referred to earlier is caused by such a set
of connections: 1-10, 2-3, 4-5, 6-7 and 8-9, which leave all the bits in their
original positions. If one or more of these special connections are combined
with other more random connections, the other cases of one or more bits
stuck will occur.
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C
/|E 49 3 T|/ASDZTIU RLNIEHDO
8|V X+ QK|MGPCBYTFWIJIU
/| 8132
E|V 9 92 4 8
41X 8 816 0 0
9| + 4 4 816 0
3| Q 2 2 4 8 16
T|K 9 92 4 8
Al M 8 6 126 12 2 40
d|ls|G 4 2 61 26 1 4 2 4
D|P 21 26126 0 4 8
Z|cC 4 2 48 2 48000
I|B 0 8 408 40800
R|Y 0 4 2 4 4 2 4 480
L|F 8 6 126 12 2 40
N|W 0 0 42 042 8 4 8
H|J 4 2 61 26 1 4 2 4
0| U 2126 126 0 4 8

Figurell. SFM T52’s dibit distribution.

During the year when BP struggled with the July Halibut message en-
ciphered on the T52d it developed and tried out various methods of attack.
Several of them were of a statistical nature and were based on knowledge
gained through the use of statistical techniques on the Lorenz SZ40/42 ma-
chines. The statistical methods BP developed only applied to the “motorless”
machines and would not work on machines with wheel stopping. The T52 code
wheels had an almost even distribution of dots and crosses with a slight pre-
ponderance of crosses. This meant that the modulo two addition was nearly
random. However, this was not the case for the permutations, since certain
impulses were more likely to go to some positions than others. Therefore the
statistical techniques were based on developing statistics for certain impulse
combinations of the “pseudo plain text” character, @, and their probability of
ending up in certain positions in the cipher text character. Here the “pseudo
plain text” is the real plain text transformed by the subtractor key.

d=Pay (4)

The method applies to both single impulses or to pairs, dibits, but plain text
characteristics are more pronounced when using a pair of impulses. For a
given permutation it was possible to enumerate how often dibits of a given
“pseudo plain text” character, @, and its inverse would be associated with
dibits in different cipher text characters, C. This is shown in Fig.11 where
the permutation is generated by the transposition circuit used on the T52c
and e models, and which used the connections: 1-2, 3—4, 5-6, 7-8 and 9-10.



25

Sturgeon

SEHNAEPANOSMEFHFL<SEDAM>UONMOHNZIIXMOOKN+ OO0

MNPRHOoCO=EomMOoO>NEYYAHMOAD+O0OMNhshXASZSHUOD®N =
POEIDNEHDDA+AAXNDONNHACOLU<CONM= >0 < mH N
OS> b AHNMMKBEIADOSLENENDEZNOHOLODMEMO O +
TOMBEAVUL<SINEZONH +XENKADEHAOODALAYFHO>ME=ZO
Z2AMHMHOY > +A0OONKEdOCMNMONMAMONNS AU EDLEBEMHIX

ONA>NNHONMUOZONHOOEANA AN +IXHALIDS<OD =
M=+ ONOEN>rOHAYELEBHOMMOAD XKD AJ0NEMUD
MO0+ E=IEHEAONMOALAVONHE=EHNOOCNH<sDETD AR A
LmOoONDXKSIZDUOONHEAdYano0omoheABRKE+0OHEZNM>O
OUNOHODN<LOJdANN-HXMOEEAEPDAAOO=Z0N+ HMKSM
AE+ESNONMMOEPODAML<IIFOHNANDHOONOONKOAEND >
OR<<o=NCohHYONRH>+OPDMKEomErHOEZnNX dJA MK
HENMUOAEAD>O=ESMMKONNOMA<STEERENOHY +N=ZOM =
NN EHNOEBENOMNMODEXKEZIHO+=2>00nr0csA@mXKED
O ALUHENKEMN=ZN> +HNONHFLFONMNTDUOUAAANMNO<SED

+HANMA>YYEZEPEOARAOIDNOMAKOOHPNELEARHUD =<0
OLUXKFMNMONJdO+HMNMOEdI<SENOEmPDAMMdNEADEBENXD
M NLMHOAOAED<SIEEHENTUOU+HAESHAONMMOOUEMNO R
NS+ =200HIDMXNOEPMOONOoOOY>=2MMXMDIsOHLAAA
AEOSHDHPEPEHNOAHAESXNXUOLEMOO +<FMO>>0ONM
noMxbPHhEAdANLAZDUMERENEZ<SAHO>»+=CcOo0omH<H
HMNOOH=ENTNOUSshLh<APH+ DHAMSY=ZONAMETO>»MN
EEHDNMOEXNMIH+>NNOEPs=nOOoUEHN=0OoMhALAdA
HEMNZO0MON<SOmOoMAXSAXMN>Y+ALO0OBRHITLDOH>0N
N LEtFOMONM=NOX+>IDAHZTOOMBEAAADHKOEDO<

EAPANKAEOAL+O0OF=Z2=Z0OHDUNCO<ShnNHMOAXITHH
PNHEHAN IZ0<SsPDUImOoOBHPOYLOXA+>HANEO=Z=OM
PHALNAEPHIXHDALONEAZ0OMMNEND<<UOMN>=ZH+N0O0
M+ =2n<sMOALOOARBEPOUIN>MDANENOO=ETMLMNMKHMY
FOXMMNMN=E+ DO EKEbLMOoOANONHOdESDEHEA<S>NUH

/IE493TIASDZIRLNHO|UJWFYBCPGMKQ+IXV|8

<AMOUARHLUEHNDNXM A Z20ACRRNEDEENMENME 0O + N

Figurel2. Baudot XOR square in class order

The alphabets in the figure have only a length of 16, as the normal 32
element Baudot alphabet has been folded in half, with each position in the

alphabet occupying a given Baudot character and its inverse, e.g. E and V,

which have the Baudot vectors xeeee and ex X X X. The characters /-8

(which are all dots and all crosses) can only go to one place under all the

32 different permutation, while in all the other cases there are varying dis-

tributions. The characters belonging to classes 1 and 4 have single cross/dot

distributions, while the characters in classes 2 and 3 have double cross/dot
distributions. This is the reason for the clustering of the distributions in the

two squares of size 5 and 10.

But on the T52a/b and d models the permutations were not fixed but
variable depending on the connections of the transposition units. Therefore,

the permutation probabilities, and hence the statistics, depended on the given

permutation set which, of course, was unknown until the machine was broken.
So the statistical techniques available in 1944 were nothing more than tools
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for getting a better knowledge about the cryptanalytical problem. They were
not of much use in attacking the machines.

It appears that messages in depth were the only viable attack on these
machines in 1944. It is far too involved to illustrate a full blown attack on a
real example, but looking at a very small constructed example with a depth
of two and a known crib will give a feeling for the problem. As mentioned
earlier, the attacks in depths were helped by the use of tables and catalogues.
One such table is the Baudot XOR or modulo two square. However, the
table becomes a lot more useful when one of the alphabets is arranged in
class order. This is illustrated in Fig. 12, where the plain text alphabet is in
its normal order along the left hand column and the key alphabet is arranged
in class order along the top row. The intersection of a plain text character
and a key character will give the resulting cipher text character. However,
due to the properties of modulo two addition any of the two alphabets, the
one in normal order or the one in class order, can be used for any of the three
elements plain, cipher or key characters.

To see what is actually taking place and how one might attack two mes-
sages in depth it is of interest to return to the principal encipherment equation

(1)
nrPex)=C
It is easily shown that permutation is distributive under modulo two addition
OXaeY)=IXoIY (5)
If we apply (5) to (1) we get
NP&IIY=C (6)

In other words, the cipher character can also be obtained by first applying the
permutation on the plain text character and the subtractor before combining
these two transposed elements by modulo two addition. In the case of two
messages P and Q enciphered in depth by the subtractor key X and the
permutor key IT we can write the following

IP®IY =C (7)
IQ&IIxY =D (8)

Combining (7) and (8) by modulo two addition eliminates the ITX term and
gives at the basic equation for messages in depth

IPaQ)=CaeD 9)

Equation 9 shows that if either P or Q is known the value of the other cannot
be automatically determined, as with pure Vernam [24] encipherment where
there is only a subtractor function and no permutor function. In reality
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there might be as many as ten possible solution for P or Q depending on the
Baudot class in which the operation took place. If the operation takes place
in class 0 or 5, P and Q are uniquely determined, while in class 1 and 4 there
are five possibilities and in class 2 and 3 there are ten possible solutions.

One opening for attack is the fact that the permutation only reorders the
Baudot code elements: it does not change the elements themselves. Therefore
if C ® D contains m crosses and n dots, it must also be the same for P @ Q.
So if we know or can make a guess at P we will have a limited number, from
1 to 10, of choices for . This is the basis for an attack on messages in depths
enciphered on the Siemens T52.

The two messages in Fig. 13 have been enciphered with the same key on
a computer simulation of the T52d machine.?? They are enciphered without
the KTF and the main inner key, Fernschreibgrundschlissel, is 6-8, 1-2, 5-7,
III, 4-10, IV, II, I, 3-9, V, which is the key for day one in the Norwegen
Nr. 7key table in Appendix C. The message key, Fernschreibspruchschlissel,
is the same as given on page 14, QEP FF OO PP AA ZZ VV CC MM HH
UU. The second message is suspected to start with “three” or “four”, since
message numbers in the region of three to four hundred are expected.

112(3(4]|5|6|7[8]|9(10|11]|12{13(14{15|16|17|18{19(20
P|IG|I|+|L|X|G|L|TIN|E[3]|Y|O|X J|3|B|V
Y N|+|[8|4|I|P|P|9|E|B|DIKIWE|8|E|I|4|H
n2(3|14|1(1(412|1(2|3(2(1|3|3|3|2|2|3|4]|2

Figurel3. Two messages in depth.

The class numbers appearing in the last row are found by forming the
modulo two sum of the two cipher text characters and looking up in which
class the resulting character belongs. Taking the first two cipher text char-
acters T and E and combining them modulo two results in Z. This result is
found by using a simple Baudot XOR square or using the class XOR square
in Fig. 12. Looking up T in the vertical left hand alphabet and E in the hori-
zontal class alphabet, we find Z at their intersection. Looking in the top row
class alphabet, we find that Z belongs to class 2. The class information can
also be found from the Baudot class alphabet in Fig.5. Another, perhaps
even faster, method is to look up one of the cipher text characters, say T,
in the left hand vertical alphabet and then searching down the row to find
the other cipher text character, E. Doing so we find E situated in one of the
columns for class 2.

20 The T52 computer simulation will be made available on the Cipher Simulation
Group’s (CSG) Web servers which are accessible through the author’s Cryptology
Web page at URL: http://home.cern.ch/~frode/crypto/
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Trying the word “three” with a space, here represented by 9, as a crib
for the beginning of the second message gives the following possible solutions
for the characters of the beginning of the first message, as shown in Fig. 14.
The possible solutions for each character is given in the generatrices?! which
have been obtained from the class XOR table. Looking up the first clear text
letter of the crib, T, in the left hand vertical alphabet the corresponding
generatrix is found further along the row in the columns for the Baudot class
2. The generatrix characters are: WYBEPG4M93 which have been entered
in alphabetical order to ease the search for a possible plain text word.

1 2 345 6
n|[2 3 411 4
2T HREE 9
B BHAAA
E CQDDG
GESSS J
MF X ZZW
1|P Gz / /) 8
W U
Y W
3 3
4 4
9 8

Figurel4. Trying the crib “three” in message no. 2.

The most prominent plain text word is the beginning of the word “MES-
SAGe”. We can now try to extend the plain text in the second message by
using the expected “E9” (E and a space) as a further crib in the first message.
This is shown in Fig. 15a.

Since the beginning of the first message is suspected to contain a message
number the continuation is expected to be another number. Of the numbers
from one to ten the only possible solutions are “THree” or “Flve”. “ThREE”
and 9 do not give any promising plain text in message number one but “fiVE”
and 9 give “ONE” as shown in Fig. 15b. This is even a unique solution as
none of the other characters needed for the other numbers are present in the
first generatrix. The rest of the solution is left as an exercise for the reader.
However, solutions are not always as straightforward as here: often it will
not be possible to carry on with only two messages in depth. Very often
the messages contained numbers or abbreviations which made it extremely

21 Generatrix, plural generatrices, is a decipherment or encipherment out of a set
of decipherments or encipherments of the same text under a given hypothesis or
cryptographic principle.
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7 8 9 10 11
nl2 1 nl2 3 2
1|E 9 2|V E 9

B H H H C

F I I 1T E

J N K K F

T S L L M
2|0 / 1N N P

A% O 0T

Y Q QU

3 R R Y

4 X X 3

9 + 4+ 4

(a) (b)

Figurel5. Continuing the cribs in messages no. 1 and no. 2.

difficult, if not impossible, to extend the messages with only a depth of two
or three.

It is one thing to break a number of messages in depth. However, the aim
is to break the machine, so as to be able to recover the key streams and hence
to break all other messages for the rest of the key period. For this purpose
it is necessary to be able to uniquely determine the permutation I for each
encryption step. It can be shown that at least a depth of four is necessary, but
that it is generally not sufficient. With a depth of four one has only a 20 %
probability of finding a unique permutation. With a depth of seven or eight
the probabilities are such that a workable key extraction can take place.
As the code wheel patterns are fixed, it is possible to determine from the
extracted key streams which code wheel is used where and for what purpose.
From this information it is then possible to recover the plug connections and
starting positions of the machine.

10 Conclusion

Not only did Bletchley Park intercept traffic enciphered on the Siemens SFM
T52, but it also broke all the different models that it discovered. However, it
was clear from the very beginning that the T52 was a very difficult machine
to break. It probably would have remained unbroken had it not been for the
German security blunders in using the machines. The blame should not be
put entirely on the German teleprinter operators. The Siemens designers of
the machine are equally responsible for not listening to the advice of the
German cryptographic experts. The Siemens engineers appear to have been
more focused on the engineering problems than on the cryptographic security
of the machine. The T52a/b and the original T52¢ machines were basically
machines with very limited security. The T52c is an extraordinary example
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of how not to go about designing cryptographic algorithms. The wheel com-
bining logic, which clearly was meant to strengthen the machine, had exactly
the opposite effect — it eased the task of breaking the machine.

On the other hand, the T52d was a relatively well-designed machine. If
this machine been the first to see service and the teleprinter operators had
been properly instructed in using the machine, it is highly unlikely that it
would have been broken. Another weakness of all of these machines is the fixed
code wheel patterns. It is understandable that the designers thought that with
the complexity of the machine it would not be necessary to vary the code
wheel patterns. However, with variable code wheel patterns the machines
would have been strengthened considerably. Due to the transposition circuit,
cribs would not have led to the recovery of the key stream and even complete
plain text of thousands of characters would not have resulted in recovered
code wheel patterns.

Sir Harry Hinsley’s statement, [13-15] that BP decided to concentrate
its non-Morse interception, cryptanalytical, and decryption resources on the
Army’s Tunny traffic because of a need to husband resources and the need
for good intelligence on the German Army, is undoubtedly correct. How-
ever, these were probably not the only reasons why BP abandoned its efforts
against the Sturgeon machines. The cryptanalytical difficulties BP faced in
attacking these machines, the small number of Sturgeon links, and the very
limited intelligence that could be derived from the traffic must have played
important roles in the outcome of BP’s decision to concentrate on the Tunny
traffic.
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Appendix A
~ BW. Fidhr. Spr. Sl _
®eheim! SFM T52d/e  Prifnr. SFP
Norwegen iftt..lé_ o
1. Tag ab 0900 Uhr DGZ
1l2{3]a|s|6f7|8]9]10
A|18 |20 138 |31 |5¢ |a7| 67| 54| 70] 17 A
B |05 |30 |22 |60 |63 | 20| 35| 42| 55| 04 | B
c|37 |28 |58 [36 |03 | 46| 13] 47| 20| 67 ¢
p|46 |27 {42 |32 |10 | o7| 6a] a1l 08| 15| D
£|23 |13 |30 |20 |24 | 56| 20| 31]30]|32]&
Fl19 |45 |57 |07 {55 Je1] 27| s8] 68| 72| ¢
c|42 |22 |19 |26 {08 | 11] 53] 20] 16| 58| ¢
H|35 |08 |28 |55 [s58 | 22| 19] e8] 02] 19| 1
1120 {49 |17 |47 |36 | 30| 61| 08| 40| 65| 1
|02 |19 |48 |43 |42 | 20| 24| 14| 31| 47| &
L {33 |51 |25 |10 {32 | o5| 52| 28| 18] 22| L
ml38 |o6 |35 |05 |60 | 17| 04| 46| 64| 11 | M
N|43 {o1 |09 |27 |35 | 44| 66] 12| 59|30 N
ol|47 {11 |37 |59 |64 | 25| 22| 56| 71| 14| o
plig |07 |56 {49 |13 | 19| 44| 38]| 27 07| p
0|44 |25 {11 |21 |48 | 28| 51| 17| 35|20 ¢
R{17 |12 |15 {40 |34 | 12| 57| 05| 48| 57| r
s|15 |26 [52 |46 |62 | as| 26| 37| 4a]|62]s
1|30 (21 |18 |12 [or |38 11| 50| 56|21 7
vios |52 |23 |53 |26 | 14| 29| 606125y
vi3 |24 |54 |16 |37 | 33| 23| 59| 34|52 | v
wii6 |50 |44 |24 |53 | 43| 18| 21| 53|50 |w
xl490 |48 |21 [33 |51 65| 45| 34| 46| 12| %
v |32 |37 |20 |30 |18 | 23] 33| 63| 36| 73| v
z |10 {53 |32 |45 [50 |o02] a8] 16| 54| 37 | 2
112 |3fa]516l72]8]09] 10

Figurel6. T52d Spruchschliissel — message key.

33



34 F. Weierud

13 Appendix B

Geheim!? S .=RB-=F]. ©pr. Gdl. g ==
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ENIGMA and PURPLE: How the Allies Broke
German and Japanese Codes During the War

David A. Hatch

Director of the Center for Cryptologic History, National Security Agency, Fort
George Meade, MD

1 Introduction

Cryptology consists of two aspects: Signals Intelligence (SIGINT), which
seeks to exploit the encrypted communications of enemies or potential en-
emies, and Information Systems Security, which seeks to protect American
communications from those who might wish to exploit them. Americans uti-
lized cryptology even before the foundation of the United States, particularly
in the American Revolution and the Civil War. However, it was not until the
Twentieth Century that the United States began sustained Communications
Intelligence (COMINT) activities.

One probable reason for this was the feeling of security two oceans gave
Americans; without a sense of immediate external menace, there was no stim-
ulus for an American government to obtain regular and timely information
about potential overseas enemies. The United States was late in forming orga-
nizations for military and naval intelligence, and even once in existence, these
organizations remained rudimentary until two world wars brought American
leaders to the realization that American territory was now vulnerable.

The ”golden age” for American cryptology was the Second World War.
Both the U.S. Navy and Army solved and exploited a wide variety of en-
emy codes and ciphers at all levels. These achievements in reading enemy
systems enabled U.S. commanders to make wiser decisions that saved thou-
sands of American lives and shortened the war. Out of the many achievements
of wartime cryptanalysis, this article will discuss PURPLE, the high-level
Japanese diplomatic system, and ENIGMA, the high-level German military
cryptographic machine.

2 Origins of radio intelligence

The invention and widespread use of wireless radio made collection of foreign
communications less of a technical challenge. With this Twentieth Century
invention, it became possible to acquire a potential enemy’s messages without
knocking over couriers or tampering with telegraph wires. Elementary efforts
at radio intercept began in the first decade of the Twentieth Century, and
most industrialized countries engaged in Signals Intelligence to some extent in
the years immediately prior to World War I. However, few countries created
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organizations to manage the activity until war made it necessary for them to
do so.

The War to Make the World Safe for Democracy found American ra-
diomen intercepting German communications for both strategic and tactical
purposes. The revitalization of Military Intelligence on the eve of the war
provided a suitable organizational structure for the exploitation and dissem-
ination of Communications Intelligence. After the war, however, the radio
intelligence organization was eliminated in the general demobilization.

With a nascent sense of international menace and perhaps based on the
favorable wartime experience, at the conclusion of the Great War, the United
States for the first time created a national-level intelligence organization, a
cryptologic organization. This was MI-8, jointly funded by the U.S. Army and
the State Department, with some Navy participation, and headed by Herbert
O. Yardley. The story of MI-8, usually known by its colorful nickname, the
”Black Chamber,” is well-known, so it is not necessary to recount its exploits
here; suffice it to say that this organization was successful against a number
of foreign diplomatic cryptosystems during the 1920s.

Equally well-known is the demise of the Black Chamber, marked by the
mythical moral utterances of Secretary of State Henry Stimson, who is al-
leged to have said ” Gentlemen don’t read other gentlemen’s mail!” Stimson
withdrew the State Department’s funding from MI-8 largely for budgetary
reasons in the Great Depression, effectively closing it down. Subsequent to the
closure of MI-8 in 1931, Yardley published his expose of American codebreak-
ing, The American Black Chamber. This book caused Japan, among other
countries, to change its communications security practices, with increasing
dependence on machine systems in the 1930s.

Whatever the truth of Stimson’s statement, the U.S. Army and Navy,
for their part, wanted to go on reading other gentlemen’s mail. The Navy
from the 1920s began building an organization for cryptologic activities, and
expanded this service in the 1930s; it was primarily concerned with training
intercept operators and cryptanalysts who would be ready for operations in
case of war. The Army, for its part, in 1929 hired one of its consultants,
William F. Friedman, to form a modern Signal Intelligence Service (SIS).

3 PURPLE

On April Fool’s Day in 1930, William Friedman welcomed the first of three
cryptologists he had hired for the SIS. His first employee was Frank B.
Rowlett, a young mathematician who was brought to Washington as a junior
cryptanalyst at $ 2,000 per year. Shortly after, Friedman brought in Abra-
ham Sinkov and Solomon Kullback — two graduates of the City College of
New York — into the service. John Hurt, a talented Japanese linguist, who
had the added advantage of a Congressman for an uncle, was hired later.
For much of the decade they served as the nucleus of the Army’s cryptologic
service.
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The organizational placement of SIS, it should be noted, was not in Mil-
itary Intelligence, but the Army Signal Corps. Its primary mission was de-
vising cryptosystems for U.S. use, with the solution of foreign systems as a
secondary activity. The Army at this time evinced minimal interest in peace-
time SIGINT, except to keep skills current in case of war.

William Friedman proved to be a genius at training and put his staff
through rigorous exercises, including codes used in the Great War, files of
the Black Chamber, and rudimentary machine systems. This regimen was
validated by the eventual achievements of this group: in the period from 1933
to 1941, SIS cryptologists studied eleven Japanese diplomatic and military
attache systems — and solved them.

The Navy’s cryptologic organization developed considerable skill in ex-
ploiting Japanese communications during fleet maneuvers. Their discoveries
of Japanese naval preparedness and likely Japanese strategies in case of war
between the two countries helped the U.S. naval senior commanders to re-
evaluate their own policies and practices.

Initial progress was made against some Japanese diplomatic messages
done in traditional systems, when, in 1935, working as a team, Frank Rowlett
and Solomon Kullback detected exploitable weaknesses in a Japanese machine
cipher ”Angooki Type A” used by the Foreign Ministry. As they began to
read messages enciphered in this system, the Americans gave it the codename
RED - the first color of the spectrum for the first cipher machine actually
solved.

Both Army and Navy cryptanalysts solved the Japanese RED system,
independently of each other and in the same general time frame. The pro-
duction of real intelligence from the cipher machines of a potential foreign
enemy quickly came to the attention of the Army authorities. Rowlett re-
called that for the first time their military superiors began according SIS
personnel real respect. More importantly, the Army increased SIS resources,
and had Friedman draw up regulations on distribution of the decrypted ma-
terial, closely restricting those who would be given access to it. This may have
been the first instance of a compartmentation program in modern American
intelligence activities.

Cryptologic operations never remain static, however, and the Americans
all too soon lost their access to this inside information. In February 1939,
Japan’s Foreign Ministry introduced the TYPE-B Cipher Machine, nick-
named PURPLE by American cryptanalyts. The Japanese distributed this
machine to their most important embassies — Washington, Berlin, Rome,
and London — precisely those locations from which U.S. policymakers most
wanted information. The Americans were able to exploit PURPLE partially
until May 1939, when the Japanese introduced significant security improve-
ments to the system.

It took U.S. Army cryptanalysts until late November 1940 to recover
and produce usable decrypts from this improved PURPLE system. (If this
seem excessive, it should be noted that after the war, American cryptologists
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discovered that their German counterparts had also attempted the PURPLE
system — and failed!) While the cryptosystem itself was named PURPLE, the
product of SIS efforts, that is, decrypts prepared for circulation, were stamped
with the restrictive codeword MAGIC — a possible reference to William Fried-
man’s fond joke that his cryptanalysts were ”magicians.”

In addition to solving the system, SIS personnel designed items of equip-
ment to speed the processing of PURPLE. Drawing on the talents of Leo
Rosen, a reserve officer with a background in electrical engineering, SIS cre-
ated a range of equipment, including an ”analog” which would enable auto-
matic decryption of PURPLE-based messages.

The ability to read RED and PURPLE led SIS into cooperation with
the U.S. Navy. The amount of material involved, compounded by lengthy
processing time, had brought the Army to share the secret of RED with its
sister service. The ability to exploit PURPLE greatly increased the need for
inter-service cooperation. The Navy’s organization, OP-20-G, had assets the
Army did not: a better position to collect Japanese communications and a
larger pool of Japanese-trained language officers, to begin with.

The already-complicated relationship between the Army and Navy be-
came considerably more complex in the struggle to exploit PURPLE. When
Army analysts designed an analog machine to speed PURPLE recoveries, it
was constructed by the Navy at the Washington Navy Yard, which had more
experience in making cryptographic devices. Subsequently, the Navy cooper-
ated with the Army in collecting message traffic, and making code recoveries.
However, the two services found themselves competing in exploiting and dis-
tributing the product, particularly vying for the privilege of disseminating
decrypts to senior civilian officials.

The two services tried various schemes to avoid duplication of effort in
processing PURPLE until finally they agreed that the Navy would process
PURPLE messages on odd-numbered days, the Army on even-numbered
ones. This was a cumbersome system with frequent points of conflict but it
was an important step toward interservice cooperation in the whole process
of cryptology. During the war, another step was taken as the two services
exchanged liaison officers to each others’ cryptologic organization.

As the military itself expanded in the late 1930s, SIS and OP-20-G also
expanded, and when war came, the expansion became more rapid. With
the advent of war, SIS moved from its tiny quarters in a vaulted area in
the Munitions Building in downtown Washington, D.C., to Arlington Hall
Station, a former girls’ school across the Potomac in Virginia. The Navy also
moved its cryptologic headquarters to Mt. Vernon Academy, a former girls’
school in northwest Washington.

Just prior to the U.S. entry into the Second World War, the United States
and Great Britain began cautious exchanges of technical information, includ-
ing some sharing of data on cryptanalysis. Each was delighted to learn that
the other had made major solutions to the cryptosystems used by their com-
mon enemies, Germany and Japan — the U.S. against PURPLE, Great Britain
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against ENIGMA, the German high-level system. (Both the U.S. Army and
Navy had separate agreements with the British organization). This sharing
was just one factor among many aspects of wartime cooperation between the
two countries, but it certainly helped build a solid bilateral working relation-
ship.

4 ENIGMA

The ENIGMA began as a commercial machine, around the time of World
War I, but was not an initial success — it was too far ahead of its time
and too expensive for businesses. However, in the 1920s, the German Navy
learned that the British Navy had broken traditional German codes during
World War I, and sought a new method of keeping its communications secure.
The Navy adopted a modified version of the commercial ENIGMA, and,
eventually, the German Army and Air Force also adopted it, making it the
workhorse of German military communications security prior to and during
World War II. (Note that ENIGMA — a Greek word meaning a puzzle or
mystery — was the actual trademark name for the German machine, not a
codename bestowed on it by the Allies).

Each German service used ENIGMA machines with slight variants from
the others to suit its own special military needs. For example, the German
Navy, most security conscious of the services, added mechanical features and
changed procedures from time to time. In general, however, the ENIGMA
appears to be a simple device: it is an electromechanical device which uses a
combination of rotors (rotating disks) and plugs to encipher messages letter
by letter. Its mechanical and electrical operations were state-of-the-art in the
1930s, and the Germans had good reason to believe that the ENIGMA would
keep their communications absolutely secure.

Despite its obvious strengths, the ENIGMA device was solved by mathe-
matical analysis in the 1930s. The Polish Cipher Bureau, assisted by a little
inside information about the machine, came to an understanding of its oper-
ational methods and devised methods of solving ENIGMA-based messages.
Most of the Polish methods were too slow to be used in combat situations,
but the Cipher Bureau’s mathematicians invented a machine they called a
bombe, which would apply their decryption principles faster than the human
hand could work.

Despite good intelligence on the German military, Poland fell when the
Nazis attacked — the German military was the best in the world. However,
before this happened, the Polish Cipher Bureau shared the secret of the
ENIGMA machine, including how to construct bombes with the French and
the British.

Great Britain’s Government Code and Cipher School (GC&CS), its cryp-
tologic organization, put great efforts into improving the speed and efficiency
of the bombe. Among those who worked on it were Alan Turing and Gordon
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Welchman. GC& CS also created an efficient organization for intercepting
German military communications, processing them and passing the resul-
tant intelligence to commanders quickly. The secret intelligence derived from
ENIGMA decrypts was marked with the codeword ULTRA.

When the United States and Great Britain began cooperating in Signals
Intelligence during the War, U.S. cryptologic organizations learned much from
the British, and, in fact, SIS and OP-20-G modeled their distribution systems
on that of their ally. Eventually, to avoid confusion, all high-level decrypts,
whether from German or Japanese communications, were labeled ”ULTRA.”

Signals Intelligence proved a labor-intensive business, even with advanced
machines such as the bombe, but, together, the U.S. and British organizations
developed a working system that gave their senior leaders and commanders
unprecedented types and amounts of secret information.

5 Cryptology during the war

It might be argued that World War II was the first true ”information war.” It
is also true that the United States in many ways found itself ill-prepared for
global war at the beginning, intelligence information being one important in-
stance: America’s military was forced to fight on unfamiliar fronts where the
state of intelligence ranged from barely adequate to non-existent. It should
not be surprising then that all PURPLE/MAGIC and ENIGMA/ULTRA
material was eagerly ingested by consumers anxious for reliable information.
PURPLE, though used by the Japanese for diplomatic communications, be-
came a major ingredient in Allied military decision-making.

The German and Japanese military used a variety of cryptographic sys-
tems to protect their communications prior to and during the war. Allied
cryptanalysts solved many of these systems over this period, but for the pur-
poses of this article, we will discuss PURPLE and ENIGMA only.

Prior to December 1941, exploitation of PURPLE gave American policy-
makers access to the instructions sent by Tokyo to their negotiators in Wash-
ington and the negotiators’ reports of the meetings with State Department
officials. This was very useful for U.S. diplomats in day-to-day interaction
with the Japanese, and somewhat helpful to the U.S. military, but did not
reveal to the American eavesdroppers the most valuable secret of all — the
question of war and peace.

The Japanese military did not trust the Japanese Foreign Ministry with
details of its operational planning, least of all that a large strike force was
moving through the north Pacific toward Hawaii. Thus, although Japanese
diplomatic messages in early December 1941 implied that war was a matter
of days, perhaps hours, away, the MAGIC material contained no specific clues
about the impending attack at Pearl Harbor.

American Army and Naval cryptanalysts exploited several Japanese mil-
itary systems after Pearl Harbor, enabling U.S. commanders to get an un-



ENIGMA and PURPLE 59

precedented window on enemy military operations in the Pacific and South
Asian theaters. With the coming of war, the Navy discontinued its work
against non-Naval system, thus the continued exploitation of the PURPLE
diplomatic system became strictly an Army effort, although, of course, Navy
consumers still received distribution of the decrypt intelligence.

By an interesting turn of fate, PURPLE, even though a Japanese system
and intended for diplomatic communications, became an essential ingredient
in Allied military operations in Europe.

With their fate linked inextricably to Germany’s, Japanese leaders de-
manded accurate and detailed data about all aspects of the war in Europe,
and this was forthcoming from their diplomatic stations there — much of it
transmitted to Tokyo in the PURPLE system. Thus, the source known as
MAGIC provided detailed insight into the thinking and activities of Nazi
leaders, Mussolini, and the leaders of Vichy France, among others. MAGIC
provided anecdotal evidence of the coordination — or lack of it — among the
Axis nations. MAGIC also provided the most reliable source of hard data on
the Russo-German front.

The Japanese Ambassador to Germany was Baron Oshima, concurrently
a lieutenant general on the active list, who was well-treated by his hosts.
His tours sponsored by Albert Speer, for example, led him to write several
detailed reports about Germany’s new weapons and weapons production.

In late 1943, Ambassador Oshima and some of his subordinates were given
an inspection tour of German defenses erected along the coast of France. Their
detailed reports not only listed fortifications and shore emplacements, but
unit identities, locations and areas of responsibility, training, and locations of
reserves. This proved rather useful when Eisenhower was planning Operation
OVERLORD.

As the war turned against Germany, U.S. policymakers read in MAGIC
the scary prospect of a Russo-German peace settlement, which the Japanese
were promoting. MAGIC reports from Japanese diplomats in Berlin and
Moscow, however, reassured American readers that Germany declined to pur-
sue this settlement, and that the Soviet Union in any case was standing firm
against it.

MAGIC enabled American policymakers to follow both the beginning and
the end of the Russo-Japanese Neutrality Pact. MAGIC reports showed the
progress of its negotiation and signing in 1941, the vain attempts of Japan to
find out whether the Soviets would extend it in 1946, and, finally, the shock
to Japan when the USSR announced its intention to abrogate the pact in
1945.

With the defeat of Germany, Japanese diplomats in neutral nations, such
as Sweden and Switzerland, began proposing feeble schemes by which Japan
could seek a brokered end to the war without unconditional surrender. MAGIC
reported these, and also showed that the idea of unconditional surrender was
anathema to leaders in Tokyo.
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In the European Theater, the ability to decrypt ENIGMA-based military
messages quickly became an essential ingredient in combat planning for the
British, and the Americans, after their entry into the war, also learned to use
its essential insights.

Early in the war, ULTRA enabled the outnumbered Royal Air Force to
outfox the German Air Force in its bombing campaigns against Britain. UL-
TRA intelligence was important to General Montgomery, and later to General
Eisenhower, in fighting Rommel’s Afrika Corps.

ULTRA was an essential ingredient in winning the Battle of the Atlantic.
German U-Boats were a serious threat to Allied shipping, and could possibly
have prevented American intervention in Europe. However, decryption of
submarine messages enabled the Allied navies to hunt and destroy a large
number of subs as well as their replenishment ships. Here, ULTRA had to
be augmented carefully with other sources of data, including sightings and
direction finding, but was the sine qua non of the U-Boat battles.

Decrypts from ENIGMA-based messages became the staple of Allied se-
cret intelligence in the Italian campaigns and in the drive across France after
D-Day. Messages provided copious amounts of data on enemy order of battle
and often gave Allied commanders advance warning of impending German
attacks.

6 Conclusions

I would offer the following conclusions about the American and Allied expe-
rience with PURPLE/MAGIC and ENIGMA /ULTRA:

The U.S. solution of the PURPLE system and British exploitation of
ENIGMA gave Allied decision makers continuous insight into what the en-
emy was saying to itself. This unprecedented — and sustained — insight into
the activities, thinking, and intentions of our enemies worldwide and at the
highest levels gave the Allies an incalculable advantage.

The ability to read the PURPLE system provided much wider access
than might have been expected. It not only produced information on the
immediate users, that is, the Japanese diplomatic service, it gave the Allies a
superior source of information useful in both theaters of war and for military
purposes as well. It might be argued that PURPLE at some stages was more
important in the struggle against Germany than it was in the fight against
Japan itself.

The ability to exploit the RED system was the catalyst which spurred
the growth of SIS from a tiny cadre into a large and active organization and
prepared the organization to take advantage of the later solution of PURPLE.
It also necessitated the development of mechanisms for widespread collection
and dissemination of SIGINT materials and the doctrine under which these
activities would be conducted.

The facts that exploitation of the PURPLE system was manpower-intensive
and speed of processing was imperative, forced the two branches of the mili-
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tary services, even while they were domestic rivals for resources, to cooperate
to produce this source in a timely way. This helped prepare the ground for
increased interservice cooperation in the post-war era.

Most senior and many mid-level military and civilian leaders in the war
had some level of access to MAGIC reports. They retained their memories of
World War cryptologic successes, and supported the continuation of crypto-
logic capabilities in the brave new post-war world.

The solutions of PURPLE and ENIGMA were intellectual accomplish-
ments of the first brilliance. Both were team efforts and the members of
these teams ought to be listed among the important contributors to victory
in World War II. Unfortunately, however, for most of the contributors, their
names and deeds are generally known only to the few who are interested in
intelligence activities.

Finally, SIGINT did not win World War II. The war was won by those
sailors, soldiers, airmen, and marines who took the fight to the enemy at the
risk and, sometimes, cost of their own lives. However, Signals Intelligence
gave commanders inside information about the enemy in such detail that
it allowed them to make wise decisions that saved uncounted thousands of
American and British lives and shortened the war by many months.

That is what is expected of an intelligence organization in wartime, and,
in World War II, the American and British SIGINT personnel delivered their
product with war-changing and lifesaving effects.
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while Frode Weierud alone is responsible for the translation into English,
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The translation has been kept as close to the original language as possible.
Specialist terms and expressions have been retained where possible. Other-
wise, a substitute term with the closest possible meaning has been chosen
and an explanation given in the text.

The original notes appear as in the original, as footnotes at the bottom
of the page. Other short notes in brackets appear as in the original. Orig-
inal references are marked with superscript numbers, while the references
themselves are placed at the end of the text.

The translator’s notes are of two types: short notes included in the text in
brackets and in italic (translator’s note), and normal notes which are marked
by bold, italic numbers in square brackets, e.g. [1].

The postscript, based mainly on information from Bengt Beckman’s book,
fills in some of the missing personal histories and brings the account up-to-
date with present historical knowledge. Two appendixes and a bibliography
have been added to place this account in its cryptological context and as an
incentive to further study.

1 A short historical résumé until spring 1941 2

At the beginning of 1941 Sweden was in a situation that had drastically
deteriorated during the previous year. The end of the Winter War (Russo—
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Finnish war) and the signing of peace in Moscow on 13 March 1940 were
traumatic events in Sweden as well as in Finland. However, the conditions
were not so devastating as they could have been had the Soviet war aims
been achieved. Finland survived as an independent state, but within tighter
borders.

The surprising and successful German attack on Denmark and Norway
on 9 April 1940 brought serious consequences for Sweden. Sweden’s political
freedom became seriously limited. Threats from new directions had quickly
to be taken into consideration. In one area, however, the German demands
on Sweden created unexpected possibilities that were exploited well. Their
request to hire telegraph lines going through Sweden made great successes
for Swedish signals intelligence possible.

In mid-summer 1940, after the French capitulation and the Soviet occu-
pation of the Baltic states, the Swedish intelligence service was faced with
two important questions. Would Germany carry out “Operation Seelowe”, a
naval invasion of Great Britain, during the autumn? Would the Soviet Union
again attack Finland to re-establish Russian borders on the northern shore
of the Gulf of Finland while Germany was engaged on the western front?
There existed no guarantees that Stalin would wait until the German air war
might lead to air supremacy over the British Isles or that he would wait for
the German invasion. After developments in the Baltic, Stockholm consid-
ered it likely that the Soviet Union would attack Finland at the turn of the
month July-August even before, or perhaps even without, a German inva-
sion attempt on Great Britain. Germany would then probably take the same
attitude as during the Winter War, i.e. benevolent neutrality. Indications,
chiefly reported by attachés from Riga, Berlin and Moscow, showed such a
development. The Finnish government was under enormous Soviet pressure,
while Moscow-led communists tried to create internal trouble in the country.
The pattern was the same as that before the Baltic states were occupied by
the Soviet Union in June.

When, on 13 August 1940, Foreign Minister Giinther explained the cur-
rent situation to the Foreign Affairs Committee, his opinion was that there
existed a real danger of such an attack. The German military attaché in Riga
was given as the source. It is remarkable that no Swedish sources or Finnish
military authorities’ views were used or referred to. The Defence Staff’s in-
telligence department was therefore also obviously restrained in its written
reports to the military command and the government.

German fear of a Russian attack, however, caused Hitler to free the arms
embargo against Finland shortly before 10 August. The arms’ deliveries that
had stopped under the Winter War were now let through. This political
change of course indicated a renewed German interest for Finland’s con-
tinued existence as an independent nation. The tension in Helsingfors was
relieved. The immediate danger of a Russian attack was estimated to be over
for the time being. As a result it was considered necessary that the Defence
Staff’s intelligence department concerned with Finland should be strength-
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ened. Now, it was not only Finnish—Soviet relations but also German—Finnish
relations that had to be watched. Since neither Finnish nor German military
contacts were very communicative any longer, the task was not particularly
easy.

The extraordinary Swedish military contacts in Finland were evidently
about to be reduced because of Finland’s German connections. The attaché
reports from Berlin also showed a clear German interest in Finland. Specu-
lations about a German attack on the Soviet Union started to appear in the
reports from Berlin. Neither the Swedish attachés nor others could obtain any
further information about Hitler’s intentions. They were reduced to making
assumptions about probabilities and possibilities. A German two-front war,
however, was not considered probable by the Defence Staff’s intelligence de-
partment. In autumn 1940 the situation did not seem particularly alarming
to the Swedes. The concessions made, in response to German demands for
troop transit and continued iron ore exports, appeared to be sufficient.

The reports from the military attaché in Moscow during the winter of 1940
no longer indicated a Russian build-up and deployment of forces against Fin-
land. The Russian build-up of forces was instead concentrated in the border
areas in the south and south-west, against Bessarabia and Bukovina. In Fin-
land, however, they still felt that a new Russian attack was a real possibility.

As a consequence of the commonly perceived threat, the military intel-
ligence exchange between Sweden and Finland which, as already explained,
had diminished after the end of the Winter War, was again improved. How-
ever, once more the Finnish interest for co-operation diminished considerably
during spring 1941, principally during and after April. Attaché von Stedingk
in Helsingfors reported simultaneously that German—Finnish relations had
dramatically improved. He also reported that Finnish contacts appeared to
be prepared to take part in a German war against the Soviet Union, which
German contacts said, with a surprising frankness, would start in early or
mid-June. Colonel Carlos Adlercreutz, the chief of the Defence Staff’s intel-
ligence department, had during a conversation with the chief of the Finnish
General Staff, General Heinrichs, clearly seen the possibility of Finland join-
ing in a German attack on the Soviet Union, or being forced to participate
in such an attack.

German probes about the transit of German troops from Norway to Fin-
land through Sweden had already taken place in February. Sweden feared
that these explorations would change into direct demands, but wondered if
Hitler would be content with demands for transit if he intended to start a
two-front war against the Soviet Union before Great Britain had been finally
defeated.

The uncertainty about Hitler’s intentions was brought to a head during
the so-called “March crisis” that culminated in a large preparedness alert on
15 March. The alert was actually caused by a German communications error.
In fact, there was no other intelligence about a German attack. However, the
information obtained through signals intelligence made Swedish preparatory
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measures possible against regions where German units were positioned in
Norway.

The deployment and build-up at the German eastern border now started
to be obvious and was difficult to conceal. However, an uncertainty still pre-
vailed as to whether Hitler really intended to attack the Soviet Union before
Great Britain was conquered. Perhaps the build-up aimed only at applying
pressure — not a two-front war. How — or if — the received information
was analysed at the Defence Staff and how — or if — the information in the
military reports was weighed together with the rather uncertain and specula-
tive diplomatic information, can no longer be clarified. At a presentation for
the government on 21 April General Olof Thornell, the chief of the Defence
Staff, judged that a German—Soviet war was probable, and that in such a
conflict Finland would participate on Germany’s side. From the presentation
it became clear what vague information was the basis for this judgement.
The deception measures taken to protect the planning were hard for other
intelligence services, including the Swedish, to penetrate.

The Soviet military intelligence service was informed about the coming
attack. Nevertheless, Stalin refused to believe that the attack on the Soviet
Union would start before Great Britain was conquered.

In one area the Swedish intelligence service was considerably in the lead.
In spring 1941 the Swedish signals intelligence service furnished very inter-
esting, extensive, accurate and unique information about German military
dispositions in the vicinity of Sweden.

2 Swedish signals intelligence and intelligence service
before and during the Second World War 3

In 1936 a resolution was passed about a new defence order which came into
force on 1 July 1937. The resolution included provision for the establish-
ment of an intelligence department, a signals intelligence department and a
cryptology department.

However, the prerequisites for an effective intelligence service were not
so good. Swedish intelligence services in the modern sense of the word had
indeed been already established in the beginning of this century. The armed
forces intelligence service had increased in 1905, during the Union crises,
and in the First World War. The General Staff and Naval Staff of that time
both had their own signals intelligence and cryptographic units. However,
in the inter-war period less and less was done. The knowledge acquired in
signals intelligence and cryptanalysis was lost. Politicians of that time did
not understand the importance of a well-functioning intelligence service and
consequently they did not grant any appropriations for this purpose. Nor
did the Defence Commission, which was appointed in 1930 and on whose
report the 1936 Defence Resolution was based, take any appreciable interest
in the intelligence service. The General Staff’s foreign department did not
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constitute a solid enough foundation for such a service. No special agency for
cryptanalysis existed before the Defence Staff was established, although the
cryptographic departments at the Naval and General Staffs had some success
during the First World War. The encrypted radio traffic of the Russian Baltic
Fleet could be broken to some extent. The General Staff probably broke
German diplomatic traffic periodically.

The breaking may have taken place even earlier, but solid information
about this is missing. These breaks, however, were probably quite sporadic
and had a “chamber character”, i.e. rather amateurish.

From the summer of 1928 signals intelligence operations were carried out
fairly regularly under naval direction. In the beginning it took place from the
warship Sweden (Sverige) and from the summer of 1929 from several ships in
the coastal fleet. From October 1929, signals intelligence activities were also
carried out from naval coastal radio stations.

The first attempts to develop this branch of the intelligence service were
made by the Navy. During the years 1930-31, the Naval Staff had already
organized a course in cryptology and cryptanalysis. Ships in the coastal fleet
started the systematic interception of foreign radio traffic in spring 1931.
Later professional intercept operators were trained on the warship Queen
Victoria (Drottning Victoria). The first successful attempts to break foreign
cipher traffic were made in spring 1933, when they succeeded in breaking the
cipher then used by the OGPU (later the KGB). These breaks into foreign
military ciphers were probably the first to be made in Sweden after the First
World War. The naval cryptography courses of 1930-31 were repeated in
1932-33 and 1934-35. An agreement was reached between the Naval and
General Staffs to run these courses alternatively every second year.

The instruction was based on theory with special exercises. The real ma-
terial available was too complicated to be used in the teaching. Even if these
cryptanalysis courses did not result in real breaks, they were nevertheless of
great importance as they created a small cadre of trained theoretical cryptan-
alysts, consisting of both active and reserve officers together with conscripted
students. Later on civilians from the University of Uppsala, among others,
were also trained as cryptanalysts. One of these students was the mathemat-
ics professor Arne Beurling.

When the future Defence Staff organization was analysed in 1935-36,
cryptology-committed interest groups succeeded in pushing through the es-
tablishment of a department for cryptography and cryptanalysis — the crypto
department. In some quarters a crypto department was considered unneces-
sary but, in spite of opposition, one was set up during the final stages of
establishing the Defence Staff. Sections I to III were intended to deal with
the cryptographic security of the Army, Navy and Air Force. The fourth sec-
tion, crypto section IV, was intended to be a cryptanalytic section. Thus,
the foundation was created for a central cryptanalytic organization. It was
in crypto section IV that the Geheimschreiber traffic would later be broken.
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Radio interception was taken care of by the Defence Staff’s signals de-
partment. However, the actual signal-intercept work was completely carried
out by the Navy, which was the only force with access to qualified intercept
personnel.

Figurel. Dilapidated house in the back garden on Karlaplan 4.

The crypto department led an ambulatory existence during 1936—40. In
the beginning, it was housed in the staff building “Gra Huset” (The Grey
House) in Ostermalmsgatan 87; later in a house on Liitzengatan. [1] During
the summer of 1939 the approaching war became more evident and the de-
partment intensified its mobilization preparations. At the outbreak of war it
transferred to the premises of the Military Academy, where it had the top
floor at its disposal. Soon it became overcrowded, which is why crypto sec-
tion IV moved to a property on Karlaplan 4, consisting of a building facing
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the street and a dilapidated house in the back garden. The conditions were
rather primitive. The furnishing was of the utmost simplicity, consisting of
folding tables and simple wooden chairs. However, it was here that the crypto
department was going to perform great achievements.

3 Breaking of the German encrypted telex traffic —
the breaking of the Geheimschreiber %

At the time of the German attack on Denmark and Norway 9 April 1940,
Germany demanded that there should be no interruption of their telecommu-
nications transmitted over Swedish lines. After a positive answer, the Ger-
mans gradually hired lines in Sweden for the connections Oslo — Copenhagen
— Berlin, Oslo — Trondheim, Oslo — Narvik and Oslo — Stockholm. The Ger-
man embassy in Stockholm already possessed a line for their traffic to Berlin.
Later on they hired a line for the connection Stockholm — Helsingfors. The
interception of the German telegraph lines was the fundamental condition
for the future successful breaking of the German encrypted messages. The
Swedes had, by these means, access to large quantities of genuine informa-
tion. Wartime arrangements allowed foreign rented telecommunication lines
passing through Swedish territory to be tapped, without breaking Swedish
law.

