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ABSTRACT 

 

In any Central Processing Unit (CPU) the crucial components are Arithmetic and Logic Unit 

(ALU). ALU can perform different operation like addition, subtraction, multiplication etc. In this 

thesis addition and multiplication plays an important role because adders and multipliers are the 

basic building blocks of any Digital Signal Processing applications.  

Firstly, in this work adder is used for addition of numbers but it also perform some arithmetic 

operations. In adders the basic buildings blocks are Half adder and Full adder because they are 

used for constructing complex adders like Ripple Carry Adder, Carry Select Adder etc. First 

analyzed efficient adder and used this efficient adder for implementation of modified Carry 

Increment adder. This modified adder used in many Signal Processing application and increases 

the speed of the circuit because nowadays delay optimization and power optimization become a 

very challenging problem with the increase of the portable devices.    

Secondly, after adders the crucial component is multiplier. In multipliers the basic block for 

reducing partial product is adder. The efficient adder used in the multiplier for increasing the 

speed of circuit and used the circuit in an optimized way. For constructing an efficient multiplier 

different architecture are proposed so to design an efficient multiplier. A modified multiplier is 

proposed by using efficient multiplier with efficient adder so, to improve the overall performance 

of the circuit. 

The goal of this is to analyze and compare various adders and multiplication schemes for high- 

speed and low power operations. Since the various Digital Signal Processing applications, 

require computationally efficient Multiply and Accumulate operations so the blocks with desired 

characteristics have to be chosen carefully. Various techniques have been proposed to design 

multipliers which are efficient in terms of performance, low power consumption and area.   

Finally, the efficient adders and multipliers are used in FFT algorithm. FFT is used for signal 

processing applications. It consists of addition and multiplication operations, whose speed 

improvement will enhance the accuracy and performance of FFT computation for any 

applications.”FFT are used to covert signal form time domain to frequency domain. In FFT 
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processing unit butterfly structure is the basic building block and are used for calculating the 

complex calculation. So, it is important to design an efficient adder and multiplier block and used 

this efficient block in butterfly structure. 

Further work on Low Power Techniques on different multipliers needs to be done in order to 

make us choose a proper multiplier in accordance with the requirements by making the best 

possible trade off choice between Speed and Power in different circumstances. 
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CHAPTER 1 

INTRODUCTION 

 

Fast Fourier Transform (FFT) plays a crucial role in many Digital Signal Processing (DSP) 

applications. In communication systems like Orthogonal Frequency Division Multiplexing 

(OFDM), FFT is the most important block. It is used to convert a signal from time domain to 

frequency domain. In various systems there are requirements of high performance FFT to fulfill 

the demands of next generation with low cost and high speed. There is a need to design an 

efficient butterfly because it plays an important role in FFT processor.  Nowadays, delay and 

power optimization have become a very challenging problem and portable electronic products 

are of great demand which need more backup, less area and less weight. So, low power circuit is 

designed because it directly affects the performance of the circuit. In general purpose processors 

the most important arithmetic units are adders and multipliers. The emphasis of our work is on 

minimizing the latency, with the goal being the implementation of the fastest multiplication 

blocks as possible. When we use digital system on a VLSI chip, much better Signal Processing 

Systems are implemented with the growth in the scale of integration. A large amount of energy 

and computation capacity is consumed in the signal processing. Architecture of arithmetic units 

is chosen carefully to reduce the power consumption and area.  Arithmetic unit consists of 

Adders and Multipliers which are as follows:   

 

1.1 Adders 

In digital IC designs the most frequent and essential operation is addition. Addition is done by 

adders and adders are the most important arithmetic units of any Digital Processing System. The 

most commonly used blocks in adders are Half Adder (HA) and Full Adder (FA) as shown in 

Figure 1.1 and 1.2. By using HA and FA many complex adder architectures are constructed. In 

this report many complex adders are implemented in terms of speed and power. The adder which 

has high speed is used for implementation of proposed design of adder. Adders are the basic 

building blocks of many applications. Adders are also used for calculate addresses, table indices 

and many more. 
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Figure 1.1: Logical circuit of Half Adder 

 

 

                                                   Figure 1.2: Logical circuit of Full Adder 

 

1.2 Multipliers 

Multipliers also play a crucial role in the implementation of high performance circuits. These 

high performance circuits are used in many Digital Signal Processing applications, so there is a 

need to design an efficient multiplier to meet the requirement of the designer. For designing an 

efficient multiplier various characteristics are of taken care like: Speed-At high speed multiplier 

should perform operation, Accuracy- Correct result should given by good multiplier, Area- Less 

number of LUTs and Slices are occupied by multiplier and Power- The power consumed by the 

multiplier is less. Adders are used for addition of partial products of efficient multipliers. Three 

steps are followed for multiplication process: firstly, generation of partial products, second 

addition of partial products and finally, final addition. In this work the proposed multiplier is 

implemented using the adder with high speed and low power so to design an efficient multiplier. 

This efficient multiplier is used in many applications such as Image Processing, DSP, 

microprocessors etc. 

1

2
3

1

2
3 Sum 
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1.3 FFT 

In Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) the 

complex numbers of arithmetic operations like addition and multiplication are required. For 

implementation of DFT one of the most efficient ways is FFT because it reduces the usage of 

arithmetic units. Arithmetic operations of DFT has O(N×N) order and FFT has O(N log N) 

order. Basically, FFT is used to covert signal to frequency domain from time domain. Nowadays, 

in Wireless Communication researchers employed FFT processor so, to achieve low power, high 

speed and low area utilization. For N-point data sequence the DFT is shown in Equation 1.1. 

X[k] = ∑ x[n]𝑊𝑁
𝑘𝑛N-1

n=0                                                                                                                  (1.1) 

For N-point data sequence the IDFT is shown in Equation 1.2. 

X[n] = 
1

𝑁
∑ 𝑋[𝑘]𝑊𝑁

−𝑘𝑛𝑁−1
𝑘=0                                                                                                           (1.2) 

Where  𝑊𝑁
𝑘𝑛  = 𝑒−𝑗

2𝛱

𝑁
𝑘𝑛

 

In FFT the most important block used is butterfly block because for increase the performance of 

the FFT processor firstly, it is important to design the high speed and low power consumption 

butterfly element. Butterfly is implemented using an efficient multiplier and adder. Different 

adders and multipliers circuits are designed, implemented and compared as explained in Chapter 

2 and Chapter 3. Later proposed adders and multipliers are compared with the existing work. 

1.4 Need for Low Power Design  

During the last decades there is an increase in the integrated circuits which is predicted by 

Moore’s Law. Figure 1.3 shows that every two year the number of transistors in IC doubles. As 

the feature size decreases there is reduction of power consumption. But as shown in Figure 1.3 

power consumption increases with increase in the transistor count. Low power consumption in 

portable application is the major constraint. Power consumption and energy efficiency contribute 

to so many factors like longer operation time, higher workload etc in these situation power 

consumption become more critical. Reliability is also reduced as increase in on chip temperature 

due to increase in power consumption. Many problems are raised as power supply is delivered to 

chip such as noise immunity, power rails design etc. In many high performance applications the 

cost of cooling and packaging is increasing, so, power reduction is the primary objective of the 

designers in these applications. 
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Figure 1.3: Number of transistors on IC (1971-2016)[35] 

Therefore, it is important to reduce power technique for current and future integrated circuit.  

Figure 1.4 shows the graph between power density and power density requirement for modern 

SoCs. The widening gap is shown in Figure 1.4 which shows the huge challenge for the 

designers that they face today. Lots of efforts are required for managing power in the design and 

the effort required is increasing with the new designs to meet new challenges.

 

Figure 1.4: Power density trend versus power design requirements[36] 



 

5 
 

As shown in Figure 1.3 increasing level of device integration and the complexity of the circuits 

is also increases. So, the primary goal is reduction of the power consumption. As the years goes 

by, the power dissipation also goes on increasing linearly and because of ever-shrinking size of 

chips the power density increases exponentially. If the rise of power density exponential then 

few years later a microprocessor designed who has power equal to nuclear reactor. So, this 

introduces reliability concerns as rise in power density such as thermal stresses, device 

degradation induced in hot carrier and it will result in loss of performance. As the increase in the 

demand of portable devices which is powered by batteries need low power chips this is the 

another factor. 

1.4 Programming Language 

Hardware Description Language (HDL) e.g. Verilog, VHDL are used to Write a Program 

(WAP). We have used Verilog programming for implementation of our digital circuit, because 

by using a HDL we can describe any digital hardware at any level. For design and verification of 

digital circuits it is most commonly used at the Register-Transfer Level (RTL) of abstraction 

Verilog language have many advantages over VHDL i.e. compact language, reduction operator 

etc. The Figure 1.5 summarizes the high level design flow for an ASIC (i.e. gate array, standard 

cell) or FPGA. Various steps are used for simulation and these steps are further divided into 

various other parts: 

a) System-Level Verification 

In system level verification there is complete verification of system model and simulates 

aspects. There is a detailed description of the system functionality and alternatively, maybe 

there is partial description of the system properties. For system-level modeling Verilog is not 

suited ideally.   

b) RTL Design and Test Bench Creation 

In RTL design the architecture of the system is stable and it’s partitioning. In Verilog the 

RTL and test cases start capturing. Both the tasks are complementary and for various designs 

different RTL and test cases captured. If automated synthesis of logic is used then the RTL 

Verilog should be synthesizable. A disciplined approach is followed by test case. 
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c) RTL verification 

In comparison to gate level simulation the RTL magnitude simulation is faster of one or two 

order and this shows that by spending more time in simulation it speed-up is best when more 

simulation is done. Against the specification the validation of functionality is done by RTL 

Verilog. 

d) Look-Ahead Synthesis 

In this synthesis design process will be done early, so the designers evaluate speed and area 

accurately and researchers check how the Verilog synthesis will be done, until the 

completion of functional simulation the production of main synthesis run. If the validation of 

design functionality is not done it is pointless to invest efforts and time in synthesis.  

e) System Level 

Verilog is addressed by system Verilog because it is not suited ideally for simulation at 

system level. VHDL is user-defined types in which designer allowed to work in the domain 

of problem. But Verilog is a pre-defined type in which designer allowed to work for 

scholastic simulation and build-in language features allowed for queuing, modeling 

performance and throughput.     

