
Mapping Algorithms for Network-on-Chip

Project Report submitted in partial fulfillment of the requirement

for the degree of

Master of Technology

in

Computer Science and Engineering

Submitted By

Arvind Kumar (132222)

Under the Supervision of

Dr. Vivek Kumar Sehgal

Department of Computer Science and Engineering

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

i

Certificate

This is to certify that project report entitledMapping Algorithms for Network-on-chip ,

submitted byArvind Kumar in partial fulfillment for the award of degree of Master of Tech-

nology in Computer Science and Engineering to Jaypee University of Information Technology,

Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

DATE: SUPERVISOR:

Dr.Vivek Kumar Sehgal

Associate Professor

Department of CSE and IT

i

ii

Acknowledgement

I Arvind Kumar would like to thankProf. Dr. RMK Sinha (Dean CSE and IT) andProf.

Dr. S.P Ghrera (Head, Dept. of CSE)for all the support and guidance they have provided to

me during my M.Tech programme. I am thankful for his continuous motivation and encourage-

ment provided to me at every point in time.

I would like to thankDr. Vivek Kumar Sehgal (Associate professor, Department ofCSE

and IT) for offering me the opportunity to do my post graduation project under his supervision

at Jaypee University of Information Technology. In the meetings and discussions, he always

gave me right advice and he directed my research in the right direction.

I would also like to thankDr. Pardeep Kumar (Associate M.Tech Research Coordina-

tor) for his valuable guidance and motivation. I am thankful to myseniors and friends for their

support and help provided during the completion of the thesis. I would sincerely like to thank

all the librarian for their support and help by providing me the study material.

Finally, I would like to express my profound thanks to my parents for teaching me how to

soar. I would not have made it this so far without their unbounded love, guidance, support and

most importantly their prayers.

DATE: ARVIND KUMAR(132222)

M.Tech C.S.E. 2ndyr

ii

iii

Declaration

I hereby declare that the thesis entitled”Mapping Algorithms for Network-on-Chip” sub-

mitted by me for the award of degree of Master of Technology inComputer Science and En-

gineering, Jaypee University of Information Technology, Waknaghat is original and it has not

submitted previously to this or any other university for anydegree or diploma. Signature of

Student :

Name of Student :

Date :

iii

iv

Abstract

Network on chip is gaining popularity as the time is going on,due to increasing communi-

cation. As the number of transistors growing the network on chip is becoming complex. To

reduce the complexity, 3D NoC was there but still improvements are required as more the num-

ber of wires more is the complexity and lesser is the speed involved. So the aim of this research

is to find such an mapping algorithm which can map the cores or task to a topology in such

a way that less energy is consumed, less time for communication, faster speed of accessing,

cores with maximum communication are brought closer makingthe network less complex. To

achieve these properties, the existing mapping approachesare mentioned in this report. Keep-

ing the drawbacks of existing approaches in mind my aim is to find such a mapping technique

which suits all the QoS requirements and is best among all theexisting approaches.

iv

CONTENTS v

Contents

Certificate i

Acknowledgement ii

Declaration iii

Abstract iv

1 Introduction 1

1.1 Structure of Router in NoC .. 4

1.2 XY Routing Algorithm . 4

1.3 Communication Task Graph .7

1.4 Types of graphs used in NoC .. 7

1.4.1 Application characterization graph (APCG) 7

1.4.2 Architecture Characterization Graph(ACG) 8

2 Literature Review 10

2.1 Research Papers . 10

v

CONTENTS vi

2.1.1 An Energy-Aware Methodology for Mapping and Scheduling of

Concurrent Applications in MPSoC Architectures 10

2.1.2 Spiral: A heuristic mapping algorithm for network on chip 11

2.1.3 Bandwidth-aware application mapping for NoC based MPSoCs 12

2.1.4 GA-MMAS: An energy aware mapping algorithm for 2D network on

chip . 13

2.1.5 A3MAP: Architecture-aware analytic mapping for network on chip . . 14

2.1.6 Heuristic for routing and spiral run-time task mapping in NoC based

heterogeneous MPSoCs . 17

3 Problem Statement 18

4 Existing Mapping Algorithm 22

4.1 Random Mapping Algorithm .22

5 Proposed Approach 25

5.1 Horological Algorithm .. . 25

5.2 Rotational Algorithm .. 29

5.3 Divide and Conquer Mapping Algorithm 30

5.4 Energy Model . 34

5.5 Latency Model . 36

6 Simulator Tool 39

6.1 OMNeT++ . 39

vi

CONTENTS vii

6.2 Orion 2.0 . 40

7 Design Analysis 43

8 Experimental Results 45

9 Conclusion 65

10 Future Work 66

Bibliography 67

List of Publications 70

vii

LIST OF FIGURES viii

List of Figures

1.1 Moore’s Law for increasing number of transistors 2

1.2 Networks on Chip Architecture 3

1.3 2D router architecture 5

1.4 3D router architecture 6

1.5 Communication Task Graph .8

1.6 Application Characterization Graph 9

2.1 Spiral Mapping. .12

2.2 Cross-Over Order . 14

2.3 A3MAP . 15

2.4 A3MAP Matrices . 15

2.5 A3MAP-SR . 16

2.6 A3MAP-GA . 16

2.7 Task placement with Spiral Strategy. 17

3.1 Logical Application Trace graph 19

viii

LIST OF FIGURES ix

3.2 NoC Architecture Characterization Graph 19

3.3 NoC Mapping Technique .20

3.4 Flowchart representation of application mapping onto topology 21

4.1 Load balancing by random mapping algorithm in 2D NoC 23

4.2 Load balancing by random mapping algorithm in 3D NoC 24

5.1 Horological mapping algorithm 27

5.2 Load balancing by horological mapping algorithm in 2D NoC 28

5.3 Load balancing by horological mapping algorithm in 3D NoC 28

5.4 Load balancing by rotational mapping algorithm in 2D NoC. 30

5.5 Load balancing by rotational mapping algorithm in 3D NoC. 31

5.6 Grid Divison into sub-grid 32

5.7 Divide and conquer mapping algorithm 33

5.8 Load balancing by divide and conquer mapping algorithm in 2D NoC 34

5.9 Load balancing by divide and conquer mapping algorithm in 3D NoC 35

5.10 NoC topology tile .. 37

5.11 Latency flow in single hop .. . 37

5.12 Latency flow in two hop from source to destination core 38

6.1 OMNeT++ execution flowchart. .. . 41

6.2 Orion execution flowchart. 42

ix

LIST OF FIGURES x

7.1 Mesh Topology . 43

7.2 3D Mesh Topology . 44

8.1 Average latency (in ns) of mapping algorithms in mesh topology 46

8.2 Queuing Time in mesh topology in random mapping 46

8.3 Queuing time in mesh topology in horological mapping 47

8.4 Queuing time in mesh topology in rotational mapping 47

8.5 Queuing time in mesh topology in divide and conquer mapping 48

8.6 Total queuing time (in ns) of mapping algorithms in mesh topology 48

8.7 Service time in mesh topology in random mapping 49

8.8 Service time in mesh topology in horological mapping 49

8.9 Service time in mesh topology in rotational mapping 50

8.10 Service time in mesh topology in divide and conquer mapping 50

8.11 Total service time (in ns) of mapping algorithms in meshtopology 51

8.12 Energy consumption of cores in random mapping algorithm 52

8.13 Energy consumption of cores in sequential mapping algorithm 53

8.14 Energy consumption of cores in rotational mapping algorithm 53

8.15 Energy consumption of cores in divide conquer algorithm 54

8.16 Comparison of energy consumption (in pJ) of mapping algorithms 54

8.17 Average latency (in pJ) in mapping algorithm for 3D meshtopology 56

8.18 Queuing time (in ns) in 3D mesh topology in random mapping 57

x

LIST OF FIGURES xi

8.19 Queuing time (in ns) in 3D mesh topology in horological mapping 57

8.20 Queuing time (in ns) in 3D mesh topology in rotational mapping 58

8.21 Queuing time (in ns) in 3D mesh topology in divide and conquer mapping . . . 58

8.22 Total queuing time (in ns) of mapping algorithms in 3D mesh topology 59

8.23 Service time (in ns) in 3D mesh topology in random mapping 59

8.24 Service time (in ns) in 3D mesh topology in horological mapping 60

8.25 Service time (in ns) in 3D mesh topology in rotational mapping 60

8.26 Service time (in ns) in 3D mesh topology in divide and conquer mapping 61

8.27 Total service time (in ns) of mapping algorithms in 3D mesh topology 61

8.28 Energy Consumption (in pJ) in Random mapping algorithm for 3D mesh topology 62

8.29 Energy Consumption (in pJ) in horological mapping algorithm for 3D mesh

topology . 62

8.30 Energy Consumption (in pJ) in rotational mapping algorithm for 3D mesh

topology . 63

8.31 Energy Consumption (in pJ) in divide and conquer mappingalgorithm for 3D

mesh topology . 63

8.32 Comparison of energy consumption (in pJ) of mapping algorithms in 3D mesh

topology . 64

xi

LIST OF TABLES xii

List of Tables

8.1 Energy of router (in pJ) at different load 51

8.2 Energy of link (in pJ) at different load and link length (in mm) 52

8.3 Comparison of average Latency, total queuing time and total service time of

mapping algorithms (in ns) .55

xii

1

Chapter 1

Introduction

Network on chip is concentrated over the routing of the packets instead of the wires. It is

a communication network which is basically layered architecture [1]. Packets are the major

source for NoC to transfer the data from the source node to thedestination node. Processing

elements are basically IP cores (Intellectual Property), processor, DSP(Digital Signal Proces-

sor), ASIC(Application Specific Integrated Circuit) etc. [2]. NoC is a tile based architecture

and basically consists of processing element, routers and links which provide interconnection

[3, 4, 5]. NoC basically concentrates on parallelism, concurrency and scalability. There are a

large number of NoC applications and few among them are point-to-point signal wires, shared

bus and segmented bus [6]. Traditional exchanges of data signal between IP cores are replaced

by packets routed through the fabric router [7, 8].