We shall here for the first time in the open literature show the principles
involved in the breaking of the Geheimschreiber. The Germans considered
this cipher machine to be extremely secure, but their confidence resulted in
an imaginary security. German carelessness and Professor Arne Beurling’s
genius exposed the secret of the Geheimschreiber.

3.1 A note about teleprinters

To facilitate an understanding of the subsequent explanations we will give a
short technical review of teleprinters.

The first teleprinters were constructed at the end of the 19th century.
The principles have remained largely unchanged since then. Every character
transmitted consists of a combination of pulses of two types. The number
of pulses in a character is always five, contrary to the varying number of
pulses in the Morse code alphabet. All pulses are of the same length, and
are indicated by positive or negative polarity or alternatively, current or no
current. Five pulses taking on two different states give 32 different com-
binations, but that is not sufficient for all the characters that have to be
transmitted. There therefore exists an arrangement with the same function
as the letter/figure shift key on a typewriter. A combination of pulses causes
all subsequent characters to be received as number or punctuation charac-
ters, and another combination signals in a similar way that all the following
characters will be received as letters. Several teleprinter alphabets have ex-
isted. The one mostly used is called the Murray code after its inventor, or
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the International Teleprinter Code (International Telegraph Alphabet No. 2).
The text is punched on paper tape which is fed into the transmitter. ‘Hole’ or
‘no hole’ in the tape corresponds to ‘current’ or ‘no current’, or to ‘positive
polarity’ or ‘negative polarity’.

3.2 Teleprinter encryption

Soon after the first teleprinters were put into operation, equipment for the
encryption of teleprinter signals was constructed. The method first used was
simple. Two identically-punched key tapes, one for the sender, the other for
the receiver, are produced. They are then glued together in a loop of manage-
able length, about 1000 characters. The sender punches his plain text tape
and places it in a tape-reader. He then comes to an agreement with the re-
ceiver about how the key tapes will be placed in their respective tape-readers,
and the transmission starts. In a simple relay circuit a modulo-two addition
is performed on the characters from the sender’s two tape-readers. A charac-
ter on a tape can be regarded as a binary number: a combination of ‘holes’
representing ones, and ‘no holes’ representing zeros. A modulo-two addition
of two such numbers signifies an addition, without carry, of each bit in cor-
responding positions. The result of this addition forms the cipher character
that is transmitted. The same procedure is used in the receiver. After each
transmitted character all tape readers are stepped one position forward and
the whole process repeats. The cipher methods gradually evolved. Instead of
key tapes a number of code wheels with pins were introduced, e.g. five wheels
, one for each channel in the key tape. An active pin had the same function
as a hole in the corresponding channel on the tape. Thus it was no longer
necessary to punch the plain text on tape and then transmit it later. The
teleprinter could be directly connected to the cipher equipment, hence it was
possible to transmit and receive in “real time”, so saving a lot of time. In
the crypto department this encryption method, consisting of adding a key
character to a plain text character, irrespective of how the key character was
generated, was called “overlaying”. This term is used in the following text.

3.3 The Geheimschreiber

The German company Siemens developed a mechanical teleprinter cipher ma-
chine in the 1930s that was the first in a series of such machines. The generic
name was “Der Geheimschreiber”, which the crypto department called “G-
skrivare” (G-writer). In addition to the previously mentioned classical type
“overlaying”, it also made a permutation? of the pulse order as another en-
cryption function.

2 Permutation: A permutation of a sequence of n numbers corresponds to a reorder-
ing of the sequence. Two permutations are equal when the numbers are placed in
the same order. For n = 2 there are two permutations (1,2) and (2,1), for n = 3
there are six (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1). Generally it can
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The crypto department later used the expression “transposition” for this
permutation. A polarity inversion was made with five relays, and five others
took care of the transposition. [2] The relays were controlled by ten coding
wheels which, through a set of plugs and jacks, could be connected to relays
in an arbitrary way. The principle of transposition of the teleprinter pulses
is not suitable for all types of teleprinters. The five pulses must be available
simultaneously in the transmitter and the receiver for a permutation to take
place. In the transmitter this is not so difficult to arrange, but it is much more
difficult in the receiver. However, Siemens had solved the problem for the
receiver even without access to modern digital technology. All functions were
mechanical in the cipher machines of those days. An incoming character’s
five pulses, positive or negative, charged five capacitors in sequence. When
the fifth pulse was received the information stored in the capacitors was
simultaneously transferred to five polarized relays. These relays were part of
a circuit that selected the character to be printed. During this transfer it was
possible to produce a transposition by changing the connections between the
capacitors and the relays.

The Geheimschreiber’s ten code wheels had the periods 47, 53, 59, 61, 64,
65, 67,69, 71 and 73. In the first models all the wheels moved one step for each
enciphered character. Since the wheel periods were relatively prime, that is
they had no common factor, the total period of the machine — the number of
steps the machine must make to return to its starting position — was equal to
the product of all the individual wheel periods, that is 893 622 318 929 520 960
steps. This number also indicates the number of possible wheel starting po-
sitions.

The “transposition circuit”, that is the insertion of the “transposition
relays” between the rows, could be varied. Eight basic patterns were possible,
each with 2612736 000 variations. [3] The combinations of connections and
wheel adjustments were, before the creation of the computer, considered to
be extremely large numbers. In addition there were the number of ways of
connecting the code wheels to the relays. This may have given the Germans
the impression that the Geheimschreiber was a very secure cipher machine. It
was probably considered to be more secure than the Enigma machine which
was intended for tactical use. The Enigma had, for example, a period of
17576. [4]

The Geheimschreiber was gradually developed and several models were
brought into service. The first machine the crypto department came in contact
with was called T52a/b. Later T52¢c, d and e came into service. There were
also variants of the different models. However, they were all based on the
same basic principle.

At the end of 1941, a new machine designated Z appeared in the traffic. It
did not belong to the A/B-series and it was called Geheimzusatz 40 [5] and

be shown that the number of permutations of n numbersis 1-2-3--- (n—1)-n = n!
(n factorial).
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Figure2. “Geheimschreiber” or “G-skrivaren” (Schlisselfernschreibmaschine
T52c).

not Geheimschreiber. It was a stand-alone attachment that was connected
between the teleprinter and the transmission line. It could therefore have
been used together with teleprinters other than the Siemens machine that
the Geheimschreiber was based on.

3.4 Arne Beurling

Who was Arne Beurling? According to Svensk Uppslagsbok (Swedish Ency-
clopaedia) he was “Arne Karl August Beurling, born 5 February 1905, math-
ematician. Beurling defended his thesis in Uppsala in 1933 (Etudes sur un
probléme de majoration), senior lecturer same year, Ph.D in 1934, professor
in 1937. Beurling is an ingenious and all-round scientist who has attained
beautiful results in function theory, prime number theory, modern integra-
tion theory and in several other areas.” After the war Arne Beurling was
offered an excellent position at Princeton University in USA in 1954. In 1965
he was given Albert Einstein’s office, No. 115, at The Institute for Advanced
Study, a distinction granted to very few people. Arne Beurling died in 1986.

It is now known that Professor Arne Beurling was the man behind the
breaking of the German Geheimschreiber. David Kahn writes in “The Code-
breakers”, page 482: “Quite possibly the finest feat of cryptanalysis performed
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during the Second World war was Arne Beurling’s solution of the secret of the
Geheimschreiber.” Arne Beurling’s greatness is given by the fact he had at
his disposal only the teleprinter tapes with the cipher text. He had no access
to any machine, no plain text and no knowledge about the logical construc-
tion of the cipher machine. Everything had to be reconstructed, something
which was done in a remarkably short time.

It is known that he based his analysis on only 24 hours of traffic inter-
cepted on 25 May 1940. A quick analysis showed that the first assumptions
probably were correct. A check was made with the traffic intercepted for 27
May. Two weeks later the construction principles for the cipher machine were
solved.

On the other hand it is not known how he set about it. That secret Arne
Beurling took with him in the grave. However, a reconstruction has been
made by FRA (Férsvarets Radioanstalt). The credit for this reconstruction
goes to Carl-Gosta Borelius who served at the Defence Staff’s crypto section,
later on FRA, from 1941 to 1985. Borelius’ description of the reconstruction
work is the basis for what is shown here.

3.5 The reconstruction

There was, of course, a procedure for indicating the Geheimschreiber key set-
tings. One setting was the inner one, that is the selective connection [6] used
for the connection between the ten code wheels and the previously mentioned
inversion and transposition relays. The inner setting was in force for three to
nine days, starting at 9 o’clock on the first day.

When a message was to be transmitted, the code wheels had first to be
set to a given position. These settings had to be the same for both sender and
receiver. The transmitting station would select a setting for five consecutive
wheels. This setting was transmitted to the receiving station with a three-
character so-called “QEP indicator”. The five remaining wheels were set to
a predetermined key value that was valid for all messages during a 24-hour
period. This setting was called “QEK”. The daily key list indicated which
wheel would be “QEP-wheel” and which setting the “QEK-wheels” should
have.

It should be pointed out that the number 3 = letter shift, 4 = figure shift
and 5 = space in this teleprinter alphabet. This has great importance in the
following explanation. [7]

When the transmission of a cipher message was about to start, the trans-
mitting station would present itself with “Hier MBZ” (MBZ here) and would
then ask if the message could proceed, “QRV”. If this was the case, the receiv-
ing station answered with “KK”. The transmitting station then sent “QEP”
succeeded by five two-digit numbers (e.g. 12 25 18 47 52). Both operators then
adjusted the wheels in their respective machines, partly the “QEK-numbers”
after the key list for the current day, and partly the “QEP-numbers”. When
the transmitting station was ready it would transmit “UMUM” (umschalten
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— switch over) and when the receiving station was ready it would answer
“VEVE” (verstanden — understood). Then they switched over to cipher mode
and the transmission of the text itself started. The cipher texts were conse-
quently always preceded by “UMUM” and were therefore easy to retrieve in
the large number of signals.

It is possible that Beurling had knowledge of the Siemens & Halske patent,
but this is not certain. Borelius recounts that when Beurling visited FRA on
15 November 1976, he reacted strangely to questions about the first break.
He evidently did not like the questions to be put. He nevertheless said that
he made use of “threes” and “fives” in the texts.

Telecommunication technical problems were a great help during the break-
ing. The telegraph lines were long, sometimes bad, and therefore often ex-
posed to interference, which could distort a transmitted character. The read-
ability was nevertheless not disturbed except when the character changed
to a “4” (= figure shift), because then all succeeding text became an unin-
telligible sequence of numbers and punctuation characters. If the distortion
affected only the receiving station, the transmitting station did not notice
anything, and continued the transmission. To reduce the problem, the oper-
ators normally used to write “35” (= letter shift, space) instead of only “5”
(= space) between the words. Thus the consequence of a false “4” would be
restored at the next space between the words.

Beurling discovered that when the plain text of “3” and “5” had one pulse
the same and four different, this had also to be the case in the enciphered
state. For a guessed “3” there consequently existed only five possible “5” or
vice versa. It was therefore relatively easy to establish spaces between words,
which would have facilitated further work. It was probably this which Beurl-
ing talked about when he alluded to “threes” and “fives”. Hence a guessed
“3” gave only five possibilities for Q and V in “QRV”, which asked if the
message could proceed. In this way further work was greatly eased.

It also seemed natural to suppose that a part of the encryption process
consisted of a transposition of the five-pulse-characters pulse positions. A
number of comparisons could give the transposition arrangement.

Beurling tried in this case to trace back the cipher character to its ap-
pearance before the transposition. Then he made his next observation. The
change from one character in the plain text to a cipher character after the
“overlaying” consisted of a change in polarity for some of the pulses of the
plain text character, and for all characters in a column it is always the same
character that changes.

We can assume that Beurling now introduced his observations on his
“work sheets” ( “avvecklings-papper”).3 In five rows under the examined text
he placed in every column a dot for pulses with inverted polarity and a

3 Avveckling: A technical term for the elements of work that took place between
the interception of a message and until the plain text could be extracted. That
is, the work consisted of extracting the current cipher key.
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circle for those that did not change. When the emerging five-dot combination
resembled a teleprinter character, it was called an “overlaying” character.
Under this character was written the permutation order, that is the so-called
transposition. Gradually it was detected that the pattern of circles and dots
in the five rows of the “overlaying” repeated after a number of characters.
Beurling then supposed that the pattern was produced by pin-wheels like
those in the Swedish cipher machine, invented by Boris Hagelin.

Subsequently he continued the work with the transposition. It turned
out that if for example “pulse 2” ended up on “place 3” then the fourth
circuit connection had to be open, otherwise it was not possible. If this circuit
connection was controlled by a wheel with even distribution of active and
inactive pins, the pulse would end up on “place 3” in half of the events,
in the rest it would fall on some other place. A converse conclusion should
have been possible, using an inverted argument. The complete circuit and
hence the details of the remaining wheels were obtained through hypothesis
tests. By these means Beurling would have got the break that revealed the
Geheimschreiber secret, as Borelius’ reconstruction shows.

3.6 Imperfections, errors and laziness

It has been mentioned earlier that the telecommunication connections were
bad. But it was not only single characters that were distorted and therefore
gave an opening for breaking.

The abundant number of “parallel texts”, that is an enciphered text sent
several times with the same key setting on the cipher machine, were a big
help in breaking the Geheimschreiber. In extreme cases the same message
was sent 20 to 40 times with the same setting. How could this happen? One
of the basic rules of cryptological security is never to send the same or a
different message with the same key setting. Bad connections and distortions
together with laziness gave many openings of this type.

The keying procedures have already been described. It takes a certain
time to adjust the wheels by hand. To facilitate the adjustment of the “QEK-
wheels”, that is the current key for the day, there existed a cursor that easily
could be moved around on the wheel and positioned on an arbitrary key
number.

The wheels could be freed with a locking arm. All the wheels could be
turned backwards with a handle until their cursors came to a home position
when the wheel stopped. This handle sat on the right on the front of the
machine under a plate with the inscription “LANGSAM DREHEN” (turn
slowly). The idea was that every morning the cursors would be set on the
five wheels that were intended for the daily key (the QEK-wheels). Later
these wheels could quickly be returned to their agreed positions before ev-
ery new transmission. Unfortunately it became a habit that even when the
“QEP-numbers” were set, the cursors were set to the key values and then
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the wheels were cranked back. This was against the existing rules, as new
“QEP-numbers” should be selected for every new message.

Since the lines were long and sometimes poor there were often distortions.
These sometimes caused one of the machines to interpret the distortion as
a character. The operator of the other machine would not notice anything.
One of the machines would then be one step ahead of the other. The cipher
machines were no longer in phase and the message became unintelligible.
When this happened, it was necessary to break the transmission, switch over
to plain text, choose a new message key and continue the transmission.

Figure3. Decryption unit for German line traffic, ex. “APP”.

Now the big mistake was made. For each break in the transmission of a
message due to continuous distortions on the line, the operators chose the
easy solution of simply cranking back the wheels to the previous setting.
In this way the cryptanalysts got their parallel texts with all their errors
and flaws which gave a large number of opportunities for breaking it. The
high security of the Geheimschreiber became therefore in many ways simply
illusory.

3.7 Interception and preparation

As mentioned earlier, the traffic on the German hired telecommunication lines
through Sweden was intercepted. It was quickly discovered that apart from
plain text, encrypted text was also transmitted. When Beurling found how
the Geheimschreiber functioned, Swedish technicians under the leadership of
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Viggo Bergstrom started to construct special machines for decryption after
directions from Beurling. [8] These machines very soon made it possible to
follow the frequent changes in cipher keys and subsequently quickly extract
the plain text. The machines were later built in quite large numbers in L.M.
Ericson’s workshop for precision mechanics.

Figure4. The decryption units, “APPARNA”, at their working places.

The German Geheimschreiber traffic was broken and deciphered from
June 1940 until May 1943. This went on even when new models were intro-
duced and the key procedures were gradually changed.

The intercepts came from a number of teleprinters in a room in Karlaplan
4 which were connected to the different lines between Germany — Norway,
Sweden and Finland. The machines, which were very noisy, were supervised
24 hours a day. The texts came out in a never-ending stream of paper tapes,
which were then glued on to big sheets of paper.

The daily routine was the following: In the morning (after 9 o’clock, when
the daily key was changed) the cryptanalysts examined the incoming traffic,
waiting for a case with sufficiently many “parallel texts” to occur. As soon
as possible, the cipher key extraction (“avvecklingen”) took place. When the
new key settings were produced they were given to the staff who worked with
the deciphering machines, and the deciphering of the day’s harvest could
start. Subsequently the plain texts were cleaned up and typed. They were
later given to the various consumers of intelligence.

As mentioned above, two types of traffic were observed and studied. The
most extensive were the military traffic and the traffic between Berlin and



16 L. Ulfving, F. Weierud

Figure5. In the machine room. (Room with teleprinter-receiving machines con-
nected to the intercepted lines.)

the embassy in Stockholm. The diplomatic traffic had the highest priority, as
this concerned Swedish—German relations. At least two key settings therefore
had to be determined every day.

At first, the teleprinters used in Karlaplan 4 were machines from the
American firm Teletype. Teleprinters were, however, in short supply as im-
porting them was difficult during the war. However, the Royal Telecommu-
nication Administration (Kgl. Telegrafverket) were persuaded to surrender a
number of their teleprinters, which resulted in a return to Morse telegraphy
on some lines. When the crypto department later succeeded in obtaining a
batch of Siemens teleprinters, these replaced the Teletype machines, which
was certainly reasonable considering their use.

As mentioned earlier, when newer versions of the Geheimschreiber were
later introduced, attachment units were constructed and connected to some
of the deciphering machines that were used for the C model traffic. For the
Z-traffic only one deciphering machine was built. [9]

Large quantities of messages were decrypted and distributed. This ex-
tensive traffic resulted in an increase in the number of staff. The number
of teleprinters and deciphering machines also increased until they reached a
total of 32.

The decryption of the Geheimschreiber traffic developed gradually into a
real industry needing a lot of people. In 1941 the staff increased to 500 people
and later on it became even bigger from time to time.
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Tablel. Number of distributed messages.

Year | Encrypted | Unspecified | Unencrypted | Total
1940 7100 7100
1941 41400 41400
1942 101000 19800 | 120800
1943 86600 13000 | 99600
1944 29000 29000
Total 187600 77500 32800 | 297900

The highest number of messages distributed in one day (October 1943): 678.

17

The breaking of the Geheimschreiber was a large contributory factor to
the establishment of FRA (formed from the Defence Staff’s signals and crypto
departments) as an independent authority on 1 July 1942.

In May 1943 the keying principle was changed with the result that further
deciphering became impossible. A small group stayed on to handle those

messages that for different reasons had not been deciphered earlier.

Figure6. View from the rack room. (Room with equipment racks where the inter-
cepted telecommunication lines entered.)
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4 On the eve of Operation Barbarossa:
How was the intelligence used? *

What has just been described, it must be emphasised, was a spectacular
performance even on an international scale. As far as known the Siemens
Geheimschreiber was not broken in any other country.[10] It was also an
extraordinary yield based on a relatively limited investment. Beurling’s re-
luctance to explain how he did it could be due to the fact that he solved
the problem so easily and quickly that he found it too easy to arrive at the
solution. But in reality genius shows itself in simplicity and its accompanying
excellence.

Figure7. Another view from the rack room.

In 1940 the crypto department had been developed with mostly rather
new staff. Its technical and organizational achievements were therefore con-
siderable, since during autumn that year it began to distribute German mes-
sages in ever-increasing numbers. German unit compositions and their po-
sition, together with military and political deliberations and directives were
in this way known to the Swedish authorities, sometimes almost at the same
time as the real addressee.

The German traffic was not particularly alarming during the autumn
of 1940. Hitler was hardly interested in Sweden politically. The planning
for the attack on the Soviet Union was still in its infancy. The directives
for Operation Barbarossa were first drawn up in December 1940. This gave
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the crypto department a respite that was used to build up and render more
effective the breaking, analysis and delivery routines. The Defence Staff could
therefore prepare methods for handling the decrypted material at a time when
it was not under any particular pressure.

Texts “of strategic importance or of an obviously secret nature” were de-
livered directly to Adlercreutz, as chief of the intelligence department, who
normally submitted them to his superiors Commander-in-Chief General Olof
Thornell and the chief of the Defence Staff Major-General Axel Rappe. Then
the texts went to the intelligence department’s own sections. Routine mes-
sages went there directly. Afterwards the messages were burned, apart from
those judged to have long-term value or that were of great strategic impor-
tance. Otherwise, distribution within the Defence Staff was very restricted.
A distribution list was never established. The material was delivered to the
recipient after an assessment in each particular case. (Comment: Destruction
of the decrypted original texts has probably created problems for modern
historical research.)

Distribution outside the Defence Staff, to the Foreign Office and the Se-
curity Service, took place in the beginning through Adlercreutz’s personal
service. The distribution to UD (Utrikesdepartementet = Foreign Office) was
very restricted as Adlercreutz doubted the Foreign Office’s security conscious-
ness. However, that the co-operation between the Foreign Office and the
crypto department was as good as it became, was due to the fact that for-
eign minister Richard Sandler (1932-1939, later governor of Gavle) was a very
keen amateur cryptologist although, as a cryptanalyst he had no real success.
His great services consisted of arranging for UD to inform the crypto depart-
ment when important events were under way and when encrypted messages
might be sent to Germany. This could assist the cryptanalysts, by allowing
them to check that the decrypts were correct. [11]

Different considerations contrasted with each other here. The necessity
to deliver information to suitable Swedish authorities conflicted with the
requirements for secrecy in order to minimize the risk of betrayal of this
unique intelligence source.

As the decryption work was done by a department of the Defence Staff,
Adlercreutz wanted the intelligence department to be the first to receive all
information and even to have a right to direct the work in the crypto depart-
ment. However the crypto department successfully resisted these attempts to
boost the intelligence department’s power.

In the beginning, few objections were raised against Adlercreutz’s control
over distribution. But when the German preparations for Operation Bar-
barossa eventually came to their final stage, the Foreign Office started to
feel that they did not get all the intelligence that they needed. The chief of
the crypto department then decided to change the distribution routines after
consultation with the Foreign Office, who also suspected that they did not
get all the information in time.
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During the winter of 1941 the incoming information became more and
more alarming for Sweden, much more so than during the autumn and win-
ter of 1940. However, it was now possible to get a continuously clear view
from the decrypts of the groups, composition and combat readiness of the
German forces in Norway and therefore also of changes in the situation. A
lengthy force enumeration, intercepted on 21 April 1941, indicated a gen-
eral movement of troops towards the north. Nevertheless, as on previous
occasions no concentrations or deployment could be shown to be directed
against Sweden. Nor was there any indication in the numerous reports from
military border patrols, customs officers, police commissioners and officials
interrogating Norwegian refugees that a German offensive against Sweden
was imminent. The decrypted diplomatic traffic gave no special reason for
alarm. The repeated German threatening warnings to Swedish contacts were
reflected neither in the incoming intelligence nor in their own signals. During
a period when German—Soviet tensions increased rapidly, it was nevertheless
impossible to ignore the warnings. The government, principally the prime
minister and the foreign minister, as well as the military command, were not
prepared to cause trouble and accordingly create German irritation. It was
not therefore apparent that they reckoned with a German—Soviet war.

Many analysts consider that war preparations serve only as instruments
of pressure during negotiations. However, that ignore the dynamics of future
military developments which are created by a deployment as large as that
which occurred here. Economic factors and military logistics make it almost
impossible to keep large, inactive troop concentrations in place as a trump
card during long negotiations, just as it is damaging for the units’ fighting
spirit. It is too expensive not to use the troops, therefore they must either be
used in combat or be demobilized and returned to civilian life. Only victory
justifies the price — even if it is high. For example, consider the collapse
of the economic, political and ecological systems now affecting the states of
the former Soviet Union as a consequence, during a long period, of a highly
forced “war economy” that did not result in any gains.

On 4 June a message was received indicating that strong German forces
would in the near future be transferred east of Rovaniemi in northern Finland.
Units would come from Germany as well as from Norway. The deployment
was to be ready for 15 June. However, no demands on Sweden for the tran-
sit of troops could be gathered from the messages. Two divisions would be
transferred by sea to Stettin, then in turn to Oslo and on to Rovaniemi.

The information in the decrypted messages clearly indicated a German
attack on the Soviet Union.

On 11 June three further messages came which showed that this assump-
tion was probably correct, as well as other intelligence revealing that Fin-
land could not avoid becoming involved in the war. On 16 June came a
teleprinter message that AOK (Armeeoberkommando) Norwegen had taken
military command of Finnish Lappland and that the troop transports were
going as planned. The same day, 16 June, the teleprinter connection Berlin
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— Helsingfors via Stockholm was established following an earlier request. In
spite of different speculations about a negotiated agreement, the incoming
messages in the week before 27 June increasingly pointed towards an immi-
nent outbreak of war.

Despite the intelligence, the Defence Staff did not cancel leave for the
mid-summer weekend. An assessment that there would be a negotiated set-
tlement, which would not require a high military preparedness, clearly had
some validity. However, it is also possible that when the assessment was
made that the war would not affect Sweden, it was more important to con-
ceal the possession of this extraordinary source, which consisted of access to
the Geheimschreiber traffic. Perhaps, therefore, they took it easy and allowed
themselves to be “taken by surprise”.

5 What happened later?
When and how was the unique source exposed? ¢

The decrypted German messages had, as mentioned earlier, been the most
valuable sources during the weeks before the German attack on the Soviet
Union on 22 June 1941. This would remain the position for a few years.
With the attack, the teleprinter traffic to the German commands in Oslo and
Rovaniemi, as well as the diplomatic traffic Stockholm — Berlin increased.
The information received by the Swedish authorities became more detailed
than before.

During the first year, from summer 1941 to summer 1942, when the Ger-
man campaign against the Soviet Union took place, the decryption of the
German teleprinter traffic provided extraordinary intelligence. German mil-
itary plans and German politics towards Sweden could be clarified with the
utmost certainty. However, no reliable knowledge was obtained about Adolf
Hitler’s political and strategic intentions. Intelligence throwing any light on
the innermost reasoning of the people close to Hitler rarely or never existed.

The supreme army commands in Oslo and Rovaniemi did not command
any of the decisive operations of German warfare. Hitler therefore seldom
interfered in what went on in these theatres of operations. Nevertheless, even
if the embassy in Stockholm and the commands in Norway and northern
Finland were on the periphery of German interests, the intercepted internal
German briefings and compilations had a great intelligence value for Sweden.

Adlercreutz’s restrictions on distributing the decrypts to external recip-
ients, except for the senior officers of the Defence Staff and the Intelligence
Department, were mainly aimed at not exposing this exclusive source. Spe-
cial instructions about other aspects of handling the material were issued
in September 1941 by Samuel Akerhielm in his capacity as deputy chief of
the Defence Staff. The purpose was, of course, not to reveal the source. The
decrypted messages had to be communicated and handled in secure ways. It
was not permitted to refer to this material in conversations, and even less so
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on the telephone or in writing. When the messages were no longer needed,
they had to be burned in controlled conditions.

The German confidence in the Geheimschreiber’s security was, as ex-
plained earlier, an illusion. However, even the Swedish belief that the Geheim-
schreiber’s secret still was a secret, except in Sweden, soon also became an
illusion.

Some time in August 1941 the Soviet Union obtained access to the de-
crypted material. The courier Allan Emanuel Nyblad had the task of trans-
porting the decrypted messages from Karlaplan 4 to the Staff building “Gra
Huset” on Ostermalmsgatan 87. He was a rather quiet man. He had been
recruited as an agent, on ideological grounds, by the Soviet Union. The espi-
onage was carried out in the following manner. On his way to the Gra Huset,
Nyblad went to a rented flat situated along his usual route and photographed
the messages he carried. The photos were given to the Soviet representatives,
who had promised Nyblad a prominent position in a future communistic Swe-
den. He is not likely either to have received or demanded any money worth
mentioning.

It is a reasonable assumption that the Soviet intelligence services (the
NKVD and GRU) followed the Swedish success with interest. Moscow must
have welcomed the likelihood that Sweden, with the aid of the intelligence,
would take as strong as possible a position against Germany. But at the same
time, the decrypted texts could also create doubts about Swedish power and
will to withstand the German pressure.

Here we may reflect that the Soviet Union was taken by total surprise
in 1941. During spring 1941 information about the coming German attack
was leaked from Sweden to Great Britain (via the naval attaché) who passed
on the information to the Soviet Union. However, General Golikov, then the
chief of the GRU (the military intelligence service), actively contributed to
the surprise by playing down the warnings from western sources, especially
British, for reasons of political expediency. (The British intelligence service,
SIS or MI 6, had until the Second World War primarily been working against
the Soviet Union. Distrust can therefore be considered to be the explanation.)

Nyblad’s spying was exposed in January 1942. It could not be exactly
established which messages came into Russian hands through Nyblad, as he
could not remember clearly on which days he had copied the material (T.
Thorén) [12]. It is not known whether the Soviet Union derived any benefit
from the information.

Less than six months after Nyblad’s spying stopped, the Defence Staff
discovered a new leak about the successful Swedish codebreaking activities.
This time the leak soon had devastating consequences.

On 22 June 1942, Colonel Carl Bjornstjerna, chief of the newly created
foreign affairs section, which was directly subordinated to the chief of the
Defence Staff, wrote to Major-General von Stedingk, the military attaché
in Helsingfors, “A serious mishap has taken place. The Germans have been
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warned by the Finns that we have succeeded in breaking their G-schreiber.
For this reason they are changing keys, message channels and everything ...”.

No contemporary information exists about how “the serious mishap” hap-
pened. However, one need not be surprised. Swedish service personnel had
been so open towards their Finnish colleagues that a leak was made possible.
The openness shown during the winter of 1941, when it was conceivable that
both Sweden and Finland could have common defence interests, continued
after the summer of 1941. The Finnish military attaché, Colonel Stewen, was
even treated like an insider in the higher Swedish staffs, and the Germans
suspected him of communicating sensitive information to Sweden, who they
presumed then passed it on to the USA and Great Britain. However, it was
equally possible that both of these great powers were capable of acquiring the
alleged “leaked information” themselves. When the Germans criticized their
Finnish colleagues for gossiping, the latter defended themselves by revealing
that the Swedes had intercepted the teleprinter connections and were break-
ing the messages. It is even possible that Colonel Stewen had seen decrypted
messages; at least he knew about them. The Finnish intelligence about the
Swedish codebreaking activity probably reached the Germans some days be-
fore 17 June 1942, when the big alert hit the German communications. In
the beginning, the counter-measures were quite incoherent, but they were
soon concentrated in two directions. One consisted of introducing new cipher
machines or attachments to them.

On 21 July 1942 a new machine appeared in the traffic, T52¢, “César”.
In the beginning it appeared on only a few lines, while on the others the old
machine remained in use. As time went, more and more C-machines were put
into operation.

At first inspection the C-machine appeared to be completely normal.
When the crypto department received parallel texts it could attack these
as before, but the texts no longer fitted the previously known patterns. The
sequences were no longer periodic or they had at least no short periods. Was
this a new encryption method?

At last the crypto department hit upon the solution. Two texts had been
solved and it appeared that two “pin series” were identical in the long se-
quences. They had already earlier worked on the hypothesis that the seem-
ingly infinite sequences were generated by addition, modulo-two, of the results
of two wheels and hence obtained very long periods. The identical sequences
allowed this hypothesis to be tested. This had failed earlier. Was it true that
the old A/B-machines’ QEK-settings also were used in the C-machine? Tt
was known that the C-machine could be used like the A/B-machine. For the
A /B-machine they knew which five code-wheels were QEK-wheels, and also
the settings. They then combined the wheels two by two in the ten combina-
tions, but that did not work. However, when this procedure was repeated by
leaving out four of the wheels it turned out to be correct. In this way it was
possible to reveal the functioning of the C-machine.
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The Germans had in a hurry made the mistake of keeping an element
from an older, simpler system in a new cipher system. In the C-machine they
used the same wheel-lengths and pin-patterns as in the A /B-machine and the
keying principle was the same. They should have made the new machine com-
pletely independent of the old one, but it is likely that production difficulties
created obstacles. The A/B-machine could be connected to the C-machine.
Therefore the quick change of machines did not have any appreciable effect.

The other counter-measure taken by the Germans consisted in avoiding
transmitting particularly important messages over Swedish telecommunica-
tion lines. It was therefore no longer possible to maintain the excellent intel-
ligence about the German armed forces in Norway and Finland. A further
deterioration occurred in October 1942 when all teleprinter traffic to and from
Oslo and Rovaniemi was sent over Danish—-Norwegian, or Finnish-Baltic ca-
bles. In certain cases cables were laid specially for this purpose. However, the
teleprinter traffic to and from the German Embassy in Stockholm could still
be intercepted and broken.

In October 1942 the Germans ordered the introduction of so-called “Wahl-
worter” (randomly chosen words). The idea was actually sound. It is a good
cryptological practice to avoid stereotype beginnings, which are usually where
the codebreaker starts to look for an entry. The “QET-texts” were of course
necessarily monotonous. Now the text would begin with a “Wahlwort” and in
this way move the stereotype, fixed text further on to an undefined place in
the message. However, the good intention failed. Many people follow instruc-
tions to the letter. Most people used the word given as an example in the
instruction, which probably was SONNENSCHEIN (sunshine), as it occurred
very often at first. Some managed to produce the word MONDSCHEIN
(moonlight). The record was the word DONAUDAMPFSCHIFFSFARTSGE-
SELLSCHAFTSKAPITAN (Danubesteamshipcompanycaptain). When the
procedure with Wahlworter was used correctly it became more difficult, but
not impossible, to decrypt the incoming messages.

In May 1943 such radical changes in the keying procedures were intro-
duced that codebreaking became almost impossible. The breaking of the
Geheimschreiber’s teleprinter messages therefore diminished considerably. A
smaller group was left on the task to try, if possible, to do something with the
current material. Otherwise they were engaged in decrypting older material
that had not been dealt with earlier, and in following the traffic.

During 1944 the Geheimschreiber appeared in versions D and E and a
mysterious machine called Y. The crypto department never succeeded in
breaking these machines. Models D and E were further developments of
the machines that carried the designations A, B and C. The Y-machine [13]
could perhaps have been a further development of the Z-(Zusatz)gerét (Z-
(additional)device = Z-attachment). But, as just mentioned, the traffic trans-
mitted with these machines could never be decrypted, only followed.
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Other leaks also occurred, but were never of any significance. It was the
Finnish military attaché in Stockholm, Colonel Stewen, who exposed the
secret.

6 Experiences and lessons 7

When the new Defence Staff started functioning on 1 July 1937 the condi-
tions were not the best for the intelligence and crypto departments. They did
not have a solid foundation to build on. The procedures applied in the intelli-
gence department were rather simple: namely, they were suited to producing
compilations of open material and to making glossaries. Incoming messages
from signals intelligence and e.g. attachés were passed on “in extenso” to the
concerned parties without making any overall assessments and conclusions.
This was left to the individual reader. The information was therefore not
turned into intelligence.

The crypto department worked under very frugal conditions during its
first development phase. However, through considerable efforts, where limited
means were used in the best possible way, impressive results were achieved.

Swedish military intelligence collection deserves very good marks for the
period just before Operation Barbarossa and during its opening phase. The
Swedish military attaché in Helsingfors had given a warning in good time
about a German attack on the Soviet Union in which Finnish participation
was highly probable. The continuous decryption of the Geheimschreiber’s
messages also indicated clearly and unambiguously an imminent outbreak of
war.

No inquiry will probably ever be conducted to see if the organization was a
pure military endeavour, or a common one for the foreign department and the
military commands to study and analyse the incoming information jointly.
At least no documents exist showing this to be the position. Evidently it
was considered adequate to circulate attaché reports and decrypted messages
without any attached intelligence evaluation. However, the most essential
messages were probably discussed by representatives from the Foreign Office
and the military commands at their weekly meetings which they started in
the beginning of April 1941.

Yet the incoming information gave the impression that Sweden would
not be pulled into the war on the German side. The Swedish government
and the commander-in-chief were therefore not surprised on 22 June 1941
as they had been on 9 April 1940. Nor was it necessary for Sweden to take
any precipitate measures. They could afford to lie low and show surprise in
order not to expose the exclusive source of the decrypted German teleprinter
messages. No information exists about this, but the view is not unreasonable.

As mentioned, no organization existed for compilation, study, analysis and
synthesis in preparing intelligence evaluations. Nor was the establishment of
such an organization considered. The assessment of the circulating messages’
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intelligence value and the conclusions were left to the individual readers,
whether with good or bad results.

Any long-term analysis and assessment of the war’s course and end was
never carried out, but considering the turbulent developments ahead that
was perhaps best.

When one looks back to see whether it is possible to learn from that
time’s events one must also take into consideration the classical dilemma of
a professional intelligence service. Incoming intelligence rarely or never gives
information about planning prerequisites, considerations and objectives of
the supreme command’s inner circles, and even less about chosen alternatives.
For this to be possible one must have access to a traitor or a planted spy in
the enemy’s supreme command (e.g. the CIA’s Oleg Penkovski in the Soviet
Union or Mossad’s Eli Cohen in Syria). Normally one is simply reduced to
using information which can give intelligence about possible actions and when
they are likely to be realized. When different readers, each studying from
varying positions, preconceived opinions and needs to assert his preserve,
draws intelligent conclusions from raw information which will be the basis for
decisions, the result can be disastrous. The lonely decision-maker may very
well take non-optimal, irrational decisions. However, if the decision is made
in full session, the delay caused by the decision-making process can produce
catastrophic consequences before everybody agrees after a long discussion.
These are two of the conditions for a strategic attack to succeed, like the
German attack on Denmark and Norway. A third risk also exists. A joint,
balanced intelligence estimate, which is carried out by a whole organization,
can in the end be so diluted that it has no value for the decision-maker. The
balance between the different extremes demands a lot from those carrying
out intelligence work, irrespective of grade or service rank. It should also be
pointed out that it is nearly impossible to assess all undercurrents influencing
a historic event so as to make a forecast. Unknown as well as known events,
which an intelligence service will not be able to interpret and describe, can
create unknown forms of interference in a chain of events so that they can
hardly be predicted.

7 Conclusion

On New Year’s Eve 1941, Sweden was seemingly in the same geostrategic
situation as the year before. However, a change in the wind was under way.
In front of Moscow’s gates, the Germans’ storm wave had collapsed when
Marshal Zhukov’s Siberian troops launched a violent counter-attack on 6
December 1941. The Red Army had good help from “General Winter”, who
would assist in several winters to come. But in reality the strategic initiative
was on its way to slipping out of German hands. However, it would take a
whole year before this became evident for the world, when a complete German
army was annihilated near Volga.
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On 7 December 1941, the day after the counter-attack outside Moscow,
Japan attacked the American fleet in Pearl Harbor. With that an industrial
giant arose in terrible anger — an anger that in the end would turn the
fortunes of war.

In the Second World War, the breaking of the cipher from the German
Enigma machines and the Japanese Purple machines[14] was of crucial im-
portance. The considerably greater intellectual effort needed to break the
Geheimschreiber messages, which was accomplished in Sweden, did not in
any way have the same decisive significance for the war. Therefore this ac-
complishment has not been so well known. However, from a Swedish per-
spective, it was of considerable importance as it actively contributed to keep
Sweden out of the war.
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10 Translator’s Notes

1.

Both of these addresses are in Stockholm. The majority of the FRA in-
stallations were in or around Stockholm, many of them adopting names
with the ending “bo” which means room or house. On Lidingd, a small
island on the eastern side of Stockholm, there were altogether five dif-
ferent FRA installations. Krybo and Rabo where FRA intercepted radio
traffic and did cryptanalytical work, Petsamo which intercepted radio
teleprinter traffic, Utbo for training intercept operators, and Matbo (“the
food house” ) where there was a restaurant and housing quarters. In Stock-
holm city were Karlbo, Karlaplan 4, and Lebo on Strandvégen 57 which
housed the FRA administration. Elsewhere in the country there were a
few intercept stations and other installations. Sydbo intercepted Baltic
radio traffic, while Norbo covered the Arctic radio traffic and traffic on
the Finnish—-German—Russian fronts. Ostbo covered the eastern parts of
the Baltic Sea, the Baltic States and Poland.

. The author refers to the use of relays for the inversion and the transpo-

sition circuits, which is how Carl-Gosta Borelius describes the circuits in
his manuscript. However, only the T52c and T52e machines used relays
for these circuits. The other machines, T52a/b and T52d, used the cam
contacts on each coding wheel. The term “transposition circuit” reflects
the cryptographic usage; mathematically speaking the circuit performs a
permutation.

The number of combinations given by the author, 2612736 000 = 10!-720,
is presumably the number of ways the 10 coding wheels can be selected
and the number of permutation sets that can be obtained from the trans-
position circuit. This circuit has five double changeover contacts or trans-
position units which will give a total number of 2° permutations, which
we call a permutation set, for a given set of connections. Furthermore,
there are 9-7-5-3-1 = 945 ways that the five contact sets, each equipped
with two plug connections, can be inserted into the transposition circuit.
Computer simulations show that each of these 945 connection variants
results in unique permutation sets. However, the majority of the permuta-
tion sets, a total of 561, are degenerate in the sense that each set contains
only from 1 to 16 unique permutations. The case of the set with only one
single permutation is special because it is the identity permutation. Of
the remaining 384 sets, 24 sets have 27 unique permutations, 240 sets 30
permutations and 120 sets contain all the 32 permutations.

Inspection of a Wehrmacht SFM T52d Key table from May 1945 shows
that all of the permutation connections belong to the two groups with
30 and 32 unique permutations, which means that in reality only 360
permutation sets were used by the German cryptographers during this
period. The given number of 720 permutation sets probably is the result
of a too superficial analysis of the T52 transposition circuit.

The pluggable permutation units are only available on the T52a/b and
T52d machines. On the T52c and T52e machines the transposition cir-
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cuit uses relays instead of directly using the code wheel contacts. The
five relays are permanently wired in one of the most basic permutation
configurations. Therefore the only selection available on these machines
is which code wheel controls the different transposition relays.

4. Due to an anomaly of the rotor movement in the Enigma machine, the
middle rotor will step twice every time the left rotor advances. Therefore
the period is 26 x 25 x 26 = 16900 instead of 26 x 26 x 26 = 17576, but
the machine has a total of 17576 starting positions.

5. The translator previously believed that FRA had confused the terminol-
ogy. The early Siemens T52a/b machine (1937) was called Geheimzusatz
while the Lorenz SZ40 and SZ42 machines were called Schliisselzusatz (ci-
pher attachment). However, recent archive research has shown that the
German teleprinter operators used the term G-Zusatz for the SZ 40/42
machines.* The following communication was decoded by Bletchley Park
on the link they named Stickleback (Berlin — H.Gr. Siidukraine) on 13
September 1944:

"Do you have a G-Zusatz 40 available? Fundament 407 . ..So you have no
40 G-Zusatz any longer ...good ...many thanks ...a Fundament ...So
you have a forty’er after all ...good ...good.”

Fundament 40 and 42 were used by the operators to refer to the SZ40 and
SZ42 machines. Later this usage would cease and instead would appear
Fundament A and Fundament B. These two terms would refer to the
SZ42A and SZ42B variants. The dialogue above shows nevertheless that
all these cryptic terms for the different machines were not understood by
all. The use of the Z designation for the SZ40 machine probably comes
from the German use of the letter Z to describe this machine while setting
up an encrypted communication circuit. To set up encrypted communi-
cation with the T52a/b they would transmit in clear the Q-code “QEK”,
while for communication with the T52c and the SZ40 machines they
would transmit “QEK C” and “QEK Z” respectively.

6. The author uses the term “transposition connection”, which is correct in
the sense that it transposes the function of a given code wheel, but it is a
term likely to be confused with the machine’s permutation circuit or the
transposition unit. The translator has therefore decided to call this part
the selective or programmable connection.

7. Because the enciphered text can contain any of the 32 possible teleprinter
combinations, including the six control signals, the teleprinters used for
interception had to be modified. In these specially modified teleprinters
the signals carriage return, line feed, letters, figures, space and null were
replaced with the numbers 1,2,3,4,5 and 6. All the other combinations
were represented by their corresponding letter as normal. The British
codebreakers at Bletchley Park (BP) used a similar arrangement where

4 “Log Procedure Relating to The Use of “Limitation” on Non-Morse Army Links”,
addendum to Captain Walter J. Fried’s report No. 118 of 21 Nov. 1944. NARA
RG 457, NSA Historical Collection, Box 880, Nr. 2612.
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they replaced the six control signals by the characters 4, 3, 8 or -, 5 or
+, 9 or . and /. See Appendix A.

8. The construction of the decryption units, Apparna, was led by engineer
Vigo Lindstein of L.M. Ericson’s cash register department. He would later
join Hagelin’s Cryptoteknik as technical chief and eventually end up as
deputy director of AB Transvertex, another Swedish cipher manufacturer.

9. The breaking of the SZ40 machine was based on intercepted cable traffic,
while intercepted radio transmissions later allowed the Swedish crypt-
analysts to break the more modern SZ42. The cable traffic covered the
period from 26 November 1941 until March 1943 and the first Swedish
break into the SZ40 took place on 9 April 1943.

10. The codebreakers at Bletchley Park made a break into the Siemens T52
machine during the summer of 1942. They had followed the use of this
machine that BP called Sturgeon for some time. The T52 machine was
mainly used on radio teleprinter links belonging to the German Air Force
and the German Navy. Due to a question of priorities BP allocated their
resources on the German Army links that used the Lorenz SZ40 and SZ42
machines. However, the Swedish codebreakers were the first to break the
Siemens T52 machines.

11. Tt is more likely that the crypto department was looking for probable
words or “cribs” than testing for correct decryption.

12. The author refers here to Commodore Torgil Thorén, the chief of the
Defence Staff’s crypto department. The review of the Nyblad case is part
of Thorén’s analysis, which is included as Appendix 6 in the 1946 report
“Investigation into the Defence Staff’s handling of decrypted messages
from FRA”.

13. In his book, Bengt Beckman explains that the Y or QEKY machine was
the Siemens one-time-tape machine T-43 which towards the end of the
war was used on radio communication circuits that also used the SZ40/42.

14. The Japanese machines, Purple, Coral and Jade, were used for high-level
diplomatic communications and therefore never carried the same kind of
tactically important traffic that was the case for the Enigma. Neverthe-
less, intelligence from these machines was important for the conduct of
the war, and the reports from Japan’s ambassador in Germany, Hiroshi
Oshima, contained much information of great strategic value.

11 Translator’s Postscript

Lars Ulfving’s account of Swedish codebreaking during the Second World
War has largely been superseded by Bengt Beckman’s book Svenska kryp-
tobedrifter (Swedish Crypto Achievements), [5,41] as Lars Ulfving himself ac-
knowledges. Ulfving’s account, which is largely based on Carl-Gosta Borelius’
internal FRA history, cannot be compared with Beckman’s complete histor-
ical treatment of Swedish cryptography. Bengt Beckman, who is the former
chief of FRA’s cryptanalytical department, interviewed many people who
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were directly or indirectly involved in FRA’s work during the war and had
full access to the archives. He did not participate in FRA’s wartime work,
since he joined the organisation in 1946. However, he personally knows most,
if not all, of those who took part.

Although, Lars Ulfving had limited access to the FRA archives and sources
he did a good job with the material at his disposal. A strong point in his pre-
sentation is the setting of the cryptological exploits in their true historical
context, which shows their importance for Swedish defence and foreign pol-
icy. However, it lacks a more profound explanation of the cryptanalytical
problems and the personal histories of those who were involved.

Arne Beurling has a central place in both Lars Ulfving’s presentation and
Bengt Beckman’s book, which he clearly merits. Arne Beurling was in many
ways Sweden’s and FRA’s Alan Turing. Like Turing he was a genius who
always worked from first principles and received great pleasure in seeking
simple solutions to problems. However, unlike Turing, he was not socially
awkward. He liked an enjoyable evening in town, while his good looks and
great personal charm made him very attractive to women. He was also a
typical outdoors man who liked trekking, sailing and hunting. However, he
had a darker side. He could be stubborn and difficult. Throughout his life he
had many conflicts with other people and could then be physically violent.
He is known to have settled one argument with the famous Swedish cryp-
tographer Yves Gyldén with his fists. Bengt Beckman dedicates three full
chapters to Arne Beurling. The picture that emerges is of a person with a
complex character, but who is full of life and nevertheless inspires both trust
and friendliness.

Like Turing, Arne Beurling would make the initial breaks into a problem
and lead the way, but afterwards he would take on other tasks, allowing others
to continue the work. Before Beurling decided to attack the Geheimschreiber
problem, he had worked together with Ake Lundqvist, botanist and chess
Grandmaster,® on superenciphered Russian codes. The Swedish cryptanalysts
made great inroads into the Russian code and cipher systems. Olle Sydow and
Gosta Wollbeck were two of the major cryptanalysts working on the Russian
problems, but there were many others. They made up a variegated group
of professors in Slavic languages and literature, mathematics and astronomy
including a few art historians. Not to forget all the young women of “good”
families who, as at Bletchley Park, attended to the more humdrum tasks.

Another of Beurling’s great achievements at FRA was his solution to-
gether with Robert Themptander, an actuarial mathematician, of a very
difficult double transposition problem. These ciphers had made their first
appearance in the autumn of 1940. They were sent by two spy transmitters,
with the callsigns CDU and MCI, which were located on the continent and
communicated with a station in England. In June 1941 the same traffic, which

5 Ake Lundqvist received the title of Grandmaster in correspondence chess in 1962.
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always started with the indicator CXG, appeared in the transmissions of the
British embassy in Stockholm.

