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Abstract 
 

The most common form of cancer being diagnosed in women worldwide is 

breast cancer. It has been well established that the risk of breast cancer development 

is associated with increased breast density. Therefore, characterization of breast tissue 

density is clinically significant. The radiologists predict the breast tissue density by 

visual analysis which is highly subjective. Moreover, the differential diagnosis 

between atypical cases of breast tissue where there is significant overlap in 

appearance on mammographic images is a daunting challenge even for experienced 

radiologists. Therefore, there is a significant impetus among the research community 

to develop computer aided diagnostic (CAD) systems for differential diagnosis 

between different cases of breast tissue density patterns. 

Thus, in order to provide the radiologists with a second opinion tool for 

validating their diagnosis, various CAD systems have been developed in the present 

work for two-class and three-class breast tissue density classification. 

 A general framework of the different CAD schemes employed in the present 

work is shown in Figure 1. For the design of this CAD system, 322 mammographic 

images are taken from the MIAS dataset. From each mammographic image, ROIs of 

fixed size are extracted. The CAD system consists of feature extraction module, 

feature space dimensionality reduction module and the classification module. In the 

feature extraction module, three methods for extracting the texture features are 

employed, (a) Statistical methods (b) Signal processing based method and (c) 

Transform domain based methods. Each feature set is normalized by using min-max 

normalization. The normalized feature set is then bifurcated into training and testing 

datasets.  

  In the feature space dimensionality reduction module, redundant and 

correlated texture features are eliminated by applying Principal component analysis 

(PCA). In the first step PCA is carried out on the training dataset and reduced training 

dataset of the derived PCs is obtained. The reduced testing dataset is then obtained by 

projecting the data points of training dataset in the direction of the PCs of training 

dataset. 

 In the classification module, performance of four different classifiers namely 

kNN, probabilistic neural network (PNN), SVM and smooth support vector machine 

(SSVM) is evaluated to obtain the class of the unknown testing instances. 
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Figure 1 General framework of the proposed CAD system design. 

Note: FOS: First order statistics, GLCM: Gray level co-occurrence matrix, GLRLM: Gray level run 

length matrix, GLDS: Gray level difference statistics, NGTDM: Neighbourhood gray tone difference 

matrix, SFM: Statistical feature matrix, DWT: Discrete wavelet transform, GWT: Gabor wavelet 

transform, FPS: Fourier power spectrum. 

 In Chapter 4 a CAD system based on statistical features is developed for two-

class and three-class breast tissue density classification of mammograms. 

In Chapter 5 a CAD system based on texture features derived from Laws’ 

masks of various lengths has been designed for two-class and three-class breast tissue 

density classification of mammograms. 

In Chapter 6 performance of various multiresolution texture features is 

evaluated for two-class and three-class breast tissue density classification of 

mammograms. 
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Chapter 1 

Introduction 
 

1.1. Overview 

Cancer comes under a class of diseases that are characterized by uncontrolled 

growth of cells resulting in formation of tissue masses called tumors at any location in 

the body [1]. The malignant tumor can destroy other healthy tissues in the body and 

often travels to other parts of the body to form new tumors. This process of invasion 

and destruction of healthy tissues is called metastasis [2]. Breast cancer is the type of 

cancer that develops form breast cells. It is considered to be a major health problem 

nowadays and is the most common form of cancer found in women [3]. For the 

women in United Kingdom, the lifetime risk of being diagnosed with breast cancer is 

1 in 8 [4]. The study in [5] reported 1.67 million new incidences of breast cancer 

worldwide in the year 2012. There are various risk factors associated with cancer 

development: (a) Age, (b) History of breast cancer, (c) Formation of certain lumps in 

the breasts (d) Higher breast density, (e) Obesity, (f) Alcohol consumption, (g) 

Cosmetic implants. 

It has been strongly advocated by many researchers in their study that 

increased breast density is strongly correlated to the risk of developing breast cancer 

[6-14]. The association between increased breast density and breast cancer risk can be 

explained on the basis of effects due to the hormones mitogens and mutagens. The 

size of the cell population in the breast and cell proliferation is affected by mitogens 

while the likelihood of damage to these cells is due to mutagens. Due to increased cell 

population, there is an increase in reactive oxygen species (ROS) production and lipid 

peroxidation. The products of lipid peroxidation; malondialdehyde (MDA) and 

isoprostanes catalyze the proliferation of cells [14]. The schematic overview of the 

above process is depicted in Figure 1.1.   

Even though breast cancer is considered to be a fatal disease with a high 

mortality rate, the chances of survival are significantly improved if detected at an 

early stage. There are various imaging modalities like ultrasound, MRI, Computerized 

tomography, etc. that can be used for diagnosing the breast diseases but 

mammography is considered to be the best choice for detection due to its higher 

sensitivity [15-17]. 
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Figure 1.1 Schematic overview of processes resulting in increased breast density and thus increased 

risk of developing breast cancer. 

1.2. Mammography 

Mammography is an x-ray imaging technique used to detect any abnormalities 

in the breast. There are two types of mammography examination: 

(a) Screening Mammography: Screening mammography is used to check for breast 

abnormalities in asymptomatic women. This examination is used to detect breast 

cancer at an early stage when there are no symptoms present. 

(b) Diagnostic Mammography: Diagnostic mammography is performed when either a 

patient has complaint of some lumps in the breast, pain or any abnormality is detected 

during the screening process. It helps in determining whether the symptoms indicate 

the presence of a malignancy and is also used to find the exact location of the 

abnormalities. 

 Mammograms display the adipose (fatty) and fibroglandular tissues of the 

breast along with the present abnormalities. To describe the findings on the 

mammograms, The American College of Radiology came up with a standard system 

called Breast Imaging Reporting and Data System (BI-RADS). The categories were 

[18]: 

(i) Category 0: Additional imaging evaluation- If any abnormality is present, it may 

not be clearly noticeable and more tests are needed.   

(ii) Category 1: Negative- No abnormalities found to report. 
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(iii) Category 2: Benign finding- The finding in the mammogram is non-cancerous 

like lymph nodes. 

(iv) Category 3: Probably benign finding- The finding is most probably non-

cancerous but is expected to change over time so a follow up is required regularly. 

(v) Category 4: Suspicious abnormality- The findings might or might not be 

cancerous so to find the exact nature of the finding, the patient should consider taking 

a biopsy test. 

(vi) Category 5: Highly suggestive malignancy- The finding has more than 95 % 

chance of being cancerous and biopsy examination is highly recommended for the 

patient. 

(vii) Category 6: Known biopsy-proven malignancy- The findings on the 

mammogram have been shown to be cancerous by a previous biopsy. 

 On the basis of density, breast tissue can be classified into the following 

categories: 

(a) Fatty (F) / Dense (D) (Two-class classification)  

(b) Fatty (F) / Fatty-glandular (FG) / Dense-glandular (DG) (Three-class 

classification) 

(c) Almost entirely fatty (B-I) / Some fibro-glandular tissue (B-II) / Heterogeneously 

dense breast (B-III) / Extremely dense breast (B-IV) (Four-class BI-RADS 

classification) 

 The typical fatty tissue being translucent to X-rays appears dark on a 

mammogram where as the dense tissues appear bright on the mammograms. The 

fatty-glandular breast tissue is an intermediate stage between fatty and dense tissues 

therefore a typical fatty-glandular breast tissue appears dark with some bright streaks 

on the mammogram. The mammographic appearances of the breast tissue based on 

density are depicted in Figure 1.2.  

 For BI-RADS reporting, B-I: breast contains very little fibroglandular tissue. 

B-II: Some of the areas of the breast contain fibroglandular tissue. B-III: Breast 

contains very little adipose tissue and there are more regions of fibroglandular tissue. 

B-IV: Almost complete breast consists of fibroglandular tissue. The typical 

mammographic appearances of the breast tissue based on BI-RADS reporting are 

shown in Figure 1.3. 
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Figure 1.2 Appearances of breast tissue density patterns on mammograms (a) Fatty tissue,             

(b) Fatty-glandular tissue, (c) Dense-glandular tissue. 

 

 

Figure 1.3 Appearances of breast tissue density patterns based on BI-RADS reporting (a) B-I tissue, 

(b) B-II tissue, (c) B-III tissue, (d) B-IV tissue. 

1.3. Need of Computer Aided Diagnostic Systems 

 With the advancement in computer technology and artificial intelligence 

techniques there has been a substantial increase in the opportunities for researchers to 

investigate the potential of computer-aided diagnostic (CAD) systems for texture 

analysis and tissue characterization of radiological images [19-22]. Tissue 

characterization refers to quantitative analysis of the tissue imaging features resulting 

in accurate distinction between different types of tissues. Thus, the result of tissue 

characterization is interpreted using numerical values. The overall aim of developing 

a computerized tissue characterization system is to provide additional diagnostic 

information about the underlying tissue which cannot be captured by visual inspection 

of medical images. 
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 The mammograms are visually analyzed by the radiologists to identify and 

differentiate between different density patterns of the breast tissue. The typical breast 

tissue density patterns are easy to identify and analyze. This analysis is however 

subjective and depends on the experience of the radiologist. The appearances of 

atypical cases of the breast tissue density patterns are highly overlapping and to 

differentiate between these atypical cases through visual analysis is considered to be a 

highly daunting task for the radiologists. Thus, in order to provide the radiologists 

with a second opinion tool for validating their diagnosis, various CAD systems have 

been developed for breast tissue density classification. The sample images depicting 

the typical and atypical cases of breast tissue density patterns are shown in Figure 1.4 

and Figure 1.5, respectively. 

 

Figure 1.4 Sample mammographic images depicting typical cases. (a) Typical fatty tissue ‘mdb012’ 

(b) Typical fatty-glandular tissue ‘mdb014’ (c) Typical dense-glandular tissue ‘mdb108’. 

 

 

Figure 1.5 Sample mammographic images depicting atypical cases (a) Atypical fatty tissue 

‘mdb088’, (b) Atypical fatty-glandular tissue ‘mdb030’ (c) Atypical dense-glandular tissue 

‘mdb100’. 
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1.4. Objective of the Present Study 

 The main objective of the research work presented in this project report is to 

enhance the diagnostic potential of mammographic images for identification of 

different breast tissue density patterns by developing efficient CAD system designs 

using a representative image database. The various research objectives formulated for 

the present work are described below: 

(i) The collection of a comprehensive and representative database: To develop 

efficient CAD systems, it is necessary that the classifiers used in the classification 

module of the CAD system are trained with an image database that contains 

representative images from each subclass. Thus collection of a comprehensive 

database containing representative images for different breast tissue density patterns 

like (a) fatty breast tissue, (b) fatty-glandular breast tissue and (c) dense-glandular 

breast tissue is considered as the first objective of the present research work.  

(ii) The design and development of an efficient CAD system for two and three class 

breast tissue density classification: The risk of developing breast cancer is strongly 

correlated with the increased breast tissue density, therefore for early detection of 

breast cancer risk; it is clinically significant to determine the density of the breast 

tissue first. Due to overlapping appearances of the breast tissue density patterns, the 

subjective analysis of the mammograms is a confusing and difficult task for the 

radiologists and it is believed that a CAD system that predicts the density pattern of 

the breast tissue acts as a second opinion tool for the radiologists in validating their 

diagnosis. Therefore, design of a CAD system for classification between different 

breast tissue density patterns is taken up as the next objective of the present research 

work. 

1.5. Organization of Report 

(i) Chapter 1 lays the foundation as to why analysis and classification of breast tissue 

density patterns is clinically significant. The chapter begins with the documenting 

facts about breast cancer, recent statistics related to breast cancer among women 

worldwide, risk factors that can lead to the development of breast cancer, correlation 

between breast cancer risk and increased breast tissue density, mammographic 

appearances of different breast density patterns, different classification categories into 

which breast tissue density patterns are divided. The chapter also focuses on the need 
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of CAD systems and how they contribute towards the analysis of mammograms. 

What are the main objectives of the present work and how are they formulated. 

(ii) Chapter 2 presents a brief review of the other related studies carried out for 

classification of breast tissue density patterns using mammographic images. 

(iii) Chapter 3 focuses on the research methodology that is followed for undertaking 

the present research work. This chapter gives a description of the image database used 

in the CAD system, the protocol followed to extract ROIs form each image. Various 

modules of the proposed CAD system are also explained in detail.  

(iv) Chapter 4 gives a detailed description of the proposed CAD system design for 

breast tissue density classification using statistical features. 

 (v) Chapter 5 describes in detail the proposed CAD system for breast tissue density 

classification using Laws’ texture features. 

(vi) Chapter 6 describes the CAD system for breast tissue density classification using 

features derived from transform domain based methods of texture feature extraction. 

(vii) Chapter 7 summarizes the conclusion drawn from the experimentation carried 

out in the present research work on “Texture Analysis of Mammograms for 

Classification of Breast Tissue Density”. The chapter also reports the future scope for 

the extension of this work. 
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Chapter 2 

Literature Review 
 

2.1. Introduction 

Characterization of breast tissue according to different density patterns is 

clinically significant because the high breast tissue density is associated with the risk 

of developing breast cancer. The radiologists after analyzing the mammograms 

predict the breast tissue density but this visual analysis is highly subjective. For 

atypical cases, the differential diagnosis between breast issue density patterns is 

difficult as there is a significant overlap in the appearances on the mammographic 

images and it is considered to be daunting challenge even for experienced 

radiologists. Therefore there is a huge impetus among various researchers to develop 

CAD systems useful for differentiating between breast tissue density patterns.  

The research works reported in related studies have proposed various CAD 

system designs for breast tissue density classification. These proposed CAD systems 

can be categorized as: (a) CAD system designs based on segmented breast tissue v/s 

CAD system designs based on Regions of Interest (ROIs). (b) CAD system designs 

for two class classification (fatty/dense) v/s CAD system designs for three class 

classification (fatty/fatty-glandular/dense-glandular) v/s CAD system designs for four 

class classification based on BI-RADS (B-I: almost entirely fatty/B-II: some fibro-

glandular tissue/B-III: heterogeneously dense breast/B-IV: extremely dense breast). 

(c) CAD system designs using standard benchmark dataset (Mammographic image 

analysis society (MIAS), Digital database of screening mammograms (DDSM), 

Oxford, Nijmegen) v/s CAD system designs using data collected by individual 

research groups. A brief description of the related studies is given as follows. 

2.2. Different CAD System Designs for Two-Class Breast Tissue Density 

Classification 

Various researchers in the past have developed different CAD systems for 

classifying the breast tissue density patterns into two classes namely fatty and dense. 

A brief description of these related studies is given in Table 2.1.  
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  Miller et al. [23] proposed a classification algorithm to classify a set of 40 

mammograms into fatty or dense categories using Laws’ mask features of length 5 to 

characterize the texture. The features were extracted after pre-processing of the 

images to remove the background and pectoral muscle. The extracted features were 

then fed to a Bayesian classifier to categorize the test images achieving the highest 

classification accuracy of 80.0 %. 

