
HANDLING LOAD BALANCING

IN

CLOUD STORAGE

 Project Report submitted in partial fulfillment of the requirement

for the degree of

Master of Technology

in

Computer Science & Engineering

under the Supervision of

Dr. Pradeep Kumar Gupta
(Supervisor)

&

Mr. Punit Gupta

(Co-supervisor)

By

 Ravideep Singh (132209)

Jaypee University of Information Technology

Waknaghat, Solan – 173234, Himachal Pradesh

May 2015

i

Certificate

This is to certify that project report entitled “HANDLING LOAD BALANCING IN

CLOUD STORAGE”, submitted by “Ravideep Singh” in partial fulfillment for the

award of degree of Master of Technology in Computer Science & Engineering to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out under my

supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date:

Sign______________________

Co-Supervisor: Mr. Punit Gupta

Assistant Professor (Grade-I)

Supervisor: Dr. Pradeep Kumar Gupta

Assistant Professor (Senior Grade)

ii

Acknowledgement

First and foremost, I would like to express my deep sense of gratitude to my supervisor

Dr. Pradeep Kumar Gupta and Co-supervisor Mr. Punit Gupta for providing

excellent guidance during my research and study at Jaypee University of Information

Technology, Waknaghat, Solan(H.P). Their perpetual energy, motivation, enthusiasm and

immense knowledge inspired me to discipline myself in efficiently executing my multiple

responsibilities simultaneously. In addition, they were always accessible and willing to

help me with my queries and doubts during my research.

I would like to thank my supervisor Dr. Pradeep Kumar Gupta as well as my co -

supervisor Mr. Punit Gupta, who let me, experience the research of role of Load

balancing in Distributed environment, patiently corrected my writing and financially

supported my research. With their guidance, I was able to collect the building data and

proceed for my report.

I wish to express my gratitude and high regards to Prof. Dr. Satya Prakash Ghrera

head of CSE department, JUIT.

I would ike to express my profound sense of gratitude to all the faculty members for

their valuable suggestion and encouragement throughout my course.

I would also like to thank my family and my friends especially my colleague Mr.

Ajeet Singh for their valuable suggestions and undue support which has been a constant

source of encouragement in all educational pursuits.

Date: Ravideep Singh

iii

Table of Contents

Certificate i

Acknowledgment ii

List of figures v

List of Tables vii

List of Abbreviations viii

Abstract ix

Chapter No. Title Page No.

Chapter 1 Introduction 1

 1.1. Cloud Computing 1

 1.2. Cloud Storage 4

 1.3. Load Balancing 8

 1.4. Problem Statement 13

 1.5. Objective 14

 1.6. Organization of report 15

Chapter 2 Literature Review 16

 2.1. Centralized Load Balancing Algorithm 16

 2.2. Distributed Load Balancing Algorithm 26

 2.3. Conclusion 35

Chapter 3 Proposed Work 36

 3.1. Proposed Approach 36

 3.2. Capability based Distributed Load Balancing

Algorithm (CDLBA)

37

 3.3. Flow Chart of CDLBA 40

 3.4. Proposed Algorithm 1 42

 3.5. Deadline based Distributed Load Balancing

Algorithm (DDLBA)

44

Chapter 4 Simulation and Result Analysis 50

 4.1. Simulation Environment 50

iv

 4.2. Simulation Environment for CDLBA 51

 4.3. Simulation Environment for DDLBA 60

Chapter 5 Conclusion and Future Work 71

 5.1. Conclusion 71

 5.2. Future Work 71

 References 73

 List of Publications 77

v

List of Figures

Figure

No.

Figure Name Page No.

1.1 Layered Architecture of Cloud Computing 2

1.2 Evolution of Cloud storage 5

1.3 Architecture of Cloud storage 6

1.4 Four basics steps in Load balancing 9

1.5 Interaction of components on the dynamic load balancing

algorithm

11

1.6 Load Balancing problem in cloud storage 14

2.1 Phases in Load balancing 17

2.2 File organizational structure of large scale DFS 18

2.3 Rebalancing model of large scale DFS 19

2.4 System structure 20

2.5 Three level framework 21

2.6 Referred architecture of cloud data center and key

operation of scheduling

23

2.7 Component on the solution framework 24

2.8 The process of load balancing in the solution framework 25

2.9 Placement of Central load Balancing Decision Module

(CLBCM) in a computer system

26

2.10 Hybrid control strategy for load balancing 29

2.11(a) Initial load of chunk-server 30

2.11(b) N1 samples the load 31

2.11(c) Load migration 31

2.12 Load balancing model 32

2.13 Queue adjustment model 33

2.14 Rate adjustment model 33

2.15 Hybrid adjustment model 34

vi

3.1 Queue adjustment table 36

3.2 Organization of storage server 37

3.3 Flow chart of CDLBA 40

3.4 Updating of fitness value 41

3.5 Flow chart of DDLBA 45

4.1 Comparison of completed request for testbed-1 52

4.2 Comparison of delayed request for testbed-1 53

4.3 Overall response time for testbed-1 54

4.4 Server utilization for testbed-1 55

4.5 Comparison of completed request for testbed-2 57

4.6 Comparison of delayed request for testbed-2 58

4.7 Overall response time for testbed-2 59

4.8 Server utilization for testbed-2 60

4.9 Comparison of completed request for testbed-3 62

4.10 Comparison of delayed request for testbed-3 63

4.11 Overall response time for testbed-3 64

4.12 Server utilization for testbed-3 65

4.13 Comparison of completed request for testbed-4 67

4.14 Comparison of delayed request for testbed-4 68

4.15 Overall response time for testbed-4 69

4.16 Server utilization for testbed-4 70

vii

List of Tables

Table

No.

Table Name Page No.

4.1 Configuration for testbed-1 51

4.2 Test cases for CDLBA 51

4.3 Comparison of request completed for testbed-1 52

4.4 Comparison of delayed request for testbed-1 53

4.5 Comparison of overall response time for testbed-1 54

4.6 Comparison of average server utilization for testbed-1 55

4.7 Configuration for testbed-2 56

4.8 Test cases for CDLBA 56

4.9 Comparison of request completed for testbed-2 57

4.10 Comparison of delayed request for testbed-2 58

4.11 Comparison of overall response time for testbed-2 59

4.12 Comparison of average server utilization for testbed-2 60

4.13 Configuration for testbed-3 61

4.14 Test cases for DDLBA 61

4.15 Comparison of request completed for testbed-3 62

4.16 Comparison of delayed request for testbed-3 63

4.17 Comparison of overall response time for testbed-3 64

4.18 Comparison of average server utilization for testbed-3 65

4.19 Configuration for testbed-4 66

4.20 Test cases for DDLBA 66

4.21 Comparison of request completed for testbed-4 66

4.22 Comparison of delayed request for testbed-4 67

4.23 Comparison of overall response time for testbed-4 68

4.24 Comparison of average server utilization for testbed-4 69

viii

List of Abbreviations

QoS Quality of service

MSP Managed service provider

API Application programming interface

VSA Virtual server assignment

VST Virtual server transfer

DFS Distributed file system

VM Virtual machine

OLB Opportunistic load balancing

LBMM Load balancing min-min

SLA Service level agreement

ABC Artificial bee colony

LBACO Load balancing ant colony

FCFS First come first serve

ACO Ant colony

DHT Distributed hash table

CDLBA Capability based distributed load balancing algorithm

DDLBA Deadline based distributed load balancing algorithm

ix

Abstract

From few last decades, there is a huge proliferation of data in cyberspace. In order to

manage data efficiently, distributed storage plays the important role. Cloud storage is one

kind of the distributed storage provided by cloud computing technology. Cloud storage

acts as a repository in which data is stored, managed and made accessible to end users.

Largest generated application datasets can flexibly be stored or deleted in the cloud and

end users can access this data using cloud storage services interface, without accessing

any storage server in real. Cloud storage system is comprised of hundreds of independent

storage servers which are distributed geographically and are sufficient to handle

thousands of client requests concurrently. In the system few of the storage server gets

huge clients requests where as other servers remain idle or least loaded. This unequal

distribution of load on storage servers leads to degrade the performance of overall system

and increases the response time of submitted requests. In this work, we have addressesed

these issues for efficient utilization of storage servers in cloud storage. Handling various

challenges related to the load balancing in the cloud storage is the one of the main

objectives of this research work. We have proposed two distributed load balancing

algorithms Capability based distributed load balancing algorithm (CDLBA) and Deadline

based distributed load balancing algorithm (DDLBA) by exploiting the different

parameter of storage server. Here, first algorithm considers the service rate, and queue

length as a main parameter of the server where as the second algorithm considers

parameters like service time, and deadline time of the client request. The main objective

of this research is to monitor various aspects which leverage the overall performance of

cloud storage. Proposed algorithms are sufficient to balance the load of storage servers

and effectively utilize the server’s capabilities. From the obtained simulation results, we

can say that our proposed algorithms balance the load efficiently utilize the server

capabilities, reduce the response time, and leverage the overall system performance.

1

CHAPTER 1

INTRODUCTION

 Rapid growth of Internet Technologies has increased the data proliferation exponentially

on the network. Cloud computing is one of the technology that provides cloud storage to

manage the data. Cloud storage act as a repository in which the data is maintained,

managed and is made available to the end users [1]. Large generated application datasets

can flexibly be stored or deleted in the cloud and from here end users access this data by

using cloud storage services interface, without accessing any storage server in real. Cloud

storage system is considered of hundreds of independent storage servers which are

distributed geographically [2], and thousands of client requests are handled by these

storage servers concurrently. These storage servers get huge clients requests and some

servers remain under loaded. Due to this unequal distribution of load on storage servers

leads to degrade the performance of the overall system and increases the response time.

Resources are not utilized adequately as some server gets too many requests and some

remain idle. In cloud storage system, load can either be in term of requests handled by a

server or storage capacity of that server or both.

 In this work, we have proposed the load balancing approach to balance the load in

terms of requests of overloaded servers in the cloud storage.

1.1. Cloud Computing

Cloud computing is a new style of web based computing model for providing flexible,

cost-effective and on demand network access to a common pool of configurable

computing capabilities that can be quickly allocated and managed with negligible

administrative effort or with least interaction to cloud service provider [3]. It is a pond of

manageable, virtual and highly extensible computing infrastructure which enables the

customers to host their applications over internet in cost effective manner [4].

2

 Cloud computing is emerging as the most recent disseminated computing paradigm

which gives excess, reasonable and adaptable resources on request to client over the

internet. This technology effectively exploits the sharable resources on internet such as

memory, storage, computation power and bandwidth. Cloud service delivery is divided

into three models [5]. The three service models are:

 Software as a Service (SaaS)

 Infrastructure as a Service (IaaS)

 Platform as a Service (PaaS).

Cloud computing model can be categories into three deployment models:

 Public Cloud

 Private Cloud

 Hybrid Cloud

1.1.1. Layered Architecture of Cloud Computing

Figure 1.1: Layered Architecture of Cloud Computing

3

Here figure 1.1 shows the layered architecture of cloud computing. In figure 1.1, load

balancing is one of the cloud services in cloud computing.

