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Abstract 
 

The present research work has been carried out to enhance the diagnostic quality 

of conventional B-Mode ultrasound (US) imaging modality for diagnosis of liver 

diseases. The study was conducted by collecting a comprehensive image database of 

151 B-Mode liver US images with representative cases from each image class, 

acquired from the patients who underwent US examination at the Department of 

Radiodiagnosis and Imaging, PGIMER, Chandigarh, India during a period from 

March 2010 to March 2012. The research objectives for the present work were 

formulated keeping in view the needs of the radiologists, based on the practical 

difficulties faced by them in routine clinical practice.  

The image database comprises of 23 Normal (NOR), 14 Cirrhotic, 14 Cyst, 19 

Hemangioma (HEM), 36 Hepatocellular Carcinoma (HCC) and 45 Metastatic 

Carcinoma (MET) liver images. Further bifurcation of Cyst, HEM and MET images 

into typical and atypical cases, and HCC cases into small HCC (SHCC) and large 

HCC (LHCC) cases is shown in Fig. 1.  

 

Fig. 1 The description of image database used in the present research work. 
Note: NOR: Normal; HEM: Hemangioma; HCC: Hepatocellular carcinoma; MET: Metastatic 
carcinoma; SHCC: Small HCC; LHCC: Large HCC; Typ: Typical; Atyp: Atypical. 

 The differential diagnosis between atypical cases of Focal Liver Lesions 

(FLLs) is a daunting challenge even for experienced radiologists. Therefore, there is a 

significant impetus among the research community to develop computer aided 

diagnostic (CAD) systems for differential diagnosis between different cases of liver 

Ultrasound (US) images. 

The proposed interactive system for diagnosis of liver diseases using B-Mode US 

images consists of two modules as shown in Fig. 2. Module 1 is designed to remove 

and speckle noise from the liver US images and evaluate the performance of 
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despeckled images with the help of Image Quality Enhancement Metrics (IQEMs). 

Module 2 is designed to assist or provide second opinion to the radiologist if there is 

confusion within benign and malignant liver image classes.  

 

 
Fig. 1. Block diagram of the proposed interactive system for diagnosis of liver diseases. 
Note: FOS: First order statistics, GLCM: Gray level co-occurrence matrix, GLRLM: Gray level run 
length matrix, GWT: Gabor wavelet transform, FPS: Fourier power spectrum, SVM: Support Vector 
Machine; SSVM: Smooth Support Vector Machine. 
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In Module 1, the performance of different despeckling algorithms with respect to 

(a) smoothening of homogeneous areas, (b) edge preservation, and (c) feature/ 

structure preservation for B-mode liver ultrasound images has been investigated. The 

study has been carried out on diversified image dataset consisting of images with 

(a) normal liver tissue, (b) cirrhosis, (c) cyst, (d) typical and atypical cases of 

hemangioma and metastatic carcinoma lesions, and (e) small and large hepatocellular 

carcinoma lesions.  

Ten despeckling filtering algorithms, based on, local statistics, median filtering, 

geometric filtering and anisotropic diffusion have been applied on a real database of 

151 conventional gray scale liver ultrasound images. As the sonographic appearances 

exhibited by small as well as large hepatocellular carcinoma, atypical cases of cyst, 

hemangioma and metastatic carcinoma are highly overlapping, the differential 

diagnosis between these malignant focal liver lesions is considered as a difficult task.  

Therefore, in the present study, quantitative analysis has been carried out with 

respect to (a) smoothening of homogeneous areas (i.e. PSNR metric), (b) edge 

preservation (i.e. FOM index), and (c) feature/structure preservation (i.e. SSIM 

index). The exhaustive objective analysis carried out in the present study, illustrates 

that the image processed by Lee Sigma method based on Local Statistics yields the 

best results with respect to smoothing, edge and feature/ structure preservation. 

Early diagnosis of liver cirrhosis using texture descriptors computed from regions 

of interest (ROI) extracted from conventional B-Mode liver US images is clinically 

significant as most of the cirrhotic patients are asymptomatic, and the biochemical 

tests like elevated liver enzyme detect cirrhosis at an advanced stage.   

It is worth mentioning that the patients with liver cirrhosis are at high risk of 

developing hepatocellular carcinoma (HCC, a primary malignant focal liver lesion), 

and cirrhosis is also the leading cause of portal hypertension. Furthermore, since liver 

cirrhosis is considered as a pre-cursor to development of HCC and it is considerably 

difficult to diagnose small HCCs developed on already nodular cirrhotic liver 

parenchyma, the diagnosis as to whether the textural changes in the liver parenchyma 

are cirrhotic changes or they indicate the development of HCC is absolutely 

necessary.  
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It is worth mentioning that there is a considerable overlap between the 

sonographic appearances of HCC and MET lesions, at the same time the differential 

diagnosis between HCC and MET lesions is essential for effective treatment of liver 

malignancies.  

Accordingly, the Module 2 of the proposed interactive system for diagnosis of 

liver diseases incorporates two different CAD systems: (i) CAD System-I for binary 

classification between primary benign and primary malignant liver lesions, and 

(ii) Hierarchical CAD System-II for classification between benign and malignant liver 

lesions. 

The CAD Systems of Module 2 is designed to assist or provide second opinion to 

the radiologist for making differential diagnosis between benign and malignant 

lesions using B-Mode US images.  

The radiologists diagnose typical FLLs easily by their classic sonographic 

appearances; however, the differential diagnosis between atypical FLLs from B-Mode 

US is quite a challenging task faced in routine clinical practice, mainly due to 

existence of overlapping sonographic appearances even within individual classes of 

FLLs. Even then, B-Mode US is considered as preferred examination for 

characterization of FLLs, mainly due to its noninvasive, nonradioactive, inexpensive 

nature and real-time imaging capabilities. Therefore, a CAD system for classification 

of FLLs from B-Mode US images is highly desired. At the same time, it is worth 

mentioning that there are certain disadvantages associated with the use of B-Mode US 

for characterization of FLLs: (a) limited sensitivity for detection of small FLLs (< 2 

cm) developed on cirrhotic liver which is already nodular and coarse-textured, (b) 

sonographic appearance of HCC and MET lesions are highly overlapping, (c) 

sonographic appearances of cystic metastasis and atypical cyst are often overlapping, 

(d) sonographic appearances of atypical HEM, sometimes mimic with atypical MET 

or HCC, and (e) difficulty to characterize isoechoic lesions with very slim difference 

in contrast between region inside the lesion and the surrounding liver parenchyma in 

some cases.  

As it is well known fact that US imaging has limited sensitivity for detection of 

SHCCs less than 2 cm in size, therefore in order  to design a robust classification 
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system, it is ensured that the constituent HCC images in the dataset offered a high 

degree of variability in terms of size and sonographic features.  

To ensure generality, the training data for designing the classifier was chosen 

carefully in consultation with experienced participating radiologists, so as to include 

all the typical and atypical image classes for HEM, and MET lesions as well as small 

and large HCC lesions for designing a robust classifier with representative cases for 

all image subclasses. Two sets of images were created for each image class, ROIs 

from one set of images were used for training and ROIs from the other set were used 

for testing to avoid any biasing. 

Radiologists visualize the texture patterns of the regions inside and outside of the 

lesion for differential diagnosis between FLLs using B-Mode US images. 

Accordingly, texture feature extraction from IROIs as well as SROIs was considered 

for the design of the proposed CAD system. Thus, IROIs (extracted from the region 

inside the lesion) and a corresponding SROI (extracted from the surrounding of each 

lesion) are inputted to Module 2 for classification between benign and malignant liver 

image classes.  

The region of interest (ROI) extracted by the radiologist, is fed to CAD system-I, 

in order to compute the texture descriptors from IROIs and SROIs using six feature 

extraction methods namely, FOS, GLCM, GLRLM, FPS, Gabor and Laws’ mask of 

length 3. Three texture feature vectors (TFVs) i.e., TFV1 consists of texture features 

computed from IROIs, TFV2 consists of texture ratio features (i.e., texture feature 

value computed from IROI divided by texture feature value computed from 

corresponding SROI) and TFV3 computed by combining TFV1 and TFV2 (IROIs 

texture features + texture ratio features) are subjected to classification by SVM and 

SSVM classifiers. It is observed that the performance of SSVM based CAD system is 

better than SVM based CAD system with respect to (a) overall classification accuracy 

(b) individual class accuracy for atypical HEM class and (c) computational efficiency. 

The promising results obtained from the proposed SSVM based CAD system design 

indicates its usefulness to assist radiologists for differential diagnosis between 

primary benign and primary malignant liver lesions.  

The CAD system II designs implemented in the present research work for 

characterization of benign and malignant lesions using B-Mode US images include 
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designs (a) SSVM based multiclass classifiers, and (b) using hierarchical framework 

of SSVM based binary classifiers. The first SSVM based classifier classifies the liver 

images into primary benign (i.e., HEM) and malignant (i.e., HCC and MET) cases. 

The malignant cases are further classified by second SSVM based classifier into 

primary malignant (i.e., HCC) and secondary malignant (i.e., MET) cases. 
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Chapter 1 

Introduction 
 

1.1       Motivation 

Liver is the most vital and largest organ of human body. It performs various functions 

such as production and excretion of bile juice (i.e., a digestive fluid), production of fats, 

synthesis of cholesterol, metabolism of fats, proteins and carbohydrates, storage of 

minerals and vitamins, synthesis of plasma proteins, blood detoxification,  blood pressure 

management, breakdown of insulin and other hormones, etc. Liver is a metabolically 

active organ necessary for survival.   

As liver is the largest solid organ of human body, it becomes an easy target for many 

diseases. In clinical diagnosis, liver diseases are considered serious as it is a vital organ, 

which performs important functions of human body. Liver diseases are classified in two 

broad categories, i.e., diffuse liver diseases and focal liver diseases. 

1.1.1 Diffuse Liver Diseases 

In diffuse liver diseases, the abnormality is distributed throughout the liver tissue. 

Among diffuse liver diseases, the liver cirrhosis is considered more serious as it represents 

the end stage of chronic diffuse liver disease. The viral hepatitis (such as hepatitis B or C) 

is one of the causes of liver cirrhosis; the virus can induce chronic inflammation in the 

liver causing fibrotic changes. The extent of fibrosis in liver tissue can range from fibrous 

expansion in the portal area to cirrhosis.  

In liver cirrhosis, strong association with fibrosis results in regenerative nodule 

formation which leads to alterations in normal hepatic structure such as (a) decrease in 

homogeneity, (b) modification in hepatic vessels, (c) modification in shape and contour, 

and (d) increase in liver volume (i.e., toxic cirrhosis) or decrease in liver volume (i.e., viral 

cirrhosis).  

Since fibrosis is a necessary stage that leads to cirrhosis which is an irreversible 

process, therefore, it is critical to detect the fibrosis status at an early stage so that proper 

medication is administered to avoid cirrhosis. 
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1.1.2 Focal Liver Diseases  

In focal liver diseases, the abnormality is concentrated in a small localized region of 

the liver parenchyma which is often referred to as focal liver lesion (FLL).  Liver Cysts, 

HEM (i.e., primary benign FLL), HCC (i.e., primary malignant FLL) and MET (i.e., 

secondary malignant FLL), are some of the commonly occurring focal liver diseases.  

1.1.2.1 Liver Cyst  

Liver Cysts are most common FLLs, and are frequently observed on US. Cysts 

represent the fluid filled cavities in the liver. Usually, cysts are asymptomatic unless they 

are large enough to cause mass effect (i.e., displacement and compression of adjacent 

structures). Mostly, liver cysts are incidental findings during the US scan. Typical cysts 

appear with anechoic echotexture, well defined smooth thin lined capsule and posterior 

acoustic enhancement. On the other hand, atypical cysts contain low level fine echoes 

which occur as a result of hemorrhage or infection and are outlined by thick irregular wall. 

These atypical cysts are usually asymptomatic; however, the symptomatic ones are 

regularly monitored on US and treated with percutaneous aspiration under US guidance or 

laparoscopic unroofing. Typical cysts can be easily diagnosed from their characteristic 

appearance on B-Mode US, but atypical cysts can be easily confused with cystic 

metastasis. Atypical cysts always appear with thickened irregular walls and internal 

echoes. Differential diagnosis of cystic metastasis and atypical cyst using conventional 

gray scale B-Mode US can be quite challenging. 

1.1.2.2 Hemangioma (HEM) 

The hemangioma (HEM) is the most common primary benign FLL [1- 5]. HEMs 

usually appear as a solitary lesion, but may also be multiple in 10 % of cases.  In very rare 

cases, these lesions are symptomatic; but it is sometimes difficult to diagnose these lesions 

as they can be indistinguishable from MET lesions [1, 6- 9].  

In 70 % of cases, HEMs encountered in routine clinical practice are typical HEMs. 

These typical HEMs have a characteristic sonographic appearance; it appears as a round, 

homogeneous, hyperechoic, well defined lesion [1, 2, 8- 11]. Atypical HEMs are difficult 

to diagnose as they are a great impersonator [1]. The sonographic appearance of atypical 

HEMs can be hypoechoic or isoechoic which resembles to that of atypical METs and HCC 

lesions [1, 6- 9]. These atypical HEMs generally cause diagnostic problems as they may 
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appear as hypoechoic lesions or as lesions with mixed echogenicity. In case of atypical 

HEMs, where the diagnosis is not certain and a malignancy is suspected, administration of 

an ultrasound contrast agent and further imaging like MRI scanning helps to characterize 

the lesion confidently. 

1.1.2.3 Hepatocellular Carcinoma (HCC) 

The hepatocellular carcinoma (HCC), also called as malignant hepatoma (liver 

cancer), is primary malignant FLL [1, 2, 8, 10- 15]. HCC accounts for 80 to 90 % of all 

the malignant FLLs, amongst various primary FLLs [16- 18]. The US imaging modality is 

used world-wide for screening of HCCs.  

