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ABSTRACT 

Signals are represented by function in time or space. These are classified as stationary and 

non stationary signals. Stationary signals are those signals in which frequency, amplitude and 

phase do not change with time, whereas these spectral components change with time in non 

stationary signals. Chirp and multi-component signals are the examples of non stationary 

signal. Chirp signals contain frequency which either increases or decreases with time. On the 

hand, multi-component signals have more than one frequency component.  The importance of 

extracting information out of chirp or multi-component signals lies in the fact that in several 

research fields, for example speech recognition, medical fields, radar signals, micro seismic 

signals, micro doppler signal detection, instantaneous frequency estimation etc., the signals 

are often multi-component, chirp or both. So to extract the information at a particular time 

instant corresponding to a particular frequency, therefore various time frequency tools have 

been developed for the analysis of chirp and multi-component signals such as Short time 

fourier transform (STFT), Wavelet transform (WT), Chirplet Transform (CT), Polynomial 

Chirplet Transform (PCT) and S-transform (ST). As it is known that STFT has a limitation of 

fixed window length, therefore to overcome this problem of STFT, WT has been reported. 

WT does not have the direct relationship with frequency. Therefore to provide direct 

relationship with frequency, S transform has been introduced and it also provides phase 

information. The S-transform can give information about the phase of each frequency, but it 

degrades the time resolution at lower frequencies and degrades frequency resolution at higher 

frequencies. So, modified S-transform has been proposed to improvise the performance of S-

transform. In this dissertation, the performance of the proposed method has been compared 

with STFT, ST, CT and PCT for multi-component signals. The implementation of these signal 

processing tools have been done using MATLAB software. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

In our daily lives, most of the things that we deal with are images, velocity of a fluid, speech 

etc. These all are represented by functions in space or time called signals. Signals are 

classified into either stationary or non stationary categories. Stationary signals are constant in 

their statistical behaviour over time. It means a signal is said to be stationary if its frequency 

or spectral contents are not changing with respect to time. After a period of time these signals 

look the same as before. Its overall level will be same and its amplitude distribution and 

standard deviation would be same. Rotating machinery generally produces stationary signals. 

Non stationary signals are varying in their statistical parameters over time [2]. It means these 

signals will have many frequency contents and these components change continuously with 

time. Under non stationary signal there exists a signal called chirp. Chirp is a signal in which 

the frequency increases or decreases with time. These signals provide importance in the 

applications like RADAR, SONAR, Ultra short laser, Linear Frequency Modulation etc. That 

is why chirp signals have become our region of interest. There are several time frequency 

analysis tools to get information out of these chirp signals. For e.g. Chirplet transform, 

Polynomial chirplet transform etc.      

On the basis of components signals are also classified as mono-component and multi-

component signals. Mono-component signals contain single frequency component and multi-

component signals have more than one frequency component [1]. In multi-component 

signals, component separation is very important to analyse a signal.  As in chirp signals, Time 

frequency analysis plays an important role in this case also. STFT and S Transform are 

common time frequency tools used to analyse multi-component signals [3].    

In many cases, it is more meaningful to look at frequencies of the functions. For example, 

sound is given by air pressure as a function of time. But for de-noising the high frequency 

noises, it is necessary for engineers to read the information in frequency domain for picking 

up a suitable filter.  

The time-frequency analysis was first introduced by the French mathematician Joseph 

Fourier in the year 1822 which is known as Fourier transform. With the development of the 
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time-frequency analysis technique, Dennis Gabor came up with the idea of Short-time fourier 

transform (STFT) in 1946. And in the last 20 years, there are several tools developed in the 

stream of time-frequency analysis [11].  

Time-frequency tools provide efficient methods to characterize the time-frequency pattern of 

non stationary multi-component chirp signals [8]. Time-frequency representations obtained 

by using TF tools map a one dimensional signal in time as a function of two-dimensional 

signal of time and frequency. Therefore give a powerful insight into the complex structure of 

the signal consisting of several components.  

1.2 MOTIVATION 

The mathematical motivation for studying the time frequency tools come from the fact that 

functions and their transform representation are so much related to each other such that they 

can be understood better by studying them jointly, as a two-dimensional object, rather than 

separately. 

The practical motivation for time–frequency analysis is that fourier analysis considers that the 

length of signals is infinite in time and are periodic. But in practice, many signals are of short 

duration and also change considerably with time. This is poorly illustrated by traditional 

methods, which motivates for the origin of time frequency analysis.   

1.3 DIFFERENT METHODS 

In the history of time-frequency analysis, Fourier transform has the great significance [6]. 

Since the origin of Fourier transform, a new chapter of the time-frequency analysis started. In 

theory, Fourier transform is used to be a tool to convert a signal expressed from time domain 

to frequency domain. It helps to represent any periodic functions as an infinite sum of 

periodic complex exponential functions. A time signal is decomposed into its different 

frequency components by calculating the fourier integral. Mathematically, Fourier transform 

of a function 𝑥(𝑡) is as given below 

                                  𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

                                                (1)  

In above equation 𝑥(𝑡) is a time domain signal, 𝑋(𝑓) is the Fourier transform of an integrable 

function, 𝑓 is the value of the angular frequency, 𝑗 is the imaginary number. 
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To compute the 𝑋(𝑓), it is needed to integrate 𝑥(𝑡) over all time. Mathematically, due to both 

sine waves and cosine waves are significant in the whole time domain, so fourier transform is 

available at any given time. This means that during the whole intervals, Fourier transform 

cannot provide simultaneous time, frequency localization and the fourier coefficients 

(amplitude) which are depended on the behaviour of the function. 

Inverse fourier transform is given by 

                                        𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓

∞

−∞
                                                (2)                  

Motivation for the Fourier transform comes from the study of fourier series. In the study of 

fourier series, complicated but periodic functions are written as the sum of simple waves 

mathematically represented by sines and cosines. The Fourier transform is an extension of the 

fourier series that results when the period of the represented function is lengthened and 

allowed to approach infinity. Due to the properties of sine and cosine, it is possible to recover 

the amplitude of each wave in a fourier series using an integral. There is a close connection 

between the definition of fourier series and the fourier transform for functions f that are zero 

outside an interval. For such a function, we can calculate its fourier series on any interval that 

includes the points where f is not identically zero. The fourier transform is also defined for 

such a function. As we increase the length of the interval on which we calculate the fourier 

series, then the fourier series coefficients begin to look like the fourier transform and the sum 

of the fourier series of f begins to look like the inverse fourier transform.  

Here is an example for two signals and their spectral analysis (FFT), Figure 1.1 is the 

presentation of two signal that have both sine waves with frequency 25Hz and 50Hz happen 

at the same time. Figure 1.2 is a step-change signal that changes its frequency from 25Hz to 

50Hz at the middle of the time.  

Looking at both the examples, it can be seen that two different signal obtain the same spectral 

analysis. In Figure 1.1 and Figure 1.2, it can be seen that peaks happen on the same 

frequencies which mean they have the same frequency contents, but obviously, fourier 

transform cannot recognize the difference between two signals that many different contents 

happened at the same time or at the different times. We can’t estimate the original signals 

through the results of Fourier transform in non-stationary signals (Stationary signals are 

signals which frequency contents are stable and don’t depend on time, non-stationary signals 

are the opposite of them).  
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Figure 1.1: Superimposed sine wave signal and its Fourier transform 

 Figure 1.2: Step sine wave signal and its Fourier transform 

Also these two things can be notice from the examples: first, in those diagrams, the sizes of 

the peaks (values of amplitude) related to how long the frequency contents exist on the time 

domain, and that’s why the value of amplitude in the Figure 1.1 is double than it in Figure 1.2 

The second thing is that the little ripples in the fourier transform in Figure 1.2 is caused by 

the sudden changes of frequency in the original signal, when the frequency change its values 

to another step, it causes the changes of the average frequencies in the short time intervals, 

therefore some of the spectral analysis values is around the actual value.  