Double transposition can be a difficult cipher to break. In this case it
was made even more difficult by applying a monoalphabetic substitution be-
fore the double transposition. By analysing the cipher texts they discovered
that the digits 0,1,2,3 and 4 had a higher frequency than expected, some-
thing which indicated a substitution alphabet in the range 01-45. In October
1941, when Arne Beurling struggled with this problem, he finally succeeded
in breaking six messages enciphered with the same key. He discovered that
double transposition was indeed used with keys of different length for each
transposition. However, his greatest difficulty was not the transpositions but
rather to reconstruct the substitution alphabet. He apparently guessed that
the alphabet would be in its ordered sequence, but the plain text that emerged
did not fit the English language as expected.

After many trials Beurling finally succeeded in extracting one word that
made sense: “Baltik”. However, the rest was mainly incomprehensible. Arne
Beurling then brought the text to his good friend Richard Ekblom, professor
in Russian at the University of Uppsala. After slightly rearranging the text,
Ekblom said: “This looks like Czech”. And it turned out to be telegrams
from Vladimir Vanek who was the Czech Exile Government’s representative
in Stockholm. As the telegrams showed that Vanek was involved in espionage
against both Germany and Sweden, he was arrested in his home on 27 March
1942. A search resulted in the identification of the book used as the base for
the transposition keys. It was Jan Masaryk’s Svétovd Revoluce (World Rev-
olution). The meaning of the indicator CXG escaped the FRA cryptanalysts
during the war but now, more than 50 years later, Robert Themptander says
it must have stood for Czech Exile Government. It is said that Arne Beurl-
ing himself considered this solution of a double transposition cipher with a
monoalphabetic substitution and in an unknown language to be a greater
feat than his solution of the Geheimschreiber cipher.

Arne Beurling was not the only master cryptanalyst at FRA during the
war. He was perhaps the only genius, but there were also other excellent
cryptanalysts, who performed great achievements. A group of three people,
Carl-Gosta Borelius, Tufve Ljunggren and Bo Kjellberg, under the leadership
of Lars Carlbom succeeded in breaking the Lorenz SZ40 and SZ42 machines.
The SZ40 traffic had been observed on the German cable connections in
November 1941 and in January 1943 FRA also observed the same traffic on
radio circuits. Their first break occurred on 9 April 1943, based on the cable
traffic, while they also succeeded in breaking the SZ42, which was then used
on radio, in September 1943.

The solution of the SZ40 came later than the first British solution of
the same machine in January 1942. However, Arne Beurling’s solution of the
T52a,/b machine in June 1940, based on a set of messages in depth intercepted
on 25 and 27 May, constituted the first break of a modern, on-line teleprinter
cipher. As with the Siemens T52 solutions the Lorenz machines were also
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broken by hand methods. The only tool was a SZ40 “replica” which was
constructed using bicycle chains of different length to simulate the action of
the twelve coding wheels.

FRA’s resources were very limited. With a peak staff of 384 people in 1942
it was a tiny organization compared with Bletchley Park (BP) and Arlington
Hall. Tt is therefore of interest to compare FRA’s Geheimschreiber group with
the corresponding Fish® sections at Bletchley Park. FRA’s Geheimschreiber
group, which consisted of the sections 31f, 31g, 31m, and 31n, saw its peak
performance in November 1942 while the Fish sections at BP had their peak
in the autumn of 1944. In November 1942, 31f, which was responsible for
tidying up the texts and typing the final results, provided 10638 messages. It
was staffed by 56 people handling the tidying up process and 18 typists. At
the same time, the line intercept section, 31n, had nine technician and eight
young women who glued the printed teleprinter tapes on sheets of paper.
The Post Office supplied up to three maintenance people on demand who
would tend to the 72 line receivers and the 36 teleprinters. The cryptanalytic
section, 31g, had 14 cryptanalysts and 60 women who manned the decoding
machines, the “Apps”. There were a total of 32 “Apps” of which 22 had the
special TH2c adapter and 26 specially connected teleprinters. Finally, in the
translation and compilation section, 31m, there were seven compilers and 13
translators including a few persons taking care of the odd jobs. In total the
Geheimschreiber group had about 185 people.

In September 1944,” at the inauguration of BP’s new Block H which
was built to house Max Newman’s section and his machines, there were a
total of 345 people working on the Tunny problem in the two sections, the
Newmanry and the Testery. The Newmanry comprised 20 male civilians, at
least 10 of them with honours degrees in mathematics, one US Navy officer,
2 US Army officers, and 186 Wrens from the Women’s Royal Naval Service,
a total of 209 people. In Major Tester’s section, the Testery, there were at
this time 21 officers, including two US Army officers, 77 other ranks, 25 ATS
(Auxiliary Territorial Service) women, and 26 male civilians, a total of 136
people. They included six mechanics and 37 machine operators, while 30
people were working on registration of traffic and 20 others were engaged
on breaking “dechis”® and anagramming depths. In addition there were 34
“setters” whose job it was to carry a break back to the beginning of a message
and compute the settings for the machine operators. The remaining nine
people were taking care of a variety of jobs.

5 Fish was the BP codename for the non-morse, teleprinter, transmissions and
the ciphers they employed. The Lorenz SZ40/42 was labelled Tunny while the
Siemens T52 machines were known as Sturgeon.

" Captain Walter J. Fried’s report No. 96 of 29 Sep. 1944. National Archives and
Records Administration (NARA), RG 457, NSA Hist. Col. Box 880, Nr. 2612.
8 Dechi is a kind of “pseudo plain text” as given by the expression D = Z + X =
P +W. The dechi is part of the method used to strip off the influence of the Chi

wheels of the Lorenz SZ40/42 machine.
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At the end of September 1944, Colossus 5 had been installed in the new
Block H and was fully operational, while Colossus 6 had also been installed
but was not yet connected. A total of 12 Colossi were planned and ten ma-
chines were in operation at the end of the war. The sections also had up to
16 Tunny machines to decode messages on already broken keys. Tunny was
also used for the “dechi” process and the Newmanry was equipped with three
of these machines. During September over 2.5 million plain text characters
were produced by the two Fish sections from a total of 40 million intercepted
characters.? This is only 6.25 %, however, the majority of the intercepted sig-
nals, 82 %, consisted of transmissions of fewer than 2000 characters, which
were too short to be broken.

What is immediately apparent in this comparison is the difference in
approach. The FRA group appears more like a production unit where the
daily cryptanalytical problem was well in hand and was solved with a mini-
mum of specialist staff and without any machines. In BP’s Tunny sections
the cryptanalytical problem clearly demanded the biggest resources both in
cryptanalysts and machine operators who attended to the Colossi and other
specialised machines. One reason for this is due to the differences in the two
cipher machines. In the Siemens T52 the code wheel patterns remained fixed
while for the Lorenz SZ40/42 they had to be broken every day for some of the
links. This required a major effort from the cryptanalysts. FRA also had the
advantage of working with intercepted transmission that were as good as the
intended German recipient. This was never the case for BP who very often
had to work with marginal material due to the difficulty of receiving and
transcribing the very faint Fish signals. However, the T52’s cryptographic
algorithm, which used permutation together with modulo two addition, was
more difficult than the principle used for the SZ40/42 machines.

Seen in this light, FRA’s results are astounding, which can only partly be
explained by the dedication of the people and their leadership. One important
factor must have been the quality, professionalism and experience of those
involved. The majority were highly educated and those who lacked formal
education were extremely talented. One person who comes to mind is Gosta
Wollbeck, then Gosta Eriksson, who, when he joined FRA, lacked formal
academic education but had a good knowledge of Russian acquired through
self-study. He would, over the years, assimilate one language after the other
and undertake whatever translations were needed.

However, there is yet another factor. Even though there appear to have
been tensions within the organisation, something that probably can be ex-
plained by the close proximity of so many strong and somewhat eccentric
personalities, most of them clearly loved the work they were doing. As Arne
Beurling’s student and very good friend over many years, Bo Kjellberg, said

9 Captain Walter J. Fried’s report No. 101 of 14 Oct. 1944. NARA, RG 457, NSA
Hist. Col. Box 880, Nr. 2612.
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recently at a meeting of FRA veterans: “That was the most wonderful time
of my life. To have all those unsolved problems in front of me.”
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14 Appendix A

Modified teleprinters with International Telegraph Alphabet
No.2

Lower Case Code elements Upper Case

(letters) 12345 (figures)
A 11000 -
B 10011 ?
C 01110 :
D 10010 ”Who are you”
E 10000 3
F 10110 %)
G 01011 %)
H 00101 %)
I 01100 8
J 11010 Bell
K 11110 (
L 01001 )
M 00111
N 00110 ,
Q) 00011 9
P 01101 0
Q 11101 1
R 01010 4
S 10100 ’
T 00001 )
U 11100 7
\Y 01111 =
W 11001 2
X 10111 /
Y 10101 6
Z 10001 +
1 00010 Carriage Return (BP code: 3)
2 01000 Line Feed  (BP code: 4)
3 11111 Letters (BP code: 8 or —)
4 11011 Figures (BP code: 5 or +)
5 00100 Space (BP code: 9 or .)
6 00000 No Action  (BP code: /)

Note: *) Unassigned, reserved for domestic use.
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15 Appendix B
Chronological List of Swedish Geheimschreiber Events't
1940
Apr | T52a/b, first observations, to/from Norway
Jun |T52a/b, first solutions Dec 40:
7100 msgs
Sep | T52a/b, first routine production 20-30 staff
1-2 “apps”
1941
May |T52a/b, to/from German Legation in Stockholm
Jun |T52a/b, to/from Finland Dec 41:
41400 msgs
Nov |SZ40 observed on cables 94 staff
10 “apps”
1942
Jun | Rumours in Berlin about Swedish breaks
Jul T52c¢, first observations Dec 42:
120000
Sep | Th2c, first solutions msgs
185 staff
Dec | New key system 32 “apps”
1943 |Jan |SZ40 on radio, first observations
Feb | T52ca, first observations
Mar | T52ca, first solutions
Apr | SZ40 on cables, first solutions
May | New key system
Jun | SZ40 on radio, first solutions
Sep | SZ42 on radio, first solutions Dec 43:
71000 msgs
Dec | T52d, first observations 51 staff
1944
Feb | No more solutions of cable traffic
Sep | Th2e, first observations

T Reproduced with permission from FRA’s Monograph A Swedish Success [6]
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The RSA Public Key Cryptosystem

William P. Wardlaw

Mathematics Department, U. S. Naval Academy, Annapolis, MD, 21146

1 Introduction

The RSA (Rivest, Shamir, Adleman) cipher algorithm has captured the imag-
ination of many mathematicians by its elegance and basic simplicity ever since
it was introduced in 1978. Numerous descriptions of the algorithm have been
published. Readers with a knowledge of a little basic number theory will
find the original paper [RSA] by the inventors of the algorithm, Ronald L.
Rivest, Adi Shamir, and Leonard M. Adleman, quite readable. Perhaps the
most famous description is Martin Gardner’s expository article [G], which
is written for readers of Scientific American. Martin E. Hellman [H] wrote
another good Scientific American article describing the RSA algorithm and
the knapsack cipher algorithm. The goal of this paper is to lead the reader
who has some mathematical maturity but no knowledge of number theory,
say a first year calculus student, a clever high school student, or an interested
engineer, through the basic results needed to understand the RSA algorithm.
The prerequisites are only a knowledge of the elementary school arithmetic
of the integers, high school algebra, some familiarity with the notions of sets
and of functions, and, most importantly, a real desire to understand how
the RSA algorithm works. We begin with a discussion of general crypto sys-
tems and the differences between classical systems and public key systems.
Then the treatment will give an informal but fairly rigorous introduction
to the division algorithm, divisibility properties, greatest common divisors,
the Euclidean algorithm, modular arithmetic, repeated squaring algorithm
for b%(mod m), time estimates for these algorithms, Euler’s totient function,
Euler’s Theorem, and, as a corollary, Fermat’s Little Theorem. Don’t worry
if you are unfamiliar with some of these terms now - they will all be ex-
plained when they arise. These ideas will then be used to explain the RSA
algorithm in detail. We will mention but not go into detail on the notions of
primality testing and methods of factoring. The student who wishes a deeper
understanding of these things is strongly recommended to read the pertinent
sections of Neal Koblitz’ excellent book [Ko], A Course in Number Theory
and Cryptography.

2 General Cryptosystems

A eryptosystem is a method of secret communication over public channels
between members of some group of people, which we call the crypto group.



102 W. P. Wardlaw

The term public channels refers to the possibility that people outside of
the crypto group can intercept messages sent between members of the group.
Broadcast radio, telephone lines, ordinary mail, and e-mail are all examples
of public channels. A cryptosystem will be made up of one or more (usually
many) units, called crypto cells, each of which provides for communication
from one member of the group to another.

Suppose that Bob wants to send a message x to Alice. Bob uses an en-
cryptor E to act on z and transform it to the encrypted message y = zFE.
Then he sends the encrypted message y to Alice. When Alice receives the
message, she uses a decryptor D to convert y back to the plaintext message
z: yD = (xE)D = z. Thus, the decryptor D undoes or inverts the action
of the encryptor E. In practice, E (as well as D) might be a mechanical
device, a computer program, or an algorithm) which converts z into y (or y
into x, in the case of D). This encryptor-decryptor pair (E, D) is the simple
cryptosystem, or crypto cell, that Bob uses to contact Alice.

We model this situation mathematically by taking E to be a one to one
function with domain X = dom(E) and range Y = ran(E), and taking
D = E~! with domain Y = dom(D) and range X = ran(D) to be the
inverse function of E. Thus, X is the set of all plaintext messages that can
be encrypted by E, and Y is the set of all encrypted messages. The functions
E and D satisfy the relationship

zE = yif and only if yD = z. (1)

A simple example is given by letting X =Y = {a,b,¢,d, ...,x,y, 2} be the
alphabet and taking E to be the permutation

o abcde fghijklmnopqrstuvwxy z )
" \kryfmtahovcjq xel szgnubi pwd

Now E acts on a letter in the top row by transforming it to the letter below
it in the second row. Thus, aFl =k, bE =r, ... , and zE = d. It is not difficult
to construct D = E~! from E to obtain

D= abcdefghi jkl mnopgqrstuvwxyz (3)
" \gvkzodshwlape tixmbqfujyncr

It may seem silly to let every message consist of a single letter, but we
do not need to stretch our imagination far to see how E encrypts “to err
is human” as “ne mzz og hugkx” and D decrypts “ne tezaobm foboxm” as
“to forgive divine”. The encryptor E is an example of an important class of
26! = 1x2x3x...x25x 26 encryptors called monoalphabetic ciphers that
are really just permutations of the alphabet. It is a simplifying convenience
to think of the set X of all plaintext messages as consisting of 26 letters,
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rather than the infinite collection of words and phrases that can be written
with these letters!

As we mentioned above, a cryptosystem consists of crypto cells (E, D)
which allow one member of the group to send a private message to another.
In a classical cryptosystem, the situation is as described in our example. If
Bob knows an encryptor E to send a message to Alice, he can easily figure out
the corresponding decryptor D, and so he can use D to understand messages
that Alice sends to him using E. The situation is symmetrical; Alice and Bob
share E and D, and use them to communicate. In order to set up private
communication over a public channel, Bob and Alice would first have to get
together privately and share the information (E, D), usually in the form of
a “key”. Unfortunately, the problem of key exchange is made worse by the
fact that if Bob and Alice use the same key for too long, an easedropper may
be able to break their key and decrypt their communications, so Bob and
Alice must get together frequently to exchange keys. David Kahn describes
the following consequences of not changing keys in Chapter 17 of [K] , espe-
cially page 567. After their Pear]l Harbor attack, the tremendous success of
the Japanese in spreading their forces throughout the Pacific delayed their
intended change of codebooks from 1 April to 1 June 1942. This enabled the
cryptanalysts in Hawaii to glean enough information from Japanese coded
messages to predict the Japanese attack on Midway and to get U. S. carriers
in the right place to surprise the Japanese and win a decisive victory.

Because of this need to avoid sending too many messages using the same
crypto cell (E, D), a cryptosystem, even one involving only two people, will
often use a large number of different crypto cells. Each crypto cell will be
given an identifying key. Different messages will then be encrypted using
different encryptors, with keys determined by the date, the time of day, or
somehow hidden in the message itself.

Another reason that a crypto system may require a number of different
crypto cells is to establish different cliques in the crypto group. A clique
within a crypto group is a set of people within the group who exclusively share
a given set of crypto cells. Any pair of a clique can communicate with each
other without members of other cliques being able to decrypt their messages.
In a military crypto group, a clique of all officers might have access to those
crypto cells used to send “confidential” messages, but only commissioned
officers would be allowed to read “secret” messages, and a still smaller clique
of officers with a special clearance would have access to the crypto cells used
for “top secret” traffic.

One useful organization of a crypto group is to make each pair a clique,
so that any two members of the group can communicate secretly with each
other. In general, a crypto group of N people would have N(N — 1)/2 pairs,
and it would require that many crypto cells (E,D) in order to allow any
two people in the group to enjoy private communication. For example, in a
group of 10 people, we have 10 ways to pick the first person x in an ordered
pair (x, y), and for each such x there would be 9 choices for y, for a total of
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10 x 9 ordered pairs of people. Since this method counts each unordered pair
{x, y} twice, there are 10 x 9/2 = 45 unordered pairs.

For several thousand years, only classical (also called symmetrical) crypto
systems were available. But in 1976, Diffie and Hellman [DH] introduced the
idea of a public key cryptosystem. In such a system, each user secretly
obtains a crypto cell (E, D) and then publishes the encryptor E. Clearly, the
central requirement of such a system is that it be prohibitively difficult to
figure out the decryptor D = E~! from a knowledge of E. For example, if
a given computer takes a millisecond to encrypt a given message using the
encryptor E, that same computer might take several thousand years to com-
pute the decryptor D using a knowledge of E. (This is called breaking the
encryptor.) Of course, several thousand computers working together might
break the encryptor in only one year, and a single computer which computes
several million times as fast as the original computer might break the encryp-
tor in nine or so hours. It is clear that the security of the system is dependent
on the present state of technology.

Diffie and Hellman suggested the use of a trapdoor function E for
which the possession of certain secret information would make it easy to
calculate its inverse D, but for which D would be very difficult to discover
without this information. Then each member M of a crypto group would
calculate and publish an encryptor Ej; and privately calculate its inverse, the
decryptor Dy, which he would keep secret. If Bob wants to send a message
z to Alice, he needs no private meeting to exchange keys. He simply looks up
Alice’s published encryptor E4, uses it to encrypt the message, and sends the
encrypted message y = xE4 to Alice. Since only Alice knows her decryptor
Dy, only Alice can decrypt y to obtain x = yD4 = xEaD 4. If she wishes to
reply, Alice can use Bob’s published encryptor Ep.

But how can Alice be sure that it was Bob who sent her the message?
After all, everyone has access to her encryptor E4 and could use it to send
her a message masquerading as Bob. But authentification is possible at the
cost of two extra messages. Bob could append a ten digit random number b
as part of his first message. Alice could generate a ten digit random number
a and send Bob the number a + b, using the encryptor Ep that only Bob
can decrypt. Bob then authenticates his original message as well as future
messages by appending a, which he obtains by subtracting b from Alice’s
appended a + b.

For certain public key crypto systems, Bob and Alice can even sign their
messages in a way that can be verified by an arbiter later. Let X, =
dom(Epr) = ran(Dyy) be the set of all plaintext messages and Yy = ran(Eyy)
= dom(D ) be the set of all encrypted messages for the crypto cell (Enr, Dpy)
belonging to crypto group member M. Suppose that every plaintext mes-
sage can be considered to be an encrypted message, and vice versa. That is,
Xu = Yy for every member M. If X4 = Y4 C Xp = Yp, then Bob can
send a signed message x in X4 to Alice by first encrypting it using Alice’s
encryptor E4 to obtain y = xF4 in X4 = Y4. Since Y4 C Yp, yis alsoin Yp,
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and so Bob’s decryptor can be applied to y to obtain z = yDp = zE4Dp in
Xp. Then Bob sends the signed encrypted message z to Alice. When Alice
receives the message z, she knows it is supposed to have come from Bob and
that X4 C Xpg, so she first applies Bob’s publicly known encryptor Eg and
then her secret decryptor D 4 to read the message zEgD s = (tEaDp)EgDa
=xgEsDy4 = z: Eg “undoes” Dy and then D4 “undoes” E4. Alice knows
the message was originated by Bob, because only Bob is able to use his se-
cret decryptor Dg to construct his encrypted message z. If another decryptor
had been inserted instead, then Alice’s use of Bob’s encryptor Ep would have
produced gibberish instead of the intelligible plaintext message x. Only Bob
could have sent the message! Moreover, if Bob later denies sending the mes-
sage (which could be a contract of some sort), Alice can show the messages
x,y, and z to the judge. The judge can then observe that tE4 =y = zEp to
verify Alice’s claim that Bob sent the message: Although Alice could make up
z and construct y = xFE4, she could not construct z = yDp without knowing
Bob’s decryptor Dp. Bob must have sent the message!

Similarly, Alice can send a signed message u to Bob by first applying her
decryptor D4 to produce v = uD4 in Y4 C Xp, and then applying Bob’s
encryptor Ep to produce w = vEp = uD4Ep in Yg, which she sends to
Bob. Bob then is able to decrypt and read u = wDpE4.

Note that the order in which the encryptors and decryptors are applied
is important if the containment X4 C Xp is strict and X4 # Xpg. If instead
of 2 = xrE4Dp Bob tried to form 2z’ = zDgE,, he would start with z in
X4 C Xp and apply Dp to obtain ' = xDpg in Xp, but maybe not in X 4
I'If ¢ is not in X 4, Bob cannot apply E4 to y' to get 2/ = xDpE4 because
E 4 only works on elements of its domain dom(E4) = X 4. A similar problem
could occur if Alice changed the order in which the encryptors and decryptors
are applied in sending a signed message to Bob.

Here are some advantages of public key crypto systems over classical
crypto systems:

(1) There is no need for private meetings to exchange keys.

(2) Only N crypto cells are needed for private communication between
each pair of a crypto group of N people using a public key system, but
N(N — 1)/2 are needed for a classical system, an increase by a factor of
(N-1)/2.

(3) Some public key systems allow signatures on messages.

The major disadvantage of public key cryptosystems is that those that
have been invented so far are up to a thousand times slower in encrypting
and decrypting messages. For this reason, a major use of public key systems
may be to exchange keys for a faster classical system.

The first and still most popular public key cryptosystem is the RSA algo-
rithm, which was introduced by its inventors, Ronald L. Rivest, Adi Shamir,
and Leonard M. Adleman in their 1978 paper [RSA].
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3 Arithmetic

Now we look into what the RSA is and why it works, beginning with a close
look into the arithmetic of integers. We will let N = {1, 2,3, ...} be the set of
positive integers or natural numbers and Z = {0,—1,1,—2,2, ...} be the set
of all integers. (The Z comes from the German word “Zahl” for “number”.)
All of the numbers we discuss in this section will be integers; that is, elements
of Z. We assume the truth of the following axiom.

Theorem 1. (Well Ordering Axiom) Every nonempty subset of nonneg-
ative integers has a smallest element.

In grade school you learned a method of long division of a positive integer
a (the dividend) by another positive integer d (the divisor) which produced
successive remainders and continued until the final remainder r was smaller
than the divisor. This process actually proves the next theorem for positive
integers a and d, and you can figure out from the positive case why it is true
regardless of the signs of a and d. We give another demonstration using (1).

Theorem 2. (Division Algorithm) If a and d are integers and b # 0, then
there are unique integers q and r which satisfy

(a) a=dq+r and

() 0<r<|d.

Proof. Consider the set S of all integers of the form a — dx, where = can
be any integer. Since x can be large and positive or large and negative and
d # 0, it is clear that S contains a nonnegative integer. Let 7 = a — dg be the
smallest nonnegative integer in S, obtained when x = ¢. Then a = dg + r, so
(2a) holds. If 7 > |d| we let s = sgn(d) = %1 so that ds = |d|; then x =g+ s
gives 0 <a—dzr=a—d(g+s) =a—dg—ds=r—|d| <r, contradicting the
choice of r as the smallest nonnegative element of S. Thus, 0 < r < |d| and
r satisfies (2b). To show uniqueness, we assume that a = dg + r = dq' + '
and 0 <7 <7 <|d]. Then 0 <r—7" =d(¢ —q) = |d||¢' —q|- It is clear
that r — ' < r < |d|, so we must have |¢' — ¢| < 1. Hence we must have
¢ —q=r—1r"=0,s0r=r"is unique and ¢ = ¢’ is unique. O

When the remainder » = 0 and a = dg, we say that d divides a, or
equivalently, a is a multiple of d, and we write d | a. Otherwise, d does not
divide a and we write d t a. To reiterate, d | a if and only if there is an integer
m such that a = dm. For example, 3 | 12 and 6 | 18, but 51 12 and 15 ¢ 18.
The following divisibility properties are easily shown to be true.

Lemma 3. (Divisibility Properties) If a, b, ¢, d, x, and y are integers,
then

(a) a|b and b | c implies that a | ¢ . (Divisibility is transitive.)
(b) a|b and b | a implies that a = £b . (Divisibility is antisymmetric.)
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(c) d|a and d | b implies that d | za + yb .

An integer d which divides both of the integers a and b is called a common
divisor of a and b, and the largest of these (when a and b are not both
0) is called the greatest common divisor (ged) of a and b. We write
d = ged(a, b) for this necessarily positive integer, and define ged(0,0) = 0.

Theorem 4. (GCD Theorem) If a and b are any integers, then there are
integers x and y such that ged(a, b) = za + yb.

Proof. This is clear for a = b = 0. If either a or b is nonzero, let S be the set
of all positive integers of the form sa + tb, where s and ¢ are integers. Since S
is not empty, it has a smallest element by (1). Let d = za+ yb be the smallest
element of S. The division algorithm (2) tells us that there are integers ¢ and
r satisfyinga =dg+rand 0 <r <d. Nowr =a—dg = (1 —x)a+ (—y)b
would be in S if it were positive, which would contradict our choice of d as
the smallest element of S. Therefore, r = 0 and a = dq is divisible by d.
Similarly, d | b, and so it is a common divisor of a and b. If ¢ is another
common divisor of a and b, then ¢ | d = za + yb by (3c) and d > 0 implies
¢ < d and d = ged(a, b). O

Now it is easy to see that ged(a,0) = |a| and ged(a, b) = ged(|al, |b]), so
we only need to find geds of positive integers. Note that if 0 < b < a, we can
use the division algorithm (2) to obtain a = bg + 7 and 0 < r < b. It is clear
from (3c) that the common divisors of a and b are exactly the same as the
common divisors of b and r, and so ged(a,b) = ged(b,r). This suggests that
a sequence of divisions can determine the ged of two positive integers:

(0) a=bq +m
(1) b= T1q2 + T2
(2) rL ="T2q3 + T3

(k) Th—1 = ThQr+1 + Th41

() Pn—1 = ragn41 + Tnyt

If we continue until the remainder r,41 = 0 we will have gcd(a,b) =
ged(b,r1) = ged(ry,re) = ged(rg, r6+1) = ged(ry,0) = rp,. This method of
finding the gcd was published by Euclid in his Elements more than 2000 years
ago. It is called the Euclidean algorithm. Next we give an example with
a = 54321 and b = 12345.
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(1) 54321 = 12345 x 4 + 4941
(2) 12345 = 4941 x 2 + 2463

(3) 4941 = 2463 x 2 + 15 (5)
(4) 2463 =15x164+3

(5) 15=3x5+0

Thus ged(54321, 12345) = 3 is the remainder in row (4), the last remainder
before the remainder becomes 0. In a later section we will see an extension
of this algorithm which finds z and y such that ged(a,b) = za + yb.

The divisors of 1 are called units. Actually, 1 and —1 are the only units
among the integers. An integer a is a composite if there are integers b and
¢ such that @ = bc and 1 < |b] < |¢|, that is, neither b nor ¢ are units. The
first ten positive composites are 4, 6, 8, 9, 10, 12, 14, 15, 16, and 18. An
integer p is a prime if p > 1 and the only divisors of p are £1 and +p. The
first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. FEuclid presented a proof
that every positive integer was a product of primes which was unique except
for the order of the factors, and he showed that there were infinitely many
primes. Two integers are said to be relatively prime if their only common
factors are +£1; that is, a and b are relatively prime if and only if gcd(a, b) = 1.

4 Modular Arithmetic

Let m be an integer greater than 1. We say that integers a and b are con-
gruent modulo m if and only if m | a — b, and we denote this by a = b
(modm). For example, 75 = 9(mod 33) because 75 — 9 = 66 = 2 x 33 is
divisible by 33. The relation of congruence mod m behaves pretty much like
equality. The relation is an equivalence relation on the set Z of all integers
which preserves addition and multiplication of integers.

(4.1) Properties of congruence: Let m be an integer greater than 1.
Then, for any integers a, b, ¢, a’, and b', the following properties hold:

(a) Reflexive: a = a(modm).
(b) Symmetric: a = b(mod m) implies b = a(mod m).
(¢) Transitive: a = b(mod m) and b = ¢(mod m) implies a = ¢(mod m).
(d) Addition: ¢ = da/(modm) and b = b'(modm) implies a + b = a' +
b (mod m).
(e) Multiplication: a = a'(modm) and b = b'(mod m) implies ab = a'b’' (mod m).

Proof. (a)-(d) are left to the reader. For (e), a = a’(mod m) and b = b’'(mod m)
implies m | a —a' and m | b— V' implies m | (a —a')b+a'(b— V') = aa’ — b
implies ab = a'b'(mod m). |

For example, 37 = 4(mod 33) and 45 = 12(mod 33), so 37 + 45 = 82 =
4+ 12 = 16(mod 33) and 37 x 45 = 1665 = 4 x 12 = 48 = 15(mod 33),
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which can be seen directly by the facts that 33 | 82 — 16 = 66 = 2 x 33 and
33| 1665 — 15 = 1650 = 50 x 33.

The Division Algorithm (2) shows that every integer a can be written in
the form a = mqg+a with 0 < @ < m. Thus, every a can be reduced (mod m)
to an integer @ in the set Z,, = {0,1,2,...,m — 1} of residues modulo m.
The example above illustrates that it is usually easier to reduce first and then
perform arithmetic operations rather than the other way around!

Now we can consider only the m elements in Z,,, perform addition and
multiplication on these elements, and reduce them to again get elements of
Zim. The result is an arithmetic modulo m on the set Z,, that is much the
same as the arithmetic on Z. But there are differences! For example, in Z33,
6 x 9 = 21(mod 33) and 6 x 31 = 21(mod 33), so the law of cancellation does
not hold for multiplication by 6 modulo 33. Why not? We get a clue when
we subtract the first of these congruences from the second: 6 x (31 —9) =
6 x 22 = 132 = 0(mod 33). Although 6 # 0(mod33) and 22 # 0(mod 33),
we still have 6 x 22 = 0(mod 33). But now we see why. 33 =3 x 11; 6 has a
factor of 3 and 22 has a factor of 11, so when multiplied together, the product
has a factor of 33, and 33 = 0(mod 33). Suppose we multiply by a number
with no factor in common with 33, for example, 10. Then 10z = 0(mod 33)
means that 10z is divisible by 33. But then z must have both a factor of 3
and a factor of 11, since 10 has neither. That means that z is divisible by 33,
and so z = 0(mod 33). Moreover, it follows that 10z = 10y(mod 33) implies
10(z — y) = 0(mod 33) implies z — y = 0(mod 33) implies x = y(mod 33).
Multiplication by 10 is cancellative modulo 33. These facts are illustrated in
the table below.

z[001 23 45 67 8 910111213141516
62/ 0 612182430 39152127 0 612182430
1020102030 7172741424 1112131 81828

x| 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
6z 3 9152127 0 612182430 3 9152127
10z| 51525 2122232 91929 61626 31323

Multiplication of elements of Z33 by 6 gives all multiples of 3, each re-
peated 3 times. But multiplication by 10 gives every element of Z33 exactly
once in another order. Note that 10 is a unit in Zss because 10 x 10 =
1(mod 33).

Now let m be a fixed integer that is greater than 1, and let a be any
integer. If d = gcd(m,a) > 1, then m' = m/d and o' = a/d are both integers
and m' # 0(modm) since 0 < m' < m but am’ = a’'m = 0(modm). If there
is an x # 0(modm) such that ax = 0(modm) we call a a zero divisor
modulo m.

On the other hand, if ged(m,a) = zm + ya = 1 by (3.4) then ya =
1(modm) shows that a is a unit modulo m and a has an inverse a~! = y.
(This is why a unit is called invertible.) In this case, a is cancellable modulo
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m, because the congruence ax = ay(modm) need only be multiplied on both
sides by a~! to show that z = y(modm). In particular, az = 0(modm)
implies az = a - 0(modm) implies z = 0(modm), and so a is not a zero
divisor. Thus we have the following result.

Theorem 5. Let m be an integer that is greater than 1 and let a be any
integer. Then the following are equivalent:

(a) ged(m,a) = 1.

(b) az = 0(modm) implies that z = 0(modm); that is, a is not a zero
divisor modulo m.

(c) ax = ay(modm) implies x = y(modm); that is, a is cancellable
modulo m.

(d) a has an inverse modulo m; that is, there is an element b in Z, such
that ab = 1(mod m).

We define Z}, = {a € Z, : gcd(a, m) = 1} to be the set of units in Z,. If a
isin Z},, then multiplication by a is cancellable modulo m, and so multiplying
all of the elements in Z,, by a simply moves the elements around. Moreover,
if a and b are both in Z},, then abb~'a™" = ala™" = 1, so ab is invertible and
is also in Z7,. That is, Z;,, is closed under multiplication, and if a is any unit,
multiplying the set Z}, of all units by a simply moves the elements of Z},
around, or permutes them. The following tables of multiples of Z3; illustrate
this.

x| 1 2 45 7 8101314161719 20 23 25 26 28 29 31 32
Tx| 71428 21623 425321320 1 829101731 51926
102{1020 717 414 131 828 525 232192916 261323

The Euler totient function ¢ is defined by p(m) = |Z},|, that is, ¢(m)
is the number of units modulo m. For example,

©(33) = [{1,2,4,5,7,8,10.13,14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32}| = 20.

For general m > 1 and any a with ged(m,a) = 1, we can write Z}, =
{ar,as,... ,a,(m)} = aZ;, = a{ar,as,... ,aym)} = {aa1,aas,... ,aa,0m)},
since multiplication by a simply permutes the elements of Z} . Now let
A be the product of every element in Zjy,. Then A = ajaz---aym) =
aa1aaz - - - Ay (m) = a®™aias - - - Ap(m) = a®(m) A (modm). Cancellation of
A modulo m, which is valid since A € Z%,, gives 1 = a®(™ (modm). This
proves Euler’s Theorem, which is the mathematical basis of the RSA algo-
rithm!

Theorem 6. (Euler’s Theorem) Ifgcd(a,m) = 1, then a®™ = 1 (modm).

Here are a couple of examples modulo 33: ged(33,10) = 1 and 10%° =
100000000000000000000 = 99999999999999999999 + 1 = 1(mod 33);
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ged(33,7) = 1 and 720 = (49)10 = (16)10 = (24)10 = 240 = (25)% = (32)% =
(—1)® = 1(mod 33).

Now if p is a prime it is easy to see that ¢(p) = p — 1; moreover, for any
integer a, it is easy to see that ged(a,p) = 1if p { a and ged(a,p) = p if
p | a. In the first case Euler’s Theorem (4.3) shows that a?~! = 1(modp),
and multiplication on both sides by a gives a? = a(modp). In the second
case, a = 0 = aP(mod p). Thus, in any case, we have the following corollary
to Euler’s Theorem.

Theorem 7. (Fermat’s Little Theorem) Let p be a prime. If a is any
integer, then a? = a(mod p) and a?~' = 1(modp) if and only if p1 a.

Theorem 7 can be used to show that a number is not prime. For example,
232 = 22(25)6 = 4(32)% = 4(—1)® = 4(mod 33) shows that 33 is not prime.
However, 210 = (2°)2 = (32)2 = (—1)2 = 1 (mod 11) shows that 11 may be
prime. More evidence is given by the fact that 310 = (3%)2 = (243)? = (1)?
= 1(mod 11), but it still doesn’t prove that 11 is prime.

Corollary 8. Let p and q be different odd primes, let m = pq, and suppose
that r = 1(mod (p — 1)) and r = 1(mod (q — 1)). If a is any integer, then
a” = a(modm) .

Proof. If p { a, then a” = a*®P~V+1 = (a?P~1)*(a) = (1)*(a) = a(mod p). If
P | a, then a = 0 = a"(mod p). In either case, a” = a(modp) and p |a" —a .
Similarly, g | a” — a . Since both p and ¢ divide a” — a, it follows that m = pg
divides a” — a and hence that a” = a(modm) . O

5 The RSA Algorithm

Now we are finally able to describe the RSA public key cryptosystem! The
RSA algorithm is actually a cipher, which means that it works on letters
of the alphabet or on the symbols used to write a language rather than on
words or meaningful phrases of the language. It really acts on a collection
of numbers, so the first job is to get a uniform method of converting the
symbols we want to transmit into numbers. One method would be to replace
A with 01, B with 02, ..., Z with 26, and communicate only with these 26
letters. Another method would employ the ASCII code. We assume that
some such uniformly understood technique has been established throughout
the cryptosystem, and will not concern ourselves with it any more. For us, a
message will be a number!

Since the RSA algorithm is a cipher, we will use the terms “encipher”
and “decipher” that apply to ciphers (“encode” and “decode” are the corre-
sponding terms for codes) rather than the more general terms “encrypt” and
“decrypt” that apply to both ciphers and codes, and will make other changes
in terminology as appropriate.
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Here is what to do in order to set up an RSA cipher. We will discuss how
to do it in §6 and §7.

(1) Secretly choose two large primes p and ¢, say each of about 100
digits, with 100 < ¢/p < 10000, so that g has 2 to 4 more digits than p. For
a small example, let p =3 and ¢ = 11.

(2) Let m = pq. Note that Z,,, = {0,1,2,... ,m—1} contains ¢ multiples
of p, namely 0-p, 1-p, 2-p, ..., (g — 1) - p, and p multiples of ¢q. These
are the only elements of Z,, which have factors in common with m, and so
Z}, contains the remaining m —p—q+ 1 = (p — 1)(g — 1) elements of Z,,
that are relatively prime to m. (The “+1” compensates for the fact that 0
was counted twice, once among the ¢ multiples of p and again among the
p multiples of ¢.) Thus, p(m) = |Z}| =m—-p—qg+1=(p—1)(¢g—1).
Abbreviate ¢(m) by ¢. In our example, m = 33 and ¢ = 20.

(3) Choose e > 10° such that ged(¢p, e) = 1 and secretly find d such that
ed = 1(mod ¢). That is, d = e~!(mod m), and ed = ky + 1 for some integer
k. For our example,

p=20,e=T,p—2e=6,—p+3e=1,d=3.

(4) Publish the enciphering key (m, e). Keep the deciphering key (m, d) secret.

The security of the RSA cipher is based on the ease of finding the decipher-
ing number d when the factorization of m = pq is known and the difficulty
of finding d from m and e when the factorization is not known. This will be
discussed at greater length in the next two sections.

How is the RSA cipher used to send a message? Anyone can use the public
key (m,e) to encipher the message x in X = Z,, by raising z to the power
e and reducing modulo m to obtain y = zE = z°(modm). To decipher the
message y, the holder of the secret deciphering key (m, d) raises y to the power
d and reduces modulo m to obtain z = yD = y%(modm). For our example
with (m,e) = (33,7), the message x = 17 is enciphered as y = 17E = 177
(I7)(-16)° = (1T)(162)* = (17)((32)(8))° = (17)(=8)° = (17)(64)(~8)
= (17)(-2)(-8) = (-34)(-8) = (-1)(—8) = 8(mod33). Then y = 8 is
deciphered with the secret key (m,d) = (33, 3) to obtain z = y* = 8% = §(8?)
= 8(64) = 8(—2) = —16 = 17(mod 33).

Why does this work? It is a result of Corollary (4.5): yD = (zE)D= (z¢)¢
= z¢? = gh¥+tl = p(modm) because kp +1 = k(p—1)(g—1) +1 =1
modulo p — 1 and modulo ¢ — 1. Similarly, z = yD = y%(modm) implies
zE = (yD)E = (y%)¢ = y% = y(modm). Thus, E and D are one to one
functions from the set X =Y = Z,, onto itself; that is, they are permutations
of Z,. They have the property that for any = and y in Z,,, xE = y if and
only if yD = z. The decipherer (decryptor for a cipher) D is the inverse
function D = E~! of the encipherer (encryptor for a cipher) E, and vice
versa, E = D1, Each undoes what the other does!

Let us suppose that Alice and Bob have independently taken the above
four steps to set up their RSA ciphers. Alice has published her encipher-
ing key (the encrypting key used with a cipher) (ma,e4) and has kept her
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deciphering key (m ,d4) secret. Alice’s set of plaintext and enciphered “mes-
sages” are both the same set X4 = Y4 =Z,, ={0,1,2,... ,m4 — 1} of all
nonnegative integers less than m 4. Alice’s encipherer E4 transforms any z
in Xg4 =2%Zp, toy =xEs = 2°4(modm) 4, which is also in Z,,,. So Bob
sends y = xE4 = 24 (modm) 4 to Alice. When Alice receives y, she applies
her decipherer D4 to y to obtain yD4 = y%4(modm)4 = =.

Now Bob has public enciphering key (mp,ep), private deciphering key
(mp,dB), and message set Xp =Yp = Zp, = {0,1,2,... ,mp—1}. Assume
that ma < mp. Then X4 g Xp. If Bob wants to send a signed message x
to Alice, he first applies her public encipherer E4 to obtain y = zE,4 in
X4 ; Xp. Since y is also in Xpg, he can apply his decipherer Dp to obtain
z=yDp =xE4Dpg in Xp, which he sends to Alice. When Alice receives the
message z, she knows it is supposed to have come from Bob and that X 4 g
X B, so she first applies Bob’s publicly known encipherer Ep to obtain zEp =
y in Xp. But y is also in X 4, so Alice can then apply her secret decipherer
D 4 to read the message zEpD 4 = yD 4 = x. As explained in §2, Alice knows
the message was originated by Bob, and she can prove that Bob sent the
message to an impartial arbiter if Bob later denies it. Bob must be careful to
apply E4 first and Dp second, because y' = xDp might not be in the domain
X4 =2Zm, of Eo4 and so y'E4 may be undefined. Worse than this, if Bob
carelessly calculates 2’ = (y')¢4 (modmy4) = ((x%®)(modm)p)¢® (modm) 4,
then Alice may not be able to recover z from 2’. We will see what can happen
in the examples below.

In like manner, Alice can send a signed message u to Bob by forming
v =uD4 and then w = vEg = uD4FER that Bob can read as u = wDgE4.
Alice also must exercise care in applying D4 and Ep in the correct order.

For example, suppose Alice has enciphering key (ma,ea) = (33,7) and
deciphering key (ma,ds) = (33,3), and Bob has keys (mp,ep) = (65,11)
and (mp,ds) = (65,35), and Bob wants to send the signed message z =
18 to Alice. (The reader can follow the calculations by using the repeated
squaring algorithm described in the next section or a computer program like
MAPLE.) Bob then calculates y = 184 = (187)(mod33) = 6 and then
2z = 6Dp = (6°%)(mod 65) = 11, which he sends to Alice. Alice then applies
Bob’s encipherer Eg to z = 11 to obtain y = 11''(mod 65) = 6, and then
applies her decipherer D4 to y = 6 to obtain x = 6D 4 = 63(mod 33) = 18 in
order to read the original message z = 18.

But what happens if Bob applies his deciphering key first and then his
enciphering key? Bob transforms z = 18 to y’ = 18Dp = 18%%(mod 65) =
47, and then calculates 2z’ = 47E4 = 477(mod 33) = 20, not realizing that
y' = 47 is not in the domain of E4. If Alice calculates either y; = 2’D 4 =
20%(mod 33) = 14 and then z; = ¥ Eg = 14 (mod 65) = 14 or yo = 2’Ep =
20" (mod 65) = 15 and then 2o = y2D4 = 15°(mod 33) = 9, neither ; =
Z’DsEp = 14 nor 22 = 2'EgDs = 9 is the message z = 18 that Bob
intended. The order of application of operators is important! When sending
a signed message the operator (encipherer or decipherer) associated with the
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smaller modulus m must be applied first, and when receiving a signed message
the operator associated with the larger modulus must be applied first.

The reader is invited to construct more examples of signed messages be-
tween Alice and Bob. The author was amused to find that Bob could have
successfully sent the sample message x = 17 to Alice as a signed message
with operators reversed because 17Dp = 173°(mod 65) = 23 turned out to
be in XA.

6 Algorithms and Time Estimates

In order to set up an RSA cipher algorithm, one must first find two large
primes p and ¢, find a number e relatively prime to ¢ = (p — 1)(q¢ — 1), and
then find the inverse d of e modulo ¢. Then, in order to use the algorithm,
one must calculate the residues of z¢ and y¢ modulo m = pq, and all of this
has to be “easy” for numbers d, e, o, m, z,y with up to 200 digits each! But
it has to be “hard” to factor m without a prior knowledge of p, ¢, p, or d. In
this section and in the next we explain why these tasks are “easy” or “hard”.
Much of this material in this section is covered in greater detail in sections 1
and 3 of Chapter I of [Ko].

The ease or difficulty of performing an arithmetic procedure can be mea-
sured by the number of bit operations needed to carry it out. A bit opera-
tion is the basic computer step used to calculate a single bit in the addition
or subtraction of two numbers in binary notation. Thus the addition or sub-
traction of two k-bit integers requires k bit operations. Now a positive integer
a=ag+ab+--+ap_1bF"! with 0 < a; <band ap_; #0has k—1<
logy a < k and hence has k = 1 + |log; a| base b “digits”. (Here [t| denotes
the greatest integer less than or equal to t. [¢] is called the floor of the real
number ¢, and it satisfies [t] <t < |t]+1. For example, |3.14] = 3 = |3] and
|—3.2] = —4 = | —4]. Most computer languages and calculators use INT(t)
for |¢].) Thus the positive integer a has 1 + |log, a|, or about log, a, bits.
For integers a and b we write

T(a+b) =0(log,a) when0 < b<a (6)

to indicate that addition (or subtraction) takes time proportional to the num-
ber of bits in the largest addend.

The “big O-notation” is defined as follows. If f and g are functions
of n variables x1,%s,---,T,, we say that f is bounded by g, and write
flx1, @2, ,xyn) = O(g(x1,22,- -+ ,x,)) or f = O(g), if there are constants
B and C > 0 such that 0 < f(z1,22, - ,Zn) < Cg(z1,T2,--- ,T,) whenever
all of the z; > B. The reader may find it helpful to simply interpret the big
“O” as a fixed but unknown positive constant.

Consider the product 27 x 11 = 297 in binary (base 2) notation.
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11011
1011
11011
11011
11011
100101001

From this example we see that if @ has k bits and b has j bits with j < k,
we can find the product by writing one copy of the multiplicand a with its
unit bit aligned beneath each 1 in the multiplier b and then adding these
staggered copies of a pairwise to form the product. There are no more than
j additions, each taking no more than j + k < 2k bit operations, and so the
whole process requires no more than j(j + k) < 2jk = O(log, blog, a) bit
operations. This yields

T(a x b) = O((log, a)(log, b)) = O((log, @)®) when 0<b<a. (7)

A similar analysis of the grade school long division algorithm leads to the
same result for division of the positive integer a by the positive integer d to
obtain the quotient ¢ and the remainder r satisfying the division algorithm
(2). We indicate the time required by

T(q,7:a=dq+r) = O((log, a)(log, d)) = O((log, a)?) when 0<d < a.
(8)

Note that if we want to find the residue @ modulo m of an integer a we
need only use the division algorithm to find ¢ and @ such that a = mq+ @
with 0 <@ < m, so it follows that the time needed for the procedure is

T(a:a=a(modm) and 0 <a < m) = O((log, a)(log, m)). (9)

We should remark that we are obtaining crude upper bounds for the times
required to perform various calculations which can be lowered considerably by
carefully examining more sophisticated algorithms presently in use. Our goal
is just to get a rough idea of the difficulty involved in the RSA calculations.

We want to extend the Euclidean algorithm (4) to one that will find not
only d = ged(a, b), but also find = and y so that d = ged(a,b) = za + yb
. We use vector notation 7 = (v1, v2,v3) and write the algorithm in pseudo
computer code, using the notation “u < v” to mean “replace u by the value
of 7”.

Theorem 9. (Extended Euclidean Algorithm) Algorithm for d = ged(a, b)
=zxza+yb for 0 <b<a.

(¢) @+ (a,1,0)
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(b) v+ (b,0,1)

(c) do W+ U — |u1/v1|U, T+ U, U < W while v1 #0
(e) d uy, T+ uz, y+ us

(f) return d,z,y.

We repeat example (3.6) in matrix form, with the sequence of vectors u
and T written as rows of the matrix. On the right we write the example as we
might do it “by hand”. Both forms illustrate that ged(54321,12345) = 3 =
(—822)(54321) + (3617)(12345).