1.1.2. Core services of Cloud Computing [6]

a) Discovery

Cloud computing advances the reusability through discovering the various

existing services. Through this service, service provider organizes the cloud

infrastructure in a cost effective way.

b) Replication

Replication can be utilized to make and keep up duplicates of an organization's

data at different locations. At the point when occasions influencing an

organization's primary site happen, primary application services can viably

be resumed and operate at the other site where replica is stored at negligible

cost.

c) Load Balancing

Load balancing leverages the system performance by avoiding the bottleneck in

the system due to uneven load distribution. Load balancing increases the system

performance by reducing the request response time and increase the throughput of

system. It also provides continuation of services through fault tolerance when one

or more components of system get failed. Through this mechanism, various

instances of applications can be allotted and de-allotted automatically by a load

balancer without altering the network configuration. It also enhances the life of

infrastructure by putting less stress on the hardware portion of each component.

Scalability is another feature provided by load balancing.

4

d) Resource Management

In real time, cloud environment delivers an efficient route to using enormously

scalable, sharable assets on request at moderate cost. All sorts of homogeneous as

well as heterogeneous resource environments can be effectively handled by

Resource management services of cloud. Scheduling of available resources and

tasks, administration virtualized resources, provisioning of cloud resources with

guaranteed QoS, administration of extensible resources are the concerning

focuses. Dynamically scheduling the resources over a virtualized framework for

such environment is another challenging task in the cloud.

1.2 Cloud Storage

Storage of data over the Internet is one of the essential application of cloud computing.

Cloud storage is capable of providing the users to store the enterprise data in the different

storage servers of different vendors instead of storing the data in particular storage server.

Cloud storage implements the location transparency, so that user can never know where

his data stored in the cloud storage but it provides the abstract view of local storage.

Cloud storage is simply an alias used to pointing out to virtual storage in the cloud

environment. Hence in cloud storage, client’s data can be accumulated on one or many of

the systems that participate in the cloud environment. But the real repository area may

significantly vary from time to time or even moment to moment, as the cloud powerfully

oversees accessible storage areas. Anyway, despite the fact that the storage place is

virtual, the client gets a static view of his data area and can trivially work with his cloud

storage which physically resides far away from the client [7].

 Economically, in comparison to dedicated physical resource, virtual resources are

less expensive. Concerning security, enterprise data put away in the cloud storage is safe

from unintentional eradication or equipment failures, on the grounds that it is replicated

over numerous physical devices. Because various replicas of the information are kept

ceaselessly, the cloud storage keeps on working as typical regardless of the possibility

that one or more machines get disconnected from the net. [7].

5

1.2.1. Evolution of Cloud storage

Since there is neither a clearly characterized arrangement of abilities nor any standard for

architectural planning, so cloud storage is nebulous still now. Decisions proliferate, with

numerous customary facilitated i.e. managed service provider (MSP) providing file or

block storage, using conventional remote access methods [8].

 Cloud storage is a transformation of the online storage technology that coats many

namespaces, management tools, files virtualization, and complex APIs, across storage.

There is several diverse cloud storage offered by various cloud vendors. Depend on the

market requirements some have a particular purpose, for example, archiving Web email

or digital images. Others are accessible to store all types of digital data. Cloud storage

frameworks are divided according to their computation such as some of them are little

operations, while others are huge to the point that the physical hardware can top off a

whole warehouse [8].Basically cloud storage system requires at least one data storage

server associated with web. A user transmits duplicates of files over the Web to the data

storage server, which then stores the data. User access the data through web browser [8].

Figure 1.2: Evolution of Cloud storage [8]

6

Based on conventional network storage and hosted storage, Figure 1.2 shows the

evolution of cloud Storage.

1.2.2. Architecture of Cloud Storage

Here, figure 1.3 shows the architecture of cloud storage system where central control

server controls the several storage servers. Storage servers are connected with central

control server and other storage server. Client interacts with cloud storage system through

central control server which in turn decides about storage server to handle the client

requests.

Figure 1.3: Architecture of cloud storage system [7]

7

1.2.3. Issues in cloud storage

Though cloud storage is getting the consideration of IT managers because of its

relatively low cost and capacity to effectively change limit offers reduction in the

capital venture cost, still clients has to face issues at different levels [9].

a) Control over the Data

Since the information is dwelling outside the enterprise’s infrastructure, it is seen

that the enterprise might loss the control over data. In spite of the fact that the

concerns are highly psychological and hypothetical than real, due to the

immaturity of cloud services, benchmarks on the conveyance of services

and their advancing plan of action, clients may have authentic concerns about the

service provider’s practicality and operational procedure.

b) Interoperability & Control

 The unpredictability of utilizing cloud storage is be something numerous clients

underestimate "It's not plug-and-play." Each vendor has distinctive access

methods, nonstandard APIs that make incorporating applications, for example,

storing or sharing in cloud storage are complex and expensive. The absence of

standard protocols for using the cloud storage implies there will be no

interoperability between cloud storage providers, incredibly confusing the data

migration.

c) Performance

Access to cloud information is clearly constrained by system throughput and

latency, and in spite of intense enhancement in Internet performance, it is still

poor in correlation to local storage. Since some vendors try to upgrade throughput

with various local caching strategies and compression strategies, these don't

enhance Internet latency.

8

d) Security

Data security is also one of the main issues in cloud storage. It is because clients

store their data on remote location which is highly susceptible and insecure. If

there is any possibility leakage, both in exchange and inside a shared

infrastructure, specialist concur that utilizing encryption on all data in cloud

storage

1.3 Load Balancing in cloud storage

Load balancing is a strategy to disseminate amount of work across two or more

computing resources such as servers, network devices, etc in order to get more work at

same amount of time. Load adjusting is utilized to verify that none of current resources

are idle while others are being used [10]. The target of load balancing is to build the

throughput by using most extreme resources accessible in the system. In cloud

datacenters, typical storage server architecture depends on huge, robust, powerful

computing hardware and network framework. They all are under the considerable risks

associated with physical devices including hardware failure, power failure, network

failure/congestions, and resource limitation during high demand [10].

 Load balancing plays a key role in the cloud storage. It improves the overall

performance by balancing the workload over the entire distributed storage nodes in cloud.

For cloud computing applications, load imbalanced scenario occurs frequently even

though the workload was distributed evenly before. In term of cloud storage load

balancing signify even distribution of workload as well as efficient utilization of all the

storage nodes. In cloud computing environment, storage servers are geographically

distributed across the globe. Load balancing algorithm in the cloud environment differs

from classical view of load-balancing architecture and implementation by employing

commodity servers to achieve the load balancing. There are four basic steps that are

common in nearly all load balancing algorithms [11].

9

Figure 1.4: Four basic steps in Load balancing [11]

 Load Monitoring –Observing the load and state of resources.

 Synchronization –Interchanging load and state information between resources.

 Rebalancing Criteria -Compute the new task distribution and executing balancing

decisions.

 Data Migration –Actual migration of load among resources.

1.3.1. Types of Load balancing algorithms

Different types of load balancing algorithm have been proposed depending on their

nature of implementation. Load balancing algorithms can be categorized into three

categories as follow [12][13]:

 Sender Initiated: In this algorithm, sender triggers the load balancing mechanism.

 Receiver Initiated: In this algorithm, receiver triggers the load balancing

mechanism.

 Symmetric: In this algorithm, both sender and receiver can triggered the load

balancing mechanism.

Relying on the available condition of the system, balancing of load can be categorized

into two categories as follow [12]:

 Static: In this algorithm, prior knowledge of system in required instead of current

state of system. In static load balancing when a new server connects to the system,

10

it tries to find an intensely stacked server and assume control over a portion of the

heap from that server and when a server exit from the system, it hunt for a least

loaded server to pass its current load on that server.

 Dynamic: In dynamic load balancing, balancer operates when a server who is

currently present within the system becomes overloaded or least loaded. In

dynamic load balancing, methodology work when servers that have effectively

joined the framework get to be over-burden or least loaded. The overloaded server

searches for a lightly loaded server to balance their load and the under loaded

server searches for a heavily loaded server to balance their load.

 In distributed system, dynamic load balancing algorithm is of two types:

a) Distributed: In this balancing algorithm, balancing of load is carries out by all

servers available in the distributed system and load balancing job is distributed

amid them. In order to achieve load balancing, the collaboration among servers

can be taken in two structures: cooperative and non-cooperative [12].

 In the cooperative structure, the servers perform task parallel to accomplish a

common goal, e.g. to enhance the general reaction time.

 In the non-cooperative strucutre, each server performs tasks autonomously toward

a local goal, e.g. to enhance the general reaction time of a local job.

Due to the distributed nature of dynamic load balancing algorithms, communication

overhead in distributed dynamic load balancing are generally more than the non-

distributed dynamic load balancing algorithms. But it provides more fault tolerance

because if one of the serverss failed, it won't bring about the aggregate load balancing

procedure to end. But it would affect the overall system performance to some extent.

b) Non distributed: Non distributed dynamic load balancing algorithm performs

occupation of load adjusting on either one server or set of servers. Non distributed

one further divided into two types:

 Centralized: The load balancing is completed just by a solitary server in the

entire system i.e. the master server. This server is totally in charge of load

adjusting of the entire system. Alternate servers correspond just with the master

server.

11

 Semi distributed: In this type, servers in the system are classified into clusters,

where each cluster performs own load balancing in centralized type. A central

node is voted in each cluster by relevant election process which performs the load

balancing within that cluster. Hence load balancing of whole system is executed

via the central node of each cluster.

1.3.1.1. Polices in dynamic load balancing

In dynamic load balancing algorithm, there are four policies as shown in figure 1.5 [12]

Transfer Policy: This module picks a task for migrating from a local node to a remote

neighbor node.

Selection Policy: It defines the nodes involved in the load migration.

Location policy: This module picks a destination node for load migration.

Information Policy: This module responsible for gathering status information regarding

nodes in the system.

Figure 1.5: Interactions of components in Dynamic load balancing algorithm [12]

12

1.3.2. Metrics for Load Balancing

 Various important matrices used for load balancing algorithms are discussed as follow:

[11]

 Throughput is utilized to ascertain the number of job whose processing has been

accomplished. It ought to be maximized to enhance the execution of the system.

 Overhead Associated decides the measure of cost of actualizing a load balancing

technique in term of time. It is made out of extra cost because of migration of

jobs, between various process interactions and processors. This ought to be least

so a load adjusting strategy can perform effectively.

 Fault Tolerance: The capacity of an algorithm to perform uniform load balancing

despite subjective nod or connection failure. The load balancer ought to be a fault

tolerant strategy.

 Migration time: The total duration to move the tasks or processes among the

nodes available in the system. It ought to be least in order to upgrade the

execution of the system.

 Response Time: The measure of time elapsed to react by a specific load adjusting

mechanism in a disseminated system. It ought to be least.

 Resource Utilization: It is utilized to analyse the use of resources. It ought to be

advanced for an effective burden adjusting.

 Scalability: It is the capacity of an algorithm to operate load balancing efficiently

the size of system increased or decreased. It ought to be enhanced.

 Performance: It is utilized to check the effectiveness of the system. This must be

enhanced at a sensible expense, e.g. minimize tasks response time while keeping

worthy deferrals.