Fourier transform is a powerful tool for analysing stationary signals, but to track down the 

changes in non stationary it is inadequate [49], [50]. The property of concentrating the energy 
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of a signal at and around the instantaneous frequency in the time-frequency plane shows how 

capable the TF representation based method is. Two approaches, namely, the short time 

Fourier transform and the continuous wavelet transform are commonly used to produce the 

TFDs for signals. We can see the difference between Fourier transform and STFT from the 

Figure 1.3. The Fourier transform can represent the frequency localization, but lost all 

information in time domain. The Short-time fourier transform, as an evolved scheme of 

fourier transform, has equal-length intervals in the time domain. And also, as shown in the 

figure, the segments of time intervals are not affected by the value of frequencies. 

 

Figure 1.3: Time-frequency resolution diagrams of Fourier transform and STFT 

 

To show that time frequency analysis is better than FT. We have taken an example for two 

signals and their STFT. From time frequency analysis we have chosen STFT because it is a 

simplest one. Figure 1.4 (a) is the presentation of two signal that have both sine waves with 

frequency 25 Hz and 50 Hz happen at the same time multiplied to each other. Figure 1.5 (a) is 

a step-change signal that changes its frequency from 25 Hz to 50 Hz at the middle of the 

time. Along with the signals the short time fourier of the two signals is also presented. 

Looking at both the examples, it can be seen that two different signal obtain the different 

STFT results. In Figure 1.4 (a), it can be seen that frequency contents of 25 Hz and 50 Hz 

exist at the same time and they are well separated from each other. In Figure 1.5 (a), it can be 

seen that there are two frequency contents but they are at different time, obviously separated 

at middle. 



6 

 

  

Figure 1.4: (a) Sine waves multiplied to each other (b) STFT of sine waves multiplied to each other 

  
 

Figure 1.5: (a) Step sine wave signal (b) STFT of step sine wave signal 

So that is why STFT is better than fourier transform because it can recognize the difference 

between two signals that have many different contents happened at the same time or at the 

different times. It is also a main reason due to which need for STFT arises. The STFT and the 

CWT are essentially a kind of linear transforms characterized by a static resolution in the 

time–frequency plane [28], [29]. However, due to the restriction of  the Heisenberg–Gabor 

inequality, neither the STFT nor the CWT is able to achieve a fine resolution in both the time 

and frequency domains, a good time resolution definitely implying a poor frequency 

resolution and vice versa. When a signal is noise free and has a linear frequency law and 

constant amplitude, STFT and WT are the transforms that can achieve a highly accurate 

estimation. However, in the cases of noisy signals or nonlinear IF law, these two would be 

not effective. Efforts have been made to improve the capability of the STFT to achieve a 

better estimation for the nonlinear IF, mainly through adjusting the window length. Aside 

from the TFD analysis methods mentioned earlier, the Chirplet transform (CT) is another 
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kind of TFA method which is particularly designed for the analysis of chirp like signals with 

linear IF law [32]. CT is not able to provide better resolution for the signals which follow non 

linear IF law, but PCT is. It was developed on the basis of polynomial kernel following the IF 

trajectory of the signal [34]. Basically it was an extension to CT. Concentration produced by 

PCT in time frequency domain is better than all other methods used in case of chirp signals, 

but it is highly vulnerable to noise. 

For multi-component signals, not only the concentration of TFD matters but also the 

separation of components should be good. Most common tools developed for analysis of 

multi-component signals are STFT and S transform. S transform obviously shows better 

results than STFT because the window used in S transform depends on the frequency of the 

input signal which does not happen in case of STFT [36]. The window used in case of STFT 

is fixed. Thus it cannot provide good time and frequency resolution simultaneously.   

1.4 PROBLEM STATEMENT 

We have developed a time frequency analysis method which can work well on both chirp and 

multi-component signals. The motivation lies in fact that both chirp and multi-component 

signals are useful in many applications and there are existing methods which can either 

separate out components or follow the chirp behaviour of signals. So there is a need of a 

method which can fully track the chirping nature of signals and also at the same time separate 

the components of signals effectively. It leads to study and analyze the signal in a better way.  

1.5 OBJECTIVE OF DISSERTATION 

This dissertation provides the basics of time frequency analysis methods for chirp and multi-

component signals. For chirp signals, the topics covered are Short time fourier transform, 

Chirplet transform and Polynomial Chirplet transform. Also the comparison of Short time 

fourier transform, Chirplet transform and Polynomial Chirplet transform is done. For multi-

component signals, the methods of STFT and S transform are studied. The performance of 

both the methods is also analysed. The study of basics of time frequency analysis tools is also 

done to enhance knowledge about the project. Moreover, a MATLAB implementation of all 

the methods is presented on both the signals. We have also proposed a modified s transform. 

The dissertation concludes with a performance analysis of the results obtained from 

MATLAB implementations of new method. Our main goals are: 

1) Analysis of chirp signals using STFT, CT and PCT. 
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2) Analysis of multi-component signals using STFT and ST. 

3) Proposed signal processing tool for chirp and multi-component signals. 

1.6 ORGANIZATION OF DISSERTATION 

The objective of this work is to study various time frequency analysis tools for multi-

component and chirp signals and develop a new time frequency tool for the analysis of both 

chirp and multi-component signals. The dissertation is organized as follows: 

Chapter 2 gives an literature review of the TFA tools. It includes details of existing work in 

the field of spectral analysis.  

Chapter 3 presents the analysis of chirp signal using TFA methods. It includes the basics of 

STFT, CT and PCT. Comparison is made between all three methods by MATLAB 

simulations and results are discussed as per observations. 

In chapter 4, the analysis of multi-component signals is done using TFA tools. It contains the 

detail about STFT and S transform. Results are obtained by implementing both transforms on 

MATLAB software and observations are established accordingly. 

In chapter 5, the modified S transform is proposed. It covers the details about the proposed 

method and how it is better than other existing methods. The results and discussions are also 

made by implementing the proposed method on both chirp and multi-component signals. 

Conclusions are drawn in chapter 6. Future work has also been discussed in this chapter.  
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CHAPTER 2 

LITERATURE REVIEW 

The study about the stationary and non stationary is done first of all [2]. The information 

about the tools that are already present for the time frequency analysis are studied [5]. The 

basics of multi-component signals are known to get interest in project [1]. The analyzing 

methods of multi-components are studied [3], [4]. The fundamentals of spectral analysis 

provide a clear view of the basics [9]. A study is made on Fourier transform to get started 

with the origin of TFA methods [6].  

STFT is the first time frequency tool developed in 1946. L. Durak presents two properties 

and implementation of STFT [20]. The investigation is made on shift and rotation properties 

of time frequency distributions. Uncertainty principle is studied to know about the limitations 

of STFT [9].Then there is a modified form of STFT for mono-component signals proposed 

by H. Guven [23]. Idea of minimum time bandwidth product is used in this. It has an adaptive 

window to get highest possible resolution for mono-component signals. Growth in time 

frequency analysis approach is quite evident from fact that another method called fast 

recursive STFT algorithm was proposed by S. Tomazic [22]. To make STFT adaptive was 

always the region of interest for researchers. Another method was introduced by Kwok and 

Jones [27]. In this IF estimation is also done. 

After a period of time of introduction of time frequency tools, a boom was observed in the 

field of Wavelet Transform. A full study on implementation and interpretation of WT is 

given by Bentley and Mcdonnel [28]. This paper also includes the applications of Wavelet 

Transform. Most of the time is elapsed in computation in WT. So a new and fast algorithm is 

developed by Rioul and Duhamel [28]. The computational complexity is decreased to log L 

form L for large filter lengths.   

Chirplet transform is considered to work on non stationary signals like chirp signals [32]. 

Quadratic chirp functions are used. Thus overtake the WT and STFT. There are options of 

not only obtaining time, frequency and scale resolutions, but also getting shear in time and 

shear in frequency. The chirplets used are related to each other in time frequency domain 

unlike the wavelets related in one dimensional space. A novel is done to update the Chirplet 

Transform by using Spline Kernel [33]. It was developed because of the fact that 

conventional TFA methods are less capable of dealing with non stationary signals. In this 
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case, the kernel simply matches with the IF. The frequency rotate and frequency shift 

operators are used for developing this powerful tool for non linear frequency modulated 

signals.   

