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CHAPTER 1

INTRODUCTION

1.1 Problem statement

Molecular sequence databases (e.g., EMBL , Genbank ,etc) store hundreds or

thousands of DNA sequences reaching up to thousands of gigabytes and are con-

tinuously growing with storage doubling time of 18 months [18]. Due to this large

size, they cannot be downloaded or shared over the network by anyone except

those with large amount of available resources. In such a situation, the data is

transferred in hard disks from one place to the other, which results in wastage of

time and money. Even though one downloads specific data sets, the load on local

storage can be very high, and such large-scale analysis of these sequences is only

possible to those with large computing resources.

While using cloud computing, one again faces the problem of large data size during

the transmission of the data to the cloud. However, with the growth of sequence

data largely exceeding reasonable storage capability, the bio medical community

has to confront the challenges with the management, transfer and storage of se-

quence data.
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Chapter 1. Introduction

1.2 Motivation

The expansion of high-throughput sequencing data has given birth to the gener-

ation of a large amount of biological data. Although the cost involved in DNA

sequencing is decreasing, yet the storage expenditure of these sequences is increas-

ing exponentially. There are three approaches to handle such huge data[6]:

• add more storage to accommodate more data

• remove some of the data that is either redundant or not so important

• compress the stored data to avail more storage

Data compression that reduces the space for storage and speeds up the data trans-

mission is one of the key technologies that can be used in the management of such

vast data.

1.3 Objective

• To suggest an improvement in the compression of files in real time

• To study inter-species referential compression as so far referential compres-

sion only works well, if input and reference belong to the same species. The

development of a multi-species reference sequence would allow for multi -

purpose genome compression algorithms.

1.4 Organization of thesis

This section discusses the framework of this thesis which is organized as follows:

2



Chapter 1. Introduction

• Chapter 1: This chapter introduces the problem statement, motivation, ob-

jective of thesis.

• Chapter 2: About DNA read sequencing, need for compression, types of

compression, performance parameters and referential compression.

• Chapter 3: Literature survey

• Chapter 4: Proposed Approach

• Chapter 5: Implementation Results

• Chapter 6: Conclusion and future directions
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CHAPTER 2

ABOUT DNA READ

COMPRESSION

2.1 What is DNA sequencing?

The Deoxyribonucleic acid (DNA) constitutes the physical medium in which all

properties of living organisms are encoded. The biological information stored

inside a DNA helps in determining the weaknesses or abilities of an organism. DNA

sequence is a long stretch consisting of four types of nucleotides: Adenine (A),

Cytosine (C), Guanine (G) and Thymine (T). There can also be many unknown

Figure 2.1: Nucleotide ladder

nucleotides in a DNA sequence that are represented by N.DNA sequencing means

to determine the arrangement of the nucleotides in a sample of a DNA. This can be

4



Chapter 2. About

helpful in finding the properties of the organism, determining as to which diseases

an organism is sensitive, treating people according to their DNA and lot more.

Due to the growth in technology and new discoveries DNA sequencing has become

faster and cheaper. One complete DNA sequence of a human being contains three

billions nucleotides and roughly needs around three gigabytes of memory.

2.2 Need for compression

Generally for presenting digital data we use encoding which produces large amount

of data, since data transmission and storage is very expensive. So we need to look

in two things, firstly save transmission bandwidth for transmission of data and

secondly save the space for storage of data. For this reason we use compression

techniques. By compressing data, we mean to compress or reduce the size of data

for easy transmission and easy data storage. Converting back the compressed

data back to original data is known as decompression. Compression methods are

classified into: “lossy” and “lossless”. A lossless technique means that the restored

data file is exactly similar to its original file as in case of word document .Whereas,

in lossy compression technique the original data is lost, that is, unimportant data

is discarded (but no harm is done) as in the case of images or signals where the

loss of certain bits is affordable.

Figure 2.2: File compression and decompression
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Chapter 2. About

It was back in 1948 when Claude Shannon discovered that there is certain limit to

lossless data compression called as entropy (H). The value of this entropy depends

on statistical behavior of the source. This means that lossless compression with

compression rate greater or equal to H is possible but impossible to achieve better

than H. Suppose X is a random variable with alphabets (x1,x2,x3. . . . . . . . . .xn)

where P(x) is the probability of every letter present in the alphabet, the H is

calculated as :

H(X) = −
N∑
1

Pi logPi

2.3 Compression Performance Parameters

In order to compare different compression and decompression algorithms we need

to define certain parameters that can be consistently used to evaluate their per-

formance. In this dissertation three criteria are taken, namely compression speed

of the algorithm, compression ratio and percentage of storage saved, defines as fol-

lows.

Compressed ratio Compressed ratio is defined as the reduction in the size

of file after we apply some compression algorithm on the original file. Basically

it is ratio of original file size to the reduced file size. The higher the compression

ratio ,the better is the compression. This is calculated as

Compressionratio =
originalfilesize

compressedfilesize

Compression and decompression speed Compression speed is the total time

taken in seconds, to compress the given data. It can also denote as the total number

of characters compressed per second. The lower it takes to compress the better is

the speed. After compressing and storing the data it is possible to decompress it

6



Chapter 2. About

in order to access the original data. Decompression speed is measured as the time

taken to get back the original data from the compressed data.

Memory saving Memory saving is measured as the reduction in the amount of

storage after we apply the compression algorithm. Same data now occupies less

storage space. Memory saving in percentage is calculated as

Memorysaved = 1− compressedsize

uncompressedsize

PercentageS = memorysaved× 100

2.4 Types of DNA compression

The increasing number of (re-)sequenced genomes has lead to many compression

algorithms. In general, these compression algorithms can be separated into bit

manipulating, dictionary-based, statistical, and referential approaches [4]:

• Naive bit encoding : is the most simple algorithm that uses fixed-length

encoding of two or more characters in a single byte. The four nucleotides

bases in a DNA can easily encoded with two bits. However this encoding

technique is difficult to read by user. If a DNA sample contains N spaces

then we require three bits for encoding .One example for naive bit encoding

is shown in Figure 2.3 . Each symbol in the input is replaced by two bits

using the replacement (A=00;C=01;G=10; T=11).