Issue of bottleneck is the biggest challenge in front of the System-on-chip due to global inter-

connections. For achieving low latency, high bandwidth andscalability [9] simultaneously, the

basic concentration of NoC is the shrinking of the size of thechip, and making it as small as

possible. Bus based architecture [10] which was used traditionally dosen’t proves to be reliable

architecture due to improper scalability and lack of parallelism, high latency low power dissi-

pation along with low throughput. Future system on chip has considered network on chip to be

the best solution for all the issues occurring in it [11] [12]. A large number of processors can

process the tasks parallel on them hence networks on chip provides scalability and parallelism

to a great extent.

The problems which were avoided during the consideration ofsystem on chip or are considered

1

2

Figure 1.1: Moore’s Law for increasing number of transistors

at the nano scale level are also tackled in networks on chip asan important constraint for per-

formance evaluation. Researchers are developing new techniques to improve the performance

of the mesh topology as well as they are concentrating on those architectures which are basi-

cally application specific and are build keeping in mind the requirements of the application. But

there are some limitation in the NoC architecture too and even either providing a large scale

of parallelism and scalability NoC cannot be proved to be thebest solution. The issues related

to NoC architecture are high power consumption, high cost communication,high energy con-

sumption and low throughput. To resolve the issues of NoC researchers proposed the concept

of 3D Networks on chip, which can resolve the issues of basic 2D NoC, as 3D NoC is capable

of providing low power requirements [13], low energy consumption [14] [15] and high speed.

From the Moores law as shown in Fig.1.1, in the past few decades a tremendous increase in the

number of transistors over the chip is observed, which is continuously increasing with a rapid

rate day by day, due to this shrinking the size of the chip without effecting the performance

of the system is the biggest issue to be tackled [16]. As the number of components increase,

to achieve scalability with such a large number of components it has become more complex to

achieve the performance goals.

Due to this large size there are many issues being faced such as power dissipation, resource

management [17] [18] etc. So interconnection networks haveinitiated the determining of the

performance and also the power consumption of the entire chip, and is working on these param-

eters to enhance the performance of the system. Lack of scalability, concurrency / parallelism,

high latency and power dissipation, and low throughput has made the traditional bus architec-

2

3

Figure 1.2: Networks on Chip Architecture

ture and point-to-point architecture a non reliable systemon chip architecture. But all these

issues are best resolved in the Network on chip, hence it proves to be more promising solution

over system on chip [19] [20]. Hop-by-hop basis is the basis is considered for switching packets,

whereas Networks on chip connects processors, memories anddesigns for providing customiza-

tion and hence provide high bandwidth and high performance [21] [22]. As shown in Fig.1.2,

NoC architectures are basically concentrated upon connection of the segment (or wires) and

switching blocks. Switching techniques used in NoC are circuit switching, packet switching,

wormhole switching, virtual cut-through (VCT) switching etc. [23, 24, 25, 26, 27, 28, 29, 30].

The main aim of this research is to map the task on the most suitable core for processing in both

2D and 3D. For mapping the task on to some core there is requirement of the various routing

algorithms, which treat task in the form of packet and route the task to the particular core chosen

for mapping [31] [32] [33] [34]. Task migrate over differentrouters and cores in order to be

mapped on the suitable core. For 2D NoC a 5 port router [35] is basically used whereas for 3D

NoC a 7 port router is used.

3

1.1. Structure of Router in NoC 4

1.1 Structure of Router in NoC

In NoC different structure of router are used for both 2D NoC and 3D NoC architecture. For

2D NoC, routers used for routing purpose have 5 ports which include northport, southport,

eastport, westport and coreport. The north port is used by the router to send the packet ifthe

core on which task has to be mapped lies on the north directionlink of the router. Similarly for

sending task on to the cores in the south, east and west direction the corresponding ports of the

router are used. Fig. 1.3. In the Fig. 1.3 each port has two links one is incoming link to the port

while other one is a outgoing link from the port. There is a 3D router which is used to route

the task to the core on which the task has to be mapped using 7 ports. This router is basically

designed for 3D NoC as shown in Fig. 1.4. It has all the 5 ports as was there in 2D routers

for NoC, and along with these 5 routers there are 2 more ports which include topport and a

bottomport. For convenience in the Fig. 1.4 topport and bottomport configuration are shown

by different colors. Different colors doesn’t imply that there is some difference in the port, but

different colors are used to show the difference between the2D and 3D router.

1.2 XY Routing Algorithm

The most commonly used routing algorithm is XY routing is proposed by the author in his paper

[36]. Author has considered that packet consist of header, tail and data flits. Header flit contains

the address of the destination node. For the purpose of implementation 2-D mesh topology

along with wormhole switching technique are considered. The co-ordinates of each router are

represented as (x,y),for the routing current address (Cx,Cy) is compare with the destination

router address (Dx,Dy) of the packet ,depends up on the comparison output of routing algorithm

router routes the packets. if (Dx > Cx) head flit moves to East else it take West turn upto

(DxCx) become equal this passion is called as horizontal alignment .Now (Dy,Cy) undergoes

compression , if it is found that (Dy < Cy) then packet’s header flit moves towered South else

North upto (Dy = Cy).For simulation an environment maintained as the packet size is 8 bytes

with a random destination mode , the percentage load is 50% which mean that 50% of maximum

bandwidth is used, the interval between successive flits is 2clock cycles, the simulation runs

1000 clock cycles and the clock frequency is 1 GHz, Synthetictraffic generators generate traffic

in the first 300 clock cycles with warm-up period of 5 clock cycles. After simulation authors

define an average performance parameter P to evaluate the average performance of the algorithm

that is P where P= Average Throughput of Network/ Average Latency per packet of Network

4

1.2. XY Routing Algorithm 5

Figure 1.3: 2D router architecture

5

1.2. XY Routing Algorithm 6

Figure 1.4: 3D router architecture

6

1.3. Communication Task Graph 7

which is 0.86 for the XY algorithm. So they come to conclusionthat the implement of XY

routing algorithm is simple as well as the X-direction channel latency is averagely lager than

Y-direction channel latency and X-direction channel throughput is averagely all square with Y

direction throughput.

1.3 Communication Task Graph

Communication task graph or CTG is an running application on ansystem which is basically

used to evaluate the performance of the system. There are twotypes of dependencies on which

the task depends control and data dependencies [37, 38]. Boththese dependencies can be ex-

plained as given below:

• Control Dependency:- In this a ask has to wait for other task tocomplete its job. So when

some task is in executing phase then other task cannot start its execution till other tasks

are there in the execution phase.

• Data Dependancy:- It implies that the tasks depends on each other for their execution and

they depend on each other at the time of execution.

Communication task graph represented as (CTG), G’ = G’(T,D), is a graph which is acyclic

in its occurrence. The vertex of the graphs shows the computational model represented as task

ti∈T. Each taskti has the relevant data which include execution time, energy consumption by

the task and deadline of the task. Each directed arcdi, j∈ D between tasksti andt j gives the

detailed information of either data or control dependencies. There is a value v(di, j) which is

associated withdi, j and the associated value v(di, j) stands for communication volume in bits

exchanged between tasks [38, 39, 40, 42].

1.4 Types of graphs used in NoC

1.4.1 Application characterization graph (APCG)

Application characterization graph is represented as G=(C,A) where vertexci is the selected

IP/core and as it is a directed graph so directed arcai, j defines the communication from coreci

7

1.4. Types of graphs used in NoC 8

Figure 1.5: Communication Task Graph

to c j .

Directed arcai, j has some of the properties as mentioned here:

• v(ai, j) is the volume of the arc, here the arc is between the coresci to c j . This volume is

calculated in bits from coreci to c j .

• Arc bandwidth represented as b(ai, j) is represented as the arc between the vertexci to c j ,

and it is the minimum bandwidth represented as bits per second, and it is assigned for

achieving the performance constraints of the network[38, 41, 42].

1.4.2 Architecture Characterization Graph(ACG)

Architecture Characterization Graph(ACG):- G = G(T,R) is the graph representation for the

architecture characterization graph. It is an undirected graph and a vertexti here represents a

tile and there is a directed arcr i, j also which represents the routing parameters from the tile ito

ti. Following are the properties eachr i, j considers for[38, 41, 42]:

• There are minimum paths between any two tiles and these minimum paths are called

8

1.4. Types of graphs used in NoC 9

Figure 1.6: Application Characterization Graph

candidate paths. PathPi, j represents this set of the candidate paths from tileti to t j , and

there are links between these tiles which are used bypi, j represented as L(pi, j).

• The cost involved for any arc is represented as e(r i, j).This cost is determined in terms

of the energy consumption calculated in joules involved forsending a single bit of the

information from the tileti to tile t j .