 Bovis et al. [24] proposed an approach based on fusion of classifiers to 

classify the mammographic images as fatty or dense. The study was carried out on 

377 mammograms taken from the DDSM database. The images were pre-processed 

for segmenting the breast tissue from the background and segmented breast tissue was 

used for feature extraction. The extracted features were contrast, homogeneity, 

correlation, sum average, sum variance, entropy, sum entropy, difference average, 

difference variance, information measure of correlation-1, information measure of 

correlation-2, inertia, variance and angular second moment derived from Spatial gray 

level dependency (SGLD) matrices; total spectral energy using Fourier power 

spectrum (FPS); total texture energy from Laws’ texture masks; standard deviation, 

mean, skewness and kurtosis using Discrete wavelet transform (DWT); statistical 

features like entropy, standard deviation, mean, skewness and kurtosis; a circularity 

shape feature; fractal dimensions i.e. Hurst coefficient. Principal component analysis 

(PCA) was then used for feature space dimensionality reduction and first 30 Eigen 

values i.e. principal components (PCs) were found to be sufficient to classify the 

Table 2.1: Summary of studies carried out for two-class breast tissue density classification  

Investigators 

Dataset Description  

Database 
No. of 

Images 
ROI Size Classifier OCA (%) 

Miller et al. [23] Collected by investigator 40 SBT Bayesian 80.0 

Bovis et al. [24] DDSM (SBMD) 377 SBT ANN 96.7 

Castella et al. [25] Collected by investigator 352 256 × 256 LDA 90.0 

Oliver et al. [26] 
MIAS (SBMD) 322 

SBT Bayesian 
91.0 

DDSM (SBMD) 831 84.0 

Mustra et al.  [27] 

MIAS (SBMD) 322 

512 × 384 

Naïve 

Bayesian 
91.6 

KBD-FER (Collected by 

investigator) 
144 IB1 97.2 

Sharma et al.  [28] MIAS (SBMD) 322 200 × 200 SMO-SVM 96.4 

Sharma et al. [29] MIAS (SBMD) 212 200 × 200 kNN 97.2 

Note: SBMD: Standard benchmark database. SBT: Segmented breast tissue OCA: Overall 

Classification Accuracy.  



  

10 
 

mammograms. These PCs were then fed to a set of artificial neural network (ANN) 

classifiers and an accuracy of 96.7 % was obtained. 

 Castella et al. [25] proposed a scheme to classify 352 digital mammograms 

taken from Clinique des Grangettes, Geneva as per BI-RADS categories. The B-I and 

B-II BI-RADS categories were combined to form fatty class while the BI-RADS 

categories B-III and B-IV were combined to form dense class. From the 

mammographic images ROIs of size 256 × 256 pixels were selected. The extracted 

features were balance, standard deviation, skewness and kurtosis derived from gray 

level histogram; energy, entropy, cmax, contrast, homogeneity derived using gray 

level co-occurrence matrix (GLCM); short primitive emphasis, long primitive 

emphasis, primitive length uniformity, gray level uniformity derived from primitive 

matrix; a fractal dimension using fractal analysis; coarseness, contrast, complexity, 

strength derived using neighborhood gray tone difference matrix (NGTDM). This 

feature vector was used for classification of mammograms using Bayesian, Naïve 

Bayesian and Linear discriminant analysis (LDA) classifiers. The highest 

classification accuracy of 90.0 % was achieved using LDA classifier for two class 

classification problem. 

 Oliver et al. [26] proposed a CAD system to classify mammograms taken from 

the MIAS database and the DDSM database into fatty or dense categories reduced by 

combining the BI-RADS categories. The mammograms were pre-processed to remove 

pectoral muscle, background and labels. The breast region was segmented into two 

clusters using fuzzy C-means clustering and morphological and texture features were 

extracted from each cluster. Morphological features include relative area, first four 

histogram moments (mean, standard deviation, skewness, kurtosis). Texture features 

like contrast, energy, correlation, entropy, sum average, difference average, sum 

entropy, difference entropy and homogeneity were extracted using GLCM. This 

feature set was then fed to the decision tree, Bayesian and k- nearest neighbor (kNN) 

classifiers. The study reported the highest overall classification accuracy of 91.0 % 

using Bayesian classifier. 

 Mustra et al. [27] proposed a scheme to classify the mammograms taken from 

two different databases: (a) The MIAS database and (b) KBD-FER database into fatty 

or dense categories. The images were pre-processed and segmented and then ROI of 

size 512 × 384 pixels was selected from each image. From the ROIs statistical 

features like contrast, correlation, autocorrelation, cluster shade, cluster prominence, 
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entropy, dissimilarity, energy, homogeneity, variance, sum variance, difference 

variance, sum average, sum entropy, difference entropy, information measure of 

correlation-1and information measure of correlation-2 were obtained from GLCM and 

features like number of pixels with higher intensity than muscle region, mean 

intensity, number of pixels with higher intensity than Otsu’s threshold, standard 

deviation, entropy, kurtosis and skewness were extracted directly from the ROIs. 

Different wrapper based feature selection techniques were then used and the selected 

features were fed to nearest neighbor and naïve bayesian classifiers. The study 

reported highest classification accuracy of 91.6 % and 97.2 % using best first, 

backward selection method with naïve bayesian classifier for the MIAS database and 

IB1 classifier for the KBD-FER database, respectively. 

 Sharma et al. [28] proposed a classification algorithm to classify 

mammograms from the MIAS database into fatty or dense class. From these images, 

the ROIs of size 200 × 200 pixels were extracted from the center of the breast tissue 

behind the nipple as it is considered to be the densest region of the breast tissue.  

From these ROIs features were extracted using various texture models like angular 

second moment, difference variance, correlation, contrast, sum of squares, entropy, 

inverse difference moment, sum average, sum variance, sum entropy, difference 

entropy,  information measure of correlation-1, information measure of correlation-2, 

maximal correlation coefficient from co-occurrence matrix; homogeneity, entropy, 

contrast, mean and energy from SGLDM; mean, variance, skewness, kurtosis from 

first order statistics (FOS); coarseness, contrast, periodicity, roughness from statistical 

feature matrix (SFM); edge-level, spot-level, wave-level, ripple-level, spot-edge, 

wave-edge, ripple-edge, wave-spot, ripple-spot, ripple-wave, edge-edge, spot-spot, 

wave-wave, ripple-ripple from Law’ texture energy measures; Hurst coefficient at 

resolution 1, Hurst coefficient at resolution 2 from fractal analysis; radial sum and 

angular sum from Fourier power spectrum. Out of all the extracted features some 

features like correlation, inverse difference moment, entropy, mean, skewness, ripple-

edge, Hurst coefficient and angular sum were selected using sequential feature 

selection (SFS) algorithm. The study reported an accuracy of 94.4 % using SMO-

SVM classifier. 

 In yet another recent study Sharma et al. [29] presented an automated 

approach to classify 212 mammograms out of 322 mammograms of the MIAS dataset 

into fatty or dense classes has been proposed. From each mammogram, an ROI of size 
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200 × 200 pixels was extracted from the center of the breast. For texture analysis, 

Haralick's GLCM, SFM, GLDS, FOS, Law's texture energy measures (TEM), Fractal 

and FPS features were used. Out of these features, redundant features were removed 

using feature selection technique done by scalar feature ranking. The study reported 

an accuracy of 97.2 % with kNN classifier. 

2.3. Different CAD System Designs for Three-Class Breast Tissue Density 

Classification 

Different CAD system designs have been proposed in the recent past for 

classifying the mammograms into one of the three classes namely fatty, fatty-

glandular and dense-glandular.  A brief description of the related studies is given in 

Table 2.2. 

Blot et al. [30] proposed an approach to classify 265 mammograms taken from 

the MIAS database into fatty, fatty-glandular or dense-glandular classes. The images 

were pre-processed to segment the breast tissue by removing the background and 

pectoral muscle. The segmented breast tissue was then used for extracting the features 

based on grey-level histograms from some selected regions of the breast. From the 

histogram of each region standard deviation and skewness are calculated as texture 

features. The study reported an overall classification of 63.0 % with kNN classifier. 

 Bosch et al. [31] presented an approach to classify the mammographic images 

taken from the MIAS database into fatty, fatty-glandular or dense-glandular classes. 

The images were preprocessed to extract the breast tissue and remove pectoral muscle 

and the background. From the segmented breast tissue, texture features were extracted 

Table 2.2: Summary of studies carried out for three-class breast tissue density classification  

Investigators 

Dataset Description  

Database 
No. of 

Images 
ROI Size Classifier OCA (%) 

Blot et al.  [30] MIAS (SBMD) 265 SBT kNN 63.0 

Bosch et al. [31] MIAS (SBMD) 322 SBT SVM 91.3 

Muhimmah et al.  [32] MIAS(SBMD) 321 SBT DAG-SVM 77.5 

Subashini et al.  [33] MIAS (SBMD) 43 SBT SVM 95.4 

Tzikopoulos et al.  [34] MIAS (SBMD) 322 SBT SVM 84.4 

Li et al.  [35] MIAS (SBMD) 42 SBT KSFD 94.4 

Mustra et al.  [27] MIAS (SBMD) 322 512 × 384 IB1 82.0 

Silva et al.  [36] MIAS (SBMD) 320 300 × 300 SVM 77.1 

Note: SBMD: Standard benchmark database. SBT: Segmented breast tissue OCA: Overall 

Classification Accuracy.  
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using scale-invariant feature transform (SIFT) and classification was carried out using 

support vector machine (SVM) classifier achieving an accuracy of 91.3 %. 

 Muhimmah et al. [32] proposed a CAD system using multiresolution 

histogram based texture features to classify 321 mammograms taken from the MIAS 

database into fatty, fatty-glandular or dense-glandular classes, using directed acyclic 

graph-support vector machine (DAG-SVM) classifier yielding the classification 

accuracy of 77.5 %. 

 Subashini et al. [33] proposed an approach for automatic assessment of breast 

tissue. The algorithm was tested on a subset of 43 mammograms taken from the 

MIAS database. The mammograms were pre-processed to remove artifacts and 

pectoral muscle. The feature extraction was then applied to the segmented breast and 

statistical features like mean, standard deviation, skewness, kurtosis, uniformity, 

smoothness, average histogram, modified standard deviation and modified skew were 

extracted for texture representation. The SVM classifier was used for classifying the 

images into fatty, fatty-glandular or dense-glandular classes obtaining an accuracy of 

95.4 %.  

 Tzikopoulos et al. [34] used a CAD system for automatic segmentation and 

classification of breast tissue into fatty, fatty-glandular or dense-glandular classes. 

The proposed algorithm was tested on the MIAS database. The images were pre-

processed and segmented to remove the noise and pectoral muscle. ROIs were then 

extracted using thresholding technique. From these ROIs statistical and fractal 

features were extracted. The study reported classification accuracy of 84.4 % using 

the SVM classifier. 

 Li et al. [35] proposed an approach to classify 42 normal mammograms taken 

out of 322 mammograms of the MIAS database into fatty, fatty-glandular or dense-

glandular classes. The mammograms were preprocessed to remove the background, 

artifacts and pectoral muscle. From the segmented breast tissue, seven statistical 

features namely mean, smoothness, standard deviation, skewness, average histogram, 

uniformity and kurtosis were extracted. The study reported classification accuracy of 

94.4 % using the Kernel self-optimized fisher discriminant (KSFD) classifier. 

 Mustra et al. [27] proposed an approach to automatically classify the 

mammograms taken from the MIAS database into fatty, fatty-glandular or dense-

glandular classes. The images were pre-processed and segmented to extract an ROI of 

size 512 × 384 pixels from each image. From the ROIs statistical features like 
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contrast, correlation, autocorrelation, cluster shade, cluster prominence, entropy, 

dissimilarity, energy, homogeneity, variance, sum variance, sum average, sum 

entropy, difference entropy, difference variance, information measure of correlation-1 

and information measure of correlation-2 were obtained from GLCM and features like 

number of pixels with higher intensity than muscle region, mean intensity, number of 

pixels with higher intensity than Otsu’s threshold, standard deviation, entropy, 

kurtosis and skewness were extracted directly from the ROIs. Wrapper based feature 

selection method was then applied to this feature set and the selected features were 

then used for the classification task using the nearest neighbor and Naïve Bayesian 

classifier achieving maximum accuracy of 82.0 %. 

 Silva et al. [36] proposed a method to classify the 320 mammograms taken 

from the MIAS database into fatty, fatty-glandular and dense-glandular classes. From 

each mammogram, an ROI of size 300 × 300 pixels was extracted. From these ROIs 

statistical features like mean, standard deviation, smoothness, asymmetry, uniformity, 

kurtosis, average histogram, modified standard deviation and modified symmetry 

were extracted from the histograms and features like maximum probability, 

correlation, uniformity, homogeneity and entropy were extracted using the co-

occurrence matrix. The study reported an accuracy of 77.1 % using the SVM 

classifier. 

2.4. Different CAD System Designs for Four-Class Breast Tissue Density 

Classification  

Various researchers in the past have proposed different CAD system designs 

in their study to classify the breast tissue into four classes as per BI-RADS reporting. 

A brief description of the related studies is given in Table 2.3. 

Karssemeijer [37] proposed an automated approach for detection of breast 

density to classify the mammograms as per BI-RADS standard (B-I: almost entirely 

fatty breast, B-II: some fibroglandular tissue, B-III: heterogeneously dense breast, B-

IV: extremely dense breast).  To test the performance of the proposed approach 615 

digital mammograms obtained from Nijmegen database were used. The images were 

pre-processed to remove background and pectoral muscle. Global thresholding 

technique was used for removal of background tissue and pectoral muscle was 

removed using straight line approximation. The feature set consists of 8 features 

including standard deviation and skewness calculated from histograms. The kNN 
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classifier has been used for the classification task and an accuracy of 65.0 % was 

reported.  

  Wang et al. [38] proposed a CAD system for automatically classifying the 

mammograms as per BI-RADS standard. The approach was tested on 195 

mammograms acquired from the University of Pittsburgh Medical Centre. Thickness 

correction was applied to the mammograms. Features were extracted from the 

histograms obtained from the breast area. The extracted features included low 

intensity value of the image, ratio between low intensity value and high intensity 

value, ratio between initial and peak values to the total range of distance and ratio of 

number of pixels falling between the peak and the highest intensity values to the total 

number of pixels. These features were then fed to the neural network (NN) classifier 

to classify the breast tissue achieving highest accuracy of 71.0 %. 