PCT was proposed due to the limitations of CT to track non linear chirp signals [34]. In this 

modified form polynomial function is used unlike CT which uses linear chirp kernel. But it 

has a disadvantage of contamination by Gaussian noise. In 2013, same pair of researchers 

implemented PCT on multi-component signals [35]. Time fusion technique is used for this 

purpose. It is able to concentrate the energy along the IF of the signal. Filtration is used to 

remove the noise and preserve the component of interest. 

To separate out components from multi-component signals, ST is considered. S transform is 

an extended version of CWT and have moving Gaussian window [36]. It has overcome the 

limitations of WT and STFT. It provides desired characteristics for better resolution. This 

paper is aimed to show the strength and limitations of S transform and its inverses [37]. The 

level of approximation for inverse of S Transform is tested. During the recovery of signal 

approximation is of very much importance. In this dissertation, the application of S 

Transform i.e. time frequency filtering is a also discussed. The evaluation of effects using S 

Transform and its inverses discussed in detail. A wavelet view of S Transform was proposed 

in 2008 [41]. S transform works well for continuous signal, but it does not provide accurate 

results in case of discrete signal. So ideas were taken from Wavelet Transform to make it a 

better tool in all cases. An improved S Transform was proposed in 2009 [39]. S Transform 

has an advantage of allowing multi-resolution analysis while retaining the phase information. 

But it has an disadvantage of poor energy concentration in time frequency domain. So to 

improve the energy concentration, the window length is improved in efficient manner. In 

2011, non stationary signal analysis is done by generalized S Transform. Seismic signal 

processing is also done to compare S Transform and generalized S Transform. S Transform is 

deduced from STFT and WT [38]. S Transform achieves better flexibility due to its 

dependency on progressive frequency for good resolution. It has also better noise free 

performance as compared to other methods for non-stationary signals.  In 2013, B. Han also 

discussed S Transform for signal analysis [40]. The result shows ST has better utility and 

variability in non stationary signal processing. It shows better performance than other 

existing methods under noise conditions. The applications of S Transform can give us an idea 

about the future scope of the topic. Its application is found in biomedical field [13], [14], 

microseismic systems [18]. It can be used for IF estimation purpose [27], [47]. The whole 
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study is done to implement all these methods on MATLAB and also develop a new method 

with good energy concentration and localization both in time and frequency domain. 
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CHAPTER 3 

ANALYSIS OF CHIRP SIGNAL USING SIGNAL 

PROCESSING TOOLS 

3.1 INTRODUCTION 

Chirp signals are non stationary signals which have continuously increasing or decreasing 

frequency. If the frequency of signal increases from lowest to the highest values then it is 

called an upchirp and if it is from highest to the lowest values then the chirp is called a 

downchirp. Importance of chirp signals lies in the fact that its features make it useful in the 

field of communication. For example, all the three modulation techniques namely, frequency 

modulation, amplitude modulation and phase modulation, can be applied to the chirp signals 

at the same time. Thus makes the transmission more optimal. In RADAR system, chirp signal 

can provide high resolution which contributes for the better ranging. . There are several tools 

which can be used to extract information out of chirp signals, namely STFT, CT, and PCT. 

Figure 3.1 shows an example of upchirp.  

 

Figure 3.1: Chirp signal 

3.2 SIGNAL PROCESSING TOOLS FOR CHIRP SIGNALS 

3.2.1 SHORT TIME FOURIER TRANSFORM 

STFT is a commonly used time-frequency representation [20], [21]. It is the modification of 

Fourier transform. The general formulation in time domain is given by 

𝑍(𝑡, 𝑓) = ∫ 𝑤(𝑡 − 𝜏)𝑧(𝑡)𝑒−𝑗2𝜋𝑓𝑡∞

−∞
𝑑𝑡                              (3.1) 
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In this equation the 𝑤(𝑡) is the window function. 

                                                    𝑍(𝑡, 𝑓) = 𝐹{𝑤(𝑡 − 𝜏)𝑧(𝑡)}                                            (3.2) 

From the above equation it can be easily understood that 𝑍(𝑡, 𝑓) is essentially the Fourier 

transform of 𝑤(𝑡 − 𝜏)𝑧(𝑡) over an interval of the original signal which is segmented by 

window function. Compare equation (3.1) with the equation (3.2), we can find out that the 

STFT can get the time localization by first windowing the signal, so as to cut off only a well-

localized slice of signal, and doing the fourier transform of each segments. To segment 

signals into narrow intervals, we use a appropriate window function  w(t) as a slicing tool. 

From equation (3.1), we can get that no matter which bands of frequency they have, the 

window function w(t) always has the same window length 𝜏. So during the whole procedure 

of STFT, the length of window function doesn’t change. Because of that, choosing a suitable 

window functions length is very important in STFT. 

Requirements of the sliding window function  

1) 𝑤(𝑡) is an even function. i.e. 𝑤(𝑡) = 𝑤(−𝑡). 

2) Maximum value of window function is at 𝑡 = 0.i.e.max(𝑤(𝑡)) = 𝑤(0), 𝑤(𝑡1)  ≥  𝑤(𝑡2) 

if |t1|<|t2|. 

3) 𝑤(𝑡) ≈ 0 when |𝑡| is large. 

The energy density spectrum of the STFT is given by  

𝐸(𝑡, 𝑓) = |𝑍(𝑡, 𝑓)|2 

𝐸(𝑡, 𝑓) = |∫ 𝑤(𝑡 − 𝜏)𝑧(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
∞

−∞

|

2

 

which is also called the spectrogram. Simply, the spectrogram averages the frequency content 

of a specific time interval of the original signal using a window shifted in time and frequency. 

The resolution of time-frequency representations in short time fourier transform, however, is 

limited by the uncertainty principle. Let us consider a short duration signal which is 

constructed by multiplying the signal with an appropriate window function ℎ(𝑡). 

𝑦(𝑡𝑜) = 𝑧(𝑡𝑜)ℎ(𝑡 − 𝑡𝑜) 
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The uncertainty principle then states that the product of the standard deviations in time and 

frequency for the signal in the above equation cannot be made arbitrarily small [10]. Instead, 

the following relation holds 

𝜎𝑡𝜎𝜔 ≤
1

2
 

The uncertainty principle was first derived by Werner Heisenberg in 1927. For a signal of the 

form 𝑦(𝑡𝑜) , high resolution in the time domain corresponds to low resolution in the 

frequency domain and vice versa. 

Even through STFT can provide simultaneous time and frequency localization, it is still 

limited by using the sine and cosines to represent the signals. Because of sine and cosine 

functions have the same amplitude in the whole infinity time domains, they have infinity 

energy which distribute averagely with time. Imagine if we can use a group of waves which 

have concentrated energy around one time point to present signals, we might get better time 

resolutions. That’s where the idea of chirplet transform originated.  

3.2.2 CHIRPLET TRANSFORM  

Due to the limitations of Short time fourier transform, Chirplet transform is proposed [32], 

[33]. It is a different approach for obtaining a time-frequency representation of a signal 𝑥(𝑡) 

is based on the decomposition of 𝑥(𝑡) using basis functions. The Chirplet transform approach 

uses a representation of the signal components, which in this case are called chirplets. 

The Chirplet transform is a multi-dimensional parameter. Compared to other linear Time-

Frequency representations, such as STFT or the Wavelet Transform, the Chirplet Transform 

represents 1-D time-domain signals by multi-dimensional functions. Most often, the function 

is five-dimensional, where the five dimensions are:  

1) Chirping in time,  

2) Chirping in frequency,  

3) Time translation,  

4) Frequency translation, 

5) Dilation in frequency/ Contraction in time  
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The mapping of a signal in the five-dimensional space helps to overcome the resolution 

problem from which other time-frequency representations suffer. 