9

10

Chapter 2

Literature Review

2.1 Research Papers

In this section the basic idea is to give the explanation of some of the papers which are being

reviewed by me for reference to mapping algorithm.

2.1.1 An Energy-Aware Methodology for Mapping and Scheduling of Con-

current Applications in MPSoC Architectures

Rajaei et al. [43] discusses about the EMAP for mapping which is based upon the energy con-

sumption and proves to be best algorithm for mapping and scheduling of cocurrent applications.

EAMS algorithm finds the mapping of task of the application toIP core in order to reduce the

energy consumption without performance loss including task having deadline are satisfied.In

this algorithm, we use deterministic routing which uses fewer buffers, resulting in less latency

and energy consumption. Also, deterministic routing algorithms are deadlock and livelock free.

NoC architecture consists of set of heterogeneous IP cores is considered. EAMS algorithm par-

titioned the tasks into critical tasks, (having probability of failing deadline) and non-critical task

(not having probability of failing).

Algorithm for critical tasks given in the paper is as mentioned here. Arrange the critical tasks

list. Calculate the execution time of tasks on all PE’s. Task having large execution time has

10

2.1. Research Papers 11

higher priority. Choose the idle PE, assign highest prioritytask from list and continue untill all

idle PE’s finishes or all critical task are assigned to PE’s for execution. Evaluate that tasks meet

their deadlines, if not then either use busy PE or find an appropriate PE for task. If busy PE are

used for execution of new task, then previous task will be added to task list.

Algorithm for non-critical tasks is as mentioned. Arrange the non-critical tasks list. Calculate

the average value(Deviation) of tasks meeting deadline. Task having large deviation has higher

priority. Choose the lowest power consuming idle PE, assign highest priority task from list for

execution of tasks.

Xsimulator which is object oriented tool, to evaluate interconnection network and EDF-ASAP,

EDF-ACAP two scheduling algorithms are used to evaluate energy saving, and performance(in

terms of traffic) of algorithms.

2.1.2 Spiral: A heuristic mapping algorithm for network on chip

A heuristics core mapping algorithm for 2D mesh topologies called Spiral is proposed in this

paper [44]. To measure the efficiency and speed, spiral mapping algorithm is compared with

genetic algoirthm. Spiral algorithm improves reduction inenergy consumption. In this algo-

rithm, tasks are assigned to set of cores and tasks are maintained in task priority list(TPL). In

mesh topology, high degree of connection is present at center as compared to the boundary and

it forms platform priority list(PPL) which starts at centerof mesh and ends at boundary switch

or router in spiral fashion.

Priority assignment rules are as mentioned. Task having higher size of data transfer should be

placed as close as possible to each other. The task which are tightly related should have least

possible Manhattan Distance. Task which have high connection degree(maximum degree of

task in task graph), should be placed at the center of mesh topology. Task having higher priority

should be mapped spirally from center to boundary of mesh platform.

Techniques and tools used in this paper are:

• X-Y Routing algorithm.

11

2.1. Research Papers 12

Figure 2.1: Spiral Mapping.

• MATLAB is used to evaluate the performance of spiral algorithm, which measures energy

consumption.

• SMAP tool is capable of creating random graphs onto mesh platform.

2.1.3 Bandwidth-aware application mapping for NoC based MPSoCs

A mapping method is proposed to schedule and map the tasks of an application onto NoC

architecture using ACO-based (Ant Colony Optimization) algorithm in order to minimize the

bandwidth requirement of NoC [45]. With the help of the results, it can be evaluated that using

X-Y routing algorithm, one can achieve reduction of around 48% in required bandwidth. The

mapping algorithm is such that we get B = min (∑∀i bl) = min (∑∀(i, j) (ci, j × dist(i,j)))

Biological ants finds the way to reach their food from their colony. This is the basic idea, which

author has concentrated upon, for finding the solution of NP-problems, i.e. non-deterministic

polynomial problem.

• Initialize values of counter(NC), ants be numbered as k, sizeof network considered as S,

the T be the number of tasks and the values of the pheromoneτi j

– While (NC≫0)

– for (ants from 1 to k)

12

2.1. Research Papers 13

– generate the tabu-search table Tabu

– for (each task j)

– generate the probability such that:pk
i j =

τi j

∑i /∈tabuτi j
, otherwisepk

i j = 0

– assign task j to processor i according to the probabilitypk
i j .

– update the tabu-search table Tabu.

– end

– calculate the total bandwidth requirementBk

– end

– search the best ant which minimizes the value ofBk (Bbest = min(Bk))

– update the pheromone for the best ant

– end

– search the best ant and output the mapping results

2.1.4 GA-MMAS: An energy aware mapping algorithm for 2D net-

work on chip

Fang et al.[46] proposed a mapping algorithm named GA-MMAS based on Genetic Algo-

rithm (GA) combined with MAX-MIN Ant System Algorithm (MMAS), to optimize en-

ergy consumption for NoC. In proposed technique, pheromonesare initialized for MMAS

from the result of GA. GA in GA-MMS Algorithm is as discussed here. Generate a ran-

dom population of valid solutions with the help of chromosomes which consists of series

of genes.Each gene represents an IP core. With the help of cross-over method as shown

in Fig. 2.2, next generation population is generated and it stops at 1000 threshold value.

With the help of genes, pheromone network is created. From those network path matrix

table is formed which shows mapping of tasks on IP core and initialized to MMAS.

13

2.1. Research Papers 14

Figure 2.2: Cross-Over Order

MMAS in GA-MMAS : Each ant has one more table called stable table which consists of

number of unassigned task to core. Task is assigned to IP coreaccording to calculating

probability having higher value. After assignment entry from stable table is deleted and

updated into path table. Calculate the fitness function in terms of minimization of energy

consumed and then update the pheromone for best ant.

The algorithm can save about 60% of energy consumption. Thisalgorithms are compiled

in C++ using 2D mesh platform on Window XP.

2.1.5 A3MAP: Architecture-aware analytic mapping for network on

chip

WOOYOUNG JANG et al. propose Architecture-Aware Analytic Mapping (A3MAP) al-

gorithms applied to Networks-on-Chip (NoCs) with homogeneous Processing Elements

(PEs) on a regular mesh network and heterogeneous PEs on an irregular mesh network

[47]. An application mapping problem is exactly formulatedto Mixed Integer Quadratic

Programming (MIQP). Since MIQP is NP-hard, author propose two effective heuristics,

a successive relaxation algorithm providing short run time, called A3MAP-SR and a ge-

netic algorithm achieving high mapping quality, called A3MAP-GA. A3MAP algorithms

reduce total hop count and reduces traffic and communicationdelay between cores.

14

2.1. Research Papers 15

Figure 2.3: A3MAP

Figure 2.4: A3MAP Matrices

15

2.1. Research Papers 16

Figure 2.5: A3MAP-SR

Figure 2.6: A3MAP-GA

16

2.1. Research Papers 17

Figure 2.7: Task placement with Spiral Strategy.

2.1.6 Heuristic for routing and spiral run-time task mapping in NoC

based heterogeneous MPSoCs

El Hasan et al.[49] describes a new Spiral Dynamic Task Mapping heuristic for mapping

applications onto NoC-based Heterogeneous MPSoC and new modified dijkstra routing

algorithm proposed are capable of reducing the total execution time and energy consump-

tion of applications. Proposed spiral heuristic based on our Modified Dijikstra routing

Algorithm.

17

18

Chapter 3

Problem Statement

Before formulating mapping problem, we assume that in order to perform mapping, we

are given with application that is characterized by set of tasks which performs scheduling

onto NoC cores. For appropriate understanding of mapping problem strategies, some

important definition need to be explained.

Definition 1 A Logical Application Trace Graph (LATG) G= (At ,Et) is an directed

acyclic graph, whereat ∈At represents task from list of application tasks andci, j ∈Et is an

directed arc between application tasks, that shows communication dependency between

tasksat1 andat2. Logical application trace graph is depicted in Fig. 3.1 Each directed

edge or arc has one property:-

– v(ci, j) represents volume bits transferred between from arcci to c j .

Definition 2 NoC Architecture Characterization Graph (NACG) G= (T,LT) repre-

sents undirected graph as shown in Fig. 3.2, where vertex node ti , t j ∈ T shows tiles in

NoC architecture, whereaslk = l i, j = (ti , t j) ∈ LT represents routing path betweenti and

t j . Routing path in NACG consists of two properties :-

– e(l i, j) is average energy consumption of task in bits fromti andt j .

– Lat(l i, j) represents average latency of task fromti andt j .

– band(l i, j) is defined as bandwidth of link betweenti andt j .

Definition 3 A mapping function(Ω) is represented asΩ : At → T, that shows map-

ping of application tasks from LATG onto tiles available in NACG, whereat ∈ At and

Ω(at) ∈ T andΩ(at) characterizes mapped tile in NACG. Fig. 3.3 shows mapping of

application tasks onto NoC tile based architecture.

18

19

T1

T2 T3

T4 T5 T6 T7

T8

T9

Application Task

Communication between Task

Figure 3.1: Logical Application Trace graph

T1

T2 T3

T4 T5 T6 T7

T8

T9

Application Task

Communication between Task

Core

ASIC1

DSP1CPU1

DSP2

CPU2

ASIC2

Figure 3.2: NoC Architecture Characterization Graph

19

20

Figure 3.3: NoC Mapping Technique

Finally, the formulation of mapping problem is as follows:

Given: An LATG G= (At ,Et) and NACGG= (T,LT),

Evaluate mapping functionΩ : At → T, that maps taskat ∈ At in LATG to tile ti ∈ T in

NACG,

such that energy consumption and average latency is minimized. Fig. 3.4 represents the

flow of mapping of application task onto topology in order to get optimized results in

terms of energy consumption and average latency.

