
i

HIGH SPEED RADIX-2 BUTTERFLY STRUCTURE

USING NOVEL WALLACE MULTIPLER

Dissertation submitted in fulfillment of the requirements for the Degree of

MASTERS OF TECHNOLOGY

IN

 ELECTRONICS AND COMMUNICATION

 By

GARIMA THAKUR

Enrollment No.162005

Under the Supervision of

DR. SHRUTI JAIN

AND

DR. HARSH SOHAL

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, SOLAN -

173234, INDIA MAY, 2018

ii

TABLE OF CONTENTS

DECLARATION BY THE SCHOLAR…………………………………………………………..v

CERTIFICATE…………………………………………………………………………………....vi

ACKNOWLEDGEMENT…………………………………………………………………….....vii

ABSTRACT…………………………………………………………………………………......viii

LIST OF FIGURES…………………………………………………………………….................x

LIST OF TABLES .. xiii

ABBREVIATIONS……………………………………………………………………………..xiv

CHAPTER 1 INTRODUCTION…………………………………………………………………......1

1.1 Adders…….…………………………………………………………………………………...1

1.2 Multiplier………………………………………………………………………………………2

1.3 FFT…………………………………………………………………………………………….3

1.4 Need for Low Power Design………………..…………………………………………………3

1.5 Programming Language……………………………………………………………………….5

1.6 Research Approach……………………………………………………………………………7

1.7 Organization…………………………………………………………………………………...7

1.8 Tools Used……………………………………………………………………………………..8

CHAPTER 2 LITERATURE SURVEY………………………………………………………......9

CHAPTER 3 ADDERS…………………………………………………………………………..13

3.1 Basic Adder…………………………………………………………………………………..13

 3.1.1 Half Adder……………………………………………………………………………..13

 3.1.2 Full Adder……………………………………………………………………………...14

iii

3.2 Complex Adder………………………………………………………………………………15

 3.2.1 Ripple Carry Adder…………………………………………………………………….15

 3.2.2 Carry Select Adder……………………………………………………………………..16

 3.2.3 Carry Skip Adder………………………………………………………………………17

 3.2.4 Carry Look Ahead Adder………………………………………………………………18

 3.2.5 Kogge Stone Adder…………………………………………………………………….21

3.3 Implementation of 4-bit Adders……………………………………………………………...24

3.4 Proposed Adder……………………………………………………………………………....26

3.5 Comparison Table……………………………………………………………………………31

3.5 Conclusion……………………………………………………………………………………31

CHAPTER 4 MULTIPLIERS……………………………………………………………………32

4.1 Different Multipliers…………………………………………………………………………33

 4.1.1 Array Multiplier………………………………………………………………………..33

 4.1.2 Wallace Multiplier……………………………………………………………………...36

 4.1.3 Vedic Multiplier………………………………………………………………………..38

4.2 Implementation of 4-bit Multiplier…………………………………………………………..41

4.3 Proposed Multiplier…………………………………………………………………………..42

4.4 Conclusion……………………………………………………………………………………48

CHAPTER 5 FAST FOURIER TRANSFORMS……………………………………………… 49

5.1 Implementation of 16 and 32 bit efficient Adder…………………………………………….49

5.2 Implementation of 16 and 32 bit efficient Multiplier………………………………………...52

iv

5.3 Transforms…………………………………………………………………………………...58

 5.3.1 Butterfly Structure………………………………………………………………………61

5.4 Conclusion……………………………………………………………………………………63

CONCLUSION…………………………………………………………………………………..67

REFERENCES…………………………………………………………………………………...68

PUBLICATION………………………………………………………………………………….71

v

vi

vii

viii

ABSTRACT

In any Central Processing Unit (CPU) the crucial components are Arithmetic and Logic Unit

(ALU). ALU can perform different operation like addition, subtraction, multiplication etc. In this

thesis addition and multiplication plays an important role because adders and multipliers are the

basic building blocks of any Digital Signal Processing applications.

Firstly, in this work adder is used for addition of numbers but it also perform some arithmetic

operations. In adders the basic buildings blocks are Half adder and Full adder because they are

used for constructing complex adders like Ripple Carry Adder, Carry Select Adder etc. First

analyzed efficient adder and used this efficient adder for implementation of modified Carry

Increment adder. This modified adder used in many Signal Processing application and increases

the speed of the circuit because nowadays delay optimization and power optimization become a

very challenging problem with the increase of the portable devices.

Secondly, after adders the crucial component is multiplier. In multipliers the basic block for

reducing partial product is adder. The efficient adder used in the multiplier for increasing the

speed of circuit and used the circuit in an optimized way. For constructing an efficient multiplier

different architecture are proposed so to design an efficient multiplier. A modified multiplier is

proposed by using efficient multiplier with efficient adder so, to improve the overall performance

of the circuit.

The goal of this is to analyze and compare various adders and multiplication schemes for high-

speed and low power operations. Since the various Digital Signal Processing applications,

require computationally efficient Multiply and Accumulate operations so the blocks with desired

characteristics have to be chosen carefully. Various techniques have been proposed to design

multipliers which are efficient in terms of performance, low power consumption and area.

Finally, the efficient adders and multipliers are used in FFT algorithm. FFT is used for signal

processing applications. It consists of addition and multiplication operations, whose speed

improvement will enhance the accuracy and performance of FFT computation for any

applications.”FFT are used to covert signal form time domain to frequency domain. In FFT

ix

processing unit butterfly structure is the basic building block and are used for calculating the

complex calculation. So, it is important to design an efficient adder and multiplier block and used

this efficient block in butterfly structure.

Further work on Low Power Techniques on different multipliers needs to be done in order to

make us choose a proper multiplier in accordance with the requirements by making the best

possible trade off choice between Speed and Power in different circumstances.

x

LIST OF FIGURES

Figure 1.1 Logical Circuit of Half Adder…………………………………………………….....2

Figure 1.2 Logical Circuit of Full Adder……………………………………………………….2

Figure 1.3 Number of transistors on IC (1971-2016)…………………………………………...4

Figure 1.4 Power density trend versus power design requirements…………………………….4

Figure 1.5 Design Flow using Verilog …………………………………………………………6

Figure 3.1 RTL Schematic of Half Adder …………………………………………………….13

Figure 3.2 RTL Schematic of Full Adder …………………………………………………….14

Figure 3.3 4 bit Ripple carry adder……………………………………………………………15

Figure 3.4 RTL Schematic of Ripple carry adder……………………………………………..15

Figure 3.5 4-bit Carry select adder ……………………………………………………………16

Figure 3.6 RTL Schematic of Carry select adder……………………………………………...16

Figure 3.7 4-bit Carry skip adder ……………………………………………………………..17

Figure 3.8 RTL Schematic of Carry skip adder……………………………………………….18

Figure 3.9 4-bit Weinberger-Smith CLA ……………………………………………………..20

Figure 3.10 RTL Schematic of Carry Lookahead adder………………………………………..21

Figure 3.11 Block level diagram of a prefix adder………………………………………..……22

Figure 3.12 4-bit Kogge-Stone prefix adder …………………………………………………...22

Figure 3.13 RTL Schematic of Kogge stone adder……………………………………………..23

Figure 3.14 Representation of each KSA block………………………………………………...24

file:///C:/Users/Lenovo/Desktop/new%20file.docx#_Toc481341006

xi

Figure 3.15 Block diagram of CIA_RCA………………………………………………………27

Figure 3.16 Block diagram of CIA_KSA……………………………………………………….28

Figure 3.17 RTL Schematic of CIA_RCA……………………………………………………...29

Figure 3.18 RTL Schematic of CIA_KSA……………………………………………………...30

Figure 4.1 Block diagram of Multiplier architecture………………………………………….32

Figure 4.2 Partial product array for an M×N multiplier……………………………………….34

Figure 4.3 4×4 Array multiplier………………………………………………………………..34

Figure 4.4 RTL Schematic of 4 bit Array multiplier…………………………………………...35

Figure 4.5 8×8 partial product tree reduction of Wallace multiplier…………………………..36

Figure 4.6 RTL Schematic of 4 bit Wallace multiplier………………………………………...36

Figure 4.7 RTL Schematic of 4 bit Vedic multiplier…………………………………………,,40

Figure 4.8 8×8 Array multiplier architecture…………………………………………………..42

Figure 4.9 8×8 Vedic multiplier architecture…………………………………………………..43

Figure 4.10 8×8 Wallace multiplier architecture……………………………………………….44

Figure 5.1 RTL Schematic of 16 bit KSA……………………………………………………...48

Figure 5.2 RTL Schematic of 32 bit KSA……………………………………………………...49

Figure 5.3 RTL Schematic of 16 bit CLA……………………………………………………...49

Figure 5.4 RTL Schematic of 32 bit CLA………………………………………………………50

Figure 5.5 16×16 Wallace multiplier Architecture using KSA…………………………………53

Figure 5.6 16×16 Wallace multiplier Architecture using CLA…………………………………53

Figure 5.7 32×32 Wallace multiplier Architecture using KSA…………………………………55

xii

Figure 5.8 32×32 Wallace multiplier Architecture using CLA…………………………………56

Figure 5.9 Butterfly Structure…………………………………………………………………..59

Figure 5.10 Flow diagram of Butterfly…………………………………………………………..61

Figure 5.11 RTL Schematic of 4 bit butterfly……………………………………………………62

Figure 5.12 RTL Schematic of 8 bit butterfly……………………………………………………63

Figure 5.13 RTL Schematic of 16 bit butterfly…………………………………………………..64

Figure 5.14 RTL Schematic of 32 bit butterfly…………………………………………………..65

xiii

LIST OF TABLES

Table 3.1 Implementation Table of Full Adder……………………………………………….......14

Table 3.2 Truth Table of Full Adder……………………………………………………………...19

Table 3.3 Area, Delay and Power calculation of 4-bit Adders……………………………………25

Table 3.4 Area, Delay and Power calculation of 8-bit CIA……………………………………….28

Table 3.5 Comparison Table of Area, Delay and Power calculation of 8-bit CIA……………......31

Table 4.1 Area, Delay and Power calculation of 4-bit Multipliers……………………………......41

Table 4.2 Area, Delay and Power calculation of 8-bit Multipliers…………….………………….45

Table 4.3 Comparison Table of Area, Delay and Power calculation of 8-bit Wallace multiplier…45

Table 4.4 Comparison Table of Area, Delay and Power calculation of 8-bit Vedic multiplier…...46

Table 4.5 Comparison Table of Area, Delay and Power calculation of 8-bit Array multiplier…...46

Table 5.1 Area, Delay and Power calculation of 16 bit Adder…………………………………....51

Table 5.2 Area, Delay and Power calculation of 32 bit Adder…………………………………....51

Table 5.3 Area, Delay and Power calculation of 16 bit Wallace multiplier………………………54

Table 5.4 Area, Delay and Power calculation of 32 bit Wallace multiplier………………………56

Table 5.5 Area, Delay and Power calculation of Butterfly structure……..…………………….....60

xiv

ABBREVIATIONS

VLSI – Very Large Scale Integration

HDL – Hardware Description Language

VHDL – Very High Speed Integrated Circuit Hardware Description Language

ICs – Integrated Circuits

RCA – Ripple Carry Adder

CSA – Carry Save Adder

SQRT – Square Root

CSLA – Carry Select Adder

BEC – Binary To Excess Code

XOR – Exclusive OR

CBL – Common Boolean Logic

KSA – Kogge Stone Adder

DFR – Design Of Reconfigurability

CLA – Carry Look Ahead Adder

DSP – Digital Signal Processor

HA – Half Adder

FA – Full Adder

CSkA – Carry Skip Adder

LUT – Look-Up Tables

CLBs – Configurable Logic Block

xv

SRAM – Static Random Access Memory

RAM – Random Access Memory

FPGA – Field Programmable Gate Array

IOB – Input/Output Block

CIA – Carry Increment Adder

WAP – Write a Programme

DFT- Discrete Fourier Transform

IDFT- Inverse Discrete Fourier Transform

FFT- Fast Fourier Transform

1

CHAPTER 1

INTRODUCTION

Fast Fourier Transform (FFT) plays a crucial role in many Digital Signal Processing (DSP)

applications. In communication systems like Orthogonal Frequency Division Multiplexing

(OFDM), FFT is the most important block. It is used to convert a signal from time domain to

frequency domain. In various systems there are requirements of high performance FFT to fulfill

the demands of next generation with low cost and high speed. There is a need to design an

efficient butterfly because it plays an important role in FFT processor. Nowadays, delay and

power optimization have become a very challenging problem and portable electronic products

are of great demand which need more backup, less area and less weight. So, low power circuit is

designed because it directly affects the performance of the circuit. In general purpose processors

the most important arithmetic units are adders and multipliers. The emphasis of our work is on

minimizing the latency, with the goal being the implementation of the fastest multiplication

blocks as possible. When we use digital system on a VLSI chip, much better Signal Processing

Systems are implemented with the growth in the scale of integration. A large amount of energy

and computation capacity is consumed in the signal processing. Architecture of arithmetic units

is chosen carefully to reduce the power consumption and area. Arithmetic unit consists of

Adders and Multipliers which are as follows:

1.1 Adders

In digital IC designs the most frequent and essential operation is addition. Addition is done by

adders and adders are the most important arithmetic units of any Digital Processing System. The

most commonly used blocks in adders are Half Adder (HA) and Full Adder (FA) as shown in

Figure 1.1 and 1.2. By using HA and FA many complex adder architectures are constructed. In

this report many complex adders are implemented in terms of speed and power. The adder which

has high speed is used for implementation of proposed design of adder. Adders are the basic

building blocks of many applications. Adders are also used for calculate addresses, table indices

and many more.