• Dictionary-based :: Dictionary-based encoding are compression schemes

that doesn’t depend on specific characteristics of the input data. The main

7



Chapter 2. About

Figure 2.3: Example Naive bit encoding

idea is to replace the repeated data items of the input DNA sequence with

references to a dictionary. These reference are stored as codeword that are

used for encoding the input sequence. Repetitions are usually detected by

keeping a counter for previously occurring sequences. This reference dic-

tionary need not be stored along with the compressed data as it can be

recreated dynamically during the decompression process. One example for

a dictionary-based algorithm is shown in Figure 2.4

Figure 2.4: Example Dictionary-based encodings

• Statistical based Algorithms :Statistical algorithms generate a statistical

model of the given input data, which is usually denoted as probabilistic or

prefix tree data structure. More frequent Sub sequences are represented with

shorter codes. This scheme can be considered better than that dictionary

based algorithm as it performs repeat detection and reference encoding in

8
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one pass. Compression ratio depends occurrence of visible patterns in the

input as well as the quality of model used. One example for a Statistical

based algorithm is shown in Figure 2.5.

Figure 2.5: Example Statistical-based encodings

• Referential or reference-based approaches: to some extend similar

to dictionary based techniques, as they replace long sub sequences with ref-

erences. But the disadvantage of this scheme is that the references refer to

external sequences which are not part of the to-be-compressed input [16] and

also need to be stored along with compressed inputs. The idea is to com-

press the input sequence of same specie with respect to an external reference

sequence.Index structures like suffix tree or hash based indexing is used to

search for Long matches in the reference 2.4 Referential compression

2.5 Referential compression

Referentially compressing a string means to encode the string as a concatenation

of substrings from a given reference sequence. A number of schemes are used to

9



Chapter 2. About

Figure 2.6: Example Reference-based encodings

denote the matches found in a reference sequence. The first scheme is to encode

the matches as a set of pairs, where each pair consists of a position and length

of a match [3][11]. Second scheme is to encode parts of a sequence with original

text entries instead of matches into the reference[1]. This scheme is only useful if

the referential match values are small enough forming a compressed representation

of the text occupying less storage. Third scheme is to encode each match value

found in the reference as a triplet, where first item denotes starting position of the

match, second denotes the length of the match, and third denotes first character

appearing after the match. This technique yields very good results in case the

target input sequence and reference sequence are almost similar with a difference

of single nucleotide.

Example 1:We are given two sets : –

reference ref = ATGCGAGCT

Sequence s = ATTCGAGACT

This could be represented as given in the figure 2.7 . A referential match entry is

denoted as a triplet of ( start; length; mismatch ) where start is an integer indi-

cating the start of a match within the reference, length denotes the match length,

and mismatch denotes a symbol following the match. The length of a referential

match entry( rme), is length + 1.

10
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Figure 2.7: Example 1 Reference-based compression

Given strings s and ref, a referential compression of s with respect to ref is a list

of referential match entries,

Comp (s,ref)=({ start1; length1; mismatch1}. . . . . . startn; lengthn; mismatchn});

such that

(ref start1; length1* mismatch 1)*

(ref start2; length2 * mismatch 2)*. . . . . . *

(ref startn; lengthn * mismatch n) = s

Algorithm 1 : Referential compression algorithm

1: while input sequence is not empty do

2: find longest matching substring in reference for current input position

3: if length of match greater than X then

4: encode match as (match position; length)

5: else

6: encode match with raw symbols

7: end if

8: end while

11



Chapter 2. About

The general algorithm for referential compression in pseudo code is shown in Al-

gorithm 1. In the above pseudo code the value of X is used to find out whether the

entry is encoded as short matches of reference or as raw strings. The inverse of a

referential compression is the decompression of a referential compressed sequence

using the same reference in order to get back the original string as it was. More

is the similarity between reference and input sequences higher are the compres-

sion rates. For example if we compress a human genome sequence with a mouse

genome we get very low rates of compression

12



CHAPTER 3

BRIEF LITERATURE SURVEY

3.1 Title 1:FRESCO -Referential Compression

of Highly Similar Sequences

Figure 3.1: FRESCO: Block diagram

Referential Compression of Highly Similar Sequences [17] is an open source frame-

work proposed by Sebastian Wandelt and Ulf Leser that compresses large volumes

of biological sequence data. The algorithm is much faster as compared to related

13



Chapter 3. Brief Literature survey

work while attaining similar compression ratios. Apart from this they have also

proposed three techniques to increase the compression ratio. This includes select-

ing a good reference, Rewriting a good reference and second order compression.

Using modern hardware they are able to perform real time compression on highly

similar sequences. But rewriting a reference sequence algorithm does not work

with long chains.

3.2 Title 2:Adaptive efficient compression of genomes

In another paper by Sebastian Wandelt* and Ulf Leser, entitled as[1] , they propose

a highly scalable, efficient and adaptive algorithm for referential compression of

genomes. They were able to achieve a very good compression ratio by a graceful

trade off between compression time and space requirement. The main idea is to

divide the reference genome into number of blocks where local search is used to

find long matches of the given sequence in the reference blocks. Longest suffix and

prefix matches are computed using suffix tree[16]. For obtaining better compression

speed and handling data easily they have considered fixed length blocks whereas

different blocks size can have provided better performance in terms of compression

ratio. The limitation here is that their algorithm mainly works when compressing

a sequence with respect to a reference from the same species.