13

1.4. Problem Statement

As we can see that cloud storage provides remote storage services to subscribed clients

through Internet. These storage services enable the users to use storage space remotely.

As the user sends a request for online storage space, it is redirected to the nearest storage

server that queue received request and process them as server gets idle. But in real,

handling of these user requests is different as some servers are get overloaded with huge

client requests, and some remains idle. Due to this reason, overloaded servers become

potential spots to enhance the overall performance of the system. This problem can be

illustrated clearly through Figure 5. Here we have taken five storage servers S1, S2, S3,

S4 and S5 with their respective service rate (S_r) present in the system. Service rate of a

server signifies that how much number of requests processed by a server simultaneously.

Initially at time t=0, we assume that each server receives an approximately equal amount

of requests. In the above figure, we took 8 requests to illustrate the scenario. In the

second case after time t=2, each server processed the client according to its service rate

S_r. As shown in the Figure 5, server S1 request is empty, and they become idle. At the

same time, server S3, S5 are fully loaded. In this situation fully loaded, server takes time

to process all requests while other servers are idle. In cloud storage, many times server

are not utilized efficiently. In real-world situation, these requests are too large as compare

to server service rate. So in order to increase the system performance some requests are

required to migrate to idle server or under loaded server. There is a need of a mechanism

that can adequately transfer client requests to these available servers and another problem

is that servers have a limit to store the incoming requests.

 So when the input buffer of server gets that overloaded then the server start discarding

the client requests. This will lead to poor performance of the system as well as poor

response time. Our aim is to avoid such situations and efficiently utilizes the capability of

each server in the network. We have proposed a mechanism, which can evenly distribute

the client requests among various servers to leverage the system performance by reducing

the response time.

14

Figure 1.6: Load balancing problem in cloud storage

1.5. Objective

• Designed a distributed load balancing algorithm for cloud storage.

• Reduce the waiting time of client requests in server queue for processing.

• Enhance the utilization of server.

• Reduce the overall response time of system.

1.6. Organization of report

 This report is organized into five chapters. Chapter 1 describes what is cloud

computing, various core services provided by cloud computing, cloud storage, evolution

of cloud storage and its architecture, various issues in cloud storage, load balancing in

cloud storage, types of load balancing algorithms in cloud storage, problem statement and

15

objective of report. Chapter 2 describes about the previous research work related to the

proposed problem statement. Chapter 3 describes about the proposed work, which consists

of assumptions, proposed system and proposed algorithms. Chapter 4 describes about the

simulation environment and results. Chapter 5 describes the conclusion of the report and

future work.

16

CHAPTER 2

LITERATURE REVIEW

The following sections describe the literature background for the proposed problem

statement given in chapter 1. Here, various authors had proposed their approaches to

solve the various issues related to proposed problem statement related to our problem

statement till now. We have categories the literature into two different sections:

Centralized load balancing algorithms and Distributed load balancing algorithms.

2.1 Centralized load balancing algorithms:

Zhu et al. [14] have proposed an efficient, proximity-aware load balancing algorithm by

introducing the concept of virtual servers. They have proposed the concept of proximity

relation between various servers for load balancing. Their contributions are three fold: 1)

they use fully distributed, self-organized, k-ary tree structure developed on top of a DHT.

So load balancing is attained by aligning the two skews, load distribution and node

capacity which are inherent in P2P systems, that is, the node which have higher capacity

carry more loads, 2) Minimizing the cost of load movement to perform load balancing

efficiently. This can be done with the help of proximity information which is used to

guide virtual server reassignments. So that reassignment and transportation of virtual

servers occurred between geographically close lightly loaded nodes and heavily loaded

node and 3) Obtained simulation results shows that the proposed algorithm reduces the

load migration cost by 11-65% for all the federation of load dissemination to virtual

servers, node capacity profiles, and representative network topologies.

Load balancing Scheme consists of four phases as shown in below figure 2.1 proposed by

Zhu et al. [14].

Load balancing information (LBI) aggregation: Accumulate load as well as capacity

information about complete system.

17

Node classification: Distinguished which node overloaded, which node is under-loaded

and which one is neutral based on their load and capacity.

Virtual server assignment (VSA): This phase is an important phase because in this load

balancer identify from which overloaded server virtual server is migrated to under-loaded

server. In this phase proximity information is used.

Figure 2.1: Phases in load balancing

Virtual server transfer (VST): In this phase, virtual server migrated from overloaded

server to under-loaded server.

Zeng et al. [15] have purposed a load rebalancing algorithm in the distributed file system

in order to fix the load balancing issues between various chunks of servers. Authors have

also focused on the reliability and fault tolerance by ensuring that one chunk of a file and

its replicas are stored in 3 different chunk servers simultaneously. Here, authors have

proposed that large scale distributed file system formulated in a tree like structure and

root of the tree act as a global namespace define a group of files. Each namespace can

accommodate more than one file, and each file exactly belongs to only one namespace.

18

Each file is divided into fixed size chunks, and each chunk has two replicas. Figure 2.2

shows the organization of files in large scale distributed file system.

Figure 2.2: File organizational structure of large scale DFS [15]

As shown in Figure 2.3 rebalancing model of large scale distributed file system, master

server act as a coordinator node that periodically checks the load of each chunk server. If

load distribution unbalancing occurs, master server performs the load rebalancing task.

Authors have calculated the load of each chunk server based on the following: average

bandwidth utilization, average CPU utilization, average disk utilization, and chunk

capacity in the chunk server. In this paper, Authors defines two load thresholds value:

high and low.

19

Figure 2.3: Rebalancing model of large scale DFS [15]

A chunk server whose load above the high can be considered as heavily loaded chunk

servers and below the threshold considered as lightly loaded chunk servers. Authors have

concluded that load rebalancing is one of the powerful techniques to improve the overall

performance of the system.

Hu et al. [16] have proposed a randomized load balancing algorithm to leverage the

utilization of cloud resource through virtualization. Authors have used genetic algorithm

to efficiently utilize the virtual machine which deployed on the physical server. They

have focused on minimizing the migration cost. Proposed approach is centralized in

nature. Authors have mainly focused on how efficiently mapping the various virtual

machines among the available physical servers and reducing the migration cost of virtual

machines.

20

Figure 2.4: System structure [16]

Figure 2.4 depicts the system structure of proposed model of Hu et al. Here authors have

described the mapping of virtual machine with physical servers in abstract manner.

Figure 2.4 clearly shows that scheduler server maintains the global information of all

physical servers and their respective VMs. Scheduler server perform load balancing.

Finally, Authors have compared their results with least loaded and rotating algorithm in

term of load and migration cost.

Wang et al. [17] have proposed a load balancing algorithm under the three levels in cloud

computing environment. Authors have integrated OLB (Opportunistic Load Balancing)

and LBMM (Load Balance Min-Min) scheduling algorithms to propose their algorithm to

leverage utilization of executing efficiency and balance the load.

21

Figure 2.5: Three-level framework [17]

Figure 2.5 shows three-level hierarchical framework that used in the proposed approach.

The three levels in the figure are described as follows:

 Lowest level represents the service node to process subtasks.

 Center level represents the service manager to partitions the jobs into free

subtasks.

 And top most level represents request manager to map the task with appropriate

service manager.

LBMM scheduling technique is utilized to allocate job to every service manager in the

form of some subtask. These subtasks are executed in respective service node. Finally,

algorithm balances the load by keeping the minimum execution time for task.

Tian et al. [18] have proposed a compelling and incorporated resource scheduling

algorithm (DAIRS) for Cloud datacenters. DAIRS integrates network bandwidth, CPU

and memory for both virtual servers and physical servers. They have devised an

integrated measurement for mean asymmetry level of each server as well as overall

asymmetry level of a Cloud datacenter. Integrated load balance measurement can be

computed as follow:

22

 ܸ = ͳሺͳ − ௨ሻሺͳܷܲܥ − ௨ሻሺͳܯܧܯ − ܧܰ ௨ܶሻ

Where CPUu, MEMu, NETu are average utilization of CPU, memory and network

bandwidth respectively.

Authors have considered the following resources:

 Physical server: physical processing machines which construct a datacenter. Each

one can have multiple VMs, CPUs, memory devices, network devices, etc.

 Physical clusters: number of physical servers, network devices and storage device

organized into a group called cluster.

 Virtual servers: it is a virtual processing component running on a physical server

through virtualization software.

Scheduling of tasks in Cloud datacenter is shown in the following Figure 8 depicts a

referred architecture of Cloud datacenters and key operations of scheduling:

 User requests: user sends requests.

 Scheduling management: decision taken by the scheduler based on user request

type.

 Feedback: response provided by resource scheduler algorithm to the users.

 Executing scheduling: scheduling results are pipelined to next stage.

 Updating and optimization: updating the resource information and optimize the

scheduling process.

23

Figure 2.6: referred architecture of Cloud datacenters and key operations of scheduling

[18]

Lee et al. [19] have proposed feasible resource aware load balancing algorithms to

leverage SLA by using existing technology. Authors have proposed two load balancing

models. These model schedule workload based on latest available resource utilization by

dynamically comparing them in each server. Authors have assumed that two models of

servers namely Model-H and Model-L, have different resource capacity. Model-H

represents higher capacities whereas Model-L represents lower capacity. LBn load

balancer gathers client requests regularly. Using random policy, authors have formulated

the probability of Model-H as follow:

 ݂ሺܤܮ�ሻ = ሺܥ �ܰ, ሻ�ܤܮ ∗ ሺܥ �ܰ , ሺܥሻ�ܤܮ �ܰ + �ܰ , �ܤܮ + ሻ�ܤܮ

ܤܮ = �ܤܮ + ே�ܤܮ

24

,ሺ݊ܥ ሻݎ = ݊!ሺ݊ − !ሻݎ ∗ !ݎ

Where NH represents higher capability of Model-H, NL represents low capability of

Model-N, LBH and LBL are load balancer of respective model. Authors have proposed

two new resource aware techniques: 1) Resource best and 2) Resource fit.

Figure 2.7: Component in the solution framework [19]

 Figure 2.7 depicts the various components of the proposed models by Lee et al. In the

Figure 2.7, when a session starts, a huge amount of request arrived at server farm, then

load balancer initiate the arbitrator by transferring the information about the requested

application to it. Then the arbitrator consult the application policy settings, selects the

servers according to their recent resource capacities, then push the server candidate list

into an internal queue, and then extract it and again submitted it back from the queue to

the load-balancer.

25

Figure 2.8: The process of load balancing in the solution framework [19]

Arbitrator will act like an effort-save manner. Instead of searching new servers to reply

back to the next arbitration request generated by the load-balancer, the arbitrator will

regularly use the last finding by returning the chosen servers from the queue unless it is

empty. The load-balancer schedules workload to the recommended servers. Then inform

their weighted performance counters to the arbitrator regularly to update their status.

Branko et al. [20] have analyzed the issues of load balancing in the Cloud computing

environment and proposed a new load balancing algorithm which incorporates

information from virtualized environments and end user experience.

Figure 2.9 shows the proposed load balancing model:

26

Figure 2.9: Placement of Central Load Balancing Decision Module (CLBCM) in a

computer system [20]

In figure 2.9, authors have introduced a central module that influences the decision taken

by load balancers. The objective of this module is to monitor all parts of system. After

that, based on gathered information and internal calculation, CLBDM will influence the

decision of load balancers.