3.2.2.1 Chirplet Operators The Chirplet transform is capable of rotating each cell of the 

time-frequency plane as well as shearing it along the time and frequency axes. The Chirplet 

Transform’s capability of shaping the time-frequency cells presents new opportunities of 

optimizing the time-frequency resolution according to the analyzed signal. For example, it is 

possible to rotate and shear each cell according to the local slope of the trajectory of the 

analyzed instantaneous frequency, thus giving the opportunity of better tracking the 

frequency’s evolution versus time. These degrees of freedom are provided by modifying the 

chirp’s parameters in order to perform basic chirp operations such as the ones described next:  

1) Chirping in time 

Chirping in time is obtained by multiplying the mother chirplet with a linear Frequency 

Modulated (FM) signal, chirp (𝑒𝑗2𝜋
𝛼

2
𝑡2

) where  𝛼 is the chirp-rate. It causes a rotation of each 

cell as well as its shear along the frequency axis. The rotation angle with respect to the time 

axis is α. The slope of the cell on the time-frequency plane is equal to the value of chirp-rate.  

 

Figure 3.2: Time-frequency resolution diagrams of (a) STFT and (b) CT during chirping in time. 

2) Chirping in frequency (time shearing) 

Chirping in frequency (time shearing) is given by convolving, in the time domain, the mother 

chirplet with chirp (−𝑗𝑑)
−1

2 𝑒𝑗2𝜋
1

2𝜋
𝑡2

where the parameter 𝑑  accounts for the shear amount 

along the time axis imposed on the cell. In the frequency domain, this is accomplished by 

multiplying the fourier transform of the mother chirplet and the function 𝑒−𝑗2𝜋
𝑑

2
𝑓2

which can 

be considered a chirp in the frequency domain with the chirp-rate equal to 𝑑. The rotational 
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angle with respect to the frequency axis is 𝛽which depends on the chirp-rate 𝑑 .As with 

chirping in time, the slope of the cell with respect to the frequency axis is equal to  𝑑. 

 

Figure 3.3: Time-frequency resolution diagrams of CT during chirping in frequency 

3) Time translation 

Time translation is done by shifting the mother chirplet by 𝑡𝑐 in time where 𝑡𝑐 is the time 

offset. 

 

Figure 3.4: Time-frequency resolution diagrams of CT during time translation 

4) Frequency Translation 

Frequency translation is done by multiply the mother chirplet by 𝑒𝑗2𝜋𝑓𝑐𝑡 where 𝑓𝑐  is the 

amount of shift in frequency. The Figure 3.5 shows the TFD diagram during the frequency 

translation. Basically it shows the effect on the resolution in time and frequency domain due 

to the frequency translation. We can compare Figure 3.4 and Figure 3.5 to see the effects due 

to both the functions of CT.  
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Figure 3.5: Time-frequency resolution diagrams of CT during frequency translation 

5) Dilation in Frequency/ Contraction in Time: 

Changing the sampling rate or resolution of the signal in time cause the cell to be either 

dilated or contracted in time. When that happens, the reverse effect is caused in the frequency 

scale. 

 

Figure 3.6: Time-frequency resolution diagrams of CT during frequency dilation in contraction in time 

All of the above operations can be combined to a complete analytic expression of the chirplet. 

The CT of a signal s(t) is defined as 

                             𝐶𝑇𝑆(𝑇0, 𝜔, 𝛼; 𝜎) = ∫ 𝑧(𝑡)
∞

−∞
𝛹(𝑡0,𝛼,𝜎)

∗ (𝑡) exp(−𝑗𝜔𝑡) 𝑑𝑡                              (3.3) 

where 𝑧(𝑡) is the analytical signal of 𝑠(𝑡), generated by the Hilbert transform 𝐻, i.e., 𝑧(𝑡) =

𝑠(𝑡) + 𝑗𝐻[𝑠(𝑡)], and 𝛹(𝑡𝑜,𝛼,𝜎)
∗ (𝑡) is a complex window given by 

𝛹(𝑡𝑜,𝛼,𝜎)
(𝑡) = 𝑤(𝜎)(𝑡 − 𝑡𝑜)exp (−𝑗

𝛼

2
(𝑡 − 𝑡𝑜)2) 

Here, the parameters 𝑡𝑜 , 𝛼 stand for the time and chirp rate. 
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From the definition of the CT given as (3.3), the CT may be seen as the STFT of the 

analytical signal multiplied by the complex window 𝛹(𝑡0,𝛼,𝜎)

∗ (𝑡) . The definition of the CT is :  

                            𝐶𝑇𝑆(𝑇0, 𝜔, 𝛼; 𝜎) = 𝐴(𝑡𝑜) ∫ 𝑧̅
∞

−∞
𝑤(𝜎)(𝑡 − 𝑡𝑜) exp(−𝑗𝜔𝑡) 𝑑𝑡                                             

where 

𝑧̅(𝑡) = 𝑧(𝑡)𝛷𝛼
𝑅(𝑡)𝛷𝛼

𝑀(𝑡, 𝑡𝑜) 

𝛷𝛼
𝑅(𝑡) = exp (−𝑗𝛼

𝑡2

2
) 

𝛷𝛼
𝑀(𝑡, 𝑡𝑜) = exp (𝑗𝛼𝑡𝑜𝑡) 

𝐴(𝑡𝑜) = exp (−𝑗𝑡𝑜
2

𝛼

2
) 

Clearly, 𝛷𝛼
𝑅(𝑡) is a frequency rotating operator which rotates the analytical signal 𝑧(𝑡) by an 

angle 𝜃  with 𝑡𝑔(𝜃) = −𝛼 ,in the time–frequency plane; 𝛷𝛼
𝑀(𝑡, 𝑡𝑜)  is the frequency shift 

operator that relocates a frequency component at 𝜔  to 𝜔 + 𝛼𝑡𝑜  and 𝐴(𝑡𝑜)  is a complex 

number with modulus |𝐴(𝑡𝑜)| = 1. 

In the time–frequency analysis, it is the modulus of the TFD |𝐶𝑇𝑆(𝑇0, 𝜔, 𝛼; 𝜎)| that is usually 

of interest and have high value, and therefore, the definition of the CT can be simplified as 

                  𝐶𝑇𝑆(𝑇0, 𝜔, 𝛼; 𝜎) = ∫ 𝑧̅
∞

−∞

𝑤(𝜎)(𝑡 − 𝑡𝑜)                                     (3.4) 

From this definition, it can be seen that the CT can be decomposed into a series of operators: 

1) rotating the signal under consideration by a degree arctan(−𝛼) in the time–frequency 

plane; 2) shifting the signal by a frequency increment of 𝛼𝑡𝑜 ; and 3) doing STFT with 

window 𝑤(𝜎). 

 

Figure 3.7: Interpretation of CT as 𝜃 shows the rotation and 𝛼𝑡𝑜shows the frequency shift 
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3.2.3 POLYNOMIAL CHIRPLET TRANSFORM 

PCT is an extension to Chirplet transform [34], [35]. For non linear IF trajectory signals CT 

does not provide good time frequency distribution. It spreads out at times. So when the chirp 

rate is selected wisely than PCT gives good concentration in time frequency domain. PCT is: 

𝑃𝐶𝑇𝑆(𝑡0, 𝜔, 𝛼1, 𝛼2 … … … 𝛼𝑛; 𝜎)

= ∫ 𝑧(𝑡)𝜑𝛼1……..𝛼𝑛
𝑅

∞

−∞

(𝑡) × 𝜑𝛼1……..𝛼𝑛
𝑀 (𝑡, 𝑡0)𝑤(𝜎)(𝑡 − 𝑡0) exp(−𝑗𝜔𝑡) 𝑑𝑡  (3.5)     

 in which 

𝜑𝛼1……..𝛼𝑛
𝑅 (𝑡) = 𝑒𝑥𝑝 (−𝑗 ∑

1

𝑘
𝛼𝑘−1

𝑛+1

𝑘=2

𝑡𝑘) 

and 

 

𝜑𝛼1……..𝛼𝑛
𝑀 (𝑡, 𝑡0) = 𝑒𝑥𝑝 (𝑗 ∑ 𝛼𝑘−1𝑡0

𝑘−1

𝑛+1

𝑘=2

𝑡) 

where 𝜑𝛼1……..𝛼𝑛
𝑅 (𝑡) is a non linear frequency rotating operator, 𝜑𝛼1……..𝛼𝑛

𝑀 (𝑡, 𝑡0)  is the 

frequency shift operator and 𝛼1 … … . . 𝛼𝑛 are the polynomial kernel characteristic parameters. 