3.3 Title 3:GReEn- a tool for efficient compres-

sion of genome resequencing data

GReEn [2] is another compression tool designed by Ar-mando J. Pinho, Diogo

Pratas and Sara P. Garcia that can even handle arbitrary values that may be

present in biological sequences without imposing any restriction or specification

14



Chapter 3. Brief Literature survey

Figure 3.2: Adaptive efficient compression of genomes

on the to-be- compressed sequence. In this reference based compression, each

character in the input sequence along with its probability distribution is encoded

using an arithmetic encoder. They have used either static model or adaptive mode

to provide probability distribution for the characters. The best portion in this

tool is that it works on statistical method that uses probabilistic copy model that

allows a high compression rate of the input sequence, especially when the input

and reference sequence are almost similar. The copy model relies on a pointer to a

position in the reference sequence that has a good chance of containing a character

identical to that being encoded. As the encoding process of the input sequence

proceeds, the pointer associated with the copy model may be re positioned to

different locations of the reference sequence. On re-positioning ,all the parameters

are reset. They have used three counters to record how many times copy model

is used, how many times the model made correct guess including both upper and

lower case and the number of times the model guessed the character but failed the

case. The only Limitation is that, its running time depends only on the size of the

sequence being compressed.

15
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Figure 3.3: Copy Model

3.4 Title 4:String Searching in Referentially Com-

pressed Genomes

[10]String Searching in Referentially Compressed Genomes by Wandelt1 et al have

addressed the problem of decompressing before an analysis by proposing an algo-

rithm for exact string search over compressed data. The algorithm performs partial

decompression over the referentially compressed sequence of a genome without any

index structure over the input sequence. The problem of string matching is solved

by first finding exact matches in the indexed reference sequence and then used

those matches for finding all exact matches in the given genomes . This concept of

searching a biological sequence directly in a compressed sequence introduces new

techniques to manage data in research groups.

16
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Figure 3.4: String Searching in Referentially Compressed Genomes Read
Compression

3.5 Title 5:MCUIUC– A New Framework for Metage-

nomic Read Compression

MCUIUC [11] is a framework proposed by Jonathan et al, for compressing Metage-

nomics data. This includes (1) roughly classifying the species in the metagenomic

sample and select group of genera,(2) partitioning the dataset where a set of ref-

erence genomes that best aligned to the reads has to be selected. Bowtie2 is used

for giving best alignment score up to the genus level. Both aligned and unaligned

reads are treated differently. (3) Compression and Distribution: After number of

conversions from SAM format to BAM format and finally to CRAM format the

compressed files are packed as tar archive.This package can be distributed and

the files are recreated with the help of CRAM toolkit , given the CRAM files

and representative genomes. The representative genomes may be compressed us-

ing standard compressors such as bzip2 or specialized compressors such as DNA

Compress.

17
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Figure 3.5: Metagenomic Read Compression

3.6 Title 6:Reference Sequence Construction for

Relative Compression of Genomes

In Reference Sequence Construction For Relative Compression Of Genomes[9],

the author has shown how relative compression of genomes supports fast random

access and is an effective method of compressing large DNA sequences that are

almost similar. The problem of selecting a good reference is addressed using the

18
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dictionary of repeats generated by Comrad, Re-pair and Dna-x algorithms as ref-

erence sequences for relative compression. The reference for compressing the input

sequence is built from the phrases built by popular dictionary compressors. They

concluded that artificially build reference sequences allow superior compression,

while keeping the basic advantage of relative compression: fast random access to

the collection, also allowing more general repeating data sets to be compressed

using relative compression.

3.7 Title 7:HUGO- Hierarchical multi-reference

Genome compression for aligned reads

Hierarchical multi-reference Genome compression (HUGO),[5] is a novel compres-

sion algorithm for aligned reads in the sorted Sequence Alignment/Map (SAM)

format. They have first aligned short reads against a reference genome and stored

exactly mapped reads for compression. For the inexact mapped or unmapped

reads, they realigned them against different reference genomes using an adaptive

scheme by gradually shortening the read length. Considering the base quality

value gives both lossy and lossless compression mechanisms. The lossy compres-

sion mechanism for the base quality values uses k-means clustering, where a user

can adjust the balance between decompression quality and compression rate. The

lossless compression can be produced by setting k (the number of clusters) to the

number of different quality values. The drawback of this method is that it requires

having different reference genomes and prolongs the execution time for additional

alignments

19
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3.8 Title 8:Efficient Storage of High Through-

put DNA Sequencing Data Using Reference-

Based Compression

Efficient storage of high throughput DNA sequencing data using reference-based

compression[6] is an effective and tunable method that aligns target sequence with

a reference genome and stores the difference between the target and reference

genome. Each read is stored by its starting position with respect to the reference,

its strand and a tag representing a perfect match with the reference. Rather than

storing the absolute position the difference between the two positions is stores

as a variable length Golomb code. Each strand and match tags occupy one bit.

Mismatches are stored as a list of variations where each variation is represented

with its relative position on read that is Golomb encoded, type of variation such

as insertion, deletion or substitution and other supplementary information. The

proposed method is most efficient when controlled loss of data is allowed and gives

large efficiency gains as the length of reads are increased.