2

Figure 1.1: Logical circuit of Half Adder

 Figure 1.2: Logical circuit of Full Adder

1.2 Multipliers

Multipliers also play a crucial role in the implementation of high performance circuits. These

high performance circuits are used in many Digital Signal Processing applications, so there is a

need to design an efficient multiplier to meet the requirement of the designer. For designing an

efficient multiplier various characteristics are of taken care like: Speed-At high speed multiplier

should perform operation, Accuracy- Correct result should given by good multiplier, Area- Less

number of LUTs and Slices are occupied by multiplier and Power- The power consumed by the

multiplier is less. Adders are used for addition of partial products of efficient multipliers. Three

steps are followed for multiplication process: firstly, generation of partial products, second

addition of partial products and finally, final addition. In this work the proposed multiplier is

implemented using the adder with high speed and low power so to design an efficient multiplier.

This efficient multiplier is used in many applications such as Image Processing, DSP,

microprocessors etc.

1

2
3

1

2
3 Sum

Carry

A

B

3

1.3 FFT

In Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) the

complex numbers of arithmetic operations like addition and multiplication are required. For

implementation of DFT one of the most efficient ways is FFT because it reduces the usage of

arithmetic units. Arithmetic operations of DFT has O(N×N) order and FFT has O(N log N)

order. Basically, FFT is used to covert signal to frequency domain from time domain. Nowadays,

in Wireless Communication researchers employed FFT processor so, to achieve low power, high

speed and low area utilization. For N-point data sequence the DFT is shown in Equation 1.1.

X[k] = ∑ x[n]𝑊𝑁
𝑘𝑛N-1

n=0 (1.1)

For N-point data sequence the IDFT is shown in Equation 1.2.

X[n] =
1

𝑁
∑ 𝑋[𝑘]𝑊𝑁

−𝑘𝑛𝑁−1
𝑘=0 (1.2)

Where 𝑊𝑁
𝑘𝑛 = 𝑒−𝑗

2𝛱

𝑁
𝑘𝑛

In FFT the most important block used is butterfly block because for increase the performance of

the FFT processor firstly, it is important to design the high speed and low power consumption

butterfly element. Butterfly is implemented using an efficient multiplier and adder. Different

adders and multipliers circuits are designed, implemented and compared as explained in Chapter

2 and Chapter 3. Later proposed adders and multipliers are compared with the existing work.

1.4 Need for Low Power Design

During the last decades there is an increase in the integrated circuits which is predicted by

Moore’s Law. Figure 1.3 shows that every two year the number of transistors in IC doubles. As

the feature size decreases there is reduction of power consumption. But as shown in Figure 1.3

power consumption increases with increase in the transistor count. Low power consumption in

portable application is the major constraint. Power consumption and energy efficiency contribute

to so many factors like longer operation time, higher workload etc in these situation power

consumption become more critical. Reliability is also reduced as increase in on chip temperature

due to increase in power consumption. Many problems are raised as power supply is delivered to

chip such as noise immunity, power rails design etc. In many high performance applications the

cost of cooling and packaging is increasing, so, power reduction is the primary objective of the

designers in these applications.

4

Figure 1.3: Number of transistors on IC (1971-2016)[35]

Therefore, it is important to reduce power technique for current and future integrated circuit.

Figure 1.4 shows the graph between power density and power density requirement for modern

SoCs. The widening gap is shown in Figure 1.4 which shows the huge challenge for the

designers that they face today. Lots of efforts are required for managing power in the design and

the effort required is increasing with the new designs to meet new challenges.

Figure 1.4: Power density trend versus power design requirements[36]

5

As shown in Figure 1.3 increasing level of device integration and the complexity of the circuits

is also increases. So, the primary goal is reduction of the power consumption. As the years goes

by, the power dissipation also goes on increasing linearly and because of ever-shrinking size of

chips the power density increases exponentially. If the rise of power density exponential then

few years later a microprocessor designed who has power equal to nuclear reactor. So, this

introduces reliability concerns as rise in power density such as thermal stresses, device

degradation induced in hot carrier and it will result in loss of performance. As the increase in the

demand of portable devices which is powered by batteries need low power chips this is the

another factor.

1.4 Programming Language

Hardware Description Language (HDL) e.g. Verilog, VHDL are used to Write a Program

(WAP). We have used Verilog programming for implementation of our digital circuit, because

by using a HDL we can describe any digital hardware at any level. For design and verification of

digital circuits it is most commonly used at the Register-Transfer Level (RTL) of abstraction

Verilog language have many advantages over VHDL i.e. compact language, reduction operator

etc. The Figure 1.5 summarizes the high level design flow for an ASIC (i.e. gate array, standard

cell) or FPGA. Various steps are used for simulation and these steps are further divided into

various other parts:

a) System-Level Verification

In system level verification there is complete verification of system model and simulates

aspects. There is a detailed description of the system functionality and alternatively, maybe

there is partial description of the system properties. For system-level modeling Verilog is not

suited ideally.

b) RTL Design and Test Bench Creation

In RTL design the architecture of the system is stable and it’s partitioning. In Verilog the

RTL and test cases start capturing. Both the tasks are complementary and for various designs

different RTL and test cases captured. If automated synthesis of logic is used then the RTL

Verilog should be synthesizable. A disciplined approach is followed by test case.

6

c) RTL verification

In comparison to gate level simulation the RTL magnitude simulation is faster of one or two

order and this shows that by spending more time in simulation it speed-up is best when more

simulation is done. Against the specification the validation of functionality is done by RTL

Verilog.

d) Look-Ahead Synthesis

In this synthesis design process will be done early, so the designers evaluate speed and area

accurately and researchers check how the Verilog synthesis will be done, until the

completion of functional simulation the production of main synthesis run. If the validation of

design functionality is not done it is pointless to invest efforts and time in synthesis.

e) System Level

Verilog is addressed by system Verilog because it is not suited ideally for simulation at

system level. VHDL is user-defined types in which designer allowed to work in the domain

of problem. But Verilog is a pre-defined type in which designer allowed to work for

scholastic simulation and build-in language features allowed for queuing, modeling

performance and throughput.

Figure 1.5: Design Flow using Verilog

7

1.3 Research Approach

The basic idea behind our work is to design as efficient Butterfly Structure having low power

and less delay because in FFT processor the basic block is Butterfly. We need to design efficient

Butterfly block so it will the processor for fast computation in many application. In Butterfly the

important block are adders and multipliers. An efficient multiplier block is implemented in

which basic building block is adder. Nowadays, power optimization and delay optimization have

become a very challenging problem. Firstly, our focus is on designing and implementation of

adder in which we have examined different adders. The best adder is one with a minimum delay,

low power consumption and finds a proper relation between LUTs, slices, power and delay.

Secondly, best high speed adder is used for designing an efficient multiplier. Different

multipliers are studied, designed and implemented using Verilog HDL. After getting all the

results we find out the best multiplier with high speed and low power consumption. Finally, this

efficient multiplier and high speed adder is used for the implementation of Butterfly Structure.

Our future work is dedicated for reduction of more power consumption by reducing number of

logic gates.

1.4 Organization

CHAPTER 2: LITERATURE SURVEY – This chapter explain the various types of algorithm

used in adders and multiplier to design optimized circuit. The algorithm which is best suited to

design high performance circuit is used.

CHAPTER 3: ADDERS – This chapter explains the different types of adders and there

implementation. An optimized adder is used to design the high speed circuit.

CHAPTER 4: MULTIPLIERS – This chapter explains different types of multipliers there

implementation and results. An optimized adders and multiplier combine to construct high speed

circuit.

CHAPTER 5: FFT – This chapter explains the implementation of butterfly using efficient

multipliers and adders. Butterfly plays crucial role in the processors.

8

1.5 Tools Used

 Simulation Software:

 Xilinx 14.1 ISE design suite

Power Calculation

 XPower Analyzer

9

CHAPTER 2

LITERATURE SURVEY

We have studied a lot of papers some are listed :

Akhter S. et al. 2017[1] in this paper various digital adders are used for comparative analysis of

Vedic multiplier. Using CBL adder the 8-bit Vedic multiplier is 20% faster than BEC and is

approximately 5% faster in terms of delay than RCA-CSA, SQRT-CSA and RCA. With the

increase in the width size they have calculated outcome in terms of speed, area and leakage

power.

Gowreesrinivas K. V. et al. 2016[2] in this paper using different types adders and by

incorporating Vedic multiplier, a new type of multiplier is developed. The new developed

multiplier i.e. Single Precision Floating Point(SPFP) have drawback of optimization of speed

and area. By reducing interconnections and complexity the overall performance can be

improved. It is observed that using combination of prefix sklansky adder and Vedic

multiplier(VM) is best in comparison to other multipliers because it is best in terms of speed and

complexity.

Gokhale G. R. et al. 2015[3] V M is implemented in this paper by means of lesser number gates,

area, which is required by proposed CSLA. The Booth multiplier has more area, low speed

compare to proposed V M, so it is superior. In the architecture of Vedic multiplier the addition

block plays a important role for increasing and decreasing the performance of the circuit.

Murugeswari S. et al. 2014[4] in this a low power and an area efficient modified Wallace and

truncated multiplier is implemented by using full adder which is based on mux. In the end it is

concluded that reduction in area of modified truncated multiplier shows improvement in device

utilization compared to modified Wallace multiplier.

10

Anjana R. et al. 2014[5] in this paper they designed a modified novel high speed multiplier as a

result of combining Kogge stone adder with the multiplier to design the fastest multiplier.

S. Rajaram et al. 2011[6] in this paper proposed multiplier has less delay than the conventional

multiplier. Proposed multiplier is Wallace multiplier which used Parallel prefix adder at the final

stage, so there is improvement in multiplier.

R. B. S. Kesava et al. 2016[7] in this paper a simple approach is proposed for Wallace

multiplier(WM) using Carry select adder(CSLA) , so to reduce area. They implement CSLA

with BEC in Wallace tree multiplier to occupying less power, less area and memory when

compared to WM using CSLA and WM.

S.Srikanth et al. 2016 [8] in this paper by using multiplexers and XOR gate, proposed a full

adder. In Wallace tree multiplier , by putting the proposed full adder in the decrease stage an

average delay, power and area reduction achieved compared to existing method respectively is

achieved.