 Petroudi et al. [39] proposed an approach for automatic classification of breast 

tissue density. The approach was tested on 137 mammograms collected from Oxford 

Database. Each mammogram was segmented into 3 components: breast tissue, 

background and pectoral muscle. After the removal of pectoral muscle and 

background, the segmented breast tissue was filtered using maximum response (MR8) 

filter bank. The filter responses were then clustered to form a texton dictionary. Using 

Table 2.3: Summary of studies carried out for four-class breast tissue density classification  

Investigators 

Dataset Description  

Database 
No. of 

Images 
ROI Size Classifier OCA (%) 

Karssemeijer  [37] Nijmegen (SBMD) 615 SBT kNN 80.0 

Wang et al.  [38] 
Collected by 

investigator 
195 SBT NN 71.0 

Petroudi et al.  [39] Oxford (SBMD) 132 SBT 
Nearest 

neighbor 
76.0 

Oliver et al. [40 ] DDSM (SBMD) 300 SBT kNN+ID3 47.0 

Bosch et al. [31] 
MIAS (SBMD) 322 

SBT SVM 
95.4 

DDSM (SBMD) 500 84.7 

Castella et al.  [25] 
Collected by 

investigator 
352 256 × 256 LDA 83.0 

Oliver et al.  [26] 
MIAS (SBMD) 322 

SBT Bayesian 
86.0 

DDSM (SBMD) 831 77.0 

Mustra et al. [27] 

MIAS (SBMD) 322 

512 × 384 IB1 

79.2 

KBD-FER (collected 

by investigator) 
144 76.4 

Note: SBMD: Standard benchmark database. SBT: Segmented breast tissue OCA: Overall 

Classification Accuracy.  
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this dictionary a texton histogram was formed for each mammogram in the training 

data. The histogram for testing data was compared to all known distributions and BI-

RADS category for each mammogram was classified on the basis of nearest neighbor 

model using    distribution comparison achieving highest accuracy of 76.0 %  

 Oliver et al. [40] proposed a CAD system using a subset of 300 mammograms 

taken from the DDSM database for classification into BI-RADS categories. The 

mammograms were first segmented based on similarity in tissue appearance using 

fuzzy C-means clustering followed by feature extraction using morphological and 

texture features. As morphological features, center of masses, relative area, and mean 

intensity of clusters were calculated while texture features like contrast, energy, 

correlation, entropy, homogeneity, sum average, sum entropy, difference average and 

difference entropy were derived from GLCM. These features were then fed to kNN 

and decision tree classifiers achieving an accuracy of 47.0 % by combining both the 

classifiers. 

  Bosch et al. [31] proposed a CAD system design to classify the mammograms 

taken from the MIAS and DDSM databases as per BI-RADS categories. Each 

mammogram was preprocessed to extract the segmented breast tissue after removing 

the pectoral muscle and the background. From the segmented breast tissue, texture 

features were extracted using SIFT and classification was carried out using SVM and 

kNN classifiers. Highest accuracy of 95.4 % and 84.7 % was achieved for MIAS and 

DDSM database, respectively with SVM classifier. 

 Castella et al. [25] proposed a technique to classify 352 mammograms 

collected at Clinique des Grangettes into one of the four BI-RADS categories. From 

each mammogram four ROIs of size 256 × 256 pixels were selected and were used to 

extract the statistical features like balance, standard deviation, skewness and kurtosis 

derived from gray level histogram; energy, entropy, cmax, contrast, homogeneity 

derived using GLCM; short primitive emphasis, long primitive emphasis, primitive 

length uniformity , gray level uniformity derived from primitive matrix; a fractal 

dimension using fractal analysis; coarseness, contrast, complexity, strength derived 

using NGTDM. This feature vector was then fed to three classifiers namely 

Mahalanobis Bayesian, LDA and Naïve Bayesian and highest classification accuracy 

of 83.0 % was achieved using LDA classifier. 

 Oliver et al. [26] proposed a technique to classify the mammograms taken 

form MIAS and DDSM databases as per BI-RADS categories. The mammograms 



  

17 
 

were pre-processed to remove pectoral muscle, background and labels. The breast 

region was segmented into two clusters using fuzzy C-means clustering and 

morphological and texture features were extracted from each cluster. Morphological 

features include relative area, first four histogram moments (mean, standard deviation, 

skewness, kurtosis). Texture features like contrast, energy, entropy, correlation, sum 

average, sum entropy, difference average, difference entropy and homogeneity were 

extracted using co-occurrence matrices. The resultant feature vector was then fed to 

different classifiers like kNN, decision tree and bayesian. For the MIAS dataset, 

highest classification accuracy of 86.0 % was achieved with Bayesian classifier and 

for DDSM database, highest classification accuracy of 77.0 % was achieved with 

Bayesian classifier. 

 Mustra et al. [27] proposed an approach to automatically classify the 

mammograms taken from the MIAS database and KBD-FER database as per BI-

RADS categories. The images were pre-processed and segmented to extract an ROI of 

size 512 × 384 pixels from each image. From the ROIs statistical features like 

contrast, correlation, autocorrelation, cluster shade, cluster prominence, entropy, 

dissimilarity, energy, homogeneity, variance, sum variance, sum average, sum 

entropy, difference entropy, difference variance, information measure of correlation-1 

and information measure of correlation-2 were obtained from GLCM and features like 

number of pixels with higher intensity than muscle region, mean intensity, number of 

pixels with higher intensity than Otsu’s threshold, standard deviation, entropy, 

kurtosis and skewness were extracted directly from the ROIs. Wrapper based feature 

selection method was then applied to this feature set and the selected features were 

then used for the classification task using the nearest neighbor and Naïve Bayesian 

classifier achieving maximum accuracy of 79.2 % for MIAS database using best first, 

backward selection technique and IB1 classifier. For the KBD-FER database, highest 

accuracy of 76.4 % was achieved with best first forward selection and IB1 classifier.  

2.5. Concluding Remarks 

 From the above tables, it can be observed that most of the researchers have 

used a subset of MIAS and DDSM databases and have worked on the segmented 

breast tissue. It is also observed that only a few studies report CAD systems based on 

ROIs extracted from the breast [25, 27-29, 36] even though it has been shown [41] 

that the ROIs extracted from the centre of the breast result in highest performance as 
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this region of the breast is densest and extraction of ROIs also eliminates an extra step 

of preprocessing included in obtaining the segmented breast tissue for pectoral muscle 

removal. 
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Chapter 3 

Methodology  

3.1. Introduction 

From the extensive literature survey presented in the previous chapter, it can 

be observed that most of the related studies carried out in the past are based on the 

pre-processing of mammograms to extract the segmented breast tissue after removing 

the pectoral muscle and the background while only a few studies report CAD systems 

based on ROIs extracted from the breast even though it has been shown [41] that the 

ROIs extracted from the center of the breast result in highest performance as this 

region of the breast is densest and extraction of ROI also eliminates an extra step of 

pre-processing included in obtaining the segmented breast tissue after removal of 

background and pectoral muscle removal. Thus in the present work, taking into 

consideration the effect of ROI size and location on performance of the algorithms, 

different CAD system designs are proposed for the classification of different breast 

tissue density patterns based on their underlying texture characteristics. 

3.2. Proposed CAD System Designs for Classification of Breast Tissue Density 

Patterns 

 In the present work, various CAD system designs have been proposed to 

classify the different breast tissue density patterns. A general framework of the 

different CAD schemes employed in the present work is shown in Figure 3.1. For the 

design of this CAD system, a dataset of 322 mammographic images was taken. The 

CAD system consists of feature extraction module, feature space dimensionality 

reduction module and the classification module. In the feature extraction module, 

three methods for extracting the texture features are employed. (a) Statistical 

methods: In this statistical features based on FOS, 2
nd

 order statistics i.e. GLCM, 

Higher order statistics i.e. Gray level run length (GLRL) and other feature models like 

GLDS, NGTDM and SFM are computed. (b) Signal processing based method: In this 

method texture features are computed from each ROI using Laws’ mask of different 

resolutions i.e. 3, 5, 7 and 9. (c) Transform domain methods: In this spectral features 

like 2D-DWT features, Gabor wavelet transform (GWT) features and FPS features are 

extracted from each ROI. Each feature set is normalized by using min-max 



  

20 
 

normalization. The normalized feature set is then bifurcated into training and testing 

datasets.  

  In the feature space dimensionality reduction module, redundant and 

correlated texture features are eliminated by applying PCA. In the first step PCA is 

carried out on the training dataset and reduced training dataset of the derived PCs is 

obtained. The reduced testing dataset is then obtained by projecting the data points of 

training dataset in the direction of the PCs of training dataset. 

 In the classification module, performance of four different classifiers namely 

kNN, probabilistic neural network (PNN), SVM and smooth support vector machine 

(SSVM) is evaluated to obtain the class of the unknown testing instances. 

 

Figure 3.1 General framework of the proposed CAD system design. 

Note: FOS: First order statistics, GLCM: Gray level co-occurrence matrix, GLRLM: Gray level run 

length matrix, GLDS: Gray level difference statistics, NGTDM: Neighbourhood gray tone difference 

matrix, SFM: Statistical feature matrix, DWT: Discrete wavelet transform, GWT: Gabor wavelet 

transform, FPS: Fourier power spectrum. 
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3.3. Dataset Description 

 In order to test the proposed CAD system design, a publicly available 

database: The mini-MIAS database has been used. 

 This database consists of the Medio Lateral Oblique (MLO) views of both the 

breasts of 161 women i.e. a total of 322 mammographic images. These images are 

selected from the UK National Breast Screening Programme and were digitized using 

The Joyce-Loebl scanning microdensitometer. The images in the database are 

categorized into three categories as per their density namely fatty (106 images), fatty-

glandular (104 images) and dense-glandular (112 images). Each image in the database 

is of size 1024 × 1024 pixels, with 256 gray scale tones and a horizontal and vertical 

resolution of 96 dpi. The database also includes location of abnormality, the radius of 

the circle enclosing the abnormality, its severity and nature of the tissue [42]. In the 

present work CAD system designs have been proposed for (a) two-class breast tissue 

density classification i.e. (Fatty and Dense class) and (b) three-class breast tissue 

density classification i.e. (Fatty, fatty-glandular and dense-glandular classes). For 

implementing CAD systems for two-class breast tissue density classification, the 

fatty-glandular and dense-glandular classes are combined and considered as dense 

class resulting in 106 mammograms belonging to fatty class and 216 mammograms 

belonging to dense class. The description of the dataset, used for two-class and three-

class CAD system designs is shown in Figure 3.2. 

3.3.1. Selection of Regions of Interest (ROIs)  

 The ROI size is selected carefully considering the fact that it should provide a 

good population of pixels for computing texture features [42]. Different ROI sizes 

that have been selected in the literature for classification are 256 × 256 pixels [25], 

512 × 384 pixels [27], 200 × 200 pixels [28, 29] and 300 × 300 pixels [36]. Other 

researchers have pre-processed the mammograms by removal of the pectoral muscle 

and the background using segmented breast tissue for feature extraction [23, 24, 26, 

30-35, 37-40]. For the present work ROIs of size 200 × 200 pixels are manually 

extracted from each mammogram. The ROIs are selected from the center of the breast 

tissue as it has been asserted by many researchers in their research after having 

conducted various experiments that this area is the densest region of the breast and 

selecting ROI from this part of the breast results in highest performance of the 
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proposed algorithms [28, 29, 41]. The selection and extraction of ROI from the breast 

tissue is shown in Figure 3.3.  

 

Figure 3.2 Dataset description (a) Two-class breast tissue density classification (b) Three-class 

breast tissue density classification. 

 

 

Figure 3.3 Sample mammographic image with ROI marked. 
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The sample images of ROIs extracted from the mammographic images are shown in 

Figure 3.4. 

 

Figure 3.4 Sample ROI images. (a) Fatty tissue ‘mdb012’, (b) Fatty-glandular tissue ‘mdb014’, (c) 

Dense-glandular tissue ‘mdb108’. 

3.4. Feature Extraction Module 

 The feature extraction is the process used to transform the visually extractable 

and non-extractable features into mathematical descriptors. These descriptors are 

either shape-based (morphological features) or intensity distribution based (textural 

features). There are a variety of methods to extract the textural features including 

statistical, signal processing based and transform domain methods.  

3.4.1. Statistical Methods  

 The statistical methods are used to extract the texture features from an image 

based on the gray level intensities of the pixels of that image. Based on the number of 

pixels used to compute the texture features, statistical methods can be classified into 

first-order statistics, second-order statistics and higher-order statistics. 

3.4.1.1. First Order Statistics (FOS) 

 The first order statistics are derived from the gray level intensity histograms of 

the image. Six features namely average gray level, standard deviation, smoothness, 

kurtosis and entropy are computed for each ROI [43]. 

3.4.1.2. Second Order Statistics-GLCM Features 

 To derive the statistical texture features from GLCM, spatial relationship 

between two pixels is considered. The GLCM tabulates the number of times the 

different combinations of pixel pairs of a specific gray level occur in an image for 

various directions   = 0°, 45°, 90°, 135° and different distances d=1, 2, 3 etc. Total 13 

GLCM features namely angular second moment (ASM), contrast, correlation, inverse 

difference moment, variance, sum average, sum variance, difference variance, sum 
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entropy, entropy, difference entropy, information measures of correlation-1 and 

information measures of correlation-2 are computed from each ROI [44-46]. 

3.4.1.3. Higher Order Statistics-GLRLM Features 

 To derive the statistical texture features from the GLRLM, spatial relationship 

between more than two pixels is considered. In a given direction, GLRLM measures 

the number of times there are runs of consecutive pixels with the same value. Total of 

11 GLRLM features namely short run emphasis, long run emphasis, low gray level 

run emphasis, high gray level run emphasis, short run low gray level emphasis, short 

run high gray level emphasis, long run low gray level emphasis, long run high gray 

level emphasis, gray level non uniformity, run length non-uniformity and run 

percentage are computed from each ROI [47, 48]. 

3.4.1.4. Other Statistical Features 

(a) Edge Features (Absolute Gradient): The edges in an image contain more 

information about the texture than other parts of the image. The gradient of an image 

can be used to measure the spatial variation of gray levels across an image. At an 

edge, there is an abrupt change in gray level of the image. If there is an abrupt change 

in gray level, at some point then the point is said to have a high gradient and if the 

variation is smooth the point is at low gradient. Absolute gradient is used to judge 

whether the gray level variation in an image is smooth or abrupt. The texture features 

computed are absolute gradient mean and absolute gradient variance [49]. 

(b) Neighborhood Gray Tone Difference Matrix (NGTDM) Features: NGTDM 

reflects a grayscale difference between pixels with a certain gray scale and the 

neighboring pixels. Features extracted from NGTDM are: coarseness, contrast, 

business, complexity and strength [25, 50]. 

(c) Statistical Feature Matrix (SFM): SFM is used to measure the statistical properties 

of pixels at several distances within an image. The features computed from SFM are 

coarseness, contrast, periodicity and roughness. 

(d) Gray Level Difference Statistics (GLDS): These features are based on the co-

occurrence of a pixel pair having a given absolute difference in gray-levels separated 

by a particular distance. The extracted features are: homogeneity, contrast, energy, 

entropy and mean [51, 52]. 
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3.4.2. Signal Processing based Methods  

 Laws’ Mask Texture Analysis: In this method small convolution masks are 

used as filters and ROIs are convolved with these special filters so that the underlying 

texture characteristics are enhanced. These filters determine the properties of the 

texture by performing averaging, edge detection, spot detection, wave detection and 

ripple detection [53-58]. Laws’ masks of lengths 3, 5, 7 and 9 are used to compute 

five statistical parameters i.e. mean, standard deviation, skewness, kurtosis and 

entropy from each ROI. 

3.4.3. Transform Domain based Methods 

Feature extraction can also be done in the transform domain over various 

scales by using different multiresolution schemes like DWT, wavelet packet 

transform (WPT) and GWT. It is logical to compute texture features in the transform 

domain as human visual system processes images in a multiscale way and scale is 

considered to be an important aspect for analysis of texture [59-61]. 