The risk factors which give rise to development of HCC are (a) cirrhosis, (b) chronic 

infection with the hepatitis B and hepatitis C virus, and (c) metabolic diseases. In 85 % 

cases, HCC occurs in patients with cirrhosis [1, 2, 8, 10- 15]. The appearance of HCC on 

B-Mode US depends mostly on whether or not there is underlying cirrhosis. In fact, in 

radiology practice, cirrhosis is seen as precursor to development of HCC as the occurrence 

of HCCs on normal liver is very rare [1, 10, 13, 14]. Detecting small HCCs (SHCCs) 

developed on coarse and nodular cirrhotic liver parenchyma presents a daunting challenge 

for experienced radiologists [1, 7, 12, 19]. 

The sonographic appearance of a large HCC (LHCC) is often inhomogeneous, 

whereas SHCCs can be hypoechoic and homogeneous [1, 9, 11]. Experienced 

participating radiologists opined that no sonographic appearance can be considered typical 

for HCC as there is a wide variability of sonographic appearances even within SHCCs and 

LHCCs. The sonographic appearances of SHCC vary from hypoechoic to hyperechoic [9] 

while LHCC appear frequently with mixed echogenicity [1, 11].  

1.1.2.4 Metastasis (MET)  

The Metastasis or Metastatic carcinoma (MET) is the most common secondary 

malignant FLL [1, 2, 3, 8, 9, 12]. MET is caused by the cancerous cells that spread from 

the primary cancerous tumours of the other parts of the body. As the liver is the largest 

solid organ of the human body, it becomes an easy target for occurrence of metastatic 

tumors. Metastatic tumours are common during the late stages of cancer. MET may occur 

singly or as multiple deposits of varying sizes. 
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The sonographic appearance of typical MET lesion is the target or bull’s-eye 

appearance (i.e., hypoechoic centre surrounded by a hyperechoic rim) [2, 3, 7, 8, 10, 12, ]. 

Atypical MET lesions can appear with extremely variable sonographic appearances 

ranging from anechoic, hyperechoic, isoechoic, hypoechoic, and even with mixed 

echogenicity. The Differential diagnosis between atypical MET lesions from certain HEM 

and HCC lesions is considerably difficult [1, 2, 7, 8, 9, 21].  

1.1.3 Ultrasound Imaging 

The field of medical imaging and image analysis has evolved due to collective efforts 

from many disciplines like engineering, medicine and basic sciences. In current medical 

practice, imaging procedures are one of the major bases for diagnosis apart from other 

procedures like pathological examinations and biopsy.  The overall objective of the 

medical imaging system is to acquire useful information about the physiological processes 

of the organs of the human body. The other imaging modalities used for diagnosis of liver 

diseases include computed tomography (CT) and magnetic resonance imaging (MRI). The 

US, CT and MRI are all non-invasive imaging modalities. However, CT uses ionizing 

radiations, which are otherwise harmful for human body. On the other hand, US don’t 

produce any known harmful effects on any of the tissues examined during clinical 

practice. The clinical relevance of the US imaging modality is high worldwide due to its 

versatility, wide spread availability, portability and ease of operation in comparison to CT 

and MRI.   

The US imaging modality is the first choice for the diagnosis of liver disease due to 

its inexpensive, non-invasive and non-radioactive nature  and real time imaging 

capabilities [3, 10, 13, 23- 25]. The other imaging techniques like MRI, CT etc. offer high 

sensitivity in comparison to B-mode (i.e. conventional gray scale) US for FLL 

characterization, but they are not widely available and are expensive [1, 4, 10, 11, 13, 14, 

21, 26, 27]. 

1.2      Sonographic Appearances of Different Liver Image Classes used in the Present 

Research Work 

The brief details of the sonographic appearances of liver image classes used in the 

present research work are depicted below: 
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1.2.1 Sonographic Appearance of Normal (NOR) Liver 

The sample of the Normal (NOR) liver image from the image database is given in 

Fig. 1.1.  

 

Fig. 1.1 Conventional gray scale ultrasound liver images with appearance of normal liver. 
Note: Normal liver exhibits homogeneous echotexture with medium echogenicity. 
Fig. 1.1. The sonographic appearance of normal (NOR) liver is homogeneous with slightly 

increased echogenicity as compared to the right kidney [19, 25, 28]. The NOR liver 

appears as a mid gray organ with homogeneous echotexture and smooth outlining. The 

smooth liver parenchyma is interrupted by anechoic structures such as vessels, etc.  The 

capsule of the liver appears hyperechoic especially at its border with the diaphragm. The 

diaphragm appears as a curvilinear bright reflector.  It is difficult to quantify the size of the 

liver as there are large variations in shape within normal subjects. The size of the liver is 

therefore assessed subjectively. All the NOR cases are considered as typical as there is no 

atypical appearance for normal liver tissue. 

1.2.2 Sonographic Appearance of Cirrhotic Liver 

The sample images of the cirrhotic liver from the image database are given in Fig.1.2.  

The cirrhotic liver exhibits coarse echotexture with diffused uneven nodularity [1, 10, 

25]. Variation in size and shape of liver is observed depending upon severity of the liver 

cirrhosis. The right lobe is mostly affected by cirrhosis. It is clinically believed that 

changes in the process of normal liver progressing towards cirrhosis can be related to 

echotextural changes in the liver parenchyma.  
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Fig. 1.2 Conventional gray scale B-Mode liver ultrasound images with appearance of cirrhotic liver. 
Note: Cirrhotic liver exhibits coarse echotexture with diffused uneven nodularity. 

1.2.3  Sonographic Appearance of Typical FLLs 

The sample images of typical case of Cyst, HEM and MET lesions from the image 

database are shown in Fig. 1.3. 

 

Fig. 1.3 Conventional gray scale US liver images: (a) Typical cyst (thin walled anechoic lesion with 
posterior acoustic enhancement); (b) Typical HEM (well circumscribed uniformly hyperechoic appearance); 
(c) Typical MET (target or bull’s-eye appearance i.e. hypoechoic centre surrounded by a hyperechoic rim). 

Typical cyst appears as round, anechoic lesion with posterior acoustic enhancement 

and well defined thin imperceptible wall. Typical HEM always appears as a well 

circumscribed uniformly hyperechoic lesion. The typical sonographic appearance of MET 

lesion is the target or bull’s-eye appearance (i.e., hypoechoic centre surrounded by a 

hyperechoic rim) [2, 3, 7, 8, 10, 12, ].   

1.2.4 Sonographic Appearance of Atypical FLLs 

The sample images for atypical case of Cyst, HEM and MET lesion are shown in 

Fig. 1.4. Atypical cysts always appear with internal echoes and thickened irregular walls. 

Atypical HEMs are a great mimic and definite diagnosis with conventional gray scale B-
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Mode US is difficult [1]. Atypical HEMs can be isoechoic or even hypoechoic mimicking 

the sonographic appearance of certain atypical MET and HCC lesions. Atypical MET 

lesions can appear with extremely variable sonographic appearances ranging from 

anechoic, hyperechoic, isoechoic, hypoechoic and even with mixed echogenicity. 

Differentiating atypical MET lesions from certain HEM and HCC lesions is considerably 

difficult [1, 2, 7, 8, 9, 21].   

 

Fig. 1.4 Sample image variants with appearance of : (a) Atypical cyst with internal echoes and irregular 
walls; (b) Atypical HEM with heterogeneous echotexture; (c) Hyperechoic atypical MET with 
heterogeneous echotexture. 

1.2.5    Sonographic Appearance of Small and Large HCCs 

The sample images of SHCC and LHCC cases from the image database are shown in 

Fig. 1.5. The sonographic appearances of Small HCC (SHCC) vary from hypoechoic to 

hyperechoic [9]. Large HCC (LHCC) appears frequently with mixed echogenicity [1, 11]. 

Experienced participating radiologists opined that no sonographic appearance can be 

considered typical for HCC as there is wide variability of sonographic appearances even 

within SHCCs and LHCCs. 

 

Fig. 1.5 Sample images of SHCC and LHCC variants from the image database:  (a) small HCC with mixed 
echogenicity; (b) small HCC with hypoechoic appearance; (c) large HCC with mixed echogenicity. 
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1.3    Need for Despeckle filtering for B-Mode Liver Ultrasound images 

Speckle noise (also known as multiplicative noise) corrupts the medical US image, 

thereby, making it difficult for visual observation [29- 31]. The objective of despeckling 

an ultrasound image is to smoothen the homogeneous areas while preserving the edges and 

structural information so that the diagnostic features present in the image are highlighted. 

In the present work, different despeckling methods i.e., methods based on local statistics, 

median filtering, geometric filtering and anisotropic diffusion have been used. The 

performance of different despeckling algorithms with respect to (a) smoothening of 

homogeneous areas, (b) edge preservation, and (c) feature/ structure preservation for B-

mode liver ultrasound images has been investigated. As the sonographic appearances 

exhibited by small as well as large hepatocellular carcinoma, atypical cases of cyst, 

hemangioma and metastatic carcinoma are highly overlapping, the differential diagnosis 

between these malignant focal liver lesions is considered as a difficult task. Therefore, in 

the present study, quantitative analysis has been carried out with respect to (a) 

smoothening of homogeneous areas (Peak Signal to Noise Ratio i.e. PSNR metric) [32], 

(b) edge preservation (Figure of Merit i.e. FOM index) [33, 34], and (c) feature/structure 

preservation (Structure Similarity Index i.e. SSIM index) [35]. 

1.4       Need for CAD Systems for Liver Diseases using B-Mode Ultrasound Images  

The evolution of computer technology, medical image processing algorithms and 

artificial intelligence techniques has given ample opportunity to researchers to investigate 

the potential of computer-aided diagnostic systems for tissue characterization. Tissue 

characterization refers to quantitative analysis of tissue imaging features resulting in 

accurate distinction between normal and abnormal tissues. Thus, the result of tissue 

characterization is interpreted using numerical values. The overall aim of developing a 

computerized tissue characterization system is to provide additional diagnostic 

information about the underlying tissue which cannot be captured by visual inspection of 

B-Mode US images. 

Ultrasonographic tissue characterization methods based on physical tissue models 

have been shown to be useful for improving the diagnostic accuracy of sonograms. 

Unfortunately, no physical model based diagnostic system have been developed for 

characterization of FLLs probably because these systems have been developed assuming 
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single, homogeneous tissue model, whereas in case of FLLs the variability in sonographic 

appearances within different lesions is quite large and quite often large HCCs and MET 

lesions are inhomogeneous [1, 2, 7, 8, 9, 21].    

 

1.5       Objectives of the Present Study 

The main objective of the research work presented in this thesis is to enhance the 

diagnostic potential of conventional gray scale B-Mode ultrasound for diagnosis of liver 

diseases by removing speckle noise from the US images and by developing efficient CAD 

system designs using a comprehensive and representative image database. To achieve this, 

various research objectives were formulated according to the needs of the radiologists, 

based on the practical difficulties faced by them in routine clinical practice. These research 

objectives are described below:  

(i)  The collection of a comprehensive and representative image database: In order to 

develop efficient and robust classifier designs, it is necessary to train the classifiers 

with a comprehensive image database with representative images from each 

subclass. Thus, collection of a comprehensive image database with representative 

cases from each class, including (a) NOR liver, (b) cirrhotic liver, (c) typical and 

atypical cases of cyst, HEM and MET lesions and (e) small as well as large HCC 

cases is taken up as the first objective of the present research work. 

(ii)  The implementation of despeckling filters and performance evaluation of B-Mode US 

images:  In the present work, different despeckling methods i.e., methods based on 

local statistics, median filtering, geometric filtering and anisotropic diffusion have 

been used. The performance of different despeckling algorithms with respect to (a) 

smoothening of homogeneous areas, (b) edge preservation, and (c) feature/ structure 

preservation for B-mode liver ultrasound images has been investigated. As the 

sonographic appearances exhibited by small as well as large hepatocellular 

carcinoma, atypical cases of cyst, hemangioma and metastatic carcinoma are highly 

overlapping, the differential diagnosis between these malignant focal liver lesions is 

considered as a difficult task. Therefore, in the present study, quantitative analysis of 

has been carried out with respect to (a) PSNR metric (for smoothening of 

homogeneous areas) [32], (b) FOM index (for edge preservation) [33, 34], and (c) 

SSIM index (for feature/structure preservation) [35], is taken up as the first objective 

of the present research work.  
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 (iii)  The design, development and implementation of an efficient CAD system for primary 

benign and primary malignant liver lesions using B-Mode US images: The 

sonographic characterization of HEM (i.e., primary benign FLL) and HCC (i.e., 

primary malignant FLL) presents a daunting challenge for radiologists, due to their 

highly overlapping sonographic appearances [1, 2, 7, 8, 9, 21]. As the 

characterization of atypical HEM and HCC lesion is clinically significant for 

effective treatment, the design of an efficient CAD system for binary classification 

between HEM and HCC lesions by using a comprehensive and representative image 

database consisting of (a) typical and atypical MET cases, and (b) SHCC and LHCC 

cases, is taken up as the second objective of the present research work.  

 (iv)  The design, development and implementation of an efficient hierarchical CAD 

system for benign and malignant liver lesions using B-Mode US images: The CAD 

system designs with hierarchically placed classifiers provide the possibility to go 

stepwise from the general classification problem, which is the identification of exact 

liver abnormality.  

The design of hierarchical classifier is based on the idea of splitting the original 

problem of classifying the liver tissue in two sub-problems (i) diagnosis between 

primary benign and malignant lesions, and (ii) diagnosis of primary malignant and 

secondary malignant lesions. To develop an efficient hierarchical CAD system with 

texture features computed from regions inside and outside the lesions for diagnosis 

of FLLs using B-Mode liver ultrasound images is taken up as the third objective of 

the present research work. 