 

Figure 1.5: Design Flow using Verilog 
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1.3  Research Approach 

The basic idea behind our work is to design as efficient Butterfly Structure having low power 

and less delay because in FFT processor the basic block is Butterfly. We need to design efficient 

Butterfly block so it will the processor for fast computation in many application. In Butterfly the 

important block are adders and multipliers. An efficient multiplier block is implemented in 

which basic building block is adder. Nowadays, power optimization and delay optimization have 

become a very challenging problem. Firstly, our focus is on designing and implementation of 

adder in which we have examined different adders. The best adder is one with a minimum delay, 

low power consumption and finds a proper relation between LUTs, slices, power and delay. 

Secondly, best high speed adder is used for designing an efficient multiplier. Different 

multipliers are studied, designed and implemented using Verilog HDL. After getting all the 

results we find out the best multiplier with high speed and low power consumption. Finally, this 

efficient multiplier and high speed adder is used for the implementation of Butterfly Structure. 

Our future work is dedicated for reduction of more power consumption by reducing number of 

logic gates. 

 

1.4  Organization 

CHAPTER 2: LITERATURE SURVEY – This chapter explain the various types of algorithm 

used in adders and multiplier to design optimized circuit. The algorithm which is best suited to 

design high performance circuit is used. 

CHAPTER 3: ADDERS – This chapter explains the different types of adders and there 

implementation. An optimized adder is used to design the high speed circuit. 

CHAPTER 4: MULTIPLIERS – This chapter explains different types of multipliers there 

implementation and results. An optimized adders and multiplier combine to construct high speed 

circuit. 

CHAPTER 5: FFT – This chapter explains the implementation of butterfly using efficient 

multipliers and adders. Butterfly plays crucial role in the processors. 
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1.5  Tools Used 

 Simulation Software: 

 Xilinx 14.1 ISE design suite 

Power Calculation 

 XPower Analyzer 
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CHAPTER 2 

LITERATURE SURVEY 

 

We have studied a lot of papers some are listed : 

 

Akhter S. et al. 2017[1] in this paper various digital adders are used for comparative analysis of 

Vedic multiplier. Using CBL adder the 8-bit Vedic multiplier is 20% faster than BEC and is 

approximately 5% faster in terms of delay than RCA-CSA, SQRT-CSA and RCA. With the 

increase in the width size they have calculated outcome in terms of speed, area and leakage 

power. 

 

Gowreesrinivas K. V. et al. 2016[2] in this paper using different types adders and by 

incorporating Vedic multiplier, a new type of multiplier is developed. The new developed 

multiplier i.e.  Single Precision Floating Point(SPFP) have drawback of optimization of speed 

and area. By reducing interconnections and complexity the overall performance can be 

improved. It is observed that using combination of prefix sklansky adder and Vedic 

multiplier(VM) is best in comparison to other multipliers because it is best in terms of speed and 

complexity.    

 

Gokhale G. R. et al. 2015[3] V M is implemented in this paper by means of lesser number gates, 

area, which is required by proposed CSLA. The Booth multiplier has more area, low speed 

compare to proposed V M, so it is superior. In the architecture of Vedic multiplier the addition 

block plays a important role for increasing and decreasing the performance of the circuit. 

 

Murugeswari S. et al. 2014[4] in this a low power and an area efficient modified Wallace and 

truncated multiplier is implemented by using full adder which is based on mux. In the end it is 

concluded that reduction in area of modified truncated multiplier shows improvement in device 

utilization compared to modified Wallace multiplier. 
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Anjana R. et al. 2014[5] in this paper they designed a modified novel high speed multiplier as a 

result of combining Kogge stone adder with the multiplier to design the fastest multiplier. 

 

S. Rajaram et al. 2011[6] in this paper proposed multiplier has less delay than the conventional 

multiplier. Proposed multiplier is Wallace multiplier which used Parallel prefix adder at the final 

stage, so there is improvement in multiplier. 

 

R. B. S. Kesava et al. 2016[7] in this paper a simple approach is proposed for Wallace 

multiplier(WM) using Carry select adder(CSLA) , so to reduce area. They implement CSLA 

with BEC in Wallace tree multiplier to occupying less power, less area and memory when 

compared to WM using CSLA and WM. 

 

S.Srikanth et al. 2016 [8] in this paper by using multiplexers and XOR gate, proposed a full 

adder. In Wallace tree multiplier , by putting the proposed full adder in the decrease stage an 

average delay, power and area reduction achieved compared to existing method respectively is 

achieved. 

 

D. Paradhasaradhi et al. 2014[9] an area efficient proposed WM is implemented in this paper by 

using CBL which is based on SQRT (square root) CSLA. There is reduction of delay and area by 

reducing the number of gates. Copying of adder cells are removed in the usual CSLA by sharing 

CBL term. 

 

Gurjar P. et al. 2011[10] simulated and synthesized the different adders. The parameters like area 

and speed and the usefulness of fast adders is analyzed by simulated results. In the end, for 8-bit 

and 16-bit adders the caught parameters are analyzed. This paper infers that in conditions of 

delay and area consumption the Carry skip adder the efficient adder. 

 

Bais K. et al 2016 [11] mentioned relationship of speed and area of different adders for various 

number of bits. From the delay comparison of adders, it is clear that Kogge Stone adder (KSA) is 

the fastest adder because it is parallel prefix adder. In the end they drive a conclusion that the 

speed and area cannot be optimized at the same time. If one parameter is improved the other 
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definitely shows degradation. In this paper we understand that KSA was the best when 

considered for delay but for area, as the number of bits of operands increases KSA occupies 

more area due to increase in parallel prefix stage. 

 

Nandini M. et al 2015[12] discussed different kinds of prefix adders particularly Spanning adder, 

Sparse Kogge stone adder, Ladnelfischerladder, BrentlKungladder and KSA. Correct practicality 

of every individual module was tested. This paper has resulted in reduced delay and power in the 

development of adders design. After analysis calculated KSA and Sparse KSA different 

parameters is being compared with the other adder. After the comparison less combinational 

delay of  Kogge Stone adder with 12.499ns and  less amount of power consumption of Ladner 

fischer adder with 0.26089 mW. In future using parallel prefix adders all the proposed 

architectures are designed. 

 

Kulkarni R. et al 2015[13], discussed the performance of different adders. Characterization of 

different adders and implementation on an FPGA is done. Later than observe the outcome of 

comparisons, for two 8 bit addition numbers, CLA is superior. Forlthreeland four 8 bitlnumbers 

addition Carrylsaveladder(CSA) with last stage built by RCA is preferable. In future work, low 

area as well as delay is required to design unique adder and to meet the requirement of current 

industry. 

 

Mitre A. et al 2015[14], this paper compared completely different addition rule for various 

performance parameters i.e. power, area and speed for different adders such as Ripple carry 

adder(RCA), CSA, Carry select adder, Carry look ahead adder(CLA) and KSA. By merging 

Kogge stone and Carry select algorithms a high speed adder is then designed and works 

significantly faster than the rest. 

 

Kumar A. et al 2013[15] explained that Ripple carry adder design is basic and it is appropriate 

for just addition of less width operand since delay run straightly with the width of operand. 

Linear area required by Carry skip adder which is not really bigger than area required by the 

RCA . As compare to other the delay of CLA is less and much faster than RCA. For high speed 
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multiplication and accumulation, they can use Carry-look ahead adder(CLA) for 32 bit 

multiplier-accumulator unit. In fact the speed of multiplier has approximately twice the speed 

with carry-look ahead adder. 

 

SaiKumar M. et al 2013[16], in this paper, presentation parameters of adders such as delay, area 

are compare, determined and design of various adders are discussed. Better performance in terms 

of area and delay is achieved through Carrylincrementladder (CIA) in comparison to additional 

adder topologies. For the later use, design of unique adder is needed which will provide small 

area, speed and meet up the requirements of current VLSI industry. 

 

Suba C. et al 2014[17], design for reconfigurability (DFR) technique is presented by this paper 

for CLA.DFR proposal which has planned to isolate an extensive CLA keen on different little 

part ones.  A small amount of area and delay penalty is incurred by the DFR scheme. The CLA 

has the smallest amount delay-area result. It is proper for conditions where together low power 

and fastness application. It is not feasible to apply CLA in steady delay for the wider-bit adders 

as there will be low speed, larger power consumption and substantial loading capacitance. 

 

Singh A. K. et al 2017[28], in this paper, for higher radix FFT an efficient algorithm of butterfly 

unit was implemented. Taking various issues of FFT implementation an capable Butterfly block 

is implemented firstly and used this Butterfly block in FFT. Vedic multiplication result analyses 

in terms of slices and LUTs and implement an efficient butterfly in comparison to Booth 

multiplication (BM) technique. The design using CLA require large amount of hardware but 

faster than using RCA.  

 

Rashmi M. J. et al 2014[29], in this paper, two algorithms are implemented which was based on 

DIT-FFT. First, algorithm was on the bases of Radix-2 FFT and second on the bases of Split 

Radix FFT. Both algorithms are compared for device utilization, speed and taking width size of 

16 bits. Large amount of memory usage and increase in the delay as increases the single length 

of the proposed architecture using radix-2 FFT. This drawback was overcome by Split Radix 

FFT algorithm. 
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CHAPTER 3 

ADDERS 

 

In digital IC designs the most frequent and essential operation is addition. Addition is done by 

adders and adders are the most important arithmetic units of any Digital Processing System. The 

most commonly used blocks in adders are HA and FA. By using HA and FA many complex 

adder architecture are implemented. 