3.4.3.1. Two Dimensional Discrete Wavelet Transform 

 A two-dimensional DWT when applied to images can be seen as two one-

dimensional transform functions applied to rows and columns of the image separately 

[61]. When this operation is applied to an ROI image and decomposition is done upto 

second level, one approximate subimage    and six orientation selective detailed 

subimages   
   
         are generated. This wavelet representation of an image is 

shown in Figure 3.5. From each subimage, normalized energy is computed as a 

texture measure. 

 

Figure 3.5 Wavelet representation of image up to 2
nd

 level of decomposition. 

 The choice of wavelet filter used for feature extraction is based on some 

properties which are significant for texture description [62, 63]. The properties that 
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are considered for selecting an appropriate wavelet filter include: support width, 

orthogonality or biorthogonality, shift invariance and symmetry. Wavelet filters that 

provide compact support are desirable due to their ease of implementation. 

Orthogonality is required for energy conservation at each level of decomposition. 

Symmetry is desired to avoid any dephasing while processing images. Based on these 

properties wavelet filters like Haar (db1), Daubechies (db4 and db6), Coiflets (coif1 

and coif2), Symlets (sym3 and sym 5) and Biorthogonal (bior3.1, bior3.3 and bior4.4) 

are considered for analysis. The properties of these filters are summarized in Table 

3.1. 

Table 3.1: Properties of wavelet filters used 

Wavelet 

Filter 
Biorthogonal Orthogonal Symmetry Asymmetry 

Near 

Symmetry 

Compact 

Support 

Db No Yes No Yes No Yes 

Haar No Yes Yes No No Yes 

Bior Yes No Yes No No Yes 

Coif No Yes No No Yes Yes 

Sym No Yes No No Yes Yes 

3.4.3.2.Two Dimensional Gabor Wavelet Transform 

 The application of 2D-GWT results in a set of frequency and orientation 

selective filters that capture energy at a specific frequency and orientation. The 2D-

GWT, considering three scales (0,1 and 2) and seven angles (22.5°, 45°, 67.5°, 90°, 

112.5°, 135° and 157.5°) result in a group of 21 wavelets (7 × 3). When this group of 

wavelets is convolved with the ROI image, a set of 21 feature images are obtained. 

Each of these filtered images represents image information at a certain scale and 

orientation [63, 64]. From these 21 feature images, mean and standard deviation are 

computed as texture features forming a texture feature vector (TFV) of length 42. The 

real part of the 21 wavelets resulting from a 13 × 13 convolution mask with 3 scales 

and 7 orientations are shown in Figure 3.6. 

 

Figure 3.6 Real part of Gabor filter family of 21 wavelets. 
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3.4.3.3. Fourier Power Spectrum Features 

 Two spectral features namely radial sum and angular sum are computed from 

each ROI using discrete Fourier transform.  

3.5. Feature Space Dimensionality Reduction Module 

 The texture feature vector formed after computing the texture features in the 

feature extraction module may contain some redundant and correlated features which 

when used in the classification task can degrade the performance of the proposed 

CAD system. These redundant features give no extra information that proves to be 

helpful in discriminating the textural changes exhibited by different density patterns. 

Hence, to remove these redundant features and obtain the optimal attributes for the 

classification task, PCA is employed [65-67]. Steps used in the PCA algorithm are: 

(1) Normalize each feature in dataset to zero mean and unity variance. 

(2) Obtain co-variance matrix of the training dataset. 

(3) Obtain Eigen values and Eigen vectors from the co-variance matrix. Eigen 

vectors give the directions of the PCs. 

(4) Project the data points in testing dataset in the direction of the PCs of training 

dataset. 

  The obtained PCs are uncorrelated to each other and the 1
st
 PC has the largest 

possible variance out of all the successive PCs. The optimal number of PCs is 

determined by performing repeated experiments by going through first few PCs i.e. by 

first considering the first two PCs, then first three PCs and so on, and evaluating the 

performance of the classifier for each experiment. 

3.6. Classification Module 

 Classification is a machine learning technique used to predict the class 

membership of unknown data instances based on the training set of data containing 

instances whose class membership is known. In this module different classifiers like 

kNN, PNN, SVM and SSVM are employed to classify the unknown testing instances 

of mammographic images different classes based on the training instances. To avoid 

any bias caused by unbalanced feature values the extracted features are normalized in 

the range [0, 1] by using min-max normalization procedure. 
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3.6.1. k-Nearest Neighbour (kNN) Classifier 

The kNN classifier is based on the idea of estimating the class of an unknown 

instance from its neighbors. It tries to cluster the instances of feature vector into 

disjoint classes with an assumption that instances of feature vector lying close to each 

other in feature space represent instances belonging to the same class. The class of an 

unknown instance in testing dataset is selected to be the class of majority of instances 

among its k-nearest neighbors in the training dataset. The advantage of kNN is its 

ability to deal with multiple class problems and is robust to noisy data as it averages 

the k- nearest neighbors [67-70]. Euclidean distance is used as a distance metric. The 

classification performance of kNN classifier depends on the value of k. In the present 

work, the optimal value of k and number of PCs to be retained is determined by 

performing repeated experiments for the values of k               and number of 

PCs                . If same accuracy is obtained for more than one value of k, 

smallest value of k is used to obtain the result. The example depicting the 

classification of an unknown instance is shown in Figure 3.7. In the example the test 

sample (×) should be either classified to the class of cross (+) or to the class of dash  

(-). When k = 3, the algorithm looks for three nearest neighbors. In the considered 

example, the test sample is assigned to the class of cross (+) because there are two 

cross and only one dash inside the circle. 

 

Figure 3.7 Example of kNN classification for k = 3. 

Note: ×: unknown instance, +: Instance of class 1, –: Instance of class 2. 
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3.6.2. Probabilistic Neural Network (PNN) Classifier 

The PNN is a supervised feed-forward neural network used for estimating the 

probability of class membership [67, 71-73]. The architecture of PNN consists of four 

layers: input layer, pattern layer, summation layer and output layer. Primitive values 

are passed to the ‘n’ neurons in the input unit. Values from the input unit are passed to 

the hidden units in the pattern layer where responses for each unit are calculated. 

There are ‘k’ number of neurons in the pattern layer, one for each class. In the pattern 

layer a probability density function for each class is defined based on the training 

dataset and optimized kernel width parameter. Values of each hidden unit are summed 

in the summation layer to get response in each category. Maximum response is taken 

from all categories in the decision layer to get the class of the unknown instance. The 

optimal choice of spread parameter (Sp) i.e. the kernel width parameter is critical for 

the classification using PNN. In the present work the optimal values used for Sp and 

optimal number of PCs to design a PNN classifier are determined by performing 

repeated experiments for values of Sp                and number of PCs  

             . 

3.6.3. Support Vector Machine (SVM) Classifier 

The SVM classifier belongs to a class of supervised machine learning 

algorithms. It is based on the concept of decision planes that define the decision 

boundary. In SVM, kernel functions are used to map the non-linear training data from 

input space to a high dimensionality feature space. Some common kernels are 

polynomial, Gaussian radial basis function and sigmoid. In the present work SVM 

classifier is implemented using LibSVM library [74] and the performance of the 

Gaussian Radial Basis Function kernel is investigated. The critical step for obtaining a 

good generalization performance is the correct choice of regularization parameter C 

and kernel parameter  . The regularization parameter C tries to maximize the margin 

while keeping the training error low. In the present work, ten-fold cross validation is 

carried out on the training data, for each combination of (C,  ) such that,    

              and                  . This grid search procedure in parameter 

space gives the optimum values of C and   for which training accuracy is maximum 

[66, 67, 75-77]. 
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3.6.4. Smooth Support Vector Machine (SSVM) Classifier 

 To solve important mathematical problems related to programming, 

smoothing methods are extensively used. SSVM works on the idea of smooth 

unconstrained optimization reformulation based on the traditional quadratic program 

which is associated with SVM [78, 79]. For implementing SSVM classifier, the 

SSVM toolbox developed by Laboratory of Data Science and Machine Intelligence, 

Taiwan was used [80]. Similar to SVM implementation in case of SSVM also, ten-

fold cross validation is carried out on training data for each combination of (    , 

                 and                   . This grid search procedure in 

parameter space gives the optimum values of C and   for which training accuracy is 

maximum. 

3.7. Concluding Remarks 

 After carrying out extensive literature survey, it was observed that various 

CAD system designs have proven useful to the radiologists in routine medical practice 

as second opinion tools for breast tissue density classification of mammograms in 

cases where a clear discrimination cannot be made subjectively between the 

overlapping density patterns. In light of this fact, different CAD system designs 

employing the texture analysis techniques of feature extraction, feature space 

dimensionality reduction and feature classification have been proposed in the present 

work for two-class and three-class breast tissue density classification of 

mammograms. Feature extraction is done using statistical, signal processing based 

and transforms domain based methods. To reduce the redundant features, PCA has 

been employed and finally classification performance of each TFV is evaluated using 

different classifiers. 

A detailed description of each CAD system design is given in the forthcoming 

chapters. 
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Chapter 4 

CAD System Design for Breast Tissue Density Classification Using 

Statistical Features  

4.1. Introduction 

The differential diagnosis between atypical breast tissue density patterns from 

mammographic images is a daunting challenge even for the experienced radiologists 

due to overlap of the appearances of the density patterns. Therefore a CAD system for 

the classification of the different breast tissue density patterns from mammographic 

images is highly desirable. In light of this fact, a CAD system design is proposed in 

this chapter to evaluate the performance of different classifiers for two-class and 

three-class breast tissue density classification. 

4.2. Proposed CAD System Design 

The block diagram of the proposed CAD system design for two-class and 

three-class breast tissue density classification using statistical features is shown in 

Figure 4.1. The approach is implemented on the 322 mammograms of the MIAS 

database. From each mammographic image, ROIs of size 200 × 200 are extracted and 

from each ROI image, different statistical features are calculated like FOS, GLCM 

features, GLRL features, features derived from GLDS, NGTDM features, SFM 

features and Edge features.  

To the resultant texture feature vector (TFV), PCA is applied to calculate the 

optimal number of PCs required for the classification task forming a reduced texture 

feature vector (RTFV). The classification problem is divided into two parts. In the 

first part, the mammograms are classified into two categories namely fatty and dense. 

In the second part of the classification problem, the mammograms are classified into 

three categories namely fatty, fatty-glandular and dense-glandular. 

4.3. Experimental Workflow and Results 

For evaluating the performance of the proposed CAD system design, rigorous 

experimentation has been carried out for the characterization of the breast tissue based 

on its density. A brief description of experiments is given in Table 4.1 and Table 4.2, 

respectively for two-class and three-class breast tissue density classification. 
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Table 4.1: Description of experiments carried out for two-class breast tissue density classification 

Experiment 1: To obtain the classification performance of statistical features for two-class breast 

tissue density classification using kNN, PNN, SVM and SSVM classifiers. 

Experiment 2:  To obtain the classification performance of statistical features for two-class breast 

tissue density classification using PCA-kNN, PCA-PNN, PCA-SVM and PCA-

SSVM classifiers. 

 

Table 4.2: Description of experiments carried out for three-class breast tissue density classification 

Experiment 1: To obtain the classification performance of statistical features for three-class breast 

tissue density classification using kNN, PNN, SVM and SSVM classifiers. 

Experiment 2:  To obtain the classification performance of statistical features for three-class breast 

tissue density classification using PCA-kNN, PCA-PNN, PCA-SVM and PCA-

SSVM classifiers. 

 

 

Figure 4.1 Proposed CAD system design using statistical features for two-class and three-class breast 

tissue density classification. 
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4.3.1. Experiments carried out for two-class breast tissue density classification 

4.3.1.1.  Experiment 1: To obtain the classification performance of statistical features 

for two-class breast tissue density classification using kNN, PNN, SVM and SSVM 

classifiers. 

In this experiment, classification performance of TFV containing different 

statistical features is evaluated for two-class breast tissue density classification using 

different classifiers. The results of the experiment are shown in Table 4.3. It can be 

observed from the table that for statistical features, the overall classification accuracy 

of 92.5 %, 91.3 %, 90.6 % and 92.5 % is achieved using kNN, PNN, SVM and SSVM 

classifiers, respectively. It can also be observed that the highest in individual class 

accuracy for fatty class is 83.0 % with SSVM classifier and highest individual class 

accuracy for dense class is 100.0 %, using PNN classifier. Out of total 161 testing 

instances, 12 instances (12/161) are misclassified in case of kNN, 14 instances 

(14/161) are misclassified in case of PNN, 16 instances (16/161) are misclassified in 

case of SVM and 12 instances (12/161) are misclassified in case of SSVM classifier. 

4.3.1.2. Experiment 2: To obtain the classification performance of statistical features 

for two-class breast tissue density classification using PCA-kNN, PCA-PNN, PCA-

SVM and PCA-SSVM classifiers. 

In this experiment, classification performance of TFV containing different 

statistical features is evaluated for two-class breast tissue density classification using 

different classifiers. The results are shown in Table 4.4. It can be observed from the 

table that the overall classification values of 91.9 %, 91.3 %, 93.7 % and 94.4 % have 

been achieved using the PCA-kNN, PCA-PNN, PCA-SVM and PCA-SSVM 

classifiers, respectively.  

Table 4.3: Classification performance of statistical features using kNN, PNN, SVM and SSVM 

classifiers for two-class breast tissue density classification 

Classifier CM OCA (%) ICAF (%) ICAD (%) 

  F D    

kNN 
F 43 10 

92.5 81.1 98.1 
D 2 106 

PNN 
F 39 14 

91.3 73.5 100.0 
D 0 108 

SVM 
F 41 12 

90.6 77.3 96.2 
D 4 104 

SSVM 
F 44  9 

92.5 83.0 97.2 
D 3 105 

Note: CM: Confusion matrix, F: Fatty class, D: Dense class, OCA: Overall classification accuracy; 

ICAF: Individual class accuracy for fatty class. ICAD: Individual class accuracy for dense class. 
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It can also be observed that the highest individual class accuracy for fatty class 

is 88.6 % using PCA-SSVM classifier and that for dense class is 100.0 % using PCA-

PNN and PCA-SVM classifiers. Out of total 161 testing instances, 13 instances 

(13/161) are misclassified in case of PCA-kNN, 14 instances (14/161) are 

misclassified in case of PCA-PNN, 10 instances (10/161) are misclassified in case of 

PCA-SVM and 9 instances (9/161) are misclassified in case of PCA-SSVM classifier. 

4.3.2. Experiments carried out for three-class breast tissue density classification 

4.3.2.1. Experiment 1: To obtain the classification performance of statistical features 

for three-class breast tissue density classification using kNN, PNN, SVM and SSVM 

classifiers. 

In this experiment, the classification performance of TFV containing different 

statistical features is evaluated for three-class breast tissue density classification using 

different classifiers. The results are shown in Table 4.5. It can be observed from the 

table that the overall classification accuracy of 86.9 %, 85.0 %, 83.8 % and 82.6 % is 

achieved using kNN, PNN, SVM and SSVM classifiers, respectively. The highest 

individual class accuracy for fatty class is 94.3 % using SVM classifier, for fatty-

glandular class the highest individual class accuracy achieved is 88.4 % using SSVM 

classifier and for the dense-glandular class, highest individual class accuracy achieved 

is 96.4 % using kNN classifier. Out of total 161 testing instances, 21 instances 

(21/161) are misclassified in case of kNN, 24 instances (24/161) are misclassified in 

case of PNN, 26 instances (26/161) are misclassified in case of SVM and 28 instances 

(28/161) are misclassified in case of SSVM classifier. 