2.2 Distributed load balancing algorithms:

Yemanto et al. [21] have proposed a load balancing algorithm based on replication

method in P2P network. They said, simple replication method is not effective in

distributed system where some nodes degree is too high, leads to the wastage of storage

and processing capability. Simple replication also did not consider the read and write

operation overhead. So Yemanto et al. have devised two efficient replication based

approach to balance the load more effectively in term of read and write operation

overhead.

 Path Random Replication.

 Path Adaptive Replication.

27

1.) Path random replication: To reduce the wastage of storage capacity and processing

capability, authors have introduced the concept of replication ratio. Replication ratio is

proportion of generated replicas to all the moderate peers on the way for every requested

data. The replication ratio computed ahead of time. The generation and placement of

replica in the intermediate peer is based on the probability of pre-computed replication

ratio. Authors major concern is deciding a sufficient replication ratio that will alleviate

the convergence of load on the few high degree peers.

2.) Path adaptive replication: Based on the resource status and pre-computed replication

ratio, probability of replication in each peer is determined. Probability is represented in

each peer as an f(x), here x is storage utilization. ݂ሺݔሻ = ͳ − ሻ݂ሺͳሻݔሺܨ = ͳ − ͳ − ݁−�௫ͳ − ݁−�

∫ ݂ሺݔሻ݀ݔଵ
 = �ݐ�ܴ

Randles et al. [22] have comparatively analyzed the distributed load balancing algorithms

in cloud computing. Authors have compared the following distributed load balancing

algorithms:

 Honeybee Foraging Behavior

 Biased Random Sampling

 Active Clustering

Honeybee Foraging Behavior: This algorithm inspired by behavior of honeybees

foraging and harvesting food. This approach is employed as a searching technique. In

honeybee load balancing approach, set of servers are divided into virtual servers. Each

virtual server is serving a virtual service request queue. To measure the bee’s quality, cost

of serving the request is calculated which gives the profit.

Biased Random Sampling: in this approach, load of a server is measured by its

connectivity in a virtual graph. Initially a network is created with virtual nodes that

represent each server. Degree of each server node is mapped to available resources.

28

Number of incoming edges gets connected with randomly selected nodes. Through this

edge dynamics load allocation is required for load balancing. When a node process a new

task, it deletes an inward edge, represent reduction in tasks. Adversely, when a node

completes its task, a new incoming edge is added. The process of increment and

decrement is performed via Random Sampling. During sampling, at each step node select

its one of neighbor randomly.

Active Clustering: It is self-aggregation algorithm to reconstruct the network. This

approach works on the principle of similarity group. Active clustering consists of

following iteration:

 At any time (random), a node acts as an initiator and select randomly different

type of nodes from its neighbors.

 The matchmaker node leads to a link to be created between one matchmaker

nodes.

 The matchmaker deletes that links.

Yao et al. [23] have proposed an improved Artificial Bee Colony algorithm. They have

experimentally represented that ABC based load balancing algorithm outperform the

basic ABC algorithm [24, 25]. Authors have said that previous load balancing algorithms

consider only lightly loaded node and execute a lot of requests e.g. newly arrived request

and requests coming from heavily loaded nodes. This leads to load imbalance again.

Kun-Li et al. [26] have proposed a scheduling algorithm based on the Load Balancing

Ant Colony Optimization (LBACO) which is an enhanced version of simple ACO

algorithm[27,28]. Authors have tried to balance the load and minimize the response time

of a tasks. Authors have simulated the approach using the Cloudsim simulator [29,30]

and compared it with FCFS and basic ACO algorithm

Lu et al. [31] have proposed a hybrid control mechanism for load balancing and dynamic

migration technique in cloud storage. Le et al. main motive is to minimize the overall

response time and efficiently adjust the global load.

29

Figure 2.10: Hybrid control strategy for load balancing [31]

Figure 2.10 shows the process of hybrid control strategy for load balancing proposed by

Lu et al.

1. The load information management module regularly distributes the information to the

storage node.

2. The load information accumulated and updated by the storage node which will submit

to the control node.

3. The original load information and the recently submitted load information will

integrated by the management module.

4. The distributing module responsible for load migration. The information contains the

sender node, the receiver node, the migration amount and the migration quota.

5. The sender node and receiver node establish.

Hung-Chang et al. [32][33] have proposed a distributed algorithm for load rebalancing in

distributed file systems in cloud environment. They have enhanced the performance of

Hadoop distributed file system by implementing load balancer algorithms. Authors have

devised a distributed load rebalancing algorithms to eradicate the above mentioned

issues. In order to tackle with the load imbalance problem, authors have implemented

30

their approach by shifting the load rebalancing task to storage nodes which spontaneously

migrates the load to reach balance state. This removes the dependence on central nodes.

In their approach, the storage nodes are organized as an overlay network based on

distributed hash tables (DHTs). A file chunk can be discovered by refer to rapid key

lookup in DHTs.

Author have proposed that a DFS is said to be in load balance state if each chunk server

host not more than average number of chunks say A. Proposed algorithm follows two

properties:

 Low movement cost

 Fast convergence rate

Authors have also reduced the time complexity of proposed algorithm by pairing top-j

under-loaded chunk server with top k overloaded chunk server.

Figure 2.11 depicts a working example of proposed algorithm. There are n = 10

chunkservers in the system; the initial loads of the nodes are shown in Figure 2.11(a). Let

us consider ΔL = ΔU = 0. Then, nodes N1, N2, N3, N4 and N5 are under-loaded nodes,

and N6, N7, N8, N9, and N10 are heavily loaded nodes. Suppose that N1 performs the

load balancing algorithm. Note that each node performs its load balancing task

independently. N1 first enquiries the loads of N3, N6, N7, and N9 selected randomly from

the system Figure 2.11(b).

Figure 2.11(a): Initial loads of chunk-servers

31

 Figure 2.11 (b): N1 samples the load Figure 2.11 (c): Load migration

Based on the gossip based aggregation protocol, N1 got a sample of randomly selected

nodes as shown in figure 2.11(b). N1 calculates the ideal load A (i.e., AN1

= �ேଵ+�ே3+�ே+�ே+�ே9 ହ) that it needs to host. It then finds that it is a light node. N1 then

leaves the system by transferring its load to its successor N2. As N1 is the lightest among

N1 and its sampled nodes {N3, N6, N7, N9}, it rejoins as the successor of the heavy

loaded node (i.e., N9) as shown in figure 2.11(c). N1 allocates N9 - AN1 chunks from N9.

Authors conclude that their devised load balancing algorithms harmonized the loads of

nodes and reduce the claimed displacement cost as much as possible. Authors have also

compared their proposal with centralized algorithm in the Hadoop HDFS productions.

 Prabavathy et al. [1] proposed a dynamic load balancing algorithm to balance the load

across the various storage servers when cloud storage expands. Here, authors have

attempted to balance the load during the data placement as well as in any later situation

that lead to imbalance. Authors have also proposed suitable algorithms for data

placement, rebalancing and data migration to achieve load balancing in the private cloud

storage. Author proposed that one of machine act as a centralized coordinator. It acts as

an interface between commodity machines and the client. As storage space within the

private cloud is limited, so de-duplication approach is used for efficient usage of the

storage space. This approach attempts to find the duplicate content across the files. Figure

2.12 represents the Load balancer model:

32

Figure 2.12: Load balancing model

 Load balancer consists of coordinator, data placement and load rebalancing sub modules.

Coordinator sub module: This module acquires all the status information from various

registered storage nodes which is represented in a vector. It gets the unique chunks from

de-duplication engine.

Data placement sub module: This module acquires required information regarding to

storage cluster as well as the file chunks from the coordinator sub module.

 Load rebalance sub module: This module periodically checking storage clusters to

check which storage nodes are lightly or heavily loaded. Then according to that

information it migrate the chunks of files to respective storage node.

Manfredi et al. [34] have devised an effective distributed control law for load balancing

in content delivery network. Authors have derived the proposed law using fluid flow

behavior model of the network of servers. Authors have devised and verified a lemma for

network queue equilibrium. Authors have used this lemma to develop a unique

distributed time continuous load balancing algorithm. Authors have compared their

algorithm performance with RR algorithm, random algorithm, least loaded algorithm and

2RC algorithm in term of average queue length, response time and scalability, which

shows great improvement. Authors have described three fundamental load balancing

models [35]:

33

 Queue adjustment model

 Rate adjustment model

 Hybrid adjustment model.

Queue adjustment model: In this model, client requests are directly inserted into the

server queue, to be scheduled by scheduler. Scheduler is placed between server queue

and server itself. Scheduler pops the requests from queue and decides whether schedule

to local server or remote server. The working of model depicted in the following figure

2.13:

Figure 2.13 Queue adjustment model

Rate adjustment model: In this model, arrival of client requests is firstly scheduled by

the scheduler and then push into the queue of local server for further processing. If server

is busy then arrived requests scheduled to remote server. Generally, scheduler placed in

front of local server queue. Figure 2.14 represents the rate adjustment model:

Figure 2.14: Rate adjustment Model

Hybrid adjustment model: In this model, scheduler can manage both local server queue

length and incoming client requests of a server. This approach is more effective in load

balancing in dynamic environment. The model is shown in figure 2.15:

34

Figure 2.15: Hybrid adjustment model

Authors have used the continuous fluid flow model of server queue to formulate their

approach. This model represents the dynamic nature of server queue. Authors have

modeled their approach to stabilize the local instability in each server which leads to the

global stability of system. Authors have assumed that global resources of network are

near to saturation and primarily emphasis on the critical condition i.e. input rate is greater

than the output rate.

Figure 2.16: Fluid queue model

Figure 2.16 shows the dynamic nature of a server queue whose length varies like

movement of fluid.

35

2.3 Conclusion

In the literature review, some authors have proposed centralized load balancing approach

and some authors have proposed decentralized load balancing approach to solve the

issues related to proposed problem statement. Both types of approaches have some pros

and cons. So the applicability of the any approach depends on the scenario used by the

authors. The main motive of literature review is to thoroughly analyze the research work

related to proposed problem statement and design an approach to solve the issues related

to proposed problem statement.

36

CHAPTER 3

PROPOSED WORK

3.1. Proposed approach

 We have proposed two distributed load balancing algorithms in cloud environment. In the

first proposed algorithm, we have considered that each server has different service rate,

and queuing capacity but same service time for client request and simple client request.

Proposed algorithm balances the load of each server using server parallel processing

capability and another proposed algorithm, we have considered that each server has

different service rate, different queuing capacity and different service time for client

requests and deadline based client request.

Here we have implemented queue adjustment model [35]. In this model, client request

directly inserted into the server queue, after that they are scheduled by a scheduler.