1.6       Organization of Thesis 

This thesis report is organized into seven chapters, as described below.  

(i)  Chapter 1 lays the foundation as to why ‘Despeckling and Classification of B-Mode 

Liver Ultrasound Images’ is clinically significant. It begins with documenting facts 

like why liver diseases are considered seriously?  What types of liver diseases are 

most common?  How these diseases affect the sonographic appearance of the liver 

tissue? Why B-Mode ultrasound examination is considered as primary choice for 

diagnosis of liver diseases? What are the problems faced by the radiologists for 

diagnosis of liver diseases using B-Mode ultrasound which are encountered in 

clinical practice? What is the speckle noise and why is it necessary to remove it? 
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Why there is a need to develop efficient CAD systems for diagnosis of liver diseases 

using B-Mode US images? What are the objectives of the present research work?  

How these objectives were formulated? To conclude, the content documented in this 

chapter provides the basic motivation regarding the fact that computer vision for 

liver US images can enhance the diagnostic potential of B-Mode US imaging 

modality. 

(ii)  Chapter 2 presents a brief literature review of the other related studies for diagnosis 

of liver diseases using B-Mode ultrasound images.  

(iii)  Chapter 3 lays the foundation of research methodology followed for undertaking this 

research work. The importance of medical ethics, while working with clinical human 

data is highlighted. The Chapter introduces the readers, to various set of protocols 

followed for undertaking this research work, i.e., the protocols followed for 

collection of comprehensive and representative image database, for assessment of 

images, for selection of ROIs, for selection of ROI size, for bifurcation of dataset 

into training dataset and testing dataset. Thus, the complete description of dataset 

used in the present research work is described in this Chapter.  

(iv) Chapter 4 gives a detailed description of Despeckle filters and Image Quality 

Evaluation Metrics (IQEMs) for the removal of speckle noise and its performance 

evaluation using B-Mode liver US images. 

(v)  Chapter 5 provides description of the proposed CAD system for characterization of 

primary benign and primary malignant liver lesion. 

(vi)   Chapter 6 reports the experimentation carried out to design an efficient hierarchical 

CAD (HCAD) system for focal liver lesions using hierarchically placed classifiers. 

(vii)  .Chapter 7 summarizes the conclusions drawn from the exhaustive experimentation 

carried out in the present research work on “Despeckling and Classification of B-

Mode Liver US Images”. The future directions in which the work can be extended 

are also reported in this Chapter.   
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Chapter 2 

Literature Review 
 

2.1. Literature Review for Despeckle Filtering 

Speckle noise (also known as multiplicative noise) corrupts the medical US image, 

thereby, making it difficult for visual observation [29- 31]. The despeckling filtering 

algorithm can be classified based on (a) local statistics, (b) median filtering, (c) geometric 

filtering, and (d) anisotropic diffusion. The research works reported in related studied have 

used various filters for despeckling. An overview of Despeckle filtering techniques used in 

the present work is tabulated in Table 2.1. 

Table 2.1. An overview of despeckle filtering techniques used in the present work. 
Speckle 
reduction 
technique 

Investigators Method Filter name 

Local statistics 
based filtering 

[36- 40] Moving window using local statistics a) mean (m), 
variance ( σ2 ) 

 
dsf-lsmv 

 [36, 37] b) Lee filters. dsf-Lee 
 [41] c) Lee’s Sigma filters. dsf-Leesig 
 [42] d) Enhanced Lee filters. dsf-enLee 
 [43, 44] e) Kaun filters. dsf-Kaun 
 [38] f) Frost filters. dsf-Frost 
Median filtering [45] Median filtering. dsf-median 
Geometric 
filtering 

[46, 47] Nonlinear iterative algorithm. dsf-gf 

Diffusion based 
filtering 

[38, 48- 52] a) Nonlinear filtering technique for simultaneously 
performing contrast enhancement and noise reduction. 
Exponential damp kernel filters using diffusion. 

 
dsf-ad 

 [51] b) Speckle reducing anisotropic diffusion filtering dsf-srad 

A brief description of the related studies is given as follows. 

The despeckle filter- Kaun [43, 44] (dsf-Kaun) is a generalization of the despeckle 

filter- Lee [36, 37] (dsf-Lee), with the same structure. In both these filters, the average 

intensity of pixel values and a coefficient of variation in the moving window are used to 

compute the intensity of central pixel of the moving window.  

The despeckle filter- Frost [38] (dsf-Frost) maintain the equivalence between the all-

pass and averaging filters by using a convolution kernel which readjust itself in the areas 

containing edges.  

The despeckle filter- median [45] (dsf-median) uses a nonlinear operator that alters 

the middle pixel, in the moving window with median value of the neighbors. The 

despeckle filter- geometric [46, 47] (dsf-gf) uses a nonlinear iterative algorithm, which 

increments or decrements the neighbor’s pixel value depending on their relative values.  
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The despeckle filter- anisotropic diffusion [38, 48- 52] (dsf-ad) and the despeckle 

filter- speckle reducing anisotropic diffusion [51] (dsf-srad) are based on nonlinear 

filtering techniques which perform noise reduction and contrast enhancement by using the 

coefficient of variation [51].  

The performance of different despeckling algorithms with respect to (a) smoothening 

of homogeneous areas, (b) edge preservation, and (c) feature/ structure preservation for B-

mode liver ultrasound images, as these indices are considered as important for evaluation. 

The IQEMs, which includes, (a) PSNR metric (for smoothening of homogeneous areas) 

[32], (b) FOM index (for edge preservation) [33, 34], and (c) SSIM index (for 

feature/structure preservation) [35], have been computed for the pre-processed images.  

These image quality metrics depend on mutual information between the original and 

despeckled images and their natural scene statistics, has recently been used by Gupta et al. 

[53]. 

 

2.2       Literature Review for Classification  

In literature, there are only few related studies on classification of FLLs. The brief 

description of these studies is given in Table 2.2.  

Table 2.2. Studies on classification of FLLs using B-Mode Liver US images. 
Studies Liver image class No. of ROIs ROI size 

(pixels) 
Classifiers  
used 

[54] NOR/HEM/Malignant 113 10 × 10 NN/LDA 
[55] NOR/Cyst/HEM/Malignant 120 10 × 10 NN 
[7] HCC/MET 174 (120 IROIs,54 SROIs) 32 × 32 SVM 
[2] NOR/Cyst/HEM/HCC/MET 491 (380 IROIs,111 SROIs) 32 × 32 KNN/PNN/BPNN 
[8] NOR/Cyst/HEM/HCC/MET 491(380 IROIs, 111SROIs) 32 × 32 SVM 
[24] NOR/Cyst/HEM/HCC/MET 491 (380 IROIs, 111 SROIs) 32 × 32 Ensemble of NN 

classifiers 
[9] HEM/Malignant 193 64 × 64 NN 
Note: The HCCs evolved on cirrhotic liver only are considered as the occurrence of HCC on normal liver 
is rare; Nor: Normal; HEM: Hemangioma (primary benign lesion); HCC: Hepatocellular carcinoma 
(primary malignant lesion); MET: metastatic carcinoma (secondary malignant lesion). 

 

The study in [54] used regions of interest (ROIs) of size 10 × 10 for computing gray-

level run length matrix (GLRLM) and first order statistics (FOS) features to classify 

normal (NOR), HEM and malignant liver lesions by using neural network (NN) and linear 

discriminant analysis (LDA) classifier. The study in [55] computed texture features based 

on autocorrelation, gray level co-occurrence matrix (GLCM), edge frequency and Laws’ 
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mask analysis from ROI of size 10 × 10 for the classification of NOR, Cyst, HEM and 

malignant liver lesions by using neural network classifier.  

The research work carried out in study [7] used ROI of size 32 × 32 for computing 

GLCM, GLRLM, FPS, and Laws’ texture features to classify HCC and MET lesions by 

using support vector machine (SVM) classifier. The research work in [7] has been carried 

out on 174 ROIs which includes 120 IROIs and 54 SROIs.  

In studies [2, 8], five class classification between NOR, Cyst, HEM, HCC and MET 

classes has been carried out considering the ROI size of 32 × 32 pixels using KNN, PNN, 

BPNN and SVM classifiers. The research work in [2, 8] has been carried out on 491 ROIs 

including 380 IROIs and 111 SROIs. 

The study in [24] reports five class classification between NOR, Cyst, HEM, HCC 

and MET classes considering two stage classification approach using 11 neural network 

classifiers. In first stage a single five class NN was used for prediction of probability of 

each class and in the second stage 10 binary NN classifiers were used. Based on the first 

two highest probabilities predictions of the first stage five class NN, the testing instance 

was passed to the corresponding binary NN of the second stage. The research work 

reported in [24] computed the texture features based on FOS, GLCM, GLRLM, FPS, 

Gabor Wavelet Transform (GWT) and Laws’ features with the help of 491 ROIs including 

380 IROIs and 111 SROIs. 

 However, the study in [9] reports the binary classification of HCC and HEM, HCC 

and MET, and MET and HEM lesions by computing the single-scale and multiscale 

texture features of 64 × 64 sized ROIs by using NN classifiers. The research work in [9] 

has been carried out on 193 ROIs. 

It is highlighted in other studies that minimum 800 pixels are required to compute 

reliable estimates of statistical features [56- 58]. However, the research work reported in 

[54] and [55] has been carried out on ROI of size 10 × 10 which yields smaller number of 

pixels. The studies [2, 7, 8] used an ROI size of 32 × 32 and Yoshida et al. [9] used the 

ROI size of 64 × 64. Since, necrotic areas within the lesions should be avoided for 

cropping of inside ROIs (i.e., IROIs) and inhomogeneous areas include blood vessel etc. 

should be avoided for cropping of surrounding ROIs (i.e., SROIs), so in the present work, 

considering ROI size larger than 32 × 32 was not feasible. In studies [9, 54, 55] texture 

features of IROIs were only considered and the dataset description as to how many typical 
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and atypical HEMs and how many SHCC and LHCC were taken into consideration is not 

described. 

2.3       Concluding Remarks 

The Despeckle filters are generally categorized as local statistics filters, non-linear 

filter, and diffusion filters. Accordingly, in the present work six local statistics filters (i.e., 

Local statistics mean variance filter, Lee filter, Lee sigma filter, Enhanced Lee filter, Kaun 

filter and Frost filter), two non-linear filters (i.e., Median filter and Geometric filter), and 

two diffusion based filters (i.e., Anisotropic diffusion and Speckle Reduction Anisotropic 

Diffusion filter) have been used. It was observed that US liver images processed by Lee-

Sigma despeckling algorithm results in better edge and structure preservation while 

providing adequate smoothing in the uniform areas. 

From the literature, it has been concluded that the shape based features do not provide 

any significant information for differential diagnosis of FLLs. Accordingly, the present 

research work is based on the textural features only. The texture feature extraction 

methods are generally classified into statistical, spectral and spatial filtering based 

methods. The differential diagnosis between primary benign and primary malignant has 

not been done yet in the research field, therefore, this task has been carried out in the 

present work. 
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Chapter 3 

Methodology  

3.1. Introduction 

From the extensive literature survey presented in the previous chapter, it can be observed 

that most of the related studies carried out in the past are based on the pre-processing of 

US images to remove the speckle noise. In the present thesis work, primarily two 

objectives have been met: (a) Comparative analysis of Despeckle filters for liver US 

images, (b) Design of CAD systems from B-Mode liver US images as shown in Fig. 3.1. 

The methodology for meeting the above two objectives is given below. 

 
 

Fig. 3.1. The two main objectives of the thesis are divided into three categories as shown in the workflow. 
 

3.2       Materials  

3.2.1  Data Collection 

In order to carry out the present research work, the B-mode liver US images were 

collected from the Department of Radiodiagnosis and Imaging, Post Graduate Institute of 
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Medical Education and Research (PGIMER), Chandigarh, India over the time period from 

March 2010 to December 2011. Informed consent of patients for using these images for 

research was taken prior to recording. The medical ethics board of PGIMER, Chandigarh, 

granted the ethical clearance to carry out this research work. The digital images were 

recorded by using Philips ATL HDI 5000 US machine equipped with multifrequency 

transducer of 2-5 MHz range were used. The size of the images is 800 × 564 pixels with 

gray scale consisting of 256 tones, and horizontal as well as vertical resolution is 96 dpi.  

3.2.2  Data Collection Protocol 

The following protocols were followed for data collection:  

(a) The judgment regarding the representativeness and diagnostic quality of each image 

was made by two participating radiologists with 15 and 25 years of experience in US 

imaging. (b) The ground truth of Cirrhosis, Cyst, HEM, HCC, and MET lesions was 

confirmed using liver image assessment criteria including: (i) visualization of sonographic 

appearances, imaging features of lesions based on their expertise and knowledge, (ii) 

follow-up of clinical history of the patient and other associated findings and (iii) imaging 

appearance on magnetic resonance imaging (MRI)/ dynamic helical computed tomography 

(CT)/ pathological examinations and biopsy, which is an invasive procedure. (b) Only 

HCCs developed on cirrhotic liver are considered for analysis as the existence of HCCs on 

normal liver is rare. (c) The differentiation between LHCC and SHCC (i.e. ≤ 2 cm) was 

made by measuring the lesion size in longitudinal and transverse views.  

 

3.2.3    Selection of Regions of Interest (ROIs) 

In the present study, two types of ROIs i.e., inside regions of interest (IROIs) and 

surrounding regions of interest (SROIs) are used. The sample images of HEM and HCC 

cases with ROIs marked are shown in Fig. 3.2. The cropping of ROIs from image dataset 

has been done according to the following protocols: 

(a) For cropping of IROIs, maximum non-overlapping IROIs were cropped from the 

region well within the boundary of each lesion by avoiding the necrotic areas, if any. 