20

21

Figure 3.4: Flowchart representation of application mapping onto topology

21

22

Chapter 4

Existing Mapping Algorithm

4.1 Random Mapping Algorithm

Random mapping algorithm for NoC is most commonly used mapping algorithm by dif-

ferent researchers, but there are many issues involved in random algorithm. Issues such

as load balancing as shown in Fig. 4.1, latency, service timeand queuing time are not

handled by random algorithm for NoC. In random algorithm, tasks are mapped on the

cores randomly as discussed in Algorithm 1 . The worst case ofthe algorithm is, when

every time the same core is chosen for mapping the task. As alltasks are mapped on

the same core, so, the new tasks to be mapped will remain in thequeue and wait for an

infinite period of time till the core is not ready to process the new task. Once the core

is available task is mapped on the core. In the best case of random algorithm for map-

ping, the randomly chosen cores will have an equal probability to be chosen, and task

will be mapped on to these cores uniformly. There are rare chances to obtain the best

case of the random algorithm. Let us consider a scenario thatevery time the last core

of the grid is chosen to map the tasks. If such a case exist thenlatency involved to map

the tasks on the cores will be very high. So mapping the task onto the cores in case of

random algorithm consumes a large amount of latency, service time, queuing time and the

energy consumption. To improve the performance of the mapping algorithm in this pa-

per, the horological, rotational and divide and conquer mapping algorithms are proposed.

22

4.1. Random Mapping Algorithm 23

High Load

Less Load

Figure 4.1: Load balancing by random mapping algorithm in 2DNoC

Algorithm 1: Random Mapping Algorithm
Data: dst coreas the destination core, id be the unique number assigned to each core and

id ∈ [0,n), n× n mesh topology is given havingn2 cores andtn be the number of task.

Result: Task mapped on cores randomly

while (tn > 0) do

dst core = (id + intuniform(1,n)) % n;

//returns a random core from n cores available.

Assign task to dstcore;

tn–;

Random mapping algorithm for 3D NoC is similar to the random algorithm as dis-

cussed in 2D NoC mapping technique. Issues such as load balancing can be viewed in

Fig. 4.2 where the red color shows the most energy consuming part of the NoC disk. In

random algorithm, tasks are mapped on the cores randomly similar to that of the 2D NoC

random mapping algorithm, as discussed in Algorithm 1.

23

4.1. Random Mapping Algorithm 24

High Load

Less Load

Figure 4.2: Load balancing by random mapping algorithm in 3DNoC

24

25

Chapter 5

Proposed Approach

In this section the three proposed approaches are discussedwhich proves to be better than

the existing random mapping algorithm in terms of latency, load balancing and energy

consumption. First approach discussed is horological mapping algorithm, in which the

cores are visited one by one guaranteeing load balancing over the cores of the grid. Sec-

ond approach is the rotational mapping algorithm. In this the task are assigned to the cores

in rotation one by one guaranteeing the least latency involved during mapping of tasks.

The third algorithm proposed in the paper is the divide and conquer mapping algorithm,

which provides an assurity of load balancing on the grid.

5.1 Horological Algorithm

As the name suggest, in this mapping algorithm the tasks are mapped horologically on

the cores one by one. As the task are assigned to the cores, then the core will process

these task, and after the processing of task, the core gets ready to execute the next task

in the queue. In this, the cores are allotted an coreid horologically. The first task in the

queue is allocated to the first core, second task to the secondcore and so on. When the

task on some core is completed, then a new task is allocated tothis core. This algorithm

produces good results in terms of load balancing on the cores, but the accessing time

of the core increases as we moves towards the last core, with the last core having the

maximum access time. So the accessing time of the cores is increased moving towards

the last core. Fig. 5.1 shows the allocation of task on 8× 8 mesh topology. For an

instance, suppose there are 8 tasks which are to be mapped on the cores then even if the

core with coreid 8 is closer to the queue the task will not be assigned to it, instead tasks

will be assigned to the cores having coreid 0 to coreid 7. Horological mapping proves

25

5.1. Horological Algorithm 26

to be better than the random mapping in terms of load balancing as shown in Fig. 5.2,

queuing time and service time. It also resolve the issue of bottleneck existing in random

mapping algorithm. Hence the horological mapping algorithm proves to be better over

the random mapping algorithm. Horological mapping algorithm is given in Algorithm 2.

Algorithm 2: Horological Mapping Algorithm
Data: n× n Mesh topology havingn2 cores represented as c[i][j],tn be the number of task.

Result: Cores chosen horologically to map task.

while (tn > 0) do

for i:=0 to n-1 step 1do

for j:=0 to n-1 step 1do

Assign the task to core c[i][j];

tn−−;

Horological mapping algorithm for 3D Networks on Chip is similar to the 2D horolog-

ical mapping algorithm. The load balancing in case of the horological mapping algorithm

for 3D NoC is shown in the Fig. 5.3. For the 3D NoC horological mapping algorithm the

same algorithm is followed which was there for 2D NoC horological mapping.

26

5.1. Horological Algorithm 27

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 5.1: Horological mapping algorithm

27

5.1. Horological Algorithm 28

High Load

Less Load

Figure 5.2: Load balancing by horological mapping algorithm in 2D NoC

High Load

Less Load

Figure 5.3: Load balancing by horological mapping algorithm in 3D NoC

28

5.2. Rotational Algorithm 29

5.2 Rotational Algorithm

Rotational mapping algorithm is proposed in this paper in order to minimize the latency

involved during the mapping of the task on to the core, but there is no assurity of load

balancing in this mapping algorithm as shown in Fig. 5.4. In rotational algorithm task are

mapped on the cores in the rotational manner. Basic concern ofthe proposed approach is

to reduce the amount of time required for mapping task on the core. In order to achieve

the goal it is required to map the task on the core which is placed nearest to the task

allocation queue, so whenever task has to be mapped, it is mapped on to the core which

is nearest to the allocation queue and is in ready state, i.e.it is ready to accept the task

for execution. For this purpose the ports of routers are considered to be very important.

In this task to be mapped is routed on to the elements (routersor cores) attached to the

ports of the router. For each router starting from port zero to the last port, task are passed

to each port in an sequential order. Once all the ports are visited then this procedure

repeats from first port of the router to the last port. In this way the algorithm is capable

of mapping multiple task on the cores till the task allocation queue is not empty. As the

procedure repeats for each router considering all the portsevery time hence the algorithm

is called as rotational algorithm. Rotational mapping algorithm is given in Algorithm 3.

Algorithm 3: Rotational Mapping Algorithm
Data: n× n Mesh topology havingn2 cores represented as c[i][j],tn be the number of task, r[i][j]

be the router corresponding to core c[i][j], P[i][j] be the number of ports associated to each

router, variable assign to track the assignment of the task on the core and k[i][j]=0.

Result: Task mapped on cores by rotational Algorithm

while (tn > 0) do

assign = 0;while (assign! = 1) do
k[i][j] = k[i][j] % P[i][j]; //K[i][j] and P[i][j] are counters.

if c[i][j] is attached to port k[i][j] then
Assign the task to the c[i][j];

assign = 1;

k[i][j]++;

tn−−;
else

Pass the task on the router r[m][n] attached at port k[i][j];

i = m;

j = n;

k[i][j]++;

29

5.3. Divide and Conquer Mapping Algorithm 30

High Load

Less Load

Figure 5.4: Load balancing by rotational mapping algorithmin 2D NoC

Rotational mapping algorithm in 3D networks on chip is same asthat of the 2D net-

works on chip, as described above. The concept of load balancing is shown in the Fig.

5.5. The algorithm followed for mapping task on the cores using the 3D NoC rotational

mapping is same as that of the one given above for 2D NoC.

5.3 Divide and Conquer Mapping Algorithm

In divide and conquer mapping algorithm, the main emphasis is on load balancing on n×

n mesh topology. As the name suggest, in this algorithm first 2D Mesh topology is divided

vertically into two (nearly equal) parts and then the division is carried out horizontally.

After each vertical and horizontal division the topology isdivided into 4 sub-grids of

nearly equal dimensions(rows× columns) as shown in Fig. 5.6. Different tasks from task

list, which are maintained in queue, are being mapped onto sub-grids in such a way that

load is equally balanced on the mesh topology. For this purpose each time the task has

to be mapped, the grids and sub-grids are further divided both vertically and horizontally.

The task is assigned to the core belonging to that sub-grid inwhich there are least number

of task mapped. In this way the task mapped on the cores of sub-grid are balanced, hence

there is an assurity of load balancing during the mapping of the task to the cores. For an

30

5.3. Divide and Conquer Mapping Algorithm 31

High Load

Less Load

Figure 5.5: Load balancing by rotational mapping algorithmin 3D NoC

instance let us consider a simple scenario for mapping task on the 8× 8 mesh topology,

first task from task list is mapped onto first core of first sub-grids. Second task from task

list, is mapped onto 5th core belonging to second sub-grids.In the similar way, 3rd task

mapped onto 33th core belonging to third sub-grids and next task mapped onto 37th core

which belongs to fourth sub-grids. So in this way, all task ismapped onto mesh topology

as shown in Fig. 5.7, assuring the researcher to get a NoC architecture with complete load

balancing in Fig. 5.8. Divide and conquer mapping algorithmis given in Algorithm 4.