3.9 Title 9:BIND – An algorithm for loss-less

compression of nucleotide sequence data

In BIND by Tungadri et al, a new approach is discussed to for compressing a se-

quence of nucleotide [8] . They have used a special block length encoding scheme in

place of binary data which is a key procedure of this paper. They divide the binary

data into two sets and process each one independently and parallel. An optimal

unary coding scheme is used to encode the block length. The algorithm also han-

dles lowercase values as well as any other symbol apart from ACGT On comparing

20
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BIND with other general purpose compression algorithms(like lzma,bzip,gzip) bet-

ter compression was achieved . It is a lossless compression that is freely available

online.
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CHAPTER 4

PROPOSED APPROCH

4.1 Background

In order to get high compression rates selection of reference is very important

factor. Firstly, So far one of the dna sequence is selected as reference from among

the set of input sequences using brute force or some heuristic method . An intuitive

strategy to find the reference sequence is to compress all the input sequences

against all possible reference sequence and select reference that yields maximum

number of matches with respect to input sequences. Heuristic strategy is given in

FRESCO [17] where instead of compressing a to-be-compressed sequence against

all candidate references they compare the referentially compressed input sequence

and the referentially compressed reference candidates with respect to one randomly

selected base reference. This heuristic only needs to compress each sequence one

time with respect to the base reference, independent of the number of candidate

references where the candidate references are selected randomly. Secondly, once

reference is selected compression is performed by matching input sequence with

indexed reference. That is searching for longest prefix of input sequence in indexed

referenced until whole input sequence is scanned till the end.
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4.1.1 Basic Referential Algorithm

Referentially compressing a string means to encode the string as a concatenation

of substrings from a given reference sequence. A number of schemes are used to

denote the matches found in a reference sequence. The first scheme is to encode

the matches as a set of pairs, where each pair consists of a position and length

of a match [3],[11]. Second scheme is to encode parts of a sequence with original

text entries instead of matches into the reference [1]. This scheme is only useful if

the referential match values are small enough forming a compressed representation

of the text occupying less storage. Third scheme is to encode each match value

found in the reference as a triplet, where first item denotes starting position of the

match, second denotes the length of the match, and third denotes first character

appearing after the match. This technique yields very good results in case the

target input sequence and reference sequence are almost similar with a difference

of single nucleotide.

To compress an input sequence with respect to a reference using the basic refer-

ential compression the algorithm finds longest prefix match of the input sequence

in reference sequence. The matches are replaced by triplets that contain position,

length and following mismatch entry. This procedure is repeated until the whole

input sequence is processed from left to right. Algorithm 1 shows the pseudo-code

of the above procedure.

Algorithm 1 : Referential compression algorithm

input: to-be-compressed sequence, reference sequence and X 1: while input

sequence is not empty do

2: find longest matching substring in reference for current input position

3: if length of match greater than X then
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4: encode match as (match position; length)

5: else

6: encode match with raw symbols

7: end if

8: end while

output: compressed sequence

In the above pseudo-code the value of X is used to find out whether the entry is

encoded as short matches of reference or as raw strings. The inverse of a referential

compression is the decompression of a referential compressed sequence using the

same reference in order to get back the original string as it was. The more the

similarity between reference and input sequences, the higher the compression rates.

For example, if we compress a human genome sequence with a mouse genome we

get very low rates of compression.

4.2 Proposal

This paper has two key components for performing DNA compression. Firstly,

a reference set is constructed that is a set of common sub-strings of number of

DNA sequences that are randomly chosen. Secondly, the sample of target input

sequence is compressed by replacing longest matching prefix of input sequence

with the fingerprints of that match present in the reference set. Given below is

the flowchart for the given approach.

4.2.1 Reference Construction

Suppose we choose k DNA sequences from different species, Reference

construction algorithm concatenates these k sequences into one large sequence Z
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Figure 4.1: Flowchart for proposed work

where Z=(Z1,Z2,Z3.......Zk). A suffix array is constructed using this sequence Z

and longest prefix match of two immediate neighboring suffix is found that

belong to two different input sequences(i.e. Zi and Zi+1 ).

A suffix tree array is constructed using number of DNA sequences of similar or

dismilar species. Using this suffix structure we have found all the common sub

strings in the input sequences and formed a Reference set of sequences. All the

common substrings along with a unique id (fingerprint) are contained in this

refderence set.

Common sub strings and suffix tree :Given the set of DNA sequences S

=(S1, ..., SK), where length Si=ni and total length of S = N. We find for each

2 < k < K (4.1)

the longest strings which occur as sub strings of at least k strings. So we use a
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Figure 4.2: Example of suffix tree

suffix tree data structure to find the longest sub strings. A suffix tree is a

compressed trie containing all the suffixes of the given text as their keys and

positions in the text as their values. In simple terms a suffix tree is a trie of n

strings that are suffixes of an n character string S(where n is a number).

Ukkonen’s algorithm constructs an implicit suffix tree Ti for each prefix S[l ..i] of

S with length x. It first constructs T1 using 1st character, then T2 using 2nd

character, then T3 using 3rd character, Tx using xth character. Likewise, the

entire suffix tree Ti+1 is constructed on top of implicit suffix tree Ti. The actual

suffix tree for S is built from Tx by adding.

Algorithm 2: Ukkonen’s algorithm

1: Construct tree T1

2: For i from 1 to x-1 do

3: begin (level i+1)

4: For j from 1 to i+1

5: begin (extension j)

6: Find the end of the path from the root marked S[j..i] in referred tree.

7: Extend that path by adding character S[i+l] if not present

8: end;
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9: end;

Suffix extension here is adding a new character each time into the suffix tree

constructed till then. The extension j of level i+1 discovers the end of S[j..i]

which is present in advance because of previous level i and then it extends S[j..i]

to be sure the suffix S[j..i+1] is in the tree.

There are 3 extension rules:

Rule 1: If the path from the root marked as S[j..i] is the last character of the

leaf edge then the character S[i+1] is simply added to the end of the label on

that leaf edge.

Rule 2: If the path from the root marked as S[j..i] ends when there are still

more characters to come after S[i] on path and next upcoming character is not

s[i+1], then a new leaf edge with label s[i+1] and number j is created starting

from character S[i+1]. Also a new internal node is created if s[1..i] ends in

between a non-leaf edge.