 

3.1  Basic Adder 

There are two types of basic adder which are used i.e. Half Adder and Full adder. These   adders 

are the most important building block of any circuit. 

 

3.1.1 Half Adder (HA) : HA is used for addition of two 1 bit number, which give sum bit(s) 

and carry bit (c). Sum bit is given by XORing A and B, Carry bit is given by ANDing A 

and B which is expressed by Equation 3.1 and 3.2 respectively. 

                                                        Sum(s) = A XOR B                                                            (3.1) 

                                                        Carry(c) = A AND B                                                          (3.2)   

 

 

Figure 3.1: RTL Schematic of Half Adder 
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3.1.2 Full adder (FA) : FA adds three 1 bit number, which produces sum bit(s) and carry (c). 

By cascading two half adder it also produce sum and carry bit. Sum and Carry bit is 

expressed by Equation 3.3 and 3.4 respectively. 

 

                                  Sum(s) = A XOR B XOR Cin                                                                    (3.3) 

                                                  Carry(c) = (A AND B) OR (B AND Cin) OR (A AND Cin)                     (3.4) 

 

Figure 3.2: RTL Schematic of Full Adder 

                                               

Table 3.1: Implementation Table of Full Adder 

Inputs Half Adder1 O/P Half Adder1 O/P Final Output 

A B Cin S1 C1 S2 C2 S Cout 

0 0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 1 0 

0 1 0 1 0 1 0 1 0 

0 1 1 1 0 0 1 0 1 

1 0 0 1 0 1 0 1 0 

1 0 1 1 0 0 1 0 1 

1 1 0 0 1 0 0 0 1 

1 1 1 0 1 1 0 1 1 
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3.2  Complex Adder 

Complex Adder are constructed by using basic adders i.e. HA and FA. Design circuitry of these 

adders is complex because they take number of blocks to design a circuit. 

 

3.2.1 Ripple Carry Adder (RCA) : Multi-bit addition is performed by the RCA and moreover 

the processing delay is also increased by it. RCA is formed by cascading full adders in 

series. Each FA generates a carry which is provided to next FA and the process goes on, 

which is shown in Figure 3.3. The delay is increased, when the numbers of bits go on 

increasing. The advantage of RCA is its easy implementation and simple design. 

 

Figure 3.3: 4 bit Ripple Carry Adder  

 

Figure 3.4: RTL Schematic of Ripple Carry Adder 
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3.2.2 Carry Select Adder (CSLA) : CSLA is formed by two RCA and 2:1 multiplexer. 

Independent generation of sum and carry i.e. cin=1 and cin=0 are executed parallelly in CSLA. 

Correct sum along with correct carry-out is then selected by the multiplexer, depending on real 

carry-out of previous section. CSLA is further divided into two blocks i.e. uniform and variable 

block. More hardware is used by CSLA even though it gives less delay compared the ripple carry 

adder. 4- bit CSLA is shown in Figure 3.5 and RTL Schematic in Figure 3.6.. 

 

Figure 3.5: 4-bit Carry Select Adder 

 

Figure 3.6: RTL Schematic of Carry Select Adder 
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3.2.3 Carry Skip Adder (CSkA) : This adder enhances delay of RCA with small effort. As 

the name indicates, CSkA uses skip logic in the propagation of carry. It is designed to speed up a 

wide adder by adding the propagation of carry bit around a portion of the entire adder. The carry-

in bit designated as Ci. The output of RCA (the last stage) is Ci+4. The carry skip circuitry 

consists of two logic AND gate which accepts the carry-in bit and compares it with the group of 

propagated signals using the individual propagate values. 

   P [ i,i+3 ] = (P i+3 ).(P i+2 ).(P i+1 ).P i                                (3.5) 

 Output stage is produced when the output from the AND gate is ORed with Cout of RCA. Final 

carry is expressed by output stage which is represented by Equation 3.6.               

                                 Carry = C i+4 + (P i,i+3 ) . C i                                                  (3.6) 

If P [ i,i+3 ] = 0, then the Carry-out of the group is determined by the value of Ci+4 . However, if     

P [ i,i+3 ] =1 then the Carry-in bit is Ci =1,then the group carry-in is automatically sent to the next 

group of adders. The design of schematic of CSkA is shown in Figure 3.7. 

 

Figure 3.7: 4-bit Carry Skip Adder  
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Figure 3.8: RTL Schematic of Carry Skip Adder 

3.2.4 Carry Look Ahead Adder (CLA) The RCA is simple and easy to implement, but it 

suffers from serious delay issues. This is because the next stage of full adder needs to wait for 

Carry bit from the previous stage full adder The CLA solves this problem by calculating the 

carry signals in advance, based on the input signals. CLA technique is to drive the 'Sum' and 

'Carry' outputs by using intermediate terms defined as ‘Generate (G)' and ‘Propagate (P)' terms. 

In the case of propagate the 'Carry-out' depends on the 'Carry-in' and in the case of generate the 

‘Carry-out’ independent of the ‘Carry-in’. 

The Table 3.2 illustrates the concept of Propagate and Generate more clearly. The output 'Sum' 

and 'Carry' of the full adder in terms of P and G, can be observed from Table 3.2 as expressed by 

Equation 3.7 and Equation 3.8: 

                             S i =Pi ⊕ Ci                                                              (3.7) 
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                            C i+1 =Gi +(Pi .Ci )                                       (3.8) 

Table 3.2: Truth Table of a Full Adder 

 

Weinberger and Smith proposed a method for fast carry generation which states that the carry 

need not depend on the previous carry which is shown in Figure 3.9. Generate term produces a 

carry-out independent of the carry-in, i.e.no matter what the carry-in, the carry-out is always '1', 

when both of the inputs A and B are '1' thus G=A.B. The Propagate term transfers the input 

Carry as output Carry when only one of the inputs is high. The carry generation is done by first 

calculating Generate(gi ) and Propagate (pi ) which is explained by Equation 3.9 and Equation 

3.10  respectively. 

                                                   gi =Ai.B i                                           (3.9) 

pi =Ai ⊕ Bi                           (3.10) 

Carry is generated by Equation 3.11 as:  

Ci =g i-1 + p i-1 C i-1                                                  (3.11) 

After the generation of carry, the sum is calculated using the Equation 3.12. 

Si =Ai ⊕ Bi ⊕ Ci                                                                 (3.12) 
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For wide adders where N > 16 (N is the input operand size), the delay of the carry look-ahead 

adders becomes dominated by the delay of passing the carry through the look-ahead stages and 

the implementation need high fan-in gates. 

                            

 

Figure 3.9: 4-bit Weinberger-Smith CLA 
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Figure 3.10: RTL Schematic of Carry Lookahead  adder 

 

3.2.5 Kogge Stone Adder (KSA) : It is basically a prefix based adder. Prefix adder includes 

three stages i.e:  pre-computation stage, prefix network stage and post-computation stage which 

is shown in Figure 3.11.  

1. Pre-Computation -It computes the carry 'Propagate' and carry 'Generate' bits for each input 

pair as given by Equation 3.13 and Equation 3.14. 
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Generate,Gi = Ai AND Bi                            (3.13) 

Propagate,Pi = Ai XOR Bi                           (3.14) 

 

Figure 3.11: Block level diagram of a prefix adder 

 

 

Figure 3.12: 4-bit Kogge-Stone prefix adder 
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Figure 3.13: RTL Schematic of Kogge stone adder 

 

2.  Prefix Network - It computes the final carry from the carry 'Propagate' and carry 'Generate'                                                                                                                              

      bits which is expressed by Equation 3.15 and Equation 3.16. 

 

Propagate, P = Pi AND Piprev                                         (3.15) 

Generate,G = (Pi AND Giprev ) OR Gi                                      (3.16) 

3. Post Computation - It computes the final Sum from carry generated in the prefix network 

stage. Final sum and final carry is expressed by Equation 3.17 and Equation 3.18 

respectively. 

Sum, S i = Pi XOR Ci-1                              (3.17) 
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Carry, C i = G i                                             (3.18) 

The KSA is the parallel prefix form that takes more area to implement, but has a lower fan-out at 

each stage. KSA started being used in multi-bit addition for faster addition but wiring congestion 

is often a problem. The KSA tree structure of 4 bit has been shown in Figure3.8.  

Figure 3.14 shows the colored representation of Figure 3.12. This figure also explains the 

equations for calculating Propagate and generates terms. 

 

Figure 3.14: Representation of each KSA block  

 

3.3   Implementation of 4-bit Adders 

For implementation of 4-bit adders we have used Xilinx ISE 14.1 Design Suite, area and delay 

values are calculated from synthesis report while Power is calculated by Power analyzer in which 

we have calculated IOs Power and Leakage Power. The terms used in Table 3.3 are explained as 

follows: 

a) Look-Up Tables (LUT):- In Configurable Logic Block (CLBs) function generators are 

implemented using LUT. When LUT’s inputs are given then a block of SRAM is 

indexed. The output of LUT depends on whatever value is in indexed location in its 

SRAM. This is because when chip is powered up, contents have to initialize and as RAM 

is volatile. 

b) Slices: - In FPGA slices are the basic building block components. Before mapping the 

logic of design, number of elements which each slice contain make up. All of the Flip 
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flop and LUT’s are packed into slices after mapping, not necessarily filling the slices. In 

the map report, even partially used slice is counted in the “occupied slices”. 

c) Input/output Block (IOB):- In FPGA device, input and output functions are 

implemented from the grouping of basic elements. Such collection and grouping of basic 

elements is termed as an IOB. 

d) Delay: - Delay is the time required for the input to be propagated to the output. In other 

words, the delay of a logic gate is defined as the time it takes for the effect of a change in 

input to be visible at the output 

 Router delay: - Router delay can be ~40% of total delay. 