Algorithm 4: Divide And Conquer Mapping Algorithm
Data: n× n mesh havingn2 cores andtn number of tasks.

Step I : Divide grid vertically with one partition having⌊n
2 −1⌋ cores and other partition having

⌊n
2⌋ cores in each row.

Step II : Divide grid horizontally with one partition having⌊n
2 −1⌋ cores and other partition

having⌊n
2⌋ cores in each column.

Step III : Assign task to first core of each partition.

Step IV : Repeat above steps for each sub-grids obtained with vertical and horizontal line

partitions till grid having exactly one core is obtained.

Step V : If all task are not assigned to the cores then repeat the full process given above

considering the full n× n grid again.

The algorithm used for the divide and conquer mapping algorithm is same in the 3D

31

5.3. Divide and Conquer Mapping Algorithm 32

Figure 5.6: Grid Divison into sub-grid

32

5.3. Divide and Conquer Mapping Algorithm 33

1 13 5 21 2 14 6 22

33 49 37 53 34 50 38 54

9 25 17 29 10 26 18 30

41 57 45 61 42 58 46 62

3 15 7 23 4 16 8 24

35 51 39 55 36 52 40 56

11 27 19 31 12 28 20 32

43 59 47 63 44 60 48 64

Figure 5.7: Divide and conquer mapping algorithm

33

5.4. Energy Model 34

High Load

Less Load

Figure 5.8: Load balancing by divide and conquer mapping algorithm in 2D NoC

NoC as that of the 2D NoC, discussed above. The concept of load balancing in case of

the 3D networks on chip mapping algorithm is shown in the Fig.5.9

5.4 Energy Model

The objective function is to minimize the energy consumption, which can be mathemati-

cally represented as:

min{ ∑
∀at∈At

eΩ(at)+ ∑
∀ci, j∈Et

v(ci, j)×

|RΩ(at1),Ω(at2)
|

∑
l i, j∈RΩ(at1),Ω(at2)

e(RΩ(at1),Ω(at2))} (5.1)

satisfying conditions as

∀at ∈ At , ∀Ω(at) ∈ T (5.2)

∀at1 6= at2, ∀Ω(at1) 6= Ω(at2) (5.3)

34

5.4. Energy Model 35

High
Load

Less
Load

Figure 5.9: Load balancing by divide and conquer mapping algorithm in 3D NoC

The average energy consumption for transferring task fromti to t j can be represented

as follows:

E
ti ,t j
task= N×numhops×ELink+N× (numhops−1)×ERouter (5.4)

where,ELink andERouterrepresents energy consumption of link and energy consump-

tion of router. In order to computeERouter, we have to compute energy consumption of

buffer (EBu f f er), energy consumption of crossbar switch (ECrossbar) and energy consump-

tion of arbiter (EArbiter). EArbiter is further divided into two parts : (i)ECrossbarAllocation,

energy consumption of switch allocation and (ii)EVC Allocation, energy consumption of

virtual channel allocation.ELink can be computed as gievn in Equation 5.7. Energy con-

sumption of topology is calculated for all N tasks is given inEquation 5.8.

ERouter= EBu f f er+ECrossbar+EArbiter (5.5)

EArbiter = ECrossbarAllocation+EVC Allocation (5.6)

ELink =
PLink

Freq.
(5.7)

35

5.5. Latency Model 36

ETotal =
N

∑
i=1

Etaski (5.8)

5.5 Latency Model

The mapping function for minimization of average latency oftopology can be mathemat-

ically formulated as:

min{ ∑
∀at∈At

LatΩ(at)+ ∑
∀ci, j∈Et

v(ci, j)×

|RΩ(at1),Ω(at2)
|

∑
l i, j∈RΩ(at1),Ω(at2)

Lat(RΩ(at1),Ω(at2))} (5.9)

satisfying conditions as

∀at ∈ At , ∀Ω(at) ∈ T (5.10)

∀at1 6= at2, ∀Ω(at1) 6= Ω(at2) (5.11)

The latency from tileti to tile t j can be computed according to Equation 5.12. The

overall latency for all N tasks is calculated by Equation 5.13.

Lat
ti ,t j
task= N×numhops×LatLink+N× (numhops−1)×LatRouter (5.12)

LatTotal =
N

∑
i=1

Lattaski (5.13)

Fig. 5.10 shows the 3× 3 NoC topology in the form of tile, where each tile consist

of cores (that can be IP core, DSP core etc.) and routers (consists of crossbar switch,

routing algorithm and arbitration logic). Latency of single task to be transferred across

channel areDin jection and De jection respectively and latency of a task across router are

Dswitch, Drouting and Dwaiting. In Fig. 5.11, we have considered link injection latency

(Din jection), latency of first router (Dswitch+Drouting), inter-tile latency (Dwaiting), second

router latency (Drouting+Dswitch), and link ejection latency (De jection). Latency flow of

single hop can be calculated according to Equation 5.14:

Latencysinglehop= Din jection+(Drouting+Dswitch)+Dwaiting

+(Drouting+Dswitch)+De jection (5.14)

36

5.5. Latency Model 37

IP Core

Crossbar
Switch

Arbitration Logic
and Routing

Dinjection

Dswitch
DroutingTile

Figure 5.10: NoC topology tile

IP Core

Crossbar
Switch

Arbitration Logic
and Routing

Dinjection

Dswitch Drouting

IP Core

Crossbar
Switch

Arbitration Logic
and Routing

Dejection

Dswitch Drouting

Dwaiting

Figure 5.11: Latency flow in single hop

37

5.5. Latency Model 38

Source IP core Destination IP core

Rsource RIntermediate RDestination

DInjection DEjection

PRouter PRouter

Figure 5.12: Latency flow in two hop from source to destination core

In order to calculate the latency from source to destinationcore, we have assumed that

as task reaches to destination core, then the task is immediately accessible by destination

core. In Fig. 5.12, the latency involved, is considered fromsource IP core to destination IP

core passing through routers areRsource,RintermediateandRDestination. The latency of task

having two hops between source and destination core (Lsource→destination) is calculated as

given in Equation 5.15, whereWsource, WdestinationandWintermediaterepresents the waiting

time in routers. The average latency of task (L) can be calculated in Equation 5.16, where

Psource→destinationis probability of task to be generated.

Lsource→destination= Din jection+(Drouting+Wsource
in j→port +Dswitch)

+Dwaiting+(Drouting+Wintermediate
port→port +Dswitch)

+Dwaiting+(Drouting+Wdestination
port→e jc +Dswitch)

+De jection+(m−1)(Dswitch+Dwaiting)

(5.15)

L = ∑
source

∑
destination

Psource→destination×Lsource→destination (5.16)

38

39

Chapter 6

Simulator Tool

6.1 OMNeT++

OMNeT++ is an object-oriented modular discrete event network simulation framework.

OMNeT++ itself is not a simulator of anything concrete, but rather provides infrastruc-

ture and tools for writing simulations. One of the fundamental ingredients of this in-

frastructure is a component architecture for simulation models. OMNeT++ simulations

can be run under various user interfaces. Graphical, animating user interfaces are highly

useful for demonstration and debugging purposes, and command-line user interfaces are

best for batch execution. The simulator as well as user interfaces and tools are highly

portable. They are tested on the most common operating systems (Linux, Mac OS/X,

Windows), and they can be compiled out of the box or after trivial modifications on most

Unix-like operating systems. OMNeT++ also supports parallel distributed simulation.

OMNeT++ can use several mechanisms for communication between partitions of a par-

allel distributed simulation.

An OMNeT++ model consists of modules that communicate with message passing. The

active modules are termed simple modules; they are written in C++, using the simula-

tion class library. Simple modules can be grouped into compound modules. OMNeT++

execution has different phases and these phases are shown inthe form of the flowchart

as shown in the Fig. 6.1 NED files specify the structure of any component in the simu-

lator. There are different types of NED files: Network and Module files. The Network

NED file contains all elements of a simulation (i.e., all hosts, routers, connections, etc.)

Any simulation will have 1 Network, defined in a NED file. Module NED files detail the

39

6.2. Orion 2.0 40

structure of any simulation component. They can be defined recursively. For example,

a Router module has submodules such as a RoutingTable, Point-to-Point interfaces, and

an IP-Layer. A module may have parameters specified in the NEDfile, which serve as

inputs to the module at runtime. Since any module in the simulation is a submodule of

another module or a submodule in a network, any module in the simulation has a Path.

6.2 Orion 2.0

Orion, interconnection network simulator is used to determine the a power-performance

which can provide the power characteristics in full descriptive manner, along with these

performance characteristics, it also enables a power-performance of the system at a archi-

tecture level. This capability is provided within a generalframework that builds a simula-

tor starting from a micro architectural specification of theinterconnection network. A key

component of this construction is the architectural-levelparametrized power models that

we have derived as part of this effort. Using component powermodels and a synthesized

efficient power (and performance) simulator, a micro architect can rapidly explore the

design space. As case studies, we demonstrate the use of Orion in determining optimal

system parameters, in examining the effect of diverse traffic conditions, as well as eval-

uating new network micro architectures. Fig. 6.2 shows the flowchart for the execution

in the Orion Simulator. In each of the above, the ability to simultaneously monitor power

and performance is key in determining suitable micro architectures [50].