Scheduler is placed between server queue and server pops the requests from queue to

decide whether schedule to local server or remote server. Depicted working model in

shown in the figure 3.1:

Figure: 3.1 Queue adjustment model

37

3.2 Capability based Distributed Load balancing Algorithm

(CDLBA)

In our first proposed algorithm, we have considered two main parameters of a server, 1)

Server request queue size which represents the buffer space to store the incoming client

requests handle by server, 2) Service rate λ which represents the number of processing

elements (PE) available for processing the client request in a server. Here each server

maintains a request queue to buffer the client requests and processed them. Now a day

modern servers are equipped with many features like multiple processing elements (PE),

large storage, high I/O capability etc. We have selected multiple processing elements (PE)

as a main parameter for implementing proposed load balancing approach. We have taken

the advantages of this feature to select the appropriate server during functioning of our

proposed approach.

Following are the assumptions that have been considered for proposed approach:

 We have assumed a situation where some storage servers get huge client

requests and some remains in idle state.

 We have assumed that all servers are strongly connected with each other

through high speed dedicated network which shows that the network latency is

very low and does not affect the performance of during implementation of

proposed approach.

 We have assumed that each server maintains a global view. Here global view

represents the status information and load information of its neighbors through

control server.

Fig.3.2 shows the organization of distributed storage servers in cloud. In fig.3.2, there are

N servers where N∈ {ͳ,ʹ,͵ … . ݊} present in the system. Each server has a queue to buffer

the incoming requests, number of processing elements for parallel processing and some

storage space. We have assumed all servers are geographically distributed across the

globe. In the fig.3.2, servers are connected with each other through a high speed dedicated

38

network. Each server is used by their respective region requests. Due to overloading of

requests from any region, incoming request rate increases exponentially on a particular

server.

Fig.3.2: Organization of storage server

When a server gets a request, it processes them if it is idle or least loaded otherwise server

stores them to their queue. In case, if request rate is higher than the service rate then its

queue size increase exponentially and system becomes unstable. In order to maintain the

stability of the whole system, every server sets its threshold limit, to acknowledge whether

it is least loaded or overloaded. When the size of queue is greater than threshold limit then

server is considered as an overloaded. Once the server gets overloaded, it triggers the load

balancing mechanism. Load balancer classifies the least loaded server based on their

request queue capacity as well as processing capability. Then it searches for the highest

least loaded server. When a load balancer found the highest least loaded server then

overloaded server migrate its load to the available server. In this way, load balancer

39

balances the load of overloaded servers. Various notations have been used in the proposed

approach which are listed below:

ρ: Queue size of server.

λ: Service rate that is number of request processed simultaneously by a server.

Q_L threshold : Threshold limit of server queue.

Q_L Current : Exixting capacity of server queue at time t.

∆Li: extra amount of load on server i.

We have considered the real world scenario so that the request queue size and service rate

changes with respect to time t, which are represented as �� and �� respectively

 �� = ��௧ �݊݀ �� = ��௧ (3.1)

Storage server is said to be overloaded if:

 Q_Lcurrent> Q_L threshold (3.2)

When server i where i∈ {ͳ,ʹ,͵ … . ݊} is overloaded then it calculates the amount of extra

load ΔL i on that server which can calculate as follow:

 Δܮi = Q_L current – Q_L threshold (3.3)

When a overloaded server triggers its load balancer module, then the conditions to trigger

the load balancer on server i is given as follows

 ܶሺ�ሻ = { ͳ, Δܮ > ͲͲ, (3.4) ݁ݏ�ݓݎℎ݁ݐ

Where T(i) is trigger function running at ith server.

As the load balancer module gets triggered, server i find the least loaded or idle server

which can accommodate its load and adequately process them. For this, load balancer

calculate the fitness Fj value of neighbors of server i. Fitness value Fj where j∈{ͳ,ʹ,͵ … . ݊ − ͳ}can be calculated using fitness function as followed

 Fj = α1 ∆Mj + α2λ (3.5)

40

 ∆Mj =Q_L threshold – Q_L current (3.6)

Where ∆Mj is free request queue of server j. If ∆Mj is negative, then server j request queue

is overloaded otherwise ∆Mj is positive and server j request queue is least loaded.

Where α1 and α2 are constant which can vary according to scenario such that

 α1 + α2 =1 (3.7)

Here we have considered the value of α1 and α2 is 0.5 for the discussed scenario. This is

because both parameters play equal role in load balancing. In this way, load balancer

calculate the fitness value of each neighbor server of i and select that server which has

maximum fitness Fj value and migrate ∆Mj amount of load to server j.

3.3. Flow Chart of CDLBA

Here Figure. 3.3 shows the flow chart of the capability based distributed load balancing

algorithm.

Fig. 3.3: Flow chart of CDLBA

41

 As shown in the Figure 3.3, initially balancer selects a server i whose current

queue size is ∆Q_Lcurrent. Let Q_Lthreshold be threshold limit of server queue size.

The threshold limit signifies that either server is overloaded or least loaded.

 Load balancer continuously checks the server request queue status.

 When a client request arrives at the server, it checks whether current request

queue size is greater than threshold limit defined by the server.

 If request queue is available then, add the request and to process them.

 If it is not, then server is considered overloaded.

 It calculates the extra load the server and load balancer searches the least loaded

server from its neighbor list.

 It checks its neighbor server and then selects the server whose request queue is

least loaded as well as maximum processing elements based on fitness value Fj.

 After selecting the least loaded server it transfers the load to that server. In this

way each server balances its load.

Figure 3.4: Updating of Fitness function

Figure 3.4 shows the flowchart of how fitness value is updated during load

balancing. Objective to do this is to reduce the overhead of calculation of fitness

value during load balancing.

42

 Initially server computes the fitness.

 Load balancer uses this fitness value for decision making.

 Server periodically updates fitness value when it is idle.

3.4. Proposed Algorithm 1

Algorithm 1. CDLBA(Server s, Q_Lcurrent)

Input : Server s and Q_Lcurrent

 1. s← server ;

 2. Q_Lcurrent ← current queue size;

 3. ∆ QLthreshold ← threshold limit of queue size;

 4. if (Q_Lcurrent < ∆ QLthreshold) then

 5. // check server queue status.

 6. Add request to queue;

 7. Process_request();

 8. // processing the client request.

 9. else

10. //server is overloaded

11. S ← Find_server(server_neighbour_list L);

12. // find underloaded server.

13. S ← migrate request;

 14. Stop;

Find_server(server_neighbour_list L)

Input : server_neighbour_list L

 1. for k=1 to L.size();

 2. S1←L.get();

 3. if (S1.Q_Lcurrent < S1.Q_L threshold) then

 4. List L2← Add(S1);

 5. for n=1 to L2.size();

 6. Fn = α1 ∆Mn + α2λn;

43

 7. // calculate fitness value of server n.

 8. temp_list t← Fk ;

 9. // Add to temporary list.

 10. for j=1 to t.size();

 11. S2← max(Fj);

 12. // select maximum fitness value.

 13. return S2;

In proposed algorithm1, load balancer balances the load of storage server in terms of

client requests. When a client or any application sends a request to storage server to

acquire online storage space, then server processes the client request and allocates the

required storage space. But in real, handling of client requests is different as some servers

gets overloaded with huge number of received requests. In this situation, response time of

server increases which leads to degrade the QoS. So we have proposed an approach to

cope with such a situation. Following steps describe the algorithm in detail:

a) In the proposed load balancing algorithm, load balancer periodically checks the

load of server using Eq. (3.2) when the number of client requests received by the

server. Proposed algorithm tries to avoid the situation of load transferring as much

as possible by utilizing the idle server present in the system. When a request is

arrived at server, load balancer module checks the status of the request queue and

also checks whether the server request queue is overloaded or not using Eq. (3.2).

Here each server maintains its data structure “queue” to buffer all its client

requests as for a given instant of time hundreds of client’s requests may arrived to

the server.

b) If the current queue length is less than the threshold limit of queue length, then it

adds the client request to server queue. If any CPU is available, then the request

gets processed otherwise that have to be waiting for CPU to be available.

c) If request queue size is greater than the threshold limit, then load balancer

assumes that this server is overloaded and triggered a module called find server().

44

d) In this module, load balancer searches for the least loaded server present in the

system by computing the fitness value using Eq. (3.6) for every neighbor server

and stores them in a list. From this list load balancer selects the server which has

highest fitness value.

e) As proposed algorithm is designed to reduce the response time so it chooses the

server on the basis of maximum service rate. We have assumed that each server

has multiple processing elements to process large number of requests, which

correspond to service rate. Fitness value is calculated using service rate and

available queue of server.

f) Once the least loaded server is select then it transfers the load to available server

using Eq. (3.5). Load balancer transfers only that amount of load, which are

sufficient to balance the load of that server.

3.5. Deadline based Distributed Load balancing algorithm

(DDLBA)

This algorithm utilizes the service time along with previously discussed parameters of

each server for load balancing. Apart from that we have also considered that client

requests have some time constraint called as deadline time under which they have to be

processed by server. This proposed algorithm evaluates the utilization of each server

when service time of each request is heterogeneous in nature. This algorithm DDLBA has

classified the servers into least loaded and overloaded server using following Equation:

 ܹ = �_��ೠ����_��� × ܵ_ ܶ (3.8)

 Here Wk: Waiting time in server k. ܳ_ܮ௨௧_: Current queue capacity of server k. �: Service rate of server k.

45

ܵ_ ܶ: Service time of server k.

A server is said to be overloaded if

 ܹ > (3.9)ܮܦ

 .: Deadline time of request iܮܦ

When a server is overloaded then it triggers its load balancer module using Eq. (3.4).

Load balancer calculates the fitness value Fj value of neighbors of server i. Fitness value

Fj where j∈ {ͳ,ʹ,͵ … . ݊ − ͳ} can be calculated using fitness function as follow:

ܨ = ܮܦ) − ܹ) �݂ �݊݀ ܮܦ ݂� ݕ݈݊ > ܹ (3.10)

In this way, load balancer calculate the fitness value of each neighbor server of i and

select that server which has maximum fitness Fj value and transfers the sufficient client

requests to server j.

Here Figure 3.5 shows the flow chart of deadline based distributed load balancing

algorithm.

Figure 3.5: Flow chart of DDLBA

46

 Here in Figure 16, initially balancer selects a server i whose current queue size is

∆Q_Lcurrent, service rate is �, service time is ܵ_ ܶ and deadline time of request j is ܮܦ.
 Load balancer continuously checks the server request queue status. Server i

compute the waiting time Wk. using Eq. 3.8.

 When a client request arrived at the server, it checks whether waiting time Wk. is

greater than deadline time of incoming request j.

 If server is least loaded, then add the request and process them.

 If it is not, then server is considered to be overloaded.

 It calculates the extra load on the server. Then load balancer searches the least

loaded server from its neighbor list.

 It checks its neighbor server and then computes the fitness value ܨ using Eq. 3.9

with its neighbor.

 After selecting least loaded server it transfers the load to the server. In this way,

each server balances its load.

Algorithm 2 DDLBA (Server s, Q_Lcurrent, �, ܵ_ ܶ, DLi)
Input : Server s and Q_Lcurrent, �, ܵ_ ܶ, DLi

 1. s← server ;

 2. Q_Lcurrent ← current queue size;

 3. � ← Service rate of server k;

 4. ܵ_ ܶ ← Service time of server k;

 5. DLi ← Deadline time of request I;

 6. Compute ܹ;

 7. if (ܹ <) thenܮܦ

 8. // check server queue status.