(b) For every lesion, one SROI was cropped from the surrounding liver parenchyma 

approximately from the same depth as that of the center of the lesion by avoiding the 

inhomogeneous structures such as blood vessels and liver ducts, etc. 
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Fig 3.2. Sample images with ROIs marked (a) typical HEM ; (b) atypical HEM ;  (c) SHCC;  (d) LHCC. 
Note: SROI: Surrounding lesion ROI; IROI: Inside Lesion ROI; HEM: Hemangioma; SHCC: Small 
hepatocellular carcinoma; LHCC: Large hepatocellular carcinoma. 

3.2.4    Selection of ROI size 

The selection of ROI size is done carefully, considering the fact that it should provide 

adequate number of pixels for computing the texture properties. The different sized ROIs 

have been selected in the literature for the classification of FLLs such as, 10 × 10 pixels 

[54, 55], 32 × 32 pixels [2, 7, 8, 24], and 64 × 64 pixels [9]. In this research work, multiple 

ROIs of size 32 × 32 pixels are manually extracted from each lesion considering the facts 

given below: 

(a) It has been shown in earlier studies that ROI size with 800 pixels or more provide good 

sampling distribution for estimating reliable statistics. The ROI size of 32 × 32 contains 

1024 pixels and therefore, the texture features computed can be considered to be reliable 

estimates. 

 

(b) The participating radiologists suggested avoiding larger sized ROIs because some 

lesions contain necrotic areas. Therefore, radiologists opined that necrotic area inside the 

lesions should be avoided during IROIs extraction. Further, the participating radiologists 

were of the view that SROI for every lesion should be chosen by avoiding inhomogeneous 

areas such as blood vessels and hepatic ducts etc., which is practically not possible by 

considering larger sized ROIs. 

 

(c) The ROIs, which are smaller in size, takes less time for feature computation in 

comparison to the larger sized ROIs. Also, more number of samples is available by 

considering smaller sized ROIs.  
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3.3       Methods 

3.3.1    Generalized CAD System Design 

The CAD system is used to assist radiologists in the diagnosis of FLLs. The Generalized 

CAD system design is given in Fig. 3.3. The ROI extraction module is described in section 

3.2.3 and 3.2.4. The feature extraction module is described in detail in section 5.4. The 

feature selection module is optional and therefore is not considered in the present work. A 

wide variety of classifiers are used for the classification task. The classifiers used to carry 

out the present research work are described in section 3.3.3.  

 

Fig. 3.3. Generalized CAD System Design. 

3.3.2    Feature Extraction Module 

The main idea behind feature extraction is to compute the mathematical descriptors 

describing the properties of ROI. These mathematical descriptors are further classified as 

shape based features and texture based features [59, 60]  

The participating radiologists opined that the shape based features do not provide any 

significant information for differential diagnosis between HEM and HCC lesions. 

Accordingly, the proposed CAD system design is based on the textural features only. The 

texture feature extraction methods are generally classified into statistical, spectral and 

spatial filtering based methods. From the exhaustive review of the related studies on 

classification of FLLs [2, 7, 8, 9, 24, 54, 55], it can be observed that all these texture 

features are important for the classification of FLLs. Accordingly, for the present task of 

classification between HEM and HCC lesions, the texture features are extracted for each 
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ROI image using statistical, spectral and spatial filtering based methods as shown in Fig. 

3.4. 

 
 
Fig. 3.4. Texture features computed for each ROI image. 

3.3.3    Classification Module 

The task of a classifier is to assign a given sample to its concerned class. 

Classification is a machine learning technique used to predict the class membership of 

unknown data instances based on the training set of data containing instances whose class 

membership is known. In this module different classifiers like SVM and SSVM are 

employed to classify the unknown testing instances of liver US images of different classes 

based on the training instances. To avoid any bias induced by unbalanced feature values 

the extracted features are normalized between 0 and 1, by using min-max normalization 

procedure. 

3.3.3.1 Support Vector Machine (SVM) Classifier 

The SVM classifier belongs to a class of supervised machine learning algorithms. It is 

based on the concept of decision planes that define the decision boundary. In SVM, kernel 

functions are used to map the non-linear training data from input space to a high 

dimensionality feature space.. The polynomial, Gaussian radial basis function and sigmoid 

kernel are used in general [61- 64]. In the present work, LibSVM library has been used for 

the implementation of SVM classifier [65] and the performance of the Gaussian radial 

basis kernel function has been examined. The optimal choice of kernel parameter γ and 

regularization parameter C is the crucial step in attaining good generalization 

performance. The regularization parameter C keeps low training error value and tries to 

maximize the margin while the kernel parameter γ decides the curvature of decision 
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boundary. In present work, 10-fold cross validation is carried out on training data for each 

combination of (C, γ), such that, C ε {2ିସ, 2ିଷ … 2ଵହ} and γ ε {2ିଵଶ, 2ିଵଵ … 2ସ}. The 

optimum values of C and ߛ can be obtained by this grid search procedure in the parameter 

space for which the training accuracy is maximum.  

3.3.3.2 Smooth Support Vector Machine (SSVM) Classifier 

To solve important mathematical problems related to programming, smoothing 

methods are extensively used. The SSVM works on the idea of smooth unconstrained 

optimization reformulation based on the traditional quadratic program which is associated 

with SVM [66, 67]. For implementing SSVM classifier, the SSVM toolbox [68] developed 

by Laboratory of Data Science and Machine Intelligence, Taiwan has been used. Similar 

to SVM implementation in case of SSVM also, 10-fold cross validation is carried out on 

training data for each combination of (C, γ), such that, 

C ε {2ିସ, 2ିଷ … 2ଵହ} and γ ε {2ିଵଶ, 2ିଵଵ … 2ସ}. The optimum values of C and ߛ can be 

obtained by this grid search procedure in the parameter space for which the training 

accuracy is maximum. 

3.4      Concluding Remarks 

It has been shown in earlier studies that ROI size with 800 pixels or more provide 

good sampling distribution for estimating reliable statistics. In the present work, the ROI 

size of 32 × 32 had been considered as it contains 1024 pixels and therefore, the texture 

features computed can be considered to be reliable estimates.  

After carrying out extensive literature survey, it was observed that various CAD system 

designs have proven useful to the radiologists in routine medical practice as second 

opinion tools for classification of Liver US images in cases where a clear discrimination 

cannot be made subjectively between the overlapping sonographic appearances. In light of 

this fact, different CAD system designs employing the texture analysis techniques of 

feature extraction and feature classification have been proposed in the present work. 

Feature extraction is done using statistical, spectral and spatial filtering based methods.  

A detailed description of the CAD system designs is given in the forthcoming 

chapters. 
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Chapter 4 

Comparative analysis of Despeckle filters for Liver US images  

4.1. Introduction 

In the present work, a comprehensive image dataset consisting of B-mode liver US 

images of (a) NOR liver, (b) cirrhotic liver, (c) typical and atypical cases of Cyst, HEM, 

and MET lesions, and (d) SHCC and LHCC cases, is used for evaluation of despeckling 

algorithms. In the present study, ten despeckle filtering algorithms based on local 

statistics, non-linear filtering, and diffusion filtering, have been applied on the B-mode 

liver US images. The IQEMs has been computed for the performance evaluation of 

despeckle filtering techniques. 

 

4.2. Despeckle Filtering 

The US images can be pre-processed by using several despeckling techniques. In the 

present work, ten despeckling filters, which fall under the category of local statistics, non-

linear filtering, and diffusion filtering, have been implemented on 151 B-mode liver US 

images as shown in Fig. 4.1.  

 
Fig. 4.1.  Despeckle Filters and Image Quality Evaluation Metrics used for the present work. 
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4.2.1    Local Statistics Filters 

4.2.1.1 dsf - Lsmv (despeckle filter - Local statistics mean variance)   

In this algorithm, first order statistics i.e. mean and variance of the neighborhood is 

calculated to estimate the speckle free pixel given by the equation [36- 40]: 

                                                      Iመ୧,୨ = nത + k୧,୨൫n୧,୨ − nത൯,                                                  (1) 

here, Iመ୧,୨ represents the modified  noise free pixel, n୧,୨ represents the value of noisy pixel in 

the moving window (say, N1×N2), nത is the estimated mean value in the moving window . 

The variable, k୧,୨ serves as the weighting factor, with i, j acts as pixel coordinates and k ∈ 

[0, 1]. In the moving window, k୧,୨ is the local statistics function and can be computed in 

various forms as given below: 

                                               k୧,୨ = (1− nതଶσଶ)/൫σଶ(1 + σ୬ଶ)൯ ,                                     (2) 

                                                       k୧,୨ = σଶ/(nതଶσ୬ଶ + σଶ) ,                                               (3) 

                                                         k୧,୨ = (σଶ − σ୬ଶ)/σଶ ,                                                 (4) 

here, ߪଶ represents the moving window variance while ߪ௡ଶ is the noise variance in the 

original  window. The noise variance can be obtained by: 

                                                            σ୬ଶ = ∑ σ୸ଶ/nത୸ୟ
୸ୀଵ  ,                                                  (5) 

here, nത୸ and σ୸ଶ indicates the mean and variance of the noise in the chosen window, 

respectively. The variable, a, is the pointer covering every window in the complete image.  

4.2.1.2 dsf - Lee (despeckle filter - Lee)   

   Lee [36, 37] filter depends on the multiplicative speckle model. The local statistics 

is used to conserve feature and edges efficiently. The smoothing is done over the area 

where the value of variance is low (e.g. homogeneous areas), while the areas with high 

variance (i.e. edges) remain intact. The enhanced value of pixel i, j in the moving window, 

Iመ୧,୨ can be estimated as: 

                                                         Iመ୧,୨ = I୧̅,୨ + k୧,୨൫I୧,୨ − I ̅୧,୨൯,                                           (6) 

here, I୧̅,୨ represents the mean intensity value in the moving window, and  ݇௜,௝, the adaptive 

filter coefficient can be determined as: 

                                                            k୧,୨ = Q୧,୨ − ൫Q୧,୨/σଵଶ൯,                                            (7) 



  

24 
 

here, Q୧,୨ is the a priori variance of the I୧,୨ and σ1 is the noise variance. 

4.2.1.3 dsf - Leesigma (despeckle filter - Leesigma)   
The Lee-sigma [41] filter smoothes the noisy image by averaging the intensities of 

those neighbour pixels which are present within the sigma range of the central pixel. It 

requires intensity range specifications and window size, N×M. 

                                                      Iመ୧,୨ =
ቀ∑ ∑ ൫ఋ೥,೤ூ೥,೤൯

ಾశೕ
೤సೕషಾ

ಿశ೔
೥స೔షಿ ቁ

ቀ∑ ∑ ൫ఋ೥,೤൯
ಾశೕ
೤సೕషಾ

ಿశ೔
೥స೔షಿ ቁ

 ,                                       (8) 

                                                 δ୸,୷= 1, if ൫I୧,୨ − ∆൯ ≤ I୸,୷ ≤ ൫I୧,୨ + ∆൯                             (9) 

                                                                    = 0, otherwise. 

here, ∆= 2σ. 

4.2.1.4 dsf - enLee (despeckle filter – enhanced Lee)   

The enhanced Lee [42] filter is the modified version of the Lee filter. This filter 

improves the edge preservation ability in the despeckled image. The filtering formula and 

the weighting function are as given below:  

                                                    Iመ = I ̅,                                         C୍ ≤  Cୱ                            (10)                                  

                                               Iመ = I୧,୨k୧,୨ + I୧̅,୨൫1 − k୧,୨൯,      Cୱ < C୍ < C୫ୟ୶                     (11) 

                                                    Iመ = I ̅,                                          C୍ ≥  C୫ୟ୶                       (12)           

                                         k୧,୨ = exp{−kୢ[(C୍(i, j) − Cୱ)/(C୫ୟ୶ − C୍(i, j))]},                 (13) 

here, CI is the image class which is to be averaged and filtered, Cs is the coefficient of 

variation, and kd is the filter parameter. 

4.2.1.5  dsf - Kaun (despeckle filter – Kaun)  

The Kaun [43, 44] filter works on the local image statistics to suppress the speckle 

noise efficiently. For an ideal image, the filtering formula, Iመ୧,୨, with intensity I, 

multiplicative noise model is:  

                                                    Iመ୧,୨ = I୧,୨k୧,୨ + I୧̅,୨൫1 − k୧,୨൯,                                           (14) 

here, ݇௜,௝ is the weighting function and can be calculated as: 

                                              k୧.୨ = [1− C୳ଶ/C୍ଶ(i, j)]/[1 + C୳ଶ] ,                                     (15) 
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here, the noise variation coefficient,C୳ = σ୳/ uത. 

4.2.1.6 dsf - Frost (despeckle filter – Frost) 

The Frost [38] filter uses a rapidly changing convolution kernel that readjusts itself in 

areas containing the edges by applying local statistics. The filtering output can be 

determined as: 

                                                             Iመ୧,୨ = ∑ m୮I୮୮∈η ,                                                  (16)  

here, 

                                             m୮ = exp൫−KCୱଶbୱ,୮൯/∑ exp൫−KCୱଶbୱ,୮൯୮∈η ,                    (17) 

                                                     bୱ,୮ = ට൫i − i୮൯
ଶ

+ ൫j − j୮൯
ଶ
,                                     (18) 

here, K indicates the damping factor, (i, j) and (ip, jp) represents the coordinates of grid for 

pixel s and p, respectively. In homogeneous areas, K acts as the mean filter with its value 

approaches to zero, while at an edge the value of K becomes very large to keep the pixel 

unchanged. 