Rule 3: If the path from the root marked as S[j..i] ends when there are still

more characters to come after S[i] on path and next upcoming character is s[i+1]

then do nothing.

Finally these common sequences (or longest prefix matches) are arranged in

increasing order of length greater than two and stored as a Reference Set.

Algorithm 3 shows the pseudo-code of the above procedure.

Algorithm 3: Reference construction algorithm

input: k random sequences 1: merge k input strings into one single string

2: construct the suffix array
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3: locate the longest common prefix match of two immediate neighboring suffix

that belong to two different input strings

4: Sort in increasing orders of length all the common strings with length greater

than 2.

output: sequence of reference blocks

Building the suffix tree takes O(N) time when the size of the alphabet is

constant and O(NK) time is taken by k common sub string problem. If we have

a long reference sequences that we need to match with input sequence, we trim

down our reference to a much smaller fingerprint which is easier and faster to

match with input sequence. However this approach is only useful if the

fingerprints of different blocks of reference are expected to be dissimilar.

4.2.2 Reference Compression

We suppose that our reference set is represented as r=(r1,r2,r3,...rn) and input

sequence as s=(s1,s2,s3,...sn). Our aim is to find out if ri=si without matching

all the n values where n is the length of the sequences. For matching this, we

break up the reference sequence into blocks of common sequences that was found

using Algorithm 2 and swap the longest prefix match of the input sequence with

its fingerprint. In Algorithm 4 an input sequence s is compressed with respect

to reference set. Firstly, we select first m characters of input string (where m is

the length of the sliding window) and check whether this block has a match in

the reference set. If a match of this selected block is present, then we replace

that whole block with a smaller fingerprint of that block. Otherwise, we split the

sliding window size m into half and check again for a match of this block in the

reference set. This procedure of dividing the window size into half each time is

repeated until a match is found. If no match is found and m is reduced to 1 then
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the character in the block is written as it is and sliding window is moved to next

m characters. Similarly, the entire input sequence is scanned from left to right and

compressed using the given algorithm. Here m is the length of the longest common

string present in the reference set. Given below are the steps for compressing a

target sequence using proposed reference based compression.

Algorithm 4: Proposed referential compression algorithm

input:to-be-compressed input sequence, reference set, m that is the length of

longest sub string in reference set.

1: take first m characters of input and check if it is present in the reference set.

2: if a match is found swap the match with its fingerprint and move the sliding

window to next m substrings.

3: if not then repetitively decrease the window size by half (m/2) and search for

a match until no match is found.

4: if m is reduced to 1 with no match found then the character in the block is

written as it is and sliding window is moved to next m characters.

5: repeat the above process until end of the input sequence.

output: compressed input sequence

Searching for a match in reference set takes constant time as we have stored the

reference set as a hash table.
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4.2.3 Decompression algorithm

Decompression algorithm is very simple and fast in which the compressed sequence

is read from the file. The fingerprints are mapped to their corresponding values

and a single character is written as it is. Complexity of decompression algorithm

depends on the length of compressed sequence, giving O(n) time complexity where

n is the length of compressed sequence.

Algorithm 5: Proposed decompression algorithm

input: compressed sequence of length n .

1: Read the compressed input sequence from the file.

2: If the current character read is a fingerprint then map the fingerprint with is

corresponding value

3: Reapeat this procedure until the whole sequence is read .

4: write the obtained results back to the file

output: Uncompressed sequence
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CHAPTER 5

IMPLEMENTATION AND

RESULTS

5.1 Evaluation

The platform used for the implementation of the algorithms is JAVA using

Netbeans 8.0.2v . All experiments have been run on a Lenovo E1922s with Intel

Core i5-4460, 4-GB installed RAM and Windows 8(64 bit operating system.

All sizes of files are measured in bytes where 1kb equals to 1,000 bytes.

Compression ratio , compression speed and savings are the performance

parameters used. Here, compression ratio represents the decrease in the size of

original file after performing compression; compression speed is the rate at which

the original file is compressed and memory saving is defined as decrease in size

relative to original file. Two different Biological data sets are taken for

evaluation of the proposed algorithm. Both these data sets are adopted from

ncbi ftp in fasta format.
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In the first place, we have taken a DNA sequence of Arabidopsis Thaliana (a

plant specie) containing five chromosomes, to show the performance of our

algorithm on three different performance parameters namely compression ratio,

speed and memory saving. Results show that algorithm in this paper achieves

commendable compression. Chromosome 1 of approximately 8 and storage space

upto 87 percent can be saved.

Then we have taken ten different data sets of Bacteria to compare the

performance of our proposed algorithm with an existing method FRESCO [17].

Besides the basic referential compression algorithm, FRESCO has proposed three

variants, that are :1)good reference selection;2)reference re-writing;3)second

order compression, which result in decreased compression size, achieving the

ratios 12 percent ;35 percent and 75 percent, respectively. This paper does not

depict a comparison with the basic, and undertakes only a comparison with the

basic proposed referential compression algorithm of FRESCO. Out of 10 different

data sets, we have chosen Campylobacter coli 76339 as the reference sequence

and compressed rest of the 9 data sets with respect to it. Campylobacter coli

15-537360(C1) and Campylobacter Coli CVM(C2) are DNA sequence of same

specie for which FRESCO achieves 1.421 and 1.89 compression ratio saving upto

29.63 and 47.1 storage space respectively. Our proposal gives better results with

compression ratio 9 and 8.207 and storage space is saved upto 88.88 and 87.81

respectively. Remaining five DNA sequences,namely Campylobacter jenjuni

002426(C3), Campylobacter jenjuni 002538 (C4) ,Campylobacter jenjuni

002425(C5), Campylobacter jenjuni RM1221(C6), Campylobacter jenjuni NCTC

11168 (C7), belong to a different specie with respect to the reference. Fresco

gives compression ratio of 1.44, 1.452, 1.466 , 1.459 and 1.461 respectively. This

time, again our approach gives better results 8.247, 8.245, 8.227, 8.229 and 8.212

respectively for inter species sequences than the existing. Finally the last 2 DNA

sequence belong to different genus that are Escherichia coli strain k12(E1) and
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Figure 5.1: Shows the results for proposed algorithm in terms of (1)compres-
sion ratio ,(2) compression speed and (3) storage saving using chromosomes of