D. Paradhasaradhi et al. 2014[9] an area efficient proposed WM is implemented in this paper by

using CBL which is based on SQRT (square root) CSLA. There is reduction of delay and area by

reducing the number of gates. Copying of adder cells are removed in the usual CSLA by sharing

CBL term.

Gurjar P. et al. 2011[10] simulated and synthesized the different adders. The parameters like area

and speed and the usefulness of fast adders is analyzed by simulated results. In the end, for 8-bit

and 16-bit adders the caught parameters are analyzed. This paper infers that in conditions of

delay and area consumption the Carry skip adder the efficient adder.

Bais K. et al 2016 [11] mentioned relationship of speed and area of different adders for various

number of bits. From the delay comparison of adders, it is clear that Kogge Stone adder (KSA) is

the fastest adder because it is parallel prefix adder. In the end they drive a conclusion that the

speed and area cannot be optimized at the same time. If one parameter is improved the other

11

definitely shows degradation. In this paper we understand that KSA was the best when

considered for delay but for area, as the number of bits of operands increases KSA occupies

more area due to increase in parallel prefix stage.

Nandini M. et al 2015[12] discussed different kinds of prefix adders particularly Spanning adder,

Sparse Kogge stone adder, Ladnelfischerladder, BrentlKungladder and KSA. Correct practicality

of every individual module was tested. This paper has resulted in reduced delay and power in the

development of adders design. After analysis calculated KSA and Sparse KSA different

parameters is being compared with the other adder. After the comparison less combinational

delay of Kogge Stone adder with 12.499ns and less amount of power consumption of Ladner

fischer adder with 0.26089 mW. In future using parallel prefix adders all the proposed

architectures are designed.

Kulkarni R. et al 2015[13], discussed the performance of different adders. Characterization of

different adders and implementation on an FPGA is done. Later than observe the outcome of

comparisons, for two 8 bit addition numbers, CLA is superior. Forlthreeland four 8 bitlnumbers

addition Carrylsaveladder(CSA) with last stage built by RCA is preferable. In future work, low

area as well as delay is required to design unique adder and to meet the requirement of current

industry.

Mitre A. et al 2015[14], this paper compared completely different addition rule for various

performance parameters i.e. power, area and speed for different adders such as Ripple carry

adder(RCA), CSA, Carry select adder, Carry look ahead adder(CLA) and KSA. By merging

Kogge stone and Carry select algorithms a high speed adder is then designed and works

significantly faster than the rest.

Kumar A. et al 2013[15] explained that Ripple carry adder design is basic and it is appropriate

for just addition of less width operand since delay run straightly with the width of operand.

Linear area required by Carry skip adder which is not really bigger than area required by the

RCA . As compare to other the delay of CLA is less and much faster than RCA. For high speed

12

multiplication and accumulation, they can use Carry-look ahead adder(CLA) for 32 bit

multiplier-accumulator unit. In fact the speed of multiplier has approximately twice the speed

with carry-look ahead adder.

SaiKumar M. et al 2013[16], in this paper, presentation parameters of adders such as delay, area

are compare, determined and design of various adders are discussed. Better performance in terms

of area and delay is achieved through Carrylincrementladder (CIA) in comparison to additional

adder topologies. For the later use, design of unique adder is needed which will provide small

area, speed and meet up the requirements of current VLSI industry.

Suba C. et al 2014[17], design for reconfigurability (DFR) technique is presented by this paper

for CLA.DFR proposal which has planned to isolate an extensive CLA keen on different little

part ones. A small amount of area and delay penalty is incurred by the DFR scheme. The CLA

has the smallest amount delay-area result. It is proper for conditions where together low power

and fastness application. It is not feasible to apply CLA in steady delay for the wider-bit adders

as there will be low speed, larger power consumption and substantial loading capacitance.

Singh A. K. et al 2017[28], in this paper, for higher radix FFT an efficient algorithm of butterfly

unit was implemented. Taking various issues of FFT implementation an capable Butterfly block

is implemented firstly and used this Butterfly block in FFT. Vedic multiplication result analyses

in terms of slices and LUTs and implement an efficient butterfly in comparison to Booth

multiplication (BM) technique. The design using CLA require large amount of hardware but

faster than using RCA.

Rashmi M. J. et al 2014[29], in this paper, two algorithms are implemented which was based on

DIT-FFT. First, algorithm was on the bases of Radix-2 FFT and second on the bases of Split

Radix FFT. Both algorithms are compared for device utilization, speed and taking width size of

16 bits. Large amount of memory usage and increase in the delay as increases the single length

of the proposed architecture using radix-2 FFT. This drawback was overcome by Split Radix

FFT algorithm.

13

CHAPTER 3

ADDERS

In digital IC designs the most frequent and essential operation is addition. Addition is done by

adders and adders are the most important arithmetic units of any Digital Processing System. The

most commonly used blocks in adders are HA and FA. By using HA and FA many complex

adder architecture are implemented.

3.1 Basic Adder

There are two types of basic adder which are used i.e. Half Adder and Full adder. These adders

are the most important building block of any circuit.

3.1.1 Half Adder (HA) : HA is used for addition of two 1 bit number, which give sum bit(s)

and carry bit (c). Sum bit is given by XORing A and B, Carry bit is given by ANDing A

and B which is expressed by Equation 3.1 and 3.2 respectively.

 Sum(s) = A XOR B (3.1)

 Carry(c) = A AND B (3.2)

Figure 3.1: RTL Schematic of Half Adder

14

3.1.2 Full adder (FA) : FA adds three 1 bit number, which produces sum bit(s) and carry (c).

By cascading two half adder it also produce sum and carry bit. Sum and Carry bit is

expressed by Equation 3.3 and 3.4 respectively.

 Sum(s) = A XOR B XOR Cin (3.3)

 Carry(c) = (A AND B) OR (B AND Cin) OR (A AND Cin) (3.4)

Figure 3.2: RTL Schematic of Full Adder

Table 3.1: Implementation Table of Full Adder

Inputs Half Adder1 O/P Half Adder1 O/P Final Output

A B Cin S1 C1 S2 C2 S Cout

0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 1 0

0 1 0 1 0 1 0 1 0

0 1 1 1 0 0 1 0 1

1 0 0 1 0 1 0 1 0

1 0 1 1 0 0 1 0 1

1 1 0 0 1 0 0 0 1

1 1 1 0 1 1 0 1 1

15

3.2 Complex Adder

Complex Adder are constructed by using basic adders i.e. HA and FA. Design circuitry of these

adders is complex because they take number of blocks to design a circuit.

3.2.1 Ripple Carry Adder (RCA) : Multi-bit addition is performed by the RCA and moreover

the processing delay is also increased by it. RCA is formed by cascading full adders in

series. Each FA generates a carry which is provided to next FA and the process goes on,

which is shown in Figure 3.3. The delay is increased, when the numbers of bits go on

increasing. The advantage of RCA is its easy implementation and simple design.

Figure 3.3: 4 bit Ripple Carry Adder

Figure 3.4: RTL Schematic of Ripple Carry Adder

16

3.2.2 Carry Select Adder (CSLA) : CSLA is formed by two RCA and 2:1 multiplexer.

Independent generation of sum and carry i.e. cin=1 and cin=0 are executed parallelly in CSLA.

Correct sum along with correct carry-out is then selected by the multiplexer, depending on real

carry-out of previous section. CSLA is further divided into two blocks i.e. uniform and variable

block. More hardware is used by CSLA even though it gives less delay compared the ripple carry

adder. 4- bit CSLA is shown in Figure 3.5 and RTL Schematic in Figure 3.6..

Figure 3.5: 4-bit Carry Select Adder

Figure 3.6: RTL Schematic of Carry Select Adder

17

3.2.3 Carry Skip Adder (CSkA) : This adder enhances delay of RCA with small effort. As

the name indicates, CSkA uses skip logic in the propagation of carry. It is designed to speed up a

wide adder by adding the propagation of carry bit around a portion of the entire adder. The carry-

in bit designated as Ci. The output of RCA (the last stage) is Ci+4. The carry skip circuitry

consists of two logic AND gate which accepts the carry-in bit and compares it with the group of

propagated signals using the individual propagate values.

 P [i,i+3] = (P i+3).(P i+2).(P i+1).P i (3.5)

 Output stage is produced when the output from the AND gate is ORed with Cout of RCA. Final

carry is expressed by output stage which is represented by Equation 3.6.

 Carry = C i+4 + (P i,i+3) . C i (3.6)

If P [i,i+3] = 0, then the Carry-out of the group is determined by the value of Ci+4 . However, if

P [i,i+3] =1 then the Carry-in bit is Ci =1,then the group carry-in is automatically sent to the next

group of adders. The design of schematic of CSkA is shown in Figure 3.7.

Figure 3.7: 4-bit Carry Skip Adder

18

Figure 3.8: RTL Schematic of Carry Skip Adder

3.2.4 Carry Look Ahead Adder (CLA) The RCA is simple and easy to implement, but it

suffers from serious delay issues. This is because the next stage of full adder needs to wait for

Carry bit from the previous stage full adder The CLA solves this problem by calculating the

carry signals in advance, based on the input signals. CLA technique is to drive the 'Sum' and

'Carry' outputs by using intermediate terms defined as ‘Generate (G)' and ‘Propagate (P)' terms.

In the case of propagate the 'Carry-out' depends on the 'Carry-in' and in the case of generate the

‘Carry-out’ independent of the ‘Carry-in’.

The Table 3.2 illustrates the concept of Propagate and Generate more clearly. The output 'Sum'

and 'Carry' of the full adder in terms of P and G, can be observed from Table 3.2 as expressed by

Equation 3.7 and Equation 3.8:

 S i =Pi ⊕ Ci (3.7)

19

 C i+1 =Gi +(Pi .Ci) (3.8)

Table 3.2: Truth Table of a Full Adder

Weinberger and Smith proposed a method for fast carry generation which states that the carry

need not depend on the previous carry which is shown in Figure 3.9. Generate term produces a

carry-out independent of the carry-in, i.e.no matter what the carry-in, the carry-out is always '1',

when both of the inputs A and B are '1' thus G=A.B. The Propagate term transfers the input

Carry as output Carry when only one of the inputs is high. The carry generation is done by first

calculating Generate(gi) and Propagate (pi) which is explained by Equation 3.9 and Equation

3.10 respectively.

 gi =Ai.B i (3.9)

pi =Ai ⊕ Bi (3.10)

Carry is generated by Equation 3.11 as:

Ci =g i-1 + p i-1 C i-1 (3.11)

After the generation of carry, the sum is calculated using the Equation 3.12.

Si =Ai ⊕ Bi ⊕ Ci (3.12)

20

For wide adders where N > 16 (N is the input operand size), the delay of the carry look-ahead

adders becomes dominated by the delay of passing the carry through the look-ahead stages and

the implementation need high fan-in gates.

Figure 3.9: 4-bit Weinberger-Smith CLA

21

Figure 3.10: RTL Schematic of Carry Lookahead adder

3.2.5 Kogge Stone Adder (KSA) : It is basically a prefix based adder. Prefix adder includes

three stages i.e: pre-computation stage, prefix network stage and post-computation stage which

is shown in Figure 3.11.

1. Pre-Computation -It computes the carry 'Propagate' and carry 'Generate' bits for each input

pair as given by Equation 3.13 and Equation 3.14.

22

Generate,Gi = Ai AND Bi (3.13)

Propagate,Pi = Ai XOR Bi (3.14)

Figure 3.11: Block level diagram of a prefix adder

Figure 3.12: 4-bit Kogge-Stone prefix adder

23

Figure 3.13: RTL Schematic of Kogge stone adder

2. Prefix Network - It computes the final carry from the carry 'Propagate' and carry 'Generate'

 bits which is expressed by Equation 3.15 and Equation 3.16.

Propagate, P = Pi AND Piprev (3.15)

Generate,G = (Pi AND Giprev) OR Gi (3.16)

3. Post Computation - It computes the final Sum from carry generated in the prefix network

stage. Final sum and final carry is expressed by Equation 3.17 and Equation 3.18

respectively.