Table 4.4: Classification performance of statistical features using PCA-kNN, PCA-PNN, PCA-

SVM and PCA-SSVM classifiers for two-class breast tissue density classification 

Classifier l CM OCA (%) ICAF (%) ICAD (%) 

   F D    

kNN 6 
F 43 10 

91.9 81.1 97.2 
D 3 105 

PNN 4 
F 39 14 

91.3 73.5 100.0 
D 0 108 

SVM 7 
F 43 10 

93.7 81.1 100.0 
D 0 108 

SSVM 10 
F 47 6 

94.4 88.6 97.2 
D 3 105 

Note: l: No. of PCs, CM: Confusion matrix, F: Fatty class, D: Dense class, OCA: Overall 

classification accuracy; ICAF: Individual class accuracy for fatty class. ICAD: Individual class 

accuracy for dense class. 



  

35 
 

4.3.2.2. Experiment 2: To obtain the classification performance of statistical features 

for three-class breast tissue density classification using PCA-kNN, PCA-PNN, PCA-

SVM and PCA-SSVM classifiers. 

In this experiment, the classification performance of TFV containing different 

statistical features is evaluated for three-class breast tissue density classification using 

different classifiers. The results are shown in Table 4.6. 

Table 4.5: Classification performance of statistical features using kNN, PNN, SVM and SSVM 

classifiers for three-class breast tissue density classification 

Classifier CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

  F FG DG     

kNN 

F 46 2 5 

86.9 86.7 76.9 96.4 FG 2 40 10 

DG 0 2 54 

PNN 

F 41 8 4 

85.0 77.3 82.6 94.6 FG 1 43 8 

DG 0 3 53 

SVM 

F 50 3 0 

83.8 94.3 67.3 89.2 FG 12 35 5 

DG 1 5 50 

SSVM 

F 39 11 3 

82.6 73.5 88.4 85.7 FG 3 46 3 

DG 1 7 48 

Note: CM: Confusion matrix, F: Fatty class, FG: Fatty–glandular class, DG: Dense-glandular class, 

OCA: Overall classification accuracy; ICAF: Individual class accuracy for fatty class, ICAFG: 

Individual class accuracy for fatty-glandular class, ICADG: Individual class accuracy for dense-

glandular class. 

Table 4.6:  Classification performance of statistical features using PCA-kNN, PCA-PNN, PCA-

SVM and PCA-SSVM classifiers for three-class breast tissue density classification 

Classifier l CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

   F FG DG     

kNN 9 

F 44 4 5 

85.0 83.0 73.0 98.2 FG 3 38 11 

DG 1 0 55 

PNN 6 

F 43 6 4 

84.4 81.1 84.6 87.5 FG 1 44 7 

DG 0 7 49 

SVM 4 

F 47 4 2 

86.3 88.6 76.9 92.8 FG 6 40 6 

DG 0 4 52 

SSVM 5 

F 43 9 1 

85.0 81.1 84.6 89.2 FG 4 44 4 

DG 0 6 50 

Note: l: Optimal number of PCs, CM: Confusion matrix, F: Fatty class, FG: Fatty–glandular class, 

DG: Dense-glandular class, OCA: Overall classification accuracy; ICAF: Individual class accuracy 

for fatty class, ICAFG: Individual class accuracy for fatty-glandular class, ICADG: Individual class 

accuracy for dense-glandular class. 
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 It can be observed from the table that the overall classification of 85.0 %, 

84.4 %, 86.3 % and 85.0 % is achieved using PCA-kNN, PCA-PNN, PCA-SVM and 

PCA-SSVM classifiers, respectively. The highest individual class accuracy for fatty 

class is 88.6 % using PCA-SVM classifier, for fatty-glandular class the highest 

individual class accuracy achieved is 84.6 % using PCA-PNN and PCA-SSVM 

classifiers and for the dense-glandular class, highest individual class accuracy 

achieved is 98.2 % using PCA-kNN classifier. Out of total 161 testing instances, 24 

instances (24/161) are misclassified in case of PCA-kNN, 25 instances (25/161) are 

misclassified in case of PCA-PNN, 22 instances (22/161) are misclassified in case of 

PCA-SVM and 24 instances (24/161) are misclassified in case of PCA-SSVM 

classifier. 

4.4. Concluding Remarks 

 From the results obtained from the above experiments, it can be observed that 

for two-class breast tissue density, PCA-SSVM classifier achieves highest 

classification accuracy of 94.4 % using first 10 PCs thus, it can be concluded that for 

two-class breast tissue density classification, first 10 PCs obtained by applying PCA 

to the TFV derived using statistical features are sufficient to account for the textural 

changes exhibited by the fatty and dense breast tissue. 

 For three-class breast tissue density classification, it can be observed from the 

above experiments that highest classification accuracy of 86.9 % is achieved using the 

kNN classifier, however it should also be noted that PCA-SVM classifier achieves the 

highest classification accuracy of 86.3 % by using only the first 4 PCs obtained by 

applying PCA to the TFV of statistical features. Thus CAD system design based on 

PCA-SVM classifier can be considered to be the best choice for three-class breast 

tissue density classification.  
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Chapter 5 

CAD System Design for Breast Tissue Density Classification Using 

Laws’ Texture Features  

5.1. Introduction 

Characterization of tissue density is clinically significant as high density is 

associated with the risk of developing breast cancer and also masks lesions. It is 

believed that the changes in the tissue density can be captured by computing the 

texture features. Accordingly, the objective of the present chapter is to explore Laws’ 

mask analysis for description of variations in breast tissue density using 

mammographic images for two-class and three-class breast tissue density 

classification. 

5.2. Proposed CAD System Design 

The block diagram of the proposed CAD system design for two-class and 

three-class breast tissue density using Laws’ texture features is shown in Figure 5.1.  

 

Figure 5.1 Proposed CAD system design using Laws’ texture features for two-class and three-class 

breast tissue density classification.  

For the design of the proposed CAD system, Laws’ texture features have been 

computed using Laws’ masks of different resolutions i.e., Laws’ mask of length 3, 5, 

7 and 9. The feature space dimensionality reduction has been carried out by using 
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PCA. For the classification task, kNN, PNN and SVM classifiers have been used for 

two-class and three-class breast tissue density classification. The description of the 

TFVs derived from Laws’ masks of different resolutions is given in Table 5.1. 

Table 5.1: Description of texture feature vectors 

TFV1:  TFV derived from Laws’ mask of length 3 (5 statistical features computed from 6 TR 

images) 

TFV2: TFV derived from Laws’ mask of length 5 (5 statistical features computed from 15 TR 

images) 

TFV3:  TFV derived from Laws’ mask of length 7 (5 statistical features computed from 6 TR 

images) 

TFV4:  TFV derived from Laws’ mask of length 9 (5 statistical features computed from 15 TR 

images) 

RTFV1:  Reduced TFV consisting of optimal PCs obtained by applying PCA to TFV1 

RTFV2:  Reduced TFV consisting of optimal PCs obtained by applying PCA to TFV2 

RTFV3:  Reduced TFV consisting of optimal PCs obtained by applying PCA to TFV3 

RTFV4:  Reduced TFV consisting of optimal PCs obtained by applying PCA to TFV4 

Note: TFV: Texture feature vector, TR: Rotation invariant images, RTFV: Reduced texture feature 

vector. 

5.3. Experimental Workflow and Results 

For evaluating the performance of the proposed CAD system design, various 

experiments have been carried out to characterize the breast tissue for two-class and 

three-class breast tissue density classification. A brief description of the conducted 

experiments for two-class and three-class breast tissue density classification is 

tabulated in Table 5.2 and Table 5.3, respectively. 

 

 

 

 

 

 

 Table 5.2: Description of experiments carried out for two-class breast tissue density classification 

Experiment 1 To obtain classification performance of different TFVs (derived from Laws’ masks 

of length 3, 5, 7 and 9) using kNN classifier 

Experiment 2 To obtain classification performance of different TFVs (derived from Laws’ masks 

of length 3, 5, 7 and 9) using PNN classifier 

Experiment 3 To obtain classification performance of different TFVs (derived from Laws’ masks 

of length 3, 5, 7 and 9) using SVM classifier 

Experiment 4 To obtain classification performance of different RTFVs (derived from Laws’ 

masks of length 3, 5, 7 and 9) using PCA-kNN classifier 

Experiment 5 To obtain classification performance of different RTFVs (derived from Laws’ 

masks of length 3, 5, 7 and 9) using PCA-PNN classifier 

Experiment 6 To obtain classification performance of different RTFVs (derived from Laws’ 

masks of length 3, 5, 7 and 9) using PCA-SVM classifier 

  Note: TFV: Texture feature vector. RTFV: Reduced texture feature vector. 
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5.3.1. Experiments carried out for two-class breast tissue density classification 

5.3.1.1. Experiment 1: To obtain classification performance of different TFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using kNN classifier.  

 In this experiment the classification performance of the feature set containing 

instances of TFV1, TFV2, TFV3 and TFV4 is evaluated using kNN classifier. The 

results are shown in Table 5.4.  

 From the table it can be observed that a classification accuracy of 93.1 %, 

92.5 %, 95.0 % and 90.6 % is achieved using TFV1, TFV2, TFV3 and TFV4, 

respectively. The individual class accuracy of fatty class is 81.1 %, 83.0 %, 86.7 % 

and 79.2 % for TFV1, TFV2, TFV3 and TFV4, respectively. For dense class the 

individual class accuracy is 99.0 %, 97.2 %, 99.0 % and 96.2 % for TFV1, TFV2, 

TFV3 and TFV4, respectively. Out of 161 instances of testing data, 11 instances 

(11/161) are misclassified in case of TFV1, 12 instances (12/161) are misclassified in 

Table 5.3: Description of experiments carried for three-class breast tissue density classification 

Experiment 1 To obtain classification performance of different TFVs (derived from Laws’ masks 

of length 3, 5, 7 and 9) using kNN classifier 

Experiment 2 To obtain classification performance of different TFVs (derived from Laws’ masks 

of length 3, 5, 7 and 9) using PNN classifier 

Experiment 3 To obtain classification performance of different TFVs (derived from Laws’ masks 

of length 3, 5, 7 and 9) using SVM classifier 

Experiment 4 To obtain classification performance of different RTFVs (derived from Laws’ 

masks of length 3, 5, 7 and 9) using PCA-kNN classifier 

Experiment 5 To obtain classification performance of different RTFVs (derived from Laws’ 

masks of length 3, 5, 7 and 9) using PCA-PNN classifier 

Experiment 6 To obtain classification performance of different RTFVs (derived from Laws’ 

masks of length 3, 5, 7 and 9) using PCA-SVM classifier 

  Note: TFV: Texture feature vector. RTFV: Reduced texture feature vector. 

Table 5.4: Classification performance of different TFVs using kNN classifier for two-class breast 

tissue density classification 

TFV(l) CM OCA (%) ICAF (%) ICAD (%) 

  F D    

TFV1(30) 
F 43 10 

93.1 81.1 99.0 
D 1 107 

TFV2(75) 
F 44 9 

92.5 83.0 97.2 
D 3 105 

TFV3(30) 
F 46 7 

95.0 86.7 99.0 
D 1 107 

TFV4(75) 
F 42 11 

90.6 79.2 96.2 
D 4 104 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion Matrix, F: Fatty class, D: 

Dense class, OCA: Overall classification accuracy; ICAF: Individual class accuracy for fatty class. 

ICAD: Individual class accuracy for dense class. 
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case of TFV2, 8 instances (8/161) are misclassified in case of TFV3 and 15 instances 

(15/161) are misclassified in case of TFV4. 

5.3.1.2. Experiment 2: To obtain classification performance of different TFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using PNN classifier. 

 In this experiment the classification performance of the feature set containing 

instances of TFV1, TFV2, TFV3 and TFV4 is evaluated using PNN classifier. The 

results are shown in Table 5.5.  

 From the table it can be observed that a classification accuracy of 91.3 %, 

91.9 %, 91.9 % and 88.8 % is achieved using TFV1, TFV2, TFV3 and TFV4, 

respectively. The individual class accuracy for fatty class is 79.2 %, 86.7 %, 81.1 % 

and 81.1 % for TFV1, TFV2, TFV3 and TFV4, respectively. For dense class the 

individual class accuracy is 97.2 %, 94.4 %, 97.2 % and 92.5 % for TFV1, TFV2, 

TFV3 and TFV4, respectively. Out of 161 instances of testing data, 14 instances 

(14/161) are misclassified in case of TFV1, 13 instances (13/161) are misclassified in 

case of TFV2, 13 instances (13/161) are misclassified in case of TFV3 and 18 

instances (18/161) are misclassified in case of TFV4. 

5.3.1.3. Experiment 3: To obtain classification performance of different TFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using SVM classifier 

 In this experiment the classification performance of the feature set containing 

instances of TFV1, TFV2, TFV3 and TFV4 is evaluated using the SVM classifier. 

The results are shown in Table 5.6. From the table it can be observed that a 

classification accuracy of 91.3 %, 93.1 %, 91.9 % and 92.5 %, is achieved using 

Table 5.5: Classification performance different TFVs using PNN classifier for two-class breast 

tissue density classification 

TFV(l) CM OCA (%) ICAF (%) ICAD (%) 

  F D    

TFV1(30) 
F 42 11 

91.3 79.2 97.2 
D 3 105 

TFV2(75) 
F 46 7 

91.9 86.7 94.4 
D 6 102 

TFV3(30) 
F 43 10 

91.9 81.1 97.2 
D 3 105 

TFV4(75) 
F 43 10 

88.8 81.1 92.5 
D 8 100 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion Matrix, F: Fatty class, D: 

Dense class, OCA: Overall classification accuracy; ICAF: Individual class accuracy for fatty class. 

ICAD: Individual class accuracy for dense class. 
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TFV1, TFV2, TFV3 and TFV4, respectively. The individual class accuracy for fatty 

class is 81.1 %, 81.1 %, 81.1 % and 83.0 % for TFV1, TFV2, TFV3 and TFV4, 

respectively. For dense class the individual class accuracy is 96.2 %, 99.0 %, 97.2 % 

and 97.2 % for TFV1, TFV2, TFV3 and TFV4, respectively. Out of 161 instances of 

testing data, 14 instances (14/161) are misclassified in case of TFV1, 11 instances 

(11/161) are misclassified in case of TFV2, 13 instances (13/161) are misclassified in 

case of TFV3 and 12 instances (12/161) are misclassified in case of TFV4. 

5.3.1.4. Experiment 4: To obtain classification performance of different RTFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using PCA-kNN classifier.  