 Logic delay: - Logic delay can be more than 50% of total delay. 

e) Power: - Power dissipation of two types a) static b) dynamic. 

 Static power dissipation- Static power lost is due to current leakage in the transistors 

of an FPGA. 

 Dynamic power dissipation- Dynamic power consumption is caused by signal 

alteration. 

Table 3.3 shows the comparison of different adders for various performance parameters. 

Table 3.3: Area, Delay and Calculation of different 4-bit adders 

Sr. 

No. 
Design 

No. 

of 4 

I/P 

LUT 

No. 

of 

occup

ied 

slices 

No. of 

bonded IOB 

Delay (ns) Power 

Total (W) Power Delay 

Product 

 

I-

Buf 

O --

Buf 

Logic 

Delay 

Router 

Delay 

 

Power 

IOs 

Power 

Leakage 

1. 4 bit RCA 8 4 9 5 7.306 2.768 0.021 0.034 0.543 

2. 4 bit 

Carry 

Skip adder 

10 6 9 5 6.602 2.134 0.012 0.034 0.401 

3. 4 bit 

Carry 

Select 

11 6 9 5 6.637 2.099 0.021 0.034 0.471 
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adder 

4. 4 bit 

Carry look 

ahead 

adder 

8 4 9 5 7.306 2.576 0.008 0.034 0.415 

5. 4 bit 

Kogge 

stone 

adder 

7 4 9 5 6.602 2.006 0.008 0.034 0.361 

 

 

3.4  Proposed Adder 

Among the parallel adders Carry Increment Adder (CIA) has the best delay performance which is 

one of the most important parameter in the high speed devices. The resulting CIA cuts the circuit 

size down by 23% with no change in performance. CIA is preferred for large word lengths (upto 

128 bits) as the power delay product is smallest among all the known adder architectures. An 8-

bit CIA adder includes two blocks of adder each 4 bit. In CIA only one partial sum is calculated 

and incremented if necessary, according to the input carry but in Carry select adder, from each 

group computing two partial sums and selecting the correct one. We have implemented modified 

8-bit CIA using KSA which provides less delay then already implemented 8-bit CIA. As we have 

seen from Table 3.3, among all the 4-bit adders KSA has the best performance in terms of delay 

i.e. 8.608ns. Therefore, we have used KSA to implement 8-bit CIA. 

 

a) CIA using RCA: CIA consists of incremental circuitry and RCA's. A desired number of 4-

bit inputs add by RCA and generating partitioned sum and partitioned carry. Using HA's in 

ripple carry sequence with an in order the incremental circuit is calculated. For example, two 

4-bit RCA is required to implement an 8-bit CIA. From the first block of RCA, we directly 

get the 4-bit sum of CIA. And the first RCA block carry output is given as input to the Cin of 

an incremental circuit. The incremental circuit consists of half adders and the second RCA 
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block the partial sum obtained is given to incremental circuit. The block diagram of an 8-bit 

CIA_RCA is shown in Figure 3.15. 

 

                                             Figure 3.15: Block diagram of CIA_RCA 

 

b) CIA using KSA: The KSA replaces the ripple carry adder, in order to reduce the delay of the 

regular CIA. The modified 8-bit CIA using KSA is shown in Figure9. KSA suffer from 

complexity in prefix network due to an increase in number of wiring and logic cells. A delay 

efficient KSA is proposed. Among the parallel adders carry increment adder has the best 

performance which is one of the most important parameter in the high speed devices. The 

proposed design is a new concept and to the best of our knowledge it has not been proposed 

earlier by any researcher. In this sub section, we present the modified Carry increment adder 

i.e. CIA_KSA. We know that RCA design is simple and implementation is easy, but it 

suffers from worst propagation delay. It is proved that KSA performs better than RCA in 

term delay at the expense of increased design complexity. We have modified CIA_RCA by 

replacing the RCA block with KSA block. Because of the property of KSA, the overall delay 

performance will be improved. As similar to CIA_RCA incremental circuit can be calculated 
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using HA's in ripple carry sequence with an in order. The block diagram representation of 

CIA_KSA is shown in Figure 3.16 and RTL schematic in Figure 3.18. 

 

Figure 3.16: Block diagram of CIA_KSA 

From the synthesis report, the performance parameters like area and delay are obtained and from 

power analyzer power is calculated which is shown in Table 3.4. It can be observed that the 

proposed design for 8bit Carry increment adder has better delay performance which is the 

desired goal of this research work. 

Table 3.4: Area, Delay and Power calculation of 8 bit CIA 

Sr. 

No. 
Design 

No. 

of 4 

I/P 

LUT 

No. 

of 

occup

ied 

slices 

 

No. Of 

bonded IOB 

 

Delay (ns) 

 

Power 

Total (W) 

Power 

Delay 

Product 

 
I –

Buf 

O- 

Buf 

Logic 

Delay 

Router 

Delay 

Power 

IOs 

Power 

Leakage 

1. 
8bit 

CIA_RCA 
19 11 18 9 9.418 4.502 0.008 0.034 0.585 

2. 

8bit 

Proposed 

CIA_KSA 

21 12 18 9 8.714 3.631 0.021 0.034 0.666 
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Figure 3.17: RTL Schematic of CIA_RCA 
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Figure 3.18: RTL Schematic of CIA_KSA 
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3.5 Comparison Table 

Table 3.5 signifies the comparison of designed 8-bit CIA with the existing adder. Our  proposed 

circuit gives the best delay i.e. 12.345 ns for CIA_KSA in comparison with Devi A.B. et al. 2016 

[11] whose delay is 14.59 ns for CIA_RCA and 13.54 ns for CIA_CLA.  

 

Table 3.5: Delay and Power calculation of 8-bit CIA using KSA 

 
No. Of occupied 

Slices 
LUTs Delay(ns) Power(W) 

Proposed Work 

CIA_KSA 
12 21 12.345 0.054 

Devi AB  et al.  2016 [20] 

CIA_RCA 
13 20 14.59 0.041 

Devi AB  et al.  2016 [11] 

CIA_CLA 
12 19 13.54 0.041 

 

 

3.6  Conclusion 

The performance of any circuit in VLSI design limits by the constituent factors like power, delay 

and area. In this chapter a modified carry increment adder is proposed using KSA instead of 

ripple carry adder. Without affecting the circuit the delay performance of the circuit is improved 

by replacing the 4-bit RCA with a proposed 4-bit KSA. But the proposed CIA_KSA has the 

disadvantage of more power consumption. The design is tested and verified by Verilog HDL 

coding and simulation is carried out by in Xilinx ISE 14.1 design suite and synthesized for 

Spartan 3E FPGA. The delay performance of KSA is better than RCA but as operand size 

increases (32-bits and above).  KSA suffers from complexity due to an increase in the number of 

logic cells and wiring. Future work may be dedicated to studying the complexity of CIA_KSA 

when the number of bits was increased. 
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CHAPTER 4 

      MULTIPLIERS 

 

Multiplication is the mathematical operation that at its simplest is an abbreviated process of 

adding an integer to itself, a specified number of times and can be measured as a chain of 

repeated additions. The number which is to be added is called the multiplicand, the number of 

times which is added is called the multiplier and the result being given is known as the product. 

Multiplication is an important fundamental function in arithmetic operations. Many researchers 

have tied and are trying to design multiplier which offers either of the following- high speed, less 

area and low power consumption. We describe different types of multipliers: Array multiplier, 

Wallace tree multiplier, Vedic multiplier. Designer mainly concentrates on efficient circuit 

design. Characteristics of an efficient multiplier: Speed-At high speed multiplier should perform 

operation, Accuracy- Correct result should given by good multiplier,  Area- Less number of 

LUTs and Slices are occupied by multiplier and Power- The power consumed by the multiplier 

is less. 

Three main steps of multiplication process:- 

1. Generation of partial product 

2. Addition of partial product  

3. Final addition 

 

Figure 4.1: Block diagram of Multiplier architecture 

 

Block diagram consist of three stages, in the first stage partial products are generated by 

multiplying bit by bit of multiplier and multiplicand. In the next stage there is addition of 

generated partial product, this stage is complex and the speed of circuit is derived and last stage 
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generated the output result by added the two-row outputs. Parallel multipliers are the most rapid 

multiplier type. The earlier performance of multiplier is enhanced to developed number of 

technique. 

Let the multiplicand and multiplier be A and B: 

A= a(M-1).a(M-2)….a1a0 = ∑ 𝑎M−1
𝑖=0 i.2

i                                                                                                                                        (4.1)  

B= b(N-1).b(N-2)….b1b0 = ∑ 𝑏N−1
𝑖=0 i.2

i                                                                                                                                          (4.2) 

 

The value of their product P = A×B is given by Equation 4.3: 

P = ∑ ∑ (N−1
i=0

M−1
i=0 aibi.2

i+j)                                                                                                     (4.3) 

 

Equation 4.4 and 4.5 expressed signed binary number and Equation 4.6 defined the product of A 

and B. 

 

A = -aM-1.2
M-1 + ∑ 𝑎M−2

𝑖=0 i.2
i                                                                                                                                                             (4.4) 

B= -bN-1.2
N-1 +∑ 𝑏N−2

𝑖=0 i.2
i                                                                                                                                                                   (4.5) 

 

The product P=A×B is given by Equation 4.6: 

 

P =   (-aM-1.2
M-1 + ∑ 𝑎M−2

𝑖=0 i.2
i )×( -bN-1.2

N-1 +∑ 𝑏N−2
𝑖=0 i.2

i )                                                               (4.6) 

 

4.1   Different Multipliers 

 

4.1.1 Array Multiplier 

It is regular in structure and to go from one block to adjacent block short wires are used. In VLSI 

its layout is efficient and simple. N partial product is generated when there is multiplication of 

multiplier and multiplicand bit by bit as expressed by Equation 4.3. Multiplication is depends on 

Add/Shift algorithm. Figure 4.2 shows the M×N multiply operation of array multiplier and by 

ANDing multiplicand and multiplier partial products are generated. 4×4 array multiplier is 

shown in Fig.4.3. 