PCT gives better concentration than CT. But provide noise in the TFD generation. 

 

Figure 3.8: Interpretation of PCT 

3.3 SIMULATION RESULTS AND DISCUSSIONS 

The performance of time frequency distribution is assessed by applying STFT, CT and PCT 

on synthetic signals. 

3.3.1 EXAMPLE 1  

The first test signal is a linear chirp signal. The instantaneous frequency of a linear chirp 

signal varies with respect to time.  
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          𝑧(𝑡) = sin(2𝜋(12 + 2.5𝑡)𝑡)                                          (3.6)                                                                       

                                                            (0 ≤ 𝑡 ≤ 15𝑠).                                                             

The signal is sampled at 200 Hz. The generated signal is as shown in Figure 3.7 as below 

 

Figure 3.9: Signal with linear IF law 

The frequency of signal in Figure 3.7 is changing very fast, which shows chirping behaviour.  

 

Figure 3.10: TFD generated by STFT 

The Figure 3.8 shows that STFT results broadens in shape and concentration is also not up to 

desired levels. The time frequency resolution is also not good. 
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Figure 3.11: TFD generated by CT 

Figure 3.9 shows that TFD generated by CT provides better concentration than STFT. Also 

the CT kernel follows the linear increase in frequency very well and without expanding. CT 

provides good results when IF trajectory of chirp signal is linear. The performance analysis of 

CT on non linear signals is done ion following example.   

 

Figure 3.12: TFD generated by PCT 

PCT provides very good concentration in time frequency domain. The IF trajectory of signal 

is followed but there is a disadvantage of addition of unwanted signal in TFD. The 

contamination is due to white Gaussian noise. 
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3.3.2 EXAMPLE 2  

In last example we have illustrated results on s signal following linear IF law. So in this case, 

we have taken an example of a signal in which frequency increases non linearly. 

Mathematically given as follows: 

𝑧(𝑡) = 𝑠𝑖𝑛 (2𝜋(10𝑡 +
5

4
𝑡2 +

1

9
𝑡3 −

1

160
𝑡4))                                    (3.7)   

 

Figure 3.13: Signal with non linear IF 

This signal contains chirp signal in which the frequency increase and in latter part decreases 

with time.  

 

Figure 3.14: TFD generated by STFT 
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Figure 3.12 shows the broadening of TFD in earlier and latter part. In the middle part, it 

shows good concentration. STFT is unable to provide localization in both time and 

frequency. 

 

Figure 3.15: TFD generated by CT 

In Figure 3.12, we can see that in latter part the TFD broadens and CT kernel is unable to 

follow the trajectory of signal. So PCT was proposed to remove this limitation of CT to track 

the non linear nature of the signal. 

 

 

 

 

 

 

 

Figure 3.16: TFD generated by PCT 

Figure 3.12 shows the TFD generation by PCT. On comparing it with Figure 3.11, it can be 

easily understood that concentration is very good from starting to end points in case of PCT. 

The shape of IF trajectory also shows that there is no expansion in the latter part of signal.  
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3.3.3 EXAMPLE 3  

Now we have taken an example where the frequency of signal first increases and then 

decreases. The mathematical equation is as shown below: 

𝑧(𝑡) = sin (90𝜋𝑡 + 13.5𝜋𝑡2 −
4

3
𝜋𝑡3 +

3

100
𝜋𝑡4 )                                (3.8) 

The signal in equation (3.8) is represented by  

 

Figure 3.17: Signal generated 

The frequency in Figure 3.17 is becoming lesser as signal expands in the latter part. Before 

ending there is again an abrupt increase in frequency. The TFDs generated are shown in 

Figure 3.18 Figure 3.19 and Figure 3.20 by STFT, CT and PCT respectively. This example is 

taken to show whether the TFD can track down small changes in frequencies or not. We have 

also implemented ST and Modified S transform in chapter 5. The observation need to be 

made is that whether these all transform are able to extract information at the last part of the 

signal or not. There are limitations to each of the transform. So it is also very necessary to 

have knowledge about the applications where we can apply these transforms. To clear this 

idea we have taken so many examples.  

We can assess from the TFD generated by STFT that there is no good concentration. Also 

STFT is unable to give information about the signal due to broadening. In the latter part it 

does not give clear information about the signal whether its frequency is increasing or 

decreasing.  
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Figure 3.18: TFD generated by STFT 

 

Figure 3.19: TFD generated by CT 

The results of CT shown in Figure 3.19 confirms that for non linear IF law following signals, 

CT is not providing satisfactory TFD. Again its problem is expanding of TFD. In the end, 

there is no information about frequency with respect to time also.  

TFD generated by PCT have much better concentration than in case of CT and STFT. It is 

because of the fact that PCT kernel tracks the IF of the signal completely. There is a problem 

of noise addition in case of PCT. 
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Figure 3.20: TFD generated by PCT 

3.3.4 EXAMPLE 4  

From the former examples it is clear that PCT is best for non linear chirp signals. Now before 

moving onwards to next chapter we should know that why these all methods, namely, STFT, 

CT and PCT are not suitable for multi-component signals. Thus in this example, we have 

taken a synthetic signal which is multi-component and contains chirp also. 

𝑧(𝑡) =0.3cos(10𝜋𝑡1)+0.8cos(30 𝜋𝑡1)+0.7cos(20𝜋𝑡2+sin(𝜋𝑡2))+0.4cos((66𝜋𝑡3)+sin(4𝜋𝑡3)) 

0 ≤ 𝑡1 ≤ 6 sec 

6 ≤ 𝑡2 ≤ 10 sec 

4.8 ≤ 𝑡3 ≤ 7.6 sec                                                     (3.9) 

This signal as seen in Figure 3.21 is made up of more than on components. All components 

have different magnitude as well as different frequencies. The time frequency distributions 

are given in Figure 3.22, Figure 3.23 and Figure 3.24. The discussions are done with TFDs. 

The emphasis is given on the fact that there are limitations of Chirp transforms when used on 

multi-component signals. That is why the need for S transform arises. It is important to know 

that separation of components of signal is quite of use in different applications. For example, 

image and speech processing.  
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Figure 3.21: Signal generated 

Figure 3.21 clearly shows that the signal is made up of different components and also 

contains chirp behaviour. Now the TFD generated by different transform should clearly 

divide each component segment and also need to follow the IF of all the components. The 

TFD generated in next part will lead us to result that the STFT, CT and PCT are not suitable 

for multi-component signals. Obviously CT and PCT are made for work on chirp signals, not 

on multi-component. Also choosing a suitable polynomial also necessary part of PCT 

performance. 

 

Figure 3.22: TFD generated by STFT 
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STFT provides results which are better than CT and PCT here, but they are far from ideal 

one. It could not locate the components properly. 

 

Figure 3.23: TFD generated by CT 

CT can’t even provide the information about the components in the signal. Also its TFD is 

flattened at many places. Thus unable to give knowledge of at what time what frequency is 

present? 

 

Figure 3.24: TFD generated by PCT 

PCT perform even worse in case of multi-component signals. In addition, it contains traces of 

noise as well. This noise is difficult to remove and contaminates the whole TFD. 
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CHAPTER 4 

ANALYSIS OF MULTI-COMPONENT SIGNAL USING 

SIGNAL PROCESSING TOOLS 

4.1 INTRODUCTION 

On basis of components, signal is classified into mono-component and multi-component. 