 In this experiment the classification performance of the feature set containing 

instances of RTFV1, RTFV2, RTFV3 and RTFV4 is evaluated using PCA-kNN 

classifier. The results are shown in Table 5.7. From the table it can be observed that a 

classification accuracy of 92.5 %, 95.6 %, 94.4 % and 92.5 % is achieved using 

RTFV1, RTFV2, RTFV3 and RTFV4. The RTFV1, RTFV2, RTFV3 and RTFV4 are 

reduced forms of TFV1, TFV2, TFV3 and TFV4 obtained after applying PCA. The 

individual class accuracy for fatty class is 83.0 %, 86.7 %, 83.0 % and 83.0 % for 

RTFV1, RTFV2, RTFV3 and RTFV4, respectively. For dense class the individual 

class accuracy is 97.2 %, 100.0 %, 100.0 % and 97.2 % for RTFV1, RTFV2, RTFV3 

and RTFV4, respectively. Out of 161 instances of testing data, 12 instances (12/161) 

are misclassified in case of RTFV1, 7 instances (7/161) are misclassified in case of 

RTFV2, 9 instances (9/161) are misclassified in case of RTFV3 and 12 instances 

(12/161) are misclassified in case of RTFV4. 

 

Table 5.6: Classification performance of different TFVs using SVM classifier for two-class breast 

tissue density classification 

TFV(l) CM OCA (%) ICAF (%) ICAD (%) 

  F D    

TFV1(30) 
F 43 10 

91.3 81.1 96.2 
D 4 104 

TFV2(75) 
F 43 10 

93.1 81.1 99.0 
D 1 107 

TFV3(30) 
F 43 10 

91.9 81.1 97.2 
D 3 105 

TFV4(75) 
F 44 9 

92.5 83.0 97.2 
D 3 105 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion Matrix, F: Fatty class, D: 

Dense class, OCA: Overall classification accuracy; ICAF: Individual class accuracy for fatty class. 

ICAD: Individual class accuracy for dense class. 
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5.3.1.5. Experiment 5: To obtain the classification performance of different RTFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using PCA-PNN classifier. 

 In this experiment the classification performance of the feature set containing 

instances of RTFV1, RTFV2, RTFV3 and RTFV4 is evaluated using the PCA-PNN 

classifier. The results are shown in Table 5.8.  

 From the table it can be observed that a classification accuracy of 92.5 %, 

89.4 %, 92.5 % and 89.4 %, is achieved using RTFV1, RTFV2, RTFV3 and RTFV4, 

respectively. The RTFV1, RTFV2, RTFV3 and RTFV4 are reduced forms of TFV1, 

TFV2, TFV3 and TFV4 obtained after applying PCA.  The individual class accuracy 

for fatty class is 83.0 %, 69.8 %, 81.1 % and 69.8 % for RTFV1, RTFV2, RTFV3 and 

RTFV4, respectively. For dense class the individual class accuracy is 97.2 %, 99.0 %, 

98.1 % and 99.0 % for RTFV1, RTFV2, RTFV3 and RTFV4, respectively. Out of 161 

Table 5.7: Classification performance of different RTFVs using PCA-kNN classifier for two-class 

breast tissue density classification 

TFV(l) CM OCA (%) ICAF (%) ICAD (%) 

  F D    

RTFV1(5) 
F 44 9 

92.5 83.0 97.2 
D 3 105 

RTFV2(8) 
F 46 7 

95.6 86.7 100.0 
D 0 108 

RTFV3(4) 
F 44 9 

94.4 83.0 100.0 
D 0 108 

RTFV4(10) 
F 44 9 

92.5 83.0 97.2 
D 3 105 

Note: RTFV: Reduced texture feature vector, l: Optimum number of PCs, CM: Confusion Matrix, 

F: Fatty class, D: Dense class, OCA: Overall classification accuracy; ICAF: Individual class 

accuracy for fatty class. ICAD: Individual class accuracy for dense class. 

Table 5.8: Classification performance of different RTFVs using PCA-PNN classifier for two-class 

breast tissue density classification 

TFV(l) CM OCA (%) ICAF (%) ICAD (%) 

  F D    

RTFV1(5) 
F 44 9 

92.5 83.0 97.2 
D 3 105 

RTFV2(4) 
F 37 16 

89.4 69.8 99.0 
D 1 107 

RTFV3(4) 
F 43 10 

92.5 81.1 98.1 
D 2 106 

RTFV4(4) 
F 37 16 

89.4 69.8 99.0 
D 1 107 

Note: RTFV: Reduced texture feature vector, l: Optimum number of PCs, CM: Confusion Matrix, 

F: Fatty class, D: Dense class, OCA: Overall classification accuracy; ICAF: Individual class 

accuracy for fatty class. ICAD: Individual class accuracy for dense class. 
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instances of testing data, 12 instances (12/161) are misclassified in case of RTFV1, 17 

instances (17/161) are misclassified in case of RTFV2, 12 instances (12/161) are 

misclassified in case of RTFV3 and 17 instances (17/161) are misclassified in case of 

RTFV4. 

5.3.1.6. Experiment 6: To obtain classification performance of different RTFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using PCA-SVM classifier. 

 In this experiment the classification performance of the feature set containing 

instances of RTFV1, RTFV2, RTFV3 and RTFV4 is evaluated using the PCA-SVM 

classifier. The results are shown in Table 5.9. 

 From the table it can be observed that a classification accuracy of 92.5 %, 

94.4 %, 93.1 % and 91.9 %, is achieved using RTFV1, RTFV2, RTFV3 and RTFV4, 

respectively. The RTFV1, RTFV2, RTFV3 and RTFV4 are reduced forms of TFV1, 

TFV2, TFV3 and TFV4 obtained after applying PCA.  The individual class accuracy 

for fatty class is 81.1 %, 84.9 %, 83.0 % and 84.9 % for RTFV1, RTFV2, RTFV3 and 

RTFV4, respectively. For dense class the individual class accuracy is 98.1 %, 99.0 %, 

98.1 % and 95.3 % for RTFV1, RTFV2, RTFV3 and RTFV4, respectively. Out of 161 

instances of testing data, 12 instances (12/161) are misclassified in case of RTFV1, 9 

instances (9/161) are misclassified in case of RTFV2, 11 instances (11/161) are 

misclassified in case of RTFV3 and 13 instances (13/161) are misclassified in case of 

RTFV4. 

 

Table 5.9: Classification performance of different RTFVs using PCA-SVM classifier for two-class 

breast tissue density classification 

TFV(l) CM OCA (%) ICAF (%) ICAD (%) 

  F D    

RTFV1(5) 
F 43 10 

92.5 81.1 98.1 
D 2 106 

RTFV2(4) 
F 45 8 

94.4 84.9 99.0 
D 1 107 

RTFV3(5) 
F 44 9 

93.1 83.0 98.1 
D 2 106 

RTFV4(4) 
F 45 8 

91.9 84.9 95.3 
D 5 103 

Note: RTFV: Reduced texture feature vector, l: Optimum number of PCs, CM: Confusion Matrix, F: 

Fatty class, D: Dense class, OCA: Overall classification accuracy; ICAF: Individual class accuracy 

for fatty class. ICAD: Individual class accuracy for dense class. 
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5.3.2. Experiments carried out for three-class breast tissue density classification 

5.3.2.1. Experiment 1: To obtain classification performance of different TFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using kNN classifier. 

 In this experiment the classification performance of the feature set containing 

instances of TFV1, TFV2, TFV3 and TFV4 is evaluated using kNN. The results are 

shown in Table 5.10.  

 From the table it can be observed that a classification accuracy of 83.2 %, 

83.8 %, 86.9 % and 78.8 %, is achieved using TFV1, TFV2, TFV3 and TFV4, 

respectively. The individual class accuracy of fatty class is 83.0 %, 81.1 % 86.7 % 

and 73.5 % for TFV1, TFV2, TFV3 and TFV4, respectively. For fatty-glandular class, 

the individual class accuracy is 82.6 %, 84.6 %, 84.6 % and 82.6 % for TFV1, TFV2, 

TFV3 and TFV4, respectively. For the dense-glandular class the individual class 

accuracy is 83.9 %, 85.7 %, 89.2 % and 80.3 % for TFV1, TFV2, TFV3 and TFV4, 

respectively.  

 Out of 161 instances of testing data, 27 instances (27/161) are misclassified in 

case of TFV1, 26 instances (26/161) are misclassified in case of TFV2, 21 instances 

(21/161) are misclassified in case of TFV3 and 34 instances (34/161) are misclassified 

in case of TFV4. 

 

Table 5.10: Classification performance of different TFVs using kNN classifier for three-class breast 

tissue density classification 

TFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

 

TFV1(30) 

 

 F FG DG 

83.2 83.0 82.6 83.9 
F 44 6 3 

FG 4 43 5 

DG 0 9 47 

TFV2(75) 

F 43 9 1 

83.8 81.1 84.6 85.7 FG 4 44 4 

DG 0 8 48 

TFV3(30) 

F 46 5 2 

86.9 86.7 84.6 89.2 FG 3 44 5 

DG 0 6 50 

TFV4(75) 

F 39 11 3 

78.8 73.5 82.6 80.3 FG 3 43 6 

DG 2 9 45 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion Matrix, F: Fatty class, FG: 

Fatty-glandular class DG: Dense-glandular class, OCA: Overall classification accuracy; ICAF: 

Individual class accuracy for fatty class. ICAFG: Individual class accuracy for fatty-glandular class. 

ICADG: Individual class accuracy for dense-glandular class. 
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5.3.2.2. Experiment 2: To obtain classification performance of different TFV (derived 

from Laws’ masks of length 3, 5, 7 and 9) using PNN classifier.  

 In this experiment the classification performance of the feature set containing 

instances of TFV1, TFV2, TFV3 and TFV4 is evaluated using the PNN classifier. The 

results are shown in Table 5.11.  

 From the table it can be observed that a classification accuracy of 85.0 %, 

81.9 %, 83.8 % and 78.2 %, is achieved using TFV1, TFV2, TFV3 and TFV4, 

respectively. The individual class accuracy of fatty class is 84.9 %, 83.0 % 84.9 % 

and 75.4 % for TFV1, TFV2, TFV3 and TFV4, respectively. For fatty-glandular class, 

the individual class accuracy is 90.3 %, 84.6 %, 88.4 % and 88.4 % for TFV1, TFV2, 

TFV3 and TFV4, respectively. For the dense-glandular class the individual class 

accuracy is 80.3 %, 78.5 %, 78.5 % and 71.4 % for TFV1, TFV2, TFV3 and TFV4, 

respectively.  

 Out of 161 instances of testing data, 24 instances (24/161) are misclassified in 

case of TFV1, 29 instances (29/161) are misclassified in case of TFV2, 27 instances 

(27/161) are misclassified in case of TFV3 and 35 instances (35/161) are misclassified 

in case of TFV4. 

 

 

Table 5.11: Classification performance of different TFVs using PNN classifier for three-class breast 

tissue density classification 

TFV(l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

 

TFV1(30) 

 

 F FG DG 

85.0 84.9 90.3 80.3 
F 45 6 2 

FG 3 47 2 

DG 2 9 45 

TFV2(75) 

F 44 9 0 

81.9 83.0 84.6 78.5 FG 7 44 1 

DG 3 9 44 

TFV3(30) 

F 45 7 1 

83.8 84.9 88.4 78.5 FG 5 46 2 

DG 2 10 44 

TFV4(75) 

F 40 13 0 

78.2 75.4 88.4 71.4 FG 5 46 1 

DG 6 10 40 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion Matrix, F: Fatty class, FG: 

Fatty-glandular class DG: Dense-glandular class, OCA: Overall classification accuracy; ICAF: 

Individual class accuracy for fatty class. ICAFG: Individual class accuracy for fatty-glandular class. 

ICADG: Individual class accuracy for dense-glandular class. 



  

46 
 

5.3.2.3. Experiment 3: To obtain classification performance of different TFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using SVM classifier.   

 In this experiment the classification performance of the feature set containing 

instances of TFV1, TFV2, TFV3 and TFV4 is evaluated using the SVM classifier. 

The results are shown in Table 5.12. 

 From the table it can be observed that a classification accuracy of 86.3 %, 

86.9 %, 83.2 % and 84.4 % is achieved using TFV1, TFV2, TFV3 and TFV4, 

respectively. The individual class accuracy of fatty class is 84.9 %, 88.6 %, 90.5 % 

and 81.1 % for TFV1, TFV2, TFV3 and TFV4, respectively. For fatty-glandular class, 

the individual class accuracy is 78.8 %, 78.8 %, 65.3 % and 82.6 % for TFV1, TFV2, 

TFV3 and TFV4, respectively. For the dense-glandular class the individual class 

accuracy is 92.8 %, 92.8 %, 92.8 % and 89.2 % for TFV1, TFV2, TFV3 and TFV4, 

respectively.  

 Out of 161 instances of testing data, 22 instances (22/161) are misclassified in 

case of TFV1, 21 instances (21/161) are misclassified in case of TFV2, 27 instances 

(27/161) are misclassified in case of TFV3 and 25 instances (25/161) are misclassified 

in case of TFV4. 

 

 

Table 5.12: Classification performance of different TFVs using SVM classifier for three-class breast 

tissue density classification 

TFV(l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

 

TFV1(30) 

 

 F FG DG 

86.3 84.9 78.8 92.8 
F 46 5 2 

FG 8 41 3 

DG 0 4 52 

TFV2(75) 

F 47 5 1 

86.9 88.6 78.8 92.8 FG 7 41 4 

DG 0 4 52 

TFV3(30) 

F 48 5 0 

83.2 90.5 65.3 92.8 FG 12 34 6 

DG 0 4 52 

TFV4(75) 

F 43 9 1 

84.4 81.1 82.6 89.2 FG 3 43 6 

DG 0 6 50 

Note: TFV: Texture feature vector, l: Length of TFV, CM: Confusion Matrix, F: Fatty class, FG: 

Fatty-glandular class DG: Dense-glandular class, OCA: Overall classification accuracy; ICAF: 

Individual class accuracy for fatty class. ICAFG: Individual class accuracy for fatty-glandular class. 

ICADG: Individual class accuracy for dense-glandular class. 
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5.3.2.4. Experiment 4: To obtain the classification performance of different RTFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using PCA-kNN classifier. 

 In this experiment the classification performance of the feature set containing 

instances of RTFV1, RTFV2, RTFV3 and RTFV4 is evaluated using the PCA-kNN 

classifier. The results are shown in Table 5.13.  

 From the table it can be observed that a classification accuracy of 85.0 %, 

81.9 %, 86.9 % and 79.5 % is achieved using RTFV1, RTFV2, RTFV3 and RTFV4, 

respectively. The individual class accuracy of fatty class is 83.0 %, 77.0 %, 83.0 % 

and 69.8 % for RTFV1, RTFV2, RTFV3 and RTFV4, respectively. For fatty-

glandular class, the individual class accuracy is 82.6 %, 88.4 %, 86.5 % and 88.4 % 

for RTFV1, RTFV2, RTFV3 and RTFV4, respectively. For the dense-glandular class 

the individual class accuracy is 83.9 %, 80.3 %, 91.0 % and 80.3 % for RTFV1, 

RTFV2, RTFV3 and RTFV4, respectively.  

 Out of 161 instances of testing data, 27 instances (27/161) are misclassified in 

case of RTFV1, 29 instances (29/161) are misclassified in case of RTFV2, 21 

instances (21/161) are misclassified in case of RTFV3 and 33 instances (33/161) are 

misclassified in case of RTFV4. 