Sum, S i = Pi XOR Ci-1 (3.17)

24

Carry, C i = G i (3.18)

The KSA is the parallel prefix form that takes more area to implement, but has a lower fan-out at

each stage. KSA started being used in multi-bit addition for faster addition but wiring congestion

is often a problem. The KSA tree structure of 4 bit has been shown in Figure3.8.

Figure 3.14 shows the colored representation of Figure 3.12. This figure also explains the

equations for calculating Propagate and generates terms.

Figure 3.14: Representation of each KSA block

3.3 Implementation of 4-bit Adders

For implementation of 4-bit adders we have used Xilinx ISE 14.1 Design Suite, area and delay

values are calculated from synthesis report while Power is calculated by Power analyzer in which

we have calculated IOs Power and Leakage Power. The terms used in Table 3.3 are explained as

follows:

a) Look-Up Tables (LUT):- In Configurable Logic Block (CLBs) function generators are

implemented using LUT. When LUT’s inputs are given then a block of SRAM is

indexed. The output of LUT depends on whatever value is in indexed location in its

SRAM. This is because when chip is powered up, contents have to initialize and as RAM

is volatile.

b) Slices: - In FPGA slices are the basic building block components. Before mapping the

logic of design, number of elements which each slice contain make up. All of the Flip

25

flop and LUT’s are packed into slices after mapping, not necessarily filling the slices. In

the map report, even partially used slice is counted in the “occupied slices”.

c) Input/output Block (IOB):- In FPGA device, input and output functions are

implemented from the grouping of basic elements. Such collection and grouping of basic

elements is termed as an IOB.

d) Delay: - Delay is the time required for the input to be propagated to the output. In other

words, the delay of a logic gate is defined as the time it takes for the effect of a change in

input to be visible at the output

 Router delay: - Router delay can be ~40% of total delay.

 Logic delay: - Logic delay can be more than 50% of total delay.

e) Power: - Power dissipation of two types a) static b) dynamic.

 Static power dissipation- Static power lost is due to current leakage in the transistors

of an FPGA.

 Dynamic power dissipation- Dynamic power consumption is caused by signal

alteration.

Table 3.3 shows the comparison of different adders for various performance parameters.

Table 3.3: Area, Delay and Calculation of different 4-bit adders

Sr.

No.
Design

No.

of 4

I/P

LUT

No.

of

occup

ied

slices

No. of

bonded IOB

Delay (ns) Power

Total (W) Power Delay

Product

I-

Buf

O --

Buf

Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

1. 4 bit RCA 8 4 9 5 7.306 2.768 0.021 0.034 0.543

2. 4 bit

Carry

Skip adder

10 6 9 5 6.602 2.134 0.012 0.034 0.401

3. 4 bit

Carry

Select

11 6 9 5 6.637 2.099 0.021 0.034 0.471

26

adder

4. 4 bit

Carry look

ahead

adder

8 4 9 5 7.306 2.576 0.008 0.034 0.415

5. 4 bit

Kogge

stone

adder

7 4 9 5 6.602 2.006 0.008 0.034 0.361

3.4 Proposed Adder

Among the parallel adders Carry Increment Adder (CIA) has the best delay performance which is

one of the most important parameter in the high speed devices. The resulting CIA cuts the circuit

size down by 23% with no change in performance. CIA is preferred for large word lengths (upto

128 bits) as the power delay product is smallest among all the known adder architectures. An 8-

bit CIA adder includes two blocks of adder each 4 bit. In CIA only one partial sum is calculated

and incremented if necessary, according to the input carry but in Carry select adder, from each

group computing two partial sums and selecting the correct one. We have implemented modified

8-bit CIA using KSA which provides less delay then already implemented 8-bit CIA. As we have

seen from Table 3.3, among all the 4-bit adders KSA has the best performance in terms of delay

i.e. 8.608ns. Therefore, we have used KSA to implement 8-bit CIA.

a) CIA using RCA: CIA consists of incremental circuitry and RCA's. A desired number of 4-

bit inputs add by RCA and generating partitioned sum and partitioned carry. Using HA's in

ripple carry sequence with an in order the incremental circuit is calculated. For example, two

4-bit RCA is required to implement an 8-bit CIA. From the first block of RCA, we directly

get the 4-bit sum of CIA. And the first RCA block carry output is given as input to the Cin of

an incremental circuit. The incremental circuit consists of half adders and the second RCA

27

block the partial sum obtained is given to incremental circuit. The block diagram of an 8-bit

CIA_RCA is shown in Figure 3.15.

 Figure 3.15: Block diagram of CIA_RCA

b) CIA using KSA: The KSA replaces the ripple carry adder, in order to reduce the delay of the

regular CIA. The modified 8-bit CIA using KSA is shown in Figure9. KSA suffer from

complexity in prefix network due to an increase in number of wiring and logic cells. A delay

efficient KSA is proposed. Among the parallel adders carry increment adder has the best

performance which is one of the most important parameter in the high speed devices. The

proposed design is a new concept and to the best of our knowledge it has not been proposed

earlier by any researcher. In this sub section, we present the modified Carry increment adder

i.e. CIA_KSA. We know that RCA design is simple and implementation is easy, but it

suffers from worst propagation delay. It is proved that KSA performs better than RCA in

term delay at the expense of increased design complexity. We have modified CIA_RCA by

replacing the RCA block with KSA block. Because of the property of KSA, the overall delay

performance will be improved. As similar to CIA_RCA incremental circuit can be calculated

28

using HA's in ripple carry sequence with an in order. The block diagram representation of

CIA_KSA is shown in Figure 3.16 and RTL schematic in Figure 3.18.

Figure 3.16: Block diagram of CIA_KSA

From the synthesis report, the performance parameters like area and delay are obtained and from

power analyzer power is calculated which is shown in Table 3.4. It can be observed that the

proposed design for 8bit Carry increment adder has better delay performance which is the

desired goal of this research work.

Table 3.4: Area, Delay and Power calculation of 8 bit CIA

Sr.

No.
Design

No.

of 4

I/P

LUT

No.

of

occup

ied

slices

No. Of

bonded IOB

Delay (ns)

Power

Total (W)

Power

Delay

Product

I –

Buf

O-

Buf

Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

1.
8bit

CIA_RCA
19 11 18 9 9.418 4.502 0.008 0.034 0.585

2.

8bit

Proposed

CIA_KSA

21 12 18 9 8.714 3.631 0.021 0.034 0.666

29

Figure 3.17: RTL Schematic of CIA_RCA

30

Figure 3.18: RTL Schematic of CIA_KSA

31

3.5 Comparison Table

Table 3.5 signifies the comparison of designed 8-bit CIA with the existing adder. Our proposed

circuit gives the best delay i.e. 12.345 ns for CIA_KSA in comparison with Devi A.B. et al. 2016

[11] whose delay is 14.59 ns for CIA_RCA and 13.54 ns for CIA_CLA.

Table 3.5: Delay and Power calculation of 8-bit CIA using KSA

No. Of occupied

Slices
LUTs Delay(ns) Power(W)

Proposed Work

CIA_KSA
12 21 12.345 0.054

Devi AB et al. 2016 [20]

CIA_RCA
13 20 14.59 0.041

Devi AB et al. 2016 [11]

CIA_CLA
12 19 13.54 0.041

3.6 Conclusion

The performance of any circuit in VLSI design limits by the constituent factors like power, delay

and area. In this chapter a modified carry increment adder is proposed using KSA instead of

ripple carry adder. Without affecting the circuit the delay performance of the circuit is improved

by replacing the 4-bit RCA with a proposed 4-bit KSA. But the proposed CIA_KSA has the

disadvantage of more power consumption. The design is tested and verified by Verilog HDL

coding and simulation is carried out by in Xilinx ISE 14.1 design suite and synthesized for

Spartan 3E FPGA. The delay performance of KSA is better than RCA but as operand size

increases (32-bits and above). KSA suffers from complexity due to an increase in the number of

logic cells and wiring. Future work may be dedicated to studying the complexity of CIA_KSA

when the number of bits was increased.

32

CHAPTER 4

 MULTIPLIERS

Multiplication is the mathematical operation that at its simplest is an abbreviated process of

adding an integer to itself, a specified number of times and can be measured as a chain of

repeated additions. The number which is to be added is called the multiplicand, the number of

times which is added is called the multiplier and the result being given is known as the product.

Multiplication is an important fundamental function in arithmetic operations. Many researchers

have tied and are trying to design multiplier which offers either of the following- high speed, less

area and low power consumption. We describe different types of multipliers: Array multiplier,

Wallace tree multiplier, Vedic multiplier. Designer mainly concentrates on efficient circuit

design. Characteristics of an efficient multiplier: Speed-At high speed multiplier should perform

operation, Accuracy- Correct result should given by good multiplier, Area- Less number of

LUTs and Slices are occupied by multiplier and Power- The power consumed by the multiplier

is less.

Three main steps of multiplication process:-

1. Generation of partial product

2. Addition of partial product

3. Final addition

Figure 4.1: Block diagram of Multiplier architecture

Block diagram consist of three stages, in the first stage partial products are generated by

multiplying bit by bit of multiplier and multiplicand. In the next stage there is addition of

generated partial product, this stage is complex and the speed of circuit is derived and last stage

33

generated the output result by added the two-row outputs. Parallel multipliers are the most rapid

multiplier type. The earlier performance of multiplier is enhanced to developed number of

technique.

Let the multiplicand and multiplier be A and B:

A= a(M-1).a(M-2)….a1a0 = ∑ 𝑎M−1
𝑖=0 i.2

i (4.1)

B= b(N-1).b(N-2)….b1b0 = ∑ 𝑏N−1
𝑖=0 i.2

i (4.2)

The value of their product P = A×B is given by Equation 4.3:

P = ∑ ∑ (N−1
i=0

M−1
i=0 aibi.2

i+j) (4.3)

Equation 4.4 and 4.5 expressed signed binary number and Equation 4.6 defined the product of A

and B.

A = -aM-1.2
M-1 + ∑ 𝑎M−2

𝑖=0 i.2
i (4.4)

B= -bN-1.2
N-1 +∑ 𝑏N−2

𝑖=0 i.2
i (4.5)

The product P=A×B is given by Equation 4.6:

P = (-aM-1.2
M-1 + ∑ 𝑎M−2

𝑖=0 i.2
i)×(-bN-1.2

N-1 +∑ 𝑏N−2
𝑖=0 i.2

i) (4.6)

4.1 Different Multipliers

4.1.1 Array Multiplier

It is regular in structure and to go from one block to adjacent block short wires are used. In VLSI

its layout is efficient and simple. N partial product is generated when there is multiplication of

multiplier and multiplicand bit by bit as expressed by Equation 4.3. Multiplication is depends on

Add/Shift algorithm. Figure 4.2 shows the M×N multiply operation of array multiplier and by

ANDing multiplicand and multiplier partial products are generated. 4×4 array multiplier is

shown in Fig.4.3.

34

Figure 4.2: Partial product array for an M×N multiplier

Figure 4.3: 4×4 Array multiplier

35

Figure 4.4: RTL Schematic of 4 bit Array multiplier

4.1.2 Wallace multiplier

In this multiplier there is parallel addition of generated partial products, so it takes less time for

accumulation than array multiplier because in array multiplier the partial products are added in

series. 8×8 bit partial product reduction is shown in Figure 4.5. In this Figure the two circled dots

represent HA and tree circled dots represent FA. After four stages partial product is reduced to

two rows. To reduce tree structure there are so many ways but only one method of reduction is

shown.

36

Figure 4.5: 8×8 partial product tree reduction of Wallace multiplier

Figure 4.6: RTL Schematic of 4 bit Wallace multiplier

37

4.1.3 Vedic Multiplier

The word “Vedic” is derived from the word “Veda” which means the store house of knowledge.