Mono-component signals contain single frequency component and multi-component signals 

are the one which have more than single frequency component. A prime example of multi-

component signal is human speech. The importance of extracting information out of these 

multi-component signals lies in the fact that in several research fields, for example speech 

recognition, medical fields etc., the signals are often multi-component. The example of multi-

component signal is given in following figure: 

 

Figure 4.1: Multi-component signal 

 4.2 SIGNAL PROCESSING TOOLS FOR MULTI-COMPONENT 

SIGNALS 

4.2.1 SHORT TIME FOURIER TRANSFORM 

STFT is discussed in detail in section 3.2.1. The mathematical formula is given as:  

                                            𝑋(𝑡, 𝑓) = ∫ 𝑤(𝑡 − 𝜏)𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡∞

−∞
𝑑𝑡                                 (4.1) 

In this chapter, we have used STFT for the analysis of multi-component signal and compared 

the results with S transform. 
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4.2.2 S TRANSFORM 

S transform was proposed by Stockwell in 1996. S transform is an extension of STFT and 

also provides premium characteristics of wavelet transform [36], [40]. It is derived from the 

fixed resolution of STFT and the absence of phase information of WT. So before studying S 

transform, we should have some idea about wavelet transform also. The Wavelet transform is 

comprised of basis functions which are called as wavelets [2]. These wavelets are defined as  

                        𝑘𝑎,𝑏(𝑡) =
1

√𝑎
ℎ∗ (

𝑡 − 𝑏 

𝑎
)                                                     (4.2) 

Where a is the scaling factor and b is the time shift variable. The Wavelet transform is given 

by 

             𝐶𝑊𝑇(𝑏, 𝑎) =
1

√𝑎
∫ ℎ∗ (

𝑡 − 𝑏

𝑎
) 𝑠(𝑡)𝑑𝑡                                        (4.3) 

From equation (6), it can be easily understood that Wavelet transform does the decomposition 

of a signal 𝑠(𝑡) into a weighted set of scaled wavelet functions ℎ(𝑡).  

Now the definition of S Transform is given by: 

                                        𝑆(𝜏, 𝑓) = ∫ 𝑧(𝑡)
|𝑓|

√2𝜋

∞

−∞
𝑒−

(𝑡−𝜏)2𝑓2

2 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡                                  (4.4) 

 

where 𝜏,t are time domain variables and f is a frequency domain variable. ℎ(𝑡) is a one 

dimensional time domain signal and 𝑆(𝜏, 𝑓) is a two dimensional signal in time frequency 

domain. The feature which makes S transform unique is that its window in time domain 

changes inversely with respect to the frequency. So for analysis of high frequencies, shorter 

window in time domain is used and vice versa. S transform is also good because it provides 

exactly same signal after taking inverse of the transform. Inverse S transform is given by: 

 

                                            𝑧(𝑡) = ∫ {∫ 𝑆(𝜏, 𝑓)𝑑𝜏
∞

−∞
}

∞

−∞
𝑒𝑖2𝜋𝑓𝑡𝑑𝑓                                   (4.5) 

 

S transform has disadvantage of being computationally more complex and in this window has 

no parameter to allow its width in time or frequency to be adjusted.  

The procedure to find out S transform is given as  

1) Determine  

𝑍(𝛼) ↔ 𝑧(𝑡) 
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2) Calculate 𝐻(𝛼) × 𝛿(𝛼 − 𝑓), by doing this 𝐻(𝛼)is translated to 𝑓. 

3) Multiply 𝑤(𝜎) to shifted 𝐻(𝛼). 𝑤(𝛼, 𝜎) is the Gaussian window function given by: 

𝑤(𝜎) =
|𝑓|

√2𝜋
𝑒−

(𝑡−𝜏)2𝑓2

2  

4) Take the inverse Fourier transform. 

We can notice that the standard deviation of window is taken as 

𝜎 =
1

𝑓
 

The variation of Gaussian window provide the time localization and the 𝑒−2𝜋𝑓𝑡 provides the 

frequency localization. The exponential factor remains stationary and window is translated.  S 

transform is also important because it gives time frequency plots unlike WT. It has 

applications in many fields which include Geophysics [12], Biomedical [13], Micro seism 

[18], Power transformer protection [15], [16], [17]. 

4.2.2.1 GENERALIZED S TRANSFORM   

Generalization of S transform provides better control over the window function [42], [45]. 

The formula is given by: 

𝑆(𝜏, 𝑓, 𝛽)=∫ 𝑧(𝑡)𝑤(𝜏 − 𝑡, 𝑓, 𝛽)
∞

−∞
𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡                                  (4.6) 

In equation 4.4, 𝑤  is the window function and 𝛽  is a set of parameters that decide the 

properties of Gaussian window. The width of window is controlled by changing the standard 

deviation of the window. 

4.3 SIMULATION RESULTS AND DISCUSSIONS 

We have started with a simplest of example, which is taken in last chapter. Then performance 

of S transform is evaluated on different types of multi-component signals. Simulations are 

done in MATLAB software. 

4.3.1 EXAMPLE 1 

Now in this case, we have taken example from section 3.3.4 to show the advantage of S 

transform to separate out the components of a signal. We have used equation 3.9 in this 

example. The TFD is produced using S transform. This example is only taken to make an 

observation that why ST is used in case of multi-component signals. 
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Figure 4.2: TFD generation by ST 

 The results shows better results than STFT, CT and PCT. The components are separated out 

very well. We can compare Figure 4.2 , Figure 3.22, Figure 3.23 and Figure 3.24. Conclusion 

is made that the separation in case of ST is better. Concentration is also a lot better than PCT. 

Spreading of TFD is also not there in case ST.     

4.3.2 EXAMPLE 2 

We have taken a multi-component signal in this example, where not only frequency rapidly 

changes, but also the amplitude of signal varies over the time. Mathematically the signal the 

signal is written as: 

𝑧1(𝑡) = 𝑠𝑖𝑛(2𝜋50𝑡1)                                               0≤ 𝑡1 ≤ 0.3 𝑠𝑒𝑐. 

𝑧2(𝑡) = sin(2𝜋 × 50𝑡2)                                        0.3 ≤ 𝑡2 ≤ 0.6 𝑠𝑒𝑐. 

𝑧3(𝑡) = sin(2𝜋 × (50 + 0.2𝑡3)𝑡3)                         0 ≤ 𝑡3 ≤ 0.8 𝑠𝑒𝑐. 

𝑧4(𝑡) = sin(2𝜋 × 50𝑡1) + 𝑠𝑖𝑛(2𝜋 × 350𝑡1) 

𝑧5(𝑡) = sin (2𝜋 × 50𝑡1) 

z(t)=[ 𝑧1(𝑡)   𝑧2(𝑡)   𝑧3(𝑡)   𝑧4(𝑡)   𝑧5(𝑡)]                                                                             (4.7)                                      

Equation 4.7 shows that 𝑧(𝑡) is the concatenation of the above signals and the signal is 

sampled at 200 Hz. Figure 4.3 is the graphical representation of the synthetic signal. Signal 
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generated shows that there are two parts where signal limits to zero amplitude. On this signal, 

we have applied STFT and ST. TFDs are shown in the Figure 4.3 and Figure 4.4.  

 
 

Figure 4.3: Representation of the input signal 

 

 

Figure 4.4: TFD generated by STFT 

The TFD obtained on applying STFT clearly reflects that signal has no change in frequency 

all. Therefore giving completely wrong information about the input signal. So on the same 

signal we have applied ST and notice the TFD to know about the difference between the 

STFT and ST. 
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Figure 4.5: TFD generated by ST 

The results of analysis using ST are better than STFT. Also the separation is quite good. 

4.3.3 EXAMPLE 3 

 The signal assumed in this case has continuous changes in frequency. In Figure 4.6, we 

cannot even know at what points the frequency changes.    

𝑧(𝑡) = cos(2𝜋 × 20𝑡) + cos (2𝜋 × (20 + 50𝑡)𝑡)                              (4.8) 

The signal is sampled at 200 Hz. The signal is addition of two components. 

 

Figure 4.6: Representation of the input signal 
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Figure 4.7: TFD generated by STFT 

The spectral analysis done by STFT is showing very different results for the multi-component 

signal. It is because of the fixed window length of the STFT. 

 
Figure 4.8: TFD generated by ST 

The Figure 4.8 shows exact results for changing frequencies. It is due to the varying length of 

the moving window.  