 

 

Table 5.13: Classification performance of different RTFVs using PCA-kNN classifier for three-

class breast tissue density classification 

RTFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

 

RTFV1(7) 

 

 F FG DG 

85.0 83.0 82.6 83.9 
F 44 6 3 

FG 4 43 5 

DG 0 9 47 

RTFV2(7) 

F 41 11 1 

81.9 77.0 88.4 80.3 FG 1 46 5 

DG 1 10 45 

RTFV3(6) 

F 44 5 4 

86.9 83.0 86.5 91.0 FG 1 45 6 

DG 0 5 51 

RTFV4(10) 

F 37 15 1 

79.5 69.8 88.4 80.3 FG 2 46 4 

DG 2 9 45 

Note: RTFV: Reduced texture feature vector, l: Optimum number of PCs, CM: Confusion Matrix, 

F: Fatty class, FG: Fatty-glandular class DG: Dense-glandular class, OCA: Overall classification 

accuracy; ICAF: Individual class accuracy for fatty class. ICAFG: Individual class accuracy for fatty-

glandular class. ICADG: Individual class accuracy for dense-glandular class. 
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5.3.2.5. Experiment 5: To obtain classification performance of different RTFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using PCA-PNN classifier. 

 In this experiment the classification performance of the feature set containing 

instances of RTFV1, RTFV2, RTFV3 and RTFV4 is evaluated using the PCA-PNN 

classifier. The results are shown in Table 5.14.  

 

 From the table it can be observed that a classification accuracy of 83.8 %, 

77.6 %, 85.0 % and 74.5 % is achieved using RTFV1, RTFV2, RTFV3 and RTFV4, 

respectively. The individual class accuracy of fatty class is 84.9 %, 75.4 %, 86.7 % 

and 75.4 % for RTFV1, RTFV2, RTFV3 and RTFV4, respectively. For fatty-

glandular class, the individual class accuracy is 90.3 %, 88.4 %, 90.3 % and 86.5 % 

for RTFV1, RTFV2, RTFV3 and RTFV4, respectively. For the dense-glandular class 

the individual class accuracy is 76.7 %, 69.6 %, 78.5 % and 62.5 % for RTFV1, 

RTFV2, RTFV3 and RTFV4, respectively. 

  Out of 161 instances of testing data, 26 instances (26/161) are misclassified in 

case of RTFV1, 36 instances (36/161) are misclassified in case of RTFV2, 24 

instances (24/161) are misclassified in case of RTFV3 and 41 instances (41/161) are 

misclassified in case of RTFV4. 

 

 

Table 5.14: Classification performance of different RTFVs using PCA-PNN classifier for three-

class breast tissue density classification 

RTFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

 

RTFV1(6) 

 

 F FG DG 

83.8 84.9 90.3 76.7 
F 45 8 0 

FG 4 47 1 

DG 2 11 43 

RTFV2(9) 

F 40 13 0 

77.6 75.4 88.4 69.6 FG 2 46 4 

DG 7 10 39 

RTFV3(6) 

F 46 7 0 

85.0 86.7 90.3 78.5 FG 3 47 2 

DG 2 10 44 

RTFV4(10) 

F 40 13 0 

74.5 75.4 86.5 62.5 FG 7 45 0 

DG 11 10 35 

Note: RTFV: Reduced texture feature vector, l: Optimum number of PCs, CM: Confusion Matrix, 

F: Fatty class, FG: Fatty-glandular class DG: Dense-glandular class, OCA: Overall classification 

accuracy; ICAF: Individual class accuracy for fatty class. ICAFG: Individual class accuracy for fatty-

glandular class. ICADG: Individual class accuracy for dense-glandular class. 
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5.3.2.6. Experiment 6: To obtain classification performance of different RTFVs 

(derived from Laws’ masks of length 3, 5, 7 and 9) using PCA-SVM classifier. 

 In this experiment the classification performance of the feature set containing 

instances of RTFV1, RTFV2, RTFV3 and RTFV4 is evaluated using the PCA-SVM 

classifier. The results are shown in Table 5.15. 

  

 From the table it can be observed that a classification accuracy of 87.5 %, 

85.7 %, 86.3 % and 85.7 % is achieved using RTFV1, RTFV2, RTFV3 and RTFV4, 

respectively. The individual class accuracy of fatty class is 84.9 %, 81.1 %, 86.7 % 

and 83.0 % for RTFV1, RTFV2, RTFV3 and RTFV4, respectively. For fatty-

glandular class, the individual class accuracy is 84.6 %, 86.5 %, 78.8 % and 82.6 % 

for RTFV1, RTFV2, RTFV3 and RTFV4, respectively. For the dense-glandular class 

the individual class accuracy is 92.8 %, 89.2 %, 92.8 % and 91.0 % for RTFV1, 

RTFV2, RTFV3 and RTFV4, respectively. 

 Out of 161 instances of testing data, 19 instances (19/161) are misclassified in 

case of RTFV1, 23 instances (23/161) are misclassified in case of RTFV2, 22 

instances (22/161) are misclassified in case of RTFV3 and 23 instances (23/161) are 

misclassified in case of RTFV4. 

 

 

 

Table 5.15: Classification performance of different RTFVs using PCA-SVM classifier for three-

class breast tissue density classification 

RTFV (l) CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

 

RTFV1(7) 

 

 F FG DG 

87.5 84.9 84.6 92.8 
F 45 8 0 

FG 5 44 3 

DG 0 4 52 

RTFV2(9) 

F 43 9 1 

85.7 81.1 86.5 89.2 FG 5 45 2 

DG 1 5 50 

RTFV3(6) 

F 46 7 0 

86.3 86.7 78.8 92.8 FG 6 41 5 

DG 0 4 52 

RTFV4(10) 

F 44 9 0 

85.7 83.0 82.6 91.0 FG 5 43 4 

DG 0 5 51 

Note: RTFV: Reduced texture feature vector, l: Optimum number of PCs, CM: Confusion Matrix, F: 

Fatty class, FG: Fatty-glandular class DG: Dense-glandular class, OCA: Overall classification 

accuracy; ICAF: Individual class accuracy for fatty class. ICAFG: Individual class accuracy for fatty-

glandular class. ICADG: Individual class accuracy for dense-glandular class. 
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5.4. Concluding Remarks 

 From the results obtained from the above experiments, it can be observed that 

for two-class breast tissue density, PCA-kNN classifier achieves highest classification 

accuracy of 95.6 % using first 8 PCs. Thus, it can be concluded that for two-class 

breast tissue density classification, first 8 PCs obtained by applying PCA to the TFV 

derived from Laws’ mask of length 5 are sufficient to account for the textural changes 

exhibited by the fatty and dense breast tissue. 

 For three-class breast tissue density classification, it can be observed from the 

above experiments that the highest classification accuracy of 87.5 % is achieved using 

the PCA-SVM classifier and first 7 PCs derived from Laws’ texture features using 

Laws’ mask of length 3. Thus it can be said that for accounting the textural changes 

exhibited by different density patterns, first 7 PCs derived from Laws’ mask of length 

3 are sufficient. 
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Chapter 6 

CAD System Design for Breast Tissue Density Classification Using 

Multiresolution Texture Features  

6.1. Introduction 

 It has been well established that the risk of breast cancer development is 

associated with increased breast density. Therefore, characterization of breast tissue 

density is clinically significant. In the present work, texture features computed in 

transform domain over various scales have been used for efficient description of 

texture information in medical images, as scale is considered to be a dominant aspect 

of texture.  

6.2. Proposed CAD System Design 

 The block diagram of the proposed CAD system design for two-class and 

three-class breast tissue density classification is shown in Figure 6.1. 

 
Figure 6.1 Proposed CAD system design using multiresolution texture features for two-class and 

three-class breast tissue density classification. 

For the design of the proposed CAD system, multiresolution texture features 

like 2D DWT, FPS and GWT features have been extracted from each ROI image. The 

wavelet based texture features have been derived from ten different compact support 

wavelet filters like Haar (db1), Daubechies (db4 and db6), Coiflets (coif1 and coif2), 

Symlets (sym3 and sym 5) and Biorthogonal (bior3.1, bior3.3 and bior4.4). When 2D-

DWT decomposition upto 2
nd

 level is applied to an ROI image, seven subimages (one 

approximate subimage and six orientation selective detail subimages) are generated. 
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From each subimage, normalized energy is calculated which is then used to form 

different TFVs. The TFVs derived are described in Table 6.1. 

Table 6.1: Description of TFVs  

TFV Wavelet energy features l 

TFV1  
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TFV5  
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TFV6  
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TFV7  
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TFV8 
Combined TFV consisting of best TFV out of TFV1-TFV7 based on classification 

results and FPS features 
2+l 

TFV9 TFV consisting of Gabor features 42 

Note: TFVF: Texture feature vector l: Length of TFV, A: Approximate subimage, D: Detail 

subimage, h: Horizontal direction, v: Vertical direction, d: Diagonal direction,     : Frobenius norm. 

   or   : i is the level of decomposition. 

 Two features namely angular sum and radial sum are extracted from ROIs 

using FPS. 

From the group of 21 wavelets formed using 2D-DWT, two texture features, mean 

and standard deviation are extracted from the 21 feature images. 

 These derived TFVs are then fed to classifiers like kNN, PNN, SVM and 

SSVM for two-class and three-class breast tissue density classification. 

6.3. Experimental Workflow and Results 

 Rigorous experiments were carried out to evaluate the performance of 

proposed CAD system for two-class and three-class breast tissue density 

classification. A brief description of these experiments is given in Table 6.2 and 6.3, 

respectively. 
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6.3.1. Experiments carried out for two-class breast tissue density classification 

6.3.1.1. Experiment 1: To obtain the classification performance of TFV1-TFV7 

derived from various compact support wavelet filters for two-class breast tissue 

density classification using different classifiers. 

In this experiment, the performance of various compact support wavelet filters 

has been evaluated using kNN, PNN, SVM and SSVM classifiers for two-class breast 

tissue density classification. The results are shown in Table 6.4.  

Table 6.4: Classification performance of TFV1-TFV7 using kNN, PNN, SVM and SSVM classifiers 

for two-class breast tissue density classification 

TFV (l) 
Max. Acc. (%) 

(Classifier) 
Wavelet Filter 

Min. Acc. (%) 

(Classifier) 
Wavelet Filter 

TFV1 (7) 96.2 (kNN) db1 83.8 (PNN) db4, bior3.3 

TFV2 (3) 88.8 (SSVM) db1 66.4 (kNN, SVM) db1, bior3.3 

TFV3 (6) 91.3 (SSVM) db1 73.2 (kNN) db6 

TFV4 (4) 87.5 (SSVM) db1 68.3 (SVM) bior3.1 

TFV5 (4) 92.5 (SSVM) db1 79.5 (PNN)  db4, sym3 

TFV6 (4) 94.4 (kNN) db1 83.8 (PNN) db4, sym3, sym5 

TFV7 (3) 89.4 (SSVM) db1 70.1 (kNN) coif1 

Note: TFV: Texture feature vector l: Length of TFV, Max. Acc.: Maximum accuracy, Min. Acc.: 

Minimum accuracy. 

It is observed that for all seven TFVs maximum classification accuracy is 

obtained using the db1 (Haar) wavelet filter. It can also be seen that the highest 

accuracy of 96.2 % is achieved with TFV1 using kNN classifier. The minimum 

Table 6.2: Description of experiments carried out for two-class breast tissue density classification 

Experiment 1:  To obtain the classification performance of TFV1-TFV7 derived from various 

compact support wavelet filters for two-class breast tissue density classification 

using different classifiers 

Experiment 2:   To obtain the classification performance of TFV8 for two-class breast tissue 

density classification using different classifiers 

Experiment 3:  To obtain the classification performance of TFV9 for two-class breast tissue 

density classification using different classifiers 

  Note: TFV: Texture feature vector. 

Table 6.3: Description of experiments carried out for three-class breast tissue density classification 

Experiment 1:  To obtain the classification performance of TFV1-TFV7 derived from various 

compact support wavelet filters for three-class breast tissue density classification 

using different classifiers 

Experiment 2:   To obtain the classification performance of TFV8 for three-class breast tissue 

density classification using different classifiers 

Experiment 3:  To obtain the classification performance of TFV9 for three-class breast tissue 

density classification using different classifiers 

  Note: TFV: Texture feature vector. 
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accuracy of 66.4 % is achieved for db1 and bior3.3 wavelet filters using the kNN and 

SVM classifiers, respectively. 

6.3.1.2. Experiment 2: To obtain the classification performance of TFV8 for two-class 

breast tissue density classification using different classifiers.  

In this experiment, the performance of TFV8 i.e. combined TFV consisting of 

wavelet based texture features yielding maximum accuracy in Experiment 1 and FPS 

features has been evaluated using different classifiers. The results are shown in Table 

6.5. It can be observed from the table that for TFV8, the overall classification 

accuracy values of 80.7 %, 85.0 %, 86.3 % and 90.0 % are achieved using kNN, PNN, 

SVM and SSVM classifiers, respectively. It can also be observed that the highest in 

individual class accuracy for fatty class is 77.3 % with SSVM classifier and highest 

individual class accuracy for dense class is 96.2 %, using SSVM classifier.  

Out of total 161 testing instances, 31 instances (31/161) are misclassified in 

case of kNN, 24 instances (24/161) are misclassified in case of PNN, 22 instances 

(16/161) are misclassified in case of SVM and 16 instances (16/161) are misclassified 

in case of SSVM classifier. 

6.3.1.3. Experiment 3: To obtain the classification performance of TFV9 for two-class 

breast tissue density classification using different classifiers. 

 In this experiment, the performance of texture feature vector derived from 

Gabor based features has been evaluated using different classifiers. The results are 

shown in Table 6.6.  

 

 

Table 6.5: Classification performance of TFV8 using kNN, PNN, SVM and SSVM classifiers for 

two-class breast tissue density classification 

Classifier CM OCA (%) ICAF (%) ICAD (%) 

  F D    

kNN 
F 35 18 

80.7 66.0 87.9 
D 13 95 

PNN 
F 34 19 

85.0 64.1 95.3 
D 5 103 

SVM 
F 38 15 

86.3 71.6 93.5 
D 7 101 

SSVM 
F 41 12 

90.0 77.3 96.2 
D 4 104 

Note: CM: Confusion matrix, F: Fatty class, D: Dense class, OCA: Overall classification accuracy; 

ICAF: Individual class accuracy for fatty class. ICAD: Individual class accuracy for dense class. 
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It can be observed from the table that for Gabor based texture features, the 

overall classification accuracy values of 90.6 %, 86.9 %, 90.6 % and 92.5 % are 

achieved using kNN, PNN, SVM and SSVM classifiers, respectively. It can also be 

observed that the highest individual class accuracy for fatty class is 84.9 % with 

SSVM classifier and highest individual class accuracy for dense class is 96.2 %, using 

SSVM classifier. Out of total 161 testing instances, 15 instances (15/161) are 

misclassified in case of kNN, 21 instances (21/161) are misclassified in case of PNN, 

15 instances (15161) are misclassified in case of SSVM classifier. 

6.3.2. Experiments carried out for three-class breast tissue density classification 

6.3.2.1. Experiment 1: To obtain the classification performance of TFV1-TFV7 

derived from various compact support wavelet filters for three-class breast tissue 

density classification using different classifiers. 