Veda consist of 16 sutras which encapsulate the branches of Mathematics- geometry, calculus,

arithmetic, trigonometry etc. These sutras are : Shunyamanyat(Anurupye), Chalana-

Kalanabyham, Ekadhikina Purvena, Ekanyunena Purvena, Gunakasamuchyah,

Gunitasamuchyah, Nikhilam Navatashcaramam Dashatah, Paraavartya Yojayet,

Puranapuranaabhyam, Sankalana-vyavakalanabhyam, Shesanyankena Charamena, Shunyam

Saamyasamuccaye, Sopaantyadvayamantyam, Urdhva-tiryakbyham, Vyashtisamanstih,

Yaavadunam.

Vedic Multiplier using “UrdhvaTiryakbyham” Sutra:

In Sanskrit literature the ‘Urdhva’ means ‘vertically’ and ‘Tiryakbyham’ means ‘crosswise’.

UrdhvaTiryakbyham is applicable to all cases of multiplication. In one step the algorithm

produces sum and partial product. Once the number of bits is increased, this multiplier is

advantageous as compared to other multipliers in terms of area and gate delay increases slowly.

For example: 131 × 121

Step Explanation Process Result

1.

The numbers that

lie on ones place are

multiplied vertically

and output is

generated and

stored result in ones

place of the final

result

1 3 1

1 2 1

 1

 Result=1

Carry=0

38

2.

The numbers that

lie on ones and tens

place are multiplied

by crossover

multiplication and

result is stored on

tens place

 1 3 1

 1 2 1

 5 1

 Result=3+2=5

Carry=0

3.

The numbers that

lie on ones and

hundred place are

multiplied by

crossover

multiplication and

number that lie on

hundred place are

multiplied by

vertical

multiplication,

result of these

multiplication are

summed and final

result stored in

hundred place.

 1 3 1

 1 2 1

 8 5 1

 Result=1+6+1=8

 Carry=0

 4.

The numbers that

lie on tens and

hundred place are

multiplied by

crossover

multiplication and

result is stored on

thousand place

 1 3 1

 1 2 1

 5 8 5 1

 Result=3+2=5

 Carry=0

39

5.

Finally,Vertical

multiplication of

two numbers on

hundred place are

multiplied, 1 bit

output is generated

and stored result in

ten thousand place

of the final result

 1 3 1

 1 2 1

 1 5 8 51

 Result=1

 Carry=0

Nikhilam Sutra

It literally means “all from 9 and last from 10” and when large numbers are involved it is more

efficient. When the original number is larger the multiplication complexity is lesser. To perform

the multiplication the compliment of the large number is find out from its nearest base.

For example: 131×121

Nearest Base =100

131 – 100 = 31

121 – 100 = 21

131 31

121 21

1 5 2

 6 5 1

 1 5 8 5 1 Result

40

Figure 4.7: RTL Schematic of 4 bit Vedic multiplier

4.2 Implementation of 4- bit multipliers

For implementation of 4-bit multipliers we have used Xilinx ISE 14.1 Design Suite, area and

delay values are calculated from synthesis report while Power is calculated by Power analyzer in

41

which we calculated IOs Power and Leakage Power. The comparison of different multipliers in

terms of area, delay and power is shown in Table 4.1

Table 4.1: Area, Delay and Power calculation of 4-bit Multipliers

Sr.

No.
Design

No.

of 4

I/P

LUT

No.

of

occup

ied

slices

No. of

bonded

IOB

Delay (ns) Power

Total (W)
Power Delay

Product

I-

Buf

O –

Buf

Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

1. 4 bit

Array

multipli

er

29 17 8 8 9.171 4.486 0.001 0.034 0.4779

2. 4 bit

Wallace

multipli

er

33 19 8 9 7.947 3.928 0.001 0.034 0.4156

3. 4 bit

Vedic

multipli

er

39 22 9 9 8.837 3.995 0.029 0.034 0.8084

4.3 Proposed Design

8-bit multipliers are implemented using Kogge stone adder(KSA). Among all the adders KSA is

best in term of performance i.e. delay, speed and it is basically a prefix based adder. We have

implemented Array multiplier, Vedic multiplier, Wallace multiplier using KSA for different

performance parameters. In term of delay Wallace multipliers have best delay i.e. 18.024ns but

there are increased in power consumption. On the other hand in Array multiplier and Vedic

multiplier there is decrease in the speed and decrease in the power consumption. Each multiplier

has its own advantage and disadvantage depending on logic we are using.

42

8×8 Array Multiplier

8 by 8 Array multiplier is implemented by considering two 8-bits binary numbers A[7:0] and

B[7:0]. To implement 8 X 8 Array multiplier, 4 X 4 Array multipliers are used to generate partial

products. For addition of generated partial product, three KSA of 8 bit are used. We are taking

four 4 X 4 Array multiplier block, in the first block least significant bits(LSBs) of A and B are

multiplied to generate S[3:0] of final result. In second block most significant bits(MSBs) of A is

multiplied with LSBs of B to generate input bits for first block of KSA and in third block LSBs

of A is multiplied with MSBs of B to generate input bits for first block of KSA. In fourth block,

MSBs of A and B are multiplied to generate input bits for third block of KSA. Then take first

two KSA and the carry generated from these adders are ORed. By ORing these two KSA a carry

is generated which is applied a input to next KSA. In some blocks of KSA zero inputs are

applied according to the requirement. KSA arrangement are made in such way that the speed of

working is increased. Finally sum[15:0] and carry(C3) is generated and architecture of 8 X 8

Array multiplier is shown in Figure 4.8.

Figure 4.8: 8×8 Array multiplier architecture

43

8 X 8 Vedic Multiplier

8 by 8 Vedic multiplier is implemented by considering two 8-bits binary numbers A[7:0] and

B[7:0]. To implement 8 X 8 Vedic multiplier, 4 X 4 Vedic multipliers are used to generate

partial products. For addition of generated partial product, three KSA of 8 bit are used. We are

taking four 4 X 4 Vedic multiplier block, in the first block least significant bits(LSBs) of A and

B are multiplied to generate S[3:0] of final result. In second block most significant bits(MSBs) of

A is multiplied with LSBs of B to generate input bits for first block of KSA and in third block

LSBs of A is multiplied with MSBs of B to generate input bits for first block of KSA. In fourth

block, MSBs of A and B are multiplied to generate input bits for third block of KSA. Then take

first two KSA and the carry generated from these adders are ORed. By ORing these two KSA a

carry is generated which is applied a input to next KSA. In some blocks of KSA zero inputs are

applied according to the requirement. KSA arrangement are made in such way that the speed of

working is increased. Finally sum[15:0] and carry(C3) is generated and architecture of 8 X 8

Vedic multiplier is shown in Figure 4.9.

Figure 4.9: 8×8 Vedic multiplier architecture

44

8 X 8 Wallace Multiplier

8 by 8 Wallace multiplier is implemented by considering two 8-bits binary numbers A[7:0] and

B[7:0]. To implement 8 X 8 Wallace multiplier, 4 X 4 Wallace multipliers are used to generate

partial products. For addition of generated partial product, three KSA of 8 bit are used. We are

taking four 4 X 4 Wallace multiplier block, in the first block least significant bits (LSBs) of A

and B are multiplied to generate S[3:0] of final result. In second block most significant

bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of KSA and in

third block LSBs of A is multiplied with MSBs of B to generate input bits for first block of KSA.

In fourth block, MSBs of A and B are multiplied to generate input bits for third block of KSA.

Then take first two KSA and the carry generated from these adders are ORed. By ORing these

two KSA a carry is generated which is applied a input to next KSA. In some blocks of KSA zero

inputs are applied according to the requirement. KSA arrangement is made in such way that the

speed of working is increased. Finally sum[15:0] and carry(C3) is generated and architecture of 8

X 8 Wallace multiplier is shown in Figure 4.7 and RTL schematic in Figure 4.10.

Figure 4.10: 8×8 Wallace multiplier architectur

45

Table 4.2: Area, Delay and Power calculation of 8 bit Multipliers

Table 4.3 gives the comparison of designed 8-bit Wallace multiplier with the existing multiplier.

Our proposed circuit of which multipliers gives the less delay i.e. 18.024 ns in comparison

Rajaram S et al. 2011[6] whose calculated delay is 27.457 ns and Thomas A et al. 2016[33]

whose delay is 39 ns. We have also calculated power which is less i.e. 46mW then Murugeswari

S. et al. 2014[4] whose power is 264mW, 231mW while Rajaram S et al. 2011[6] has not

reported any power.

Table 4.3: Area, Delay and Power calculation of 8 bit Wallace Multiplier

 Width
No. of occupied

slices
No. of LUTs Delay(ns) Power(mW)

Propsed work

Using KSA
8 104 183 18.024 46

Rajaram S et al.

2011[6]

8 - - 27.457 -

Murugeswari S. et

al. 2014[4]

Using Full adder

8 87 163 17.223 264

Murugeswari S. et

al. 2014[4]

Using MUX based

Full adder

8 84 155 17.789 231

Thomas A et al.

2016[33]

8 - 133 39 -

Sr.

No.
Design

No.

of 4

I/P

LUT

No. of

occupi

ed

slices

No. Of

bonded IOB

Delay (ns)

Power

Total (W)

Power

Delay

Product

I –

Buf

O-

Buf

Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

1.
Wallace_

KSA
183 104 19 17 11.285 6.739 0.012 0.034 0.8291

2.
Array_K

SA
171 98 19 17 13.121 7.850 0.001 0.034 0.7339

3.
Vedic_K

SA
216 120 17 17 14.011 8.104 0.001 0.034 0.7740

46

Table 4.4 gives the comparison of designed 8-bit VM with the existing multipliers. Our proposed

circuit of which multiplier gives the best delay i.e 22.115ns in comparison Gokhale GR et al.

2015[3] whose delay is 44.358ns and Thomas A et al. 2016[33] whose delay is 34 ns using RCA

and 30 ns using CLA. We have also calculated Power which is 35mW while Gokhale GR et al.

2015[3] and Anjana R et al. 2014[5] has not reported any power. Anjana R et al. 2014[5]

calculated difference between logic delay and router delay which is 5.588ns and our proposed

circuit difference between logic delay and router delay is 5.907 which is more but the no. of

LUTs required is less than Anjana R et al 2014[5] .

Table 4.4: Area, Delay and Power calculation of 8 bit Vedic Multiplier

 Width No. of LUTs
Area(gate

count)
Delay(ns) Power(W)

Propsed work

Using KSA
8 216 - 22.115 0.035

Gokhale GR et al.

2015[3]
8 - 1293 44.358 -

Anjana R et al.

2014[5]
8 309 - 5.588

-

Thomas A et al.

2016[33]

Using RCA

8 166 - 34 -

Thomas A et al.

2016[33]

Using CLA

8 167 - 30 -

Table 4.5 gives the comparison of designed 8-bit AM with the existing multipliers. Our proposed

circuit of which multiplier gives the best delay i.e. 20.971 ns in comparison to Maiti A et al.

2016[34] whose delay is 25.3 ns and Thomas A et al. 2016[33] whose delay is 44ns. We also

calculated power which is more i.e 35 mW in comparison to Maiti A et al. 2016[34] whose

power is 0.0606 mW.

Table 4.5: Area, Delay and Power calculation of 8 bit Array Multiplier

 Width No. of LUTs Delay(ns) Power(mW)

Propsed work

Array Multiplier
8 171 20.971 35

Maiti A et al. 2016[34]

Using CMOS
8 - 25.3 0.0606

Thomas A et al.

2016[33]

8 126 44 -

47

It can be observed that the proposed design for 8bit Wallace Multiplier has better delay

performance which was the desired goal of this research work.

4.4 Conclusion

The performance of any circuit in VLSI design limits by the constituent factors like power,

delay and area. In this chapter Array multiplier, Vedic multiplier and Wallace multiplier are

implemented using KSA. It is concluded that KSA have less delay and power as compared

to other adders, so it is best suited for implementation of modified multiplier. Wallace

multiplier has less delay compared to other multipliers but there is increase in power

consumption. The design is tested and verified by Verilog HDL coding and simulation is

carried out by in Xilinx ISE 14.1 design suite and synthesized for Spartan 3E FPGA. KSA

suffers from complexity due to an increase in the number of logic cells and wiring. Future

work may be dedicated to decrease in power consumption of Wallace multiplier.