4.2.2    Non-Linear Filters 

4.2.2.1 dsf - Median (despeckle filter – Median) 

The dsf - Median (despeckle filter - Median) [45] filter is used to reduce random 

noise and acts as a non-linear operator. When the median filtering is applying on the pixel 

xi,j with the moving window size M×N, the resulting pixel yi,j represents the median value 

of all the neighbor pixels present in that window.                                              

                                                        Iመ୧,୨ = 2n + หdതห + 1.5 + 0.5p଴,                                  (19) 

here, n × n is the window size and หdതห is the average of absolute values of horizontal 

adjacent gray level difference of median filtered image. p଴ indicates the probability of d to 

be zero in an image. 

4.2.2.2 dsf – GF (despeckle filter – Geometric) 

The dsf - Gf (despeckle filter - Geometric) [46, 47] filter uses a linear noise reduction 

technique to gently decimate the bright and dark edges of the speckle noise, iteratively. It 

works on the 3×3 neighbourhood and compares the central pixel intensity with the 
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remaining pixels in window. The value of the intensity of the central pixel is changed 

according to the intensities of the eight neighbors to make it more representative than the 

surroundings. The dsf - Gf filter operation can be described with Fig. 4.2. 

 
                              (a) 

 
                                 (b) 

Fig. 4.2. (a) Directions of implementation of geometric filter. (b) Pixels selected for the N-S direction 
(intensity of central pixel z is adjusted based on the values of intensities of pixel x, y, and z. 

 

(i) Pixel value allocation: The x, y, and z pixels are selected in the north-south (NS) 

direction as shown in the Fig. 4.2 (a) and (b). 

(ii) Central Pixel adjustment: The following adjustments in intensity value are done for 

the pixel y [see Fig. 4.2(b)]: 

              if x ≥ y + 2 then y = y + 1, 

              if x > y and y ≤ z  then y = y + 1, 

              if z > y and y ≤ x then y = y + 1, 

              if z ≥ y + 2 then y = y + 1, 

              if x ≥ y – 2 then y = y – 1, 

              if x < y and y ≥ z then y = y – 1, 

              if z < y and y ≥ x then y = y – 1, 

              if z ≥ y – 2 then y = y – 1. 

(iii) Repeat: Repeat the above steps for the east-west (EW) direction, north-west to south-

east (NW-SE) direction, and south-west to north-east (SW-NE) direction [see Figure 

4.2(a)]. 

4.2.3    Diffusion Based Filters 

4.2.3.1 dsf - Ad (despeckle filter – Anisotropic Diffusion)  
The anisotropic diffusion [38, 48- 52] simultaneously performs the noise reduction 

and contrast enhancement. It is a non-linear technique which smoothes the homogeneous 

areas and retains the edges, therefore applies directly on the logarithmically compressed 

images. 
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                                             ቊ
ப୳(୧,୨; ୲)

ப୲
= ∇[c(|∇Iσ(i, j; t)|).∇I(i, j; t))

I(i, j; 0) = I଴(i, j)                                     
                               (20)                                                      

here, ∇I(i, j; t) represents the original image.  ∂I(i, j;  t)/ ∂t indicates the partial derivation 

of I(i, j; t).  

4.2.3.2 dsf - Srad (despeckle filter – Speckle Reducing Anisotropic Diffusion)   
The speckle reducing anisotropic diffusion [51 filter is an edge sensitive diffusion 

method for speckled images. It applies the coefficient of variation and process the direct 

data to preserve the important details in the image. The coefficient of variation can be 

computed as: 

                                                            z(i, j;  t) = ୱ୲ୢ[୍(୧,୨;୲)]
୍̅(୧,୨;୲)

,                                              (21) 

                                               c[z(i, j; t), z଴(t)] = ቀ1 + ୸మ(୧,୨;୲)ି୸బ(୲)
୸మ(୧,୨;୲)(ଵା୸బమ(୲))

ቁ,                          (22) 

here, z(i, j;  t) gives the ratio of standard deviation to mean and z଴ represents the speckle 

scale function. 

 

4.3       Despeckle Filtering: Performance Parameters 

The ten despeckle filtering algorithms has been applied on all the 151 images, pre-

processed by different despeckled filters, along with the original image. The IQEMs, 

which includes, (a) PSNR metric (for smoothening of homogeneous areas), (b) FOM 

index (for edge preservation), and (c) SSIM index (for feature/structure preservation), 

have been computed for the pre-processed images.  These indices, which indicate the 

different performance measures, are shown in Table 4.1. The below mentioned image 

quality metrics, depend on mutual information between the original and despeckled 

images and their natural scene statistics, has recently been used by Gupta et al. [53]. 

Here, I୧,୨ is the original image and I′
୧,୨ represents the despeckled image. The intensity 

of original image is indicated using I୫ୟ୶ଶ . The value of PSNR is comparatively low for 

poor despeckled images and higher for good despeckled images. In case of SSIM, cଵ = 

0.01d and cଶ = 0.03d, with d= 255 represents dynamic range of the US images. The SSIM 

range of values lies within 1 for the finest alikeness and -1 for the worst alikeness between 

the original image and despeckled image. For FOM, uI and uI' represents the number of 

detected edge points in the original and the despeckled images, respectively. The positive 
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scaling factor is indicated by γ shows and di indicates the deviation or error from the ith 

detected edge pixel. 
Table 4.1. IQEMs for 151 liver US images. 
 IQEMs INVESTIGATOR INDEX FORMULA 

   
    PSNR 

 
[32] 

 
Speckle Reduction −20logଵ଴ቌ

ଵ
ୖେ
∑ ∑ ൫I୧,୨ − I′

୧,୨൯
ଶେ

୨ୀଵ
ୖ
୧ୀଵ

I୫ୟ୶ଶ ቍ 

    FOM [33, 34] Edge Preservation 
1

  max(u୍, u୍′)
൭෍

1
1 + γd୧ଶ

୳౅

୧ୀଵ

൱ 

    SSIM [35] Feature/ Structure Preservation 
൫2I ̅I′ത + cଵ൯൫2σ୍୍′ + cଶ൯

ቀI ̅ଶ + I′തଶ + cଵቁ ൫σ୍ଶ + σ୍′
ଶ + cଶ൯

 

Note: IQEMs: Image Quality Evaluation Metrics; PSNR: Peak Signal to Noise Ratio; FOM: Figure of Merit; SSIM: 
Structural Similarity Index. 

 

4.4       Results 

The despeckled images of different Liver classes (i.e. NOR, Cirrhosis, Cyst, HEM, 

HCC, and MET) of liver are shown in Fig. 4.3 to Fig. 4.8. The performance of the filters 

has been analysed for different performance parameters including speckle reduction, edge 

preservation and feature/structure preservation. The IQEMs for 23 NOR, 14 Cirrhosis, 14 

Cyst, 19 HEM (typical and atypical), 36 HCC (SHCC and LHCC), and 45 MET (typical 

and atypical) cases of B-mode liver US images are tabulated in Table 4.2 in the form of 

mean SD standard deviation (µ SD s.d.). Among all the ten despeckle filtering algorithms 

implemented in the present work, the despeckle filter – Leesig yields the best performance 

with highest value for noise reduction capability (i.e. highest PSNR), highest value for 

edge preservation capability (i.e. highest FOM) and highest value for feature/structure 

preservation capability (i.e. highest SSIM) for all US liver images classes.  

 
Fig. 4.3. The images of NOR liver despeckled by different filters. The dsf-Leesig filter yielding the best 
result is shaded with gray background. 
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Fig. 4.4. The images of Cirrhotic liver despeckled by different filters. The dsf-Leesig filter yielding the best 
result is shaded with gray background. 
 

Fig. 4.5. The images of typical Cyst despeckled by different filters. The dsf-Leesig filter yielding the best 
result is shaded with gray background. 
 

Fig. 4.6. The images of typical HEM despeckled by different filters. The dsf-Leesig filter yielding the best 
result. 
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Fig. 4.7. The images of SHCC despeckled by different filters. The dsf-Leesig filter yielding the best result 
is shaded with gray background. 
 

Fig. 4.8. The images of typical MET despeckled by different filters. The dsf-Leesig filter yielding the best 
result is shaded with gray background. 
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Table 4.2.  IMAGE QUALITY EVALUATION METRICS (IQEMs) computed for 151 liver US images. 
IQEMs for 23 NOR images 

  IQEMs dsf-Lsmv dsf-Lee dsf-Leesig dsf-enLee dsf-Kaun 
  PSNR 27.897 SD 0.97 34.417 SD 0.10 34.505 SD 0.02 19.372 SD 0.24 34.418 SD 0.10 
  FOM 0.5881 SD 0.05 0.9698 SD 0.02 0.9839 SD 0.02 0.8278 SD 0.01 0.9699 SD 0.02 
  SSIM 0.8748 SD 0.01 0.8965 SD 0.01 0.8976 SD 0.01 0.6586 SD 0.02 0.8965 SD 0.01 
  IQEM dsf-Frost dsf-Median dsf-Gf dsf-Ad dsf-Srad 
  PSNR 27.225 SD 0.19 22.682 SD 0.18 19.201 SD 0.28 14.303 SD 1.22     14.306 SD 1.22 
  FOM 0.9202 SD 0.01 0.7843 SD 0.02 0.7661 SD 0.02 0.7833 SD 0.04 0.7615 SD 0.05 
  SSIM 0.8711 SD 0.01 0.8547 SD 0.01 0.7501 SD 0.01 0.3213 SD 0.01 0.3213 SD 0.01 

IQEMs for 14 Cirrhosis images 
   IQEMs dsf-Lsmv dsf-Lee dsf-Leesig dsf-enLee dsf-Kaun 

PSNR  26.809 SD 0.57    34.524 SD 0.11   34.553 SD 0.13   34.524 SD 0.11   34.524 SD 0.11 
FOM  0.6284 SD 0.05    0.9779 SD 0.02   0.9838 SD 0.02   0.8224 SD 0.02   0.9780 SD 0.02 
SSIM 0.8702 SD 0.02    0.8974 SD 0.01   0.8977 SD 0.01   0.6642 SD 0.03   0.8974 SD 0.01 

   IQEMs dsf-Frost dsf-Median dsf-Gf dsf-Ad dsf-Srad 
PSNR 27.021 SD 0.32   22.541 SD 0.43  19.105 SD 0.39  13.391 SD 0.85  13.394 SD 0.85 
FOM 0.9222 SD 0.01   0.7815 SD 0.02  0.7679 SD 0.03   0.7963 SD 0.04   0.8053 SD 0.05 
SSIM  0.8690 SD 0.01   0.8485 SD 0.02  0.7585 SD 0.02  0.3486 SD 0.03   0.3486 SD 0.03 

IQEMs for 14 Cyst images 
   IQEMs dsf-Lsmv dsf-Lee dsf-Leesig dsf-enLee dsf-Kaun 
  PSNR 27.535 SD 0.75 34.895 SD 0.67 35.758 SD 0.07 19.470 SD 0.25 34.907 SD 0.65 
  FOM 0.6376 SD 0.05 0.9382 SD 0.02 0.9634 SD 0.02 0.8307 SD 0.01 0.9386 SD 0.02 
  SSIM 0.8882 SD 0.02 0.8975 SD 0.01 0.9057 SD 0.01 0.6961 SD 0.03 0.8976 SD 0.01 
   IQEMs dsf-Frost dsf-Median dsf-Gf dsf-Ad dsf-Srad 
  PSNR 28.160 SD 0.23 22.903 SD 0.22 19.123 SD 0.25 15.141 SD 1.20 15.145 SD 1.20 
  FOM 0.9294 SD 0.02 0.8099 SD 0.03 0.7826 SD 0.02 0.8238 SD 0.03 0.7971 SD 0.05 
  SSIM 0.8842 SD 0.01 0.8691 SD 0.01 0.7738 SD 0.02 0.3651 SD 0.04 0.3651 SD 0.04 

IQEMs for 19 HEM images 
   IQEMs dsf-Lsmv dsf-Lee dsf-Leesig dsf-enLee dsf-Kaun 

PSNR 30.329 SD 0.99  31.930 SD 1.66   60.324 SD 7.01   25.650 SD 1.78  32.117 SD 1.60 
FOM 0.5964 SD 0.04  0.8767 SD 0.03  0.9861 SD 0.01   0.8111 SD 0.01   0.8775 SD 0.03 
SSIM 0.8089 SD 0.03  0.8851 SD 0.03  0.9925 SD 0.02   0.6409 SD 0.04   0.8895 SD 0.02 

   IQEMs dsf-Frost dsf-Median dsf-Gf dsf-Ad dsf-Srad 
PSNR 36.623 SD 2.39   32.236 SD 2.57   23.991 SD 1.44  14.717 SD 1.19  14.720 SD 1.20 
FOM 0.9251 SD 0.01   0.8250 SD 0.03   0.7734 SD 0.01   0.8010 SD 0.03   0.8032 SD 0.04 
SSIM 0.9687 SD 0.02   0.9059 SD 0.02   0.7163 SD 0.03   0.2144 SD 0.05   0.2146 SD 0.05 

IQEMs for 36 HCC images 
   IQEMs dsf-Lsmv dsf-Lee dsf-Leesig dsf-enLee dsf-Kaun 

PSNR  26.744 SD 1.39  31.709 SD 3.95 32.128 SD 4.13 18.732 SD 0.91  31.714 SD 3.95 
FOM  0.6103 SD 0.04  0.9602 SD 0.03 0.9725 SD 0.02 0.8157 SD 0.02  0.9604 SD 0.03 
SSIM  0.8857 SD 0.03  0.8969 SD 0.07 0.9020 SD 0.07 0.7037 SD 0.07  0.8970 SD 0.07 

   IQEMs dsf-Frost dsf-Median dsf-Gf dsf-Ad dsf-Srad 
PSNR  26.280 SD 1.48 22.322 SD 0.69 18.739 SD 0.72 13.447 SD 2.10 13.451 SD 2.10 
FOM  0.9214 SD 0.02 0.7899 SD 0.04 0.7786 SD 0.02 0.8055 SD 0.04 0.8197 SD 0.06 
SSIM  0.8808 SD 0.07 0.8811 SD 0.05 0.7786 SD 0.04 0.3462 SD 0.08 0.3463 SD 0.08 