Arabidopsis Thaliana dataset
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Figure 5.2: Results obtain after applying proposed approach on five chromo-
somes of Arabidopsis Thaliana dataset

Figure 5.3: Results obtained on comparing FRESCO and Proposed algorithm
(1)compression ratio ,(2) compression speed and (3) storage saving using differ-

ent species of Bacteria
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Figure 5.4: Comparison between FRESCO and Proposed algorithm (1)com-
pression ratio ,(2) compression speed and (3) storage saving using different

species of Bacteria
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Shigella sonnie 53G (S1)where again our proposed approach achieves

compression ratio of 8.129 and 8.128 and saving upto 87.69 percent in both the

cases. Fig shows the comparison bewteen two methods in terms of compression

ratio and percentage storage saved.

Comparing the compression speed of the two methods we found that

Campylobacter coli 15-537360 and Campylobacter Coli CVM takes 4.854 kbpsec

and 18.096 kbpsec respectively, while FRESCO gives 1.616 kbpssec and sec

1.79kbpsec respectively(for same species).With different species C3 TO C7 our

method gives 18.246 kbpsec, 17.699 kbpesec, 16.999 kbpsec, 16.826 kbpsec and

18.612 kbpsec for the five inter-species data sets where as FRESCO takes 1.363

kbpsec, 1.025 kbpsec,1.383 kbpsec,1.359 kbpsec and 1.385 kbpsec, respectively.

Taking genus level data set E1 and S1 our method takes 5.892 kbpsec and

5.573kbpsec while FRESCO gives 0.872 kbpsec and 1.277kbpsec respectively. Fig

shows the comparison between two methods in terms of compression speed.
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Main starting page

5.2 Code

// Javastart.java

package javaapplication1;

/**

*

* @author user

*/

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Date;

import java.util.Scanner;

public class Javastart {

public static void main(String [] args) throws

FileNotFoundException , IOException , Exception

{

File text1 = new File ("C:/Users/user/Documents

/NetBeansProjects/JavaApplication11/virus/hepatitis_gb.txt");

Scanner scnr1 = new Scanner(text1);

while(scnr1.hasNext ())

{

str1 = str1+ scnr1.next ();

}

str1 = str1.substring(0, str1.length ());

// reference construction

SuffixArray c = new SuffixArray ();

bf2 b = new bf2();
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String str3 = "C:/Users/user/Documents/NetBeansProjects

/JavaApplication11/refscopy.txt";

long lStartTime = System.currentTimeMillis ();

b.has(str1 , str3);

long lEndTime = System.currentTimeMillis ();

long difference = lEndTime - lStartTime;

System.out.println (" Elapsed milliseconds: " + difference );

}

}
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Reference construction using suffix array

// SuffixArray.java

package javaapplication1;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import java.util.Scanner;

import java.util.Set;

public class SuffixArray

{

private Suffix [] suffixes;

public SuffixArray(String text)

{

int N = text.length ();

this.suffixes = new Suffix[N];

for (int i = 0; i < N; i++)

suffixes[i] = new Suffix(text , i);

Arrays.sort(suffixes );

}

private static class Suffix implements Comparable <Suffix >

{

private final String text;
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private final int index;

private Suffix(String text , int index)

{

this.text = text;

this.index = index;

}

private int length ()

{

return text.length () - index;

}

private char charAt(int i)

{

return text.charAt(index + i);

}

public int compareTo(Suffix that)

{

if (this == that) return 0; // optimization

int N = Math.min(this.length(), that.length ());

for (int i = 0; i < N; i++)

{

if (this.charAt(i) < that.charAt(i)) return -1;

if (this.charAt(i) > that.charAt(i)) return +1;

}

return this.length () - that.length ();

}

public String toString ()

{

return text.substring(index );

}

}

/**

* Returns the length of the input string.
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* @return the length of the input string

*/

public int length ()

{

return suffixes.length;

}

public int index(int i)

{

if (i < 0 || i >= suffixes.length) throw new

IndexOutOfBoundsException ();

return suffixes[i].index;

}

public String lcp1(int i, String vv)

{

if (i < 1 || i >= suffixes.length) throw new

IndexOutOfBoundsException ();

return lcp(suffixes[i], suffixes[i-1], vv);

}

private static String lcp(Suffix s, Suffix t, String vvv) {

String vv="";

int N = Math.min(s.length(), t.length ());

for (int i = 0; i < N; i++)

{

if (s.charAt(i) == t.charAt(i) && s.charAt( i) != ’@’)

{

vv=vv+s.charAt(i);
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}

if(s.charAt(i) != t.charAt(i))

{

break;

}

}

return vv;

}

public String select(int i)

{

if (i < 0 || i >= suffixes.length) throw new

IndexOutOfBoundsException ();

return suffixes[i]. toString ();

}

public static String concateLines(String [] s, String separator)

{

StringBuilder sb = new StringBuilder ();

if (s.length > 0)

{

sb.append(s[0]);

for (int i = 1; i < s.length; i++)

{

sb.append(separator );

sb.append(s[i]);

}

}

return sb.toString ();

}

public int rank(String query)