48

CHAPTER 5

FAST FOURIER TRANSFORMS

Fast Fourier Transform (FFT) is used for Signal Processing applications. It consists of addition

and multiplication operations, whose speed improvement will enhance the accuracy and

performance of FFT computation for any applications.”FFT are used to covert signal from time

domain to frequency domain. In FFT processing unit Butterfly Structure is the basic building

block and is used for the calculating complex calculation. So, it is important to design an

efficient adder and multiplier block and used that efficient block in Butterfly Structure.

5.1 Efficient Adder using 16 bit and 32 bit

Efficient adder for 4 bit and 8 bit has been already implemented in Chapter 2. We have analyzed

that KSA and CLA are the best suited adders in terms of delay and power. Now we need to

implement 16 bit and 32 bit KSA and CLA so, that they can be used in high performance

applications.

KSA

RCA has drawback that its delay goes on increasing as number of bits increases. To overcome

this problem KSA is used. For high performance application large amount of bits are used for

doing multiple calculation and tasks. So, there is a need to implement 32 bit KSA which is

implemented by using 16 bit KSA. Firstly, it is important to implement 16 bit KSA. In KSA as

the number of bits goes on increasing speed is increases but the drawback is that complexity

increases. The KSA is the parallel prefix form that takes more area to implement. The RTL

schematic of KSA for 16 bit and 32 bit are shown in Figure 5.1 and Figure 5.2.

Figure 5.1: RTL Schematic of 16 bit KSA

49

Figure 5.2: RTL Schematic of 32 bit KSA

In Section 3.2.4 it is already discussed about CLA. Figure 5.3 shows the RTL schematic of CLA

for 16 bit and Figure 5.4 shows the RTL schematic of 32 bit CLA.

Figure 5.3: RTL Schematic of 16 bit CLA

50

Figure 5.4: RTL Schematic of 32 bit CLA

51

From the synthesis report, the performance parameters like area and delay are obtained and from

power analyzer power is calculated which is shown in Table 5.1. It can be observed that 16bit

KSA has less delay compared to 16 bit CLA.

Table 5.1: Area, Delay and Power Calculation of 16 bit Adders

From the synthesis report, the performance parameters like area and delay are obtained and from

power analyzer power is calculated which is shown in Table 5.2. It can be observed that 32 bit

KSA has less delay compared to 32 bit CLA. From Table 5.1 and 5.2 it is observed that KSA is

best suited adder for signal processing applications.

Table 5.2: Area, Delay and Power Calculation of 32 bit Adders

5.2 Efficient Multiplier using 16 and 32 bit

From Chapter 3 we have analyzed that Wallace multiplier is best suited multiplier for high speed

application because its delay is less as compared to other multipliers. We have already

implemented 4 bit and 8 bit Wallace multiplier in Chapter 3. Now we need to implement 16 bit

Sr.

No.
Design

No.

of

Slice

LUT

No. Of bonded

IOB

Delay (ns)

Power

Total (W)
Power

Delay

Product

 I –Buf O- Buf
Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

1. KSA 35 32 17 4.406 2.853 0.017 0.081 0.7113

2. CLA 25 33 17 5.636 6.910 0.017 0.081 1.2295

Sr.

No.
Design

No.

of

Slice

LUT

No. Of bonded

IOB

Delay (ns)

Power

Total (W)
Power

Delay

Product

 I –Buf O- Buf
Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

1. KSA 71 64 33 4.402 3.345 0.017 0.081 0.7592

2. CLA 49 65 33 7.276 12.120 0.017 0.081 1.9008

52

and 32 bit Wallace multiplier using high speed adders i.e. KSA and CLA, the best results are

used for further processing. As we have already find out in Section 5.1 that KSA have less delay

compared to CLA but we need to check for multiplier also which is best suited. Firstly, we

implement 16 bit Wallace multiplier using KSA and CLA then 32 bit Wallace multiplier.

16 bit Wallace Multiplier using KSA

16 by 16 Wallace multiplier is implemented by considering two 16-bits binary numbers A[15:0]

and B[15:0]. To implement 16 X 16 Wallace multiplier, 8 X 8 Wallace multipliers are used to

generate partial products. For addition of generated partial product, three KSA of 16 bits are

used. We are taking four 8 X 8 Wallace multiplier block, in the first block least significant bits

(LSBs) of A and B are multiplied to generate S[7:0] of final result. In second block most

significant bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of

KSA and in third block LSBs of A is multiplied with MSBs of B to generate input bits for first

block of KSA. In fourth block, MSBs of A and B are multiplied to generate input bits for third

block of KSA. Then take first two KSA and the carry generated from these adders are ORed. By

ORing these two KSA a carry is generated which is applied a input to next KSA. In some blocks

of KSA zero inputs are applied according to the requirement. KSA arrangement is made in such

way that the speed of working is increased. Finally sum[31:0] and carry(C3) is generated and

architecture of 16 X 16 Wallace multiplier is shown in Figure 5.5.

16 bit Wallace Multiplier using CLA

16 by 16 Wallace multiplier is implemented by considering two 16-bits binary numbers A[15:0]

and B[15:0]. To implement 16 X 16 Wallace multiplier, 8 X 8 Wallace multipliers are used to

generate partial products. For addition of generated partial product, three CLA of 16 bits are

used. We are taking four 8 X 8 Wallace multiplier block, in the first block least significant bits

(LSBs) of A and B are multiplied to generate S[7:0] of final result. In second block most

significant bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of

CLA and in third block LSBs of A is multiplied with MSBs of B to generate input bits for first

53

Figure 5.5: 16×16 Wallace multiplier architecture using KSA

block of CLA. In fourth block, MSBs of A and B are multiplied to generate input bits for third

block of CLA. Then take first two CLA and the carry generated from these adders are ORed. By

ORing these two CLA a carry is generated which is applied a input to next CLA. In some blocks

of CLA zero inputs are applied according to the requirement. CLA arrangement is made in such

way that the speed of working is increased. Finally sum[31:0] and carry(C3) is generated and

architecture of 16X 16 Wallace multiplier is shown in Figure 5.6.

Figure 5.6: 16×16 Wallace multiplier architecture using CLA

54

From the synthesis report, the performance parameters like area and delay are obtained and from

power analyzer power is calculated which is shown in Table 5.3. It can be observed that 16bit

Wallace multiplier using KSA has less delay and less amount of energy consumed compared to

16 bit CLA.

Table 5.3: Area, Delay and Power calculation of 16 bit Wallace Multiplier

32 bit Wallace Multiplier using KSA

32 by 32 Wallace multiplier is implemented by considering two 32-bits binary numbers A[31:0]

and B[31:0]. To implement 32 X 32 Wallace multiplier, 16 X 16 Wallace multipliers are used to

generate partial products. For addition of generated partial product, three KSA of 32 bits are

used. We are taking four 16 X 16 Wallace multiplier block, in the first block least significant bits

(LSBs) of A and B are multiplied to generate S[15:0] of final result. In second block most

significant bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of

KSA and in third block LSBs of A is multiplied with MSBs of B to generate input bits for first

block of KSA. In fourth block, MSBs of A and B are multiplied to generate input bits for third

block of KSA. Then take first two KSA and the carry generated from these adders are ORed. By

ORing these two KSA a carry is generated which is applied a input to next KSA. In some blocks

of KSA zero inputs are applied according to the requirement. KSA arrangement is made in such

way that the speed of working is increased. Finally sum[63:0] and carry(C3) is generated and

architecture of 32X 32 Wallace multiplier is shown in Figure 5.7.

Sr.

No.
Design

No.

of

Slice

LUT

No. Of bonded

IOB

Delay (ns)

Power

Total (W)
Power

Delay

Product

 I –Buf O- Buf
Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

1. Wallace_KSA 610 32 32 6.641 14.369 0.017 0.081 2.0589

2. Wallace_CLA 543 32 33 7.654 17.900 0.017 0.081 2.5042

55

Figure 5.7: 32×32 Wallace multiplier architecture using KSA

32 bit Wallace Multiplier using CLA

32 by 32 Wallace multiplier is implemented by considering two 32-bits binary numbers A[31:0]

and B[31:0]. To implement 32 X 32 Wallace multiplier, 16 X 16 Wallace multipliers are used to

generate partial products. For addition of generated partial product, three CLA of 32 bits are

used. We are taking four 16 X 16 Wallace multiplier block, in the first block least significant bits

(LSBs) of A and B are multiplied to generate S[15:0] of final result. In second block most

significant bits(MSBs) of A is multiplied with LSBs of B to generate input bits for first block of

CLA and in third block LSBs of A is multiplied with MSBs of B to generate input bits for first

block of CLA. In fourth block, MSBs of A and B are multiplied to generate input bits for third

block of CLA. Then take first two CLA and the carry generated from these adders are ORed. By

ORing these two CLA a carry is generated which is applied a input to next CLA. In some blocks

of CLA zero inputs are applied according to the requirement. CLA arrangement is made in such

way that the speed of working is increased. Finally sum[63:0] and carry(C3) is generated and

architecture of 32X 32 Wallace multiplier is shown in Figure 5.8.

56

Figure 5.8: 32×32 Wallace multiplier architecture using CLA

From the synthesis report, the performance parameters like area and delay are obtained and from

power analyzer power is calculated which is shown in Table 5.4. It can be observed that 32 bits

Wallace multiplier using KSA has less delay and less amount of energy consumed compared to

32 bit CLA.

Table 5.4: Area, Delay and Power calculation of 32 bit Wallace Multiplier

It is observed that Wallace multiplier implementation using KSA is best suited multiplier and

KSA is best suited adder to enhance the accuracy and performance of FFT computation for any

application. So, in butterfly structure these efficient multiplier and adder are used.

Sr.

No.
Design

No.

of

Slice

LUT

No. Of bonded

IOB

Delay (ns)

Power

Total (W)
Power

Delay

Product

 I –Buf O- Buf
Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

1. Wallace_KSA 2109 64 64 7.455 18.134 0.017 0.113 3.326

2. Wallace_CLA 1819 64 65 11.314 33.189 0.017 0.113 5.78539

57

5.3 Transforms

Transforms are not that much important but they are used to covert calculations into simple and

more convenient form. Either in time domain or in frequency domain the signal analysis and

computation is possible. Transforms like Fourier are used to tell us about the property and

frequencies present in our system and for transforming a continuous signal into frequency

domain. In the digital computers there is computation of DFT and its inverse but they have

complexity in computation. For instance, the word length of the input sequence is N and the total

number of arithmetic operation required for the computation is proportional to N2. If N=2000,

then required operations are millions. In most of the applications such numbers are prohibitive.

So, in 1965 the discovery of Fast Fourier Transform (FFT) was announced by Cooley and

Tukey. FFT is one of the most important algorithm used in many applications of DSP such as

frequency estimation, communication etc. because this algorithm is efficient and highly elegant.

Consider the one of the most basic radix transform i.e. radix-2 transform in which it requires N to

be power of 2. Radix transform is used when the number is prime and at that time DFT has a

regular pattern and size r. The number r is called the radix of the FFT algorithm.