54321 1 0 a = 54321
12345 0 1 b= 12345

4941 1 —4 a— 4p = 4941

(6.6) | 2463 -2 9 —2a + 9b = 2463
15 5 —22 56 — 22b= 15

3-822 3617 | —822a + 3617b= 3

i 0 4115 —18107| 4115a — 18107b = 0

1
This process really amounts to the row reduction of the matrix [Z 0 (1)]

to |:g ;j Z:| with d = ng(a;b) = xa + yb and 0 = ua + vb. At the kth step,

startingat k = 0 withr_y =a,r9 =b,2_1 = 1,29 =0,y_1 =0, and yo = 1,

we have
[Tk Tk Yk ] _ [0 1
Tkl Thil Ykl 1 —qrq1
where the ry and gqx4+1 = |7k—1/7%] are the remainders and quotients dis-
played in (4). Note that at every stage we have ry, = xzpa+ygb. This technique

has been discussed several times (See [Bl] and [MW].) in the literature.
Consider rows (k) and (k+1) of (4):

Tk—1 Tk—1 Yr—1
TR Tk Yk |

(k) rrk—1 = rrQr+1 + Tht1,
(k+1) rr = Try1qQrt2 + Thto-

If rpy1 < 37 it follows from the division algorithm that 0 < rpye <
Tet1 < 37k, and if g1 > 2rg, then gryo = 1 and rpg0 = 1 — g1 <
37k Eventually ry, < gra < 1, so the algorithm must terminate in about
n = 2log, a steps. The calculation involved for each step occurs in line (c) of
(9) and involves one division and three multiplications of numbers no larger
than a, and so requires no more than 4(log, a)? bit operations, by (8) and
(7). The whole algorithm can be accomplished with no more than 8(log, a)?
bit operations. This proves

T(d,z,y : d = ged(a,b) = za + yb) = O((log, @)®) when 0< b < a.
(10)
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Now we turn our attention to the problem of evaluating z¢(modm). For
this purpose we consider the following construction.

Theorem 10. (Mod Power algorithm) To evaluate z°(modm), perform
the following algorithm:

(o) E<~e, Bz, P+ 1,

(b) do until E =0

(c) if E even

(d) E + E/2, B+ B- B(modm)
(e) else

(f) E+~ E—1, P+ P-B(modm)

(9) end if
(h) return P.

Proof. Tt suffices to show that P - BY = z°(modm) at every step. This is
clear in line (a). If true before line (d) is executed, it holds afterward, because
P-BP = P.(B-B)?/2. And if true before line (f) is executed, it holds
afterward, because P- B = (P- B) - BF~!. Therefore P = z¢(mod m) when
E=0. O

When E is in binary form, line (c) is performed by checking whether the
final bit is 0 or not. If so, E < E/2 is performed by dropping final 0, and if
not, £ «+ E—1 is performed by changing the final 1 to a 0, so these operations
take negligible time. Since B and P are both less than m, we see that each of
the products B- B and P - B takes no more than O((log, m)?) bit operations,
by (6.2). Then replacing a by m? in (9) shows that each of the operations
B «+ B-B(modm) and P < P-B(modm) takes O((log, m)?) bit operations.
Adding these two O((log, m)?) gives O(2(log, m)?) = O((log, m)?) for the
execution of either line (d) or (f). After each execution of line (f), E be-
comes even, so each execution of (f) must be followed by an execution of (d),
thereby halving E. Therefore, there can be at most 2log, e passes through
the loop (b). Hence the algorithm requires no more than O((log, e)(log, m)?)
bit operations.

T (z*(modm)) = O((log, ) (log, m)*). (11)

We end this discussion of z°(modm) with a numerical example in which
we use the algorithm (10) to evaluate 187 (mod 33), 477 (mod 33), 635 (mod 65),
and 183%(mod 65). The reader should refer back to (10) to be sure he under-
stands the changes in B, E, and P.
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(mod 33) (mod 33)
B E P B E P
18 7 1 47 7 1
18 6 18 47 6 47
27 3 18 31 3 47
27 2 24 31 2 5
3 1 24 4 1 5
3 0 6 4 0 20
18"(mod 33) = 6 477 (mod 33) = 20
(mod 65) (mod 65)
B E P B E P
6 35 1 18 35 1
6 34 6 18 34 18
36 17 6 64 17 18
36 16 21 64 16 47
61 8 21 1 8 47
16 4 21 1 4 47
61 2 21 1 2 47
16 1 21 1 1 47
16 0 11 1 0 47
65 (mod 65) = 11 18%5(mod 65) = 47

We conclude this section with the following definition which is crucial to
the study of time estimates for algorithms.

Definition 11. An algorithm to perform a computation involving n integers
T1,%2, - Xy Of k1, ko, - -+, k, bits, respectively, is a polynomial time al-
gorithm if there are positive integers dy,ds,--- ,d, such that the number
of bit operations required to perform the algorithm is O (k' k$? - - - kd»). In
this case, we say it is of degree d; in k; ( or log, z;) and that it is of total
degree d; +dy + --- + d,.

All of the algorithms presented in this section are of polynomial time.
Basically, polynomial time algorithms are considered to be easy, and non-
polynomial time algorithms are considered to be hard!

7 Implementation

The first job in implementing an RSA cipher is to secretly find two primes p
and ¢ of about 98 — 99 and 101 — 102 digits, respectively, so that m = pq has
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about 200 digits. For greater security we can choose larger primes. In order
to make them hard for our antagonists to discover, we should randomly select
the primes. One way of doing this is to use a random number generator to
pick an integer with the appropriate number of digits, add one if it is even,
and test the resulting integer n for primality.

But how can we tell that an odd integer n is prime? We could try the
“dumb test”: Try to divide n by every positive integer d < y/n. This could
take about 10°° trial divisions, each taking an average of (log,10%0)% =~
27,000 bit operations, for a total of about 3 x 10°* bit operations. If our
computer can do 10° bit operations a second, this could take 3 x 10*° sec-
onds, or about 8 x 10%® years.

Fortunately, there are better ways! We know by Fermat’s Little Theorem
7 that if n is prime and 1 < b < n, then

b" 1 = 1(modn). (12)

Hence, if (12) does not hold for some b satisfying 1 < b < n, then we know
that n is composite, and we call b a witness to the fact that n is not prime.
On the other hand, n could be an odd composite number and (12) could still
hold for some b satisfying 1 < b < n, but this is not likely.

Definition 12. If n is an odd composite number and (12) holds for some b
satisfying 1 < b < n, then we say that n is a pseudoprime to the base b.

For example, 91 is a pseudoprime to the base 3 and to the base 10,
since 3% = 10%° = 1(mod91). However, both 2 and 5 are witnesses to
the compositeness of 91, since 2% = 5% = 64(mod91). These congru-
ences are fairly easy to calculate once you realize that 3 = 1(mod 91) be-
cause 3° = 1(mod91) implies that 10® = (10%)® = 9% = 3% = 1(mod 91)
and 64 = —27(mod 91) implies that 642 = 272 = 3% = 1(mod 91), so 2%
= (20)1% = 6415 = 64(64%)" = 64(1)” = 64(mod 91) and 5% = (26)~! = 64!
= 64(mod 91) because (2¢)(5%) = 10% = 1(mod 91).

Unfortunately, there are odd positive composites n, called Carmichael
numbers , such that (12) holds whenever gcd(n, b) = 1. As recently as 1994,
Alford, Granville, and Pomerance showed in [AGP] that there are infinitely
many Carmichael numbers. The smallest Carmichael number is 561 = 3 x
11 x 17. Note that (12) holds for b = 2,4,5,7,8,10, and 13, but of course it
can’t hold for b = 3,6,9,11,12,15, or 17, or any other b with ged(561,b) > 1,
since b* = 1(modn) implies ged(n,b) = 1.

We remarked that 2°¢° = 1(mod 561). Note that 560 = 35 x 2* and 23% =
263(mod 561), 2532 = 2632 = 166(mod 561), 232" = 1662 = 67(mod 561),
2%5x2° = 672 = 1(mod 561). This last congruence implies that 561 | 67% — 1 =
(67 —1)(67 + 1) = 66 x 68. But clearly 561 1 66 and 561 { 68, and so both
ged (561, 66) = 33 and ged (561, 68) = 17 are nonunit factors of 561 = 33 x 17.
Several useful lessons can be learned from this example.
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Lemma 13. If a and n are positive integers with n odd and 1 <a <n —1
such that a®> = 1(modn), then ged(n,a — 1) > 1, ged(n,a + 1) > 1, and
n = ged(n,a — 1) ged(n,a + 1) is composite.

Proof. By hypothesis, n | a> — 1 = (a — 1)(a + 1). Note that we have 3 <
a <n—1,since a =2 and a = 3 yield contradictions. But a # £1(modn)
implies n f aF 1 implies gcd(n,a—1) > 1 and ged(n,a+1) > 1. The fact that
n | (@ —1)(a + 1) implies that n | gcd(n,a — 1) ged(n,a + 1). Since ged(a —
1l,a+1) =ged(a—1,2) =1 or 2 and n is odd, gcd(n,a—1) and ged(n,a+1)
are relatively prime, and they both divide n, and so their product divides n.
That is, n | ged(n,a — 1) ged(n,a + 1) | n, so n = ged(n,a — 1) ged(n,a + 1).

O

Definition 14. Suppose that n is an odd composite number and n—1 = 25¢
with t odd. If b € Z? satisfies either b* = 1(modn) or b*'t = —1(modn) for
some 7 such that 0 < r < s, then n is called a strong pseudoprime to the
base b.

The next theorem is a quotation of Proposition V.1.7 from [Ko], page
130. The reader is referred to [Ko] for the proof.

Theorem 15. If n is an odd composite integer, then n is a strong pseudo-
prime to the base b for at most 25% of all 0 < b < n.

This suggests a probabilistic test for the primality of an odd integer n,
called the Miller-Rabin primality test. First, write n — 1 = 2°¢ with ¢
odd. This takes negligible time if n is written in binary form: s is just the
number of trailing zeros in n — 1 and ¢ is the number left when these zeros
are dropped. Randomly select an integer b satisfying 1 < b < n. Use the
Mod Power algorithm (10) to evaluate ¢ = b*(modn) in time O((logyn)?).
If either ¢ = 1 or ¢ = —1(modn) for some r with 0 < r < s, we say that
n passes the test for base b. In this case, n is either a prime or is a strong
pseudoprime to the base b. When ¢ # 1 we must square and reduce the result
modulo n, doing this r times with 0 < r < s < log, n, which can be done in
time rO((logy n)?) = O((logy n)?),. by (6.2) and (9). Suppose that n passes
the test for k& randomly chosen values of b with 1 < b < n. It follows from
Theorem (7.4) that the probability that n is composite is < 1/4F.

If n passes the test for 50 or more values of b, we might call it an indus-
trial grade prime. For a 100 digit odd number n this could take on the
order of

50(log, n)® ~ 50(333)3 ~ 2 x 10°

bit operations, or 2 seconds on the very fast computer hypothesized at the
beginning of this section. If we assume, perhaps more realistically, that our
computer can perform 10 million bit operations per second, then it takes on
the order of 3 or 4 minutes.
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For each positive integer n, let w(n) be the number of primes less than or

( w(n)riog n )

equal to n. The Prime Number Theorem says thatlim =1 as

n — 00. Thus 7(n) ~ 525 for large values of n and the frequency of primes
near a large value of n is about @, so one would expect to test O(logn)
numbers in order to find a prime bigger than n. Putting all of this together

gives the following result.

Lemma 16. An industrial grade prime p > n can be found with O((logy n)*)
bit operations.

The purist may be disappointed in not having a definitive polynomial
time primality test that actually proves that a number is prime. Although
not polynomial time, there is a definitive primality test which in practice
can prove primality of hundred digit numbers in a matter of seconds. It is
described in [CL].

Great: now we can secretly produce two large primes p and ¢ in order
to set up an RSA cryptosystem. Let us assume that p < q. The calculation
of m = pq takes only O((log, p)(log, q)) = O((log, q)?) bit operations by
(6.2), and then ¢ = p(m) = (p—1)(¢q —1) = m — p—q + 1 is a bargain
at O(log, q) by (6.2)! Finally, we want to find numbers e and d such that
ed = 1(modm). One method is to randomly choose fairly large integer values
of e and calculate the gcds until ged(p,e) = 1 = zp + de. Since we expect
to find a prime close to ¢ in log ¢ tries, we should need no more to find a
number relatively prime to . Combining this with (6.7), finding e and d can
be done in O((log, p)*) bit operations. Another way to find an e relatively
prime to ¢ is just to locate a prime e > ¢, which again is an O((log, ¢)*)
process.

Therefore we can set up an RSA cryptosystem with modulus m in poly-
nomial time, specifically, with O((log, m)*) bit operations. But what about
using it to communicate? It follows from (11) that messages can be enciphered
in time 7' (z®(mod m)) = O((log, €)(log, m)?). Likewise, the deciphering time
is T(z%(modm)) = O((log, d)(log, m)?). This concludes the “easy” part: We
have seen that it is “easy” to set up and use an RSA cryptosystem.

8 Security

Factoring products of large primes is believed to be very difficult. This belief
arises from the fact that people have been trying hard to accomplish such
factorizations efficiently for thousands of years without much success. The
security of the RSA cryptosystem is based on the belief that breaking the
cipher is equivalent to factoring the modulus m given in the public key (m, e).

Of course, if one could find a factorization of the modulus m = pq used
for an RSA system with public key (m,e), one would be able to find ¢ =
p(m) = m — p—q+ 1 and use the extended Euclidean algorithm to find
ged(p,e) = zp +de =1 and d, and thereby obtain the secret deciphering
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key (m,d). Conversely, knowing ¢ is sufficient to factor m. We assume that
p<g.
A=p+qg=m+1—y,
A =p+q’=p"+2p+¢ =p>+2m+ ¢,
A —dm=p* —2m+ ¢ =p* - 2pg+¢> = (p—9)°,
B=q—p=+A2—4m,
p=(A—B)/2and ¢= (A + B)/2.

Hence, knowing ¢ is equivalent to being able to factor m.

But we still don’t know that we can’t break the RSA by some method that
does not lead to a factorization of the enciphering modulus m. A complete
solution to the cipher would mean being able to recover every x in Z,, from
its encipherment y = z¢(mod m). Could this be done without a knowledge
of the unique d = e~!(mod ¢)? The answer to this question is yes, as we can
see from our example with enciphering key (m,e) = (33,7). Recall that the
deciphering key was (m,d) = (33, 3). We will see that (m,d') = (33, 13) works
just as well! For if y = 27 (mod 33), then y'3 = (z7)!% = 2°! = z(mod 33) by
Corollary 8 because 91 = 1(mod 2) and 91 = 1(mod 10).

Okay, suppose that one has a number d’ such that z¢? = z(mod m)
for every z in Z,,. That means that one has a number b = ed' — 1 such that
2z = 1(modm) for every z in Z},. b must be even because (—1)° = 1(modm).
Then it turns out that there are positive integers r and a (See [Ko], p. 94.)
such that b = 2"a, 22 = 1(modm) for every z in Z}  but there is some
z in Z%, such that % # 1(modm). In this case, 2% # 1(modm) for at least
50% of the values of z in Z},, and so choosing random elements of Z, should
lead to such an z fairly quickly. And for such an a, there are at least 50%
of the z in Z}, for which z® — 1 is divisible by one of the primes p or ¢, but
not both. Then ged(m, z* — 1) is one of the two primes p or ¢. This gives a
factorization of m.

Although we have certainly not shown that breaking the RSA algorithm
is equivalent to factoring the modulus m in the public key (m,e), there is
certainly a close relationship. And it is clear that the cipher is weak if m is
easy to factor. One problem occurs if p is close to q. We can write m = pq
=(t+s)(t—s) =t —s> withq=t+s,p=t—s,50t=(q+p)/2
and s = (¢ — p)/2, where we make our usual assumption that p < ¢. If p
is close to ¢, then s2 = t> — m is a small perfect square. So we attempt to
factor m by taking ¢t = |\/m] + k for small k. Consider an example from
[Ko], p.144: Factor m = 200819. |v/200819] = 448, so we try t = 448 + k.
For k = 1, t2 — m = 449? — 200819 = 782 is not a perfect square. For k = 2,
t2 —m = 4502 — 200819 = 1681 = 412, so s = 41 and ¢t = 450 gives the
factorization p = t — s = 409 and ¢ = ¢t + s = 491. This method, called
Fermat factorization, and generalizations such as the factor base method
and the quadratic sieve method are especially effective when p and ¢ are close
together. There are other methods which are effective when p — 1 and ¢ — 1
have many small factors.
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It behooves the user of an RSA public key cipher to avoid the situations
mentioned above, as well as any others which may arise because of new
factoring methods. However, no known factorization methods are polynomial
time algorithms, so it seems likely that the cipher can stay ahead of the
factorizations by choosing larger primes. A number of additional precautions
should be taken when implementing an RSA cryptosystem in order to make
it secure. But if these precautions are taken, it seems that the system is here
to stay! These questions are more fully addressed in an article [Bo] “Twenty
Years of Attacks on the RSA Cryprosystem” by Dan Boneh in which he
concludes that there have been some insightful attacks, but no devastating
attack has been found, and that with proper implementation the system can
be trusted to be secure.
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Number Theory and Cryptography (using
Maple)

John Cosgrave

Department of Mathematics, St. Patrick’s College, Drumcondra, Dublin 9,
IRELAND

Abstract Since 1995-96 I have taught, using Maple, a yearly course on Number
Theory and Cryptography to my undergraduate students'. In this paper I outline
some basic number theoretical topics related to cryptography, based on my experi-
ence as a teacher of those topics. I am omitting all reference to practical teaching
details, but will happily forward all teaching materials (notes, examination papers,
etc.) to any interested readers. Finally, several of my NT and Cryptography course
Maple worksheets? are available on the internet [Cos].

1 Introduction

My ideal reader of this paper is

— someone familiar with elementary number theory (essentially congru-
ences, the Euclidean Algorithm, and Fermat’s ‘little’ theorem), who would
like to know how certain number theoretic ideas relate to the basic notions
of Pohlig-Hellman (private-key) and Rivest-Shamir-Adleman public-key
cryptography, or

— someone who knows some number theory, has never taught any cryptog-
raphy, and who is wondering if it is something he/she might undertake.

Cryptography is the study of secure communication: how can two or more
persons communicate securely with each other? The subject has a long and
fascinating history, the best detailing of which is undoubtedly David Kahn’s
monumental The Codebreakers [K]. Also, it is well recognised that the two
fundamental development in cryptography took place in the 1970’s when W.
Diffie and M.E. Hellman [DH] proposed the idea of public-key cryptography,
and shortly afterwards R.L. Rivest, A. Shamir and L.M. Adleman [RSA]
gave an actual realisation of the Diffie-Hellman proposal, the now classic

! Most of my students are training to be primary school teachers - 38 of them in
my recent class - and have chosen Mathematics (by university requirement) as
one of their ‘academic’ subjects.

2 The best of which, if T may say so, entitled ‘Bill Clinton, Bertie Ahern, and
digital signatures’, covers almost all the contents of this paper in an accessible
(no theorems) manner.
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RSA method. Even after the passage of some twenty years, the brilliance of
those path-breaking papers has not diminished, and one can still profit from
re-reading them.

The manner in which elementary number theory has made an impact on
private and public-key cryptography is well known , and for my purposes may
well be summarised as follows:

Given two parties® A and B who wish to communicate, A transforms her
plaintext T (Please send more money asap) into numerical form N (a natural
number formed as a result of some agreement, e.g. that ‘a’ is 1, ‘b’ is 2, etc.),
and then, using some suitable 1-to-1 function f, computes N' = f(N). A then
communicates N’ to B, who recovers N from N’ using the inverse function
f~1, and then recovers A’s original plaintext.

So far there is no Number Theory in any of this, and the above is merely
an abstract mathematical formulation of the classic problem whose various
solutions are beautifully and thrillingly described in Kahn’s history [K].

1.1 Number Theory makes its entrance

How does Number Theory make its contribution to a solution of the classic
problem of communication? It is all so startlingly simple, and may be sum-
marised by saying that N’ is formed by modular exponentiation with a spe-
cially chosen modulus, as is the recovery of N from N'. The essential idea may
be conveyed with a simple, but unrealistic, example (realism merely involves
better chosen larger moduli): suppose A wishes to send B the message consist-
ing only of the single letter ‘c,” the numerically transformed form of which
is ‘3. A could encrypt (disguise) ‘3’ by forming N’ = f(3) = 37(mod 11)
giving N' = 9 and then send ‘9’ to B, who may then decrypt (recover) by
forming f~1(N') = 9%(mod11) which produces, for general reasons which
will be clear in a moment, the original ‘3.

Almost everything that one needs* is now easily explained: with the ex-
ample just given, A could send any message, and have that message recovered
by B, whose numerical value was in the range 1 to 10. That is a consequence
of Fermat’s ‘little’ theorem for the prime 11, as I now briefly illustrate.

Fermat’s ‘little’ theorem ° is the following result.

Theorem 1. Let p prime, and let a € 7 with a #Z 0(mod p); then aP~! =
1 (mod p).

Returning to our example we have, for any a in the range 1 to 10, that

a'® = 1 (mod 11), from which, by squaring both sides and multiplying both

3 ¢Alice and Bob.’

4 For realistic Pohlig-Hellman (private-key) or Rivest-Shamir-Adleman (public-
key) cryptography.

% One of the most remarkable elementary theorems, with a host of important con-
sequences.
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sides by a, we obtain a?! = a (mod 11). Thus if A used general a in the range
1 to 10, then setting N’ = f(a) = a”(mod 11) giving N’ = a', with a' chosen
6 in the range 1 to 10, and A then sends N’ to B, who then decrypts by
forming f~1(N') = (a')® = (a”)® = a(mod 11), returning the original a.

Theorem 1 underpins the Pohlig-Hellman cryptographic system, in much
the same that the following Theorem 2 (what one might call the two prime
version of the Euler-Fermat theorem) underpins the Rivest-Shamir-Adleman
system. Texts dealing with Theorem 2 normally first prove the full version
of the Euler-Fermat theorem (Let n be a natural number, n > 1, and let
a be any integer with gcd(a,n) = 1; then a®™ = 1(modn), where ¢(n) - the
Euler phi-function - is the number of integers between 1 and n — 1 that are
relatively prime to n), but such an appeal can be dispensed with, as seen in
the following proof.

Theorem 2. Let p and q be distinct primes, and let a € Z with a Z 0(mod p)
and a # 0(mod q); then a?~1(=1) =1 (mod pg).

Proof. Since a # 0(mod p) then a?~! = 1(modp), and (aP~1)97! = 1971 =
1(mod p), and so a?~(¢=Y = 1(modp). Similarly a®~1(~1) = 1(modgq
and thus a1 = 1 (mod pq) since ged(p, q) = 1.

~—

)

O

2 Some technical number theory details and
cryptographic applications

2.1 Relating the decryption power to the encryption power

Both the PH and RSA methods require computing the decryption power from
the encryption power and the modulus, and for that one needs’ the following
result.

Theorem 3. Let m € N withm > 1, and let e € Z with gcd(e, m) = 1; then
there is a unique d € Z with ed = 1(modm) and 1 <d <m — 1.

In applications

— mis (p — 1), for prime p, in the PH system,
— mis (p —1)(q — 1), for distinct primes p and q, in the RSA system.

6 This is an important detail in general: the modulus must have a value greater
than the value of the numerical form of the plaintext. In the above unrealistic
example where we used modulus 11, had A wished to send the message ‘r’ - whose
numerical value would be 18 - then it would not be clear to B whether A was
transmitting the letter ‘r’ or perhaps ‘g,” whose numerical equivalent would be 7,
and 18 = 7(mod 11).

" Using the extended Euclidean algorithm.
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2.2 Cryptographic applications: Pohlig-Hellman (private-key)
and Rivest-Shamir-Adleman (public-key)

Fermat’s little theorem, and the above two prime version of it then form
the basis for the Pohlig-Hellman and Rivest-Shamir-Adleman cryptographic
methods:

Theorem 4. (The Pohlig-Hellman case.) Let

— p be prime, and e € N with gcd(e, p—1) =1,
— P € Z with P # 0(mod p), and C be defined by C = P*(mod p), and d be
chosen so that d € Z with ed = 1(mod (p—1)) and 1 <d<p-—1;

then 8 C? = P(mod p).

Proof. Since C = P¢(mod p), then C¢ = (P®)¢ = P*¢(mod p). (We need the
d € N to guarantee that C? € Z.) Now, since ed = 1(mod (p — 1)) then
ed =m(p—1) + 1 for some m € Z, and, in fact, m € N since e, d € N. Thus
C? = ped = pp-D+1(mod p), and by Fermat’s ‘little’ theorem, we have
PP~ = 1(mod p). It follows that

¢4 = pnlp—Utl = (pP=1)ym P =1™ x P = P(mod p),
i.e. C? = P(modp). O
Theorem 5. (The Rivest-Shamir-Adleman case.) Let

— p and q be distinct primes, and e € N with gcd(e, (p—1)(¢ — 1)) =1,

— P € Z with P # 0(modp), P # 0(modgq), and C be defined by C =
P¢(mod pq), and

— d be chosen so that d € Z with ed = 1(mod(p —1)(g—1)) and 1 < d <
(p—1)(g—1);

then ® C¢ = P(mod pq).

A proof may be given along the same lines as the earlier one.

& This now is the guarantee that when the numerical value of the ‘plaintext’ P is
encrypted using ‘e’ - thus forming the numerical form of the ‘ciphertext’ C - and
C is then decrypted using ‘d’, then the upshot of all of this is to recover P, the
original plaintext (rather its numerical form, which one then translates back into
ordinary text).

9 Exactly the same comment here as in the previous footnote. The plaintext just
gets jumbled up by the decryption power, and gets unscrambled by the decryption
power. It’s as simple as that!!
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Encryption, decryption, and digital signatures First I set down the
details for encryption and decryption for both the Pohlig-Hellman private-
key, and the Rivest-Shamir-Adleman (RSA) public-key methods. The two
methods are similar, but are also quite different: the private one is based on
trust between the parties, whereas the private one is based on caution.

In both systems it is understood that the plaintext (the original, text form
of the message “Please send me money as quickly as possible”) is transformed
into numerical form according to some agreed convention (‘a’ is 1, ‘b’ is 2,

., ‘20 is 26, ‘A’ is 27, ‘B’ is 28, etc. ‘0’ is 53, ‘1’ is 54, ‘2’ is 55, etc.),
and then that numerical form is itself transformed in some way. In both PH
and RSA, that number (or blocks of numbers) is (are) subjected to modular
exponentiation:

— where the modulus is a prime p, in the PH case,
— where the modulus n is the product of two primes in the RSA case.

The Pohlig-Hellman case How do two people, A and B, communicate
using the PH private-key cryptographic method?
The details. Having shared their ‘private keys’, namely

— prime p (the modulus),
— encryption power e, and
— decryption power d,

related by
e€eN, gedle, p—1)=1, and ed=1(modp—1),de€N,

A and B proceed as follows: A (say) converts the plaintext T into numeri-
cal form P (say) by an agreed convention, and breaks that number P into
numerical blocks

1. P, P,,...,P., each having positive numerical value less than p.
2. A then forms the numbers Cy,Cs,. .. ,C, (‘C” for cipher) as follows (this
is the encryption of the P’s):

C1 = P{(modp), Cy = Py (modp),...,C, = Pf(modp),

where the values of Cy, Cs, ... , C, are chosen so their numerical
values are positive and less than p. A then transmits those numerical
blocks Ci, C3, ... , C; to B.

On receipt of those blocks of numbers, B proceeds to decrypt (and so

recover the original plaintext) by computing the numbers ¢1, ¢2, ... , ¢ :
c1 = Cd(modp), c; = C¢(modp), ..., ¢, = Cf(modp),

with the values of ¢1, c2, ... , ¢, chosen so that they are positive and less

than p.

Then - and this is now the whole point of all of this - those numbers
c1, €2, ... , Cp are, in fact, the numbers Py, P, ... , P;.
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The Rivest-Shamir-Adleman case How do two people, A and B, com-
municate using the RSA public-key cryptographic method?
The details. A (say) having chosen his/her ‘keys’namely

— n = p x q (n is the modulus), for distinct (and, in practice, large 10 )
primes p and gq,

— encryption power e, and

— decryption power d

related by
e€N ged(e, (p—1)(g—1)) =1, and ed=1(mod(p—1)(¢g—1)), deN.

A and B proceed as follows: A (say) having made his/her ‘public-key’,
namely (n, e), known to B, B would then communicate with A as follows:
B would convert the plaintext T into numerical form P (say) by an agreed
convention, and would break that number P into numerical blocks:

1. A, P, ... , P, each having positive numerical value less than n.
2. B then forms the numbers C, Cs, ... , C,. (‘C’ for cipher) as follows
(this is the encryption of the P’s):
C; = Pf(modn), C; = Py(modn), ..., C, = P?(modn),
where the values of Cy, C, ... , C} are chosen so they are positive and
less than n. B then transmits those numerical blocks C1, Cy, ... , C,

to A.

On receipt of those blocks of numbers, A proceeds to decrypt by comput-
ing the numbers ¢;, ¢2, ... , ¢ :

c1 = Cf(modn), c; = C4(modn), ..., ¢, = C4modn),
with the values of ¢y, ¢c2, ... , ¢, chosen so that they are positive and less
than n. Then - and again this is now the whole point of all of this - those
numbers ¢, ¢, ... , ¢ are, in fact, the numbers Py, P, ... , P;.

2.3 ‘Signing’ messages using the RSA cryptographic method.

Suppose you received a message from someone; how would you know the mes-
sage really came from them? For example, suppose you received the following
message: Please call to see me on Wednesday at 3.00 P.M. John Cosgrave.
It would be almost certain that the message came from me, especially if
I signed it, and you know what my signature looks like. However, someone
could have forged my signature, and you would be misled into thinking that

10 But, and again in practice, not just ‘large’, but one would have to be careful
about choosing the p and ¢ so that n could not be easily factored.
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I had asked you to visit me. You would turn up at my office on Wednesday at
3.00 P.M., and (possibly) find that I wasn’t there ... . Of course it wouldn’t
really matter; the worst that would have happened is that you would have
wasted your time.

Suppose, though, that an army general received a message saying some-
thing like: At 6.00 A.M. tomorrow, send 1,000 troops to Place X ... (Signed
by the) Commander-in-Chief. How can the general be certain that the mes-
sage really has come from the C.-in-C.?

In earlier times, documents or messages were authenticated by a physical
signature or seal (though they could have been forged). In recent times there
is increasing reliance on electronic means of communication (by government,
diplomatic circles, military, business, banking, political groupings, criminal
organisations, private individuals, etc.) which do not allow, of course, for a
physical signature. With electronic communication, authentication is guar-
anteed by a ‘digital signature,’ and this is how it is done:

Recall the connection between e and d namely ed = 1(mod (p—1)(¢—1))
and note that it can be rewritten as de = 1(mod (p — 1)(¢ — 1)), where the e
and d have simply been interchanged. That simple interchanging has a very,
very powerful consequence: it enables a user of RSA to sign a message. This
is all they have to do:

To illustrate, let us return to my earlier: “For example, suppose you re-
ceived a message saying: Please call to see me on Wednesday at 3.00 P.M.
John Cosgrave.” This is what I can do (assuming I am a user of RSA, and you
know my public-key (n,e)) that will convince you that the note you receive
from me, really is from me:

I can encrypt a message to you by:

— using my private decryption power d (which only I know) as my encryp-
tion power.

Then, on receipt of my message, you can decrypt it by:

— using my public encryption power d (which you, and possibly others,
know) as your decryption power.

Anticipating an objection. You might (rightly) say that anyone who can
intercept my message, and who knows my public-key, can also decrypt my
message to you. That is a simple fact (which is best illustrated in a Maple
worksheet).

Fortunately public-key cryptography once again comes to our rescue. If
I want to ‘sign’ my message to you and I don’t want anyone but you to be
able to read the contents of my message to you, I can then achieve my aim
by performing a double encryption ! :

11 Assuming you are using RSA, and I know your public-key.
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— First 12 T use my private-key to do an initial encryption (and in the
process ‘sign’ my message to you),

— then I use your public-key to perform a second encryption before sending
my message.

When you receive my doubly-encrypted message you can then read it by
performing a double decryption:

— First you use your private-key to perform the first decryption,
— then you use my public-key to perform the second decryption, and so
read my message.

Remark 6. A way of visualising this. Think of public-key cryptography in
terms of paints and paint-removers. My public-key is some paint which I
have made, and which, if it is used, only I can remove by applying the secret
paint remover which I also have made, and which only I have access to.

You have to allow your imagination to let the paint and paint remover
to be used in reverse!! By that I mean that if something is covered with my
paint then not only can it be uncovered by applying my paint remover, but
that the same is true in reverse: if something is first covered with my paint
remover then what is now there can be uncovered by applying my paint!!

Anyone who wishes to send me a secret message simply writes a message,
gets some of my paint, and paints (encryption) over my message. When I
receive your message I apply my paint remover (decryption) to it, and so
read your message. Everything I have said about ‘I’ applies to you: you have
your paint and your paint remover ... .

Now form a mental image of what I have described above:

— First I use my secret paint remover to do an initial painting (encryption,
and in the process ‘sign’ my message to you),

— then I use your public paint to perform a second encryption before sending
my message.

When you receive my doubly-encrypted message you can then read it by
performing a double decryption:

— First you use your private paint remover to perform the first decryption,
— then you use my public paint to perform the second decryption, and so
read my message.

12 Actually which I do first depends on whether my public modulus is smaller than
your public modulus:
e If my public modulus is smaller than yours then what I have described above
is in fact what I would (and should) do, but:
e If my public modulus is greater than yours then what I have described above
should be done in reverse order, by me and you.
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Basic understanding: We assume that A has public key (n4, es) with
private key d4 and that B has public key (ng, eg) with private key dp.

Question: How can B ‘sign’ a message to A (equally A send one to B) so
that A can have confidence that the message received has come from B?

Answer: Tt can be done quite easily, but it depends on which is the smaller:
n4 or ng. That is, it depends on whether:

(i) np < na, or
(ii) ng < np.

The details: Let us suppose that (i) happens '* (namely that ng < na),
and suppose that B wants to (securely) send and ‘sign’ a message P to A.

We make the usual understanding that P (the numerical form of the
plaintext) has been put into numerical form according to some convention (a
is 1, b is 2, etc.).

This, then, is what B does to (securely) send and ‘sign’ a message P to

A.

1. B breaks P up into blocks of numbers. P, P, ... , P,., each having
numerical value less than np (and so are automatically less than n 4 since
np < na), and each relatively prime to both ng and n4. B then ‘signs’
using his/her private key by doing this:

2. B forms the numbers ¢, ¢2, ... , ¢ as follows:

c1 = P (modng), ¢; = Py? (modng),... ¢, = P4 (modnpg),
the ¢y, ¢2, ... , ¢ chosen with positive values, less than np.

3. B then forms the following blocks of ciphertext, and sends those to A:
Cy = c*(modny),Ce = c5* (modny),. .. ,Cr = ciA(modny),
the C1, Cs, ... , C, chosen with positive values, less than n 4.
In summary,

1. B first signs with their own private key,
2. and then sends the newly formed ciphertexts in the usual way, using A’s
public key.

On receipt of the Cy, Cs, ... , C, this is what A does:

1. A partially decrypts the numbers Cy, Cz, ... , C, using their own
private key, by forming the numbers z1, z2, ... , z, as follows:

21 = C%(modny),zs = CI4(modny),... ,z, = C% (modny),

the 1, @2, ... , @, chosen with positive values, less than n4. (Those
Z1, T2, ... , T, are, of course, none other than ¢, ¢, ... , ¢r.)

13 Later we will see what to do if (i) happens.
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2. A completes the decoding by forming the following blocks of ciphertext:

y1 =278 (modng),ys = z5F (modng),... ,y, = 2.2 (modng),
the y1, y2, .. , yr chosen with positive values, less than np.
The whole point is now that those y1, y2, ... , ¥, are none other than
the numerical form of B’s original plaintext message, namely P, Py, ... , P,.

If, however we had n4 < ng, then this is what B would do ™ : suppose
that B wants to send message P to A. B breaks P up into blocks of numbers
P, P, ... , P, (each having value less than n4 (and so are automatically
less than np since n4 < np), and each relatively prime to both n4 and ng).
This, then, is what B does to ‘sign’ the message to A:

First B forms the numbers ¢;, ¢3, ... , ¢, by using A’s public key, just
as in an ordinary unsigned message, as follows:

¢1 = P/*(modny),cs = Py*(modna),...,cr = PP4(modna),

the c¢1, ¢2, ... , ¢, chosen with positive values, less than n 4.
Then B (and this is what ‘signs’ for B, the using of B’s ‘secret’) sends to
A the following blocks of ciphertext:

C1 = 8 (modnp),Cy = 3% (modnp),... ,C, = ¢?® (modnp),

the Ci, Cs, ... , C, chosen with positive values, less than ng. In short, B
first encodes in the usual way using A’s public key, and then ‘signs’ using
their own private key.

On receipt of Cy, Cy, ... , C, thisis what A does:

First A partially decodes the numbers Cy, Cs, ..., C, using B’s public
key, by forming the numbers 1, 2, ... , x, as follows:

z1 = C{% (modnpg),z2 = C5% (modng),...,z, = C;B(modnp),

the z1, x2, ... , x, chosen with positive values, less than np. (Those
1, T2, -.. , T, are, of course, none other than ¢, ¢3, ... , ¢p.

Then A completes the decoding by forming the following blocks of cipher-
text:

da da

y1 = 2% (modnn),ys = 284 (modna),. .. ,yr = 2% (modny),

the y1, y2, ... , ¥ chosen with positive values, less than n 4. The whole point
is, again, that those y1, y2, ... , y, are none other than the numerical form
of B’s original plaintext message, namely Py, P, ... , P,.

All of this is best illustrated in a Maple worksheet, and such details,
actually carried out, may be seen in my ‘Clinton ... > Maple public lecture
[Cos].

14 Actually all that B and A do is to do what they previously did, except to do it
in reverse order.
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3 Some elementary, but non-trivial primality testing
methods

Is the converse of Fermat’s little theorem true? That is, if n € N(n > 2), and
a € Z such that a"~! = 1(modn), is n necessarily prime? It is well known
that it isn’t, as the example '® 2340 = 1(mod 341) shows 6.

Lucas (starting in 1876) observed the first of a series of partial converses
to Fermat’s ‘little’ theorem. These results had the following common form: if
n € N(n > 2), and a € Z such that a®~ ! = 1(modn), then - providing some
extra condition is satisfied - n is prime.

The start of a serious study of primality testing I will restrict myself
to the methods of Lucas (1876-78), Proth (1878), Pocklington (1914), Lehmer
(1927) and Selfridge (1967), and I begin with the following result.

Theorem 7. (Lucas, 1876). Letn € N(n > 3), and suppose there is an a € Z
such that a® ! = 1(modn) and a® # 1(modn) for all x with1 <z <n —1;
then n is prime.

Alternative wording of this theorem. Let n € N(n > 3), and suppose there
is some a € Z such that ord,a = n — 1; then n is prime.

This theorem which appears at first sight to be so weak (but which ul-
timately isn’t, in the sense that it can be gradually improved bit by bit to
produce wonderfully effective results) marked the start of modern primal-
ity testing. As a test it is even worse than the Eratosthenes method, but
Lucas himself improved upon it in 1878 by showing that the condition
a® # 1(modn) for all z with 1 < z < (n — 1) ” could be replaced with the
less restrictive one that “a” #Z 1(modn) for all z with 1 <z < (n — 1) with
z |n —1.” However, even that improvement ceases to be useful whenever n—1
has a lot of factors.

Example 8. A Maple computation which conveys the idea of a proof of Lucas’
1876 theorem. Here I use Maple to compute all powers of 2 modulo 101 from
the 1st to the 100th power:

>seq(2&"x mod 101, x=1..100); # here ‘a’ is 2, and ‘n’ is 101

9, 4, 8, 16, 32, 64, 27, 54, 7, 14, 28, 56, 11, 22, 44, 88, 75, 49,
98, 95, 89, 77, 53, 5, 10, 20, 40, 80, 59, 17, 34, 68, 35, 70, 39, 78,
55,9, 18, 36, 72, 43, 86, 71, 41, 82, 63, 25, 50, 100, 99, 97, 93, 85,
69, 37, 4, 47, 94, 87, 13, 45, 90, 719, 57, 13, 26, 52, 3, 6, 12, 2,
48, 96, 91, 81, 61, 21, 42, 84, 67, 33, 66, 31, 62, 23, 46, 92, 83, 65,
29, 58, 15, 30, 60, 19, 38, 76, 51, 1
!5 First noted by Sarrus in 1814.

16 341 is an example of a pseudoprime to the base 2; that is it is a composite n
satisfying 2"~ = 1(mod n).
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Noting that 2! = 1(mod101) and 2* # 1(mod101) for all x with
1 < z < 100, one should make a critical observation, namely: there are 100
outputs, and no two of those outputs are equal, and that, as a consequence, all
residues between 1 and 100 must occur (exactly once), and that as a further
consequence 101 must be prime. Why? Well, if 101 were composite then it
would have as a factor some prime smaller than 101. Let’s suppose it had 7
(say) as a factor, then 2* = 7(mod 101) for some z, would imply 2 is divisible
by 7.

Several similar examples now reduce the proof of Lucas’ theorem to a
formality.

Proof. (of Lucas’ 1876 theorem) 7 Suppose n is composite. We will show
that is impossible, and so n must be prime. We show that a!, a?,..., a"!
are congruent mod n, in some order, to 1, 2,..., n—1, and then argue that
is impossible.

None of al, a2,..., a® ! is 0 mod n, because if a™ = 0(mod n) for some
m € N, then a™ = nX, for some X € Z. Now, let p be a prime with p|n; we
would have p|a™, and so would have p|a. But p|n and p|a would conflict with
ged(a, n) = 1, and so none of a', a2,..., a® ! is 0 mod n.

Also, if a¥ = a*(mod n) for some u, v, 1 <u < v <n—1, then a¥*(a’~*—
1) = 0(modn), and from gecd(a¥, n) = 1, it follows that (a?~% — 1) =
0(mod n). Setting x = v — u, we have a® = 1(modn), where 1 < z < (n — 2).
That conflicts with the second condition of Lucas’ theorem, and it follows
that no two of a, a?,..., a® ! are congruent to each other mod n.

Thus a, a?,..., a® ! are congruent mod n, in some order,to 1, 2,... , n—
1, and so for some integer r (1 < r < n —2) we have a” = p(modn), where p
is the earlier prime dividing n (and so 1 < p < n). That is impossible since
a” = p(modn) means a” = nX' + p, for some X' € Z, from which, with p|n
we obtain pla”. We would have p|a. That conflicts with ged(a, n) = 1, and
so n cannot be composite. Thus n is prime. O

Theorem 9. (what I call the ‘Lucas-Kraitchik-Lehmer '® Theorem’). Letn €
N with n > 1, and suppose there is some a € Z with a®~' = 1(modn) and

a7 # 1(modn) for all primes p with p|(n — 1); then n is prime.

7 The original Lucas proof involved using a theorem (the famous ‘Euler-Fermat
theorem’) whose own proof involves quite a lot of extra work. Here I give a proof
which avoids such a reference.

18 1t is, of course, Lehmer’s theorem of 1927. In my first couple of years of teaching
a proof of this I used Lehmer’s original proof, but, as anyone familiar with that
proof will know, a very heavy and quite unnecessary use is made of the Euler
¢-function, and my students had great difficulty in following it. Fortunately the
proof I subsequently gave, here in this paper, was more readily understood (when
properly motivated).
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Remark 10. This is a very powerful theorem, whose power is only properly
realised when Maple, or other similar work is performed with very large
numbers.

Proof. (the strategy of the proof is to show that ord,a = n — 1, and it
follows from Lucas’ theorem of 1876 that n is prime.) Let r = ord,a, then
n—1=r7rR,some R € N. If R > 1, then R = pR’, some prime p, and

R' € N. Thusn—1=rR=rpR/, "le =rR' €N, so p divides (n —1). Then

(@")® = 1% = 1(modn), and thus "7 = a"® = 1(modn) which conflicts
with the second condition of the theorem. Thus R # 1, and r = ord,a = n—1.
By Lucas’ 1876 theorem it follows that n is prime. O

Remark 11. The Lehmer 1927 theorem is sometimes referred to, for obvious
reasons, as the ‘”Tfl’ theorem. There is a further important improvement
(dating from 1967) of D. H. Lehmer’s theorem that is due to another U.S.
mathematician John Selfridge. One only appreciates the value of Selfridge’s
improvement after one has had experience with using the Lehmer theorem
with Maple computations. Selfridge’s theorem is sometimes referred to as the
‘change of base’ theorem, for reasons which will become apparent when one
uses it.

Theorem 12. (what I call the ‘Lucas-(Kraitchik)-Lehmer-Selfridge Theo-
rem’) Let n € N withn > 1, and suppose that for each prime p; with p;|(n—1)
n—1

there is some a; € Z with a} ™' = 1(modn) and a,”* # 1(modn); then n is
prime.

Another important variation is Pocklington’s theorem.

Theorem 13. (Pocklington, 1914) Let n — 1 = UF = Up{*ps? ... p2 be

an incomplete factorisation of n—1 (where U is the ‘unfactored part’ of n—1,

and F = p'p3? ... por is its factored part) with U < F and ged(U, F) = 1.
n—1

Suppose there is an a such that a®~! = 1(modn) and ged(a 7@ —1, n) =1

for alli, 1 <i <r; then n is prime.

Ezxample 1. Let p, denote the rth prime.

— I have used LKLS to prove the primality of the 1006-digit
250(p1p2 . p20)3 +1, and

— the primality of the 1405-digit 2371!2!3!4! ... 48!149!50! + 1.

— Also I have used Pocklington to establish the primality of the (serendip-
itously found) 2000-digit p1p2 ... p3aspiag + 1 (see [Cos| for the Maple
worksheet details), and also

— the primality of the 3318-digit pip> ... p3aep3iopiss + 1.

Another interesting elementary result is Proth’s (1878), the standard ver-
sion of which is the following result.
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Theorem 15. Let N = 5-2" + 1, where s, 7 € N and'® s < 2". Suppose
N-1
there is an a € Z such that a 2 = —1(mod N); then N is prime.

I have made the minor improvement of the s < 2" condition to s < 2" +1,
with this proof.

Proof. First, note the standard result 2° about prime divisors of Fermat type
numbers: let z € Z and m € N, then every odd prime divisor ¢ of 2" + 1
satisfies ¢ = 1(mod2™*!). For p a prime divisor of N, we have a'i =
(@®)?”" = —1 and so p = 1(mod 2"). If N is composite, then N is a product
of at least two primes each of which has minimum value 2" + 1, and so
N=sx2"+12>(2"4+1)(2"+1) =2" x 2"+ 2 x 2" + 1. It follows that
s > 2" 4+ 2, which is incompatible with s < 2" 4+ 1. Thus N is prime. O

4 Some elementary, but non-trivial factorisation
methods

Maple has a number of factorisation commands, the default one of which
21 is the 1975 continued fraction method of Morrison and Brillhart. It also
has the command ifactor(n, pollard) which puts into effect the Pollard
p—method with the Floyd cycle algorithm improvement, but only using iter-
ates of ‘2’ using the function z2 + 1.

I am keen that my students should have exposure to some non-trivial
factorisation methods, and have narrowed myself down to just two 22:

— Pollard’s p — 1 method (1974), which uses Fermat’s ‘little’ theorem,
— Pollard’s p—method (1974), which uses a generalisation of the birthday
paradox.

It is my experience that students are really fascinated by both Pollard
methods, and I can assure any reader that the inclusion of these methods in
such a course is a source of very great excitement in the classroom. Personally
I never really appreciated these methods until I decided to teach them, and
they form one of the highlights of the course. Many students are greatly

19 Some texts add an entirely irrelevant requirement that s be odd.

20 Which I prove for my students, using standard order theorems and Fermat’s little
theorem.

21 The Maple command is ifactor(n).

22 With as much details as possible. I also expose them to the elementary Fermat
method, which, although it only requires high school mathematics to understand
it, is nevertheless one which can’t be ignored in choosing two primes for RSA
usage. Many students are greatly impressed by seeing the product of two really
large primes - with hundreds of digits, but which differ by only several thousands
- being factored almost instantly by the Fermat method. It allows one to drive
home the point that mere size is not enough when choosing primes for RSA usage.
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impressed with how effective both methods are, especially the p — 1 method
when used on RSA type numbers where one of the primes has been formed by
using a Lehmer-Selfridge type construction. I refer my reader to the example
in my Maple public lecture ‘Bill Clinton, ... ’ [Cos].

My approach to teaching the Pollard methods In teaching my students
the Pollard methods I abandon all reticence, and try to impress on them
that in studying these methods they are considering the work of a master
mathematician with an extraordinary, fertile imagination. The first point I
make is that these two methods, which appear so different at first, are in
fact driven by a single, apparently useless, but actually incredibly powerful,
common idea. Given a composite n, known to be composite because of failing
a Lucas-Fermat test to some base 2 the common idea in the methods is to
attempt to find some integer M (I urge my students that they think of ‘M’
as being short for Magic, because in the two Pollard methods it really is
magical the manner in which he creates this M) such that ged(M, n) > 1
and ged(M, n) < n.

Since Pollard’s approach can - and indeed does - appear very, very strange
to weaker students, then I play on that perception, and indeed I attempt to
rubbish the idea before I even show them how very powerful it is. While
pointing out that finding such an M would of course mean that one had
found a proper factor of n, I do concede that the idea could appear completely
useless because of these considerations:

— How is one going to find such an M? ...

— By trial and error? Let’s see if M =2, 3, 5, 7,... would do? Why, that
would be even worse (because of the gcd computation) than using the
Eratosthenes approach of trying possible factors up to y/n.

However I then put it to them that they should consider it a tribute
to Pollard’s fertile imagination that he was able to conceive two wonderful
realisations 24 of finding this elusive M. These methods will be known to my
reader, and so I will only briefly describe how I attempt to convey Pollard’s
thinking to my students. For both methods I emphasise that Pollard’s hope
is to find one of the proper factors p of n (and not necessarily the least one!).

In the case of his 1974 method, his (p — 1) method, he attempts to find
that ‘p’ by exploiting Fermat’s little theorem in the following way.

Lemma 16. For p any prime and a € Z, a # 0(modp), one has a** =
1(mod p), and thus a®* — 1 = 0(mod p), for all sufficiently large values of k.