4.3.4 EXAMPLE 4 

This example is taken from paper [40] of Bao Han. This is a frequency conversion signal 

defined as: 

fr
e
q
u
e
n
c
y
--

->

time--->

500 1000 1500 2000 2500 3000

50

100

150

200

250

300

350

400

450

500

fr
e
q
u
e
n
c
y
--

->

time--->

0 500 1000 1500 2000 2500 3000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45



36 

 

𝑦(𝑛) = 4 cos (
8𝜋𝑛

𝑁
) +

𝑁

5
 

𝑧(𝑛) = cos(2𝜋 × 𝑦(𝑛) ×
𝑛

𝑁
)                                          (4.9) 

Where n=1,2,3,4....512, N=512 and n is the sampling point. 

 
Figure 4.9: Representation of the input signal 

Figure 4.10 and Figure 4.11 shows the time frequency distribution using STFT and ST respectively. 

 

Figure 4.10: TFD generated by STFT 

It is evident from Figure 4.10 that STFT has a very poor time frequency resolution. It 

concludes that STFT has minimum flexibility in window length.  
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Figure 4.11: TFD generated by ST 

The TFD obtained from ST provides good time frequency resolution. The changes in frequency with 

time are quite evident from the Figure 4.11.  

4.3.5 EXAMPLE 5 

Now we have considered a third signal which is a multi-component chirp signal is given as:  

                   ℎ(𝑡) = 𝑠𝑖𝑛 (60𝜋𝑡 + 12𝜋𝑠𝑖𝑛 (
𝜋𝑡

6
)) + sin (0.7𝜋𝑡2 + 25𝜋𝑡 + 25)               (4.10) 

IF laws of above signal components are 30 + 𝜋 cos(𝜋𝑡
6⁄ ) and 0.7𝑡 + 12.5 respectively. This 

signal has two chirping components.  

 

Figure 4.12: Representation of the input signal 
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Figure 4.13: TFD generated by STFT 
 

 

Figure 4.14: TFD generated by ST 

From Figure 4.13 and Figure 4.14, it is concluded that IF laws of the signal components do 

not cross each other. STFT also better resolution in this case and some spreading can be seen 

in  TFD of ST. The comparison with proposed method is also done in next chapter. 

4.3.6 EXAMPLE 6 

This example explains the working of STFT and ST on a signal in which the IF laws of the 

components do not cross each other. This multi-component chirp signal is as given below 
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             ℎ(𝑡) = sin(2.5𝜋𝑡2) + sin (10𝜋 sin(𝜋𝑡
4 + 𝜋⁄ ) + 40𝜋𝑡 − 0.8𝜋𝑡2)             (4.11) 

 

Figure 4.15: Representation of the input signal 

 

Figure 4.16: TFD generated by STFT 

The TFD of the signal in Figure 4.16 shows that IF laws of signal cross each other. But it 

cannot provide a clear view of the IFs. There is expansion of TFD and concentration is also 

not good. So it is more interesting to see that whether ST is able to isolate both Ifs and also 

track them by providing better time frequency resolution. 
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Figure 4.17: TFD generated by ST 

The analysis of crossing multi-component by ST shows that there is interference in two components at 

different times. Also time frequency resolution is poor. In next chapter, we have taken the same signal 

and modified S transform is applied.   

4.3.7 EXAMPLE 7 

In this example the performance of the STFT and ST is analysed using some synthetic signal. 

In this signal a low frequency of 7 Hz, a medium frequency of 25 Hz, and a high frequency of 

65 Hz is taken. The components in this signal are short lived and present at different time. 

The signal is shown in Figure 4.18 and represented by:  

𝑧1 = 𝑧𝑒𝑟𝑜𝑠(1,256) 

𝑡1 = 1: 70 𝑠𝑒𝑐 

𝑧1(1: 70) = cos(2𝜋 × 𝑡1 × 7
256⁄ ) 

𝑧1(71: 128) = 0 

𝑡2 = 1: 128 𝑠𝑒𝑐 

𝑧1(129: 256) = cos(2𝜋 × 𝑡2 × 25
256⁄ ) 

𝑡3 = 30: 60 𝑠𝑒𝑐 

𝑧1(30: 60) = 𝑧1(30: 60) + 0.5 cos(2𝜋 × 𝑡3 × 65
256⁄ )                      (4.12) 
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Figure 4.18: Representation of the input signal 

 

 

Figure 4.19: TFD generated by STFT 

The time frequency resolution provided by STFT is quite poor. The information extracted 

from Figure 4.19 show that there are two components. But actually there are three. So STFT 

totally failed in this case. The TFD generated using S transform separates out the 

components, but they are quite invisible. One component shows good concentration. Other 

two are in faded form. We can observe from Figure 4.20 that one component of frequency 

lives for longer period of time than others. The performance of ST is not quite ideal, but still 

we can evaluate information about the nature of signal.  
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Figure 4.20: TFD generated by ST 

 

The summary of whole chapter is that ST overcomes the demerits of STFT and WT. It 

provides the best properties of STFT and WT. In next chapter, we have proposed a new 

method to analyse both chirp and multi-component signals. Also comparison with other 

methods is done. 

  

fr
e
q
u
e
n
c
y
--

->

time--->

0 50 100 150 200 250

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5



43 

 

CHAPTER 5 

PROPOSED WORK 

5.1 INTRODUCTION 

The development of STFT gives boost in the area of time frequency analysis. In STFT, 

localization in time is done by using a window function and localization in frequency is 

applied by using Fourier transform. Due to fixed length of window, STFT has poor resolution 

in time frequency domain. On the other hand WT does not retain the phase information and 

provides time scale plots which are difficult to analyze. The S transform is developed by 

Stockwell, which is a combination of both STFT and WT. Based on the idea of S transform 

we have proposed a new TFA method called as modified S transform. In this method, we 

have introduced a parameter to change the width of window according to the covariance of 

the input signal which is discussed in detail in the following section. This method provides 

better results for both chirp and multi-component signals. 

5.2 MODIFIED S TRANSFORM 

In this proposed method, we have inserted a parameter 𝛽 to change window length in S 

transform. The parameter 𝛽 is given as 

𝛽(𝑓) = 𝑛 × 𝛾 × 𝑓                                                         (5.1) 

where 𝛾 =covariance of the input sgnal. 

 
Figure 5.1: Change in parameter w.r.t. frequency 
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In equation (5.1), n is a constant that is experimentally decided by doing several iterations. It 

also shows that resolution in time and frequency depends directly on the covariance of the 

signal. Standard deviation of the window is thus updated as follows: 

𝜎 =  
𝛽(𝑓)

|𝑓|
                                                               (5.2) 

The modified S transform thus becomes 

𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)𝑤(𝜏 − 𝑡, 𝑓, 𝑛, 𝛾)
∞

−∞
𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡                           (5.3) 

where 𝑤 is a window function of the proposed method, represented by  

𝑤(𝜏 − 𝑡, 𝑓) =
|𝑓|

√2𝜋𝛽(𝑓)
𝑒

−
(𝜏−𝑡)2𝑓2

2(𝑛𝛾𝑓)2                                        (5.4) 

From (5.3) and (5.4), we get 

𝑆(𝜏, 𝑓) = ∫ ℎ(𝑡)
|𝑓|

√2𝜋nγf 

∞

−∞
𝑒

−
(𝜏−𝑡)2𝑓2

2(𝑛𝛾𝑓)2 𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡                       (5.5) 

 

Thus we have controlled the time and frequency resolution using the standard deviation of the 

Gaussian window. 

 
Figure 5.2: Variation of window width with 𝑛 

From figure 5.2, the variation of window width is shown for different values of n. It shows 

that the values of n should be selected with care to get better energy distribution of time 
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frequency distributions. The other value on which 𝛽 depends is the covariance of the input 

signal. Thus the width of window directly depends on the covariance of signal also. Thus 

making it to track the IF law of the chirp and multi-component signals.  

5.3 SIMULATION RESULTS AND DISCUSSIONS 

In this section, we have compared modified S Transform with all other methods discussed in 

chapter 3 and 4.  