                                                                           



 

34 
 

 

 

Figure 4.2: Partial product array for an M×N multiplier 

 

 

Figure 4.3: 4×4 Array multiplier 



 

35 
 

 

Figure 4.4: RTL Schematic of 4 bit Array multiplier 

 

4.1.2   Wallace multiplier 

 

In this multiplier there is parallel addition of generated partial products, so it takes less time for 

accumulation than array multiplier because in array multiplier the partial products are added in 

series. 8×8 bit partial product reduction is shown in Figure 4.5. In this Figure the two circled dots 

represent HA and tree circled dots represent FA. After four stages partial product is reduced to 

two rows. To reduce tree structure there are so many ways but only one method of reduction is 

shown.   
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Figure 4.5:   8×8 partial product tree reduction of Wallace multiplier 

 

Figure 4.6: RTL Schematic of 4 bit Wallace multiplier 
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4.1.3  Vedic Multiplier 

 

The word “Vedic” is derived from the word “Veda” which means the store house of knowledge. 

Veda consist of 16 sutras which encapsulate the branches of Mathematics- geometry, calculus, 

arithmetic, trigonometry etc. These sutras are : Shunyamanyat(Anurupye), Chalana-

Kalanabyham, Ekadhikina Purvena, Ekanyunena Purvena, Gunakasamuchyah, 

Gunitasamuchyah, Nikhilam Navatashcaramam Dashatah, Paraavartya Yojayet, 

Puranapuranaabhyam, Sankalana-vyavakalanabhyam,  Shesanyankena Charamena, Shunyam 

Saamyasamuccaye, Sopaantyadvayamantyam, Urdhva-tiryakbyham, Vyashtisamanstih, 

Yaavadunam. 

             

              

Vedic Multiplier using “UrdhvaTiryakbyham” Sutra: 

 

In Sanskrit literature the ‘Urdhva’ means ‘vertically’ and ‘Tiryakbyham’ means ‘crosswise’. 

UrdhvaTiryakbyham is applicable to all cases of multiplication.  In one step the algorithm 

produces sum and partial product. Once the number of bits is increased, this multiplier is 

advantageous as compared to other multipliers in terms of area and gate delay increases slowly. 

 

For example: 131 × 121 

Step Explanation Process Result 

1. 

The numbers that 

lie on ones place are 

multiplied vertically 

and output is 

generated and 

stored result in ones 

place of the final 

result  

 

1   3   1 

 

1   2   1 

          1 

 

 Result=1 

Carry=0 
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2. 

The numbers that 

lie on ones and tens 

place are multiplied 

by crossover 

multiplication and 

result is stored on 

tens place 

               

               1   3   1 

 

       1   2   1 

                    5   1 

 

             Result=3+2=5 

Carry=0 

 

3. 

The numbers that 

lie on ones and 

hundred place are 

multiplied by 

crossover 

multiplication and 

number that lie on 

hundred place are 

multiplied by 

vertical 

multiplication, 

result of these 

multiplication are 

summed and final 

result stored in 

hundred place. 

 

              1   3   1 

 

              1   2   1                  

              8   5   1 

 

            Result=1+6+1=8 

            Carry=0 

 

                 4. 

The numbers that 

lie on  tens and 

hundred place are 

multiplied by 

crossover 

multiplication and 

result is stored on 

thousand place 

 

              1   3   1 

 

              1   2   1                  

              5 8 5 1 

 

            Result=3+2=5 

            Carry=0 
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5. 

Finally,Vertical 

multiplication of 

two numbers on 

hundred place are 

multiplied, 1 bit 

output is generated 

and stored result in 

ten thousand place 

of the final result 

            

             1   3   1 

 

             1   2   1                  

             1 5 8 51 

 

                 Result=1 

                 Carry=0 

 

 

 

Nikhilam Sutra 

It literally means “all from 9 and last from 10” and when large numbers are involved it is more 

efficient. When the original number is larger the multiplication complexity is lesser. To perform 

the multiplication the compliment of the large number is find out from its nearest base. 

For example: 131×121 

 

 

Nearest Base =100 

131 – 100 = 31 

121 – 100 = 21 

 

 

131      31 

 

121      21 

1 5 2 

      6 5 1      

       1 5 8 5 1         Result 
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Figure 4.7: RTL Schematic of 4 bit Vedic multiplier 

 

 

4.2   Implementation of 4- bit multipliers 

For implementation of 4-bit multipliers we have used Xilinx ISE 14.1 Design Suite, area and 

delay values are calculated from synthesis report while Power is calculated by Power analyzer in 
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which we calculated IOs Power and Leakage Power. The comparison of different multipliers in 

terms of area, delay and power is shown in Table 4.1 

 

Table 4.1: Area, Delay and Power calculation of 4-bit Multipliers 

Sr. 

No. 
Design 

No. 

of 4 

I/P 

LUT 

No. 

of 

occup

ied 

slices 

No. of 

bonded 

IOB 

Delay (ns) Power 

Total (W) 
Power Delay 

Product 

 
I-

Buf 

O –

Buf 

Logic 

Delay 

Router 

Delay 

 

Power 

IOs 

Power 

Leakage 

1. 4 bit 

Array 

multipli

er 

29 17 8 8 9.171 4.486 0.001 0.034 0.4779 

2. 4 bit 

Wallace 

multipli

er 

33 19 8 9 7.947 3.928 0.001 0.034 0.4156 

3. 4 bit 

Vedic 

multipli

er 

39 22 9 9 8.837 3.995 0.029 0.034 0.8084 

 

4.3  Proposed Design 

8-bit multipliers are implemented using Kogge stone adder(KSA). Among all the adders KSA is 

best in term of performance i.e. delay, speed and it is basically a prefix based adder. We have 

implemented Array multiplier, Vedic multiplier, Wallace multiplier using KSA for different 

performance parameters. In term of delay Wallace multipliers have best delay i.e. 18.024ns but 

there are increased in power consumption. On the other hand in Array multiplier and Vedic 

multiplier there is decrease in the speed and decrease in the power consumption. Each multiplier 

has its own advantage and disadvantage depending on logic we are using. 
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8×8 Array Multiplier 

8 by 8 Array multiplier is implemented by considering two 8-bits binary numbers A[7:0] and 

B[7:0]. To implement 8 X 8 Array multiplier, 4 X 4 Array multipliers are used to generate partial 

products. For addition of generated partial product, three KSA of 8 bit are used. We are taking 

four 4 X 4 Array multiplier block, in the first block least significant bits(LSBs) of A and B are 

multiplied to generate S[3:0] of final result. In second block most significant bits(MSBs) of A is 

multiplied with LSBs of B to generate input bits for first block of KSA and in third block LSBs 

of A is multiplied with MSBs of B to generate input bits for first block of KSA. In fourth block, 

MSBs of A and B are multiplied to generate input bits for third block of KSA. Then take first 

two KSA and the carry generated from these adders are ORed. By ORing these two KSA a carry 

is generated which is applied a input to next KSA. In some blocks of KSA zero inputs are 

applied according to the requirement. KSA arrangement are made in such way that the speed of 

working is increased. Finally sum[15:0] and carry(C3) is generated and architecture of 8 X 8 

Array multiplier is shown in Figure 4.8. 

 

 

 

 

Figure 4.8: 8×8 Array multiplier architecture 

 



 

43 
 

8 X 8 Vedic Multiplier  

8 by 8 Vedic multiplier is implemented by considering two 8-bits binary numbers A[7:0] and 

B[7:0]. To implement 8 X 8 Vedic multiplier, 4 X 4 Vedic multipliers are used to generate 

partial products. For addition of generated partial product, three KSA of 8 bit are used. We are 

taking four 4 X 4 Vedic multiplier block, in the first block least significant bits(LSBs) of A and 

B are multiplied to generate S[3:0] of final result. In second block most significant bits(MSBs) of 

A is multiplied with LSBs of B to generate input bits for first block of KSA and in third block 

LSBs of A is multiplied with MSBs of B to generate input bits for first block of KSA. In fourth 

block, MSBs of A and B are multiplied to generate input bits for third block of KSA. Then take 

first two KSA and the carry generated from these adders are ORed. By ORing these two KSA a 

carry is generated which is applied a input to next KSA. In some blocks of KSA zero inputs are 

applied according to the requirement. KSA arrangement are made in such way that the speed of 

working is increased. Finally sum[15:0] and carry(C3) is generated and architecture of 8 X 8 

Vedic multiplier is shown in Figure 4.9. 

 

 

 

Figure 4.9: 8×8 Vedic multiplier architecture 
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8 X 8 Wallace Multiplier  

8 by 8 Wallace multiplier is implemented by considering two 8-bits binary numbers A[7:0] and 

B[7:0]. To implement 8 X 8 Wallace multiplier, 4 X 4 Wallace multipliers are used to generate 

partial products. For addition of generated partial product, three KSA of 8 bit are used. We are 

taking four 4 X 4 Wallace multiplier block, in the first block least significant bits (LSBs) of A 

and B are multiplied to generate S[3:0] of final result. In second block most significant 

bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of KSA and in 

third block LSBs of A is multiplied with MSBs of B to generate input bits for first block of KSA. 

In fourth block, MSBs of A and B are multiplied to generate input bits for third block of KSA. 