23 Normally (but not always) that 2"~ # 1 (modn).

24 1t is a well known joke amongst mathematicians that a trick is something that
works once, while an idea is something that works twice (or more). I have often
wondered if Pollard had an idea in 1974, or simply a trick.
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(That ‘(a® — 1)’, hopefully with a not too large value for k, is going to
be ones ‘M’: it is divisible by p, as is n, and ones ambition is to quickly find
a reasonably small k, so that the gcd of n and (a*' — 1) comes to be greater
than 1, but less than n.) That result is, of course, a trivial consequence of
Fermat’s little theorem, since it is certainly true for £ > p — 1.

Proof. From Fermat’s ‘little’ theorem we have a?~! = 1(modp). Also, for
sufficiently large k we have (p—1)|k! (e.g., k > p—1 would do trivially), and
so k! = (p— 1)K, for some K € N. Then (a?~!)¥ = 1¥ = 1(mod p), and so
a? DK = 1(mod p), i.e. a* = 1(mod p). O

Pollard’s insight was that although the latter congruence is trivial, nev-
ertheless because of the way in which the prime factorisation structure of k!

behaves as k increases in size, one may have a*' = 1(modp) for substantially
smaller values of &k than the trivial £ = p — 1.
Example 17. For example, if p = 97, then the trivial a°® = 1(mod 97) may

be vastly improved upon with a® = 1(mod p). That is, because 97 —1 = 96 =
25x 3! and 8! = 1x2x3x4x5x6xTx8 =2t x31 x22x5x (21 x31)x7x 2% =
26 x 32 x 5 x 7, is divisible by 96, because of the appropriate accumulation
of 2’s and 3’s in the prime decomposition of 8!.

Thus if one had a composite n (reasonably big, say) which, unknown to
one, happened to have 97 as a factor, then that fact would be quickly revealed
by successively calculating the early terms of the sequence

ged(2Y — 1, n),ged(2% — 1, n),ged(2® — 1, n),... .

The real work that has to be done to get the idea across may be seen in
much greater detail in my related Maple worksheet [Cos]. Suffice it here to
say that the key Maple programming computational steps are not to compute
each ged(a®' — 1, n) from scratch, but rather to do them recursively, and
furthermore not to compute actual values of the a*' — 1, but rather their
reduced values modn.

This, then, is the final 2° version of the Maple procedure I lead my students
to the following algorithm.

> Pollard := proc(seed, n)
local a, k; a[l] := seed:
for k from 2 while igcd(n, al[k-1]-1 mod n)=1
do al[k] := alk-1]&"k mod n od;
if igcd(n, alk-1]-1 mod n) < n then
lprint(‘After‘, k-1, ‘steps we find that‘,

25 With my students I deliberately build up through slower stages to make certain

points, as will be seen by anyone who reads my detailed Maple worksheet. I could,
of course, dispense with the ‘lprint’ line, and simply output a proper factor if
one is found, otherwise have no output.
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igcd(n, alk-1]1-1 mod n),‘is a proper factor of‘, n)
else lprint(‘No proper factor found; try some other seed®
fi end:

It is my experience that most students are greatly impressed with the
effectiveness of this Pollard inspired, Maple procedure. Cryptographic exam-
ples of it in action may be read in details given in my Maple public lecture
‘Bill Clinton, Bertie Ahern, and digital signatures’ [Cos].

For example, if one performed the following Maple computations: first,
create two large primes p and ¢, the first of which entails p — 1 having only
small prime divisors, and then formed their product n, one could verify that
n is composite by showing it fails a base 2 Lucas-Fermat test, and also factor
n using the above Pollard procedure.

These computations are all quickly executed:
>p := 2740%3°52%7°52 1;4 #an 81-digit prime

D = 6260415423503186572672315147574511472123143378724083534
88069113603068870541705217

>q := nextprime(10°66 12345678910987654321) +# 67 digits

g :=10000000000000000000000000000000000000000000000123456789
10987654447

>n := pxq: # value suppressed. 147 digits
>2&"(n-1) mod n; # shows ‘n’ is not prime:

3152127958237653442577861970188136620480387508962922042738385890
1244327611900953017915409099486524654763301485907184866806349215
1077465700747069971 .

Finally, execute the following Maple command, which takes only seconds:
>Pollard(2, n); # choosing ‘seed’ to be ‘2.’
Output:

After 322 steps we find that
626041542350318657267231514757451147212314337872408353488
069113603068870541705217

is a proper factor of
62604154235031865726723151475745114721231433788013726135/,
865627195181479941250685466423117165291499989527024421354
240887817669535791655926533149999.
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4.1 Some brief comments on the Pollard p—method

Suffice it to say that Pollard suggested another remarkable way of arriving at
an M’ with the desirable properties listed earlier, except that M is now not
arrived at as a consequence of constructing a sequence one of whose eventual
terms is the desired M, but rather - as a consequence of the ‘generalised
birthday paradox’ - so that M is arrived at by forming differences. This
method is very well explained in Pomerance’s MAA notes [P1], or in Koblitz’s
book [Ko], and I refer my reader to those sources. In treating this method with
my own students I explain the original Pollard approach, eventually arrive
at the classic p—figure, and discuss how the computation may be speeded up
by using the Floyd cycle finding algorithm.

Any reader already familiar with Pollard’s p—method will know that Pol-
lard himself suggested starting with seed ‘2’ and using iterated values of
22 + 1 (modn) as the means of producing the random sequence. This ap-
proach, together with the Floyd cycle improvement is the one that Maple
has built into its factorisation command ‘ifactor(n,pollard).’ The mod-
ification which I make for my own students is to allow for variable seed and
iteration function, using the Floyd cycle finding method. Once again it is my
experience that students are really impressed with how effective the method
is.

I finish by giving a Maple procedure 2%, the final version of the one I teach
to my students, which incorporates the general form of Pollard-Floyd, and
give two examples of the sort of output one will see on using it.

>PF := proc(n, f, seed) # general Pollard-Floyd
local a, k; all] := seed: al2] := f(al1l):
for k from 2 while igcd(n, a[2*k-2]-alk-1])=1 do
alk] := f(a[k-1]) mod n;
a[2xk] := £f(f(a[2*k-2]) mod n) mod n; od:
if igcd(al2xk-2] - alk-1], n) $<$ n then
lprint (igcd(a[2*k-2]-alk-1], n),
‘is a proper factor of‘, n);
else lprint(‘Try some other seed or function. ‘)
fi; end:

>PF(1037, x-> x°2 + 1, 2);
17 is a proper factor of 1037
>PF(2°32+1, x -> x"2 + 1, 2); # the 5th Fermat number:

641 is a proper factor of 4294967297

%6 An early Maple worksheet of mine on this topic may be found on the internet
[Cos].
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A Talk on Quantum Cryptography
or
How Alice Outwits Eve

Samuel J. Lomonaco, Jr. *

University of Maryland Baltimore County
Baltimore, MD 21250

Abstract Alice and Bob wish to communicate without the archvillainess Eve
eavesdropping on their conversation. Alice, decides to take two college courses, one
in cryptography, the other in quantum mechanics. During the courses, she discov-
ers she can use what she has just learned to devise a cryptographic communication
system that automatically detects whether or not Eve is up to her villainous eaves-
dropping. Some of the topics discussed are Heisenberg’s Uncertainty Principle, the
Vernan cipher, the BB84 and B92 cryptographic protocols. The talk ends with a dis-
cussion of some of Eve’s possible eavesdropping strategies, opaque eavesdropping,
translucent eavesdropping, and translucent eavesdropping with entanglement.

SHORT ABSTRACT. This is a story about how Alice ingeniously devises two different
quantum cryptographic communication protocols (i.e., BB84 and B92) that prevent
archvillainess Eve from eavesdropping on Alice’s communications with Bob. How
does Alice do this? Also, how does she implement her ideas in optics?

This talk is based on the paper: Lomonaco, Samuel J., A Quick Glance at Quan-
tum Cryptography, Cryptologia, Vol. 23, No.1, January, 1999, ppl-41. (Quant-
ph/9811056)

1 Preface

1.1 The Unique Contribution of Quantum Cryptography

Before beginning our story, I'd like to state precisely what is the unique
contribution of quantum cryptography.

Quantum cryptography provides a new mechanism enabling the parties
communicating with one another to:

Automatically Detect Eavesdropping

Consequently, it provides a means for determining when an encrypted
communication has been compromised.

* Partially supported by ARL Contract #DAAL01-95-P-1884, ARO Grant #P-
38804-PH-QC, the Computer Security Division of NIST, and the L-O-O-P Fund.
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1.2 A Note to the Reader

This paper is based on an invited talk given at the Conference on Coding
theory, Cryptology, and Number Theory held at the US Naval Academy in
Annapolis, Maryland in October of 1998. It was also given as an invited talk
at the Quantum Computational Science Workshop held in conjunction with
the Frontiers in Computing Conference in Annapolis, Maryland in February
of 1999, at a Bell Labs Colloquium in Murray Hill, New Jersey in April
of 1999, at the Security and Technology Division Colloquium of NIST in
Gaithersburg, Maryland, and at the Quantum Computation Seminar at the
U.S. Naval Research Labs in Washington, DC.

My objective in creating this paper was to write it exactly as I had given
the talk. But ... Shortly after starting this manuscript, I succumbed to the
temptation of greatly embellishing the story that had been woven into the
original talk. I leave it to the reader to decide whether or not this detracts
from or enhances the paper.

2 Introduction

We begin our crypto drama with the introduction of two of the main charac-
ters, Alice QandQ Bob, representing respectively the sender and the receiver.
As in every drama, there is a triangle. The triangle is completed with the
introduction the third main character, the archvillainess Eve, representing
the eavesdropper.

Our story begins with Alice and Bob attending two different universities
which are unfortunately separated by a great distance. Alice would like to
communicate with Bob without the ever vigilant Eve eavesdropping on their
conversation. In other words, how can Alice talk with Bob while at the same
time preventing the evil Eve from listening in on their conversation?

3 A Course on Classical Cryptography

3.1 Alice’s enthusiastic decision

Hoping to find some way out of her dilemma, Alice elects to take a course on
cryptography, Crypto 351 taught by Professor Shannon with guest lecturers
Diffie, Rivest, Shamir, and Adleman. Alice thinks to herself, “Certainly this
is a wise choice. It is a very applied course, and surely relevant to the real
world. Maybe I will learn enough to outwit Eve?”
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3.2 Plaintext, ciphertext, key, and ... Catch 22

Professor Shannon begins the course with a description of classical crypto-
graphic communication systems, as illustrated in Fig. 1. Alice, the sender,
encrypts her plaintext P into ciphertext C using a secret key K which she
shares only with Bob, and sends the ciphertext C' over an insecure channel
on which the evil Eve is ever vigilantly eavesdropping. Bob, the receiver, re-
ceives the ciphertext C, and uses the secret key K, shared by him and Alice
only, to decrypt the ciphertext C' into plaintext P.

Figure 1. A classical cryptographic communication system.

What is usually not mentioned in the description of a classical crypto-
graphic communication system is that Alice and Bob must first communicate
over a secure channel to establish a secret key K shared only by Alice and
Bob before they can communicate in secret over the insecure channel. Such
a channel could consist, for example, of a trusted courier, wearing a trench
coat and dark sunglasses, transporting from Alice to Bob a locked briefcase
chained to his wrist. In other words, we have the famous Catch 22 of classical
cryptography, namely:

Catch 22. There are perfectly good ways to communicate in secret,
provided we can communicate in secret ...

Professor Shannon then goes on to discuss the different types of classical
communication security.

3.3 Practical Secrecy

A cryptographic communication system is practically secure if the encryp-
tion scheme can be broken after X years, where X is determined by one’s
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security needs and by existing technology. Practically secure cryptographic
systems have existed since antiquity. One example would be the Caesar ci-
pher used by Julius Caesar during the during the Gallic wars, a cipher that
was difficult for his opponents to break at that time, but easily breakable
by today’s standards. A modern day example of a practically secure clas-
sical cryptographic system is the digital encryption standard (DES) which
has just recently been broken!. For this and many other reasons, DES is
to be replaced by a more practically secure classical encryption system, the
Advanced Encryption Standard (AES). In turn, AES will be replaced by an
even more secure cryptographic system should the advances in technology
ever challenge its security.

3.4 Perfect Secrecy

A cryptographic communication is said to be perfectly secure if the cipher-
text C' gives no information whatsoever about the plaintext P, even when
the design of the cryptographic system is known. In mathematical terms,
this can be stated succinctly with the equation:

PROB(P | C) = PROB(P).

In other words, the probability of plantext P given ciphertext C, written
PROB(P|C), is equal to the probability of the plaintext P.

An example of a perfectly secure classical cryptographic system is the
Vernam Cipher, better known as the One-Time-Pad. The plantext P is
a binary sequence of zeroes and ones, i.e.,

P=P,Ps,Ps, ... Py, ...

The secret key K consists of a totally random binary sequence of the same
length, i.e.,
K=K|,Ky,K3, ... , K, ...

The ciphertext C is the binary sequence
C=0,05Cs, ... Cp, ...
obtained by adding the sequences P and K bitwise modulo 2, i.e.,
C; = P, + K;(mod 2)fori = 1,2,3, ...
TO’Reilly and the Electronic Frontier Foundation have constructed a com-

puting device for $250,000 which does an exhaustive key search on DES in 4.5
days[15]. See also [2] and [10]. As far as I know, triple DES has not been broken.
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For example,
P =0110 0101 1101
K =1010 1110 0100

C=P®K =1100 1011 1001

This cipher is perfectly secure if key K is totally random and shared
only by Alice and Bob. It is easy to encode with the key K. If, however,
one succumbs to the temptation of using the same key K to encode two
different plaintext P(Y) and P into ciphertexts C(!) and C®, then the
cipher system immediately changes from a perfectly secure cipher to one that
is easily broken by even the most amateur cryptanalyst. For, () ¢ C®®) =
PU) @ P@) ig easily breakable because of the redundancy that is usually
present in plaintext.

The only problem with the one-time-pad is that long bit sequences must
be sent over a secure channel before it can be used. This once again leads
us to the Catch 22 of classical cryptography, i.e.,

Catch 22. There are perfectly good ways to communicate in secret,
provided we can communicate in secret ...

... and to the:

— Key Problem 1. Catch 22: A secure means of communicating key is
needed.?

Finally, there are two other key problems in classical cryptography in need
of a solution, namely:

— Key Problem 2. Authentication: Alice needs to determine with cer-
tainty that she is actually talking to Bob, and not to an impostor such
as Eve.

— Key Problem 3. Intrusion Detection: Alice needs a means of deter-
mining whether or not Eve is eavesdropping.

% Hired trench coats are exorbitantly expensive and time consuming.
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In summary, we have the following checklist for classical cryptographic
systems:

Check ListforClassicalCryptoSystems
B Catch22Solved? NO
B Athentication? NO
EIntrusionDetection? NO

3.5 Computational Security

Relatively recently in the history of cryptography, Diffie and Hellman [4], [5]
suggested a new type cryptographic secrecy. A cipher is said to be compu-
tationaly secure if the computational resources required to break it exceed
anything possible now and into the future. For example, a cipher would be
computationally secure if the number of bits of computer memory required
to break it were greater than the number of atoms in the universe, or if the
computational time required to break it exceeded the age of the universe.
Cryptographic systems can be created in such a way that it is computation-
ally infeasible to find the decryption key D even when the encryption key E
is known. To create such a cryptographic system, all one would need is a
trap-door function f.

Definition 1. if A function f is a trap-door function if

1) f is easy to compute, i.e., polynomial time computable, and

2) Given the function f, the inverse function f~!can not be computed from
f in polynomial time. IL.e., such a computation is superpolynomial time,
intractable, or worse.

Figure 2. A public key cryptographic communication system
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A trap-door function E can be used to create a public key crypto-
graphic system as illustrated in Fig.2. All parties who wish to communi-
cate in secret should choose their own trap-door function E and place it in a
public directory, the “yellow pages,” for all the world to see. But they should
keep their decryption key D = E—! secret. Since E is a trap-door function,
it is computationally infeasible for anyone to use the publicly known E to
find the decryption key D. So D is secure in spite of the fact that its inverse
E is publicly known.

If Alice wishes to send a secret communication to Bob, she first looks up
in the yellow pages Bob’s encryption key Eg, encrypts her plantext P with
Bob’s encryption key Ep to produce ciphertext C' = Eg(P), and the sends
the ciphertext C' over a public channel. Bob receives the ciphertext C, and
decrypts it back into plaintext P = Dg(C) using his secret decryption key
Dg.

Alice can even do more than this. She can authenticate, i.e., sign her
encrypted communication to Bob so that Bob knows with certitude that
the message he received actually came from Alice and not from an Eve mas-
querading as Alice. Alice can do this by encrypting her signature ALZCE us-
ing her secret decryption key D 4 into D4 (ALZCE). She then encrypts plain-
text P plus her signature D 4 (ALZCE) using Bob’s publicly known encryption
key Ep to produce the signed ciphertext Cs = Eg(P + Das(ALICE)), and
then sends her signed ciphertext Cs over the public channel to Bob. Bob
can then decrypt the message as he did before to produce the signed plain-
text P+ D4 (ALICE). Bob can verify Alice’s digital signature D4 (ALZCE)
by looking up Alice’s encryption key E4 in the “yellow pages,” and using it
to find her signature E4(D4(ALZCE)) = ALZCE. In this way, he authenti-
cates that Alice actually sent the message because only she knows her secret
decryption key. Hence, only she could have signed the plaintext.?

The RSA cryptographic system is believed to be one example of a public
key cryptographic system. There are many public software implementations
of RSA, e.g., PGS (Pretty Good Security).

Thus, besides solving the authentication problem for cryptography, public
key cryptographic systems appear also to solve the Catch 22 of cryptogra-
phy. However, frequently the encryption and decryption keys of a public key
cryptographic system are managed by a central key bank. In this case, the
Catch 22 problem is still there. For that reason, we have entered ‘MAYBE’
in the summary given below.

3 Because of the need for brevity, we have not discussed all the subtleties involved
with digital signatures. For example, for more security, Alice should add a time
stamp and some random symbols to her signature. For more information on
digital signatures, please refer to one of the standard references such as [14].
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Check ListforPKS
B Catch22Solved? MAYBE
B Athentication? YES
EIntrusionDetection? NO

4 A Course on Quantum Mechanics

4.1 Alice’s Reluctant Decision

In spite of Alice’s many intense efforts to avoid taking a course in quan-
tum mechanics, she was finally forced by her university’s General Education
Requirements (GERs) to register for the course Quantum 317, taught by
Professor Dirac with guest lecturers Feynman, Bennett, and Brassard. She
did so reluctantly. “Afterall,” she thought, “Certainly this is an insane re-
quirement. Quantum mechanics is not applied. It’s too theoretical to be
relevant to the real world. Ugh! But I do want to graduate.”

4.2 The Classical World — Introducing the Shannon Bit

Professor Dirac began the course with a brief introduction to the classical
world of information. In particular, Alice was introduced to the classical
Shannon Bit, and shown that he/she/it is a very decisive individual. The
Shannon Bit is either 0 or 1, but by no means both at the same time.

“Hmm ... ,” she thought, “I bet that almost everyone I know is gainfully
employed because of the Shannon Bit.”

The professor ended his brief discussion of the Shannon Bit by mentioning
that there is one of its properties that we take for granted. I.e., it can be
copied.

4.3 The Quantum World — Introducing the Qubit

Next Professor Dirac switched to the mysterious world of the quantum. He
began by introducing the runt of the Bit clan, i.e., the Quantum Bit, nick-
named Qubit. He began by showing the class a small dot, i.e., a quantum
dot. In fact it was so small that Alice couldn’t see it at all. He promptly
pulled out a microscope*, and projected a large image on a screen for the
entire class to view.

4 This is a most unusual microscope!
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Professor Dirac went on to say, “In contrast to the decisive classical Shan-
non Bit, the Qubit is a very indecisive individual. It is both 0 and 1 at the
same time! Moreover, unlike the Shannon Bit, the Qubit cannot be copied
because of the no cloning theorem of Wootters and Zurek[21]. Qubits are
very slippery characters, exceedingly difficult to deal with.”

“One example of a qubit is a spin % particle which can be in a spin-up
state |1) which we label as 1, in a spin-down state |0) which we label as 0, or
in a superposition of these states, which we interpret as being both 0 and
1 at the same time.” (The term “superposition” will be explained shortly.)

“Another example of a qubit is the polarization state of a photon. A
photon can be in a vertically polarized state |). We assign a label of 1 to
this state. It can be in a horizontally polarized state |¢»). We assign a label
of 0 to this state. Or, it can be in a superposition of these states. In this case,
we interpret its state as representing both 0 and 1 at the same time.”

“Anyone who has worn polarized sunglasses should be familiar the po-
larization states of the photon. Polarized sunglasses eliminate glare because
they let through only vertically polarized light while filtering out the hori-
zontally polarized light that is reflected from the road.”

4.4 Where do qubits live?

But where do qubits live? They live in a Hilbert space H. By a Hilbert space,
we mean:

Definition 2. A Hilbert Space is a vector space over the complex numbers
C together with an inner product

(, YHxH—C
such that

1) (u1 + u2,v) = (u1,v) + (ua,v) for all us,us,v € H

2) (u, \v) = (Au,v) for all u,v € H and A € C

3) {(u,v)" = (v,u) for all u,v € H , where the superscript ‘*’ denotes complex
conjugation.

4) For every Cauchy sequence uy,us,us3, ... in H,

lim unexistsandliesinH
n— o0

In other words, a Hilbert space is a vector space over the complex numbers
C with a sequilinear inner product in which sequences that should converge
actually do converge to points in the space.
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4.5 Some Dirac notation — Introducing kets

The elements of H are called kets, and will be denoted by
|label) ,

where ‘|” and ‘>’ are left and right delimiters, and ‘label’ denotes any label,
i.e., name, we wish to assign to a ket.

4.6 Finally, a definition of a qubit

So finally, we can define what is meant by a qubit.

Definition 3. A qubit is a ket (state) in a two dimensional Hilbert space

H.

Thus, if we let |0) and |1) denote an arbitray orthonormal basis of a two
dimensional Hilbert space H, then each qubit in H can be written in the form

|qubit) = ag |0) + a1 |0)

where ag, a; € C. Since any scalar multiple of a ket represents the same state
of an isolated quantum system, we can assume, without loss of generality, that
that |qubit) is a ket of unit length, i.e., that

lao|* + |eu|* = 1

The above qubit is said to be in a superposition of the states |[0) and |1).
This is what we mean when we say that a qubit can be simutaneously both 0
and 1. However, if the qubit is observed it immediately “makes a decision.”
It “decides” to be 0 with probability |ao|”> and 1 with probability a4 |”. Some

physicists call this the “collapse” of the wave function®.

5 It is very difficult, if not impossible, to find two physicists who agree on the
subject of quantum measurement. The phrase “collapse of the wave function”
immediately engenders a “war cry” in most physicists. For that reason, “collapse”
is enclosed in quotes.
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4.7 More Dirac notation — Introducing bras and bra-c-kets

Given a Hilbert space H, let
H* = Hom(H,C)

denote the set of all linear maps from # to C. Then H* is actually a Hilbert
space, called the dual Hilbert space of H, with scalar product and vector
sum defined by:

A-H(P))  =X(f(7))), forall € Candforall f € H*

(fi+ f2) (1?) = f1 (1)) + f2 (|9)) , forallfs, f» € H*

We call the elements of H* bra’s, and denote them as:
(label|
We can now define a bilinear map
H* xH—C
by
((#1]) (1¥2)) € C

since bra (¥;| is a complex valued function of kets. We denote this product
more simply as
(01 | )

and call it the Bra-c-Ket (or bracket) of bra (¥;| and ket |¥,).

Finally, the bracket induces a dual correspondence® between H and H*,

ie.,
%) &5 (|

4.8 Activities in the quantum world — Unitary transformations

All “activities” in the quantum world are linear transformations
U:H—H

from the Hilbert space H into itself, called unitary transformations (or,
unitary operators). If we think of linear transformations as matrices, then

5 This is true for finite dimensional Hilbert spaces. It is more subtle for infinite
dimensional Hilbert spaces.



Quantum Cryptography 155

a unitary transformation U is a square matrix of complex numbers such
that o o
UU=I1I1=U0U

=T
where U~ denotes the matrix obtained from U by conjugating all its entries

and then transposing the matrix. We denote T by Ut, and refer to it as
the adjoint of U.

Thus, an “activity” in the quantum world would be, for example, a unitary
transformation U that carries a state ket |¥) at time ¢ = 0 to a state ket
|#1) at time ¢t =1, i.e.,

U : %) — |P1)
4.9 Observables in quantum mechanics — Hermitian operators

In quantum mechanics, what does an observer observe?
All observables in the quantum world are linear transformations
O:H—H

from the Hilbert space H into itself, called Hermitian operators (or, self-
adjoint operators). If we think of linear transformations as matrices, then
a Hermitian operator O is a square matrix of complex numbers such that

[NG)

where O again denotes the matrix obtained from O by conjugating all its

. . . AT
entries, and then transposing the matrix. As before, we denote O by Of,
and refer to it as the adjoint of O.

Let |p;) denote the eigenvectors, called eigenkets, of an observable O,
and let a; denote the corresponding eigenvalue, i.e.,

O :|pi) = ai|p:)

In the cases we consider in this talk, the eigenkets form an othonormal basis
of the underlying Hilbert space H.

Finally, we can answer our original question, i.e.,

What does an observer observe?

Let us suppose that we have a physical device M that is so constructed
that it measures an observable O, and that we wish to use M to measure
a quantum system which just happens to be in a quantum state |¥). We
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assume |¥) is a ket of unit length. The quantum state |¥) can be written as
a linear combination of the eigenkets of O, i.e.,

) = ailes)

When we use the device M to measure |¥), we observe the eigenvalue a; with
probability p; = |az~|2, and in addition, after the measurement the quantum
system has “collapsed” into the state |¢;). Thus, the outcome of a measure-
ment is usually random, and usually has a lasting impact on the state of the
quantum system.

We can use Dirac notation to write down an expression for the average
observed value. Namely, the averaged observed value is given by the
expression (¥| (O |¥)), which is written my succinctly as (¥| O |¥), or simply
as (0).

4.10 The Heisenberg uncertainty principle — A limitation on
what we can actually observe

There is, surprisingly enough, a limitation of what can be observed in quan-
tum mechanics.

Two observables A and B are said to be compatible if they commute,
ie., if
AB = BA.

Otherwise, they are said to be incompatible.
Let [A, B], called the commutator of A and B, denote the expression
[A,B] = AB - BA

In this notation, two operators A and B are compatible if and only if [4, B] =
0.

Finally, let
ANA=A—(A)

The following principle is one expression of how quantum mechanics places
limits on what can be observed:

Heisenberg’s Uncertainty Principle’

((a?) (aB?) > 1 A B

7 We have assumed units have been chosen such that % = 1.
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where <(AA)2> = (@] (AA)® |P) is the standard deviation of the observed

eigenvalue, written in Dirac notation. It is a measure of the uncertainty in A.

This if A and B are incompatible, i.e., do not commute, then, by mea-
suring A more precisely, we are forced to measure B less precisely, and vice
versa. We can not simultaneously measure both A and B to to unlimited
precision. Measurement of A somehow has an impact on the measurement of
B.

4.11 Young’s two slit experiment — An example of Heisenberg’s
uncertainty principle

For the purpose of illustrating Heisenberg’s Uncertainty Principle, Professor
Dirac wheeled out into the classroom a device to demonstrate Young’s two
slit experiment. The device consisted of an electron gun which spewed out
electrons in the direction of a wall with two slits. The electrons that managed
to pass through the two slits then impacted on a backstop coated with a
phosphorescent material that produced light when hit by an electron. The
intensity pattern of light and shadows that was produced on the backdrop
was projected onto the classroom screen for all to view®.

Professor Dirac proceeded to demonstrate what the device could do. He
began by covering slit 2, allowing the incoming electrons to pass only through
slit 1. The resulting intensity pattern appearing on the projection screen was
a bell shaped curve, i.e., the Guassian distribution, as illustrated by curve
P, as drawn in Fig. 3a. When the professor covered the slit 1 instead of slit
2, exactly the same patterned appeared, but only this time shifted a short
distance to the right, as illustrated by the curve P, shown in Fig. 3a.

Figure 3a. Young’s two slit experiment with one slit closed.

8 The original Young’s two slit experiment used photons rather than electrons.
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Professor Dirac then asked the students in the class what pattern they
thought would appear if he uncovered both of the slits. Most of the class
responded by saying that the resulting light pattern would simply be the sum
of the two patterns, i.e., the bell shaped curve P, + Ps, as illustrated in Fig.
3c. Most of the class was convinced that the two classical probability distri-
butions would simply add, as many of them had learned in the probability
course Prob 323.

The remainder of the class stated quite emphatically that they did not
care what happened. What was being illustrated was far from an applied
area, and hence not relevant to their real world. Or so they thought ...

Professor Dirac smiled, and then proceeded to uncover both slits. What
appeared on the screen to almost everyone’s surprise was not the pattern
with the bell shape P, + P,. It was instead a light pattern with a wavy bell
shaped curve, as illustrated by the curve Pj, in Fig. 3b.

Figure 3b. Young’s two slit experiment with both slits open.

Professor Dirac explained, “Something non-classical had occured. Unlike
classical probabilities, the quantum probabilities ( or more correctly stated,
the quantum amplitudes) had interferred with one another to produce an
interference pattern. In the dark areas, one finds destructive interference. In
the bright areas, one finds constructive interference. Something non-classical
is happening here.”

“Strangely enough, quantum mechanics is telling us that each electron is
actually passing through both slits simultaneously! It is as if each electron
were a wave and not a particle.”

“But what happens when we actually try to observe through which slit
each electron passes?”

Professr Dirac pulled out his trusty microscope® to observe which of the
two slits each electron passed through. As soon as he started making an
observation, the intereference pattern was transformed into the classical light

9 This is a most unusual microscope.
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pattern all had initially expected to see, i.e., the light pattern of the bell
shaped curve P; + P», as shown in Fig. 3c. When observed, the electrons act
as particles and not as waves!

Figure 3c. Young’s 2 slit experiment when the slit through which the
electron passes is determined by observation.

After a brief pause, Professor Dirac said, “This is actually an example of
the Heisenberg Uncertainty Principle. We can see this as follows:”

“In the experiment, we are effectively observing two incompatible observ-
ables, the position operator X (i.e., which slit each electron passes through)
and the momentum operator P (i.e., which includes the direction at which
each electron leaves the slitted wall.) When we observe the momentum P,
the interference pattern is present. But when we observe the position X, the
interference pattern vanishes.”

5 The Beginnings of Quantum Cryptography

5.1 Alice has an idea

After class on her way back to her dorm room, Alice began once again to
ruminate over her dilemma in regard to Bob and Eve.

“If only her message to Bob were like the interference pattern in Young’s
two slit experiment. Then, if the prying Eve were to observe which of the
two slits the electron emerged from (i.e., ‘listen in’), Bob would immediately
know of her presence. For, if Eve were to make an observation, the pattern
on the screen would immediately change from the beautiful wavy interference
pattern to the dull ugly guassian distribution pattern.”
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Figure 4a. Bob sees an interference pattern when Eve is not eavesdropping.

Figure 4b. Bob sees no interference pattern when Eve is eavesdropping.

“This idea has possibilities. Maybe quantum mechanics is relevant after-
alll”

Her mind began to race. “Perhaps something like Young’s two slit ex-
periment could be used to communicate random key K? Then Bob could
tell which key had been compromised by an intruder such as Eve. But most
importantly, he could also surmise which key had not been compromised.
Bob could then communicate to me over the phone (or even over any public
channel available also to Eve) whether or not the key had been compromised,
without, of course, revealing the key itself. Any uncompromised key could
then be employed to send Bob a message by using the one-time-pad that was
mentioned yesterday in Crypto 351.”

“The beauty of this approach is that the one-time-pad is perfectly secure.
There is no way whatsoever that Eve could get any information about our
conversation. This would be true even if I used the campus radio station to
send my encrypted message.”

“The evil Eveis foiled! Eureka! Contrary to student conventional wisdom,
both cryptography and quantum mechanics are relevant to the real world!”

“I have discovered a new kind of secrecy, i.e., quantum secrecy, which
has built-in detection of eavesdropping based on the principles of quantum
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mechanics. I can hardly wait to tell Professor Dirac. She ran immediately
to his office.”

After listening to Alice’s excited impromptu, and at times disjointed,
explanation, Professor Dirac suggested that she present her newly found dis-
coveries in his next class. Alice happily agreed to do so.

5.2 Quantum secrecy — The BB84 protocol without noise

Two days later, after two sleepless but productive nights of work, Alice was
prepared for her presentation. She walked in the classroom for Quantum 317
carrying an overhead projector and a sizable bundle of transparencies.

After Professor Dirac had turned the large lecture hall over to her, she
began as follows:

“Let us suppose that I (Alice) would like to transmit a secret key K to
Bob. Let us also suppose that someone by the name of Eve intends to make
every effort to eavesdrop on the transmission and learn the secret key.”

Wouldn’t you know it. Eve just so happens to be sitting in the classroom!

“My objective today is to show you how the principles of quantum me-
chanics can be used to build a cryptographic communication system in such
a way that the system detects if Eve is eavesdropping, and which also gives
a guarantee of no intrusion if Eve is not eavesdropping.”

“A diagrammatic outline of the system I'm about to describe is shown
on the screen. (Please refer to Fig. 5.) Please note that the system consists
of two communication channels. One is a non-classical one-way quantum
communication channel, which Iwill soon describe. The other is an ordinary
run-of the-mill classical two-way public channel, such as a two way radio
communication system. I emphasize that this classical two-way channel is
public, and open to whomever would like to listen in. For the time being, I
will assume that the two-way public channel is noise free.”
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Figure 5. A quantum cryptographic communication system.

“I will now describe how the polarzation states of the photon can be used
to construct a quantum one-way communication channel'.”

“From Professor Dirac’s last lecture, we know that the polarization states
of a photon lie in a two dimensional Hilbert space H. For this space, there
are many othonormal bases. We will use only two for our quantum channel.”

“The first is the basis consisting of the vertical and horizontal polarization
states, i.e, the kets |]) and |+>), respectively. We will refer to this orthonormal
basis as the vertical/horizontal (V/H) basis, and denote this basis with
the symbol ‘H.” ”

“The second orthonormal basis consists of the polarization states | /) and
|\.), which correspond to polarizations directions formed respectively by 45%
clockwise and counter-clockwise rotations off from the vertical. We call this
the oblique basis, and denote this basis with the symbol ‘X.” ”

“If T (Alice) decide to use the VH basis H on the quantum channel, then
I will use the following quantum alphabet:

“17’ — |$)
((0,7 — |(_))

In other words, if T use this quantum alphabet on the quantum channel, T
will transmit a “1” to Bob simply by sending a photon in the polarization
state [})., and I will transmit a “0” by sending a photon in the polarization
state |<).”

“On the other hand, if T (Alice) decide to use the oblique basis X, then I
will use the following quantum alphabet:

“17) — |/l)

“07) — |)\)

sending a “1” as a photon in the polarization state | ), and sending a “0”
as a photon in the polarization state |\ ).”

“I have chosen these two bases because the Heisenberg Uncertainty Prin-
ciple implies that observations with respect to the H basis are incompatible
with observations with respect to the X basis. We will soon see how this
incompatiblity can be translated into intrusion detection.”

10 Any two dimensional quantum system such as a spin % particle could be used.
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Fig. 6a. The BB84 protocol without Eve present (No noise)

Alice and Bob now communicate with one another using a two stage
protocol, called the BB84 protocol[l]. (Please refer to Figs. 6a and 6b.)

In stage 1, Alice creates a random sequence of bits, which she sends to
Bob over the quantum channel using the following protocol:

Stage 1 protocol: Communication over a quantum channel

Step 1. Alice flips a fair coin to generate a random sequence S 4;ice Of zeroes and
ones. This sequence will be used to construct a secret key shared only
by Alice and Bob.

Step 2. For each bit of the random sequence, Alice flips a fair coin again to choose
at random one of the two quantum alphabets. She then transmits the
bit as a polarized photon according to the chosen alphabet.

Step 3. Each time Bob receives a photon sent by Alice, he has no way of knowing
which quantum alphabet was chosen by Alice. So he simply uses the
flip of a fair coin to select one of the two alphabets and makes his mea-
surement accordingly. Half of the time he will be lucky and choose the
same quantum alphabet as Eve. In this case, the bit resulting from his
measurement will agree with the bit sent by alice. However, the other
half of the time he will be unlucky and choose the alphabet not used by
Alice. In this case, the bit reulting from his measurement will agree with
the bit sent by Alice only 50% of the time. After all these measurements,
Bob now has in hand a binary sequence Spgp.

Alice and Bob now proceed to communicate over the public two-way chan-
nel using the following stage 2 protocol:

Stage 2 protocol: Communication over a public channel
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Phase 1.

Step 1.

Step 2.

Step 3.

Phase 2.
Step 1.

S. J. Lomonaco

Raw key extraction

Over the public channel, Bob communicates to Alice which quantum
alphabet he used for each of his measurements.

In response, Alice communicates to Bob over the public channel which of
his measurements were made with the correct alphabet.

Alice and Bob then delete all bits for which they used incompatible quan-
tum alphabets to produce their resulting raw keys. If Eve has not
eavesdropped, then their resulting raw keys wil be the same. If Eve has
eavedropped, their resulting raw keys will not be in total agreement.
FError estimation

Over the public channel, Alice and Bob compare small portions of their
raw keys to estimate the error-rate R, and then delete the disclosed bits
from their raw keys to produce their tentative final keys. If through
their public disclosures, Alice and Bob find no errors (i.e., R = 0), then
they know that Eve was not eavesdropping and that their tentative keys
must be the same final key. If they discover at least one error during
their public disclosures (i.e., R > 0), then they know that Eve has been
eavesdropping. In this case, they discard their tentative final keys and
start all over again!?.

Alice|H|X X X H|IX |H|X |H|X
NN
110 (0 {1100 (1|0 |1

Eve |XH|H |X BB |X|X B |H
110 |1 111 (0 ({110 |0

Bob XX |H X H|X |H |H B |8
1(0 (111 1{1]1 |10 |0 |0
¥*x 0 1 111 %x 0 =

E E

Fig 6b. The BB84 with Eve present (No noise)

1 If Eve were to intercept each qubit received from Alice, to measure it, and then
to masqurade as Alice by sending on to Bob a qubit in the state she measured,
then Eve would be introducing a 25% error rate in Bob’s raw key. This method
of eavesdropping is called opaque eavesdropping. We will discuss this eaves-
dropping strategy as well as others at a later time.
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5.3 Quantum secrecy — The BB84 protocol with noise

Alice continues her presentation by addressing the issue of noise.

“So far we have assumed that that our cryptographic communication
system is noise free. But every realistic communication system has noise
present. Consequently, we now need to modify our quantum protocol to
allow for the presence of noise.”

“We must assume that Bob’s raw key is noisy. Since Bob can not distin-
quish between errors caused by noise and by those caused by Eve’s intrusion,
the only practical working assumption he can adopt is that all errors are
caused by Eve’s eavesdropping. Under this working assumption, Eve is al-
ways assumed to have some information about bits transmitted from Alice
to Bob. Thus, raw key is always only partially secret.”

“What is needed is a method to distill a smaller secret key from a larger
partially secret key. We call this privacy amplification. We will now create
from the old protocol a new protocol that allows for the presence of noise, a
protocol that includes privacy amplification.”

Stage 1 protocol: Communication over a quantum channel

This stage is exactly the same as before, except that errors are now also
induced by noise.

Stage 2 protocol: Communication over a public channel

Phase 1 protocol: Raw key extraction.

This phase is exactly the same as in the noise-free protocol, except that
Alice and Bob also delete those bit locations at which Bob should have re-
ceived but did not receive a bit. Such “non-receptions” could be caused by
Eve’s intrusion or by dark counts in Bob’s detection device. The location of
dark counts are communicated by Bob to Alice over the public channel.

Phase 2 protocol: Error estimation.

Over the public channel, Alice and Bob compare small portions of their
raw keys to estimate the error-rate R, and then delete the disclosed bits from
their raw key to produce their tentative final keys. If R exceeds a certain
threshold Rps4., then privacy amplification is not possible If so, Alice and
Bob return to stage 1 to start over. On the other hand, if R < Rps44, then
Alice and Bob proceed to phase 3.

Phase 3 protocol: Extraction of reconciled key!2.

12 There are more efficient and elegant procedures than the procedure descibed in
Stage 2 Phase 3. See [9] for references.
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In this phase!®, Alice and Bob remove all errors from what remains of
raw key to produce a common error-free key, called reconciled key.

Step 1. Alice and Bob publically agree upon a random permutation, and apply
it to what remains of their respective raw keys. Next Alice and Bob
partition the remnant raw key into blocks of length ¢, where the length
£ is chosen so that blocks of that length are unlikely to have more than
one error. For each of these blocks, Alice and Bob publically compare
overall parity checks, making sure each time to discard the last bit of
each compared block. Each time an overall parity check does not agree,
Alice and Bob initiate a binary search for the error, i.e., bisecting the
block into two subblocks, publically comparing the parities for each of
these subblocks, discarding the right most bit of each subblock. They
continue their bisective search on the subblock for which their parities
are not in agreement. This bisective search continues until the erroneous
bit is located and deleted. They then continue to the next ¢-block.
This step is repeated, i.e., a random permutation is chosen, a remnant
raw key is partitioned into blocks of length £, parities are compared, etc..
This is done until it becomes inefficient to continue in this fashion.

Step 2. Alice and Bob publically select randomly chosen subsets of remnant raw
key, publically compare parities, each time discarding an agreed upon bit
from their chosen key sample. If a parity should not agree, they employ
the binary search strategy of Step 1 to locate and delete the error.

— Finally, when, for some fixed number N of consecutive repetions of Step
2, no error is found, Alice and Bob assume that to a high probability,
the remnant raw key is without error. Alice and Bob now rename the
remnant raw key reconciled key, and proceed to the next phase.

Phase 4: Privacy amplification

Alice and Bob now have a common reconciled key which they know is
only partially secret from Eve. They now begin the process of privacy
amplification, which is the extraction of a secret key from a partially secret
one.

Step 1. Alice and Bob compute from the error-rate R obtained in Phase 2 of
Stage 2 an upper bound k of the number of bits of reconciled key known
by Eve.

13 The procedure given in Stage 2 Phase 3 is only one of many different possible
procedures. In fact, there are much more efficient and elegant procedures than
the one described herein.
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Let n denote the number of bits in reconciled key, and let s be a security
parameter to be adjusted as required.

Step 2. Alice and Bob publically select n — k — s random subsets of reconciled
key, without revealing their contents. The undisclosed parities of these
subsets become the final secret key.

It can be shown that Eve’s average information about the final secret key
is less than 27%/In 2 bits.

The bell rang, indicating the end of the period. The entire class with
two exceptions, immediately raced out of the lecture hall, almost knocking
Alice down as they passed by. Professor Dirac thanked Alice for an excellent
presentation.

As Alice left, she saw Eve in one of the dark recesses of the large lecture
hall with her head resting on the palm of her hand as if in deep thought. She
had a frown on her face. Alice left with a broad smile on her face.

6 The B92 quantum cryptographic protocol
In the next class, Alice continued her last presentation.

In thinking about about the BB84 protocol this weekend, I was surprised
to find that it actually is possible to build a different quantum protocol that
uses only one quantum alphabet instead of two. I’ll call this new quantum
protocol B92.”

“As before, we will describe the protocol in terms of the polarization states
of the photon!*.”

“As our quantum alphabet, we choose
“1’7 — |0+>
“077 — |0_)
where |61) and |#_) denote respectively the polarization states of a photon
in linearly polarized at angles 8 and —6 with respect to the vertical, where
0<o< 3?7

4 Any two dimensional quantum system such as a spin % particle could be used.
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“We assume that Bob’s quantum receiver, called a POVM receiver [3],
is base on the following observables!5:

_ 1= o)
Aoy = T @0y

1 — |04)(0
Ao = T30 '<91’\<9_+>' ’

A =1-Ap, —Ay_
where Ay, is the observable for (6 ), Ay_ the observable for |§_) and A- is
the observables for inconclusive receptions.”
The B92 quantum protocol is as follows:

Stage 1 protocol. Communication over a quantum channel.

Step 1. The same as in the BB84 protocol. Alice flips a fair coin to
generate a random sequence S ;.. Of zeroes and ones. This sequence will be
used to construct a secret key shared only by Alice and Bob.

Step 2. The same as in the previous protocol, except this time Alice uses
only one alphabet, the one above. So she does not have to flip a coin to
choose an alphabet.

Step 3. Bob uses his POVM receiver to measure photons received from
Alice.

Stage 2. Communication in four phases over a public channel.

This stage is the same as in the BB84 protocol, except that in phase 1,
Bob publically informs Alice as to which time slots he received non-erasures.
The bits in these time slots become Alice’s and Bob’s raw keys.

Alice completed her discussion of the B92 protocol with,

“Eve’s presence is again detected by an unusual error rate in Bob’s raw
key. Moreover, for some but not all eavesdropping strategies, Eve can also
be detected by an unusual erasure rate for Bob.”

Alice then stepped down from the lecture hall podium and returned to
her seat.

5 The observables Ag +> A¢_, and A, form a postive operator value measure
(POVM).



Quantum Cryptography 169

7 There are many other quantum cryptographic
protocols

Before continuing our story about Alice, Bob, and Eve, there are a few points
that need to be made:

There are many other quantum cryptographic protocols. Quantun pro-
tocols showing the greatest promise for security are those based on EPR
pairs. Unfortunately, the technology for implementing such protocols is not
yet available. For references on various protocols, please refer to [9].

8 A comparison of quantum cryptography with
classical and public key cryptography

Quantum cryptography’s unique contribution is that it provides a mecha-
nism for eavesdropping detection. This is an entirely new contribution to
cryptography. On the other hand, one of the main drawbacks of quantum
cryptography is that it provides no mechanism for authentication, i.e., for
detecting whether or not Alice and Bob are actually communicating with
each other, and not with an intermediade Eve masquarading as each of them.
Thus, the Catch 22 problem is not solved by quantum cryptography. Before
Alice and Bob can begin their quantum protocol, they first need to send an
authentication key over a secure channel.

Thus, quantum cryptography’s unique contribution is to provide a means
of expanding existing secure key. Quantum protocols are secure key ex-
panders. First a small authentication key is exchanged over a secure chan-
nel. Then that key can be amplified to an arbitrary length through quantum

cryptography.

Check ListforQ.Crypto. Sys.
B Catch22Solved? YES & NO
M Athentication? NO
EIntrusionDetection? YES

9 Eavesdropping strategies and counter measures

Now let us resume our story:
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Not a split second after Alice had seated herself, Eve raised her hand and
asked for permission to make her own presentation to the class. Professor
Dirac yielded the podium, not knowing exactly what to expect, but nonethe-
less elated that his usually phlegmatic class was beginning to show signs of
something he had not seen for some time, class participation and initiative.

Eve began, “In the last two classes, Alice has suggested that I (Eve) might
be eager to eavesdrop on her conversations with my QcloseQ friend OBobQ.
I assure you that that simply is in no way true.”

“But such innuendo really doesn’t bother me.”

9.1 Opaque eavesdropping

“What really irks me is that Alice suggests that, if I were to eavesdrop (which
never would happen), then I (Eve) would use opaque eavesdropping. By
opaque eavesdropping, I mean that I (Eve) would intercept and observe
(measure) Alice’s photons, and then masquerade as Alice by sending photons
in the states I had measured on to Bob.”

“I assure you that, if I ever wanted to eavesdrop (which would never be
the case), I would not use such a simplistic form of intrusion.”

Eve really wanted to use the adjective ‘stupid’ instead of ‘simplistic,” but
restrained herself.

Eve then said indignantly, “If I ever were to eavesdrop (which will never
happen), I would use more sophisticated, more intellegent, and yes ... , more
deliciously devious schemes!”

9.2 Translucent eavesdropping without entanglement

“I (Eve) could for example make my probe interact unitarily with the infor-
mation carrier from Alice, and then let it proceed on to Bob in a slightly
modified state. For B92 protocol, the interaction is given by:

16:) 1) — U 104) [0) = |6 [v+)
16-) 1) — U 16-) [) = |67 ) 1)
where |1) and |11) denote respectively the state of my (Eve’s) probe before

and after the interaction and where |61) and |6’.) denote respectively the
state of Alice’s photon before and after the interaction.”
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9.3 Translucent eavesdropping with entanglement

“Another approach, one of the most sophisticated, would be for me (EVE)
to entangle my probe with the information carrier from Alice, and then let
it proceed on to Bob. For the B92 protocol, the interaction is given by:

104) [9) == U104 [9) = a |64 ) [9+) + b |67 ) [

6-) 1) —> U 10} [9) = [0 ) [¥-) +a 6" ) [v-)

?

where |1) and |11) denote respectively the state of my (Eve’s) probe before
and after the entanglement and where |61) and |6'i> denote respectively the
state of Alice’s photon before and after the entanglement.”

9.4 Eavesdropping based on implementation weaknesses

“On the other hand, I could also take advantage of implementation weak-
nesses.”

“One of the great difficulties with quantum cryptography is that tech-
nology has not quite caught up with it. Many devices, such as lasers, do
not emit a single quantum, but many quanta at each emission time. The
implementation of quantum protocols really requires single-quantum emit-
ters. Such single-quantum emitters are now under development. Until such
emitters become available, the quantum protocols can only be approximately
implemented.”