5.3.1 EXAMPLE 1 

In the first test signal, we have considered linear multi-components, which is given as 

                                  ℎ(𝑡) = sin(2𝜋(10 + 2.5𝑡)𝑡) + sin(2𝜋(12 + 2.5𝑡)𝑡)                           

                                                            (0 ≤ 𝑡 ≤ 15𝑠).                                                         (5.6) 

The signal is sampled at a sampling frequency of 200 Hz. The TFDs are shown in Figure 

5.3(b)-(f). Conclusion can be made by observing the figure that only CT, PCT and Modified 

S Transform are able separate the components. Figure 5.3(b) concludes that two components 

are not separated by STFT. We can say that STFT works poorly on this signal. There is 

interference between the IF laws of two components due to fixed window length. We have 

also used S transform having varying window. The result of TFD generated by ST is also 

unable extract the information. out of signal and separation is again poor in this case. Figure 

5.3(e) shows the results of TFD generated by ST.  

  

(a) (b) 

0 500 1000 1500 2000 2500 3000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a
m

p
li
t
u
d
e
-
-
-
>

time--->

fr
e
q
u
e
n
c
y
--

->

time--->

500 1000 1500 2000 2500 3000

50

100

150

200

250

300

350

400

450

500



46 

 

 
 

(c) (d) 

  

(e) (f) 

Figure 5.3: Time frequency plot (a) Signal (b) STFT (c) CT (d) PCT (e) ST (f) Modified ST 

This example is taken surely to show that there are some signals whose components cannot 

be distinguished by STFT and ST. In this case, our proposed method gives very good results. 

It separates the components and provides good concentration as well. Figure 5.3(f) shows the 

time frequency analysis of this signal using proposed transform. The modified transform 

kernel tracks both the components because its window is dependent on covariance of input 

signal. Obviously it is not providing good concentration as shown in Figure 5.3(f), but is far 

more better than ST and STFT.  

5.3.2 EXAMPLE 2 

In this example, we have taken example in section 3.3.2 as reference. This example shows 

that we can use modified S transform in case of mono-component signals also. Further the 

comparison between STFT, CT, PCT, ST and Modified ST is also done. Figure 5.4(e) shows 

CHIRPLET TRANSFORM

f
r
e
q
u
e
n
c
y
-
-
-
>

time--->

0 5 10 15

90

80

70

60

50

40

30

20

10

0

fr
e
q
u
e
n
c
y
--

->

time--->

0 500 1000 1500 2000 2500 3000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
fr

e
q
u
e
n
c
y
--

->

time--->

0 500 1000 1500 2000 2500 3000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45



47 

 

that ST provides good concentration, but broadens at the end. It is showing same properties 

as CT, which can be seen in Figure 5.4(c).But it does not provide better concentration and 

tracking of signal as in case of PCT. 

In Figure 5.4(f), we can see that our proposed method give good concentration in case of chirp signals 

as well. Also its kernel follows the IF law of chirp signal. TFD generated by Modified S transform 

isolates noise from the input signal as compared to PCT given in Figure 5.4(d). PCT is providing 

excellent feature extraction of the signal as its TFD provides best concentration than all others in this 

case. 
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(e) (f) 

Figure 5.4: Time frequency plot (a) Signal (b) STFT (c) CT (d) PCT (e) ST (f) Modified ST 

This implementation of transforms on this signal is obviously taken to see if Modified version 

of S Transform works accurately on non linear chirp signals. TFD using Modified ST shows 

very good results. 

5.3.3 EXAMPLE 3 

In this case, section 3.3.3 is taken as reference. As we know in that example emphasis is 

given on the point that the IF trajectory of the signal in the last part of signal is followed or 

not. Figure 3.18, Figure 3.19 and Figure 3.20 are compared to Figure 5.10. It shows that there 

is ideal following of IF in case of Modified ST.   
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Figure 5.5: Time frequency plot (a) Signal (b) STFT (c) CT (d) PCT (e) ST (f) Modified ST 

5.3.4 EXAMPLE 4  
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(c) (d) 

  

(e) (f) 

Figure 5.6: I Time frequency plot (a) Signal (b) STFT (c) CT (d) PCT (e) ST (f) Modified ST 

This example is taken from section 3.3.4 of chapter 3. The comparison of TFD generated by 

all transform including Modified S transform is done in Figure 5.6. It ultimately leads us to 

result that Modified S transform provides best results in all. In CT, there is spreading in the 

TFD. PCT adds up noise in the TFD. Input signal is multi-component signal. Therefore it is 

necessary that the applied transform separates out components and provides no interference 

between the components. From the results in Figure 5.6, we can see that Modified S 

Transform gives smoother distributions and good time frequency resolution. Thus it can be 

useful in applications where smoother separation is required. Here STFT is also providing 

good results. 
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5.3.5 EXAMPLE 5  

The signal have two components whose IF laws do not cross each other. This case we have 

taken form section 4.3.5.  

Clearly results shown in Figure 5.7 shows that again our proposed method is the best among 

all others. All aspects of good TFD are generated by Modified ST. It provides good 

separation and IF laws of components are followed well. PCT has disadvantage of added 

noise. CT and ST provides expanded TFDs. STFT gives good results but energy 

concentration is poor. 
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(e) (f) 

Figure 5.7: Time frequency plot (a) Signal (b) STFT (c) CT (d) PCT (e) ST (f) Modified ST 

5.3.6 EXAMPLE 6  

In above example we have taken signal with crossing IF law and now to evaluate the 

performance of proposed transform, we have taken signal with crossing IF laws. To analyze 

the signal, we have applied all the methods discussed in this dissertation. Results show better 

performance of Modified ST. This multi-component chirp signal is as given below 

             ℎ(𝑡) = sin(2.5𝜋𝑡2) + sin (10𝜋 sin(𝜋𝑡
4 + 𝜋⁄ ) + 40𝜋𝑡 − 0.8𝜋𝑡2)             (5.7) 

  The TFDs of given signal are shown in Figure 5.8. Clearly form figure it is understood that 

Modified S Transform separates the components. There is no interference between the two 

components. PCT gives poor time frequency resolution. It adds up noise and there is no 

clarity at starting and end points of signal. We cannot recognize which frequency belongs to 

what time. Rather STFT, CT and ST provides better information, but separation at meeting 

points is not quite good. The TFD is useful method to extract information out of the signals. 

Signal with crossing frequencies is really good object on which we can measure the 

performance of time frequency analysis method.  It is clear from the examples that Modified 

ST is useful for the analysis of both chirp and multi-component signals. Proposed modified S 

transform is able to generate the TFD with energy concentration closely along the IF laws of 

the signal which is always necessary for isolation of components.  
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(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 5.8: Time frequency plot (a) Signal (b) STFT (c) CT (d) PCT (e) ST (f) Modified ST 

The summary of chapter is that most of the times Modified S Transform has provided better 

results. Even better than the transform form which it is derived. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

6.1 CONCLUSION 

Energy concentration of the S transform can be controlled better by the effective variation of 

the width of the window. This is achieved by using a parameter 𝛽 in the window, which 

varies according to the covariance of the input signal and thus varies the S transform kernel 

according to the variations in the input signal. The proposed method is compared with the 

original S transform, PCT, CT and STFT by using a set of synthetic signals. The comparison 

is done by using all five methods and it shows that the proposed modified S transform 

provides improved results as compared to standard S transform and STFT. The proposed 

method provides better time and frequency resolution also. Thus the proposed method can be 

applicable where good time and frequency resolution is needed. We also found that S 

transform is better than STFT because of its varying window. In some cases, it is unable to 

separate the components of the signal. PCT is also a good method for chirp signals but it has 

a disadvantage of contamination by Gaussian noise. For some signals PCT could not able to 

provide better time frequency resolution than proposed method. But it is far better than CT 

and STFT in case of non linear IF law following signals. 

6.2 FUTURE SCOPE 

In future, we can optimize parameter 𝛽 of the Modified S Transform, rather than fixing it 

ourselves. Also we can use the proposed method in several numbers of applications like 

ultrasound imaging, image processing, digital watermarking, radar detection, micro doppler 

shift detection etc.      
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