40

6.2. Orion 2.0 41

An OMNeT++ model is build from components (modules) which communicate by

exchanging messages. Modules can be nested, that is, several modules can be

grouped together to form a compound module. When creating the model, you need

to map your system into a hierarchy of communicating modules.

Define the model structure in the NED language. Edit NED in a text editor or in the

graphical editor of the Eclipse-based OMNeT++ Simulation IDE.

The active components of the model (simple modules) have to be programmed in

C++, using the simulation kernel and class library.

Provide a suitable omnetpp.ini to hold OMNeT++ configuration and parameters to

your model. A config file can describe several simulation runs with different

parameters.

Build the simulation program and run it. Link the code with the OMNeT++ simulation

kernel and one of the user interfaces OMNeT++ provides. There are command line

(batch) and interactive, graphical user interfaces.

Simulation results are written into output vector and output scalar files. You can use

the Analysis Tool in the Simulation IDE to visualize them. Result files are text-based,

so can be processed with R, Matlab or other tools.

Figure 6.1: OMNeT++ execution flowchart.

41

6.2. Orion 2.0 42

Network

Description

Modules

Semantics Events Timing

Power Library

LSE

Simulator Instance

Power Performance

Workload

Figure 6.2: Orion execution flowchart.

42

43

Chapter 7

Design Analysis

Figure 7.1: Mesh Topology

43

44

Figure 7.2: 3D Mesh Topology

44

45

Chapter 8

Experimental Results

For implementation purpose, we have used OMNeT++ simulatoralong with the use of

in-built mapping package. In order to implement proposed mapping algorithms, we have

considered the 2-dimensional 8× 8 mesh topology for NoC. Initially, the application

tasks are maintained in the task list, which can be the queued. From that task list, tasks are

mapped on the cores, following the proposed mapping algorithms as mentioned in section

4. We have perform simulation varying the number of tasks from 64 to 128 and compared

the results in terms of latency, queuing time, service time and energy consumption. Fig.

8.1 shows average latency of proposed mapping algorithms for mesh topology, and results

are compared with random mapping algorithm.

Fig. 8.2-8.5 gives graphical analysis of queuing time for random and proposed map-

ping algorithms, and comparison of total queuing time is given in Fig. 8.6. Results

obtained for service time required by each task, using OMNeT++ simulator, are shown in

Fig. 8.7-8.10. Best mapping algorithm, in terms of total service time can be obtained by

the comparative analysis of mapping algorithms as shown in Fig. 8.11.

In order to compute the energy consumption of topology, we have used Orion 2.0

simulator. With the help of orion simulator, we calculate the energy consumption of link

represented asELink and energy consumption of router represented asERouter. Table 8.1

shows the energy of router at different loads. Table 8.2 represents the energy consumption

of link at different link length and different load. With thehelp of Equation 5.4, we com-

pute the energy consumption of individual core in mesh topology using random mapping

and proposed mapping algorithm as shown in Fig. 8.12 -8.15. Comparative analysis of

energy consumption using mapping algorithms are given in Fig. 8.16 Table 8.3 shows the

comparison of proposed and random mapping algorithm in terms of average latency, total

queuing time and total service time for mesh topology.

45

46

565.31 546.78

466.95

526.78

Random Horological Rotational Divide & Conquer
0

100

200

300

400

500

600

Av
er

ag
e

La
te

nc
y

(in
 n

s)

Mapping Algorithm

Figure 8.1: Average latency (in ns) of mapping algorithms inmesh topology

0 20 40 60

5

10

15

20

Core ID

Q
ue

ui
ng

T
im

e(
in

ns
)

Figure 8.2: Queuing Time in mesh topology in random mapping

46

47

0 20 40 60
0

5

10

15

20

Core ID

Q
ue

ui
ng

T
im

e(
in

ns
)

Figure 8.3: Queuing time in mesh topology in horological mapping

0 20 40 60
0

5

10

15

20

Core ID

Q
ue

ui
ng

T
im

e(
in

ns
)

Figure 8.4: Queuing time in mesh topology in rotational mapping

47

48

0 20 40 60
0

5

10

15

20

Core ID

Q
ue

ui
ng

T
im

e(
in

ns
)

Figure 8.5: Queuing time in mesh topology in divide and conquer mapping

797.82
732.33

602.42

687.17

Random Horological Rotational Divide & Conquer
0

100

200

300

400

500

600

700

800

900

To
ta

l Q
ue

ui
ng

 T
im

e
(in

 n
s)

Mapping Algorithm

Figure 8.6: Total queuing time (in ns) of mapping algorithmsin mesh topology

48

49

0 20 40 60

0

5

10

15

Core ID

S
er

vi
ce

T
im

e(
in

ns
)

Figure 8.7: Service time in mesh topology in random mapping

0 20 40 60

0

5

10

15

Core ID

S
er

vi
ce

T
im

e(
in

ns
)

Figure 8.8: Service time in mesh topology in horological mapping

49

50

0 20 40 60

0

2

4

6

8

10

12

Core ID

S
er

vi
ce

T
im

e(
in

ns
)

Figure 8.9: Service time in mesh topology in rotational mapping

0 20 40 60

0

10

20

30

Core ID

S
er

vi
ce

T
im

e(
in

ns
)

Figure 8.10: Service time in mesh topology in divide and conquer mapping

50

51

411.81

252.05

202.11

241.29

Random Horological Rotational Divide & Conquer
0

50

100

150

200

250

300

350

400

450

To
ta

l S
er

vi
ce

 T
im

e
(in

 n
s)

Mapping Algorithm

Figure 8.11: Total service time (in ns) of mapping algorithms in mesh topology

Table 8.1: Energy of router (in pJ) at different load

S. No. Load Energy of Router (in pJ)

1 0.2 16.8

2 0.4 27.138

3 0.6 37.46

4 0.8 47.78

5 1 58.09

51

52

-10 0 10 20 30 40 50 60 70
-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Core Id

Figure 8.12: Energy consumption of cores in random mapping algorithm

Table 8.2: Energy of link (in pJ) at different load and link length (in mm)

Link Length

Load 1 mm 2 mm 3 mm 4 mm 5 mm 6 mm

0.2 7.65 15.31 22.97 30.63 38.28 45.94

0.4 12.10 24.20 36.30 48.40 60.50 72.60

0.6 16.54 33.08 49.62 66.17 82.71 99.20

0.8 20.98 41.97 62.95 83.94 104.93 125.91

1 25.42 50.085 76.28 101.71 127.14 152.57

52

53

-10 0 10 20 30 40 50 60 70

0

2000

4000

En
er

gy
 C

on
su

m
pt

io
n

(p
J)

Core Id

Figure 8.13: Energy consumption of cores in sequential mapping algorithm

-10 0 10 20 30 40 50 60 70

0

1000

2000

3000

4000

5000

6000

7000

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Core Id

Figure 8.14: Energy consumption of cores in rotational mapping algorithm

53

54

-10 0 10 20 30 40 50 60 70

0

1000

2000

3000

4000

5000

6000

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Core Id

Figure 8.15: Energy consumption of cores in divide conquer algorithm

1635.2623

778.02695

500.8115

915.0007

Random Horological Rotational Divide & Conquer
0

200

400

600

800

1000

1200

1400

1600

1800

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Mapping Algorithm

Figure 8.16: Comparison of energy consumption (in pJ) of mapping algorithms

54

55

Table 8.3: Comparison of average Latency, total queuing timeand total service time of map-

ping algorithms (in ns)

S. No. Mapping Algorithms Average Latency Total Queuing Time Total Service Time

1 Random 565.31 797.82 411.81

2 Horological 546.78 732.33 252.05

3 Rotational 466.95 602.42 202.11

4 Divide and Conquer 526.78 687.17 241.29

55

56

1845.019

1674.62 1618.085 1647.477

Random Horological Rotational Divide and Conquer
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Av
er

ag
e

La
te

nc
y

(in
 n

s)

Mapping Algorithms

Figure 8.17: Average latency (in pJ) in mapping algorithm for 3D mesh topology

After implementing the proposed mapping algorithms on 2D mesh topology, we have

also implemented on 3D mesh topology. For simulation purpose, we have considered

4× 4× 4 3D mesh topology. Fig. 8.17 shows average latency comparison in random

mapping and proposed mapping algorithms. Queuing time taken by random mapping

algorithm is shown in Fig. 8.18, whereas queuing time using proposed algorithms are

given in Fig. 8.19-8.21. Comparison of total queuing time of mapping algorithms are

plotted in Fig. 8.22. Service time in 3D mesh topology in caseof random mapping is

given in Fig. 8.23 and Fig. 8.24-8.26 shows service time of proposed mapping algorithms.

The overall comparison of total service time of mapping algorithm in given in Fig. 8.27.

Energy consumption in case of the random mapping algorithm is shown in the Fig. 8.28.

For the description of the results obtained in case of the horological mapping algorithms

for 3D mesh topology, Fig. 8.29 can be consulted. The resultsof the energy consumption

in case of the rotational mapping algorithm are representedin Fig. 8.30. In Fig. 8.31, the

energy consumption of the divide and conquer mapping algorithm for 3D mesh topology

is shown. Fig. 8.32 is the comparative analysis of the energyconsumption for the random,

horological, rotational and divide and conquer mapping algorithm.