IQEMs for 45 MET images 
   IQEMs dsf-Lsmv dsf-Lee dsf-Leesig dsf-enLee dsf-Kaun 

PSNR 30.046 SD 1.32   31.159 SD 1.34   60.346 SD 4.97   25.663 SD 1.37  31.345 SD 1.32 
FOM 0.5750 SD 0.05    0.8614 SD 0.02   0.9864 SD 0.02      0.8050 SD 0.01          0.8635 SD 0.02
SSIM 0.7991 SD 0.03       0.8754 SD 0.04       0.9937 SD 0.03      0.6342 SD 0.05     0.8800 SD 0.04 

   IQEMs dsf-Frost dsf-Median dsf-Gf dsf-Ad dsf-Srad 
PSNR  36.924 SD 1.77   32.675 SD 1.52    23.895 SD 1.30     13.898 SD 1.42     13.900 SD 1.42 
FOM  0.9240 SD 0.02   0.8354 SD 0.03    0.7669 SD 0.02     0.7956 SD 0.03      0.7992 SD 0.05 
SSIM  0.9698 SD 0.03   0.9096 SD 0.02    0.7073 SD 0.03     0.1901 SD 0.04      0.1904 SD 0.04 

Note: IQEMs: Image Quality Evaluation Metrics; PSNR:  Peak Signal to Noise Ratio; FOM: Figure of Merit. 
SSIM:  Structural Similarity Index. The values are represented in the form of µ SD  s.d. The best performance 
is obtained by dsf-Leesig (shaded with gray background). 
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4.5       Concluding Remarks 

In the present work, ten despeckle filtering algorithms have been implemented on a 

diversified data set of 151  conventional gray scale B-Mode liver US images for the 

speckle noise reduction as well as preservation of  edges and features/ structures in the 

image, thereby, conserving the diagnostic information. From exhaustive objective 

(quantitative) analysis carried out in the present work, it can be concluded that Lee-sigma 

statistical despeckle filtering algorithm is ideally suited for despeckle filtering of B-Mode 

liver ultrasound images.  
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Chapter 5 

CAD System Design for Classification of Primary benign and Primary 
malignant FLLs  

5.1. Introduction 

The aim of the present study is to develop a CAD system for differential diagnosis 

between HEM (i.e., primary benign FLL) and HCC (i.e., primary malignant FLL). The 

motivation behind considering these image classes is that the incidence of these lesions is 

very high in comparison to other primary benign and primary malignant lesions. Among 

the primary malignant lesions, hepatoblastoma (7%), cholangiocarcinoma and 

cystadenocarcinoma (6%) occur rarely therefore, the most commonly occurring primary 

malignant lesion i.e., HCC is considered [16- 18]. Among all the primary benign lesions of 

liver, HEM is the most commonly occurring primary benign FLL [1, 2, 3]. The 

differentiation between typical HEM and HCC is easy due to the typical sonographic 

appearance of the former one, but differential diagnosis between atypical HEM and HCC 

lesions is difficult even for the experienced radiologists [1]. 

In order to design an efficient classifier, it should be ensured that the database for 

designing the classifier should be diversified and comprehensive i.e., it should include 

both typical and atypical HEMs as well as SHCC and LHCC cases. Accordingly, the 

dataset used in the present work includes 10 typical and 6 atypical HEM images and 13 

SHCCs and 15 LHCCs images.  

The differential diagnosis between HEM and HCC lesions with the help of 

conventional gray scale B-mode US is considered difficult because of various limitations 

including: (a) limited sensitivity for the detection of SHCCs developed on the cirrhotic 

liver which is generally coarse-textured and nodular [1, 10, 11, 14, 19] , (b) in most of the 

cases, the sonographic appearances of HCC and atypical HEMs are overlapping [1, 10, 11, 

19], (c) in certain cases , it is difficult to differentiate isoechoic lesions with very slim liver 

to lesion contrast [1, 12]. So, it is very important to overcome these limitations by design 

of an efficient CAD system with representative and diversified image database containing 

typical and atypical cases of HEM image class and SHCC and LHCC variants of the HCC 

image class. 
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As HCC develops on cirrhotic and nodular background, therefore, the experienced 

radiologists carry out differential diagnosis between atypical HEM and HCC by visual 

analysis of texture information of regions inside and outside the lesions. Therefore, in the 

present work, an investigation of contribution made by texture information present in the 

regions inside and outside of the lesion has been carried out for characterization of HEM 

and HCC lesions. For the classification task, SVM and SSVM classifier have been used 

[60- 64, 66, 67]. 

 

5.2. Data Set Description 

In the present work, clinically acquired image database of 44 B-mode liver US images 

consisting of 16 HEM images with 16 solitary HEM lesions (i.e., 10 typical HEM lesions 

and 6 atypical HEM lesions) and 28 HCC images with 28 solitary HCC lesions (i.e., 13 

SHCCs lesions and 15 LHCCs lesions) have been used. The description of the image 

database is given in Table 5.1. 

Table 5.1. Description of image Database. 
Clinically acquired B-mode liver US images (44) 

Total IROIs: 160, Total SROIs: 44 

 HEM HCC 
  Total Images 

 

16 
Typical HEM: 10 
Atypical HEM: 6 

28 
SHCC: 13 
LHCC: 15 

  Total Lesions 16 28 
  Total IROIs 70 

Typical HEM IROIs: 27 
Atypical HEM IROIs: 43 

90 
SHCC IROIs: 19 
LHCC IROIs: 71 

  Total SROIs 16 28 
Note: SHCC: Small Hepatocellular Carcinoma (size varies from 1.5 to 1.9 cm); LHCC: Large 
Hepatocellular Carcinoma (size varies from 2.1 to 5.6 cm). IROIs: Inside ROIs, SROIs: Surrounding 
ROIs. 

The final database comprising of total 160 IROIs and 44 SROIs was stored in Intel® 

Core™ I3-M 370, 2.40 GHz with 3 GB RAM. 

In order to design an efficient classifier, it should be ensured that the training data 

should include representative cases from both the image sub-classes i.e., typical and 

atypical HEMs and SHCC as well as LHCC cases. Each image class was divided into two 

sets of images (training and testing set). To avoid biasing, the training ROIs were taken 

from the first set while testing ROIs were taken from the other set. The brief description of 

training and testing dataset is given in Table 5.2. 
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5.3. Proposed CAD System Design 

For In the present work, the CAD system for characterization of HEM and HCC lesions 

using B-Mode US images has been proposed. The block diagram of the proposed CAD 

system design is shown in Fig. 5.1. 

For implementing proposed CAD system design, the dataset of 160 non-overlapping 

IROIs and 44 SROIs was extracted from 44 clinically acquired B-mode liver US liver 

images. The CAD system includes feature extraction and classification modules. In feature 

extraction module, texture features are computed from 160 IROIs and 44 SROIs using 

FOS, second order statistics which includes GLCM method, higher order statistics i.e., 

GLRLM method, spectral features such as FPS and GWT features and spatial filtering 

based Laws’ texture features. The texture feature set of 172 texture features containing 86 

texture IROI features and 86 texture ratio features is considered for analysis. The feature 

set is further divided into training dataset and testing dataset. The bifurcation of ROIs of 

particular class in training and testing dataset is described in Table 5.2.  

In classification module, two different classifiers, i.e., SVM and SSVM have been 

used for the classification task. 

 

 

 

Table 5.2. Description of training and testing Dataset.  
Description : Training dataset  

 HEM HCC 
Total images (26) 10 16 
Total lesions 10 16 
 Typical HEM lesions: 7 SHCC lesions: 7 
 Atypical HEM lesions: 3 LHCC lesions: 9 
Total IROIs (90) 40 50 
 Typical HEM IROIs: 22 SHCC IROIs: 10 
 Atypical HEM IROIs: 18 LHCC IROIs: 40 
Total SROIs (26) 10 16 

Description : Testing dataset  
Total images (18) 6 12 
Total lesions 6 12 
 Typical HEM lesions: 3 SHCC lesions: 7 
 Atypical HEM lesions: 3 LHCC lesions: 9 
Total IROIs (90) 40 50 
 Typical HEM IROIs: 22 SHCC IROIs: 10 
 Atypical HEM IROIs: 18 LHCC IROIs: 40 
Total SROIs (26) 10 16 
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Fig. 5.1. Block diagram of proposed CAD system design 
Note: l: Length of feature set. 

 

5.4. Feature Extraction Module 

The main idea behind feature extraction is to compute the mathematical descriptors 

describing the properties of ROI. These mathematical descriptors are further classified as 

shape based features and texture based features [59, 60].  

The participating radiologists opined that the shape based features do not provide any 

significant information for differential diagnosis between HEM and HCC lesions. 
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Accordingly, the proposed CAD system design is based on the textural features only. The 

texture feature extraction methods are generally classified into statistical, spectral and 

spatial filtering based methods. From the exhaustive review of the related studies on 

classification of FLLs [2, 7, 8, 9, 24, 54, 55], it can be observed that all these texture 

features are important for the classification of FLLs. Accordingly, for the present task of 

classification between HEM and HCC lesions, the texture features are extracted for each 

ROI image using statistical, spectral and spatial filtering based methods as shown in 

Figure 5.2. 

 
 
Fig. 5.2. Texture features computed for each ROI image. 

 

In the present work, a total of 172 texture features (shown in Table 5.3) were 

computed by using statistical, spectral and spatial filtering based texture feature extraction 

methods. Further, these features are applied to the CAD system with a tedious task of 

joining all the effective features together. The brief description of these texture features is 

depicted below. 

5.4.1    Statistical Texture Features (F1- F30) 
The statistical texture features are based on spatial distribution of the gray level 

intensity values in image. The statistical feature extraction methods can be categorized as 

first order statistics (FOS), second order statistics (GLCM), and higher order statistics 

(GLRLM) based methods. 
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(a) FOS features (F1- F6):  For each ROI, six textural features are computed with FOS 

method i.e., average gray level, smoothness, standard deviation, entropy, third moment 

and uniformity [2, 8, 23]. 

(b) GLCM features (F7- F19):  For each ROI, thirteen textural features are computed with 

GLCM method i.e., contrast, angular second moment, inverse difference moment, 

correlation, sum average, variance, sum variance, difference variance, entropy, sum 

entropy, difference entropy, information measure of  correlation-1 and information 

measure of correlation-2 [2, 8, 19, 69] . 

 (c) GLRLM features (F20- F30):  For each ROI, eleven textural features are computed 

with GLRLM method i.e., long run emphasis (LRE), short run emphasis (SRE), high gray 

level run emphasis (HGLRE), low gray level run emphasis (LGLRE), short run high gray 

level emphasis (SRHGLE), short run low gray level emphasis (SRLGLE), long run high 

Table 5.3. Description of 172 texture features extracted for characterization of HEM and HCC lesions. 
Methods Features Description 
Statistical FOS (F1-F6) GLCM (F7-F19) GLRLM (F20-F30) 
 F1: average gray level F7: angular second moment F20: short run emphasis 
 F2: standard deviation F8: contrast F21: long run emphasis 
 F3: smoothness F9: correlation F22: low gray level run emphasis 
 F4: third moment F10: sum of squares variance F23: high gray level run emphasis 
 F5: uniformity F11: inverse difference 

moment 
F24: short run low gray level 
emphasis 

 F6: entropy F12:  information measures 
of correlation- 1 

F25: short run high gray level 
emphasis 

  F13:  information measures 
of correlation- 2 

F26: long run low gray level 
emphasis 

  F14: sum entropy F27: long run high gray level 
emphasis 

  F15: entropy F28: gray level non uniformity 
  F16: difference variance F29: run length non uniformity 
  F17: difference entropy F30: run percentage 
  F18:  sum average  
  F19:  sum variance  
Spectral FPS (F31-F32) GWT (F33-F74)  
 F31: angular sum *F33- F53: mean  
 F32: radial sum *F54- F74: standard 

deviation 
 

Spatial 
Filtering   

Laws’ (F75-F86)   

 F75: LL(mean) F79: LS(mean) F83: SS(std) 
 F76: EE(mean)  F80: ES(mean) F84: LE(std) 
 F77: SS(mean) F81: LL(std)  F85: LS(std) 
 F78: LE(mean) F82: EE(std)   F86:ES(std) 
Note: F87-F172: 86 texture ratio features corresponding to above features (F1-F86). Features F1to F86 
are computed for each IROI and SROI so as to compute another 86 texture ratio features (F87-F172) 
corresponding to the above features. *( F33- F74) two statistical parameters computed out of 21 feature 
images obtained as a result of convolving 21 Gabor filters with each ROI image. These 21 wavelet filters 
were computed by considering 3 scales (0, 1, 2) and 7 orientations (22.5°, 45°, 67.5°, 90°, 112.5°, 
135°,157.5°). 
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gray level emphasis (LRHGLE), long run low gray level emphasis (LRLGLE), gray level 

non-uniformity (GLN), run length non-uniformity (RLN) and run percentage (RP) [2, 8, 

63, 70- 72]. 

5.4.2    Spectral Texture Features (F31- F74)  
The spectral texture features can be computed by FPS method and GWT method as 

described below: 

(a) FPS features (F31- F32):  For each ROI, two features i.e., angular sum and radial sum 

of the discrete Fourier transform (i.e., DFT) has been computed using FPS method [2, 70]. 