Equation 5.1 shows the DFT equation:

𝑋𝑝 = ∑ 𝑥𝑛𝑒−𝑗
2𝛱

𝑁
𝑛𝑝N-1

n=0 (5.1)

Now, split the Equation 5.1 into even and odd parts as shown into Equation 5.2:

𝑋𝑝 = ∑ 𝑥2𝑛𝑒−𝑗
2𝛱

𝑁
(2𝑛)𝑝

𝑁

2
 -1

n=0
+∑ 𝑥2𝑛+1𝑒−𝑗

2𝛱

𝑁
(2𝑛+1)𝑝

𝑁

2
 -1

n=0
 (5.2)

Where ∑ 𝑥2𝑛𝑒−𝑗
2𝛱

𝑁
(2𝑛)𝑝

𝑁

2
 -1

n=0
 = Even part (5.3)

∑ 𝑥2𝑛+1𝑒−𝑗
2𝛱

𝑁
(2𝑛+1)𝑝

𝑁

2
 -1

n=0
 = Odd part (5.4)

From Equation 5.4 take 𝑒−𝑗
2𝛱

𝑁
𝑝
 outside the summation as shown in Equation 5.5:

𝑒−𝑗
2𝛱

𝑁
𝑝 ∑ 𝑥2𝑛+1𝑒

−𝑗
2𝛱

(𝑁 2⁄)
𝑛𝑝

𝑁

2
 -1

n=0
 (5.5)

By substitution of Equation 5.5 in Equation 5.2, it can be expressed as:

58

𝑋𝑝 = ∑ 𝑥2𝑛𝑒
−𝑗

2𝛱

(𝑁 2⁄)
𝑛𝑝

𝑁

2
 -1

n=0
+𝑒−𝑗

2𝛱

𝑁
𝑝 ∑ 𝑥2𝑛+1𝑒

−𝑗
2𝛱

(𝑁 2⁄)
𝑛𝑝

𝑁

2
 -1

n=0
 (5.6)

The N point data sequence is split into two 𝑁 2⁄ point data sequence 𝐴𝑝 and 𝐵𝑝, corresponding

to even-numbered and odd-numbered samples.

 = 𝐴𝑝+𝑊𝑝𝐵𝑝 (5.7)

Where 𝐴𝑝= ∑ 𝑥2𝑛𝑒
−𝑗

2𝛱

(𝑁 2⁄)
𝑛𝑝

𝑁

2
 -1

n=0
 (5.8)

 𝐵𝑝=∑ 𝑥2𝑛+1𝑒
−𝑗

2𝛱

(𝑁 2⁄)
𝑛𝑝

𝑁

2
 -1

n=0
 (5.9)

 𝑊𝑝=𝑒−𝑗
2𝛱

𝑁 (5.10)

Both 𝐴𝑝, 𝐵𝑝 are sequence of DFT with length of 𝑁 2⁄ . As we know in frequency domain DFT is

periodic but with period 𝑁 2⁄ there is further simplification. Now take same Equation 5.2 and at

frequency p+𝑁 2⁄ evaluate it.

𝑋𝑝+𝑁 2⁄ = ∑ 𝑥2𝑛𝑒
−𝑗

2𝛱

(𝑁 2⁄)
𝑛(𝑝+𝑁 2⁄)

𝑁

2
 -1

n=0
+𝑒−𝑗

2𝛱

𝑁
(𝑝+𝑁 2⁄) ∑ 𝑥2𝑛+1𝑒

−𝑗
2𝛱

(𝑁 2⁄)
𝑛(𝑝+𝑁 2⁄)

𝑁

2
 -1

n=0
 (5.11)

Now, by simplify terms as follows:

 𝑒
−𝑗

2𝛱

(𝑁 2⁄)
𝑛(𝑝+𝑁 2⁄)

 = 𝑒−𝑗
2𝛱

𝑁
𝑛𝑝

 (5.12)

And 𝑒−𝑗
2𝛱

𝑁
(𝑝+𝑁 2⁄) = 𝑒−𝑗

2𝛱

𝑁
𝑝
 (5.13)

Hence, after simplification put Equation 5.12 and 5.13 in Equation 5.11, which is expressed as:

𝑋𝑝+𝑁 2⁄ = ∑ 𝑥2𝑛

𝑁

2
 -1

n=0
𝑒

−𝑗
2𝛱

𝑁 2⁄
𝑛𝑝

- 𝑒−𝑗
2𝛱

𝑁
𝑝 ∑ 𝑥2𝑛+1𝑒−𝑗

2𝛱

𝑁
𝑛𝑝

𝑁

2
 -1

n=0
 (5.14)

 = 𝐴𝑝- 𝑊𝑝𝐵𝑝 (5.15)

Now compare the equation for 𝑋𝑝+𝑁 2⁄ with that for 𝑋𝑝:

𝑋𝑝 = 𝐴𝑝+𝑊𝑝𝐵𝑝 and 𝑋𝑝+𝑁 2⁄ = 𝐴𝑝- 𝑊𝑝𝐵𝑝

59

This defines the FFT butterfly structure:

Figure 5.9: Butterfly Structure

So, the complex number of adders and multiplier required is 𝑁 2⁄ for both 𝐴𝑝 and 𝐵𝑝.”The total

for all p = 0,1,…., 𝑁 2⁄ − 1 is then 2(𝑁 2⁄)2 multiplies and additions for the calculation of all the

𝐴𝑝 and 𝐵𝑝.”Thus the total number of adders and multipliers required is 𝑁2 2⁄ for word length N.

As compared to direct DFT the computation is approximately halved. There are different types

of FFT such as DIT (decimation in time) and DIF (decimation in frequency don’t have that much

advantage).Other types are “radix-2” FFT and “radix-4” FFT , in radix-2 there is 2 input-output

butterflies and word length N has power of 2 and in radix-4 there is 4 input-output butterflies. In

FFT a completely different type of algorithm is used i.e. Winograd Fourier Transform Algorithm

(WFTA) in which lengths of FFT is equal to the product of mutually prime factor. WFTA has

same length as FFT but it uses more adders and less multipliers. In signal processing application

FFT algorithm is most widely used algorithm and the butterfly structure shown in Figure 5.9

plays an important role for processing FFT algorithm. So, it is important to implement an

efficient butterfly structure.

60

5.3.1 Butterfly Structure

It is important that there is an efficient algorithm for processing any application. In FFT

algorithm the main building block is butterfly and most of the power in FFT processor is

consumed by the butterfly block. So, there is a need to implement butterfly structure firstly

because this is the main requirement of our processing. The 4 bit and 8 bit butterfly structure are

easy to calculate theoretically but when the word length increases to 16 bit, 32 bit it would be

difficult for the researchers to calculate the value theoretically. So, the main focus of our project

is to implement 16 bit and 32 bit butterfly structure in an efficient way but in this project we

have also implemented 4 bit and 8 bit butterfly structure. For the implementation of butterfly

structure adders and multipliers plays an important role. It is necessary to design an efficient

adders and multiplier so the butterfly structure implemented in an efficient way. In Section 5.1

and 5.2 we have discussed the high speed adder and multiplier. By using these adders and

multipliers, the modified architecture of butterfly is proposed. In the butterfly firstly it is

important to design an efficient multiplier by using a high speed adder which we already

implemented in Section 5.1. In this report butterfly consist of Wallace multiplier, which is

implemented using KSA and CLA and different adders implemented. As shown in Table 5.3 and

5.4 the Wallace multiplier using KSA is best suited for signal application because it has less

delay. In butterfly we have calculated delay and power for different word length results are

shown in Table 5.5. Flow diagram of butterfly shows in Figure 5.10.

From the synthesis report, the performance parameters like area and delay are obtained and from

power analyzer power is calculated which is shown in Table 5.5. Delay, area and power

calculation for different bits such 4 bit, 8 bit, 16 bit and 32 bit in butterfly structure are

calculated.

Table 5.5: Area, Delay and Power calculation of Butterfly Structure

Sr.

No.
Design

No.

of

Slice

LUT

No. Of bonded

IOB

Delay (ns)

Power

Total (W)
Power

Delay

Product

 I –Buf O- Buf
Logic

Delay

Router

Delay

Power

IOs

Power

Leakage

61

Figure 5.10: Flow Diagram of Butterfly

1. 4-bit 122 24 26 5.011 6.672 0.050 0.082 1.5421

2. 8-bit 623 48 46 6.233 12.453 0.050 0.082 2.4665

3. 16-bit 2638 96 86 7.049 16.522 0.050 0.082 3.1113

4. 32-bit 10861 192 166 8.062 21.426 0.050 0.115 4.8360

62

Conclusion

The performance of any circuit in VLSI design limits by the constituent factors like power, delay

and area. In this chapter Wallace multiplier are implemented using KSA and CLA. It is

concluded that implementation of Wallace multiplier using KSA have less delay and power as

compared to CLA, so it is best suited for implementation of modified Butterfly Structure. The

design is tested and verified by Verilog HDL coding and simulation is carried out by Xilinx ISE

14.1 design suite and power is calculated in Xpower Analyzer Future work may be dedicated to

decrease in power consumption of butterfly.

Figure 5.11: RTL Schematic of 4 bit Butterfly

63

Figure 5.12: RTL Schematic of 8 bit Butterfly

64

Figure 5.13: RTL Schematic of 16 bit Butterfly

65

Figure 5.14: RTL Schematic of 32 bit Butterfly

66

CONCLUSION

The performance of any circuit in VLSI design is limited by the constituent factors like

power, delay and area. The designs of various adders and multiplier have been implemented

on Xilinx ISE 14.1 design suite and synthesized for Spartan 3E FPGA. Firstly, a modified

Carry increment adder is proposed using KSA instead of ripple carry adder. Without

affecting the delay performance of the circuit is improved by replacing the 4-bit RCA with a

proposed 4-bit KSA. The design is tested and verified by Verilog HDL coding. The delay

performance of KSA is better than RCA but as operand size increases (32-bits and above),

KSA suffers from complexity due to an increase in the number of logic cells and wiring and

proposed CIA_KSA has the disadvantage of more power consumption. Future work may be

dedicated to studying the complexity of CIA_KSA when the number of bits is increased.

Secondly, a modified Wallace multiplier, Array multiplier and Vedic multiplier are proposed

using KSA instead of other adders because KSA has less delay (8.608ns). Out of these

multipliers Wallace multiplier has less delay compared to other multiplier but have more

power consumption. In Array multiplier and Vedic multiplier decrease in power consumption

is proportional to decrease in the speed. In future work we are trying to optimize delay and

power, so to design a high speed circuit with low power consumption. Lastly, an efficient

algorithm for butterfly processing element implemented. It is implemented by using modified

multiplier i.e Wallace multiplier and high speed adder. This butterfly block plays an

important role in FFT. FFT block is very important for the computation of other transforms.

Application of FFT i.e. in current usage FFT algorithm percentage is large and in Signal

Processing application it is widely used. Other examples of FFT are: Coding, Spectrum

analysis etc.

67

REFERENCES

[1] Shamim Akhter, Vikas Saini, Jasmine Saini, “Analysis of Vedic Multiplier using Various

Adder Topologies”, 4th International Conference on Signal Processing and Integrated

Networks (SPIN), 2017.

[2] K V Gowreesrinivas, P.Samundiswary, “Comparative Study on Performance of Single

Precision Floating Point Multiplier using Vedic Multiplier and different types of Adders”,

International Conference on Control, Instrumentation, Communication and

Computational Technologies (ICCICCT), 2016.

[3] G. R. Gokhale, S. R. Gokhale, “Design of Area and Delay Efficient Vedic Multiplier

Using Carry Select Adder”, International Conference on Information Processing (ICIP),

Dec 16-19, 2015.

[4] S.Murugeswari, S.Kaja Mohideen, “Design of Area Efficient and Low Power Multipliers

using Multiplexer based Full Adder”, 2nd International Conference on Current Trends in

Engineering and Technology, ICCTET, 2014.

[5] Anjana.R, Abishna.B, Harshitha.M.S., Abhishek.E, Ravichandra V., Suma M. S.,

“Implementation of Vedic Multiplier using Kogge-Stone Adder”, International

Conference on Embedded Systems - (ICES), 2014.

[6] S. Rajaram, K. Vanithamani, “Improvement of Wallace multipliers using Parallel prefix

adders”, International Conference on Signal Processing, Communication, Computing and

Networking Technologies (ICSCCN), 2011.

[7] R. B. S. Kesava, B. L. Rao, K. B. Sindhuri & N. U. Kumar, “Low Power And Area

Efficient Wallace Tree Multiplier Using Carry Select Adder With Binary To Excess-1

Converter”, Conference on Advances in Signal Processing (CASP), Jun 9-11, 2016.

[8] S.Srikanth, I.ThahiraBanu, G.VishnuPriya & G.Usha, “Low Power Array Multiplier

Using Modified Full Adder”, 2nd IEEE International Conference on Engineering and

Technology (ICETECH), 17th - 18th March, 2016.