In this experiment, the performance of various compact support wavelet filters 

has been evaluated using kNN, PNN, SVM and SSVM classifiers for three-class 

breast tissue density classification. The results are shown in Table 6.7.  

Table 6.7: Classification performance of TFV1-TFV7 using kNN, PNN, SVM and SSVM classifiers 

for three-class breast tissue density classification 

TFV (l) 
Max. Acc. (%) 

(Classifier) 
Wavelet Filter 

Min. Acc. (%) 

(Classifier) 
Wavelet Filter 

TFV1 (7) 88.8 (kNN) db1 76.3 (SVM) db4 

TFV2 (3) 80.7 (SSVM) db1 55.9 (kNN) db1 

TFV3 (6) 83.2 (SVM) db1 60.8 (kNN) db6 

TFV4 (4) 76.4 (SSVM) db1 57.7 (kNN) bior3.3 

TFV5 (4) 85.7 (PNN) db1 73.2 (kNN)  db4, bior3.3 

TFV6 (4) 89.4 (SSVM) db1 63.3 (SSVM) bior3.3 

TFV7 (3) 81.9 (SSVM) db1 56.5 (kNN) coif1 

Note: TFV: Texture feature vector l: Length of TFV, Max. Acc.: Maximum accuracy, Min. Acc.: 

Minimum accuracy. 

Table 6.6: Classification performance of TFV9 using kNN, PNN, SVM and SSVM classifiers for 

two-class breast tissue density classification  

Classifier CM OCA (%) ICAF (%) ICAD (%) 

  F D    

kNN 
F 44 9 

90.6 83.0 94.4 
D 6 102 

PNN 
F 43 10 

86.9 81.1 89.8 
D 11 97 

SVM 
F 43 10 

90.6 81.1 95.3 
D 5 103 

SSVM 
F 45 8 

92.5 84.9 96.2 
D 4 104 

Note: CM: Confusion matrix, F: Fatty class, D: Dense class, OCA: Overall classification accuracy; 

ICAF: Individual class accuracy for fatty class. ICAD: Individual class accuracy for dense class. 
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It is observed that for all seven TFVs maximum classification accuracy is 

obtained using the db1 (Haar) wavelet filter. It can also be seen that the highest 

accuracy of 89.4 % is achieved with TFV6 using SSVM classifier. The minimum 

accuracy of 55.9 % is achieved for db1 wavelet filter using the kNN classifier. 

6.3.2.2. Experiment 2: To obtain the classification performance of TFV8 for three-

class breast tissue density classification using different classifiers. 

In this experiment, the performance of TFV8 i.e. combined TFV consisting of 

wavelet based texture features yielding maximum accuracy in Experiment 1 and FPS 

features have been evaluated using different classifiers. The results are shown in 

Table 6.8.  

 

It can be observed from the table that for TFV8, the overall classification 

accuracy values of 90.0 %, 84.4 %, 78.8 % and 88.2 % are achieved using kNN, PNN, 

SVM and SSVM classifiers, respectively. It can also be observed that the highest in 

individual class accuracy for fatty class is 94.3 % with kNN classifier, for the fatty-

glandular class, the highest individual class accuracy is 90.3 % and the highest 

individual class accuracy for dense class is 96.4 %, using kNN classifier. Out of total 

161 testing instances, 16 instances (16/161) are misclassified in case of kNN, 25 

instances (25/161) are misclassified in case of PNN, 34 instances (34/161) are 

misclassified in case of SVM and 18 instances (18/161) are misclassified in case of 

SSVM classifier. 

Table 6.8: Classification performance of TFV8 using kNN, PNN, SVM and SSVM classifiers for 

three-class breast tissue density classification 

Classifier CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

  F FG DG     

kNN 

F 50 3 0 

90.0 94.3 78.8 96.4 FG 6 41 5 

DG 0 2 54 

PNN 

F 47 5 1 

84.4 88.6 80.7 87.5 FG 8 42 2 

DG 0 9 49 

SVM 

F 43 7 3 

78.8 81.1 61.5 92.8 FG 11 32 9 

DG 0 5 52 

SSVM 

F 46 6 1 

88.2 86.7 90.3 89.2 FG 2 47 3 

DG 0 6 50 

Note: CM: Confusion matrix, F: Fatty class, FG: Fatty–glandular class, DG: Dense-glandular class, 

OCA: Overall classification accuracy; ICAF: Individual class accuracy for fatty class, ICAFG: 

Individual class accuracy for fatty-glandular class, ICADG: Individual class accuracy for dense-

glandular class. 
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6.3.2.3. Experiment 3: To obtain the classification performance of TFV9 for three-

class breast tissue density classification using different classifiers. 

In this experiment, the performance of texture feature vector derived from 

Gabor based features has been evaluated using different classifiers. The results are 

shown in Table 6.9. 

It can be observed from the table that for Gabor based texture features, the 

overall classification accuracy of 86.9 %, 84.4 %, 81.3 % and 83.8 % is achieved 

using kNN, PNN, SVM and SSVM classifiers, respectively. It can also be observed 

that the highest individual class accuracy for fatty class is 92.4 % with SSVM 

classifier, for the fatty-glandular class, the highest individual class accuracy achieved 

is 82.6 % with SVM classifier and highest individual class accuracy for dense class is 

98.2 %, using kNN classifier. Out of total 161 testing instances, 21 instances (21/161) 

are misclassified in case of kNN, 25 instances (25/161) are misclassified in case of 

PNN, 30 instances (30/161) are misclassified in case of SVM and 26 instances 

(26/161) are misclassified in case of SSVM classifier. 

6.4. Concluding Remarks 

 From the results obtained from the above experiments, it can be observed that 

for two-class breast tissue density, kNN based CAD system design employing wavelet 

based texture features is the best choice for discriminating between different density 

Table 6.9: Classification performance of TFV9 using kNN, PNN, SVM and SSVM classifiers for 

three-class breast tissue density classification  

Classifier CM OCA (%) ICAF (%) ICAFG (%) ICADG (%) 

  F FG DG     

kNN 

F 44 6 3 

86.9 83.0 78.8 98.2 FG 4 41 7 

DG 0 1 55 

PNN 

F 41 10 2 

84.4 77.3 80.7 94.6 FG 2 42 8 

DG 0 3 53 

SVM 

F 37 15 1 

81.3 69.8 82.6 96.2 FG 1 43 8 

DG 1 4 51 

SSVM 

F 49 3 1 

83.8 92.4 65.3 92.8 FG 7 34 11 

DG 2 2 52 

Note: CM: Confusion matrix, F: Fatty class, FG: Fatty–glandular class, DG: Dense-glandular class, 

OCA: Overall classification accuracy; ICAF: Individual class accuracy for fatty class, ICAFG: 

Individual class accuracy for fatty-glandular class, ICADG: Individual class accuracy for dense-

glandular class. 
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patterns exhibited by the breast tissue. The texture features are computed TFV1 

derived from Haar wavelet filter. 

 For three-class breast tissue density classification, it can be observed from the 

above experiments that highest classification accuracy of 90.0 % is achieved using the 

kNN classifier with TFV8, derived by combining TFV6 (obtained from db1 (Haar) 

wavelet filter) and FPS features. Thus a total of 9 features are sufficient to 

discriminate between the different breast tissue density patterns. 
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Chapter 7 

Conclusion and Future Scope   

 The present work has been carried out for two-class and three-class breast 

tissue density classification of digitized mammograms taken from the MIAS database 

keeping in mind the fact that increased breast density is strongly correlated with the 

risk of breast cancer development. Accordingly, different CAD system designs have 

been proposed in the present work for two-class and three-class breast tissue density 

classification to provide radiologists with a second opinion tool. 

7.1. Conclusion- Design of an Efficient CAD System for Two-Class Breast 

Tissue Density Classification 

 For designing an efficient CAD system for two-class breast tissue density 

classification, various CAD system designs based on statistical features, Laws’ TEMs 

and multiresolution texture features have been proposed in the present work. The 

performance of these CAD system designs has been compared in Table 7.1 

Table 7.1: Performance comparison of CAD system designs for two-class breast tissue density 

classification 

TFV Classifier CAD design OCA (%) 

Statistical features PCA-SSVM 
CAD system design based on statistical 

features 
94.4 

RTFV2 PCA-kNN 
CAD system design based on texture features 

derived from Laws’ masks 
95.6 

TFV1 (db1) kNN 
CAD system design based on multiresolution 

texture features 
96.2 

Note: TFV: Texture feature vector, RTFV: Reduced texture feature vector, OCA: Overall 

classification accuracy. 

 

 From the above table it can be observed that CAD system design based on 

wavelet based multiresolution texture features computed from db1 wavelet filter 

achieves maximum classification of 96.2 % out of all the proposed CAD system 

designs for two-class breast tissue density. It can that be concluded that the wavelet 

based texture features are thus most efficient texture features to account for the 

textural changes exhibited by fatty and dense breast tissue when fed to kNN classifier 

for predicting the labels unknown testing instances of the mammographic images. 
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7.2.  Conclusion-Design of an Efficient CAD System for Three-Class Breast 

Tissue Density Classification 

 For the design of an efficient CAD system for three-class breast tissue density 

classification, exhaustive experimentation was carried out in the present work by 

using statistical features, Laws’ TEMs and multiresolution texture features. The 

performance of the proposed CAD system designs based on these features is 

compared in Table 7.2. 

Table 7.2: Performance comparison of CAD system designs for three-class breast tissue density 

classification 

TFV Classifier CAD design OCA (%) 

Statistical features PCA-SVM 
CAD system design based on statistical 

features 
86.3 

RTFV1 PCA-SVM 
CAD system design based on texture features 

derived from Laws’ masks 
87.5 

TFV8 

 (TFV6 (db1)+FPS) 
kNN 

CAD system design based on multiresolution 

texture features 
90.0 

Note: TFV: Texture feature vector, RTFV: Reduced texture feature vector, OCA: Overall 

classification accuracy. 

 From the above table it can be observed that CAD system design based on 

combined TFV derived from wavelet based multiresolution texture features computed 

from db1 wavelet filter and FPS features achieves maximum classification of 90.0 % 

with kNN classifier out of all the proposed CAD system designs for three-class breast 

tissue density. It can be concluded that the multiresolution texture features when 

combined together give improved classification accuracy than the individual TFVs 

and efficiently discriminate between the different breast tissue density patterns 

exhibited on the mammograms. 

 From the above discussion it can be concluded that multiresolution texture 

features efficiently classify the mammograms as per different breast tissue density 

patterns both for two-class classification problem as well as three-class classification 

problem achieving best results in comparison to CAD system designs based on other 

feature extraction models. 

7.3.       Limitations and Future Scope 

        The limitation of the present work is that it has been carried out on the MIAS 

database that consists of digitized mammographic images and not real data. 

Following are the recommendations for future work: 
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(i) Till date the available image databases for analysis of mammographic density 

patterns consist of digitized images of the mammograms. Recently, a database, 

INbreast consisting of DICOM images [81] has been available and can be used to 

evaluate the performance of the proposed algorithms of density classification. 

(ii) The present work has been carried out on images developed using X-rays as the 

imaging modality however, images acquired from MRI can also be used in the future 

to test the proposed algorithms. 

(iii) In the present work, ROIs from the mammograms are extracted manually. An 

algorithm for automatic ROI extraction can be developed by employing various 

pattern recognition concepts to identify the center of the breast tissue and then extract 

an ROI of some specified size automatically. 

(iv) The performance of the proposed algorithms remains to be tested on images of 

different resolutions. 
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Appendix-A 

Texture Features Used in the Present Work   

A.1. Statistical features 

A.1.1. First Order Statistics 

For the individual pixel values xi, the computed features are given as: 

     
 

 
   
 

 

                    
 

    
          

 

 

   

 

             
 

   
         

 

 

                 

 

 

                         

 

 

             
 

    
 

A.1.2. GLCM Features 
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A.1.3. GLRLM Features 
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A.1.4. NGTDM Features 
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A.1.5. SFM Features 

             
        

  

   

  

                     

   

 

   

 

            
                  

     
 

             
   

   
   
    

                                

                                  

      : Mean of all elements in Mdss and Mdss (valley): Deepest valley in the matrix 

Df: Fractal dimension in horizontal and vertical direction. 

A.1.6. GLDS Features 
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A.2. Signal Processing Methods based Features 

A.2.1. Laws’ Texture Features 

Laws’ masks of lengths 3, 5, 7 and 9 are used to compute different features. A 

description of these masks is given below. 

Table 1: Description of Laws’ masks of different lengths 

Length of 1-D filter 1-D filter coefficients No. of 2D 

Laws’ masks 

No. of TR images 

3 

L3=[1, 2, 1] 

E3=[-1, 0, 1] 

S3=[-1, 2, -1] 
9 6 

5 

L5= [1, 4, 6, 4, 1] 

E5= [-1, -2, 0, 2, 1] 

S5= [-1, 0, 2, 0, -1] 

W5= [-1, 2, 0, -2 1] 

R5= [1, -4, 6, -4, 1] 

25 15 

7 

L7= [1, 6, 15, 20, 15, 6, 1] 

E7= [-1 -4, -5, 0, 5, 4, 1] 

S7= [-1, -2, 1, 4, 1, -2, -1] 

9 6 

9 

L9= [1, 8, 28, 56, 70, 56, 28, 8, 1] 

E9= [1, 4, 4, -4, -10, -4, 4, 4, 1] 

S9= [1, 0, -4, 0, 6, 0, -4, 0, 1] 

W9= [1, -4, 4, -4, -10, 4, 4, -4, 1] 

R9= [1, -8, 28, -56, 70, -56, 28, -8, 1] 

25 15 

Note: TR: rotation invariant texture images. 

As an example Laws’ mask of length 5 is used for explanation purposes. The ROIs 

are convolved with each of the above twenty five 2D Laws’ masks.  

For example an ROI of size M × N (200× 200) is convolved with the mask S5S5 to 

form texture image (      ). 

                  

The mask L5L5 has zero mean and is used to form contrast invariant texture images 

(TIs). 

                   
      
      

 

The normalized TIs are passed through a 15 × 15 square window to derive 25 texture 

energy images (TEMs). The TEM filters perform moving average non-linear filtering 

operation, i.e. 

                                

 

    

 

    

 

Out of 25 TEMs 15 rotationally invariant texture energy images (TRs) are obtained by 

averaging, i.e. 
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From the derived TRs five statistical parameters i.e. mean, standard deviation, 

skewness, kurtosis and entropy are computed, thus 75 Laws’ texture features (15 TRs 

× 5 statistical parameters) are computed for each ROI. These statistical parameters are 

defined as:  

     
         

 
   

 
   

    
 

    
                 

   
 
   

    
 

         
                

   
 
   

          
 

         
                 

   
 
   

          
   

        
          

 
   

 
   

     
 

A.3. Transform Domain based Features 

A.3.1. Wavelet based Texture Features 

Normalized energy calculated for each subimage. 

For approximate subimage at i
th

 level of decomposition 

                   
     

 

         
   

For detailed subimage in k
th 

direction and at i
th

 level of decomposition 

                   
   

   
 
 

 

       
   
 
 

A.3.2. FPS Features 
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 A.3.3. Gabor Filter based Features  
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