 9. Add request to queue;

 10. Process_request();

 11. // processing the client request.

 12. else

47

10. //server is overloaded

11. S ← Find_server(server_neighbour_list L);

12. // find underloaded server.

13. S ← migrate request;

 14. Stop;

Find_server(server_neighbour_list L)

Input: server_neighbour_list L

 1. for k=1 to L.size();

 2. S1←L.get();

 3. if (ܵͳ. ܹ <) thenܮܦ

 4. List L2← Add(S1);

 5. for n=1 to L2.size();

 6. Fn = (ܮܦ − ܹ);

 7. // calculate fitness value of server n.

 8. temp_list t← Fk ;

 9. // Add to temporary list.

 10. for j=1 to t.size();

 11. S2← max(Fj);

 12. // select maximum fitness value.

 13. return S2;

Here, we have utilized service time and service rate of server as a key parameter for load

balancing in the distributed environment where client request associated with some

deadline time. In cloud storage, storage servers are heterogeneous in nature with respect

to various parameters such as service rate, service time, storage queue capacity etc. The

main objective of proposed algorithm is to utilize the server in the cloud storage that is

heterogeneous in service time. Following steps describe the working of DDLBA:

a) DDLBA algorithm tries to avoid the situation of load transferring as much as

possible by effectively utilizing the service time of every server in the system. In

the first step, load balancer calculates the current queue capacity of server. Then

48

load balancer compute the waiting time using Eq. (3.8). Load balancer performs

the task of continuously monitor the load status of server using Eq. (3.9). So

when a request arrived at a server, load balancer module checks the waiting time

for incoming request using Eq. (3.7). It checks whether the server is overloaded or

not using Eq. (3.9). Since each server maintains a data structure “queue” to buffer

its client requests because at any instant of time hundreds of client’s requests

arrived at the server. And server cannot process all the requests simultaneously.

b) If the waiting time is less than the deadline time of incoming request, then it adds

the client request to server queue. If any of CPU currently available, then that

request processed. Otherwise that has to be waiting for CPU time.

c) If request waiting time is greater than the deadline time of request, then load

balancer assumes that server is overloaded and triggered a module called find

server().

d) In this module, load balancer searches for the idlest server present in the system

by computing the fitness value using Eq. (3.10) for every neighbor server and

stores them in a list. From this list load balancer select that server who has highest

fitness value.

e) Since proposed algorithm main motive is to reduce the response time so it selects

the server with least utilization of CPU. We have assumed that each server has

multiple processing elements to process large number of requests, which

correspond to service rate and different service time. So fitness function computes

the fitness value using server current queue capacity, service rate and service

time.

f) Load balancer transfer only that amount of load, which makes the server

balanced.

49

In this way when any of servers get overloaded in terms of client requests, load balancer

balances the load to migrate its requests to the least loaded server that can process with in

deadline of request leads to increase the QoS.

50

CHAPTER 4

SIMULATION AND RESULT ANALYSIS

4.1 Simulation Environment

We have analyzed the performance of proposed algorithm using simulations. We

have designed our simulation environment in Java for which we have used Netbeans7.0

tool. To provide real world scenarios, we have created storage servers and client requests

were sent using multi threading. Here, all the storage servers executes in parallel and

client requests also generated in parallel. We have generated some set of client requests

for particular server which is represented as end users. Servers are associated with a

queue that stores the client’s requests and has storage capacity. Each server has multiple

processing elements to serve the client requests concurrently. In our simulation, we have

generated load in server in term of client requests. We have created a situation of system

in stability where the load is transferred across the servers. To effectively analyze the

performance of our proposed algorithms, we have generated the load only for half of

storage servers in the system. This will create the situation of load unbalancing because

some servers remain idle at the start. Our motive is to equally

distributetheclientrequeststoeachserversothatnooneservergetsoverloaded.Wehave created

following two test-beds to regressively analyze our proposed algorithm.

a) We have considered six servers whose queue length and service rates are different

but each server may or may not have equal processing time.

b) We have increased the number of servers to 12.

We have simulated the performance of our algorithms by using wide range of client

requests. We have compared our simulation result with the least loaded load balancing

algorithm.

51

4.2. Simulation Environment for CDLBA

We have simulated the performance of proposed algorithm CDLBA through two

testbeds. The configuration parameter of testbed-1 is shown below in table 4.1.

Table 4.1: Configuration of testbed-1

Server Id

S1 S2 S3 S4 S5 S6

Queue Length(requests) 10 10 20 20 30 30

Service Rate(req./time) 5 7 9 11 13 15

Here, Table 4.2 shows the test case used for the simulation of proposed algorithm

CDLBA. We have simulated our proposed algorithm under five test cases which are

shown in the table 4.2.

Table 4.2: Test cases for CDLBA

Test case No. of Requests No. of Servers Storage Server

1 600 6 500GB

2 800 6 500GB

3 1000 6 500GB

4 1200 6 500GB

5 1400 6 500GB

4.3.1. Simulation results and discussion

We have compared the performance of our proposed CDLBA algorithm with least loaded

algorithm in context to number of requests completed, number of delayed requests,

overall response time of system, and average server utilization. Figure 4.1 shows the

comparison of number of completed requests in CDLBA with least loaded algorithm.

Figure 4.1 also shows the number of client requests which are processed by server in their

52

time means these are the requests which never wait for the CPU availability. We have

compared the obtained results with least loaded algorithm. In least loaded algorithm

when any server gets overloaded then load balancer selects the server where request

queue is least loaded without considering its service rate. But we have also considered the

service rate parameter while comparing the algorithms. We have also evaluated obtained

results on different set of client requests. This can be seen from figure 4.1 that proposed

algorithm has outperformed the least loaded algorithm. In all test cases, proposed

algorithm processed more number of client’s request in a given time as compare to least

loaded algorithm. The below Table 4.3 displays the summary of results.

Table 4.3: Comparison of request completed for testbed-1

Algorithm
Client requests

600 800 1000 1200 1400

CDLBA Algorithm 176 145 187 145 157

LL Algorithm 111 108 122 76 97

Figure 4.1: Comparison of completed requests for testbed-1

600 700 800 900 1000 1100 1200 1300 1400
60

80

100

120

140

160

180

200

No. of requests

N
o
.o

f
c
o
m

p
le

te
d
 r

e
q
u
e
s
ts

 LL algo

CDLBA algo

53

Here, Figure 4.2 shows the comparison of number of delayed request of proposed

CDLBA with least loaded algorithm. From Figure 4.2 we can conclude that numbers of

delayed requests are less in CDLBA as compare to least loaded algorithm in all test cases

thus proposed algorithm outperforms the least loaded algorithm. Table 4.4 displays the

summary of obtained results.

Table 4.4: Comparison of delayed requests for testbed-1

Algorithm
Client requests

600 800 1000 1200 1400

CDLBA Algorithm 424 655 813 1051 1243

LL algorithm 489 692 878 1124 1303

Figure 4.2: Comparison of delayed requests for testbed-1

600 700 800 900 1000 1100 1200 1300 1400
400

500

600

700

800

900

1000

1100

1200

1300

1400

No. of requests

N
o
.o

f
d
e
la

y
e
d
 r

e
q
u
e
s
ts

 LL algo

CDLBA algo

54

Figure 4.3, shows the comparison of proposed CDLBA algorithm with least loaded

algorithm with respect to overall response time. From figure 4.3 we can say that proposed

algorithm outperform here too. In all test cases, response time of proposed algorithm is

less than least loaded algorithm. Table 4.5 display the summary of results obtained.

Table 4.5: Comparison of response time for testbed-1

Algorithm

Overall Response time(ms)

600 800 1000 1200 1400

CDLBA Algorithm 45502 62000 71104 90044 92517

Least Loaded Algorithm 52672 64837 77898 108859 119817

Figure 4.3: Overall response time for testbed-1

600 700 800 900 1000 1100 1200 1300 1400
4

5

6

7

8

9

10

11

12
x 10

4

No. of requests

O
v
e
ra

ll
ti
m

e
(m

s
)

 LL algo

CDLBA algo

55

Figure 4.4 shows the comparison of proposed CDLBA algorithm with least loaded

algorithm in term of server utilization. From figure 4.4, we can say that by increasing the

number of requests the server utilization is also increases. Table 4.5 displays the

summary of results. Formula for computing the server utilization is as follows:

Server total service time(ms) = ே. ௨௦௧௦ ௦௦ௗ ௬ ௦௩௦௩ ௧ × ሻ(5.1)ݏሺ݉݁݉�ݐ ݁ܿ�ݒݎ݁ݏ

ሺ%ሻ ݊�ݐ�ݖ�݈�ݐܷ ݎ݁ݒ݁ܵ = �௩ ௧௧ ௦௩ ௧ை௩ ௦௬௦௧ ௧ (5.2)

Table 4.6: Comparison of average server utilization for testbed-1

Algorithm
Average utilization (%)

600 800 1000 1200 1400

CDLBA Algorithm 35.5 36.3 37.9 39.4 40.2

LL Algorithm 31.4 31.6 32.0 32.1 32.4

Figure 4.4: Server utilization for testbed-1

600 700 800 900 1000 1100 1200 1300 1400
31

32

33

34

35

36

37

38

39

40

41

No. of requests

A
v
e
ra

g
e
 U

ti
liz

a
ti
o
n
(%

)

 LL algo

CDLBA algo

56

We have rigorously analyzed proposed algorithm and simulated it under different test

case scenarios. Following table depicts the test case scenario.

Table 4.7: Configuration Parameter for testbed-2

 Server Id

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Queue

length(request)
10 10 10 20 20 20 30 30 30 50 50 50

Service Rate

(req./time)
5 5 6 6 7 7 8 8 10 10 15 15

We have rigorously analyzed CDLBA algorithm. For that we have simulated our

proposed algorithm under different test case scenario. Following table depicts the test

case scenario.

Table 4.8: Test cases for testbed-2

Test case No. of requests No. of Servers Storage

1 800 12 500GB

2 1000 12 500GB

3 1200 12 500GB

4 1800 12 500GB

5 2400 12 500GB

Figure 4.5 shows the comparison of number of completed requests in CDLBA with least

loaded algorithm for testbed-2. Figure 4.5show the number of client requests which gets

processed by server in their time i.e. these are the requests which never wait for the CPU

availability. The below table 4.9 display the results in tabular format.

57

Table 4.9: Comparison of request completed for testbe-2

Algorithm
Client requests

800 1000 1200 1800 2400

CDLBA Algorithm 651 755 837 967 913

LL Algorithm 577 593 765 723 813

Fig.4.5: Comparison of completed requests for testbed-2

Here figure 4.6 shows the comparison of number of delayed request of CDLBA with

least loaded algorithm. From figure 4.6 we can conclude that numbers of delayed

requests are less in CDLBA as compare to least loaded algorithm in all test cases. This

shows that our proposed algorithm are efficient than least loaded algorithm. The below

table 4.10 displays the summary of results.