Then take first two KSA and the carry generated from these adders are ORed. By ORing these 

two KSA a carry is generated which is applied a input to next KSA. In some blocks of KSA zero 

inputs are applied according to the requirement. KSA arrangement is made in such way that the 

speed of working is increased. Finally sum[15:0] and carry(C3) is generated and architecture of 8 

X 8 Wallace multiplier is shown in Figure 4.7 and RTL schematic in Figure 4.10. 

 

Figure 4.10: 8×8 Wallace multiplier architectur 
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Table 4.2: Area, Delay and Power calculation of 8 bit Multipliers 

 

 

Table 4.3 gives the comparison of designed 8-bit Wallace multiplier with the existing multiplier. 

Our proposed circuit of which multipliers gives the less delay i.e. 18.024 ns in comparison 

Rajaram S et al. 2011[6] whose calculated delay is 27.457 ns and Thomas A et al. 2016[33] 

whose delay is 39 ns. We have also calculated power which is less i.e. 46mW then Murugeswari  

S. et al. 2014[4] whose power is 264mW, 231mW while Rajaram S et al. 2011[6] has not 

reported any power.  

Table 4.3: Area, Delay and Power calculation of 8 bit Wallace Multiplier 

 

 Width 
No. of occupied 

slices 
No. of LUTs Delay(ns) Power(mW) 

Propsed work 

Using KSA 
8 104 183 18.024 46 

Rajaram S et al. 

2011[6] 

 

8 - - 27.457 - 

Murugeswari  S. et 

al. 2014[4] 

Using Full adder 

8 87 163 17.223 264 

Murugeswari  S. et 

al. 2014[4] 

Using MUX based 

Full adder 

8 84 155 17.789 231 

Thomas A et al. 

2016[33] 

 

8 - 133 39 - 

 

 

Sr. 

No. 
Design 

No. 

of 4 

I/P 

LUT 

No. of 

occupi

ed 

slices 

 

No. Of 

bonded IOB 

 

Delay (ns) 

 

Power 

Total (W) 

Power 

Delay 

Product 

 

I –

Buf 

O- 

Buf 

Logic 

Delay 

Router 

Delay 

Power 

IOs 

Power 

Leakage 

1. 
Wallace_

KSA 
183 104 19 17 11.285 6.739 0.012 0.034 0.8291 

2. 
Array_K

SA 
171 98 19 17 13.121 7.850 0.001 0.034 0.7339 

3. 
Vedic_K

SA 
216 120 17 17 14.011 8.104 0.001 0.034 0.7740 
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Table 4.4 gives the comparison of designed 8-bit VM with the existing multipliers. Our proposed 

circuit of which multiplier gives the best delay i.e 22.115ns in comparison Gokhale GR et al. 

2015[3] whose delay is 44.358ns and Thomas A et al. 2016[33] whose delay is 34 ns using RCA 

and 30 ns using CLA. We have also calculated Power which is 35mW while Gokhale GR et al. 

2015[3] and Anjana R et al. 2014[5] has not reported any power. Anjana R et al. 2014[5] 

calculated difference between logic delay and router delay which is 5.588ns and our proposed 

circuit difference between logic delay and router delay is 5.907 which is more but the no. of 

LUTs required is less than Anjana R et al 2014[5]  . 

Table 4.4: Area, Delay and Power calculation of 8 bit Vedic Multiplier 

 

 Width No. of LUTs 
Area(gate 

count) 
Delay(ns) Power(W) 

Propsed work 

Using KSA 
8 216 - 22.115 0.035 

Gokhale GR et al. 

2015[3] 
8 - 1293 44.358 - 

Anjana R et al. 

2014[5] 
8 309 - 5.588 

- 

 

Thomas A et al. 

2016[33] 

Using RCA 

8 166 - 34 - 

Thomas A et al. 

2016[33] 

Using CLA 

8 167 - 30 - 

 

Table 4.5 gives the comparison of designed 8-bit AM with the existing multipliers. Our proposed 

circuit of which multiplier gives the best delay i.e. 20.971 ns in comparison to Maiti A et al. 

2016[34] whose delay is 25.3 ns and Thomas A et al. 2016[33] whose delay is 44ns. We also 

calculated power which is more i.e 35 mW in comparison to Maiti A et al. 2016[34] whose 

power is 0.0606 mW. 

Table 4.5: Area, Delay and Power calculation of 8 bit Array Multiplier 

 
 Width No. of LUTs Delay(ns) Power(mW) 

Propsed work 

Array Multiplier 
8 171 20.971 35 

Maiti A et al. 2016[34] 

Using CMOS 
8 - 25.3 0.0606 

Thomas A et al. 

2016[33] 

 

8 126 44 - 
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It can be observed that the proposed design for 8bit Wallace Multiplier has better delay 

performance which was the desired goal of this research work. 

 

4.4 Conclusion 

The performance of any circuit in VLSI design limits by the constituent factors like power, 

delay and area. In this chapter Array multiplier, Vedic multiplier and Wallace multiplier are 

implemented using KSA. It is concluded that KSA have less delay and power as compared 

to other adders, so it is best suited for implementation of modified multiplier. Wallace 

multiplier has less delay compared to other multipliers but there is increase in power 

consumption. The design is tested and verified by Verilog HDL coding and simulation is 

carried out by in Xilinx ISE 14.1 design suite and synthesized for Spartan 3E FPGA. KSA 

suffers from complexity due to an increase in the number of logic cells and wiring. Future 

work may be dedicated to decrease in power consumption of Wallace multiplier. 
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CHAPTER 5 

FAST FOURIER TRANSFORMS 

Fast Fourier Transform (FFT) is used for Signal Processing applications. It consists of addition 

and multiplication operations, whose speed improvement will enhance the accuracy and 

performance of FFT computation for any applications.”FFT are used to covert signal from time 

domain to frequency domain. In FFT processing unit Butterfly Structure is the basic building 

block and is used for the calculating complex calculation. So, it is important to design an 

efficient adder and multiplier block and used that efficient block in Butterfly Structure. 

 

5.1 Efficient Adder using 16 bit and 32 bit  

Efficient adder for 4 bit and 8 bit has been already implemented in Chapter 2. We have analyzed 

that KSA and CLA are the best suited adders in terms of delay and power. Now we need to 

implement 16 bit and 32 bit KSA and CLA so, that they can be used in high performance 

applications. 

KSA  

RCA has drawback that its delay goes on increasing as number of bits increases. To overcome 

this problem KSA is used. For high performance application large amount of bits are used for 

doing multiple calculation and tasks. So, there is a need to implement 32 bit KSA which is 

implemented by using 16 bit KSA. Firstly, it is important to implement 16 bit KSA. In KSA as 

the number of bits goes on increasing speed is increases but the drawback is that complexity 

increases. The KSA is the parallel prefix form that takes more area to implement. The RTL 

schematic of KSA for 16 bit and 32 bit are shown in Figure 5.1 and Figure 5.2.  

       

 
Figure 5.1: RTL Schematic of 16 bit KSA 



 

49 
 

 

 
Figure 5.2: RTL Schematic of 32 bit KSA 

 

In Section 3.2.4 it is already discussed about CLA. Figure 5.3 shows the RTL schematic of CLA 

for 16 bit and Figure 5.4 shows the RTL schematic of 32 bit CLA. 

 

 
Figure 5.3: RTL Schematic of 16 bit CLA 
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Figure 5.4: RTL Schematic of 32 bit CLA 
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From the synthesis report, the performance parameters like area and delay are obtained and from 

power analyzer power is calculated which is shown in Table 5.1. It can be observed that 16bit 

KSA has less delay compared to 16 bit CLA.  

 

Table 5.1: Area, Delay and Power Calculation of 16 bit Adders 

 

 

From the synthesis report, the performance parameters like area and delay are obtained and from 

power analyzer power is calculated which is shown in Table 5.2. It can be observed that 32 bit 

KSA has less delay compared to 32 bit CLA. From Table 5.1 and 5.2 it is observed that KSA is 

best suited adder for signal processing applications. 

 

Table 5.2: Area, Delay and Power Calculation of 32 bit Adders 

 

 

5.2 Efficient Multiplier using 16 and 32 bit  

From Chapter 3 we have analyzed that Wallace multiplier is best suited multiplier for high speed 

application because its delay is less as compared to other multipliers. We have already 

implemented 4 bit and 8 bit Wallace multiplier in Chapter 3. Now we need to implement 16 bit 

Sr. 

No. 
Design 

No. 

of 

Slice 

LUT 

 

No. Of bonded 

IOB 

 

Delay (ns) 

 

Power 

Total (W) 
Power 

Delay 

Product 

 I –Buf O- Buf 
Logic 

Delay 

Router 

Delay 

Power 

IOs 

Power 

Leakage 

1. KSA 35 32 17 4.406 2.853 0.017 0.081 0.7113 

2. CLA 25 33 17 5.636 6.910 0.017 0.081 1.2295 

Sr. 

No. 
Design 

No. 

of 

Slice 

LUT 

 

No. Of bonded 

IOB 

 

Delay (ns) 

 

Power 

Total (W) 
Power 

Delay 

Product 

 I –Buf O- Buf 
Logic 

Delay 

Router 

Delay 

Power 

IOs 

Power 

Leakage 

1. KSA 71 64 33 4.402 3.345 0.017 0.081 0.7592 

2. CLA 49 65 33 7.276 12.120 0.017 0.081 1.9008 
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and 32 bit Wallace multiplier using high speed adders i.e. KSA and CLA, the best results are 

used for further processing. As we have already find out in Section 5.1 that KSA have less delay 

compared to CLA but we need to check for multiplier also which is best suited. Firstly, we 

implement 16 bit Wallace multiplier using KSA and CLA then 32 bit Wallace multiplier. 