“For example, for many optical implementations of quantum protocols,
the laser intensity is turned down to that of ll—o—th the intensity of a photon.
Thus, if anything is emitted at all (one chance out of 10), then the probability
that it is a single photon is extremely high. However, when there is an
emission, then there is a probability of ﬁ that more than one photon is
emitted. So it is conceivable (but not yet on the technological horizon)
that I (Eve) could build an eavesdropping device that would detect multiple
photon transmissions, and, when so detected, would divert one of the photons
for measurement. In this way, I (Eve) could conceivably read 2% of Alice’s
transmission without being detected. One way of countering this type of

threat is to allow for it during privacy amplification.”

“Finally, depending on Alice’s implementation, it might also be possible
for me (Eve) to gain information simply by observing Alice’s transmitter
without measuring its output. This may or may not be far fetched.”

Eve then returned to her seat. Her face was lit up with a sinister grin of
satisfaction.
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10 Implementations

Before continuing our story, we should mention that quantum cryptographic
protocols have been implemented over more than 30 kilometers of fiber op-
tic cable, [16],[17],[18], [19], and most amazingly, over 100 meters of free
space[7],[6] in the presence of ambient sunlight. There have been a number
of ambitious proposals to demonstrate the feasibility of quantum cryptogra-
phy in earth to satelite communications. And as mentioned earlier, there is
a clear need for the development of single-quantum emitting devices.

11 Conclusion

Much remains to be done. There has been some work on the development
of multiple-user quantum cryptographic protocols for communication net-
works[20]. There also have been at least two independent claims of the proof
of ultimate security, i.e., a proof that quantum cryptographic protocols are
impervious to all possible eavesdropping strategies [8], [11], [12], [13].

Our story continues:

As Alice sat in her seat, she happened to spy in the corner of her eye
an abrupt change in Eve’s demeanor. Eve suddenly became agitated, lit up
with excitement, and started to frantically write on her notepad. The bell
rang. Eve immediately jumped up, and raced out of the lecture hall, being
pushed along by the usual frantic mass of students, equally eager to get out
of the classroom.

As Eve whisked past, Alice caught just a fleeting glimpse of Eve’s notepad.
All Alice was able to discern in that brief moment was an illegible jumble of
equations and ... yes, ... the acronym “POVM.”

Alice thought to herself, “Oh, well! ... Forget it! I think I'll just visit Bob
this weekend.”

THE ENDs

6 Any resemblance of the characters in this manuscript to individuals living or
dead is purely coincidental.
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The Rigidity Theorems
of Hamada and Ohmori, Revisited
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Abstract Let A be a (0, 1)-matrix of size b by v with b > v. Suppose that all rows
(columns) of A are nonzero and distinct. We show that the rank of A over a field
of characteristic 2 satisfies

ranka(A) > log, (v + 1)

with equality if and only if A is the incidence matrix of a point-hyperplane Hadamard
design. This generalizes a rigidity theorem of Hamada and Ohmori, who assumed
that v + 1 is a power of 2 and that A is already known to be the incidence matrix
of a Hadamard design. Our results follow from a generalization of a rank inequality
of Wallis.

1 Introduction and Definitions

In this paper we observe that some inequalities in the literature on the ranks
of incidence matrices of Hadamard designs apply to a wider class of matrices
and that the proofs are somewhat simpler in the more general context. In
particular, we show that an analysis of the case of equality of an extension
of a rank inequality of Wallis yields generalizations of two rigidity theorems
of Hamada and Ohmori.

Let A be a rectangular matrix with entries in a field F. Let rankg(A)
denote the rank of A over F. The p-rank of A is the rank of A over the field
Z, of integers modulo p and is denoted by

rank,(A4).

Let us say that the matrix A is column-projective over F' provided its
columns are nonzero and no column is a multiple of another column. Also, A
is projective provided both A and its transpose AT are column-projective.
Suppose that A is (0,1)-matrix, that is, a matrix with each element in the
set {0,1}. Then A is column-projective if and only if its columns are distinct
and nonzero; this property is independent of the field F.

Combinatorial interest in p-ranks stems in part from their use in the study
of linear codes associated with incidence matrices of block designs. Let F
denote a field with ¢ elements, where ¢ is a power of the prime p. Let A
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be the incidence matrix of a square balanced incomplete block design with
parameters (v, k, ). Thus A is a (0, 1)-matrix of size v by v that satisfies

ATA=(k—-NI+X and AJ=kJ,

where J denotes an all 1’s matrix of an appropriate size. The codewords of the
g-ary linear code C;(A) generated by A are the linear combinations over Fy
of the row vectors of A. Clearly the length and dimension of C,(A) are v and
rankp(A), respectively. One may show that C4(A) corrects |k/2A] errors [2].
In this context it is natural to assume that A is (column)-projective.

2 Two Rigidity Theorems

We now state our generalizations of two rigidity theorems of Hamada and
Ohmori. The proofs appear in § 4. The point-hyperplane design D, in the
projective geometry PG(s — 1,2) and its complement D, play special roles
in these theorems. We recall some basic properties of these designs in § 3.

Theorem 1. Let A be a projective (0,1)-matrix of size b by v with b > v.
Then

ranks(A) > log, (v + 1) (1)

with equality if and only if b = v and A is an incidence matrix of the com-
plement D, of the point-hyperplane design, where s = logy (v + 1).

Remark. Hamada and Ohmori [1] established Theorem 1 under much
stronger hypotheses; they assumed that A is the incidence matrix of a square
block design with parameters of the form

(U7k7 /\) = (25 - 1728_17 25_2)7 (2)

that is, a Hadamard design. Their proofs seemingly depend on deeper
results on the ranks of incidence matrices of block designs associated with
projective geometries. We remove these apparent dependencies and show that
a specific design-theoretic structure is forced when equality holds in (1). This
characterization of a combinatorial structure from the value of a single para-
meter is the hallmark of a rigidity theorem.

Theorem 2. Let A be a (0,1)-matrix of size b by v with b > v. Suppose
that J — A is projective, b is odd, and each row and column of A has an odd
number of 1’s. Then

ranks(A) > log,(v+1) + 1 (3)

with equality if and only if b= v and A is an incidence matrix of the point-
hyperplane design Dg, where s = log, (v + 1).

Remark. Hamada and Ohmori [1] established Theorem 2 under the stronger
hypothesis that A is the incidence matrix of the complement of a Hadamard
design with parameters of the form (2).
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3 A Rank Inequality

Theorem 3. Let A be a column-projective (0,1)-matrix with v columns.
Then over any field F

rankp(A) > log, (v + 1). (4)

Equality holds if and only if A has a column-projective submatrix of size s
by 2° — 1, where s = rankp(A).

Remark. Wallis [3] used an elaborate inductive scheme of row and col-
umn operations to prove an inequality equivalent to (4) under much stronger
hypotheses; he assumed that A is a (0, 1)-matrix of size v by v that is non-
singular over the field of rationals. (Also see his book [4], pp 168-170.) More-
over, he did not characterize equality. Our direct proof is based on a counting
argument and leads to the stated characterization of equality, which in turn
leads to proofs of Theorems 1 and 2.

Proof. Let s = rankp(A). Without loss of generality the leading s by s sub-
matrix of A has rank s. Then two columns of A are distinct and nonzero if
and only if they are distinct and nonzero in their leading s positions. There
are exactly 2° — 1 nonzero column vectors of 0’s and 1’s with s components.
Thus v < 2% — 1. This proves (4) with the stated characterization of equality.

O

4 The Extremal Designs

In this section we recall properties of the extremal designs that arise in Theo-
rems 1 and 2. Let D, denote the complement of the point-hyperplane design
in the projective geometry PG(s — 1,2). Let A, be the incidence matrix of
D,. The columns of A, correspond to the 2° — 1 nonzero vectors (points)
in an s-dimensional vector space over Zs, while the rows correspond to the
2% — 1 complements of the (s — 1)-dimensional subspaces (blocks). Contain-
ment defines incidence in D,. Without loss of generality
A= |2

where the leading s by s submatrix Ny is nonsingular. The columns of the
submatrix [N4|M] consist of all 2° — 1 nonzero linear combinations of the
columns of N,. Now the symmetric difference of two blocks of D, is also a
block; this is a defining property of the design Dj. It follows that the rows
of A, are the nonzero linear combinations of the rows of [N;|M]. One may
verify that A, is a (0, 1)-matrix of size 2° — 1 by 2° — 1 that satisfies

ATA=2"2(I+J) and AJ=2""1]
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and thus that D, is indeed a square block design with parameters
(v,k,\) = (2° —1,2571,2572),

Clearly the incidence matrix A, is determined by the parameter s up to row
and column permutations. Also,

ranks(As) = s.
The complementary design D, has incidence matrix J — A, and parameters
(v,k, ) = (2° —1,2°71 — 1,272 —1).

Both D, and Dy satisfy v = 4(k — A) — 1 and hence are Hadamard designs.

5 Proofs of Theorems 1 and 2

Proof of Theorem 1. Apply Theorem 3 with F' = Z5 to deduce that
ranks (A) > log,(v + 1). Suppose that equality holds, say, v = 2° — 1, where
s =ranks(A). Then A has a column-projective submatrix of size s by 25 — 1.
The projectivity of A and the inequality b > v imply that b = v = 2% —1, and
thus the rows and columns of A are determined up to permutations, as in the
discussion of the matrix A, in § 4; the characterization of equality follows.

O

Theorem 2 follows immediately from Theorem 1 and the following lemma.

Lemma. Let A be a (0,1)-matrix of size b by v. Suppose that b is odd and
that each row and column of A has an odd number of 1’s. Then

ranks(A) =ranks(J — 4) + 1.

Proof. The hypotheses imply that we may transform A as follows without
altering its 2-rank: Append a column of 1’s, and then append a row of 1’s to
the resulting matrix to obtain a bordering of A of size b+1 by v+ 1. Now add
column v + 1 to each of the first v columns, and then subtract row b+ 1 from
each of the first b rows. The resulting matrix is the direct sum (J + A) & [1],
which clearly has 2-rank equal to ranks(J — A) + 1. O

6 The Smith Normal Form

Let A be an integral matrix of size b by v and rank r over the field of rationals.
Then A may be transformed by elementary row and column operations to a
diagonal matrix

Sa = diag[as,as,... ,a.,0,...,0],
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known as the Smith normal form of A, with the property that a; divides
ajy1 for i =1,... ,r — 1. The diagonal elements ai,...,a,, 0,...,0 are the
invariant factors of A and are uniquely determined up to sign. The p-rank
of A is related to the invariant factors ay,... ,a, in a simple manner:

rank,(A) = max{i : p does not divide a;}. (5)

Our generalization in Theorem 3 of a result of Wallis leads directly to the
following two theorems, which extend his work in [3], [4]. The first is an
immediate consequence of (5) and Theorem 3.

Theorem 4. The invariant factors of a column-projective (0,1)-matrix A
with v columns satisfy a1 = --- = a5 = 1 for some s > log,(v + 1).

Theorem 5. Let H be a (1, —1)-matrix with v columns, none of which is a
multiple of any other. Then for some s > log,(v) the Smith normal form of
H is of the form

s

. ——
Sg =diag[l,2,...,2,%,...,%.

Proof. We may multiply suitable rows and columns of H by —1 so that all
elements in the first row and column are 1. Now subtract column 1 from all
other columns, and then subtract row 1 from all other rows to transform H
to a matrix [1] @ (24), where A is a (0,1)-matrix with v — 1 columns. The
hypothesis on the columns of H implies that A is a column-projective, and
the result follows from Theorem 4. O
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Abstract. Let K/F, be an elliptic function field. For every natural number n we
determine the number of prime divisors of degree n of K/E, which lie in a given
divisor class of K.

1 Introduction

If K is a number field it is well known that there exist infinitely many prime
divisors which belong to a fixed divisor class and that the (Dirichlet-)density
of the set of such prime divisors is 1/h where h is the class number of K [6,
89]. The proof of this theorem is similar to the proof of the theorem on
the number of primes in an arithmetic progression and proceeds roughly
as follows: One first separates the prime divisors in the different classes by
the characters of the class group and uses then orthogonality relations of
the characters together with the non-vanishing of the L-series at 1 (which
constitutes the deep part of the theorem). In fact, one of the approaches to
class field theory is based on the investigation of the Dirichlet-density of the
set of prime divisors lying in a given (ray-) class [6].

If K is an algebraic function field over a finite field, then we might simi-
larly ask for the number of prime divisors belonging to a fixed class. In this
situation there exist only finitely many prime divisors in each class since there
are only finitely many integral divisors in each divisor class. However, as it
will be shown in this paper, the method outlined above will prove successful
in answering this question for the case K is an elliptic function field over the
finite field F,.

Let K/F, be an elliptic function field and C be a divisor class of K.
Denoting by a(C) the number of prime divisors in the class C, we are thus
asking for the exact value of a(C) for all C. If C is a class of degree one for
example, a(C) = 1, since no two distinct prime divisors of degree one are
equivalent in K.

The group C of divisor classes of K is the direct product of the group Cy
of divisor classes of degree zero and the infinite cyclic group generated by [@]
where [@Q] is the class of an arbitrary divisor @ of degree one [5, pp. 64]. Let
us define a,,(Ch) for a class Cy of degree zero and an integer n by

an,@(Co) := a(Co[Q]")-
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For the ease of notation we shall suppress the dependency of a,, g on @
and write simply a,, instead. We can thus equivalently ask for the value of
an(Co) for all n and all classes Co of degree zero (where we can of course
confine ourselves to the case n > 1). This question will be answered in this
paper (Theorem 6).

Our question can be translated to the language of elliptic curves: let E be
an elliptic curve over the field F,. Denote by E([;» ) the group of F;» -rational
points of E. Let o denote the Frobenius automorphism of ;- over F,. We
define the trace map by

Tr: E(Fp) - E(E)
Po YL, P

where )" denotes the summation in the group E(F,). Denote the restriction
of Tr on E(Fyn ) \Ug|n, a<nE(Fa ) by tr. Suppose that @ is the neutral element
of E(F;). Let C be an arbitrary class of degree 0 of the function field K of
E. As a consequence of the Riemann-Roch theorem there exists a unique
P € E(F,) such that C = [P — Q]. Then a,(C) is equal to the cardinality of
the fiber of tr at P.

The method for obtaining a formula for a,,(C) (which resembles Dirichlet’s
proof of the existence of infinitely many primes in an arithmetic progression)
can be described as follows: First we introduce appropriate characters of the
class group C of K/F, which will “separate” the prime divisors belonging to
different classes. Then the corresponding L-functions are constructed. Taking
logarithms of the L-functions and applying the inversion formula for the
characters we will be able to obtain a recursion formula for a, (C) (Section 2).
Next we apply the principle of inclusion and exclusion to solve the recursion
(Section 3). The final formula for a,(C) involves the numbers I of prime
divisors of degree d of K/F, for different d (or equivalently the numbers Ny of
divisors of degree one of KF,a /F,a) and the number of classes C’' some power
of which equal C (Theorem 6). The next sections deal with the problem
of determining extremal values of a, for given m. It turns out that a, is
constant if n and the number A of classes of degree 0 of K, are coprime
(Lemma 7). Further a,, attains its minimum value at #, the principal class
of K (Theorem 16). The techniques developed in Section 5 can be utilized to
prove several results on the distribution of the numbers a,,(Cy) for a fixed n.
We have confined ourselves to mention some of the more interesting results
(compare also Theorems 27 and 29).

The interest of the author in the numbers a,,(C) arouse in the context of
optimal bilinear algorithms for multiplication in finite fields. For instance, the
results of this paper have been used in [9] to construct an efficient randomized
algorithm which produces optimal bilinear algorithms for multiplication in
certain finite fields (see also [10]). An example in this direction is given in
the final section of the paper.
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2 L-Functions

Let K/F, be an elliptic function field. By C we denote the class group and
by Co the group of classes of degree 0 of K/F,. Let P be a prime divisor
of degree one of K/F, and denote by [P] its class. It is well known (see the
introduction) that C = Co x [P]%. Any character x of Cy can be extended to
a character ¥ of C by setting x(A) := x(A — deg(A)P). By abuse of notation
we shall denote x by x.

The L-function of a character x of C is defined by

L(s,x) == ) X(AN(A)~°
A

where the sum is over all integral divisors of K/F;, and N(A) denotes the
norm of the divisor A, i.e., N(4) = ¢4, L(s,x) has an Euler-product-
expansion [5, §24]

L(s,x) = [[@ = x(P)N(P)~*) (1)

P

where the product extends over all prime divisors of K /F,. If ¢ denotes the
principal character of C, we call L(s,¢) the {-function of K/F, and denote it

by ((s)-

For the rest of this paper we assume that Re(s) > 1 which implies that
the series encountered converge absolutely [5, Lecture 11].

While the (-function of an elliptic function field plays a great role in the
arithmetic theory, the L-functions attached to extensions of non-principal
characters of Co to C' are trivial:

Lemma 1. Let K/F, be an elliptic function field. Further let x be a non-
principal character of Co. Then L(s,x) = 1.

Proof. In [5, pp. 66, §25] it is proved that
(@=1L(s,x) = > x(C)g* ™.
CeCo

Now observe that dim(C) = 0 if C is not the principal class and dim(C) =1
if C' is the principal class. Since x is not the principal character, we have

Zceco x(C) = 0, hence
(g—1DL(s,x) =q—1
which yields the assertion. .

In order to get a formula for the numbers a,,(C) we first take the logarithm
of L(s, x) using formula (1):

log L(s,x) = >_ Y %

P m>1
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Taking into account that N (P) = ¢%°8(¥) this yields
log L(s, X) Z Z X ydes (P)m
P m>1

where we have followed the customary convention u := ¢~—°. Now we divide
the above sum into sums over prime divisors belonging to a fixed class:

log L(s, ) Z Z Z X wdes(P)m

ceC P m>1
[P]=C

The isomorphism C = Co x [Q]% allows to classify the classes according to
their degree:

log L(s, x) z z Z an(C u”m.

CeCypn>1m>1

The above sum is a power series in u. A trivial computation yields the fol-
lowing normal representation of this power series:

log L(s,x) Z (Z Z aq(C )u”. (2)

v>1 dlv C€eCo

Now let Cy € Cy be a fixed class and X denote the character group of Cy. We
have:

> x(CHlogL(s,x) = = (Zzad de(Calcﬁ))u”

XEX v>1 dlv CECo xeX

It is well known that if a is an element of a finite abelian group A and X
denotes the character group of A, then er x x(a) = 0 if a is not equal to
the identity-element of A, whereas this sum equals the cardinality of A if a
is the identity element of A. Applying this we get

S MGl 0 =Y (X Y w(@dn)w ()

XE€X v>1 d|lv C”C'/?iioco
where h = |Co| is the number of classes of degree 0 of K/F, (i.e., the number
of I, -rational points of the corresponding elliptic curve).
By Lemma 1, logL(s,x) = 0 for non-principal x. Hence, taking into
account Equation (2) and the fact that ), . @n(Co) = IIn, the above sum
equals

log L(s,¢) Z (Z Hdd) (4)

v>1
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Since the right hand sides of Equation (3) and Equation (4) are equal power
series we get

VCy€CoWr>1: Y Mad=3( D au(C))dh.

d|v d|v CeCo
cv/d=cq

This proves the following recursion formula:

Lemma 2. Letn be an arbitrary positive integer and Cqy be an arbitrary class
of degree zero of the elliptic function field K[F,. We have

1 1 d
an(Co) = 5 1o + dz”;(ﬁﬂd - CZ ad(C))E. (5)
d<n cn/d=cq

In the next section we shall solve this recursion.

3 Resolution of the Recursion

The principle of inclusion and exclusion is applied in this section to solve the
recursion (5).
For n € N and Cy € Cy define

1 d
11— (€)) = if dn
A(d;n,Co) = A(d) := (h ‘ CGZCO f )n

cn/d=cy
0 otherwise.

Further, let f(m;n,Co) = f(m) = 324 scam,n) A(d)- Our first aim is to
prove the following:

Lemma 3. If m|n, we have

f(m) = %ledndu— {C | Cm/m =y }).
d|m

Proof. We have

f(m) = (%Hm - Z am(c))% + Z (%Hd - Z ad(C))%.
d|m

cecy cecy
cn/m=cq a<m cn/d=cy
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By Equation (5) we get

o= (= 3 G X (3 T ) )7

CEeCy clecy

cnim=c, c'm/d=c
d
+Z( II; - Z ad(C))E
cecy
d<m cn/d=c,
- %;dﬂd(l— [{C | ™™ =Co}))
dlm
X(X X wo- ¥ owo)
CeCp Cclecy CeCy
d<m cn/m=cy ctm/d=c cn/d=cy

Now note that

YD alC)= D al).

CeCy clecy Ccecy
cn/m=cy grm/d=c cnld=cy
Hence the assertion follows. a

Denote by Ny, the number of prime divisors of degree one of KFm /Fm
It is well known that Ny, =) dlm IT4d. Thus the following corollary follows:

Corollary 4. We have

Jm) = N1 = [{C] €7/ = Gy }).

Now we apply the principle of inclusion and exclusion:

Lemma 5. Let S be a finite set, S1,...,Sy subsets of S and A: S — 7Z a
mapping. For T C S let Ax(T) := ) ,cr A(t). Then we have

Ax(S\ UL S;) ZAE + > Ag(SinS))
1<i<j<k
— Z AE(SiﬂSjﬁSl)+
1<i<j<I<n

+(=1)*As(S1 NSy N---NSk).
Proof. This is a straightforward generalization of [1, Theorem 5.31]. O

Theorem 6. Let K/F,; be an elliptic function field, Co be the group of divisor
classes of degree zero of K, Cy € Cy and n an integer greater or equal to zero.
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Then
an(@0) = 1 (T == 3 u(5) N1 = [{ 0| €V = Gy }])

d|n
d<n

= LS u(B) Nal{C e = o)l

d|n

Proof. Let n = Hle p;* be the prime factor decomposition of n. Set S :=
{d | djn} and S; := {d | d|[t} for i = 1,... k. Then S\ UL,S; = {n}.

Applying Lemma 5 with A(.) = A(.;;n,Cy) we get
1 n
=Ty —an(Co) = Y (%) £(d).

d|n

Now note that f(n) = 0. So applying Lemma 3 we get the first equality.
The second equality follows from the first by observing that application of
Mébius-inversion to 3 ;,, Iad = Ny, yields I, = + 3=, Na p(n/d). O

Before going into elaborate estimates of the above sums, let us derive first
a simple lemma from Theorem 6. Let Cy € Cy and consider a1 (Cp). As was
remarked in the introduction a;(Cy) = 1 = II; /h for all Cy in Cy. Can we
expect a,(Cy) = II,/h for all n and all Cy € Cy (at least as long as I, is
a multiple of h)? The following lemma gives a sufficient condition for this to
be the case.

Lemma 7. Suppose that n and h are coprime. Then a,(Co) = II,/h for all
Co € Cp.

Proof. Since (n, h) = 1, the homomorphism Cy — C¥ is an automorphism of
Co. Hence |{ C | cnd =y }| =1 for all Cy € Cy. The assertion follows now
from Theorem 6. O

The following example shows that the condition in the preceding lemma
is not necessary:

Example 8. The elliptic function field K = Fy(z,y),y?> +y = 2° + 1 has 9
prime divisors of degree one [2]. The group of divisors of degree 0 of K is easily
computed to be the direct product of two cyclic groups of order 3 (note that
Co is isomorphic to the group of F;-rational points of the corresponding elliptic
curve). K has ITg = 648 prime divisors of degree 6. Further, Ny = N7 = 9 and
{C | C? = Cp}| = 1 since (2,9) =1, and |[{C | C® = Co}| = {C | C® = Cp}]
for all Cy € Cy. Applying Theorem 6 we get

1
aa(C()) = §H6 =172 for all Cy € Co.

Example 8 is actually an exception. In Section 5 we will prove a partial
converse to Lemma, 7 (see Theorem 29).
In the next sections we investigate the extremal values of the function a,.
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4 Some Tools

In this section we shall gather some well known results about abelian groups
and elliptic function fields. This will serve as a toolbox for the computations
in the next section.

To begin with, let us introduce a notation: If A is an abelian group and
n an integer, we define A" := {a™ | a € A}. The following lemma is almost
trivial:

Lemma 9. Let A be a finite abelian group and n,m integers. Then A™ N
Am — Alcm(n,m) and A" A™ :Agcd(n,m)'

Proof. Let A be the direct product of B and C. Then A" N A™ = (B™ x
c™)yn(B™ x C™), so A"NA™ = (B"N B™) x (C™ N C™). Analogously
A"A™ = (B™"B™) x (C™C™). Since the assertion of the lemma is easily
verified for cyclic groups, the general case follows by decomposition of A into
cyclic factors. O

Let A be a finite abelian group, n an integer and 72: A — A" a + a™.

Lemma 10. If A is a finite abelian group, m,n are integers and 7/ is as

above, we have:

| ker 72| | ker 74|
A |
ged(n,m)

A
| ker 71-lcm(m,n)l = | ker

Proof. Application of Lemma 9 yields:

" _ 14
|ker 7Tlcm(m,n)l - W

A A
|An| |Alcm(m,n)|

_ |A| |Agcd(m,n)|
An[ A

_ A] |A] |Asedtmm)]
|An[]A™] - [A]
| ker 2| | ker w24 |

= TerrA | U

|
ged(n,m)

~ |kermw
We immediately get the following corollaries whose proofs are obvious.
Corollary 11. If A is a finite abelian group and m,n are coprime integers,

we have
|ker 74 | = | ker 7|| ker w2 |.
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Corollary 12. Let A be a finite abelian group and m,m coprime integers.
Then
HAnm :HAnHAm,

where Hyy is denotes the characteristic function of the set M.

Now we want to investigate some elementary problems related to elliptic
function fields.

Lemma 13. Let K/F, be an elliptic function field, ¢ > 5, and n, k be positive
integers, k > 2. Then

qn(k72)Nn < Nnk < anNn-
Proof. We apply the well known Hasse- Weil-inequality
|Nn —¢" — 1] < 2v/g"

to get

(o =172 _ N (Va®+1)?
W +17 = Ny = (Jam 1)

Now note that if a > /5 is a real number and & is as above, we have

(aF 1) > g2(k—2)

(a+1)
(a* +1)? < a2k,
(a—1)2 —
Putting a = /q™ we get the assertion. O

REMARKS. (1) The first inequality in the above lemma is also valid for
g = 4. It is even sharp for ¢ = 4,n = 1,k = 2 (as can be seen in the case of
the function field K = Fy (z,y), =3 +y° = 1).

(2) The inequalities given are very crude for big q. Nevertheless we shall
not need more refined estimates for the computations in the next section.

Now let K/F, be an elliptic function field and Cy denote the group of
divisor classes of degree 0 of K. For a nonnegative integer n we denote the
homomorphism 7$° simply by m,,. The kernel of 7, (also called the group of
n-division points) plays an important role in the formulas of Theorem 6 as is
apparent from the following

Lemma 14. Let Cy € Cy and n be a positive integer. Then
H{C' | C™ = Co}| = Hey (Co)| ker 7y .

Proof. Trivial. O
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The order of ker 7,, depends on n and the structure of Cy. However, since
Co is always of the type C; x C,,, with I|m (See e.g. [8]), we get the following
(well known) estimate:

Lemma 15. With the above notations we have | ker m,| < n?.
Proof. If Cy = C; x Cy, we have |ker 7| = ged(n, 1) ged(n,m) < n?. O

With these tools at hand, we are now able to derive some lower and upper
bounds for the numbers a,,(Cp). This will be done in the next section.

5 Some Estimates for a,(C))

The aim of this section is to prove the following

Theorem 16. Let K/E, be an elliptic function field, ¢ > 7, and n be an

integer satisfying n < 27" Denote by Co the group of divisor classes of
degree 0 and by H the principal class of K. For Cy € Cy let a,(Co) be defined
as above. Then we have

(].) an(H) = mincoeco an(C()).

(2) Letm denote the squarefree part of n. Then an(Co) = an(H) if and only
if Co € Coﬁ

(3) Suppose there exists Co € Co such that Co & C& for all p|n. Then an(Co) =
maxcyeco 4n(Co) = 7 Na-

Before starting with the proof of this theorem, let us state an immediate
corollary:

Corollary 17. With the same notations as above we have a,(H) < II,,/h.

Proof. We have

I, = Z an(CO) > Z an(H) = han(H) o

Co€Co Co€Co

The proof of Theorem 16 requires some preliminary discussions. It is based
on the investigation of a,(H) — a,(Co) for arbitrary Cy € Cp. Application of
Theorem 6 and Lemma 14 yields the following formula for this difference

an(H) = n(Co) = 7 5" Nap(5) et ayal(1 = Hegrs(Go)). (6)
d|n

Let us agree upon the following notations for the rest of this section:
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Notation 51. K/F, is always assumed to be an elliptic function field. Co is
the group of divisor classes of degree 0 of K and h denotes its order. For an
integer m, Ny, is the number of prime divisors of degree one of KFym [Fym
and IT,,, is the number of prime divisors of degree m of K ; the homomorphism
an" of the last section is simply denoted by mp,.

n is always a positive integer which satisfies n < 20" (for technical
reasons). P = {p1,...,pr} is the set of distinct prime divisors of n; for
0<I<r—1wesetv :=p1...p and u; := Pry1-..pr (note that vo = 1).
If P C P we denote by np the number [[,.pgq (ng =1). For a non-negative

integer i, (E’) denotes the set of subsets of P of order i.
The following lemma is the heart of the estimates following.

Lemma 18. Let m be an integer such that g™ > 7. Further let | be an integer
satisfying 0 <1 <r — 2. Then we have

r
Z qmul/pkpi <qm(u1—2)_
k=l+1

Proof. Let us first replace ¢™ by t. Observe that the function f(z) = /%22
decreases monotonically for £ < aln(t)/2, hence also for z < a (note that
t > 7). The proof is divided in two cases:

CASE 1.1 < r — 3. In this case u; > 2-3-5 = 30. Further p; < u;/2 < uy,
hence t%/Prp? < 4t%/2 by the above observation. So we get

T
Z t”’/p’“pi < 4rp/?
k=l+1

< 4logy(n)t"/?

< 4q12tul/2

<g®t? (g>7)
<t (8> g, w > 30).

CASE 2. ] =r — 2. This condition implies u; > 2 -3 = 6. Hence we get

T

Z tul/pkpi S 4tuz/2 _|_9tu1/3
k=I+1
= ¢u/2(4 4 9t~ /)
SH”M+$) (
<tu/2t
S tu172 (Ul

7)

u > 7)
7).0

Lemma 19. Let ¢ > 7.
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(1) Ifo<i<r—2, we have

T
~Noju + Y Nojupopi <0-
k=Il+1

(2) _Nn/vr_l + Nn/vrp% < 0.

Proof. (1) Applying Lemma 13 we get

T T
o — nu o,
_Nn/vl + E Nn/(’l}lpk)pi < Nn/vr (_q v (ur—2) + E qerPe pZ) .
k=Il+1 k=l+1

The right hand side of the inequality is less than zero by Lemma 18.
(2) Let g := wvy. Then N/, _, = Ngp,. Applying the Hasse-Weil-
inequality we obtain

Nop, S gt +1 — 2qrer/?
N, = gqt+1+2qn/?
gt =1) _ gqulpr/2-1)
14 g+ 2q1/2

> gqu(prﬂ—l) (qupr/2 —-2) (¢>7)
23 =
2
230 -2 (h22)
>p; (¢>5).0

Lemma 20. Let ¢ > 7 and 0 <1 <r —1. Then

T
—Nn/vl|kerﬂ'vl| + Z N"/(Ulpk)| kermlp,c| < 0.
k=Il+1

Proof. We have

-
—Np /v | ker my, | + Z Ny j(oip) | ket Ty, | =
k=l+1

,
= |ker7rv,|(—Nn/vl + Z Nn/(vlpk)|ker7rpk|) (by Corollary 11)
k=1+1

< |ker7rvl|(_Nn/vz + Z Nn/(Ulpk)pi) (by Lemma 15)
k=l+1
<0 (by Lemma 19). O
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Corollary 21. Let i be an integer satisfying 0 <i<r—1and ) #P C (1;))
(note that P = {0} # 0 if i = 0). Then we have

Z(_N#|ker7rnp|—|— Z N"n?|ker7rnp,|) <0.
PeP P’e(iil)
pPCP/!

Proof. Let P € (1:) Rearranging P if necessary, we can assume that v; = np.
Further, for every P’ € (iil) with P C P’ there exists a unique p; with
k > 1+ 1 such that np: = v;pg. Now the assertion follows from Lemma, 20.

O

Corollary 22. Assumptions being as in Lemma 20, let Cy € Cy we have

- Z N » |kermn, |+ Z N$|ker7rnp,| <0

re(?) pe(L)
Hcgp(00)=1 Hcgpl (Cop)=1

with equality holding if and only if both sums are empty.
Proof. First of all note that by Corollary 12 we have
Hcgpl (Co) =1=VP Q PI : HC(T)'P (Co) =1.

Hence, if the left sum is empty, both sums are empty and so the given term
equals 0. If the left sum is not empty and the right sum is empty, the given
term is trivially < 0. So assume that the right sum is not empty (which
implies that the left sum is non-empty as well). We get

Given term < Z (—NLP|ker7rnP| + Z N_n_|kermy,, |) <0
n "Pl

PE(I:) Ple(i£1)
H np(Cp)=1 pPCP!
o
by the previous corollary. O

Lemma 23. For all 1 <i<r —1 we have

—Sumpe(};)N% | kerﬁnp |(1 — HCSP (Co))
+EP’€( Pl) Nnn?|ker7rnp, |(1 — HCSP' (C())) <0

it

with equality holding if and only if Co € C§ for all p|n.

Proof. Of course the given sum equals 0 if Cy € C§ for all p|n. So suppose
that there exists p|n such that Cy ¢ CZ. It follows that for all k there exists
P € (}) such that Co & C3*. Let

(Pl,...,P.Y={P' CP||P|=i+1,C&C"}.
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So by Corollary 12 there exist pairwise distinct Py,... , P, such that |P| =i
for 1 <1 < k and such that each P, is a subset of at least one of the P,
1 <t < m. Hence the sum in question is less or equal to

k
Z(—N#|ker7rnpl| + Z Nnn?|ker7rnp,|) <0

=i pe()
P CP!

by Corollary 21. O

REMARK. Note that the condition ¢ > 1 is crucial in this proof. It is easily
seen that the assertion of Lemma 23 is false for i = 0.

Lemma 24. With the assumptions of Lemma 23 we have

—Y Ne|kerm,|(1— Here (Co)) + Y N_o_|kermy,, |(1— Herer (Co))

Pe(‘.’) Pe(.ly)
Z Nn | ker 7y, | + Z N~ |ker7rnp,|
Pe(?) Pe(h)
with equality holding if and only if Co & C3® for all P € (IZ) U (ifl).

Proof. The left hand side of the inequality equals

Z N#|ker7rnp|+ Z Nnn?|ker77np,|=: A.

PE(}:) P’E(iil)
HCSP (Cp)=0 Hcgpl (Cp)=0

By Corollary 22 we have

A
I ~

A>A- 3 Nafkemy|+ Y No|kerm,|

re(f) rre(;fa)
chp(co) 1 " nP,(co) 1
=— Z Now | kermp, | + Z N~ |ker7rnp,|
Pe(?) Pre(i)

with equality holding if and only if the sums under the bracket are empty,
i.e., if and only if Cy ¢ CJ* for all P € (1:) U (HF_’I). O

Lemma 25. Assumptions being as above, we have

ZNdp( ) 1¥er mal(1 = Hynr4(Co)) <0

with equality holding if and only if Hez(Co) =1 for all p|n.
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Proof. The above sum equals

[r/2]
Z (— Z N#|ker7rnp|(1 — Here (Co))
=1 Pe(y2,)

+ Z N%|ker7rnp|(1 — HCSP (CO))) -9

Pe(3)
where § = N, /,, |kermy, |(1 — Hn/v, ) if 7 is odd and 6§ = 0 if r is even.
0
So by Lemma, 23
Given sum < —§ <0
with equality if and only if § = 0 and for all ) # P C P we have Cy € CJ7,
i.e., if and only if Co € C§ for all p|n. O

Lemma 26. Assumptions being as above we have

> Nan(%) Iker myal (1 = Hyzra(Co)) 2 Y- Nap (% ) [ker oyl

d|n d|n
d<n

with equality holding if and only if Co & C§ for all p|n.

Proof. Resolving the sum on the left hand side of the above inequality as in
the proof of the preceding lemma and applying Lemma 24 we get

Lr/2]
Given sum > Z (— Z N#|ker7rnp|
=1 |P\=P2i—1
+ Z N#|ker7rnp|) -6
\P|=P2i—1
n
=) Ndﬂ(a) | ker 7y, /4l
din
d<n

with equality holding if and only if
VO#APCP: Co¢gCi? < Co ¢&C¥ for all pjn. O
Now we are able to prove Theorem 16:

Proof. (Of Theorem 16) (1) and (2) follow from Lemma 25 and Equation (6),
(3) follows from Lemma 26, Equation (6) and Theorem 6. O

REMARK. The assertion of Theorem 16 can be extended to ¢ = 4,5 by
more careful estimations.

With the tools developed in this section we are able to prove several
properties of the function a,. The next two theorems serve as examples in
this direction.
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Theorem 27. Notations and conditions being as in 51 we have a,(Cp) > 0.

Proof. In view of Theorem 16 it suffices to show that a,(H) > 0 for the
principal class H of K. Now

an(M) = % ZNdu(g) | ker 4]

din
The above sum equals

1 L(T§/2J( Z N |kermp, | — Z N |kern |) + i(S'

S el T ek
where §' = 0 if r is odd and ¢' = N/, |kerm,, | if r is even. But

Z N#|ker7rnp| - Z N#|ker7rnp|
Pe(3) Pe(,5,)

is greater than zero by Lemma 23 (if ¢ > 0) and Lemma 21 (if i = 0). O

REMARK. The above theorem states in other words that under the con-
ditions stated the mapping tr defined in the introduction is surjective.

The following example shows that the assertion of Theorem 27 need not
be true for ¢ < 5:

Ezample 28. We consider again the elliptic function field
K =F(z,y), v’+y=2"+1

Let n = 3 and H be the principal class of K. An easy computation shows
that N3 = 24. Application of Theorem 6 yields

a3(’H)=%(24—%-9-8) =0.

The next theorem is a partial converse to Lemma 7.

Theorem 29. Notations and conditions being as in 51 we have: a,(Cy) =
II,/h for all Co € Co if and only if gcd(n, h) = 1.

Proof. In view of Lemma 7 we have to prove that for gcd(n,h) # 1 there
exists a class Cyp € Cy such that a,(Co) # an(H) where H is as usual the
principal class of K. Now if gcd(n,h) # 1, there exists a prime number p
such that p| ged(n, h). Hence there exists a class Cy ¢ C5. Lemma 25 implies
now a,(H) — a,(Co) < 0. O

Example 8 shows that the assertion of Theorem 29 need not be true for
g<5.
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6 An Optimal Algorithm for Multiplication in Fy7 /T3

This section gives an application of the results of this paper to the problem of
determining optimal bilinear multiplication algorithms for finite extensions
of finite fields. For a background on the bilinear complexity theory, we refer
the reader to [3, Chap. 14].

A bilinear algorithm of length r for the multiplication in a finite dimen-
sional k-algebra A consists of r triples (f;, g;, w;) where f; and g; are k-linear
forms on the vector space A, and w; € A, such that

Ya,be A: a-b= Zf,'(a)gi(b)wi.
i=1

(a - b is the product of a and b in A.) The aim is to obtain for an algebra A
a bilinear algorithm of minimal length.

As an example, consider the algebra A := k[z]/(x? — a), for some a € k.
A basis for this algebra is given by (1, z), where we identify polynomials with
their residue classes modulo 2 — a. The naive way of multiplying elements
in this algebra is by implementing the following formula:

(A+ Bzx)(C + Dz) = (AC + aBD) + (AD + BC)z.

Let fi(a + B7) = gi(a + Bz) = a, fo(a+ Bz) = g2(a + fr) = B, wy := 1,
we := z, and w3z := a. Then, it is easily verified that

(fl’gliwl)’ (f17927w2)a (fQngan)J (ang23w3)

is a bilinear computation for A of length 4. Another, more efficient algorithm
is derived from

(A+ Bz)(C + Dz) = (AB +aBD) + ((A+ B)(C + D) — AC — BD)z

which gives rise to a bilinear algorithm of length 3: let f;,9;, i = 1,2 be as
above, and let f3(a + Bz) = gs(a + Bz) := a + (. Further, let wy := 1 — =z,
we = a — x, and ws := x. Then

(f1,91,w1), (f2,92,w2), (f3, 93, w3)

is a bilinear computation for A of length 3.

The bilinear complexity does not measure the number of addi-
tions/subtractions, or scalar multiplications. (This is expressed by the fact
that the additions and scalar multiplications necessary for evaluating f; and
gi are not counted.) However, for many important problems like the matrix
multiplication, the asymptotic complexity can be measured in terms of the
bilinear complexity only [3, Chap. 15]. Furthermore, in some situations, using
bilinear algorithms recursively leads to overall savings in the running time.
For instance, the Toom-Karatsuba method of multiplication [7, Chap. 4.3.3]
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can be seen as recursively using the multiplication algorithm of length 3 in
the algebra A above (for suitable A).

An important class of k-algebras are simple field extensions. Multiplica-
tion in these algebras can be reduced to polynomial multiplication, which in
turn can be accomplished using Lagrange interpolation. One can prove that
if |k| > 2n — 2, then the bilinear complexity of multiplication in a simple field
extension of degree n over k is exactly 2n— 1, and that it is larger than 2n—1
otherwise [3, Th. 17.29 and Rem. 17.30].

In [4] the authors describe an algorithm for multiplication in extensions
of small finite fields, i.e., in extensions of degree n of a finite field k with
|k] < 2n — 2. In a nutshell, Goppa’s idea is used to replace the Lagrange
interpolation by interpolation on algebraic curves. The algorithm was slightly
modified in [10] for elliptic curves. In particular, it was proved there that the
bilinear complexity of multiplication in Fp is 2n if 1 +1 < n < im(q)
where m(q) is the maximum number of points of an elliptic curve over F,. In
a subsequent work [9], it was described how to obtain these algorithms using
arithmetic properties of elliptic curves.

In this section, we apply by way of an example some of the results of this
paper to obtain an optimal algorithm for multiplication in the field extension
Fa7 of F5. Note that this case is not covered by [9]. The similar case of Fa56 /Fy
was solved in [2].

For the following computations we present F3 as F3 = {0,1,2}. We assume
familiarity with [9].

In order to compute the optimal algorithm we are looking for, we follow [9,
Algorithm IV-B] with minor modifications. In particular, we will compute
two matrices A € Fo*% and B € F$*® and a basis (fo, f1, f2) of Far /Fs
with the following properties: the multiplication of xgfo + z1 f1 + z2f2 and
Yofo + y1f1 + ya2fa is given as zg fo + 21 f1 + 22 f2 where

(zo,zl,z2) = (X0YE), . ,X5Y},)B,

(X()Xg,) - ($0,$1,$2)A
Yo... Y5 Yo,y1,y2)

Hence, A and B completely determine the multiplication in Fy;.

To obtain these two matrices, we first compute an elliptic curve E over F3
having 7 F3-rational and compute its set of points E(Fs). Next we determine
prime divisors ® and p, both of degree 3, such that L(D — p) = 0, where
by L(A) we denote the linear space of the divisor A. Notice that this is
equivalent to requiring [®] # [p], where [A] denotes the class of the divisor
A. Afterwards we compute a basis {fi, ... , f¢} of L(2D) such that {f1, f2, f3}
is a basis of L(®). In order to compute the matrices I" and A of Step (v)
of [9, Algorithm IV-B], we first need to compute a set of points Py,... ,Ps
of E(F3) such that

[PL®-® P — Q] # [ — 3Q]
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where @ is the neutral element of E(F3). Next we perform Steps (vi) and (vii)
of [9, Algorithm IV-B] to obtain the matrices A and B which are the final
outputs.

It is easily verified that the curve E : y? = 22 — x + 1 has 7 Fz-rational
points and E(Fs) = {Q, Py, ..., Ps}, where

P = (0a2); P, := (05 1)7 Py = (1a );
Py:=(1,1), P :=(2,2), Ps :=(2,1).

For the sake of simplicity we choose for ® a prime divisor of degree 3. The
representation of prime divisors is the same as described in [9, Section 3.6],
i.e., a prime divisor is given by (g, h) where g is an irreducible polynomial of
degree 3 and h is a polynomial of degree at most 2 such that h? = 2° —z +
1 mod g. We use [9, Algorithm ITI-F] to compute two random prime divisors
® and p. This is the place where we use the results of this paper. Namely,
for a random choice of ® and p, the probability that they belong to the same
divisor class is % by Theorem 29. Hence, with high probability, we will pick
two prime divisors that do not belong to the same class. In fact, after one

guess we obtain
D = (2® + 202 + 22 + 2,22° + 1), p = (2% + 222 +1,22% + 22).
The class finding algorithm [9, Algorithm ITI-E] gives

[0 -3Q] =[P - @, [p—3Q] =[P - @, (7)

which shows that ® and p belong to different classes. The function (z + 1)
has the divisor Ps + Ps — 2Q. Hence (7) implies that ® + Ps — 4Q is a
principal divisor, i.e., the divisor of a function, say u. Observe first that
u € L(4Q). Since 1,z,y,z? is a basis of L(4(Q), u is a linear combination
of these functions. Further, ordg(v) = —4, hence w.l.o.g. we may assume
that u = 22 + ax + by + ¢ with some constants a,b,c € F3. Now u(®D) = 0,
hence computing with z as X mod (X3 + 2X? + 2X + 2) and with y as
(2X? + X) mod (X? + 2X? + 2X + 2), we obtain

(1+20)X%+(a+b)X +C =0.

This gives u = 22 + 2z +y. We claim that

B;={1,”’+1 (x+1)2 (z+1)% (z+1)>° (m+1)4}

T VR 7> 72 V2

is a basis of L(2®) and that the first three elements of B form a basis of L(®):
first, B C L(29) and the first three elements of B belong to L(®) (simply
compute their divisors!). In order to prove linear independence, we evaluate
the representation matrix of the linear morphism

v: (B) = T
v = (U(Pl)a" . 7U(P6))'
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We will show that rk () = 6, which implies that B is a basis of L(29). For
this, it is sufficient to show that

I' = (v(P))veB,1<i<6

has full rank. First, we have to explain how to evaluate the function in B at
the point Pg, since u(Pg) = 0. Observe that

ordp, ((z + 1) /u), ordp, ((z + 1) /u?), ordp, ((z + 1)* /u?) > 1,

which implies that these functions vanish at Ps. Setting v := (z 4+ 1)/u, we
thus have to compute v(Ps). Note that ¢ := (x + 1) is a local parameter for
P, i.e., ordp,(t) = 1. We obtain the following power series expansion for v
in Fs[[t]]:
v = t
24+24+ V3 +2t+1

Hence v(Ps) (which equals the constant term of v € Fs[[t]]) is 1. Thus,

=1+t+2t2+---.

111111
211201
212100
111101
112200
111100

It is easily seen that I' is invertible. Hence B is a basis of L(2D).
Let us denote the elements of the basis B by vy ... ,vg (in the order given
above). We first compute a matrix 7' such that

vy mod p 1
: =T | z | mod (23 + 22 +1).
ve mod p a?

Now u mod p =  mod (22 + 222+ 1), hence 1/u mod p = 222 + z mod (2 +
222 +1). Hence,

100

112

222

211

100

110

Let T' be the matrix consisting of the first three rows of T'. As is shown in [9,
Section 4.4] T" is non-singular and C = T'(T")~!. Further, B = I'"'C. This
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yields
221
021
122
020
001
111

Finally, the matrix A is given by the first three rows of I, i.e.,

111111
A=1(211201
212100

The multiplication algorithm is thus as follows: to compute the product
of (zg,x1,T2) and (yo,y1,y2), first compute

Xo =20+ 221 + 229 X1 := 29 + 21 + T2 Xo := 29 + 21 + 229

X3 =1z + 221 + 22 Xy =19 X5 :=z0+ 21
Yo=yo+2y1+2y2 Yii=yo+uyi+y2 Yo:i=yo+y1+ 2y
}/3:=y0+2y1+y2 n:zyo }/5:=y0+y1‘

The product is given by (2, 21, 22), where

zg = 2XOYE) + X2Yv2 + XSY%;
z1 1= 2XoYo + 2X1Y1 +2XoYs 4+ 2X3Y5 + X5Y5,
29 1= XOYO =+ Xl}/l + 2X2Yé + X4Y4 + X5)/5
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On Cyclic MDS-Codes
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Abstract We investigate the question when a cyclic code is maximum distance
separable (MDS). For codes of (co-)dimension 3, this question is related to permu-
tation properties of the polynomial (z® —1)/(z — 1) for a certain b. Using results
on these polynomials we prove that over fields of odd characteristic the only MDS
cyclic codes of dimension 3 are the Reed-Solomon codes. For codes of dimension
O(,/q) we prove the same result using techniques from algebraic geometry and finite
geometry. Further, we exhibit a complete g-arc over the field F, for even q. In the
last section we discuss a connection between modular representations of the general
linear group over F,; and the question of whether a given cyclic code is MDS.

1 Introduction

A linear code C is called cyclic if (¢,—1,¢0,¢1,--. ,Cp—2) is in C whenever
(co,c1,...,cn—1) is. Let ¢ denote the morphism from Fg» to F,[z]/(z™ — 1)
sending (ao, . .. ,@n—1) to Y, a;z* mod (z™ —1). Then it is easy to see that a
subspace C of F;» is a cyclic code if and only if its image under ¢ is an ideal
of F,[z]/(z™ — 1) [7, Chap. 6]. Since every ideal in this ring is principal, the
image of C is generated by a polynomial g(z) dividing ™ — 1, unique up to
scalar multiples. This polynomial is called the generator polynomial of C
and the image of any codeword under ¢ is divisible by this polynomial. If n
and ¢ are co-prime, then g(z) is uniquely determined by the set of its roots,
which are also called the zeros of C'.