800 1000 1200 1400 1600 1800 2000 2200 2400
550

600

650

700

750

800

850

900

950

1000

No. of requests

N
o
.

o
f

c
o
m

p
le

te
d
 r

e
q
u
e
s
ts

 LL algo

CDLBA algo

58

Table 4.10 Comparison of number of postponed for testbed-2

Algorithm
Client requests

800 1000 1200 1800 2400

CDLBA Algorithm 149 275 363 833 1487

LL algorithm 223 407 435 1077 1587

Figure 4.7: Comparison of delayed requests for testbed-2

 Here, Figure 4.7 shows the comparison of our proposed CDLBA algorithm with least

loaded algorithm in term of overall response time. From figure 4.7 we can conclude that

our algorithm outperform the least loaded algorithm. In all test cases, response time of

our algorithm is less than least loaded algorithm. The below table 4.11 displays the

summary of results.

800 1000 1200 1400 1600 1800 2000 2200 2400
0

200

400

600

800

1000

1200

1400

1600

No. of requests

N
o
.

o
f

d
e
la

y
e
d
 r

e
q
u
e
s
ts

 LL algo

CDLBA algo

59

Table 4.11 Comparison of response time for testbed-2

Algorithm
Overall Response time(ms)

800 1000 1200 1800 2400

CDLBA Algorithm 61505 70338 78219 110914 160629

LL Algorithm 66458 83525 97414 127074 172044

Figure 4.7: Overall response time for testbed-2

Here Figure 4.8 shows the comparison of our proposed CDLBA algorithm with least

loaded algorithm with respect to server utilization. From figure 4.8, we can say that

increasing in the number of requests increases the server utilization. The below Table

4.12 display the summary of results. Server utilization can be computed using Eq. (5.1)

and (5.2).

800 1000 1200 1400 1600 1800 2000 2200 2400
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

No. of requests

O
v
e
ra

ll
ti
m

e
(m

s
)

 LL algo

CDLBA algo

60

Table 4.12: Comparison of average server utilization for testbed-2

Algorithm

Average utilization (%)

800 1000 1200 1800 2400

CDLBA 27.5 29.0 31.0 33.0 30.0

LL Algorithm 23.0 21.0 24.0 21.0 19.0

Figure 4.8: Server utilization for testbed-2

4.3. Simulation environment for DDLBA

We have simulated the performance of our second proposed algorithm DDLBA through

using two test-beds. For DDLBA we have considered the different service time of server.

So we have included one more parameter in the simulation environment. The

configuration parameter of testbed-3 is shown below in Table 4.13.

800 1000 1200 1400 1600 1800 2000 2200 2400
18

20

22

24

26

28

30

32

34

No. of requests

A
v
e
ra

g
e
 U

ti
liz

a
ti
o
n
(%

)

 LL algo

CDLBA algo

61

Table 4.13: Configuration of testbed-3

Server Id

S1 S2 S3 S4 S5 S6

Queue Length (request) 10 10 20 20 30 30

Service Rate(req./time) 5 7 9 11 13 15

Service time(s) 1.5 0.5 1 1.5 0.5 1

Table 4.14 shows the test case used for the simulation of proposed algorithm DDLBA.

We have simulated proposed algorithm under five test cases which are shown in the

Table 4.14.

Table 4.14: Test cases for DDLBA

Test case No. of Requests No. of Servers Storage

1 600 6 500GB

2 800 6 500GB

3 900 6 500GB

4 1000 6 500GB

5 1200 6 500GB

4.3.1. Simulation results and discussion

We have compared the performance of our proposed DDLBA algorithm with least loaded

algorithm in term of number of completes requests, number of delayed requests, overall

response time of system and average server utilization. In DDLBA algorithm, we have

utilized the service time of server for load distribution. Figure 4.9 shows the comparison

of number of completed requests in DDLBA with least loaded algorithm. Figure 4.9show

the number of client requests which are processed by server in their time i.e. these are the

requests which never wait for the CPU availability. We have compared our results with

least loaded algorithm. In least loaded algorithm when any server gets overloaded then

load balancer selects the server of which request queue is least loaded without

considering the service rate. But we have also considered the service rate as well service

62

time parameter for the proposed algorithm. We have evaluated our results on different set

of client requests. As shown in the Figure 4.9, our algorithm has outperformed as

compare to least loaded algorithm. In all test cases, our algorithm has processed more

number of client’s request in a given time as compare to least loaded algorithm. Table

4.15 displays the summary of obtained results.

Table 4.15: Comparison of request completed for testbed-3

Algorithm
Client requests

600 800 900 1000 1200

DDLBA Algorithm 92 85 91 118 109

LL Algorithm 66 60 56 66 56

Figure 4.9: Comparison of completed requests in testbed-3

Here figure 4.10 shows the comparison of number of delayed request of DDLBA with

least loaded algorithm. From figure 4.10 we can conclude that numbers of delayed

600 700 800 900 1000 1100 1200
50

60

70

80

90

100

110

120

No. of requests

N
o
.

o
f

c
o
m

p
le

te
d
 r

e
q
u
e
s
ts

DDLBA algo

LL algo

63

requests are less in DDLBA as compare to least loaded algorithm in all test cases. This

shows that our proposed algorithm are efficient than least loaded algorithm. The below

table 4.16 displays the summary of obtained results.

Table 4.16: Comparison of delayed requests for testcase-3

Algorithm
Client requests

600 800 1000 1200 1400

DDLBA Algorithm 508 715 809 934 1144

LL algorithm 534 740 844 882 1095

Figure 4.10: Comparison of delayed requests for test-bed-3

Figure 4.11 shows the comparison of proposed CDLBA algorithm with least loaded

algorithm in term of overall response time. From figure 4.11 we can say that our

algorithm outperform the least loaded algorithm. In all test cases, response time of our

600 700 800 900 1000 1100 1200
500

600

700

800

900

1000

1100

1200

No. of requests

N
o
.

o
f

c
o
m

p
le

te
d
 r

e
q
u
e
s
ts

DDLBA algo

LL algo

64

algorithm is less than least loaded algorithm. Table 4.17 displays the summary of

obtained results.

Table 4.17: Comparison of response time for testbed-3

Algorithm

Overall Response time(ms)

600 800 1000 1200 1400

DDLBA Algorithm 46782 70307 86479 91812 109817

LL Algorithm 48690 72550 90333 102639 124580

Figure 4.11: Overall response time for testbed-3

Figure 4.12 shows the comparison of our proposed DDLBA algorithm with least loaded

algorithm with respect to server utilization. From figure 4.12, we can say that increasing

in the number of requests also increases the server utilization whereas in least loaded

600 700 800 900 1000 1100 1200
4

5

6

7

8

9

10

11

12

13
x 10

4

No. of requests

O
v
e
ra

ll
ti
m

e
(m

s
)

DDLBA algo

LL algo

65

server utilization decreases. Table 4.18 displays the summary of obtained results. Server

utilization can be computed using Eq. (5.1) and (5.2).

Table 4.18: Comparison of average server utilization for testbed-3

Algorithm

Average utilization (%)

600 800 1000 1200 1400

DDLBA Algorithm 39.1 41.2 41.9 43.4 45.1

Least Loaded Algorithm 32.1 31.2 31.0 30.0 29.0

Figure 4.12: Server utilization for testbed-3

To regressively analyze the performance of DDLBA, we have simulated our proposed

algorithm on second test-bed. The configuration parameters are displayed in Table 4.19.

600 700 800 900 1000 1100 1200
28

30

32

34

36

38

40

42

44

46

No. of requests

A
v
e
ra

g
e
 U

ti
liz

a
ti
o
n
(%

)

DDLBA algo

LL algo

66

Table 4.19: Configuration Parameter for testbed-4

Server Id

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Queue length

(request)
20 20 20 25 25 25 40 40 40 50 50 50

Service Rate

(req./time)
5 5 5 7 7 7 10 10 10 15 15 15

Service time

(sec)
1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1

We have rigorously analyzed the proposed algorithm. For that we have simulated

proposed algorithm under different test case scenario. Following Table 4.20 depicts the

test case scenario.

Table 4.20: Test cases for testbed-4

Test case No. of Requests No. of Servers Storage

1 800 12 500GB

2 1000 12 500GB

3 1200 12 500GB

4 1800 12 500GB

5 2400 12 500GB

Figure 4.13 shows the comparison of number of completed requests in DDLBA with least

loaded algorithm for testbed-3. Figure 4.13 shows the number of client requests which

are processed by server in their time i.e. these are the requests which are not wait for the

CPU availability. The below table 4.21 display the results in tabular format.

Table 4.21: Comparison of request completed for testbed-3

Algorithm
Client requests

800 1000 1200 1800 2400

DDLBA Algorithm 220 250 172 213 157

LL Algorithm 190 202 73 177 86

67

Fig.4.13: Comparison of completed requests for testbed-4

Figure 4.14 shows the comparison of number of delayed request of DDLBA with least

loaded algorithm. From Figure 4.14 we can say that numbers of delayed requests are less

in DDLBA as compare to least loaded algorithm in all test cases. This shows that our

proposed algorithm are efficient than least loaded algorithm. Table 4.22 displays the

summary of results.

Table 4.22 Comparison of number of postponed for testbed-4

Algorithm

Client requests

800 1000 1200 1800 2400

DDLBA Algorithm 570 750 1028 1587 2243

LL algorithm 590 798 1127 1623 2314

800 1000 1200 1400 1600 1800 2000 2200 2400
60

80

100

120

140

160

180

200

220

240

260

No. of requests

N
o
.

o
f

c
o
m

p
le

te
d
 r

e
q
u
e
s
ts

DDLBA algo

LL algo

68

Figure 4.14: Comparison of delayed requests for testbed-4

Here figure 4.15 shows the comparison of our proposed DDLBA algorithm with least

loaded algorithm in term of overall response time. From Figure 4.15 we can say that our

algorithm has outperformed the least loaded algorithm. In all test cases, response time of

our algorithm is less than least loaded algorithm. Table 4.23displays the summary of

results.

Table 4.23: Comparison of response time for testbed-4

Algorithm
Overall Response time(ms)

800 1000 1200 1800 2400

DDLBA Algorithm 39082 40191 61350 84055 118395

LL Algorithm 40182 49418 70219 102248 138944

800 1000 1200 1400 1600 1800 2000 2200 2400
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

No. of requests

N
o
.

o
f

d
e
la

y
e
d
 r

e
q
u
e
s
ts

DDLBA algo

LL algo

69

Figure 4.15: Overall response time for testbed-4

Here, Figure 4.16 shows the comparison of our proposed DDLBA algorithm with least

loaded algorithm in term of server utilization. From figure 4.16, we can say that

increasing the number of requests also increases the server utilization. Table 4.24

displays the results in tabular format. Server utilization can be computed using Eq. (5.1)

and (5.2).