 

16 bit Wallace Multiplier using KSA 

16 by 16 Wallace multiplier is implemented by considering two 16-bits binary numbers A[15:0] 

and B[15:0]. To implement 16 X 16 Wallace multiplier, 8 X 8 Wallace multipliers are used to 

generate partial products. For addition of generated partial product, three KSA of 16 bits are 

used. We are taking four 8 X 8 Wallace multiplier block, in the first block least significant bits 

(LSBs) of A and B are multiplied to generate S[7:0] of final result. In second block most 

significant bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of 

KSA and in third block LSBs of A is multiplied with MSBs of B to generate input bits for first 

block of KSA. In fourth block, MSBs of A and B are multiplied to generate input bits for third 

block of KSA. Then take first two KSA and the carry generated from these adders are ORed. By 

ORing these two KSA a carry is generated which is applied a input to next KSA. In some blocks 

of KSA zero inputs are applied according to the requirement. KSA arrangement is made in such 

way that the speed of working is increased. Finally sum[31:0] and carry(C3) is generated and 

architecture of 16 X 16 Wallace multiplier is shown in Figure 5.5. 

 

16 bit Wallace Multiplier using CLA 

16 by 16 Wallace multiplier is implemented by considering two 16-bits binary numbers A[15:0] 

and B[15:0]. To implement 16 X 16 Wallace multiplier, 8 X 8 Wallace multipliers are used to 

generate partial products. For addition of generated partial product, three CLA of 16 bits are 

used. We are taking four 8 X 8 Wallace multiplier block, in the first block least significant bits 

(LSBs) of A and B are multiplied to generate S[7:0] of final result. In second block most 

significant bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of 

CLA and in third block LSBs of A is multiplied with MSBs of B to generate input bits for first  
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Figure 5.5: 16×16 Wallace multiplier architecture using KSA 

 

block of CLA. In fourth block, MSBs of A and B are multiplied to generate input bits for third 

block of CLA. Then take first two CLA and the carry generated from these adders are ORed. By 

ORing these two CLA a carry is generated which is applied a input to next CLA. In some blocks 

of CLA zero inputs are applied according to the requirement. CLA arrangement is made in such 

way that the speed of working is increased. Finally sum[31:0] and carry(C3) is generated and 

architecture of 16X 16 Wallace multiplier is shown in Figure 5.6. 

 

 
Figure 5.6: 16×16 Wallace multiplier architecture using CLA 



 

54 
 

From the synthesis report, the performance parameters like area and delay are obtained and from 

power analyzer power is calculated which is shown in Table 5.3. It can be observed that 16bit 

Wallace multiplier using KSA has less delay and less amount of energy consumed compared to 

16 bit CLA.  

 

 

Table 5.3: Area, Delay and Power calculation of 16 bit Wallace Multiplier 

 

 

 

32 bit Wallace Multiplier using KSA 

32 by 32 Wallace multiplier is implemented by considering two 32-bits binary numbers A[31:0] 

and B[31:0]. To implement 32 X 32 Wallace multiplier, 16 X 16 Wallace multipliers are used to 

generate partial products. For addition of generated partial product, three KSA of 32 bits are 

used. We are taking four 16 X 16 Wallace multiplier block, in the first block least significant bits 

(LSBs) of A and B are multiplied to generate S[15:0] of final result. In second block most 

significant bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of 

KSA and in third block LSBs of A is multiplied with MSBs of B to generate input bits for first 

block of KSA. In fourth block, MSBs of A and B are multiplied to generate input bits for third 

block of KSA. Then take first two KSA and the carry generated from these adders are ORed. By 

ORing these two KSA a carry is generated which is applied a input to next KSA. In some blocks 

of KSA zero inputs are applied according to the requirement. KSA arrangement is made in such 

way that the speed of working is increased. Finally sum[63:0] and carry(C3) is generated and 

architecture of 32X 32 Wallace multiplier is shown in Figure 5.7. 

Sr. 

No. 
Design 

No. 

of 

Slice 

LUT 

 

No. Of bonded 

IOB 

 

Delay (ns) 

 

Power 

Total (W) 
Power 

Delay 

Product 

 I –Buf O- Buf 
Logic 

Delay 

Router 

Delay 

Power 

IOs 

Power 

Leakage 

1. Wallace_KSA 610 32 32 6.641 14.369 0.017 0.081 2.0589 

2. Wallace_CLA 543 32 33 7.654 17.900 0.017 0.081 2.5042 
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Figure 5.7: 32×32 Wallace multiplier architecture using KSA 

 

32 bit Wallace Multiplier using CLA 

32 by 32 Wallace multiplier is implemented by considering two 32-bits binary numbers A[31:0] 

and B[31:0]. To implement 32 X 32 Wallace multiplier, 16 X 16 Wallace multipliers are used to 

generate partial products. For addition of generated partial product, three CLA of 32 bits are 

used. We are taking four 16 X 16 Wallace multiplier block, in the first block least significant bits 

(LSBs) of A and B are multiplied to generate S[15:0] of final result. In second block most 

significant bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of 

CLA and in third block LSBs of A is multiplied with MSBs of B to generate input bits for first 

block of CLA. In fourth block, MSBs of A and B are multiplied to generate input bits for third 

block of CLA. Then take first two CLA and the carry generated from these adders are ORed. By 

ORing these two CLA a carry is generated which is applied a input to next CLA. In some blocks 

of CLA zero inputs are applied according to the requirement. CLA arrangement is made in such 

way that the speed of working is increased. Finally sum[63:0] and carry(C3) is generated and 

architecture of 32X 32 Wallace multiplier is shown in Figure 5.8. 

 



 

56 
 

 
Figure 5.8: 32×32 Wallace multiplier architecture using CLA 

 

From the synthesis report, the performance parameters like area and delay are obtained and from 

power analyzer power is calculated which is shown in Table 5.4. It can be observed that 32 bits 

Wallace multiplier using KSA has less delay and less amount of energy consumed compared to 

32 bit CLA.  

 

Table 5.4: Area, Delay and Power calculation of 32 bit Wallace Multiplier 

 

 

 

It is observed that Wallace multiplier implementation using KSA is best suited multiplier and 

KSA is best suited adder to enhance the accuracy and performance of FFT computation for any 

application. So, in butterfly structure these efficient multiplier and adder are used.  

 

 

Sr. 

No. 
Design 

No. 

of 

Slice 

LUT 

 

No. Of bonded 

IOB 

 

Delay (ns) 

 

Power 

Total (W) 
Power 

Delay 

Product 

 I –Buf O- Buf 
Logic 

Delay 

Router 

Delay 

Power 

IOs 

Power 

Leakage 

1. Wallace_KSA 2109 64 64 7.455 18.134 0.017 0.113 3.326 

2. Wallace_CLA 1819 64 65 11.314 33.189 0.017 0.113 5.78539 
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5.3 Transforms  

Transforms are not that much important but they are used to covert calculations into  simple and 

more convenient form. Either in time domain or in frequency domain the signal analysis and 

computation is possible. Transforms like Fourier are used to tell us about the property and 

frequencies present in our system and for transforming a continuous signal into frequency 

domain. In the digital computers there is computation of DFT and its inverse but they have 

complexity in computation. For instance, the word length of the input sequence is N and the total 

number of arithmetic operation required for the computation is proportional to N2. If N=2000, 

then required operations are millions. In most of the applications such numbers are prohibitive. 

So, in 1965 the discovery of Fast Fourier Transform (FFT) was announced by Cooley and 

Tukey. FFT is one of the most important algorithm used in many applications of DSP such as 

frequency estimation, communication etc. because this algorithm is efficient and highly elegant. 

Consider the one of the most basic radix transform i.e. radix-2 transform in which it requires N to 

be power of 2. Radix transform is used when the number is prime and at that time DFT has a 

regular pattern and size r. The number r is called the radix of the FFT algorithm.  

Equation 5.1 shows the DFT equation: 

 

𝑋𝑝 = ∑ 𝑥𝑛𝑒−𝑗
2𝛱

𝑁
𝑛𝑝N-1

n=0                                                                                                                   (5.1) 

 

Now, split the Equation 5.1 into even and odd parts as shown into Equation 5.2: 

 

𝑋𝑝 = ∑ 𝑥2𝑛𝑒−𝑗
2𝛱

𝑁
(2𝑛)𝑝

𝑁

2
 -1

n=0
+∑ 𝑥2𝑛+1𝑒−𝑗

2𝛱

𝑁
(2𝑛+1)𝑝

𝑁

2
 -1

n=0
                                                                   (5.2)    

 

 

Where ∑ 𝑥2𝑛𝑒−𝑗
2𝛱

𝑁
(2𝑛)𝑝

𝑁

2
 -1

n=0
  = Even part                                                                                    (5.3) 

 

∑ 𝑥2𝑛+1𝑒−𝑗
2𝛱

𝑁
(2𝑛+1)𝑝

𝑁

2
 -1

n=0
  = Odd part                                                                                          (5.4) 

 

From Equation 5.4 take 𝑒−𝑗
2𝛱

𝑁
𝑝
  outside the summation as shown in Equation 5.5: 

 

𝑒−𝑗
2𝛱

𝑁
𝑝 ∑ 𝑥2𝑛+1𝑒

−𝑗
2𝛱

(𝑁 2⁄ )
𝑛𝑝

𝑁

2
 -1

n=0
                                                                                                      (5.5) 

 

 

By substitution of Equation 5.5 in Equation 5.2, it can be expressed as: 
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𝑋𝑝 = ∑ 𝑥2𝑛𝑒
−𝑗

2𝛱

(𝑁 2⁄ )
𝑛𝑝

𝑁

2
 -1

n=0
+𝑒−𝑗

2𝛱

𝑁
𝑝 ∑ 𝑥2𝑛+1𝑒

−𝑗
2𝛱

(𝑁 2⁄ )
𝑛𝑝

𝑁

2
 -1

n=0
                                                            (5.6)  

 

The N point data sequence is split into two 𝑁 2⁄  point data sequence  𝐴𝑝 and 𝐵𝑝, corresponding 

to even-numbered and odd-numbered samples. 