It is easily seen that C is of dimension n — deg(g). The determination of
the minimum distance of C' from the set of zeros of g is much harder, though
exact results on the complexity of this problem are not known. Typically,
most of the research on this problem has concentrated on obtaining good
lower bounds for the minimum distance in terms of the set of roots [8]. In this
paper, we concentrate on aspects of the problem of bounding the minimum
distance from above. Specifically, we discuss problems related to [¢—1, k,d],-
cyclic codes. (Here and in the following, an [n, k, d],-code is a code of block-
length n, dimension k, and minimum distance d over the field F,.) Since ¢
and ¢ — 1 are obviously co-prime, the code is uniquely identified by the set
{w?, ... ,w} of its zeros, where w is a generator of F)} which we assume to
be fixed throughout the paper. We also assume thoughout, except in a brief
remark in §2, that » > 1. We may hence identify the code with its exponent
set {ag,...,ar}. The question we want to investigate is whether the code
is maximum distance separable, i.e., whether it has the maximum possible
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minimum distance r + 2. If this is the case, then we call the exponent set
{ag, ... ,a,} ¢-MDS, or MDS for short, if g is obvious from the context.
If the exponent set {ag,...,a,} is not MDS, then there exists a poly-

nomial f = foz® + --- + f.z'r € F,[z] with pairwise different nonnegative
integers dg, . .. , % less than n such that f(w*) =--- = f(w?) = 0. This is
equivalent to

waoto ... ,a0tr fo
R ;| =0

wario ... yarir fr
The existence of a nonzero f with this property is equivalent to the vanishing
of the determinant of the above matrix. Let now

X(‘)"O . XTI}O
XS‘T . Xﬂr
where X, ..., X, are indeterminates over F,. Then it is easily seen that C

is MDS if and only if
det(X) € F,;[Xo,... ,X,]

has no zeros in (F))"+'\ A, where A C F/ ! is the zeroset of the discriminant
HKJ. (X; — Xj). It follows that for any a and b, b co-prime to ¢ — 1, all
exponent sets of the form {a,b+a,2b+a,...,rb+a} mod (¢—1) are ¢-MDS.
Indeed, for these sets the above determinant is essentially Vandermonde. The
corresponding cyclic codes are equivalent to Reed-Solomon codes [7, §6.8]. In
the sequel we call these sets “trivial.” One of the results of this paper is that
in many cases the only ¢-MDS exponent sets are the trivial ones, i.e., the
corresponding cyclic codes are essentially Reed-Solomon codes. We note in
passing that our results also solve some cases of a problem of Nick Reingold
and Dan Spielman posed by Andrew Odlyzko in [10, p. 399].

We start our investigation in the next section by studying exponent sets
of size three. We show that these sets are MDS if and only if the polyno-
mial z°°1 4+ --- + 2 + 1 is a permutation polynomial over F,, where b is an
integer obtained from the exponent set in question. This problem has been
investigated by Matthews [9] in case of odd ¢. Using his results, we show
that ¢-MDS exponent sets of size three are trivial for odd ¢. In Section 3 we
investigate exponent sets whose sizes are “small” relative to ¢ , and use some
algebraic geometry as well as results about arcs in projective spaces to show
that they are MDS if and only if they are trivial. Section 4 deals with the spe-
cial exponent set {0, 1,...,r—1,m} for some m satisfying r <m < g—2. We
show that if r is not large compared to ¢, then these exponent sets are MDS
only if they are trivial. Then we will proceed by exhibiting an explicit family
of complete g-arcs over fields of even characteristic. The last section of the
paper deals with an unexpected connection between the minimum distance
of cyclic codes and certain modular representations of GL,(Fp).
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Many thanks go to E.F. Assmus, D. Spielman, and M. Zieve for pointing
out to me the references [12], [10], and [9], respectively.

2 Small Exponent Sets

Exponent sets if size two are easy to handle: obviously, {0,a} is ¢-MDS iff
ged(a,q — 1) =1 and {a, b} is ¢-MDS iff ged(a — b,g— 1) = 1.

Exponent sets of size three are slightly more difficult to investigate. Let
I :={0,a,b} be an exponent set. We may without loss of generality assume
that a divides ¢ — 1 and that a < d := ged(b,q — 1). I is ¢-MDS iff for every
z,y € FY \ {1},  # y we have

111
det [ 12292 | =2 =1)(y* —=1) = (2® = 1)(y* = 1) #0.

1 .’L’b yb
If a > 3, then we may take for z and y two different ath roots of unity in
Fy, both unequal to one, to see that I is not MDS. The same argument
works if d > 3. If a = 2, then necessarily d = 2 and we may take z =
—1 to see that I is not MDS. Hence, we are left with the case a = 1. We
may without loss of generality assume that b < ¢/2, since we may replace
{0,1,b} by {¢ — 0,¢ — 1,¢ — b} = {1,0,q — b}. Hence {0,1,b} is MDS if
and only if the polynomial (z* —1)/(z — 1) = 2~ + ... + 1 is injective
on F, \ {0,1}. This implies that the size of the image of this polynomial
considered as a polynomial function over I, is at least ¢ — 2 which is larger
than ¢ — (¢ — 1)/(b — 1). Hence, we deduce by Wan’s Theorem [15] that
2'~1 + ...+ 1 is a permutation polynomial. A result of Matthews’ [9] yields
that b = 2 if ¢ is odd.

Proposition 1. For odd q, g-MDS exponent sets of size three are trivial.
Equivalently, a cyclic code of block length ¢ — 1 and co-dimension three over
F, is MDS if and only if it is equivalent to a Reed-Solomon code.

The above assertion does not hold for even ¢. For instance, the exponent
set {0,1,8} is not trivial but it is 32-MDS. To see the latter, note that the
polynomial (z® + 1)/(z + 1) is a permutation polynomial over Fs», since the
change of variable y := x + 1 transforms it into 7. (Table 1 gives all values
of b such that (z° +1)/(z + 1) is a permutation polynomial over F, for some
small values of ¢.) Further, a small calculation shows that existence of a and
b such that {0,1,8} = {a,a + b,a + 2b} leads to a contradiction; hence the
exponent set is nontrivial. (Details are left to the reader.) In general, MDS
exponent sets of size three over finite fields of characteristic two correspond to
certain ovals in finite Desarguesian planes of even order, for which a complete
description has not yet appeared. (See [9, Section 4].)

In the next section we will derive similar assertions for other exponent sets
of small size. The method is different from the one used in this section, as it



Cyclic MDS-Codes 205

L a | b |
4 2
8 2,4,6
16 2,8,14
32 2,4,6,8,10, 16, 22, 24, 26, 28, 30
64 2,32, 63

128 | 2,4,6,8,16, 20, 22, 32, 42, 52, 64, 76
86,96, 106,108, 112, 120, 122, 124, 126
256 | 2,8,32, 74,128, 182, 224, 248, 254

Tablel. Values of b such that (z” 4+ 1)/(z + 1) is a permutation polynomial over
F,.

employs techniques from the theory of finite geometries and some algebraic
geometry.

3 Arcs and Normal Rational Curves

We denote the r-dimensional projective space over a field K by P"(K).
A point P with projective coordinates xg,...,z, is denoted by P =
(zo: -+ : ). We start by introducing some definitions and recalling some
basic facts about projective spaces over finite fields. A good reference for
these subjects is Hirschfeld’s book [4].

A k-arcin P"(F;) isaset S of k > r+1 points such that no r+1 of them
lie on a hyperplane. For any point in S we consider a representative in IF;“
and form the (r+1) x k-matrix G s whose columns are these points. Obviously
S is an arc if and only if any (r + 1) x (r + 1)-submatrix of Gg is invertible.
(This condition is independent of the choice of the representatives for the
points.) So, for ¢ > r + 2 the subset S(F;) of P"(F,) consisting of the points
(1:a%: ---:a%), a € Fy,is a (¢ — 1)-arc if and only if {0,a1,...,a,} is
g-MDS.

A standard example of arcs is given by the set of points of a normal
rational curve. A rational curve C), of order n in P"(F,) is the set of

points (go(to,t1): ---: gr(to,t1)) where to,t; € F, and each g; is a binary
form of degree n and a highest common factor of gg, ..., g, is 1. The curve
C, may also be written as the set of points (fo(t): ---: fu(t)), where f;(¢) :=

gi(1,t), t € F} :=F, U{oo}, and f;(o0) is by definition the coefficient of t" in
fi- As the g; have no nontrivial common factor, at least one f; has degree n.
The curve C), is called normal if it is not a projection of a rational curve Cj,
in P"*!(F,), where C!, is not contained in any r-dimensional hyperplane of
P™+1(F,). A projective equivalence in P"(F,) is a self-mapping of P"(F,)
which associates to a point (zg: ---: z,) the point (yo: --- : y,) where

)T )T

(yo,---,yr) =A-(x0,...,T,
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for a nonsingular (r + 1) x (r + 1)-matrix A. The basic facts about normal
rational curves can be summarized as follows, see [5, Chapter 21].

Theorem 2. Let Cp, be a normal rational curve in P"(Fy) not contained in
a hyperplane. Then

(i) ¢>r;
(i) n=r;
(iii) C, is projectively equivalent to

{7t 1) [ teF

(iv) C, consists of ¢+ 1 points no r + 1 of which lie on a hyperplane.
(v) If ¢ > 7+ 2 then there is a unique C, through any r + 3 points of P (F,)
no r + 1 of which lie on a hyperplane.

Much of the research on arcs has concentrated on the following three
problems posed by B. Segre in 1955 [11]: (1) For given r and ¢ what is the
maximum value of k for which there exists a k-arc in P"(IF;)? (2) For what
values of r and ¢, with ¢ > r + 1, is every (g + 1)-arc of P"(FF,) the point set
of a normal rational curve? (3) For given r and ¢ > r+ 1, what are the values
of k for which every k-arc of P"(F,) is contained in a normal rational curve
of this space?

Theorem 3. (1) (THAS [14]) For odd q every k-arc in P™(F,) with k >
q— /q/4+ 1 —7/16 is contained in a unique normal rational curve of
this space.

(2) (BRUEN ET AL. [1], STORME AND THAS [13]) For even g > 4 and r > 4
every k-arc of P"(F,) with k > q+7r—./q/2—3/4 is contained in a unique
normal rational curve of this space.

We remark that the the bound in Part (1) of the above theorem can be
improved considerably if g is a prime, see [13].

Using the above results and the Bézout Inequality we will be able to
prove that certain MDS exponent sets are essentially trivial. For the proof of
the following lemma we assume familiarity with the concept of degree of an
algebraic variety, see, e.g., [3, Lecture 18].

Lemma 4. Let ay,... ,a, be pairwise different positive integers, and K be
an algebraically closed field. Suppose that d := ged(ay, - .. ,ar) is not divisible
by the characteristic of K. The Zariski-closure X of the image of the map
K — K", t— (t*,...,t%) is a rational curve of degree A/d, where A :=
max; a;.

Proof. Obviously X is a rational curve. Further, as d is not divisible by
the characteristic of K, X is the closure of the image of the map t +—
(tr/d, . t%/1) So we may suppose that d = 1. In addition, we may as-
sume that a1 < a; < --- < a,. The degree of X is the maximum of the
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numbers |X N H|, where H runs over all hyperplanes of P"(K) such that
X N H is finite. (For this and other characterizations of degree see, e.g., [3,
Lecture 18].) Let zo, ... ,z, be the coordinates of P"(K), and let H be the
zeroset of agxg + ...+ a,z.. Then

T
XﬂH:{(l:T‘“: e 7)) a0+2air‘“ :0}.
i=1

In particular, |X N H| < a,. We thus need to show that there is some H
such that | X N H| = a,. Suppose first that ged(char K, a,.) = 1, and let H be
the zeroset of zy — x,.. Then X N H consists of the points (1: *: ---: (%),
where ¢ runs over all the a,.th roots of unity. These points are all different, as
ged(aq, ... ,a,) =1, 50 [ X N H| = a,. Suppose now that gcd(char K, a,) # 1.
Then there is some a; such that char K does not divide a;. The polynomial

X% + X% + 1 has £ := a, different roots 71,... ,7¢ in K, as it is relatively
prime to its derivative. Since ged(aq, - .. ,a,) = 1, each of these roots gives
rise to a different point (1: 7' : ---:7/") in X N H, where H is the zeroset
of zg + z; + x. O

The main theorem of this section is now as follows.

Theorem 5. Let I := {0,a1,...,a,} be qg-MDS, where the a; are pair-
wise different positive integers, and suppose that ay divides ¢ — 1. Further,
suppose that r(max;a;) < q— 1. If r < (/q/4+ 9/16 and q is odd, then
I ={0,1,2,...,r}. If 4 < r < ,/q/2 —1/4 and q > 4 is even, then
I=40,1,2,...,7}.

Proof. We may suppose that r > 1. Let d := ged(ay, - - - , ar). By assumption,
the cyclic code over F; with the zeroset {1,w®!,... ,w?") is MDS, hence has
minimum distance r + 2. But this is not possible if d # 1, as this code
contains the codeword z(4=1/4 — 1 of weight 2 < r + 2. So d = 1. Further,
S:={(l:am:---:a%) | a € Fy} is a (¢ — 1)-arc. By Theorem 3 we
deduce that S is contained in a normal rational curve C, of P"(F,). On
the other hand, S is contained in the set of F;-rational points of the curve
X :={(1:t*: ---:¢%) | t € KT}, K being the algebraic closure of F,. By
the Bézout Inequality and the last lemma we have deg(XNC).) < r(max; a;) <
q—1, hence X = C,., as C, is irreducible. We thus obtain max; a; = r, which
gives I = {0,1,...,r}. O

4 The Special Exponent Set {0,1,... ,r —1,m}

Consider a cyclic code with exponent set {0,1,...,7 — 1,m}. Its minimum
distance is at least r + 1 since it is contained in a Reed-Solomon code of
dimension n — r. Hence, if the code is not MDS, then its minimum distance
is 7+ 1. The result of Theorem 5 can be somewhat sharpened for this special
exponent set in the following way.
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Theorem 6. Let v and m be positive integers satisfying r < m < q — 2.
Further, suppose that r < \/q/4+ 7/16 if q is odd, and 4 <r < ,/q/2+3/4
if ¢ > 4 is even. Then {0,1,...,7 — 1, m} is ¢-MDS if and only if m =r or
m=q-—2.

The if-part being clear, we continue with the only-if-part. Let
Srm ={(1:a:a®: ---:a" ' a™) |a€F)}.

We need to show that under the above conditions on r the set Sy, is an arc
if and only if m = r or m = ¢ — 2. Obviously S;,,, is an arc if and only if
K = Kpm := Spm U{P} is, where P = (0: ---: 0: 1). Suppose that K is an
arc. Using Theorem 3 we deduce that X lies on a normal rational curve. For
the rest of this section we concentrate on proving that m =r orm = ¢—2, or,
equivalently, that K does not lie on a normal rational curve if r < m < ¢ —2.
This would complete the proof of Theorem 6. To proceed with the proof, we
need some notation and some auxiliary results.
Let C, be a normal rational curve of P"(F,) given by

Cr = {(go(t07t1)3 Ttk gr(tO:tl)) | to,t1 € Fq}-

Let 8; denote the differential operator 8/9T; of the bivariate polynomial ring
F,[To,T1]- The line g through the points R := (go(to,t1): ---: gr(to,t1))
and (Oogo(to,t1): -+ - : Oogr(to,t1)) is called the tangent line to C,. at R.
Let zo,...,z, be the coordinates of P"(F,) and let P"~'(F,) = IT be the
hyperplane given by z,, = 0. The projection of C, from P onto II together

with the point R* := ¢g N II is a normal rational curve C} of P"~!(F,),
see [6, Lemma 7]. Now let C, be a normal rational curve containing K. Then
Cr ={(Q:t: ---:t""1:0) | t € F}}, since the projection of K is clearly

contained in C and this normal rational curve of II is uniquely determined
by r + 2 < ¢ of its point by Theorem 2, Part (v).

Proposition 7. Let C be a normal rational curve of P"(Fy) containing P =

(0: ---:0:1). Suppose that the projection of C from P onto II is the curve
C*={(1:t: ---:t"': 0) |t € F} }. Then C is one of the following curves:
— (Type 00) C = {(1:t:t%: ---: "7 2 pu(t)) | t € B} } for some p € Fy[X]

with deg(u) =r.

— (Type B, B € Fy) C={(t: t(t+ B): ---: t(t+ B) e n(t)) |t € FS} for
some 1 € Fy[X] with deg(n) < r and n(0) # 0.

Moreover, C is of type v, v € ]F(']*', if and only if the tangent line to C' at P
intersects C* at the point corresponding to t = 7.

Proof. Suppose that the tangent line to C' at P intersects C* in the
point (0: ---: 0: 1: 0). For every ¢t € I, there exists 7 € F, such that
(1:¢: ---:t"71:7) € C. Hence, C = {(1:¢t:#2: -2 t"Lopu(t) | t €
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F,} U {P}, where p is a polynomial of degree < ¢ — 1. As C is an arc,
deg(p) > r. Hence, C = {(1: t: t*: ---: ¢"1: u(t)) | t € F}}. Since C is
normal, deg(u) =

Suppose now that the tangent line to C' at P intersects C* at the point
(1: B: B2%: ---: Br=1: 0), for some B € F,. Notice that

C*={(r"': (148 2: (1 +B7)2r" 3 - (14+B81)" 1 0) | T € ]F;}

The tangent line at P intersects C* in the point corresponding to 7 = oo.
Hence,

C={(""1 L4+ Br)r" 2 - L+ )" e p(n)) | T € F, }U{P},

for some polynomial p € Fy[X]. As before, we obtain deg(x) = r, and hence
C={(r: (A +Br)r"=2: -+ (L+ 7)™ : (7)) | T € F} }. Thus

c:{( L 1+5/t, ---:(1+ﬂ/t)T_1:u(1/t)) ‘te]FqX}

tr—l tr—2

U{P}U{(0: 0: ---:1: u(0))}
:{(t: (t+B)t: - (t+ B) "L " u(1/8)) |teF;}
U{P}U{(0: 0: ---:1: pu(0)}
={(t:(t+ﬂ)t: L (t+ B) Myt ‘te]F+

where 7(X) = X"u(1/X) is the reversal of u. Note that n(0) # 0 as deg(u) =
r, and that deg(n) <r. O

The last step in the proof of Theorem 6 is the following result.

Proposition 8. Suppose that r < m < g—2. Then the set K, ,, does not lie
on a normal rational curve.

Proof. Suppose that K = K, lies on a normal rational curve C. By Propo-
sition 7, C'is of type ~y for some v € Ff.

Assume first that v = oo. Then there exists a polynomial p of degree r
over F, such that C' = {(1: ¢: ---:¢"7': p(t)) | t € F} }. As K lies on C, we
deduce that the polynomial X™ — (X)) has ¢—1 different roots over F,, hence
is zero. But this implies that X™ = u(X), hence m = r, a contradiction.

Suppose now that v = . Then there exists a polynomial i over F, of
degree <, and for all 7 € F} there exists ¢t € F* such that

(1: 7: B AL ™) =0:(t+8): ---: (t+ﬂ)r_1: n(t)/t).

Hence, 7 =t + 8 and (t + 3)™ =n(t)/t for all t € F;. Thus, the polynomial
X(X + p)™ — n(X) has ¢ — 1 zeros in F,. Since deg(n) < r < m, this
polynomial is not zero, and is of degree m + 1. Hence, m + 1 > ¢ — 1, which
is a contradiction to m < ¢ — 2. This proves the proposition and completes
the proof of Theorem 6. O
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5 Complete g-Arcs over F,, g Even

In this section we will prove that the set
Kg:={(1:a: ---:a"%:a'%) [a e F/ \ {0}}

is a complete g-arc in P4 4(FF,), i.e., it is a g-arc which cannot be extended
to a ¢ + l-arc. We remark that Storme and Thas [12] have determined all
values for k for which there exists a complete k-arc in P"(F;), ¢ —2 > r >
q—/G—11/4.

The exponent set corresponding to this arc is {0,1,...,¢—5,¢— 3} which
turns out to be the set {2j +1 | j = 0,...,¢ — 3} which is clearly trivial.
Hence, the corresponding set of (¢ — 1) points in the projective space lies on
a normal rational curve. However, the particular one-point extension of this
set given by K, does not lie on a normal rational curve even though it is an
arc.

Theorem 9. For g > 8 a power of two the set K, is a complete g-arc in
PI4(F,).

Proof. We first prove that K := K, is a g-arc. Let P := (0: 0: ---: 0: 1).
K is a g-arc iff K’ := K \ {P} is. Suppose that there exist pairwise different
ai1,... ,0aq-3 € FY such that the corresponding points in K’ lie on a hyper-
plane, i.e., such that the matrix M := (a;;), a;; = ag fori=1,...,q—3,
j=20,...,9—5,and a;_3; = a‘;-_3, is singular. Let V' denote the Van-
dermonde matrix V = (a{), i =1,...,4g—-3,75 = 0,...,9g — 4. Then
0=detM/detV =aq + ---+ ay_3, which is a contradiction, as the sum of
all the elements of F, is zero. Hence, K’ and K are arcs.

Let us now show that K is complete. Suppose not, and assume that there
is a point I' :== (yo: Y1t ---: Yg—5: Yq—a) such that K" := KU {I'} is a
(g + 1)-arc in P9=%(F,). The dual of K" is a (¢ + 1)-arc in P3(F,), which by
a result of Casse and Glynn [2] is projectively equivalent to {P; | t € F}},
where P; := (1: t: t?: tt7), 0 being an Fy-automorphism of F,. Hence, there
exists j € {1,...,q+ 1} such that

18 By pipY

1 1 1 Y% 0 D : , : ,
(e %1 (6%} 01N 0 1 /ijl /ijl /ijlﬂjfl
: : : : : 00 09 1 0 — la—-3)x4
: : : : . 1 Bj+1 Biyq Bit1B] N ’
ag—f’) ag—S L. ag:? Vo5 0 o J ‘ J+1 ‘ J j+1 (].)
ag—ii ag—3 aq—f Y4 1 - : :

! 18, B BB

1 8; 5? 51&3

where F, = {ai,...,aq-1,0} = {B1,...,04}- Considering the (1,1)-
component of the product in (1) we see that j # ¢. Suppose that j < q.
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Considering the (1,1)-component we see that ¢ — 2 + 7o = 0, hence v, = 0.
Considering the (1,2)-component we obtain >, . ... B = 0, which is a con-
tradiction, since this yields 8, + 8; = 0, i.e., 8, = B;. Suppose now that
j = g + 1. Counsidering the (j,1)-component of (1), j = 1,...,q¢ — 4, we
obtain Eg;ll af_l + vj—1 = 0, which yields v = 1, 1 = -+ = y4—5 = 0.
Considering the (¢ — 3,1)-component gives Zg:_ll a373 + Y4—4 = 0, hence
Yg—4 = 0. So, I' = (1: 0: ---: 0). But the following argument shows that
K U {I'} is not an arc, and this gives us the desired contradiction: choose
pairwise different a1, ... ,a,—4 € Fy which sum up to zero, and let V be the
Vandermonde determinant of the a;. Then

1 1 -~ 1 1
ar az ---ag—40
det : T =<Za,~)(Hai)V:0.
azlj—5 ag—fy . ag:i 0 i i
af P ad™? - alZf0
This completes the proof. O

6 Relationship to Modular Representations of GL,(F,)

In this section we are going to point out a somewhat unexpected relationship
between the classification problem for certain cyclic MDS-codes and certain
modular representations of the general linear group over a finite field.

For m > r the exponent set {0,1,...,r —1,m) is ¢-MDS if and only if
the polynomial

X9 X9 --- X0

Xy X{ oo Xp, Xp
det | 1 oD
Xyt xrto o xrol xrt
Xgt XXy X1 5
X0 X0 ...Xx0 X0 @
9 5 A
XO Xl "'Xr—l X’r
det & o
Xyt xrto o xrol xrt

X X[ X[, X]

does not have any roots outside (F))"+'\ A where A is the zeroset of the
discriminant (see Sect. 1). The above quotient is easily seen to be equal to
the sum of all monomials in r 4 1 variables of degree m — r. This is a special
case of a Schur-function. Such functions arise as characters of polynomial
representations of GL,, over fields of characteristic 0. This classical result
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has a certain analogue in our case: the special Schur function derived as the
quotient of the determinants above appear as characters of certain modular
representations of GL,41(F,).

To be more specific, let p denote the representation of GL,1(F,;) given by
the action of this group on the space of homogeneous r+1-variate polynomials
of degree m —r, and let ¢ be the character of p. Suppose that A € GL,41(IF;)
is a diagonal matrix with entries ag, ... ,a,. It acts on the space of homo-
geneous 1 + l-variate polynomials of degree m — r by sending a monomial
p=p(Xo,...,X,) into p(ag, ... ,ar)u. Hence, the value of ¢(A) is given by
S(ag,- .. ,a,) where S is the sum of all monomials of degree m —r in r + 1
variables. In other words, S is equal to the expression given in (2).

Proposition 10. Assumptions and notation being as above, the exponent set
{0,1,...,7r —1,m} is g-MDS if and only if the character ¢ has no zeros in
the union of those conjugacy classes of GL,y1(F,) which have r + 1 different
eigenvalues in I, .

Proof. The assertion is essentially proved above. If the exponent set is ¢-MDS,
then S(ap,...,a,) is nonzero for any setting of pairwise different nonzero
o; in F,. Hence, since S is the value of ¢ at the conjugacy class of the
diagonal matrix having ay, ... ,a, as diagonal entries, the assertion follows.
Conversely, if ¢ does not have a zero on the union of the given conjugacy
classes, then S(ayg,...,qa,) is nonzero for any setting of pairwise different
nonzero o; in Fy, which implies that the given exponent set is MDS. O

As of yet, we do not know of any methods in modular representation the-
ory which would resolve the question of whether or not the exponent set
{0,1,...,r —1,m} is MDS.
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Abstract We design algorithms for finding roots of polynomials over function
fields of curves. Such algorithms are useful for list decoding of Reed-Solomon and
algebraic-geometric codes. In the first half of the paper we will focus on bivariate
polynomials, i.e., polynomials over the coordinate ring of the affine line. In the
second half we will design algorithms for computing roots of polynomials over the
function field of a nonsingular absolutely irreducible plane algebraic curve. Several
examples are included.

1 Introduction

In this paper we will study the following problem: given a nonsingular ab-
solutely irreducible plane curve A over the finite field F,, a divisor G on X,
and a polynomial H defined over the function field of X', compute all zeros
of H that belong to L(G). Our interest in this problem stems mainly from
recent list decoding algorithms [5,9,11] for Reed-Solomon and algebraic geo-
metric codes. Originally, those algorithms found the roots of H by completely
factoring it and looking for factors of degree one. This method is, however,
not very efficient, especially if X is not a rational curve.

We will design more efficient algorithms by utilizing the fact that we are
interested in roots of H rather than a complete factorization. For instance,
suppose that X is the projective line, L(G) is the space of univariate polyno-
mials of degree < k over F,, and H(z,y) is a bivariate polynomial over F,.
The problem is then that of finding polynomials f of degree < k in the vari-
able x such that H(z, f) = 0. For this problem we will design an algorithm
that runs in time O(k?b3) where b is the degree of H in the variable y.

In the next section we review some well-known facts on the running times
for certain operations on polynomials over finite fields and introduce an algo-
rithm for computing roots of bivariate polynomials and demonstrate its use
by means of several examples. In Section 3 we will attack the more general
problem stated at the beginning of the introduction.

2 Roots of Polynomials over Rational Function Fields

In this paper we will mainly deal with probabilistic algorithms. The measure
of an algorithm, usually called “time,” will be the (expected) number of
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operations in F;, and usually we will use the “Soft O” notation to ignore
logarithmic factors: g = O(n) means that g = O(nlog®n) for some constant
¢. The term “deterministic time” of an algorithm is meant to imply that the
algorithm in question is deterministic.

We briefly recall some well-known results. Two polynomials of degree < n
over F, can be multiplied in deterministic time O(n) [2, Th. 2.13]. The same
is true for computing the division with remainder [2, Cor. 2.26], and the ged
of two such polynomials [2, Th. 3.13]. In particular, arithmetic operations
in a given extension field F,a of F, can be done in deterministic time O(d).
Furthermore, given two polynomials f and g, both of degree < n, and an
integer ¢, one can compute f¢ mod g in deterministic time @(nlog {) using
the “binary method” [2, pp. 3-4]. The roots of a polynomial of degree < n
over F, can be computed in time O(nlogq) [1, Theorem 5]. Without using
fast algorithms, the running time for this task is O(n? logn logq). Moreover,
for any given d one can find an irreducible polynomial of degree d over I, and
hence construct the field Fya via an algorithm that runs in time O(n%logq) [1,
Theorem 3].

In this section we present an algorithm which solves the following problem:
given a polynomial H(z,y) in two variables of degree m in z and degree b
in y over a finite field F, and a positive integer k, find all polynomials f in
z of degree at most k such that H(xz, f(x)) = 0 mod z**!. For simplifying
assertions on the running time we will assume the following.

Assumption 1. H is a bivariate polynomial whose degree b in y satisfies
b < k. We further assume that logq < k, and that H is not divisible by x.

Our algorithm is a modification of Kaltofen’s [6] and is based on the
following simple idea: let H = Y_:" | H;(y)z*. We are looking for fy,... , fi €
F, and vy, ... ,¢r € F,[y] such that

(= fo— fiz — - — fu2®) (W0 + 12 + -+ + pa*) = "
Ho + Hiz + - -+ + Hpz® mod zF+1.

fo is found by factoring Ho over Fy. If Hy is squarefree, then multiplying out
and comparing the “coefficients” of ' for ¢ =0, ... , k will successively reveal

fla"' 7fk-

Algorithm 2. On input a bivariate polynomial H = Y i*  H;(y)z' over
the field B, such that Ho(y) is squarefree, and an integer k > 1, the algo-
rithm outputs a list fV, ..., f) of polynomials of degree < k such that
H(z, f9(z)) = 0mod 2"t for j=1,...,s.

(1) Find all roots of Hy in . Call them p1,... ,Bs. If s = 0, then terminate
the algorithm and output the empty set.

(2) Fort=1,...,s do
(a) Set S := Bq.
(b) Fori=0,...,k compute h; := H;(3).
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(C) Set f0 = /B: Yo = (y - ﬂ); ¢0 = HO/(y _6): Tlo = H(I)(B)
(d) Fori=1,...,k compute

0 = hi — i1 — -+ — 901'71771’
o
_Hi—piho— - —p19i 1
,()bi = )
®o
;== d}l(ﬂ);
fi = =i

Theorem 3. The above algorithm computes its output in time O(k2b?).

Proof. Let us first prove correctness. Fix £. We will show by induction on
that

i i
Z ja Z Y2’ | = H(z,y) mod z+.
=0 Jj=0

The assertion is true for ¢ = 0: p9 = Hy. Suppose now that the assertion
is true for 4 — 1. We only need to show that pot; + -+ + p;100 = H;. But,
since 19 # 0 by the assumption of squarefreeness of Hy, this is equivalent to

i = Hi(B) —p1mi-1(B) — - - — pi—1m (B)
' 10 (B)

i = Hi —pitho — -+ = p1¢hia
' Yo

which is exactly what is computed in the most inner loop of the algorithm.
Stated in terms of f, this result shows that

(y—fo— fiz—- = fix") (o + Y17 + -+ - + ¢y2*) = H(z,y) mod z* .

Hence, H(z, f) = 0 mod z**!.

For assessing the running time, note first that computing the f3; uses
O(b? log blog q) operations. Computation of the h; takes at most kb operations
using Horner’s rule. In the inner loop (d) computing ¢; uses O(i) operations,
computing ; uses O(bi) operations (note that each H; and each ¢; is of
degree at most b) and computing n; uses another O(b) operations. Hence,
steps (a) to (d) use O(k?b) operations, which shows that the cost of Step (2)
is O(k?b?). Since log g < k by our general assumption, the result follows. O

Remark 4. Even if Hy is not squarefree, the above algorithm works for a
particular root 8 of Hy aslong as (3 is a simple root. In that case, the algorithm
finds a solution f of H(z, f) = 0 mod z**! with f(0) = /3 in time O(bk?).
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We proceed with an example. Let

Hz,y) ="+ + P2 + (' +® +y + D2® + (0® + % + Da? +
W +y)z+y° +y' +9° +y
= H7.’E7 + HG.CIIG + H5.CL'5 + HQ.’L'2 + le + HO
over the base field F». As Hy(y) is squarefree, we can apply the foregoing
algorithm. We set k := 3, i.e., we are looking for those polynomials f € Fs[z]

such that H(z, f) = 0 mod z*. One root of Hy(y) over Fy is § := 0. Applying
our algorithm we then obtain

o=y, o=y +y*+y*+1Lm=1,fo=0,

901:0;1/11:1/‘*'1, 771217f1=0,
(,02:1,'(/12:!!3, 772:07f2:1a
903:05 f3:0

Hence, this setting of 3 yields the polynomial f = x2. Another root of Hy is
1. For this root we obtain

wo=y+Lvo=yt+y +y,m=1, fo =1,

QOl:OJ ’lvbl:ya 7)1=1;f1=0;
302=17 ¢2=y3+17 U2=0;f2=1;
303:17 f3=]-7

which yields f = 2%+ 22+ 1. In both these cases we have in fact H(z, f) = 0.
Polynomial division results in the factorization

Hz,y)=@y+2") (y+ @ +2>+1) (* +y+ (@® +2+1)).

Let us now consider the case when Hy is not squarefree. We will use the
method of Newton polygons. Since we seek solutions modulo an arbitrary
power of z, it is natural to work in the ring F,[[z]] of formal power series
in z. Denote by F,[[z]][y] the ring of polynomials in y with coefficients in
F,[[z]], and by F,[[z,y]] the ring of formal power series in z and y. Note
that Fy[z,y] C Fy[[z]]ly] C Fy[[z,y]], and they are all unique factorization
domains. For any H € F,[[z,y]], its Newton polygon is defined to be the
lower convex hull of all points (7,7) with ¢;; # 0 and the point (+00, +00)
at infinity in the real Euclidean plane. For example, the Newton polygon of
H =y + (y* +y3)2? +y52* + 9?28 + 28 + 2° is shown in Figure 1. A Newton
polygon consists of (finite) line segments with nonzero slopes, called edges of
the polynomial. For the above example, H has two edges with slopes 1 and
1/2 respectively. The definition of Newton polygon given here is equivalent
to that of Cassels [3, Sections 6.3 and 6.4] (note that Fy[[z]] is a complete
local ring in which z is a prime). Denote each edge by a pair (p,£) where
p is its slope and /£ its length on the z-axis, and denote a Newton polygon
by a list of pairs [(p1,41),. .-, (pt, £:)] of all the edges. So the above Newton
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Figurel. Newton Polygon of H

polygon is denoted by [(1,2),(1/2,6)]. The notation also implicitly implies
that we are interested in the Newton polygon only up to a translation in the
real Euclidean plane.

The Newton polygon of a power series H carries a lot of information about
the factors of H. The following result is from Cassels [3].

Lemma 5. Let H € F,[[z]][y]-

(i) If G € Fy[[z]][y] divides H then the slope of every edge of G is also a
slope of H.

(i) Suppose that the Newton polygon of H is of the form [(p1,£€1), ..., (pt, 44)].
Then there exist G; € F,[[z]][y] with Newton polygon of the form [(p;, £:)],
1<i<t, such that H =Gy ---Gy.

In particular, each edge of H corresponds to a distinct factor of H. These
factors may still be reducible. To describe how they factor, we follow Mc-
Callum [7]. We need some more terminology. Let w be a rational number.
For a monomial ziy?, we define its w-degree to be i + wj. For a power se-
ries H € F,[[z,y]], its w-order is defined to be the minimum w-degree of all
nonzero terms of H, denoted by o, (H). For a polynomial H € F,[z,y], its
w-degree is defined to be the maximum w-degree of all nonzero terms of H,
denoted by d, (H). A polynomial is called a w-form if all of its nonzero terms
have the same w-degree. Obviously, any polynomial can be written as a sum
of w-forms. The initial w-form of H is the w-form in H that has the smallest
w-degree. It is straightforward to see that if p is a slope of H and w = 1/p,
then the edge with slope p corresponds exactly to the initial w-form of H
(see below). The next result from McCallum [7, Theorem 2.2] says that the
factors of the initial w-form give factors of H itself.

Lemma 6. Let w > 0 be a rational number and H € F,[[z]][y]. Suppose that
the initial w-form hg of H is not divisible by x. If ho = fogo for fo,g0 €
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F,[z,y] and ged(fo,g0) = 1 then there exist F,G € F,[[z]|[y] such that H =
FG, deg, F' = deg, fo, and fo (resp. go) is the initial w-form of F (resp. G).

We describe below more explicitly how an initial w-form factors. Let H €
Fy [[z]][y] Consider a typical edge of H, say from A = (¢, h) to B = (t—u, h+v)
where t > u > 0, h > 0 and v > 0 are integers. The slope of the edge is
p=v/u. Let £ = ged(u,v), uy = ufl, vy =v/l and w=1/p = u/v = uq [v1.
Any integral point on the edge AB must be of the form A + (—uq4,v14) for
some 0 < ¢ < £. All the terms of H that lie on the edge have the same
w-degree t + wh. Any point above the egde has higher w-degree. Thus the
initial w-form of H is

4 £ w1\ ¢
Hy = Zcixt—uizyh—i-vlz — pi—u. yh LY Zci (y ) = pl—u. yh . CL’uH(](Z)
=0 i

for some ¢; € F,, where z = y% /2% and Hy(z) = Zf:o c;z'. Note that

2% Hy(z) € Fy[[z]][y]. In the following, we call Hy the reduced polynomial
of Hy. Note that Hpy has degree £ and ﬁo(O) # 0, since H must have two
nonzero terms corresponding to the vertices A and B on its Newton polygon.
If ged(u,v) = 1 then there is no integral point on the edge AB except the
end points, and so AB is the shortest line segment with slope p = v/u. By
Lemma 5 (i), z%Hy can not factor (in F,[[z]][y]). In this case z*H, must be
(absolutely) irreducible and can be lifted to a factor of H by Lemma 5. Now
suppose £ = ged(u,v) > 1. Since Hy is a univariate polynomial, it factors
into linear factors over an extension field of F,. Each linear factor z — 8 of
Hy gives an absolutely irreducible factor y¥* — fz* of Hy.

Lemma 7. Let H € F,[[z]][y] with H(0,0) = 0 and H not divisible by y.
Then any factor y — f(x) of H, where f(x) € Fy[[z]] and f(0) =0, is of the
form

y — (Bz™ + terms of higher degrees in x)

where w > 0 is an integer and B € F, such that 1/w is a slope of the Newton
polygon of H and B is a root of the reduced polynomial of the initial w-form
of H.

Proof. Suppose f(z) = fiz+ fox? +--- € F,[[z]] and y — f(z) divides H. Let
w > 0 be the smallest integer such that f,, # 0. Then the Newton polygon of
y — f(z) has only one edge starting at (0,1) and ending at (w,0) whose slope
is obviously 1/w. By Lemma 5 (i), 1/w is also a slope of H. Note that the
initial w-forms are multiplicative, i.e., (FG)o = FyGo for F,G € F[[z]][y]-
Let Hy be the initial w-form of H. As y — fy,x®™ is the initial w-form of
y — f(x), we see that y — f,z¥ divides Hy. By the above argument, f,, is a
root of the reduced polynomial Hy of Hy. O

Lemma 7 shows clearly how to find solutions for our problem. Let H =
Hoy+Hiz+---+ Hypa™ € Fy[z,y]. We want to find all solutions f(z) € F,[z]
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for (1). Suppose that y = § is a root of Hy of multiplicity v > 1. Make a
change of variables y1 =y — § and G = H(z,y1 + ). To lift y — 8, we need
to find all factors of G of the form y; — fix — --- — frz®. If y1 | G then
y1 = y — B is a solution. In this case, we can divide out y; in G and denote
the resulting polynomial by G'. If G’(0,0) # 0 then G has no other factor of
the form y; — fix — - -- — frz®. So we may assume that G is not divisible by
y; and G(0,0) = 0. Thus G is of the form of H as in Lemma 7 with respect
to x and y;. Compute the Newton polygon of G (with respect to = and y;).
We find all the egdes of G with slopes of the form 1/w for some integers w.
For each such edge, find all the linear factors y; — S12% of the initial w-form
Gy of G where 8, € F, is a root of the reduced polynomial Go of go. When
G has no such edges or G has no roots in F, then y; = y — 3 can not be
lifted to a factor y — f(z) of H with fo = B. If By is a simple root of Gy,
we will show below how to lift such a partial solution. So suppose that f;
is a multiple root. Make another change of variables yo = y; — f12* and let
G1 = G(z,y2 + B1z¥). We can compute the Newton polygon again for Gy
and repeat the above procedure. For G1, we need only to consider the edges
of slopes 1/wy with wy; > w, so that higher powers of z will be added in
the changes of variables. Since the w’s increase at least by 1 each time and
we only need powers of z up to k, this procedure will stop after at most k
iterations. As is described below, all such partial solutions can be lifted to
true solutions.

We illustrate this method by means of an example. Let H be as in the
above example and we compute over Fy. The first change of variables is not
needed. H has two edges of slopes 1 and 1/2 respectively. For the edge of slope
1, w = 1 and the initial w-form of H equals Hy = y° + y3z? = y3(y? + 2?) =
y3(y +)%. So B =1 is a multiple root. Let y; = y — x and

G =H(z,y1 +z) =2° +2° + 4’2" + (y° + 1)2° + y'a® + yP2* +y?2%+
W'+ +y'e +o°

The Newton polygon of G is shown in Figure 2. Note that G has two edges
of slopes 1 and 2/3 respectively, none of them is of the form 1/w; with w;
an integer > w = 1. Hence y — z can not be lifted to a factor y — f(z) of H
with fo =0 and f; = 1. Consider the edge of H with slope 1/2. Then w = 2
and the intial w-form is Go = y?z? + 28 = 28(23 +1) = 28 (2 + 1) (22 + 2 + 1)
where 2 = y/z%. As 8 = 1 is a simple root of 2% + 1, y + z? can be lifted to
a factor of H. Therefore H has only one solution which is a lift of y + z2.

Algorithm 8. (Finding partial solutions) On input H € Fylz,y] and an
integer k > 1, this algorithm compute o list L of all triples (w, 3, g) where w
is oo or an integer > 0, B € By, and g € Fy[z] is a polynomial such that if
w = oo then H(z,g) = 0 mod z**!, and if w < oo then B is a simple root of
the reduced initial w-form of H(x,y + g).

(0) Initialization: w := 0, g :== 0, and L = {}.
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Figure2. Newton Polygon of G

(1) Compute the initial w-form Hy of H and write it in the reduced form
Hy € F,[2]. Find all the roots § of Hy in T, .

(2) For all roots B from Step 1, do the following:
(a) If B is a simple root then L := LU {(w, 8,9)};
(b) If B is a multiple root then compute

H := H(z,y + Bz*) mod ¢!, and g := g + Ba®.

If y divides H then L := LU (00, ,9) and set H := H/y® where a is
the largest integer such that y* | H.

(i) Compute the Newton polygon of H and the slopes of the edges.
(ii) For each slope of the form 1/d with d > w where d is a positive

integer, set w :=d and go to Step (1).
(3) Return the list L.

It is important to note that Step (2) of the algorithm is executed in parallel
for all roots 8. This means that the algorithm traverses the computation
tree in a breadth-first fashion. A partial solution is built up on each path
separately. One can implement the algorithm more efficiently in a depth-first
fashion.

The algorithm returns two types of partial solutions (w, 3, g). For w < oo,
we will show below how to lift g to a solution f modulo any power of x. For
w = 00, g is already a solution modulo z*+!. In the latter case, however, g
may not in general be liftable to a solution modulo a higher power of z.

Theorem 9. Algorithm 8 correctly returns all partial solutions with O(b3k?)
operations.

Proof. The correctness follows from the discussion above. On the running
time, the dominant cost is at Step (2b) for updating H and computing New-
ton polygons. Since H has at most bk nonzero terms, H(z,y+ 8z*) mod z*+!



222 S. Gao and M. A. Shokrollahi

can be computed by Horner’s rule (on y) in time O(b%k), and the Newton
polygon of H can also be computed in this time. Each # here represents a
term in a potential solution. Since H has at most b solutions and each one
has at most k terms, Step (2b) is executed at most bk times. So the whole
algorithm runs in time as claimed. O

Remark 10. When the degree b in y of H is large, Algorithm 8 can be im-
proved by the following strategy. By Lemma 5, each edge of H corresponds
to a factor of H. Only the factors of edges with slopes of the form 1/w with
w an integer can have factors linear in y. Hence one can factor H at each
stage according to the edges of the Newton polygon. Then for each factor
of an edge with slope 1/w, make a translation of variables and repeat the
same procedure to the new polynomial. Since the degree in y of the factors
decreases at each stage, this modified version of Algorithm 8 will be faster.

Finally, we show how to lift the partial solutions (w,f,g), w < oo, re-
turned by Algorithm 8. McCallum [7] discusses a more general case. Since
we are dealing with linear factors, the algorithm here will be much simpler
and in fact it will be exactly Algorithm 2.2. Let G = H(z,y + g), which is
computed at Step 2.b in Algorithm 8. Write G into a sum of w-forms

G:Gu+Gu+1+"'+Gu+v

where u = 04 (G), u + v = dy(G), and G; is either zero or a w-form of w-
degree i for u < i < wu + v. So G, is the initial w-form of G. Note that G; is

of the form ,
: Y\
Gi =z’ Z Cj (ﬂf_w)
=0
for some integer £, where c; € . Let

¢
Gi= Z c;z? € Fyz]
=0

where z = y/z*. Then
G =2YGy + Guy1z + - - - + Gugoz?).

Note that G, is equal to the reduced polynomial of G, up to a factor of
a power of y. By the design of Algorithm 8, § is a simple root of G, and
y — Bz® is a factor of G,. We want to find fo = 8, f1,..., fr—w € Fy such
that

(y — fox® — frz“ ™ — - — fr_wa®)p = G mod 2! (2)

for some ¢ € Fy[z,y]. Since 0,(G) = u and o,(y — f(z)) = w, we have
0w (1) = u—w. If we write ¥ into a sum of w-forms and use the reduced form
as we did for G, then we have

Y =3 (o + P17+ -+ + Pp_wat )
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where 1; € F,[2] of appropriate degrees. Now divide the equation (2) on both
sides by z*, we have

(2= fo— fiz =+ = frow@®™") (o + 1o + -+ hp_wah ™) =

Gu+ Gup1z + - + Guppx? mod zh+1-u,

This is exactly the type of the equation (1) we started with. Since 3 is a
simple root of G, Algorithm 2.2 can be applied to find a solution f(z) =
fot fiz+ -+ fr—wx®™¥ € F,[z] with fo = B for the above equation. Then
g+ z% f(z) is a solution for the equation (1).

Theorem 11. Algorithms 2 and 8 find all solutions of the Equation (1) in
time O(b3k?).

Proof. Since Algorithm 2 lifts a partial solution in time O(bk?) and there are
at most b solutions, all the solutions of (1) can be found in time O(b*k?). O

Example. Consider the polynomial
H=2"+y+1)e’ +a' +2° + (" +9)0" + %z + (y" +°)

over Fy. Hy = 4% +y* = 4°(y + 1) has a simple root y = 1 and a triple root
y = 0. The first one can be lifted to a true solution by Algorithm 2.2. To lift
the second one, we need to find the Newton polygon of H, which happens to
have only one edge of slope 1. So let w = 1. The initial w-form of H is

ho =y* +y’z + yz® + 2° = :1:3(% +1)%.

Thus 8 = 1 is a triple root of hy. Make a translation of variables y; = y — z.
Then

G = H(z,y1 + 2) = 2°y1 + 2%y} + yiz® + 2'y1 + v + 4l
=y1 (2 + 2%y7 + p12® + 2 + Y] + ).

Hence y; = y+z is a solution of H (modulo any power of z). Let G; = G/y;.
Its Newton polygon has one edge of slope 1/2. Let w = 2. Then the initial
w-form of G is

g0 = yi +at =y /2” +1)%
So B =1 is a double root of gg. Make another translation of variables ys =
y1 — x2 and

Gz = Gi(z,y2 +2°) = 2'y2 + 122° + y3 + ¥5 = 12(a* + 2° + 42 + 93).

So ya = y1 —2% = y—x— 22 is solution (modulo any power of x). The Newton
polygon of G3 = G2/y2 has an edge of slope 1/3. Let w = 3. Then the initial

w-form of G3 is y2 + 2° = 2°(y? /x> + 1) for which 8 = 1 is a simple root. So
ys — 23 = y —x — 22 — 2% can be lifted to a solution modulo any power of
z. In total there are four solutions: y — z, y — x — 2, and lifts of y — 1 and

y—x—a2—23.
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3 The General Case

In this section we assume familiarity with basic concepts from the theory
of algebraic curves. (See, e.g., [10].) Let X be a nonsingular curve given
as the zeroset of an absolutely irreducible polynomial F' € F,[z,y] and let
R :=TF,[z,y]/(F) denote its coordinate ring. Let G be a divisor on X defined
over F, and let L(G) denote the linear space of G. Assume that we are given
a basis ¢1,...,p¢ of L(G) such that each ¢; € R. We are interested in
computing the roots in L(G) of a polynomial

H(T)=upT + -+ uiT + up

with coefficients u; € R. The algorithm we will present below is a gener-
alization and simplification of that stated in [9] for polynomials of degree
b=2.