{
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int lo = 0, hi = suffixes.length - 1;

while (lo <= hi)

{

int mid = lo + (hi - lo) / 2;

int cmp = compare(query , suffixes[mid]);

if (cmp < 0) hi = mid - 1;

else if (cmp > 0) lo = mid + 1;

else return mid;

}

return lo;

}

// compare query string to suffix

private static int compare(String query , Suffix suffix)

{

int N = Math.min(query.length(), suffix.length ());

for (int i = 0; i < N; i++)

{

if (query.charAt(i) < suffix.charAt(i)) return -1;

if (query.charAt(i) > suffix.charAt(i)) return +1;

}

return query.length () - suffix.length ();

}

SuffixArray () throws FileNotFoundException , IOException {

// long lStartTime = System.currentTimeMillis ();

System.out.println (" input sequences are :");

String str2="o";int len=0;

File text1 = new File("C:/Users/user/Documents

/NetBeansProjects/JavaApplication11/virus/

hepatitis_e.txt");
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Scanner scnr1 = new Scanner(text1);

while(scnr1.hasNext ())

{

str2 = str2+ scnr1.next ();

}

str2 = str2.substring (1, str2.length ());

String str22 ="o";

File text11 = new File("C:/ Users/user/Documents

/NetBeansProjects/JavaApplication11/virus/

hepatitis_c_3.txt ");

Scanner scnr11 = new Scanner(text11 );

while(scnr11.hasNext ())

{

str22 = str22+ scnr11.next ();

}

str22 = str22.substring (1, str22.length ());

String str222 ="o";

File text111 = new File("C:/ Users/user/Documents/

NetBeansProjects/JavaApplication11/virus/hepatitis_gb.txt");

Scanner scnr111 = new Scanner(text111 );

while(scnr111.hasNext ())

{

str222 = str222+ scnr111.next ();

}

str222 = str222.substring (1, str222.length ());

String str21 ="o";

File text12 = new File("C:/ Users/user/Documents

/NetBeansProjects/JavaApplication11/virus
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/hepatitis_b.txt");

Scanner scnr12 = new Scanner(text12 );

while(scnr12.hasNext ())

{

str21 = str21+ scnr12.next ();

}

str21 = str21.substring (1, str21.length ());

str2=str2+"@";

String [] input = {str2 ,str22 ,str222 ,};

String s=SuffixArray.concateLines(input , "@");

String sa="";

SuffixArray suffix = new SuffixArray(s);

HashSet ht=new HashSet ();

System.out.println (" length "+s.length ());

for (int i = 0; i < s.length (); i++)

{

int index = suffix.index(i);

String ith = "\"" + s.substring(index ,

Math.min(index + 50, s.length ())) + "\"";

assert s.substring(index). equals(suffix.select(i));

int rank = suffix.rank(s.substring(index ));

String v= "";

if (i == 0)

{

// System.out.printf ("%3d %3d %3s %3d %s\n", i, index , "-", rank , ith);

}

else {

45



Chapter 5. Implementation AND Results

String lcp1=suffix.lcp1(i,v);

if(lcp1.length ()>=2 )

{

ht.add(lcp1);

sa=" reference ";}

else

{

sa=" not a reference ";

}

}

}

int l=0;

for (Object value : ht)

{

String g=( String)value;

l=g.length ();

if(len <l)len=l;

}

HashMap <Integer , String > hm = new HashMap <Integer , String >();

File f11 = new File("C:/Users/user/Documents/

NetBeansProjects/JavaApplication11/refscopy.txt ");

FileWriter f12 = new FileWriter(f11 ,false);

File f111 = new File("C:/Users/user/Documents

/NetBeansProjects/JavaApplication11/length.txt");

FileWriter f122 = new FileWriter(f111 ,false );

f122.write(len +"\r\n");

int iii =0;

for (Object value : ht)
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{

hm.put(iii , (String) value);

iii ++;

}

Set set = hm.entrySet ();

Iterator it = set.iterator ();

while (it.hasNext ())

{

Map.Entry m = (Map.Entry) it.next ();

String aaaa=( String)m.getValue ();

f12.write(aaaa+ "\r\n");

System.lineSeparator ();

f12.flush ();

}

f122.close ();

f12.close ();

}

}
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compression algorithm

\\bf2.java

package javaapplication1;

import static com.sun.org.apache.xalan.internal.

lib.ExsltDynamic.map;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.ObjectOutputStream;

import static java.lang.System.in;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import java.util.Scanner;

import java.util.Set;

import static oracle.jrockit.jfr.events.Bits.intValue;

/**

*

* @author user

*/

public class bf2

{

HashMap < String ,Integer > hm = new HashMap <String ,Integer >();

private static int ny;

public int fun2(String copystr2 , String k ,int n) throws Exception

{

String l=copystr2.substring (0, n+1);

boolean a= hm.containsKey(l);

if(a==true)
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{

n=n+1;

fun2(copystr2 ,l,n);

return n;

}

else {

n=n;

}

return n;

}

public int fun ( String copystr2 , String k ,int n)

throws Exception{

ny=(n/2);

String kp=k.substring(0,ny);

boolean a= hm.containsKey(kp);

if (a==true)

{

String l=copystr2.substring (0, ny+1);

boolean aa= hm.containsKey(l);

if(aa==true )

{

if(hm.containsKey(l))

{

ny= fun2(copystr2 ,l,ny+1);

}

else

{

return ny;

}

}

else

{
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return ny;

}

// int iop=qq.indexOf(k);

// f.write(iop); System.out.println(iop);

}

else {

fun(copystr2 ,kp ,ny);

}

return ny;

}

public void has(String str1 ,String str3) throws

FileNotFoundException , IOException , NoSuchAlgorithmException , Exception

{

ArrayList <String > qq = new ArrayList <String >();