(b) GWT features (F33- F74):  Gabor filter provides useful texture descriptors by using 

multi-scale features estimated at different scales and orientations. The 2D-GWT, 

considering three scales (0, 1, 2)  and seven orientations  (22.5°, 45°, 67.5°, 90°, 112.5°, 

135°, 157.5°), result in a group of (7 × 3 = 21) wavelets. When this group of Gabor filters 

family of 21 wavelets is convolved with a given ROI image, a set of 21 feature images are 

obtained. The real parts of Gabor filter family of twenty one feature images obtained for a 

sample HEM ROI image is shown in Fig. 5.3. From these 21 feature images, mean and 

standard deviation are computed as texture descriptors resulting in (21 feature images × 2 

statistical parameters = 42) features for each ROI [25, 60, 73].  

 

Fig. 5.3. The real part of Gabor filter family of 21 wavelets (feature images) obtained for a sample HEM 
IROI image with scales (0, 1, 2) from top to bottom and orientations (22.7°, 45°, 67.5°, 90°, 112.5°, 
135°, 157.5°) from left to right. 
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5.4.3    Spatial Filtering Based Texture Features (F75- F86) 
The Laws’ texture features are spatial filtering based texture descriptors which are 

used to determine the texture properties of a ROI, by performing local averaging (L), edge 

detection (E), spot detection (S), wave detection (W), and ripple detection (R) in texture 

[2, 8, 63, 74]. Laws’ texture features can be computed by using special 1-D filters of 

length 3, 5, 7, and 9 as shown in Table 5.4.   

Different filter lengths correspond to different resolutions for extraction of texture 

features from a ROI. In the present work, 1-D filters of length 3, i.e., L3 = [1, 2, 1], E3 =  

[-1, 0, 1], and S3 = [-1, 2, -1], have been considered for analysis. A total of nine 2-D filters 

are generated by combining these 1-D filters as shown in Figure 5.4. 

 

Fig. 5.4. Nine 2-D Laws’ masks. 
 

The classification of HEM and HCC lesions was initially attempted by Laws’ masks 

of all the lengths i.e., 3, 5, 7, and 9. It was observed that the features derived by Laws’ 

mask of length 3 resulted in better discrimination between HEM and HCC lesions. 

Therefore, in the present work, Laws’ masks of length 3 have been considered. 

Table 5.4. Description of Laws’ masks of different lengths. 
Length of 
1-D filter 1-D filter coefficients No. of 2D 

Laws’ masks 
TRs obtained from 
identical filter pairs Total TRs 

3 
L3=[1, 2, 1] 
E3=[-1, 0, 1] 
S3=[1-, 2, -1] 

9 3 6 

5 

L5= [1, 4, 6, 4, 1] 
E5= [-1, -2, 0, 2, 1] 
S5= [-1, 0, 2, 0, -1] 
W5= [-1, 2, 0, -2 1] 
R5= [1, -4, 6, -4, 1] 

25 10 15 

        7 
L7= [1, 6, 15, 20, 15, 6, 1] 
E7= [-1 -4, -5, 0, 5, 4, 1] 
S7= [-1, -2, 1, 4, 1, -2, -1] 

9 3 6 

        9 

L9= [1, 8, 28, 56, 70, 56, 28, 8, 1] 
E9= [1, 4, 4, -4, -10, -4, 4, 4, 1] 
S9= [1, 0, -4, 0, 6, 0, -4, 0, 1] 
W9= [1, -4, 4, -4, -10, 4, 4, -4, 1] 
R9= [1, -8, 28, -56, 70, -56, 28, -8, 1] 

25 10 15 

Note: TRs: rotational invariant texture images. 
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For the detection and characterization of HEM and HCC initially, 3 TFVs are 

computed using FOS, GLCM, GLRLM, FPS, GWT and Laws’ texture feature extraction 

methods. The description of these TFVs is given in Table 5.5. 

5.5. Results 

For implementing the above CAD system design rigorous experiments were 

conducted. A brief description of these experiments is given in Table 5.6. The 

performance of the CAD system design has been compared with respect to overall 

classification accuracy (OCA), individual class accuracy (ICA), and the computational 

efficiency. 

The flow chart for design of CAD system for classification of HEM and HCC lesions 

is shown in Fig. 5.5. 

5.5.1  Experiment 1: To evaluate the performance of TFV1 with SVM and SSVM          
classifier. 

In this experiment, classification performance of TFV1 consisting of 86 IROI texture 

features has been evaluated using SVM and SSVM classifier. The results are reported in 

Table 5.7. It can be observed that the SVM classifier yields OCA of 52.9 % with ICA 

values of 90 % and 75 % for HEM and HCC classes, respectively. The SSVM classifier 

yields OCA of 72.9 % with ICA values of 46.6 % and 92.5 % for HEM and HCC classes, 

respectively. 

Table 5.5 Description of TFVs. 
TFVs Description l 

TFV1 TFV consisting of 86 texture features (6 FOS, 13 GLCM, 11 GLRLM, 2 FPS, 42 
Gabor, 12 Laws’ features). 86 

TFV2 TFV consisting of 86 texture ratio features (6 FOS, 13 GLCM, 11 GLRLM, 2 FPS, 42 
Gabor, 12 Laws’ features). 86 

TFV3 Combined TFV consisting of 86 texture features (TFV1) and 86 texture ratio features 
(TFV2). 172 

Note: TFVs: Texture Feature Vectors, l: Length of TFVs. 

Table 5.6. Description of experiments carried out in the present work. 
Experiment No. Description 
Experiment 1 To evaluate the performance of TFV1 with SVM and SSVM classifier. 

Experiment 2 To evaluate the performance of TFV2 with SVM and SSVM classifier. 

Experiment 3 To evaluate the performance of TFV3 with SVM and SSVM classifier. 

Experiment 4 To evaluate the computational efficiency of SVM and SSVM classifier with TFV3. 
Note: TFV: Texture feature vector. 
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Fig. 5.5 Flow chart for design of CAD system for classification of HEM and HCC lesions. 

5.5.2  Experiment 2: To evaluate the performance of TFV2 with SVM and SSVM     
classifier 

In this experiment, classification performance of TFV2 consisting of 86 texture ratio 

features has been evaluated using SVM and SSVM classifier. The results are reported in 

Table 5.8. It can be observed that the SVM classifier yields OCA of 77.1 % with ICA 

values of 50.0 % and 97.5 % for HEM and HCC classes, respectively. The SSVM 

classifier yields OCA of 91.4 % with ICA values of 90 % and 92.5 % for HEM and HCC 

classes, respectively. 

5.5.3  Experiment 3: To evaluate the performance of TFV3 with SVM and SSVM 
classifier 

In this experiment, the combined TFV i.e., TFV3 consisting of 172 features (86 IROI 

texture features + 86 texture ratio features) has been evaluated by using SVM and SSVM 

Table 5.7. Classification performance of TFV1 with SVM and SSVM classifier. 
TFV (l) Classifier Used CM OCA (%) ICAHEM (%) ICAHCC (%) 

   HEM HCC    

TFV1 (86) SVM HEM 27 3 52.9 90.0 75.0 HCC 30 10 

TFV1 (86) SSVM 
HEM 14 16 

72.9 46.6 92.5 
HCC 3 37 

Note: TFV1: Texture feature vector 1 (consisting of 86 IROI texture features only); l: Length of TFV1; 
CM: Confusion Matrix; OCA:  Overall classification accuracy; ICA: Individual Class Accuracy; ICAHEM: 
ICA of HEM class; ICAHCC: ICA of HCC class. 
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classifier. The results are reported in Table 5.9. It can be observed that the SVM classifier 

yields OCA of 92.9 % with ICA values of 93.3 % and 92.5 % for HEM and HCC classes, 

respectively. The SSVM classifier yields OCA of 94.3 % with ICA values of 96.6 % and 

92.5 % for HEM and HCC classes, respectively. 

 

5.5.4  Experiment 4: To evaluate the computational efficiency of SVM and SSVM 
classifier with TFV3. 

From the results of the exhaustive experiments carried out in the study, it can be 

observed that TFV3 i.e., combined TFV yields highest OCA value in comparison with the 

OCA value yielded by TFV1 and TFV2. Therefore, the computational efficiency of SVM 

and SSVM classifier with only TFV3 has been evaluated. Further, since the time taken for 

computing TFV3 is same for both the CAD system designs i.e., SVM based CAD system 

and SSVM based CAD system, the time taken for prediction of 70 cases of testing dataset 

of TFV3 is considered for evaluating the computational efficiency. It was observed that 

the proposed SSVM based CAD system design is computationally more efficient than 

SVM based CAD system design as the time taken for prediction was 5.1 µs for SVM 

classifier and 3.4 µs for SSVM classifier using MATLAB (version 7.6.0.324 R2008a) with 

PC configuration Intel® Core™ I3-M 370, 2.40GHz with 3 GB RAM.  

Table 5.8.  Classification performance of TFV2 with SVM and SSVM classifier. 
TFV (l) Classifier Used CM OCA (%) ICAHEM (%) ICAHCC (%) 

   HEM HCC    

TFV2 (86) SVM HEM 15 15 77.1 50.0 97.5 HCC 1 39 

TFV2 (86) SSVM 
HEM 27 3 

91.4 90.0 92.5 
HCC 3 37 

Note: TFV2: Texture feature vector 2 (consisting of 86 texture ratio features only); l: Length of TFV2; 
CM: Confusion Matrix; OCA: Overall classification accuracy; ICA: Individual Class Accuracy; ICAHEM: 
ICA of HEM class; ICAHCC: ICA of HCC class. 

Table 5.9. Classification performance with of TFV3 with SVM and SSVM classifier.  
TFV (l) Classifier Used CM OCA (%) ICAHEM (%) ICAHCC (%) 

   HEM HCC    

TFV3 (86) SVM HEM 28 2 92.9 93.3 92.5 HCC 3 37 

TFV3 (86) SSVM 
HEM 29 1 

94.3 96.6 92.5 
HCC 3 37 

Note:  TFV3: Texture feature vector 3 (consisting of 172 texture features, i.e., TFV1 and TFV2); l: Length 
of TFV3; CM: Confusion Matrix; OCA: Overall classification accuracy; ICA: Individual Class Accuracy; 
ICAHEM: ICA of HEM class; ICAHCC: ICA of HCC class.  
It can be observed that the results obtained by SSVM classifier (shaded in gray) are better in comparison 
with SVM classifier. 
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5.6       Discussion 

Misclassification Analysis: Analysis of five misclassified cases out of 70 cases (i.e., 

5/70) for SVM based CAD system design and four misclassified cases out of 70 cases 

(i.e., 4/70) for SSVM based CAD system design is given in Table 5.10. It can be observed 

that same ICA values of 100 %, 100 % and 90.3 %, are obtained for typical HEM, SHCC 

and LHCC cases with both SVM and SSVM based CAD system designs. However, it is 

worth mentioning that for atypical HEM class the SSVM based CAD system design yields 

higher ICA value of 96 % in comparison to 92 % as yielded by SVM based CAD system 

design.  It can also be seen from Table 5.9 that the proposed SSVM based CAD system 

design yields higher OCA of 94.3 % in comparison to 92.9 % as yielded by SVM based 

CAD system design. 

Since, US offers limited sensitivity for detection of SHCCs and also given the fact 

that differential diagnosis between atypical HEM and HCC cases is considerably difficult; 

therefore, the improvement in ICA values for atypical HEMs and HCC cases is highly 

desirable. Further, it can be observed that all the SHCC cases have been correctly 

classified by both the CAD system designs (i.e., the ICA value for SHCC is 100 %).  

Table 5.10. Misclassification analysis of 70 cases of testing dataset with SVM and SSVM classifier. 
Misclassification analysis of HEM cases 

 SVM SSVM 
Total HEM cases 30 30 
Typical HEM cases 5 5 
Atypical HEM cases 25 25 
Correctly classified cases 28 29 
Misclassified cases 2 1 
ICAHEM 93.3 % 96.6 % 
HEM misclassified cases 2 out of 25 atypical HEM cases 1 out of 25atypical HEM cases 
ICATypicalHEM 100 % 100 % 
ICAAtypicalHEM 92 % 96 % 

Misclassification analysis of HCC cases 
 SVM SSVM 
Total HCC cases 40 40 
Small HCC cases 9 9 
Large HCC cases 31 31 
Correctly classified cases 37 37 
Misclassified cases 3 3 
ICAHCC 92.5 % 92.5 % 
HCC misclassified cases 3 out of 31 LHCC cases 3 out of 31 LHCC cases 
ICASHCC 100 % 100 % 
ICALHCC 90.3 % 90.3 % 
Note: ICA: Individual Class Accuracy; ICAHEM: ICA of HEM class; ICATypicalHEM: ICA of Typical HEM 
class; ICAAtypicalHEM: ICA of Atypical HEM class; ICAHCC: ICA of HCC class; ICASHCC: ICA of Small 
HCC class; ICALHCC: ICA of Large HCC class.  
It can be observed that the ICA value of atypical HEM class (shaded in gray) has improved with SSVM 
classifier. 
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Overall it can be observed that the SSVM based CAD system outperforms the SVM 

based CAD system with respect to the (a) OCA value, (b) ICA value for the atypical HEM 

cases, and (c) computational efficiency.  

The participating radiologists were of the view that the results yielded by proposed 

SSVM based CAD system design are quite convincing keeping in view that the 

comprehensive and diversified database (consisting of typical and  atypical HEMs as well 

SHCC and LHCCs cases) used in present work.  

 

5.7       Concluding Remarks 

In the present work, rigorous experiments were carried out for the design of an 

efficient CAD system for characterization of HEM and HCC lesions using B-Mode US 

images. The following main conclusions can be drawn: 

(a) The texture of the region surrounding the lesion contributes significantly towards the 

differential diagnosis of HEM and HCC lesions. 

(b) The proposed SSVM based CAD system design is better in comparison to the SVM 

based CAD system design in terms of the OCA value, ICA values for atypical HEM class 

and computational efficiency. 