[9] D. Paradhasaradhi, M. Prashanthi & N Vivek, “Modified Wallace Tree Multiplier using

Efficient Square Root Carry Select Adder”, International Conference on Green

Computing Communication and Electrical Engineering (ICGCCEE), 2014.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900020
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900020

68

[10] P. Gurjar, R. Solanki, P. Kansliwal & M. Vucha ,”VLSI Implementation of Adders for

High Speed ALU”, International journal of Computer Applications, Vol. 29-No.10,

September 2011.

[11] Bais K. & Ali Z., “Comparison of various adder designs in terms of delay and area”,

International journal of science and research (IJSR), Volume 5, Issue 5, May 2016.

[12] M. Nandini & A. Jayavani, “High Speed and Power Optimized Parallel Prefix Modulo

Adders using Verilog”, International Journal of Advanced Technology and Innovative

Research, Vol.07, Issue.01, January 2015, pp. 0216-0133.

[13] Kulkarni R. R., “Comparison among different adders”, IOSR journal of VLSI and Signal

Processing (IOSR-JVSP), Vol. 5, Issue 6, Ver. 1 (Nov-Dec 2015), pp. 01-06.

[14] A. Mitra, A. Bakshi, B. Sharma & N. Didwania, “Design of a High Speed Adder”,

International journal of Scientific and Engineering Research, Vol. 6, Issue 4, April 2015.

[15] A. Kumar & D. Sharma, “Performance Analysis of Different types of Adders for High

Speed 32 bit Multiply and Accumulate Unit”, International journal of Engineering

Research and Applications(IJERA),Vol. 3, Issue 4, Jul-Aug 2013, pp.1460-1462.

[16] M. Saikumar & P. Samumdiswary, “Design and performance analysis of various adders

using verilog”, International journal of computer science and mobile computing, Vol. 2,

Issue 9, September 2013, pp. 128-138.

[17] C. Suba, S. Karthick & M. Prakash, “Analysis of different bit Carry look ahead adder

with reconfigurability in low power VLSI using Verilog code”, International journal of

innovative research in computer and communication engineering, Vol. 2, Issue11,

November 2014.

[18] R. UMA, V. Vijayan, M. Mohanapriya & S. Pau, “Area,Delay and Power Comparison of

Adder Topologies”, International Journal of VLSI design & Communication Systems

(VLSICS), Vol.3, No.1, February 2012.

[19] S. R. Sahoo & K. K. Mahapatra, Design of Low Power and High Speed Ripple Carry

Adder using Modified Feed through Logic, Proceedings of IEEE International Conference

on Communications, Devices and Intelligent Systems, West Bengal, pp.377-380, June

2012.

69

[20] V. R. Hakki, “Design and Implementation of 4-bit Carry Skip Adder Using NMOS Pass

Transistor Logic”, International Journal of Computer Science and Mobile Computing,

Vol.6 Issue.7, July- 2017, pp. 203-207.

[21] J. Kaur & P. Kumar, “Analysis of 16 & 32 Bit Kogge Stone Adder Using Xilinx Tool”,

Journal of Environmental Science, Computer Science and Engineering & Technology,

Vol. 3 .No. 3, June-August 2014.

[22] P. C. Kumari & R. Nagendra, “Design of 32 bit Parallel Prefix Adders”, IOSR Journal of

Electronics and Communication Engineering (IOSR-JECE), Vol. 6, Issue 1, May - Jun

2013, pp. 01-06.

[23] D. H. K. Hoe, C. Martinez, & S. J. Vundavalli, “Design and Characterization of Parallel

Prefix Adders using FPGAs”, 43rd Southeastern Symposium on System Theory, IEEE,

pp. 168-172, 2011.

[24] K. Boddireddy, B. P. Kumar & C. S. Paidimarry, “Design and Implementation of Area

and Delay Optimized Carry Tree Adders using FPGA”, International Conference on

Computers and Communications Technologies, IEEE, pp. 1-6, Dec. 2014.

[25] S. K. Yezerla, & B. R. Naik, “Design and Estimation of delay, power and area for Parallel

prefix adders”, IEEE Proceedings of 2014 RAECS, UIET, Panjab University, Chandigarh,

pp. 1-6, March 2014.

[26] B. K. Mohanty & S. K. Patel, “Area–Delay–Power Efficient Carry-Select Adder”, IEEE

Transaction on circuits and systems-II ,Vol. 61, No. 6, June 2014.

[27] D. Li, “Minimum Number of Adders for Implementing a Multiplier and Its Application to

the Design of Multiplierless Digital Filters”, IEEE Transaction on circuits and systems-II:

Analog and Digital signal Processing, Vol. 42, No. 7, July 1995.

[28] A. K. Singh & A. Nandi, “Design of Radix 2 Butterfly Structure using Vedic multiplier

and CLA on Xilinx”, Proc. IEEE Conference on Emerging Devices and Smart Systems, 3-

4 March 2017.

[29] M. J. Rashmi, G. S. Biradar & M. Patil, “Efficient VLSI Architecture using DIT-FFT

Radix-2 and Split Radix FFT Algorithm”, International Journal for Technological

Research in Engineering, Vol. 1, Issue 10,June 2014.

[30] A. Mankar, FPGA Implementation of Fast Fourier Transform Core using NEDA, Mtech

Thesis , National Institute of Technology, Rourkela, 2011-2013.

70

[31] M. Patrikar & V. Tehre, “Design and Power Measurement of 2 and 8 Point FFT using

Radix-2 Algorithm for FPGA Implementation”, IOSR Journal of VLSI and Signal Processing,

Vol. 7, Issue 1, Jan-Feb 2017, PP 44-48.

[32] J. G. Proakis & D. G. Manolakis, ”Digital Signal Processing Principle, Algorithms, and

Applications”, 4th Edition, 2007, Prentice Hall India Publications.

[33] A. Thomas, A. Jacob, S. Shibu & S. Sudhakaran, “ Comparison of Vedic Multiplier with

Conventional Array and Wallace Tree Multiplier”, International Journal of VLSI System Design

and Communication Systems, Vol. 04, Issue. 04, April 2016.

[34] A. Maiti , K. Chakraborty, R. Sultana & S. Maity, “Design and implementation of 4-bit

Vedic Multiplier”, International Journal of Emerging Trends in Science and Technology, Vol.

03, Issue 05, Pages 3865-3868, May 2016.

[35] Moore’s law. [online] Available at: https://en.wikipedia.org/wiki/Moore%27s_law

[Accessed 2 May 2018].

[36]SemiEngineering.com [online] Available at:

http://semiengineering.com/kc/knowledhe_center/power-trends/107 [Accessed 2 May 2018].

https://en.wikipedia.org/wiki/Moore%27s_law
http://semiengineering.com/kc/knowledhe_center/power-trends/107

71

PUBLICATION

[1] G. Thakur, H. Sohal & S. Jain, “An Efficient Design of 8-bit High Speed Parallel Prefix

Adder”, Research Journal of Science and Technology, Vol. 10, Issue 2, May 2018.

72

73

	Gurjar P. et al. 2011[10] simulated and synthesized the different adders. The parameters like area and speed and the usefulness of fast adders is analyzed by simulated results. In the end, for 8-bit and 16-bit adders the caught parameters are analyzed...
	Bais K. et al 2016 [11] mentioned relationship of speed and area of different adders for various number of bits. From the delay comparison of adders, it is clear that Kogge Stone adder (KSA) is the fastest adder because it is parallel prefix adder. In...
	Nandini M. et al 2015[12] discussed different kinds of prefix adders particularly Spanning adder, Sparse Kogge stone adder, Ladnelfischerladder, BrentlKungladder and KSA. Correct practicality of every individual module was tested. This paper has resul...
	Kulkarni R. et al 2015[13], discussed the performance of different adders. Characterization of different adders and implementation on an FPGA is done. Later than observe the outcome of comparisons, for two 8 bit addition numbers, CLA is superior. Forl...
	Mitre A. et al 2015[14], this paper compared completely different addition rule for various performance parameters i.e. power, area and speed for different adders such as Ripple carry adder(RCA), CSA, Carry select adder, Carry look ahead adder(CLA) an...
	Kumar A. et al 2013[15] explained that Ripple carry adder design is basic and it is appropriate for just addition of less width operand since delay run straightly with the width of operand. Linear area required by Carry skip adder which is not really ...
	SaiKumar M. et al 2013[16], in this paper, presentation parameters of adders such as delay, area are compare, determined and design of various adders are discussed. Better performance in terms of area and delay is achieved through Carrylincrementladde...
	Suba C. et al 2014[17], design for reconfigurability (DFR) technique is presented by this paper for CLA.DFR proposal which has planned to isolate an extensive CLA keen on different little part ones. A small amount of area and delay penalty is incurre...
	Singh A. K. et al 2017[28], in this paper, for higher radix FFT an efficient algorithm of butterfly unit was implemented. Taking various issues of FFT implementation an capable Butterfly block is implemented firstly and used this Butterfly block in FF...
	Rashmi M. J. et al 2014[29], in this paper, two algorithms are implemented which was based on DIT-FFT. First, algorithm was on the bases of Radix-2 FFT and second on the bases of Split Radix FFT. Both algorithms are compared for device utilization, sp...
	CHAPTER 3
	Figure 3.3: 4 bit Ripple Carry Adder
	Figure 3.4: RTL Schematic of Ripple Carry Adder
	Figure 3.5: 4-bit Carry Select Adder
	Figure 3.11: Block level diagram of a prefix adder
	a) Look-Up Tables (LUT):- In Configurable Logic Block (CLBs) function generators are implemented using LUT. When LUT’s inputs are given then a block of SRAM is indexed. The output of LUT depends on whatever value is in indexed location in its SRAM. Th...
	b) Slices: - In FPGA slices are the basic building block components. Before mapping the logic of design, number of elements which each slice contain make up. All of the Flip flop and LUT’s are packed into slices after mapping, not necessarily filling ...
	a) CIA using RCA: CIA consists of incremental circuitry and RCA's. A desired number of 4-bit inputs add by RCA and generating partitioned sum and partitioned carry. Using HA's in ripple carry sequence with an in order the incremental circuit is calcul...
	b) CIA using KSA: The KSA replaces the ripple carry adder, in order to reduce the delay of the regular CIA. The modified 8-bit CIA using KSA is shown in Figure9. KSA suffer from complexity in prefix network due to an increase in number of wiring and l...
	Figure 3.16: Block diagram of CIA_KSA
	From the synthesis report, the performance parameters like area and delay are obtained and from power analyzer power is calculated which is shown in Table 3.4. It can be observed that the proposed design for 8bit Carry increment adder has better delay...
	3.5 Comparison Table
	Table 3.5 signifies the comparison of designed 8-bit CIA with the existing adder. Our proposed circuit gives the best delay i.e. 12.345 ns for CIA_KSA in comparison with Devi A.B. et al. 2016 [11] whose delay is 14.59 ns for CIA_RCA and 13.54 ns for ...
	Table 3.5: Delay and Power calculation of 8-bit CIA using KSA
	The performance of any circuit in VLSI design limits by the constituent factors like power, delay and area. In this chapter a modified carry increment adder is proposed using KSA instead of ripple carry adder. Without affecting the circuit the delay p...
	CHAPTER 4
	Figure 4.1: Block diagram of Multiplier architecture
	It can be observed that the proposed design for 8bit Wallace Multiplier has better delay performance which was the desired goal of this research work.
	The performance of any circuit in VLSI design limits by the constituent factors like power, delay and area. In this chapter Array multiplier, Vedic multiplier and Wallace multiplier are implemented using KSA. It is concluded that KSA have less delay a...
	The performance of any circuit in VLSI design limits by the constituent factors like power, delay and area. In this chapter Wallace multiplier are implemented using KSA and CLA. It is concluded that implementation of Wallace multiplier using KSA have ...
	Figure 5.13: RTL Schematic of 16 bit Butterfly
	Figure 5.14: RTL Schematic of 32 bit Butterfly
	CONCLUSION