String copystr2=str1;

File text1 = new File(str3);

String str11 ="";

int nn;

File f1 = new File("C:/ Users/user/Documents/

NetBeansProjects/JavaApplication11 /10 output.txt ");

FileWriter f = new FileWriter(f1 ,false );

BufferedReader br = new BufferedReader(new

FileReader ("C:/Users/user/Documents/NetBeansProjects

/JavaApplication11/length.txt "));

Scanner scnr1 = new Scanner(text1);

String line=br.readLine ();
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nn=Integer.parseInt(line);

br.close ();

int count =0;

while(scnr1.hasNext ())

{

str11 = scnr1.next ();

hm.put(str11 ,count );

count ++;

}

int m1=nn;

while(copystr2.length ()>=m1)

{

int n= m1;

/// System.out.println ("ooo"+n);

String k= copystr2.substring(0,n);

while(k.length ()>1 && n>=2 )

{

boolean a= hm.containsKey(k);

// System.out.println(a);

if (a==true)

{

Integer iop=hm.get(k);

f.write(iop);

copystr2 = copystr2.substring(m1, copystr2.length ()); break;

}

else

{

int o= fun(copystr2 ,k,n);
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if(o==1)

{

f.write(copystr2.charAt (0));//f.write ("\n");

copystr2 = copystr2.substring(1, copystr2.length ()); break; //break;}

}

else

{ k=k.substring(0, o);

Integer iop=hm.get(k);

f.write(iop);

// System.lineSeparator ();

//f.write ("\n");

// System.out.println ("mmm for greater "+iop);

copystr2 = copystr2.substring(o, copystr2.length ()); break;

}

}

}

}

while(copystr2.length()<m1 && copystr2.length ()>1)

{

int n=copystr2.length ();

String k= copystr2.substring(0, n);

if(k.length ()==1)

{

f.write(k);

}

boolean a= hm.containsKey(k);

if (a==true)

{
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Integer iop=hm.get(k);

f.write(iop );// System.lineSeparator ();

// f.write ("\n");

// System.out.println ("k is"+iop);

break;

}

else

{

if(n==3)

{

n=n+1;

}

int o= fun(copystr2 ,k,n);

if(o==1)

{

f.write(copystr2.charAt (0));

// f.write ("\n");

// System.lineSeparator (); //

// System.out.println ("here"+ copystr2.charAt (0));

copystr2 = copystr2.substring(1, copystr2.length ()); break;

}

else

{

k=k.substring(0, o);

Integer iop=hm.get(k);

f.write(iop);

// f.write ("\n");

// System.lineSeparator (); System.out.println ("mmm ---"+iop);

copystr2 = copystr2.substring(o, copystr2.length ()); break;

}

}

}

if(copystr2.length ()==1){f.write(copystr2 );

// System.out.println(copystr2 );

}
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f.close ();

}

}
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decompression algorithm

// decompression.java

package javaapplication1;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Map;

import java.util.Scanner;

/**

*

* @author user

*/

public class decompression {

public static void main(String [] args)

throws IOException

{

HashMap < String ,Integer > hm = new HashMap <>();

String strKey = null;

File f2 = new File("C:/ Users/user/Documents/

NetBeansProjects/JavaApplication11 /9 output.txt ");

FileWriter f3 = new FileWriter(f2 ,false );

File text1 = new File("C:/Users/user/Documents

/NetBeansProjects/JavaApplication11/refscopy.txt ");

String str11 =""; int count =0; Scanner scnr1 = new Scanner(text1 );

ArrayList <Integer > in = new ArrayList <Integer >();

FileReader fr=new FileReader ("C:/ Users/user/Documents/NetBeansProjects/JavaApplication11 /10 output.txt");

BufferedReader br1=new BufferedReader(fr);
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int aa;

long lStartTime = System.currentTimeMillis ();

while(scnr1.hasNext ())

{

str11 = scnr1.next ();

hm.put(str11 ,count );

count ++;

}

while( (aa=br1.read ())!= -1)

{

in.add(aa);

}

fr.close ();

for(int l=0;l<in.size ();l++)

{

int s=in.get(l);

for(Map.Entry entry: hm.entrySet ())

{

if(in.get(l). equals(entry.getValue ()))

{

strKey = (String) entry.getKey ();

break;

// breaking because its one to one map

}

}

f3.write(strKey );

}

long lEndTime = System.currentTimeMillis ();
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long difference = lEndTime - lStartTime;

System.out.println (" Elapsed milliseconds: " + difference );

fr.close (); f3.close ();

}

}
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CONCLUSION AND FUTURE

DIRECTIONS

6.1 Conclusion

Growth of high throughput DNA sequencing has resulted in voluminous amount

of of Biological data. Managing this huge data, transferring it over the network

and storing it for future purpose becomes very difficult.This work deal with such

problems by presenting a new approach of compressing these Biological data.In

this work it has been shown that the new approach of reference construction and

reference based compression is very efficient and fast to compress DNA data sets.In

the proposal, the constructed reference is a multi-species reference sequence that

also works with inputs belonging to different species. Reference sequence that is

constructed using all the common sequences is used to compress DNA sequences by

matching the fingerprints of reference over the input sequence.Unlike FRESCO, the

proposed algorithm gives better compression ratio for different spice DNA sequence

as well as for same spice DNA sequence The given approach also works at genus
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level giving a good lossless compression unlike the existing methods proposed so

far.

6.2 Future work

Selection of the reference plays a vital part in compressing down a sequence.Higher

compression rates can be obtained using a good reference. So, the future work

would include constructing a re-writable reference that can further improve com-

pression ratio for a same set of data. Another aspect of the research would be to

suggesting a mathematical model for the optimum size of the reference sequence.
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