Table 4.24: Comparison of average server utilization for testbed-4

Algorithm

Average utilization (%)

800 1000 1200 1800 2400

DDLBA Algorithm 19.5 20.1 21.1 22.0 23.0

Least Loaded Algorithm 19.0 19.0 18.3 17.4 16.0

800 1000 1200 1400 1600 1800 2000 2200 2400
2

4

6

8

10

12

14
x 10

4

No. of requests

O
v
e
ra

ll
ti
m

e
(m

s
)

DDLBA algo

LL algo

70

Figure 4.16: Comparison of server utilization for testbed-4

800 1000 1200 1400 1600 1800 2000 2200 2400
16

17

18

19

20

21

22

23

No. of requests

A
v
e
ra

g
e
 U

ti
liz

a
ti
o
n
(%

)

DDLBA algo

LL algo

71

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

 In this report, an effective distributed load balancing algorithm for cloud environment is

presented. First a problem statement is formulated in cloud storage. Proposed load

balancing algorithm designed and implemented to achieve global balancing in the cloud

environment through adequately redistribute the extra load to the set of neighbors of the

overloaded server to eliminating local server queue instability. In this report, two

approaches are proposed which equally distribute the load among the storage servers to

avoid load unbalancing. First proposed algorithm CDLBA balances the load among the

storage server by effectively utilizing the server queue and service rate. CDLBA selects

that server which has maximum free queue and maximum service rate. Second proposed

algorithm DDLBA balances the load among storage server by utilizing the server queue,

service rate, and service time for each client requests. DDLBA selects that server which

can process the client requests within its deadline time. Through regress analysis of the

performance of proposed approaches in term of number of completed client requests,

number of delayed requests, overall system response time and average server utilization,

we have concluded that both proposed algorithms reduce the overall response time,

delayed requests and increase the completed requests as well as server utilization.

5.2 Future work

In this report, proposed work presents handling of load of storage servers in cloud

environment. Our future work will be the authentic usage of our proposed methodology

in a real framework, so that proposed load balancing to be utilized both as an evidence of

true execution of the outcomes got through simulation and as a base for further research

in the field of distributed storage. Since storage servers are interconnected through

72

network, so the effect of network load, failure over network, storage capacity of server,

etc. will be analyzed in context of proposed work.

73

REFERENCES

[1] Prabavathy, B., K. Priya, and Chitra Babu, "A load balancing algorithm for private

cloud storage," 2013 Fourth International Conference on Computing,

Communications and Networking Technologies (ICCCNT),Tiruchengode, India , 4-6

July 2013, pp. 1-6.

[2] You, Gae-won, Seung-won Hwang, and Navendu Jain, "Scalable load balancing in

cluster storage systems," Proceedings of the 12th International Middleware

Conference, 12 Dec. 2011, pp. 100-119.

[3] Mell, Peter, and Tim Grance, "The NIST definition of cloud computing," National

Institute of Standards and Technology, 2011.

[4] Staten, James, Simon Yates, Frank E. Gillett, WalidSaleh, and Rachel A. Dines, "Is

cloud computing ready for the enterprise," Forrester Research, March, 2008.

[5] Zhang, Qi, Lu Cheng, and Raouf Boutaba, "Cloud computing: state-of-the-art and

research challenges," Journal of internet services and applications, May 2010, vol. 1,

Issue 1, pp 7-18.

[6] Rimal, Bhaskar Prasad, Eunmi Choi, and Ian Lumb, "A taxonomy, survey, and issues

of cloud computing ecosystems," Cloud Computing, Springer London, chapter 2,

2010, pp 21-46.

[7] Kulkarni, Gurudatt, Rani Waghmare, RajnikantPalwe, VidyaWaykule,

HemantBankar, and KundlikKoli, "Cloud storage architecture," In 7th International

Conference on Telecommunication Systems, Services, and Applications (TSSA), Bali,

Oct 2012, pp 76-81.

[8] Wu, Jiyi, Lingdi Ping, Xiaoping Ge, Ya Wang, and Jianqing Fu, "Cloud storage as

the infrastructure of cloud computing," In International Conference on Intelligent

Computing and Cognitive Informatics, Kuala Lumpur, June 2010, pp 380-383.

[9] R. Arokia Paul Rajan and S. Shanmugapriyaa, “Evolution of Cloud Storage as Cloud

Computing Infrastructure Service,” IOSR Journal of Computer Engineering

(IOSRJCE), vol. 1, No.1, pp 38-45, 2012.

http://link.springer.com/journal/13174/1/1/page/1

74

[10] Mishra, Ratan, and AnantJaiswal, "Ant colony optimization: A solution of load

balancing in cloud," International Journal of Web & Semantic Technology (IJWesT),

vol.3, No.2, pp 33-50, 2012.

[11] Kansal, Nidhi Jain, and Inderveer Chana, "Existing load balancing techniques in

cloud computing: a systematic review," Journal of Information Systems and

Communication, vol. 3, No.1, pp. 87-91, 2012.

[12] Alakeel, Ali M, "A guide to dynamic load balancing in distributed computer

systems," International Journal of Computer Science and Information Security, vol.

10 No. 6, pp. 153-160, 2010.

[13] Rathore, Neeraj, and Inderveer Chana, "Load Balancing and Job Migration

Techniques in Grid: A Survey of Recent Trends," International Journal on Wireless

Personal Communications, vol. 79, Issue 3, pp. 2089-2125, 2014.

[14] Zhu, Yingwu, and Yiming Hu. "Efficient, proximity-aware load balancing for DHT-

based P2P systems." IEEE Transactions on Parallel and Distributed Systems, vol. 16,

no. 4, pp. 349-361, 2005.

[15] Zeng, Wenqiu, Ying Li, Jian Wu, Qingqing Zhong, and Qi Zhang, "Load

Rebalancing in Large-Scale Distributed File System," In 1st International Conference

on Information Science and Engineering (ICISE), Nanjing, Dec. 2009, pp. 265 – 269.

[16] Hu, Jinhua, JianhuaGu, Guofei Sun, and Tianhai Zhao, "A scheduling strategy on

load balancing of virtual machine resources in cloud computing environment," In 3rd

International Symposium on Parallel Architectures, Algorithms and Programming,

Dalian, Dec. 2010, pp. 89 – 96.

[17] Wang, Shu-Ching, Kuo-Qin Yan, Wen-Pin Liao, and Shun-Sheng Wang, "Towards a

load balancing in a three-level cloud computing network," In 3
rd

 International

conference on Computer and Information Technology (ICCSIT), Chengdu, July 2010,

pp. 108-113.

[18] Tian, Wenhong, Yong Zhao, Yuanliang Zhong, Minxian Xu, and Chen Jing, "A

dynamic and integrated load-balancing scheduling algorithm for Cloud datacenters,"

In Proceeding of IEEE Cloud Computing and Intelligence Systems (CCIS) , Chengdu,

Sept. 2011, pp. 311-315.

http://link.springer.com/journal/11277
http://link.springer.com/journal/11277
http://link.springer.com/journal/11277/79/3/page/1
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6034549

75

[19] Lee, Rich, and Bingchiang Jeng, "Load-balancing tactics in cloud," In International

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,

Beijing, Oct. 2011, pp. 447-454.

[20] Radojevic, Branko, and Mario Zagar, "Analysis of issues with load balancing

algorithms in hosted (cloud) environments," Proceeding of the 34
th

 International

Convention on MIPRO, Opatija, Croatia, May 2011, pp. 416-420.

[21] Yamamoto, Hiroshi, and Daisuke Maruta, "Replication methods for load balancing

on distributed storages in P2P networks," In Proceedings of the 2005 Symposium on

Applications and the Internet (SAINT’05), Feb 2005, pp.264 – 271.

[22] Randles, Martin, David Lamb, and A. Taleb-Bendiab, "A comparative study into

distributed load balancing algorithms for cloud computing," In IEEE 24th

International Conference on Advanced Information Networking and Applications

Workshops, Perth, WA, April 2010, pp. 551-556.

[23] Yao, Jing, and Ju-hou He, "Load balancing strategy of cloud computing based on

artificial bee algorithm," In 8
th

 International Conference on Computing Technology

and Information Management (ICCTIM), Seoul, April 2012, pp 185-189.

[24] Kwannetr, Umapom, Uthen Leeton, and Thanatchai Kulworawanichpong, "Optimal

power flow using artificial bees algorithm," In International Conference on Advances

in Energy Engineering (ICAEE), Beijing, June 2010, pp. 215-218.

[25] Liu, Hongzhi, LiqunGao, Xiangyong Kong, and Shuyan Zheng, "An improved

artificial bee colony algorithm," In 3
rd

 International Conference on Computer

Research and Development (ICCRD), Shanghai, March 2011, pp. 174-177.

[26] Li, Kun, GaochaoXu, Guangyu Zhao, Yushuang Dong, and Dan Wang, "Cloud task

scheduling based on load balancing ant colony optimization," In Sixth Annual

ChinaGrid Conference, Liaoning, Aug. 2011, pp. 3-9.

[27] Dorigo, Marco, and Christian Blum, "Ant colony optimization theory: A survey,"

Journal in Theoretical Computer Science, vol. 344, Issues 2–3, pp. 243–278, 2005.

[28] Dorigo, Marco and Mauro Birattari, "Ant colony optimization," IEEE Computational

Intelligence Magazine, pp.28-39, 2006.

[29] Buyya, Rajkumar, Rajiv Ranjan, and Rodrigo N. Calheiros, "Modeling and

simulation of scalable Cloud computing environments and the CloudSim toolkit:

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5547543
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5547543
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5756602
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5756602
http://www.sciencedirect.com/science/journal/03043975/344/2

76

Challenges and opportunities," In Proceedings of the 7th High Performance

Computing and Simulation Conference, Leipzig, Germany, 2009, pp. 1-11.

[30] Wickremasinghe, Bhathiya, Rodrigo N. Calheiros, and RajkumarBuyya,

"Cloudanalyst: A cloudsim-based visual modeller for analysing cloud computing

environments and applications," In 24th IEEE International Conference on Advanced

Information Networking and Applications, Melbourne, 2010, pp.446-452.

[31] Lu, Yilin, Jian Zhang, Shaochun Wu, and Shujuan Zhang, "A Hybrid Dynamic Load

Balancing Approach for Cloud Storage," In International Conference on Industrial

Control and Electronics Engineering, Xi'an, Aug. 2012, pp. 1332 – 1335.

[32] Hsiao, Hung-Chang, Hsueh-Yi Chung, Haiying Shen, and Yu-Chang Chao, "Load

rebalancing for distributed file systems in clouds," IEEE transactions on Parallel and

Distributed Systems, vol. 24, no. 5, pp. 951-962, 2013.

[33] Chung, Hsueh-Yi, Che-Wei Chang, Hung-Chang Hsiao, and Yu-Chang Chao, "The

load rebalancing problem in distributed file systems," In IEEE International

Conference on Cluster Computing (CLUSTER), Beijing , 24-28 Sept 2012, pp. 117 –

125.

[34] Manfredi, Sabato, Francesco Oliviero, and Simon Pietro Romano, "A distributed

control law for load balancing in content delivery networks." IEEE/ACM transaction

on networking,vol. 21, no. 1,pp. 55-68, 2013.

[35] Zeng, Zeng, and Bharadwaj Veeravalli, "Design and performance evaluation of

queue-and-rate-adjustment dynamic load balancing policies for distributed networks."

IEEE transaction on Computer, vol. 55, no. 11, pp.1410–1422, 2006.

77

List of Publication

1. Ravideep et al., “Load Balancing of Distributed Servers in Distributed File System”,

7
th

 ICT Innovations Conference, Ohrid R. Macedonia, Oct. 2015.(Communicated).

	3.4. Proposed Algorithm 1