56

57

0 20 40 60
0

10

20

Core ID

Q
ue

ui
ng

T
im

e
(in

ns
)

Figure 8.18: Queuing time (in ns) in 3D mesh topology in random mapping

0 20 40 60
0

10

20

30

Core ID

Q
ue

ui
ng

T
im

e
(in

ns
)

Figure 8.19: Queuing time (in ns) in 3D mesh topology in horological mapping

57

58

0 20 40 60
0

5

10

15

20

25

Core ID

Q
ue

ui
ng

T
im

e
(in

ns
)

Figure 8.20: Queuing time (in ns) in 3D mesh topology in rotational mapping

0 20 40 60

0

10

20

30

Core ID

Q
ue

ui
ng

T
im

e
(in

ns
)

Figure 8.21: Queuing time (in ns) in 3D mesh topology in divide and conquer mapping

58

59

797.686 785.65
715.76

769.65

Random Horological Rotational Divide and Conquer
0

100

200

300

400

500

600

700

800

900

To
ta

l Q
ue

ui
ng

 T
im

e
(in

 n
s)

Mapping Algorithms

Figure 8.22: Total queuing time (in ns) of mapping algorithms in 3D mesh topology

0 20 40 60

0

5

10

Core ID

S
er

vi
ce

T
im

e
(in

ns
)

Figure 8.23: Service time (in ns) in 3D mesh topology in random mapping

59

60

0 20 40 60

0

5

10

15

Core ID

S
er

vi
ce

T
im

e
(in

ns
)

Figure 8.24: Service time (in ns) in 3D mesh topology in horological mapping

0 20 40 60

0

5

10

15

Core ID

S
er

vi
ce

T
im

e
(in

ns
)

Figure 8.25: Service time (in ns) in 3D mesh topology in rotational mapping

60

61

0 20 40 60

0

5

10

15

Core ID

S
er

vi
ce

T
im

e
(in

ns
)

Figure 8.26: Service time (in ns) in 3D mesh topology in divide and conquer mapping

331.193

300.971

211.593

253.122

Random Horological Rotational Divide and Conquer
0

50

100

150

200

250

300

350

To
ta

l S
er

vi
ce

 T
im

e
(in

 n
s)

Mapping Algorithms

Figure 8.27: Total service time (in ns) of mapping algorithms in 3D mesh topology

61

62

-10 0 10 20 30 40 50 60 70

0

1000

2000

3000

4000

5000

6000

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Core ID

Figure 8.28: Energy Consumption (in pJ) in Random mapping algorithm for 3D mesh topol-

ogy

-10 0 10 20 30 40 50 60 70

0

2000

4000

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Core ID

Figure 8.29: Energy Consumption (in pJ) in horological mapping algorithm for 3D mesh

topology

62

63

-10 0 10 20 30 40 50 60 70

0

20000

40000

60000

80000

100000

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Core ID

Figure 8.30: Energy Consumption (in pJ) in rotational mapping algorithm for 3D mesh topol-

ogy

-10 0 10 20 30 40 50 60 70

0

1000

2000

3000

4000

5000

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Core ID

Figure 8.31: Energy Consumption (in pJ) in divide and conquermapping algorithm for 3D

mesh topology

63

64

220679.96

116411.05

47748.67

121121.11

Random Horological Rotational Divide and Conquer
0

100000

200000

Av
er

ag
e

En
er

gy
 C

on
su

m
pt

io
n

(in
 p

J)

Mapping Algorithms

Figure 8.32: Comparison of energy consumption (in pJ) of mapping algorithms in 3D mesh

topology

64

65

Chapter 9

Conclusion

Mapping algorithms need to be mapped on the most suitable cores such that the latency,

service time, queuing time and the energy consumption are minimized. Different mapping

algorithms are provided by different researchers but all these algorithm consider different

parameters. So our main emphasis is to propose such a mappingalgorithm which is best

suitable in terms of latency, service time, queuing time andenergy consumption. Along

with this, the mapping algorithm should map the tasks onto the cores in such a way that

load is balanced on to the grid to avoid problem of overheating. All the algorithms being

discussed are generalized and hence can be implemented on the 3D mesh topology for

NoC. We have simulated the mapping algorithms for 2D as well as3D mesh topology.

65

66

Chapter 10

Future Work

Working on the arbitrator based IP cores in the mesh topology. Formalized the conceptual

idea about the arbitrator based core mapping algorithm. As afuture extension to this

work i will simulate the concept of arbitrator based core mapping in OMNeT++ and will

compare the results with other mapping algorithm.

66

BIBLIOGRAPHY 67

Bibliography

[1] Naveen Choudhary.”Migration of On-Chip Networks from 2 Dimensional Plane to 3Dimensional

Plane”, International Journal of Engineering and Advanced Technology, Vol. 2, No. 4, pp. 516-519,

April 2013.

[2] Paulo Santos, Jonathan Martinelli, Cezar Reinbrecht, Débora Matos, Altamiro Susin,”Efficient Pro-

cessing Element Unit for MPSoC NoC-based”, 26th South Symposium on Microelectronics, pp. 153-

156, April 2011.

[3] S. Kumar, A. Jantsch, J.P.Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, A. Hemani ,”A

Network on Chip Architecture and Design Methodology”, IEEE Computer Society Annual Symposium

on VLSI, Pittsburgh, PA, pp. 105-112, 2002.

[4] Ankur Agarwal, Cyril Iskander, Ravi Shankar,”Survey of Network on Chip (NoC) Architectures and

Contributions”, Journal of Engineering, Computing and Architecture, Vol.3, No. 1, pp. 1-15, 2009.

[5] Dr. Srinivasan Murali,”Designing Reliable and Efficient Networks on Chips”, Lecture Notes in Elec-

trical Engineering, Springer Netherlands, Vol. 34, 2009.

[6] Tobias Bjerregaard, Shankar Mahadevan ,”A Survey of Research and Practices of Network-on-Chip”,

ACM Computing Surveys (CSUR), Vol. 38, No. 1, Article No. 1, April 2006.

[7] L. Benini and G. D. Micheli,”Networks on Chips: A New SoC Paradigm”, IEEE Computer, Vol. 35,

No. 1, pp. 70–78, Jan. 2002.

[8] W. J. Dally and B. Towles ,”Route Packets, Not Wires: On-chip Interconnection Networks”, Design

Automation Conference, pp. 684–689, 2001.

[9] A.Y. Weldezion, M. Grange, D. Pamunuwa, Lu Zhonghai,”Scalability of Network-on-Chip Communi-

cation Architecture for 3-D meshes”, 3rd ACM/IEEE International Symposium on Networks-on-Chip,

San Diego, pp. 114 - 123, May 2009.

[10] Ling Wang, Jianye Hao, Feixuan Wang,”Bus-Based and NoC Infrastructure Performance Emulation

and Comparison”, Sixth International Conference on Information Technology: New Generations, Las

Vegas, pp. 855 - 858, April 2009.

[11] Wang Zhang, Wuchen Wu, Kuanglun Wang ,”Network on Chip and Key Research Problems”, Inter-

national Conference on E-Product, E-Service and E-Entertainment, Henan, pp. 1-5, Nov. 2013.

[12] R. Marculescu, Hu Jingcao, U.Y. Ogras,”Key Research Problems in NoC Design: A Holistic Perspec-

tive” , Third IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System

Synthesis, Jersey City, USA, pp. 69 - 74, Sept. 2005.

67

BIBLIOGRAPHY 68

[13] Haytham Elmiligi, Fayez Gebali, M. Watheq El-Kharashi, ”Power-aware Mapping for 3D-NoC De-

signs Using Genetic Algorithms”, 11th International Conference on Mobile Systems and Pervasive

Computing, Vol. 32, pp. 538–543, 2014.

[14] Cai Jueping, Jiang Peng, Yao Lei, Hao Yue, Li Zan,”Through-silicon via (TSV) Capacitance Model-

ing for 3D NoC Energy Consumption Estimation”, 10th IEEE International Conference on Solid-State

and Integrated Circuit Technology (ICSICT), Shanghai, pp.815 - 817, Nov. 2010.

[15] Jingcao Hu, Radu Marculescu,”Energy-aware Mapping for Tile-based NoC Architectures Under

Performance Constraints”, Proceedings of the 2003 Asia and South Pacific Design Automation Con-

ference, New York, pp. 233-239, 2003.

[16] Avi Kolodny, ”Networks on Chips: keeping up with Rent’s Rule and Moore’s Law” , SLIP ’07 Pro-

ceedings of the 2007 International Workshop on System LevelInterconnect Prediction, pp. 55-56, 2007.

[17] G. Castilhos, M. Mandelli, G. Madalozzo, F. Moraes,”Distributed Resource Management in NoC-

based MPSoCs with Dynamic Cluster Sizes”, 2013 IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), Natal, pp. 153 - 158, Aug 2013.

[18] Chou Chen-Ling, R. Marculescu,”FARM: Fault-Aware Resource Management in NoC-based Multi-

processor Platforms”, Design, Automation and Test in Europe Conference Exhibition (DATE), Greno-

ble, pp. 1-6, March 2011.

[19] B. Osterloh, H. Michalik, B. Fiethe, K. Kotarowski,”SoCWire: A Network-on-Chip Approach for

Reconfigurable System-on-Chip Designs in Space Applications”, NASA/ESA Conference on Adaptive

Hardware and Systems, Noordwijk, pp 51 - 56 , June 2008.