  

     = 𝐴𝑝+𝑊𝑝𝐵𝑝                                                                                                                          (5.7) 

 

Where   𝐴𝑝= ∑ 𝑥2𝑛𝑒
−𝑗

2𝛱

(𝑁 2⁄ )
𝑛𝑝

𝑁

2
 -1

n=0
                                                                                                (5.8) 

 

             𝐵𝑝=∑ 𝑥2𝑛+1𝑒
−𝑗

2𝛱

(𝑁 2⁄ )
𝑛𝑝

𝑁

2
 -1

n=0
                                                                                              (5.9) 

 

            𝑊𝑝=𝑒−𝑗
2𝛱

𝑁                                                                                                                     (5.10) 

 

Both 𝐴𝑝, 𝐵𝑝 are sequence of DFT with length of 𝑁 2⁄ . As we know in frequency domain DFT is 

periodic but with period  𝑁 2⁄ there is further simplification. Now take same Equation 5.2 and at  

frequency p+𝑁 2⁄  evaluate it. 

 

𝑋𝑝+𝑁 2⁄  = ∑ 𝑥2𝑛𝑒
−𝑗

2𝛱

(𝑁 2⁄ )
𝑛(𝑝+𝑁 2⁄ )

𝑁

2
 -1

n=0
+𝑒−𝑗

2𝛱

𝑁
(𝑝+𝑁 2⁄ ) ∑ 𝑥2𝑛+1𝑒

−𝑗
2𝛱

(𝑁 2⁄ )
𝑛(𝑝+𝑁 2⁄ )

𝑁

2
 -1

n=0
                     (5.11)      

 

 

Now, by simplify terms as follows: 

 

   𝑒
−𝑗

2𝛱

(𝑁 2⁄ )
𝑛(𝑝+𝑁 2⁄ )

   =   𝑒−𝑗
2𝛱

𝑁
𝑛𝑝

                                                                                               (5.12) 

 

And   𝑒−𝑗
2𝛱

𝑁
(𝑝+𝑁 2⁄ ) =  𝑒−𝑗

2𝛱

𝑁
𝑝
                                                                                                  (5.13) 

 

Hence, after simplification put Equation 5.12 and 5.13 in Equation 5.11, which is expressed as: 

 

𝑋𝑝+𝑁 2⁄  = ∑ 𝑥2𝑛

𝑁

2
 -1

n=0
𝑒

−𝑗
2𝛱

𝑁 2⁄
𝑛𝑝

- 𝑒−𝑗
2𝛱

𝑁
𝑝 ∑ 𝑥2𝑛+1𝑒−𝑗

2𝛱

𝑁
𝑛𝑝

𝑁

2
 -1

n=0
                                                        (5.14)   

   

             = 𝐴𝑝- 𝑊𝑝𝐵𝑝                                                                                                                (5.15)    

 

Now compare the equation for 𝑋𝑝+𝑁 2⁄  with that for 𝑋𝑝: 

 

𝑋𝑝 =  𝐴𝑝+𝑊𝑝𝐵𝑝  and  𝑋𝑝+𝑁 2⁄  =  𝐴𝑝- 𝑊𝑝𝐵𝑝                                                                                                                 
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This defines the FFT butterfly structure: 

                            

 

Figure 5.9: Butterfly Structure 

 

So, the complex number of adders and multiplier required is 𝑁 2⁄  for both  𝐴𝑝 and 𝐵𝑝.”The total 

for all p = 0,1,…., 𝑁 2⁄ − 1 is then 2(𝑁 2⁄ )2 multiplies and additions for the calculation of all the 

𝐴𝑝  and 𝐵𝑝.”Thus the total number of adders and multipliers required is 𝑁2 2⁄  for word length N. 

As compared to direct DFT the computation is approximately halved. There are different types 

of FFT such as DIT (decimation in time) and DIF (decimation in frequency don’t have that much 

advantage).Other types are “radix-2” FFT  and “radix-4” FFT , in radix-2 there is 2 input-output 

butterflies and word length N  has power of 2 and in radix-4 there is 4 input-output butterflies. In 

FFT a completely different type of algorithm is used i.e. Winograd Fourier Transform Algorithm 

(WFTA)  in which lengths of FFT is equal to the product of mutually prime factor. WFTA has 

same length as FFT but it uses more adders and less multipliers. In signal processing application 

FFT algorithm is most widely used algorithm and the butterfly structure shown in Figure 5.9 

plays an important role for processing FFT algorithm. So, it is important to implement an 

efficient butterfly structure.                                                                              
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5.3.1 Butterfly Structure 

It is important that there is an efficient algorithm for processing any application. In FFT 

algorithm the main building block is butterfly and most of the power in FFT processor is 

consumed by the butterfly block. So, there is a need to implement butterfly structure firstly 

because this is the main requirement of our processing. The 4 bit and 8 bit butterfly structure are 

easy to calculate theoretically but when the word length increases to 16 bit, 32 bit it would be 

difficult for the researchers to calculate the value theoretically. So, the main focus of our project 

is to implement 16 bit and 32 bit butterfly structure in an efficient way but in this project we 

have also implemented 4 bit and 8 bit butterfly structure. For the implementation of butterfly 

structure adders and multipliers plays an important role. It is necessary to design an efficient 

adders and multiplier so the butterfly structure implemented in an efficient way. In Section 5.1 

and 5.2 we have discussed the high speed adder and multiplier. By using these adders and 

multipliers, the modified architecture of butterfly is proposed. In the butterfly firstly it is 

important to design an efficient multiplier by using a high speed adder which we already 

implemented in Section 5.1. In this report butterfly consist of Wallace multiplier, which is 

implemented using KSA and CLA and different adders implemented. As shown in Table 5.3 and 

5.4 the Wallace multiplier using KSA is best suited for signal application because it has less 

delay. In butterfly we have calculated delay and power for different word length results are 

shown in Table 5.5.  Flow diagram of butterfly shows in Figure 5.10. 

 

From the synthesis report, the performance parameters like area and delay are obtained and from 

power analyzer power is calculated which is shown in Table 5.5. Delay, area and power 

calculation for different bits such 4 bit, 8 bit, 16 bit and 32 bit in butterfly structure are 

calculated.   

 

Table 5.5: Area, Delay and Power calculation of Butterfly Structure 

Sr. 

No. 
Design 

No. 

of 

Slice 

LUT 

 

No. Of bonded 

IOB 

 

Delay (ns) 

 

Power 

Total (W) 
Power 

Delay 

Product 

 I –Buf O- Buf 
Logic 

Delay 

Router 

Delay 

Power 

IOs 

Power 

Leakage 
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Figure 5.10: Flow Diagram of Butterfly 

 

1. 4-bit 122 24 26 5.011 6.672 0.050 0.082 1.5421 

2. 8-bit 623 48 46 6.233 12.453 0.050 0.082 2.4665 

3. 16-bit 2638 96 86 7.049 16.522 0.050 0.082 3.1113 

4. 32-bit 10861 192 166 8.062 21.426 0.050 0.115 4.8360 
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Conclusion 

The performance of any circuit in VLSI design limits by the constituent factors like power, delay 

and area. In this chapter Wallace multiplier are implemented using KSA and CLA. It is 

concluded that implementation of Wallace multiplier using KSA have less delay and power as 

compared to CLA, so it is best suited for implementation of modified Butterfly Structure. The 

design is tested and verified by Verilog HDL coding and simulation is carried out by Xilinx ISE 

14.1 design suite and power is calculated in Xpower Analyzer Future work may be dedicated to 

decrease in power consumption of butterfly. 

 

 

Figure 5.11: RTL Schematic of 4 bit Butterfly 
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Figure 5.12: RTL Schematic of 8 bit Butterfly 
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Figure 5.13: RTL Schematic of 16 bit Butterfly 
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Figure 5.14: RTL Schematic of 32 bit Butterfly 
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CONCLUSION 

 

The performance of any circuit in VLSI design is limited by the constituent factors like 

power, delay and area. The designs of various adders and multiplier have been implemented 

on Xilinx ISE 14.1 design suite and synthesized for Spartan 3E FPGA. Firstly, a modified 

Carry increment adder is proposed using KSA instead of ripple carry adder. Without 

affecting the delay performance of the circuit is improved by replacing the 4-bit RCA with a 

proposed 4-bit KSA. The design is tested and verified by Verilog HDL coding. The delay 

performance of KSA is better than RCA but as operand size increases (32-bits and above), 

KSA suffers from complexity due to an increase in the number of logic cells and wiring and 

proposed CIA_KSA has the disadvantage of more power consumption. Future work may be 

dedicated to studying the complexity of CIA_KSA when the number of bits is increased. 

Secondly, a modified Wallace multiplier, Array multiplier and Vedic multiplier are proposed 

using KSA instead of other adders because KSA has less delay (8.608ns). Out of these 

multipliers Wallace multiplier has less delay compared to other multiplier but have more 

power consumption. In Array multiplier and Vedic multiplier decrease in power consumption 

is proportional to decrease in the speed. In future work we are trying to optimize delay and 

power, so to design a high speed circuit with low power consumption. Lastly, an efficient 

algorithm for butterfly processing element implemented. It is implemented by using modified 

multiplier i.e Wallace multiplier and high speed adder. This butterfly block plays an 

important role in FFT. FFT block is very important for the computation of other transforms. 

Application of FFT i.e. in current usage FFT algorithm percentage is large and in Signal 

Processing application it is widely used. Other examples of FFT are: Coding, Spectrum 

analysis etc. 
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