Assumption 12. For the rest of this section we will assume that deg F' =:
D > 3, that k := degG > 2D?, that the basis functions @; of L(G) are
represented modulo F as bivariate polynomials of degree < B, and that the
functions u; are represented modulo F' as bivariate polynomials of degree < C'.
Furthermore, we assume that b,logq < k.

The first step of the algorithm to be presented below consists of finding
an Fja-rational solution p = (a,b) of F(z,y) = 0 where d > k and where
either a or b is a primitive element of the extension F 4 /F,. We call p an
(affine) point of X (or of F) of degree d over F,.

Algorithm 13. On input an irreducible nonsingular bivariate polynomial
F(z,y) over F, of degree D and an integer d > 2D? the algorithm computes
an affine point p of the zeroset of F' of degree d over IFy.

(1) Construct the field Fya.

(2) Randomly select an element ¢ of Fya until a primitive element of F 4 /T,
is found.

(3) Test whether g(¢,y) has a zero yo in Fya. If yes, then output p = ({, yo).
If not, then test whether g(x,() has a zero xo in Fya. If yes, then output
p = (z0,(). If not, then go back to Step (2).

Theorem 14. The above algorithm correctly computes its output in time
O(d®>Dlogq + d®).

Proof. Let N; denote the number of solutions in ]F‘g,- of F(z,y) = 0. We first
prove that

|N; — ¢'| < D?¢*/2. (3)

Since F' is nonsingular, the genus g of the zeroset of F'is (D —1)(D —2)/2 [4,
Chap. 8, Prop.5]. The number N; of F,: -rational points of the zeroset X of F
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in the projective plane over F, satisfies |N;—q*—1| < 2gq*/? by the Hasse-Weil
inequality. Let F (X,Y, Z) be the homogenized version of F. The number of
If,: -rational points of & in the projective plane over IF;; which have Z = 0 is
obviously upper bounded by 2D. As a result we have N; < N; + 2D, which
gives us

¢'+1—(D-1)(D-2)¢"/*~2D < N; < ¢'+1+(D-1)(D-2)¢"/* < ¢'+D*¢"/>.

It remains to show that ¢*4+1—(D —1)(D—2)¢"/?—2D > ¢' —D?¢*/?. A simple
manipulation leads to the equivalent condition ¢*/2 > (2D—1)/(3D—1) which
is trivially true, as D > 3 by Assumption 12.

Next, we compute a lower bound for the number N of those solutions
(a,b) of F(a,b) = 0 such that a or b is primitive. Obviously, N = Ny —
Zad,kd Ny > Ng— Z%i/fj Ny, since an element of F,a is primitive iff it does
not belong to any proper subfield of F . Use of (3) yields

N > q% — D?¢%? — QL/2 —1 VaD? ¢ -1
q—1 Va—1
> gt — ¢¥*(D* + q + \/qD*q¥*).

The number of primitive elements of Fya is ¢* 3", 4 ;44" > ¢* =3 }i/lzj qt >

g® — q?/**1. As a result, a random element in F,a is primitive over F, with

at most a constant probability. This shows that Step (2) is performed, on
average a constant number of times. After this step we will have obtained a
uniform randomly chosen primitive element of F,a. The probability p that
a random primitive element of Fya is either the z- or the y-coordinate of a
solution of F(z,y) = 0 satisfies

S 1 _q—d/2(D2 +q+\/§D2q_d/4) S 1 _q—d/2(2D2 +C])
pz 1— qfd/2+1 = 1— qfd/2+1

(Note that ¢~%* < ¢='/2)) Now observe that 2D? < d < ¢¥* and that
(2D? + q) < 2¢%*. This implies

S 1= 2¢~ 44
P2 51+
1— qfd/2+1

Hence, Step (3) is performed on average a constant number of times.

Let us now focus on the running time. Step (1) uses O(d? log q) operations.
Testing primitivity of an element ( is done by computing 1,¢, ... ,(?! in the
polynomial basis (O(d?) operations), and testing linear independence of these
elements as vectors (O(d®) operations). So, Step (2) uses O(d®) operations.
Each iteration of Step (3) consists of computing F(¢,y) (or F(z,()) which
uses O(D?) operations over Fa, i.e., O(dD?) operations over F,, and of
computing the roots of a univariate polynomial of degree < D over Fya which
takes O(Dlogq?) operations over F,, i.e., O(d*>Dlogq) F,-operations. O
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Remark 15. The assumption d > 2D? in Algorithm 13 is related to applica-
tions in coding theory where one assumes that k = deg G > 2g— 2, where g is
the genus of the curve. It can be weakened at the expense of a more tedious
analysis. However, we remark that points of degree d may not exist for all
values of d. For instance, the Hermitian curve 22 = y? 4+ y does not have any
points of degree 2 over F,.

The final algorithm now follows.

Algorithm 16. Given an irreducible algebraic nonsingular bivariate poly-
nomial F, a divisor G of the zeroset of F' defined over I, basis functions
@1,... .0 of L(G) and functions uo,... ,us € Fi[z,y]/(F) satisfying the
conditions in Notation 12, the algorithm computes a list fU,..., ) of at
most b functions in L(G) which includes any f € L(Q) such that H(f) =0,
where H =, u;T".

(1) Using Algorithm 13 compute an affine point p of degree d = k + 1 over
F, of the zeroset of F.

(2) Compute p1(p),--- ,pe(p) and represent them as d-dimensional vectors
Vi,...,Vv¢ over IF,.

(3) Compute the values uo(p), ... ,us(p).

(4) Compute the zeros By,...,08s of the polynomial uo(p) + ui(p)z + --- +
up(p)x® in the field Fya and represent them as d-dimensional vectors
by,...,b, over F,.

(5) Compute vectors hy = (hi;,...  he;)" € Fo,i=1,... s such that

(Vi [---ve)(hy|---[hg) = (by|---[by)
over B, and output 9 = hy ;01 + -+ + hy i
Theorem 17. The above algorithm correctly computes its output in time
O(k*Dlogq + k* + k*B? + kbC” + k*blogq).

Proof. We first prove correctness. If f € L(G) is such that H(f) = 0, then we
have that E?:o ui(p)f(p) = 0,i.e., f(p) is one of the §;. Writing f = >~, hip;,
we see that hq, ..., hy satisfy the equations in Step (5). We now prove that,
for each i, the solution to this system is unique. Indeed, two solutions would
give rise to functions f,g € L(G) defined over F,; such that (f — g)(p) = 0.
But then (f — g)(p?) = 0 for all the d different automorphisms o of Fa /F,.
This shows that f — g has more zeros than poles, which implies that f = g.
We infer that f is one of the f(9)’s.

Step (1) of the algorithm uses O(d?>Dloggq) operations in F, by Theo-
rem 14. Each ¢; is represented by a bivariate polynomial of degree < B.
So, computing ;(p) uses, in the worst case, O(B?) operations in F, i.e.,
O(dB?) = O(kB?) operations in F,. Since there are £ of these functions and
¢ < k+1, Step (2) requires O(k?B?) time. Similarly, computing the wu;(p)
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uses O(bkC?) F,-operations. Step (4) uses O(blogq?) = O(dblogq) opera-
tions in F 4, i.e., it requires O(k*blog q) F,-operations. The cost of Step (5)
is O(b?k): it consists of reducing a d x 2s-matrix to echelon form using row
operations, and s < b. O

Remark 18. (1) In applications to coding theory one usually has a fixed divi-
sor G (corresponding to fixing the code) and one wants to compute zeros
in L(G) for different polynomials H. In this case one can compute the
point p and the evaluation of the ¢; at p in advance. Neglecting the cost
of this preconditioning, the running time of the algorithm would then
be O(kbC? + b2k + k?blogq). Assuming that b is a constant and that
C,logg < k (both reasonable assumptions in list decoding scenarios),
this gives a running time of O(k?).

(2) If the functions u; and ¢; are not polynomials in z and v, it is still possible
(though tedious) to analyze the running time of the algorithm. The only
major change in the algorithm is to ensure that the point p found has
the property that the functions u; can be evaluated at it.

(3) The assumption that the curve X' has a nonsingular plane model was
only needed to bound the number of solutions of F'(z,y) over extensions
of F;. One can also bound these numbers without this assumption [8] and
can obtain similar (though a little worse) results.

As was pointed out in Remark 15, the assumption d > 2D? for the ex-
istence of points of degree d can be weakened. In the next example, we will
find a point of degree 6 of the degree 5 Hermitian curve over Fy given by
the equation z° = y* + y. Let Q be the common pole of z and y. We are
interested in zeros of the polynomial

HT)=T*+(x+y+1)T?+ (2® +y)T + (2%y + 2° + 2y + %)
=73 + u2T2 + w1 + ug
among the elements of L(5Q) = (1,x,y). The first step consists of finding a
point of degree 6. We represent Fys as F (¢) with (6 + ¢ + 1 = 0. Applying
Algorithm 13, we find p = (¢2 + ¢, ¢* + ¢?).
The next step of the algorithm is to find the zeros of the polynomial
T% +up(p)T? +ur (p)T +uo(p) = T° + (¢* + (+ 1)T? + ¢

in Fys. They turn out tobe 81 = 2+, Bo = +(¢+1,and B3 = C* + (.

Now we represent elements of Fpe with respect to the F,-basis 1,(,...,¢?
and solve the system of equations given in Step (5):

100 010

010 110

011 hi,1 hio higs 110

000 ha1 haahas | =1000

001 hs.1 hsa h33 001

000 000

000 000
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Solving this system yields the solutions (0,1,0)*, (1,1,0)%, and (0,1,1)+
for (hi, ha, hs)® which leads to the functions f) = z, f® = z 4+ 1, and
f® =z 4y
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Remarks on codes from modular curves:

MAPLE applications

David Joyner and Salahoddin Shokranian
August 12, 1999

Abstract

This paper is an exposition of some aspects of geometric coding
theory and Goppa codes on modular curves.

1 Introduction

Suppose that V' is a smooth projective variety over a finite field k. An
important problem in arithmetical algebraic geometry is the calculation of
the number of k-rational points of V| |V(k)|. The work of Goppa and others
have shown its importance in geometric coding theory as well. We refer to
this problem as the counting problem. In most cases it is very hard to find
an explicit formula for the number of points of a variety over a finite field.
When the variety is a “Shimura variety” defined by certain group theoret-
ical conditions (see §2 below), methods from non-abelian harmonic analysis
on groups can be used to find an explicit solution for the counting problem.
The Arthur-Selberg trace formula [S], provides one such method. Using the
Arthur-Selberg trace formula, an explicit formula for the counting problem
has been found for Shimura varieties, thanks primarily to the work of Lang-
lands and Kottwitz ([Lanl], [K1]) *. Though it may be surprising and indeed
very interesting that the trace formula allows one (with sufficient skill and
expertise) to relate, when V' is a Shimura variety, the geometric numbers

1For some introductions to this highly technical work of Langlands and Kottwitz, the
reader is referred to Labesse [Lab], Clozel [Cl], and Casselman [Cas2].
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|V (F,)| to orbital integrals from harmonic analysis ([Lab], for example), or
to a linear combination of coefficients of automorphic forms ([Gel], for ex-
ample), or even to representation-theoretic data ([Cas2], for example), these
formulas do not yet seem to be helping the coding theorist in any practical
way that we know of.

However, another type of application of the trace formula is very useful.
Moreno [M] first applied the trace formula in the context of Goppa codes
to obtaining a new proof of a famous result of M. Tsfasman , S. Vladut,
T. Zink, and Y. Thara. (Actually, Moreno used a formula for the trace of
the Hecke operators acting on the space of modular forms of weight 2, but
this can be proven as a consequence of the Arthur-Selberg trace formula,
[DL], §11.6.) This will be discussed below. We are going to restrict our
attention in this paper to the interplay between Goppa codes of modular
curves and the counting problem, and give some examples using MAPLE,
where the programs using for the calculation is written in MAPLE by the
first named author. In coding theory, curves with many rational points over
finite fields are being used for construction of codes with some good specific
characteristics. We discuss the Goppa codes, first from an abstract general
perspective then turning to concrete examples associated to modular curves.
We will try to explain these extremely technical ideas using a special case
at a level to a typical graduate student with some background in modular
forms, number theory, group theory, and algebraic geometry. For an approach
similar in spirit, though from a more classical perspective, see the book of C.

Moreno [M].

2 Shimura curves

In this section we study arithmetic subgroups, arithmetical quotients, and
their rational compactifications. Thara first introduced Shimura curves, a
rational compactification of I'\H where I' is a particular discrete subgroup,
from a classical perspective. We shall recall them from both the classical and
group-theoretical point of view. The latter perspective generalizes to higher
dimensional Shimura varieties [Del].
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2.1 Arithmetic subgroups

We assume that G = SL(2) is the group of 2 x 2 matrices with entries from
an algebraically closed field Q. In particular the group of R-points of SL(2)
for a subring R C €, with unit element 1 is defined by

SL(2,R) ={g € M(2,R) | det(g) = 1},

where M(2, R) is the space of 2 x 2 matrices with entries from R. We now
define congruence subgroups in SL(2,Z). Let SL(2,Z) be the subgroup of
SL(2,R) with integral matrices. Consider a natural number N, and let

v ={| ¢ 5] estem Gl |

We note that the subgroup I'(N) is a discrete subgroup of SL(2,R), which
is called the principal congruence subgroup of level N. Any subgroup of
SL(2,Z) that contains the principal congruence subgroup is called a congru-
ence subgroup.

In general an arithmetic subgroup of SL(2,R) is any discrete subgroup I’
that is commensurable with SL(2,Z), where commensurability means that
the intersection I' N SL(2,Z) is of finite index in both I' and SL(2,Z). The
group I'(N) has the property of being commensurable with SL(2,Z).

2.2 Riemann surfaces as algebraic curves

Let us recall that the space H= {z € C | Im(z) > 0} is called the Poincaré
upper half plane. This space plays fundamental role in the definition of the
modular curves. Note that the group SL(2,R) acts on H by

az +b
cz+d’

gz = (az—l—b)(cz—l—al)_1 =

where z € H, g = [ Z Z ] € SL(2,R).

We emphasize that the action of SL(2,R) on H is transitive, i.e., for
any two points wy,ws € H there is an element g € SL(2,R) such that
we = ¢ - wy. This can easily be proved. We also emphasize that there are
subgroups of SL(2,R) for which the action is not transitive, among them the
class of arithmetic subgroups are to be mentioned. For example, the group
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SL(2,Z) does not act transitively on H, and the set of orbits of the action
of SL(2,Z) on H, and similarly any arithmetic subgroup, is infinite. We call
the arithmetic quotient T\H the set of orbits of the action of an arithmetic
subgroup I' on H.

Example 1 Take I' to be the Hecke subgroup I'o(N) defined by

Fo(N) = {[ ‘ Z} € SL(2,7)|c= O(modN)},

for a natural number N. This is a congruence subgroup and Yo(N) = I'o(N)\H
is an arithmetic quotient. Such a quotient is not a compact subset, nor
a bounded one, it is however a subset with finite measure (volume) under
the non-FEuclidean measure induced on the quotient from the group SL(2,R)
which is a locally compact group and induces the invariant volume element

dzy/;dy, where x,y are the real and the complex part of an element z € H.

We now recall the basic ideas that turns an arithmetic quotient of the
form I'\H into an algebraic curve. Let I' C SL(2,Q) be an arithmetic
subgroup. The topological boundary of H is R and a point co. For the
rational compactification of H we do not need to consider all the boundaries
R and {occ}. In fact we need only to add to H the cusps of I' (a cusp of
' is a rational number (an element of Q) that is fixed under the action of
an element vy with the property that |tr(y)| = 2). Any two cusps z1, 23 such
that § -z = x; for an element § € I' are called equivalent. Let C(I') be
the set of inequivalent cusps of I'. Then C(T') is finite. We add this set to
H and form the space H* = HU C(I'). This space will be equipped with
certain topology such that a basis of the neighborhoods of the points of H*
is given by three type of open sets; if a point in H* is lying in H then its
neighborhoods consists of usual open discs in H, if the point is oo, i.e., the
cusp oo, then its neighborhoods are the set of all points lying above the
line I'm(z) > « for any real number «, if the point is a cusp different than
oo which is a rational number, then the system of neighborhoods of this
point are the union of the cusp and the interior of a circle in H tangent to
the cusp. Under the topology whose system of open neighborhoods we just
explained, H* becomes a Hausdorff non-locally compact space. The quotient
space ['\H* with the quotient topology is a compact Hausdorfl space. We
refer to this compact quotient as the rational compactification of I'\H.
For a detailed discussion we refer the reader to [Shim].
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When the arithmetic group is a congruence subgroup of SL(2,Z) the
resulting algebraic curve is called a modular curve. For example, the ra-
tional compactification of Y(N) = I'(N)\H is denoted by X(N) and the
compactification of Yo(N) = I'o(N)\H by Xo(N).

Example 2 Let N = 1. Then I' = I'(1) = SL(2,Z). In this case C(I') =
{oc}, since all rational cusps are equivalent to the cusp oo. So H* = HU{oo},
and T'\H* will be identified by I\H U {cc}. This may be seen as adding oo
to the fundamental domain F1 =F of SL(2,Z), that consists of all complex
numbers in z € H with |z| > 1 and |Re(z)| < .

The rational compactification of I'\H turns the space I'\H* into a com-
pact Riemann surface (cf. [Shim]) and so into an algebraic curve (cf. [Nara],
or [SS]).

In general it is easiest to work with those arithmetic subgroups which
are torsion free and we shall assume from this point on that the arithmetic
subgroups we deal with have this property. For example I'(N) and TI'o(N)
for N > 3 are torsion free.

2.3 An adelic view of arithmetic quotients

Consider the number field Q, the field of rational numbers. Let Q, be the
completion of Q under the p-adic absolute value |...|,, where |a/b|, = p™

whenever a, b are integers and a/b = p" H ¢, n,e; € Z. Recall that

{#£p prime
under the ordinary absolute value the completion of Q is R. The ring of

adeles of Q is the locally compact commutative ring A that is given by:

A ={(2e0,22,---) ER X H Q, | all but a finite number of z, € Z,},

p

where Z,, is the ring of integers of Q, (as it is well known Z, is a maximal
compact open subring of Q,). An element of A is called an adele. If A;
denotes the set of adeles omitting the R-component z.,, then Ay is called
the ring of finite adeles and we can write A = 3DR x A;. Under the
diagonal embedding Q is a discrete subgroup of A.

We now consider the group GG = GL(2). For a choice of an open compact
subgroup Ky C G(Ay), it is known that we can write the arithmetic quotient
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(which was originally attached to an arithmetic subgroup of I' C SL(2,Q))
as the following quotient

YV(Ky) = GIQ\H x (G(A)/Ky)] =T\H, (1)
where
I'=G(Q)NG(R)K;. (2)

Thus our arithmetic subgroup I' is completely determined by K. From now
on we assume Ky has been chosen so that I' is torsion free.

Definition 3 Let G = GL(2). To (i is associated the Shimura variety Sh(G)
as follows. Let N > 3 be a natural number. Let T'(N) be the congruence
subgroup of level N of SL(2,Z), and K = SO(2,R) the orthogonal group of
2 x 2 real matrices A with determinant 1 satisfying 'AA = I,. Then
Y(N)=T(N)\H=ZT'(N)\GR)/K.
We call this the modular space of level N. Let
Ky(N)={g9 € G(]] Z,) | g = I(mod N)}

P

be the open compact subgroup of G(Ay) of level N. Then the modular
space of level N can be written as:

Y(N) = GQ\G(A)/ KK (N) = GIQ\H x (G(A;)/K;(N))].

Thus
X(Ky(N))=ZY(N).

Taking the projective limit over K¢(N) by letting N gets large (which means
K¢(N) gets small), we see that limy Y (N) = G(Q)\[H x G(Ay)]. Then the
(complex points of the) Shimura curve Sh(G) associated to G = SL(2) is
defined by

Sh(G)(C) = GIQ)\[H x G(A)]. (3)

Many mathematicians have addressed the natural questions

e What field are the curves X(N), Xo(N) defined over?
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e How can they be described explicitly using algebraic equations?

Regarding the first question, by the general theory of Shimura varieties
we know that for each reductive group G defined over Q satisfying the axioms
of §2.1.1 in [Del], there is an algebraic number field £ = Eg over which a
Shimura variety Sh((G) is defined [Del]. In fact, the Shimura curves X (V)

and Xo(N) are regular schemes proper over Z[1/N] (more precisely over

Spec(Z[1/N])) *
Regarding the second question, it is possible to find a modular polyno-
mial Hy(z,y) of degree

NHl—I—

p|N

for which Hy(z,y) = 0 describes (an affine patch of) Xo(N). Let

Gilq) = 2C(k) ,Zkl ",

where ¢ = ¢*™* 2 € H, 0,(n) = Zdr, and let
d|n

A(q) = 60°G4(q)® — 27 - 1402Gy(q —qH 1—q")

Define the j-invariant by

i(q) = 1728-60°G4(q)?/Aq) = ¢~ ' +744-+196884¢+21493760¢> +864299970¢° + .. .

(More details on A and j can be found for example in [Shim].) The key
property satisfied by Hy is Hy(j(q),7(¢")) = 0. It is interesting to note
in passing that when N is such that the genus of Xo(N) equals 0 (i.e.,
N €41,3,4,5,6,7,8,9,12,13,16, 18,25} [Kn]) then this implies that (z,y) =
(7(q),7(¢")) parameterizes Xo(N). In general, comparing g-coefficients al-
lows one to use a computer algebra system such as MAPLE to compute Hy

“This result was essentially first proved by Igusa [Ig] (from the classical perspective).
See also [TV], Theorem 4.1.48, [Casl] for an interesting discussion of what happens at the
“bad primes”, and Deligne’s paper in the same volume as [Casl].
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for relatively small values of N. However, even for N = 11, some of the
coefficients can involve one hundred digits or more. The cases N = 2,3 are
given in Elkies [E], for example. The paper by P. Cohen [Co] determines
the asymptotic size of the largest coefficient of Hy (normalized to have lead-
ing coefficient equal to 1). She shows that the largest coefficient grows like
Ne#(N) where ¢ > 0 is a constant. More practical equations for (some of)
the Xo(N) are given in T. Hibino and N. Murabayashi [HM], M. Shimura
[ShimM], J. Rovira [R], G. Frey and M. Miiller [FM], Birch [B], and the table
in §2.5 below.

For deeper study of Shimura varieties and the theory of canonical models
we refer the reader to [Del], [Lan2], and [Shim].

2.4 Hecke operators and arithmetic on Xy(V)

In this section we recall some well-known though relatively deep results on
Xo(N)(F,), where p is a prime not dividing N. These shall be used in the
discussion of the Tsfasman, Vladut, Zink, and Thara result later.

First, some notation: let S3(I'o(/V)) denote the space of holomorphic au-
tomorphic forms of weight 2 on I'o(N)\H. Let T}, : S3(I'o(N)) — So(I'o(N))
denote the Hecke operator defined by

z 41
), =z
p

€ H.

112) = f(0) + Y

Define T« inductively by
Tpk = Tpk—lTp — prk—2, T1 = 1,
and define the modified Hecke operators U, by
Up =Ty — plp—, U,=T,,

for k > 2. The Hecke operators may be extended to the positive integers by
demanding that they be multiplicative.

Theorem 4 (“Congruence relation” of Fichler-Shimura [M], §5.6.7) Let ¢ =
P, k>0 an integer. If p is a prime not dividing N then
[ Xo(N)(Fy)| =q+1—ay,

where

a, = Tr(U,).
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Example 5 One may try to compule the trace of the Hecke operalors T,
acting on the space of holomorphic cusp forms of weight 2, S3(I'g(N)), by
using either the Fichler-Shimura trace formula, which we give below (see
Theorem 6), or by using some easier but ad hoc ideas going back to Hecke
which work in special cases. One simple idea is to note that Sy(I'o(N)) is
spanned by simultaneous eigenforms of the Hecke operators (see for example,
Proposition 51 in chapter III of [Ko]). In this case, it is known that the
Fourier coefficient a,, p prime not dividing N, of a normalized (to have
leading coefficient a; = 1) eigenform is the eigenvalue of T, (see for example,
Proposition 40 in chapter I of [Ko]). If S3(I'o(N)) is one-dimensional then
any element in that space f(z) is such an eigenform.

The modular curve Xo(11) is of genus 1, so there is (up to a non-zero
constant factor) only one holomorphic cusp form of weight 2 in S3(T'o(11))
(see Theorem 8 below). There is a well-known construction of this form (see
[02] or [Gel], FExample 5.1), which we recall below. As we noted above, the
p-th coefficient a, (p a prime distinct from 11) of its Fourier expansion is

known to satisfy a, = Tr(T,). These will be computed using MAPLE.

Let ¢ = €*™*, z € H, and consider Dedekind’s n-function:
77(2) — e27riz/24 H(l . qn)
n=1
Then

f(z) =n(z) (112 [ (1 = ¢")*(1 = ¢,
n=1
is an element of S3(To(11)) . MAPLE gives
f(2)=q=2¢" = +2¢"+ " +2¢° —2¢" —2¢° —2¢"°

‘|‘q11_2q12‘|‘4q13‘|‘4q14_q15_4q16_2q17‘|‘4q18+2q20
‘|’2q21_2q22_q23_4q25_8q26‘|’5(]27_4q28---

o

3In fact, if we write f(z) = Z a,q" then
n=1
CE(S) — (1 _p—s)—l H (1 _ app—s +P1_2s)_1,

p#1l

is the global Hasse-Weil zeta function of the elliptic curve E of conductor 11 with Weier-
stass model y? + y = 23 — 2?2 [Gel], page 252.
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For example, the above expansion tells us that Tr(Ts) = Tr(Us) = —1. The
curve Xo(11) is of genus 1 cmd is isogenous to the elliptic curve E with

Weierstrass model y? +y = x> — 2%, Quer the field with p = 3 elements, Lhere
are | Xo(11)(F3)|=p+ 1 —=Tr(T,) =5 points in E(F3), including co:

E(F3) = {[070]7 [072]7 [170]7 [172]7 OO}

For a representalion-theoretic discussion of this example, see [Gel], §14.
For an example of an explicit element of S5(I'¢(32)), see Koblitz [Ko],

chapter 11 §5 and (3.40) in chapter III. For a remarkable theorem which

tllustrates how far this n-function construction can be extended, see Morris’

theorem in §2.2 of [R].

To estimate a,k, one may appeal to an explicit expression for Tr(7T,x)
known as the “Eichler-Selberg trace formula”, which we discuss next.

2.5 Eichler-Selberg trace formula

In this subsection, we recall the version of the trace formula for the Hecke
operators due to Duflo-Labesse [DL], §6.

Let k be an even positive integer and let I be a congruence subgroup as in
(2). Let S denote a complete set of representatives of G(Q)-conjugacy classes
of R-elliptic elements in I' (R-elliptic elements are those that are conjugate
to an element of SO(2, R), the orthogonal group). For v € S, let w(y) denote
the cardinality of the centralizer of v in I'. If r(8) = < _C(;Sr(lfg) (S:g;((z)) >
then let 6., € (0,27) denote the element for which v = r(6,,). Let 7,, denote
the i Jimage in G(Ay) of the set of matrices in GL(2,Ay) having coefficients

in Z = H Z, and determinant in mZ. Consider the subspace Si(I') C

p<oo

L*(T\ H) formed by functions satisfying

. f(’yz):(cz—l—d)kf(z),forall’y:(i fl) el,z€eH,

e f is a holomorphic cusp form.

This is the space of holomorphic cusp forms of weight k£ on H.
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Let

,  otherwise.

1, m is a square,
e(v/m) :{ 0 d

and let
5 i — L, @ = jv
“7 1 0, otherwise.

Theorem 6 (“Fichler-Selberg trace formula”) Let k > 0 be an even integer
and m > 0 an integer. The trace of T,, acting on Sp(1') is given by

k 1 1
_5 b (=22 _ L (k-1)/2
2,k ; + €( T2 5 m )
_ —1, (k—=2)/2 sin((k — 1)6,) _ pr-1
> v (@) > v
YESNTm dlm, d®><m

Remark 7 Let k = 2, m = p?, I' = I'o(N) and N — oo in the above
formula. It is possible to show that the Fichler-Selberg trace formula implies
I'r(Ty2) = g(Xo(N)) + O(1), (4)

as N — o0o. The proof of this estimate (see [M], chapter 5, or [LvdG], §V.4)
uses the explicit formula given below for g(Xo(N)) = dim(S2(I'o(N)), which

we shall also make use of later.

Theorem 8 (“Hurwitz-Zeuthen formula” [Shim]) * The genus of Xo(N) is
given by

G(Xo(N)) = dim(S,(To(N)) = 1+ 2 p(N) = 1pa(N) = 3115(N) = ol N),
where
((N) =[SL(2,Z)/To(N NH1+
p|N
4
14 (=), ged(4,N) =1,
o pwrp[ﬁmf (=), ged 4, N)
0 4N,

4The genus formula for Xo(N) given in [Shim] and [Kn] both contain a (typographical?)
error. The problem is in the ps term, which should contain a Legendre symbol (_74) instead
of (=1). See for example [Ei] for a correct generalization.
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-3
II 0+ (=), ged(2, N) =1 and ged(9, N) #9,
/’63(N) = p|N prime p

0, 2|N or 9|N,

poo(N) =Y é(ged(d, N/d)),

d|N

where ¢ is Fuler’s totient function and (5) is Legendre’s symbol.

The estimate (4) and the Eichler-Shimura congruence relation imply

[Xo(N)(Fye)| = p? + 1 = Tr(Tye — pl) = p* + 1 = Tr(T,2) + pim(Sa(To(V))
= 7+ 1 — (g(Xo(N) + O(1))) + pg(Xe(N)) = (p — g(Xe(N)) + O(1).

as N — 0.

2.6 The curves X((N) of genus 1

It is known (see for example [Kn]) that a modular curve of level N, Xy(N),
is of genus 1 if and only if

N € {11,14,15,17,19, 20, 21, 24, 32, 36, 49}.

In these cases, Xo(/V) is birational to an elliptic curve £ having Weierstrass
model of the form

y? 4 arzy + azy = ° + agx’ + agx + ag,

with a1, ag,as, aq,a6. If E is of above form then the discriminant is given
by
A - —bgbg - 8[)2 - 27[)2 —|— ngb4b67
where
by = a} + 4ay, by = 2a4 + ayas, be = aj + 4as,

2 2 2
bs = ajas + 2aza6 — ayasas + aza; — aj.

The conductor ® N of F and its discriminant A have the same prime factors.
Furthermore, N|A ([Kn], [Gel]).

Some examples, which we shall use later, are collected in the following
table.

®The conductor is defined in Ogg [O1], but see also [Gel], §1.2, or [Kn], P. 390.
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level | discriminant Weierstrass model reference
11 -11 yi 4y =2 —2° [BK], table 1, p. 82
14 -28 y: 4oy —y=2° p. 391, table 12.1 of [Kn]
15 15 y:i4+T7ay+2y=a2>+42*+ 2| p. 65, table 3.2 of [Kn]
17 17 v 4+ 3zy=2+z p. 65, table 3.2 of [Kn]
19 -19 yV:+y=a+a2?+x [BK], table 1, p. 82
20 80 y:=a+2t -z p. 391, table 12.1 of [Kn]
21 -63 yV:+ay=2+z p. 391, table 12.1 of [Kn]
24 -48 yi=a—2+z p. 391, table 12.1 of [Kn]
27 -27 y?+y =2 p. 391, table 12.1 of [Kn]
32 64 y: =22z p. 391, table 12.1 of [Kn]
36 (see below) §4.3 in [R]
49 (see below) §4.3 in [R]

When N = 36, §4.3 in Rovira [R] gives y? = 2* — 42® — 622 — 42 + 1,
which is a hyperelliptic equation but not in Weierstrass form. To put it in
Weierstrass form, we use the Maple algcurve package ¢. This produces a
cubic equation in which the coefficient of z* is not one. Using the change-
of-variable y — 2y (which maps the curve Xy(36) to an isogenous one), we
obtain the Weierstrass form y* = 2°+64, provided p # 2. This has conductor
A = —1769472.

When N = 49, §4.3 in Rovira [R] gives y? = z*—22%—92?+10x — 3, which
is a hyperelliptic equation but not in Weierstrass form. As in the previous
case, we use the Maple algcurve package, which produces a cubic equation in
which the coefficient of z* is not one. Again, the change-of-variable y — 2y
(which maps the curve X4(49) to an isogenous one), yields the Weierstrass

form y? = 2® — 35z — 98, provided p # 2. This has conductor A = —1404298.

3 Codes

To have an idea of how the points of a curve over finite fields are used in the
coding theory we first recall the definition of a code.

Let A be a finite set, which we regard as an alphabet. Let A™ be the
n-fold Cartesian product of A by itself. In A" we define the Hamming

6More precisely, we use the WeierstrassForm command written by Mark van Hoeij.
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metric d(z,y) by:

d(:L‘,y) = d((xlv"' 7$n)7(y17"' 7yn)) = {1 | = # yitl-

We now assume that A” is equipped with the Hamming metric. Then by
definition a subset C' C A" is called an |A]-ary code. An important case
arises when we let A to be a finite field. Suppose that ¢ = p™ and F, is a finite
field with ¢ elements. In this case we may put A = F, and y = (0,--- ,0).
Then the weight of = is the Hamming length ||z|| = d(z,0) = |{¢ | 2; #
0}|. In particular a subset C' of F} is a code, and fo it is associated two
basic parameters: k = log, |C|, the number of information bits and
d=min{||lx —y|| | ,y € C,y # 0} the minimum distance. (A code with
minimum distance d can correct [41] errors.) Let

which measures the error correcting ability of the code.

3.1 Basics on linear codes

If the code €' C F} is a vector space over F, then we call ' a linear code.
The parameters of a linear code ' are

o the length n,
e the dimension k£ = dimg (C),
e the minimum distance d.

Such a code is called an (n, k, d)-code. Let ¥, denote the set of all (§, R) €
[0, 1]? such that there exists a sequence C;, 1 = 1,2, ..., of (n;, k;, d;)-codes for
which lim;_, ., §; = ¢ and lim;_,, R; = R.

The following theorem describes information-theoretical limits on how
“good” a linear code can be.
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Theorem 9 (Manin [SS], chapter 1) There exists a continuous decreasing
function

ag :[0,1] = [0,1],
such that

e a, is strictly decreasing on [0, %],
e a,(0) =1,
o z'fq;—lgxgl then ay(x) =0,

X

{6, R) €[0,1]2 | 0 < R < a,(5)}.

Not a single value of a,(x) is known for 0 < z < %! It is not known
whether or not the maximum value of the bound, R = a,(d) is attained by a
sequence of linear codes. It is not known whether or not o, (z) is differentiable
for 0 < 2 < ©L nor is it known if a,(z) is convex on 0 < = < q;—l However,
the following estimate is known.

Theorem 10 (Gilbert-Varshamov [MS], [SS] chapter 1) We have

ay(r) > 1 —=xlog,(q—1) —zlog,(z) — (1 —x)log, (1 — ).

In other words, for each fized ¢ > 0, there exists an (n,k,d)-code C (which
may depend on €) with

qg—1
R(C)+6(C) 2 1-6(C) log, (T =) =9(C) log, (8(C"))~(1=9(C") ) log, (1=4(C")) —e.
The curve (4,1 — 5logq(q;—1) —dlog,(d) — (1 —9)log,(1—4))) is called the
Gilbert-Varshamov curve. This theorem says nothing about constructing
codes satisfying this property! Nor was it known, until the work of Tsfasman,

Valdut, Zink and Thara, how to do so.

3.2 Some basics on Goppa codes

We begin with Goppa’s basic idea boiled down to its most basic form. Let
R denote a commutative ring with unit and let mq, mo, ..., m,, denote a finite
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number of maximal ideals such that for each 1 < i < n, we have R/m; = F,.

Define v : R — F by
v(z) = (z+mi,z+mg,...,x+m,), z€R

Of course, in this level of generality, one cannot say much about this map.
However, when R is associated to the coordinate functions of a curve defined
over F, then one can often use the machinery of algebraic geometry to obtain
good estimates on the parameters (n, k, d) of the code associated to ~.

Let V' be an irreducible smooth projective algebraic variety defined over
the finite field F,. Let F, (V') denote the field of rational functions on V.
Let P(V) denote the set of prime divisors of V, which we may identify
with the closed irreducible subvarieties of V/(F,) of codimension 1. For each
P € P(V), there is a valuation map ordp : F (V) — Z (see Hartshorne [Ha],
§11.6, page 130). Let D(V') denote the group of divisors of V, the free abelian
group generated by P(V).

If A= Z apP, B = prP € D(V) are divisors then we say A < B if

and only if ap < bp for all PeP(V). If feF,(V)isanon-zero function

then let
(f)= > orde()P,

PeP(V)

where ordp(f) is the order of the zero (pole) at P (as above). This is well-
defined (since the above sum is finite by Lemma 6.1 in [Hal, §I1.6, page 131).
For B € D(V), define L(B) to be the vector space

L(B)={0yU{feF,(V) | #0,(/) = -B}.

Pick n different points Py, Py, ..., P, in V(F,) and choose a divisor A =

Z apP € D(V) disjoint from these points. Quite often, one does not
PeP(V)
want A to be rational. The Goppa code associated to (V(F,), A) is the

linear code ¢ = G/(A, V) defined to be the subspace of F} which is the image
of the map

v: L(A) — F7, (5)

defined by v(f) = (f(P1),..., f(Pn)). ( In the case of curves, this code is
called the dual Goppa code or Goppa function code in [P]. Goppa gave
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another geometric construction of codes using differentials for which we refer
the reader to [P] or [TV].)

To specify a Goppa code, one must

e choose a smooth variety V over F,

pick rational points Py, P, ..., P, of V,

choose a divisor A disjoint from the P;’s,

determine a basis for £(A),

compute the matrix for ~.

3.3 Some estimates on Goppa codes

Let g be the genus of a curve V = C and let ¢ = G(A, P,C) denote the
Goppa code as constructed above. If G has parameters (n,k,d) and if we
then the following lemma is a consequence of the Riemann-Roch theorem.

Lemma 11 Assume G is as above and A salisfies 2g — 2 < deg(A) < n.
Then k = dim(G) = deg(A) — g+ 1 and d > n — deg(A).

Consequently, k +d > n — g + 1. Because of Singleton’s inequality”, we
have

o if g =0 then G is an MDS code,
e ifg=1thenn<k+d<n+1.

The previous lemma also implies the following lower bound.

Proposition 12 ([SS]§3.1, or [TV]) With G as in the previous lemma, we
have5—|—R:%—|—%Zl—%.

It is known that n > d + k — 1 for any linear (n, k, d)-code (this is the Singleton in-
equality), with equality if and only if the code is a so-called MDS code (MDS=minimum
distance separable).
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Theorem 8 above is an explicit formula for the genus of the modular
curve Xo(N). It may be instructive to plug this formula into the estimate
in Proposition 12 to see what we get. The formula for the genus gy of
Xo(N) is relatively complicated, but simplifies greatly when N is a prime
number which is congruent to 1 modulo 12, say N = 14 12m, in which case
gy = m — 1. For example, ¢g;3 = 0. In particular, we have the following

Corollary 13 Let C = Xo(N), where N is a prime number which is con-
gruent to 1 modulo 12 and which has the property that C' s smooth over F,.
Then the parameters (n,k,d) of a Goppa code associated to C must satisfy

Based on the above Proposition, if one considers a family of curves X;
with increasing genus g; such that

lim M =« (6)
1—+00 4g;
one can construct a family of codes C; with 6(C;) + R(C;) > 1 — é It is
known that a < /g — 1 (this is the so-called Drinfeld-Vladut bound,
[TV], Theorem 2.3.22).
The following result says that the Drinfeld-Vladut bound can be attained
in case ¢ = p°.
Theorem 14 (Tsfasman, Valdut, Zink [TV], Theorem 4.1.52) Let gn de-
note the genus of Xo(N). If N runs over a set of primes different than p
then the quotients gy [|Xo(N)(F,2)| associated to the modular curves Xo(N)
tend to the limat ]ﬁ.

More generally, if ¢ = p?*, then there is a family of Drinfeld curves X;
over F, yielding a = ,/g—1 ([TV], Theorem 4.2.38, discovered independently
by Thara [I] at about the same time). In other words, the Drinfeld-Vladut
bound is attained in case ¢ = p?*.

As a corollary to the above theorem, if p > 7 then there exists a sequence

of Goppa codes Gy over F,: associated to a sequence of modular curves

Xo(N) for which (R(Gy), d(Gn)) eventually (for suitable large N) lies above
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the Gilbert-Varshamov bound in Theorem 10. This follows from comparing
the Gilbert-Varshamov curve

(5,1 — 510gq(%) — §log,(5) — (1 — 8)log, (1 — 6)))

with the curve (§, =), ¢ = p?.

4 Examples

Example 15 Let C denote the elliptic curve of conductor 32 (and birational
to Xo(32)) with Weierstrass form y* = 2® — x. If p is a prime satisfying
p = 3(mod 4) then

|C(Fp)|=p+1

(Theorem 5, §18.4 in Ireland and Rosen [IR]). Let C(F,) = { Py, P, Ps, ..., P, },
where Py is the identity, and if A = kP, for some k > 0. The parameters
of the corresponding code G = G(A, P,C) satisfy n = p, d+k > n, since
g = 1, by the above Proposition. In this case, G is not an MDS code. As
we observed above, a Goppa code constructed from an elliptic curve salisfies

either d+ k —1=mn (i.e., is MDS) or else d+ k = n. Thus in this case,
n=p, d+k=p.

Let C be an elliptic curve. This is a projective curve for which C(F,) has
the structure of an algebraic group. Let Py € C(F,) denote the identity. Let
Py, Py, ..., P, denote all the other elements of C(F,) and let A = aF,, where
0 < a < nis an integer. The following result is an immediate corollary of the
results in [Sh] (see also §5.2.2 in [TV] for weaker but closely related results).

Theorem 16 (Shokrollahi) Let C, Py, Py, ..., P, D, A, be as above.

e [fa=2 and C(F,) = Cy x Cy (where C,, denotes the cyclic group of
order n) then the code G(A, D) is a [n,k,d]-code (n is the length, k is

the dimension, and d is the minimum distance) with

d=n—k+1, and k=a.
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o Assume ged(n,al) = 1. If a # 2 or C(F,) is not isomorphic to the
Klein four group Cqy x Cy then G(A, D) is a [n,k,d]-code (n is the

length, k is the dimension, and d is the minimum distance) with
k=a

and weight enumerator polynomial (see for example [MS] for the defi-
nition)

n

Bo=ta- (") - )

4.1 Weight enumerators (aprés des Shokrollahi)

In the case where FE is given by the level 19, discriminant —19 Weierstrass
model

y2—|—y:313—|—x2—|—x,

and p = 13, we have

gy~ (0010120, 11,6, 13,0113 121, 14,21, 4,101, 5,31, 5.9
b [8,3],18,9],19,0],[9,12], [11,4],[11,8],[12, 3], [12,9],00} °
Write E(F,) = {Fo, P, ..., Piz}, where Py denotes the identity element of the
group law for E, let A = kF,, and let D = P, + ... + Py7. The hypotheses of
the above theorem are satisfied when we take n = 17 and 2 < k = a < 17.
The above construction associates to this data a Goppa code G = G(A, D, E)
which is a 7-error correcting code of length n = 17 over Fy3. Some of the
weight enumerator polynomials W¢ and the number of errors these codes G

can correct are given in the following table.
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number of errors
a=k weight enumerator Wy G corrects
2 z'" 4+ 9622 + 122 + 60 7
3 z'7 + 38423 + 48022 + 7442 + 588 6
4 '+ 12962 4+ 297623 + 614422 4 109322 + 7212 6
5 ' 4+ 307225 4 13200z* + ... + 95676 5
6 z'7 4+ 566425 4+ 402722° + ... + 1236972 5
7 ' 4+ 806427 + 920642° + ... + 16095036 4
8 27+ 90962% 4 16060827 + ... + 209212116 4
9 2'7 4 8064x° 4+ 2191442 + ... 4+ 2719785636 3
10 z'7 4+ 566420 + 2350802° + ... + 35357186484 3

These were computed using a computer implementation of Shokrollahi’s for-
mula in the software package MAPLE. The number of codewords of minimum
weight n — k is the coefficient of the second highest term in Wg(z). For ex-
ample, when & = 3 the number of codewords of minimum weight n — k = 14
is 384.

A smaller example using the same elliptic curve F as above: taking p = 3,
we find that

E(Fp) = {[070]7 [072]7 [170]7 [172]7 [27 1]7 OO}

The hypotheses of the above theorem are satisfied when we take n = 5 and
2 <k =a < 5. The weight enumerator when a = 2 is

We(z) = 2° 4+ 42* + 22 + 2,

and there are 4 codewords of minimum weight 3 in the corresponding elliptic
(Goppa) code. This is a l-error correcting code of length 5 (over F3).

4.2 The generator matrix (aprés des Goppa)

The method used in Goppa’s Fermat cubic code example of [G], pages 108-
109, can be easily modified to yield analogous quantities for certain elliptic
Goppa codes.

Example 17 Let E denote the elliptic curve (of conductor N = 11) which
we write in homogeneous coordinates as

yQZ + y22 =23 — 2%2.
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Let ¢(x,y,2) = zy + yz + xz, let F' denote the projective curve defined by
d(x,y,z) = 0, and let D denote the divisor obtained by intersecting E and
F. By Bezout’s theorem (see for example, [G], page 80), D is of degree 6. To
find the matriz of the linear transformation v in (5), we must specify a basis
for L(D). As in [G] page 109, a basis for L(D) is provided by the functions

in the set

Bp = {1,2%/¢(x,y,2),y°[d(2,y,2), 2| plx,y, 2), 2y [ b2, y, ), yz/ b(x,y, 2) }.

(This is due to the fact that dim L(D) = deg(D) = 6 and the functions
f € Bp “obviously” satisfy (f) > —D.) We have

1,11,3,2],[1,5,3],[1,8,3],
EFn) = 1,10,1], 1,10, 10]} ’

which we write as Py, Py, ..., Pig. For comparison,

11, 11,107, [2, 5], [4, 9],

) {[0,0], [0, 1], 1
E(F11)NP*(Fiy).my = [6,7],[6,10],[7,8],[10,1], 00},

[47 10]7 Y ]7

where P*(F11).-1 denoles the affine patch of projective 2-space with z = 1.
Consider the malrix

041 6 8 8 1 10 10
1 4310 6 10 4 10 10
1 4910 2 10 9 10 10
“=loas5 4 9 691 1
144 1 10 1 6 1 10
043 7 4 5 810 1|

The first row of G gives the values of 2* | d(x,y, z) at {P; | 1 < i < 10, ¢(P;) #
0} ={Ps, Py, Ps, Pz, ..., Pia} (in other words, we simply throw out all the ra-
tional prime divisors corresponding to a pole of ¢). The other rows are 0b-
tained similarly from the other functions corresponding to the basis elements

Ofﬁ(D) y2/¢($7 y7 Z)} 22/¢($7 y7 Z)) wy/qb(x? y7 Z)} yZ/qb(:I;, y? Z) PB?"fO?’ming
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Gauss reduction mod 11 puts this in canonical form:

o O R, O o ©
o = O O O O
_ o O o o o
o O O O O
Tt NN Oy Ot N

_ O O N = =

0
0
1
0
0
0

o o o o o =
o o o o = O

so this code has minimum distance 3, hence is only 1-error correcting. The
corresponding check matriz is

1126 01
H=]100206 0 2
256 2 25

Example 18 Let E denote the elliptic curve (of conductor N = 19) which
we wrile in homogeneous coordinates as

y22 + y22 = z° + x2z + xz?

Let ¢(z,y,z) = x> + y* + 22, let F' denote the projective curve defined by
d(z,y,2) = 0, and let D denote the divisor obtained by intersecting F and
F. By Bezout’s theorem, D is of degree 6. As in the previous example, a
basis for L(D) is provided by the functions in the set

Bp = {1,2%/¢(x,y,2),y° (2, y,2), 2| plx,y, 2), 2y [ (2, y, 2), yz] b(x,y, 2) }.

(Again, this is due to the fact that dim L(D) = deg(D) = 6 and the functions
f € Bp “obviously” satisfy (f) > —D.) We have

{[0,0,1],]0,1,0],[0,1,6],[1,0,2],[1,0,4],

E(F7) = 1,3,4],[1,3,6],[1,5,2],[1,5,6] }
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which we write as Py, Py, ..., Py. Consider the matriz
[0 0 0 1 1 1 1 1 17

01 1002 2 44

101422141

G =

000O0O0O3355

006 00543 2
| 000 2 446 2 6 |

The first row of G gives the values of x*/d(x,y,z) at {P; | 1 < i < 9}.
The other rows are obtained similarly from the other functions correspond-
ing to the basis elements of L(D): y?/d(x,y, z), 2*/d(x,y,2), zy/d(x,y,z),
yz/p(x,y, z). Performing Gauss reduction mod 7 puls this in canonical form:

1000000 4 47
010000606
S loo10001 34
“=loo0o01006156]|
000010135
(000001144

so this code also has minimum distance 3, hence is only 1-error correcting.
The corresponding check matriz is

06 16 11
H=1]14031 3 4
4 6 46 5 4

For an example of the generating matrix of the elliptic code associated to
2% 4 y* = 1 over Fy has been worked out in several places (for example, see

Goppa’s book mentioned above, or the books [SS], §3.3, [P], SS5.3, 5.4, 5.7,
or [M], §5.7.3).
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5 Concluding comments

We end this note by making some comments:

(1) The algebraic geometric relation between the number of points over
a finite field for a variety is related to the Betti numbers. However, an
equivalent notion of genus for higher dimensional varieties is the “arithmetic
genus”. Can one develop a relation between the number of points over finite
fields of a variety andits arithmetic genus, useful in coding theory?

(2) Can one construct “good” codes associated to the higher dimensional
Shimura varieties?
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