[20] J.P. Diguet, S. Evain, R. Vaslin, G. Gogniat,”NOC-Centric Security of Reconfigurable SoC”, First

International Symposium on Networks-on-Chip, Princeton,pp 223 - 232, May 2007.

[21] Kevin Chang,Sujay Deb, Amlan Ganguly, Xinmin Yu, SumanPrasad Sah, Pratha Pratim Pande,

Benjamin Belzer and Deukhyoun Heo,”Performance Evaluation and Design Trade-Offs for Wireless

Network-on-Chip Architectures”, ACM Journal on Emerging Technologies in Computing Systems, Vol.

8, No. 3, Article 23, August 2012.

[22] S. Umamaheswari, J. Rajapaul Perinbam, K. Monisha, J. Jahir Ali , ”Comparing the Performance

Parameters of Network on Chip with Regular and Irregular Topologies”, Trends in Network and Com-

munications, Vol. 197, pp 177-186, 2011.

[23] Ankur Agarwal, Cyril Iskander, Ravi Shankar,”Survey of Network on Chip (NoC) Architectures and

Contributions”, Journal of Engineering, Computing and Architecture, Vol.3, No. 1, pp. 1-15, 2009.

[24] Liu Jian, L.R. Zheng, H. Tenhunen,”A Circuit-Switched Network Architecture for Network-on-Chip” ,

IEEE International SOC Conference, pp. 55-58, Sept. 2004.

[25] Angelo Kuti Lusala, Jean-Didier Legat,”Combining SDM-Based Circuit Switching with Packet

Switching in a Router for On-Chip Networks”, International Journal of Reconfigurable Computing,

Vol. 2012, Article ID 474765, pp. 1-16, 2012.

[26] Leonel P. Tedesco, Ney Calazans, Fernando Moraes,”Buffer Sizing for Multimedia Flows in Packet-

Switching NoCs”, Journal Integrated Circuits and System, Vol. 3, No. 1, pp. 46-56, 2008.

[27] T. Pionteck, C. Albrecht, R. Koch,”A Dynamically Reconfigurable Packet-Switched Network-on-

Chip” , Design Automation and Test in Europe, Munich, Vol. 1, March2006.

68

BIBLIOGRAPHY 69

[28] Yogita A. Sadawarte, Mahendra A. Gaikwad, Rajendra M. Patrikar,”Implementation of Virtual Cut-

Through Algorithm For Network on Chip Architecture”, International Journal of Computer Applica-

tions, pp. 5-8, 2011.

[29] L.Rooban, S.Dhananjeyan,”Design of Router Architecture Based on Wormhole SwitchingMode for

NoC”, International Journal of Scientific and Engineering Research, Vol. 3, No. 3, pp. 1-5, March 2012.

[30] Faizal A. Samman, Thomas Hollstein, Manfred Glesner,”Networks-On-Chip Based on Dynamic

Wormhole Packet Identity Mapping Management”, VLSI Design, Vol. 2009, Article ID 941701, pp.

1-15, January 2009.

[31] P. Ghosal , T.S. Das,”Network-on-Chip Routing using Structural Diametrical 2Dmesh architecture”,

Third International Conference on Emerging Applications of Information Technology (EAIT), Kolkata,

pp 471 - 474, 2012.

[32] Young Bok Kim, Yong-Bin Kim,”Fault Tolerant Source Routing for Network-on-chip”, 22nd IEEE

International Symposium on Defect and Fault-Tolerance in VLSI Systems, Rome, pp 12 - 20, Sept.

2007.

[33] Yongfeng Xu, Jianyang Zhou, Shunkui Liu,”Research and Analysis of Routing Algorithms for NoC”,

3rd International Conference on Computer Research and Development (ICCRD) , Shanghai, Vol. 2, pp

98 - 102, March 2011.

[34] A. Sharifi, M. Kandemir ,”Process Variation-Aware Routing in NoC based Multicores”, Design

Automation Conference (DAC), New York, pp 924 - 929, June 2011.

[35] S. Swapna, A.K. Swain, K.K. Mahapatra,”Design and Analysis of Five Port Router for Network on

Chip” , Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, Hyder-

abad, pp 51 - 55, Dec 2012.

[36] Wang Zhang, Ligang Hou, Jinhui Wang, Shuqin Geng ,”Comparison Research between XY and

Odd-Even Routing Algorithm of a 2-Dimension 3X3 Mesh Topology Network-on-Chip”, WRI Global

Congress on Intelligent Systems, Xiamen, pp 329 - 333, May 2009.

[37] Lei Tang, S. Kumar,”A Two-Step Genetic Algorithm for Mapping Task Graphs to a Network on Chip

Architecture”, Euromicro Symposium on Digital System Design, Belek-Antalya, Turkey, pp. 180-187,

Sept. 2003.

[38] Jingcao Hu, Radu Marculescu,”Energy and Performance-Aware Mapping for Regular NoC Archi-

tectures”, IEEE Transactions on Computer-Aided Design of IntegratedCircuits and Systems, Vol. 24,

No. 4 , pp. 551-562, April 2005.

[39] Amit Kumar Singh, Thambipillai Srikanthan, Akash Kumar, Wu Jigang,”Communication-Aware

Heuristics for Run-time Task Mapping on NoC-Based MPSoC Platforms”, Journal of Systems Archi-

tecture, Vol. 56, No. 7, pp. 242-255, July 2010.

[40] Yu-Kwong Kwok, Ishfaq Ahmad,”Static Scheduling Algorithms for Allocating Directed Task Graphs

to Multiprocessors”, ACM Computing Surveys, Vol. 31, No. 4, pp. 406-471, December 1999.

[41] Radu Marculescu, Paul Bogdan,”The Chip is the Network: Toward a Science of Network-on-Chip

Design”, Electronic Design Automation, Vol. 2, No. 4, pp. 372-461, 2007

[42] Radu Marculescu, Umit Y. Ogras, Li-Shiuan Peh, NatalieEnright Jerger, Yatin Hoskote,”Outstand-

ing Research Problems in NoC Design: System, Microarchitecture, and Circuit Perspectives”, IEEE

69

BIBLIOGRAPHY 70

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 28, No. 1, pp. 3-21,

January 2009.

[43] Ramin Rajaei, Shaahin Hessabi, Bijan Vosoughi Vahdat,”An Energy-Aware Methodology for Map-

ping and Scheduling of Concurrent Applications in MPSoC Architectures”, 19th Iranian Conference on

Electrical Engineering, Tehran, pp. 1, May 2011.

[44] Armin Mehran, Samira Saeidi, Ahmad Khademzadeh, Ali Afzali-Kusha,”Spiral: A Heuristic Map-

ping Algorithm for Network-on-Chip”, The Institute of Electronics, Information and Communication

Engineers, Vol. 4, No. 15, pp. 478-484, 2007.

[45] JianWang, Yubai LI, Song Chai, Qicong Peng,”Bandwidth-Aware Application Mapping for NoC

Based MPSoCs”, Journal of Computational Information Systems, Vol. 7, No.1, pp. 152-159, 2011.

[46] Ning Wu, Yifeng Mu, Fang Zhou, Fen Ge,”GA-MMAS: An Energy-aware Mapping Algorithm for 2D

Network-on-Chip”, Proceedings of the World Congress on Engineering and Computer Science, 2011.

[47] Wooyoung Jang, David Z. Pan,”A3MAP: Architecture-Aware Analytic Mapping for Networkson-

Chip” , ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 3, Article 26,

2012.

[48] Mohammad Behrouzian Nejad, Ebrahim Behrouzian Nejad,Aref Sayahi, Sayed Mohsen Hashemi,

Javad Chaharlang,”Mapping and Scheduling Techniques for Network-on-Chip Architecture”, Interna-

tional Journal of Basic Sciences Applied Research, Vol. 2, No. 7, pp. 686-690, 2013.

[49] Abbou El Hassen Benyamina, Mohammed kamel Benhaoua, Pierre Boulet,”Heuristics for Routing

and Spiral Run-time Task Mapping in NoC-based Heterogeneous MPSOCs”, International Journal of

Computer Science Issues, Vol. 10, No. 4, 2013.

[50] Andrew B. Kahng, Bin Li, Li-Shiuan Peh, Kambiz Samadi,”ORION 2.0: A Power-Area Simulator

for Interconnection Networks”, IEEE Transactions on Very Large Scale Integration, Vol. 20, No. 1, pp.

191 - 196, March 2011.

70

71

List of Publications

• Suchi Johari, Arvind Kumar, ”Algorithmic Approach for applying Load Balancing
During Task Migration in Multi-core System”, International Conference on Parallel,
Distributed and Grid Computing, pp. 27-32, December 2014 (Published).

• Arvind Kumar, Suchi Johari, Vivek Kumar Sehgal, ”Arbitrated IP Core Based Dy-
namic Task Mapping Algorithm for Networks-on-Chip”, Seventh International Con-
ference on Computational Intelligence, Communication Systems and Networks, Riga,
Latvia, 2015 (Accepted).

• Suchi Johari, Arvind Kumar, Vivek Kumar Sehgal, ”Heterogeneous and Hybrid Clus-
tered Topology for Networks-on-Chip”, Seventh International Conference on Compu-
tational Intelligence, Communication Systems and Networks, Riga, Latvia, 2015 (Ac-
cepted).

71

	arvind_Thesis
	published_papers_arvind