The promising results yielded by proposed SSVM based CAD system design indicate 

its usefulness to assist radiologists for the differential diagnosis of HEM and HCC lesions 

during routine clinical practice. 
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Chapter 6 

Hierarchical CAD System Design for Classification of benign and 
malignant FLLs  

6.1. Introduction 

The aim of the present study is to develop a hierarchical CAD (HCAD) system for the 

differential diagnosis between primary benign (i.e., HEM), primary malignant (i.e., HCC), 

and secondary malignant (i.e., MET) lesions. In the present work, benign FLL i.e., HEM is 

considered, as among other primary benign liver lesions, HEM is the most commonly 

occurring primary benign lesion [1- 3]. Among malignant FLLs, the present study is 

focused on characterization of HCC (i.e., most commonly occurring primary malignant 

FLL [16- 18]) and MET (i.e., most commonly occurring secondary malignant FLL [1- 3, 

8, 9, 12]). 

There are certain limitations concerning the use of B-mode US for characterization of 

FLLs, (a) limited sensitivity for detection of small FLLs (< 2 cm) developed on top of 

cirrhotic liver [1, 2, 7, 8, 10- 15], (b) overlapping sonographic appearances of atypical 

HEM, HCC and atypical MET lesions, (c) limited sensitivity for detection of isoechoic 

lesions with the slim difference in contrast between regions inside and outside the lesion 

[1, 12]. It is expected that the extraction of discriminatory features which are difficult to 

extract visually, followed by an efficient classifier design with a comprehensive data set 

consisting of representative images for various sub classes can reduce these limitations. 

In the present work, an investigation of contribution made by texture information 

present in the regions inside and outside of the lesion has been carried out for 

characterization of primary benign and malignant FLLs. For the classification task, SSVM 

classifier has been used [66, 67]. 

6.2. Data Set Description 

In order to carry out the present work, 76 B-mode liver US images consisting of (a) 

16 HEM images with 16 solitary HEM lesions consisting of 10 typical and 6 atypical 

HEM lesions, (b) 28 HCC images with 28 solitary HCC lesions consisting of 13 SHCC 

and 15 LHCC lesions, and (c) 32 MET images with 32 solitary MET lesions consisting of 

12 typical and 20 atypical MET lesions, have been used. The image dataset description is 
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given in Table 6.1. The final dataset consisting of total 255 IROIs and 76 SROIs was 

stored in Intel® Core™ I3-M 370, 2.40 GHz with 3 GB RAM. 

Table 6.1. Data Set Description. 
Clinically acquired B-mode liver US images (76) 

Total IROIs: 255, Total SROIs: 76 

 HEM HCC MET 
  Total Images 
 

16 
Typical HEM: 10 
Atypical HEM: 6 

28 
SHCC: 13 
LHCC: 15 

32 
Typical MET: 12 
Atypical MET: 20 

  Total Lesions 16 28 32 
  Total IROIs 70 

Typical HEM IROIs: 27 
Atypical HEM IROIs: 43 

90 
SHCC IROIs: 19 
LHCC IROIs: 71 

95 
Typical MET IROIs: 14 
Atypical MET IROIs: 81 

  Total SROIs 16 28 32 
Note: SHCC: Small Hepatocellular Carcinoma (size varies from 1.5 to 1.9 cm); LHCC: Large 
Hepatocellular Carcinoma (size varies from 2.1 to 5.6 cm). 

 

To design the efficient HCAD system, it is ensured that the training data should 

include lesions from image sub-classes i.e., typical and atypical HEM and MET lesions, 

and SHCCs as well as LHCCs lesions. Each image class was further divided into two sets 

i.e., (a) training dataset, and (b) testing dataset. In order to avoid biasing, training ROIs 

were taken from first set while testing ROIs were taken from other set. The brief 

description of training and testing dataset is given in Table 6.2. 

Table 6.2. Training and Testing Dataset Description for HEM, HCC and MET classes. 
Training Data Set Description 

 HEM HCC MET 
Total images (44) 10 16 18 
Total lesions 10 16 18 
 Typical HEM lesions: 7 SHCC lesions: 7 Typical MET lesions: 7 
 Atypical HEM lesions: 3 LHCC lesions: 9 Atypical MET lesions: 11 
Total IROIs (140) 40 50 50 
 Typical HEM IROIs: 22 SHCC IROIs: 10 Typical MET IROIs: 9 
 Atypical HEM IROIs: 

18 
LHCC IROIs: 40 Atypical MET IROIs: 41 

Total SROIs (44) 10 16 18 
Testing Data Set Description 

Total images (32) 6 12 14 
Total lesions 6 12 14 
 Typical HEM lesions: 3 SHCC lesions: 7 Typical MET lesions: 5 
 Atypical HEM lesions: 3 LHCC lesions: 9 Atypical MET lesions: 9 
Total IROIs (135) 40 50 45 
 Typical HEM IROIs: 22 SHCC IROIs: 10 Typical MET IROIs: 5 
 Atypical HEM IROIs: 

18 
LHCC IROIs: 40 Atypical MET IROIs: 40 

Total SROIs (40) 10 16 14 
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6.3. Proposed CAD System Design 

 The CAD system for the characterization of HEM, HCC and MET have been 

proposed in the present study. In order to implement the present HCAD system design, the 

database of 255 non-overlapping IROIs and 76 SROIs was extracted from 76 B-mode liver 

US liver images. The CAD system includes feature extraction methods and classification 

module for the differential diagnosis of HEM, HCC and MET lesions. 

In feature extraction module, texture features are computed from 255 IROIs and 76 

SROIs using (a) FOS and higher order statistics i.e., GLRLM features, (b) spectral 

features such as FPS and GWT features, and (c) spatial filtering based Laws’ texture 

features. The texture feature set of 146 texture features (consisting of 73 texture IROI 

features and 73 texture ratio features) is considered for analysis. The texture feature set is 

further divided into training and testing data feature set. The bifurcation of ROIs of each 

class in training and testing data feature set is given in Table 6.2. In classification module, 

SSVM classifier has been used for the classification task. 

6.3.1    Feature Extraction Module 

Two types of features are considered for analysis i.e. texture features computed from 

IROIs and texture ratio features computed by taking the ratio of texture feature computed 

from IROI and texture feature computed from corresponding SROI. In the present work 

initially, a wide variety of texture features are extracted by using statistical, spectral and 

spatial filtering based feature extraction methods as shown in Fig. 6.1. 

 
Fig. 6.1. Texture features computed for each ROI image. 
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6.3.2 Classification Module 

In the present work, the classification task has been carried out in two ways (a) Three 

class classification task carried out by using a single SSVM based three class classifier, 

and (b) Three class classification task carried out by using two SSVM based binary 

classifiers arranged in a hierarchical framework. These two SSVM classifiers provide 

stepwise classification for the generalized three class classification problem in two stages. 

In the first stage, SSVM binary classifier 1 was used to classify test cases from all the 

three classes into primary benign (i.e., HEM) or malignant cases (i.e., HCC or MET). The 

predicted malignant cases were then provided as the input to SSVM binary classifier 2. 

The second classifier further classifies the malignant cases into primary malignant i.e., 

HCC class or secondary malignant i.e., MET cases. The architecture of classification 

module is shown in Fig. 6.2. 

Fig. 6.2. Architecture of classification module. 
 

6.4       Results 

Two stage classification tasks were carried out corresponding to two SSVM based 

classifiers arranged in a hierarchical framework. Each binary classifier was trained 

independently. The dataset description and the bifurcation of dataset into disjoint training 

and testing datasets for each binary classifier is shown in Table 6.2. For implementing the 

above CAD system design various experiments were conducted as given in Table 6.3. 

The experimental flow chart for design of HCAD system for classification of primary 

benign, primary malignant and secondary malignant FLLs is shown in Fig. 6.3. 

 

Table 6.3. Description of experiments carried out in the present work. 
Experiment No. Description 

1. To evaluate the performance of three class SSVM classifier design for characterization 
of benign and malignant FLLs. 

2. To evaluate the performance of SSVM based hierarchical classifier design for 
characterization of benign and malignant FLLs. 

3. Performance comparison of SSVM based three class classifier design and SSVM based 
hierarchical classifier design for characterization of benign and malignant FLLs. 
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Fig. 6.3. Experimental work flow for design of HCAD system for classification of benign and malignant 
lesions. 

 

6.4.1 Experiment 1: To evaluate the performance of three class SSVM classifier design 
for characterization of benign and malignant FLLs. 

In this experiment, classification performance of TFVs (consisting of TFV1, TFV2, 

and TFV3) has been evaluated using SSVM classifier for three class classification of 

primary benign, primary malignant and secondary malignant FLLs. The results are 

reported in Table 6.4. It can be observed that OCA values of 63.5 %, 75.7 % and 82.6 % 

has been achieved with TFV1, TFV2 and TFV3 respectively. The ICA values obtained 

with respect to TFV3 are 83.3 %, 72.5 %, and 91.1 % for primary benign, primary 

malignant and secondary malignant cases. 
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6.4.2 Experiment 2: To evaluate the performance of SSVM based hierarchical classifier 
design for characterization of benign and malignant FLLs. 

In this experiment, classification performance of TFVs has been evaluated using 

SSVM based hierarchical classifier for binary classification of primary benign and 

malignant FLLs. The CAD system is consisted of two SSVM based CAD system arranged 

in hierarchical framework. The results of SSVM classifier 1 and SSVM classifier 2 are 

reported in Table 6.5 and Table 6.6 respectively. The OCA values yielded by SSVM 

classifier at node 1 for TFV1, TFV2, and TFV3 are 85.2 %, 96.5 %, and 97.4 % 

respectively. The ICA values obtained with respect to TFV3 are 90 %, and 100 % for 

primary benign and malignant cases. The OCA values yielded by SSVM classifier at node 

2 for TFV1, TFV2, and TFV3 are 69.4 %, 80 %, and 89.4 % respectively. The ICA values 

obtained with respect to TFV3 are 77.5 %, and 100 % for primary malignant and 

secondary malignant cases. 

Table 6.4.   Three class classification performance of TFVs with SSVM classifier. 
TFV (l) CM OCA (%) ICAPB (%) ICAPM (%) ICASM (%) 

  PB PM SM     

TFV1 (73) 
PB 26 3 1 

63.5 86.7 42.5 66.7 PM 11 17 12 
SM 5 10 30 

TFV2 (73) 
PB 29 1 0 

75.7 96.7 82.5 55.6 PM 2 33 5 
SM 1 19 25 

TFV3 
(146) 

PB 25 0 5 
82.6 83.3 72.5 91.1 PM 1 29 10 

SM 4 0 41 
Note:  TFV: Texture feature vector; l: Length of TFV; TFV1: TFV 1 containing IROI features only; TFV2: 
TFV 2 containing ratio features only; TFV3: combined TFV containing IROI features and ratio features; 
CM: Confusion Matrix; OCA: Overall classification accuracy; ICA: Individual Class Accuracy; ICAPB: 
ICA of Primary Benign class; ICAPM: ICA of Primary Malignant class; ICASM: ICA of Secondary 
Malignant class. 

Table 6.5. Classification performance of TFVs with SSVM classifier 1. 
TFV (l) CM OCA (%) ICAPB (%) ICAM (%) 

  PB M    

TFV1 (73) PB 14 16 85.2 46.7 98.9 M 1 84 

TFV2 (73) PB 26 4 96.5 86.7 100 M 0 85 
TFV3 
(146) 

PB 27 3 
97.4 90.0 100 

M 0 85 
Note:  TFV: Texture feature vector; l: Length of TFV; TFV1: TFV 1 containing IROI features only; 
TFV2: TFV 2 containing ratio features only; TFV3: combined TFV containing IROI features and ratio 
features; CM: Confusion Matrix; ICAPB: ICA of Primary Benign class; ICAM: ICA of Malignant class. 
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6.4.3 Experiment 3: Performance comparison of SSVM based three class classifier design 
and SSVM based hierarchical classifier design for characterization of benign and 
malignant FLLs. 

In this experiment, performance comparison of SSVM based three class classifier 

design and SSVM based hierarchical classifier design for characterization of benign and 

malignant FLLs has been carried out. The results are reported in Table 6.7. The OCA 

value achieved with three class classifier and hierarchical classifier are 82.6 % and 89.6 %, 

respectively. The OCA for hierarchical classifier is obtained by adding the total 

misclassification obtained at each node of SSVM classifiers. The misclassifications 

obtained for SSVM based three class classifier design is 20/115 (i.e., 20 cases 

misclassified out of 115 test instances) and for SSVM based hierarchical classifier design 

is 12/115 (i.e., 12 cases misclassified out of 115 test instances). The misclassifications 

yielded by SSVM classifier 1 and SSVM classifier 2 is 3/115 (i.e., 3 cases misclassified 

out of 115 test instances) and 9/85 (i.e., 9 cases misclassified out of 85 test instances), 

respectively. 

Table 6.6.  Classification performance of TFVs with SSVM classifier 2. 
TFV (l) CM OCA (%) ICAPM (%) ICASM (%) 

  PM SM    

TFV1 (73) PM 34 6 69.4 85.0 55.6 SM 20 25 

TFV2 (73) PM 36 4 80.0 90.0 71.1 SM 13 32 

TFV3 (146) 
PM 31 9 

89.4 77.5 100 
SM 0 45 

Note:  TFV: Texture feature vector; l: Length of TFV; TFV1: TFV 1 containing IROI features only; 
TFV2: TFV 2 containing ratio features only; TFV3: combined TFV containing IROI features and ratio 
features; CM: Confusion Matrix; OCA: Overall classification accuracy; ICA: Individual Class Accuracy; 
ICAPM: ICA of Primary Malignant class; ICASM: ICA of Secondary Malignant class. 

Table 6.7. Classification performance of TFV3 with SSVM based multiclass classifier and SSVM based 
hierarchical classifier. 

Classifier used CM OCA (%) Misclassification  
  PB PM SM   

SSVM multiclass 
classifier 

PB 25 0 5 
82.6 20/115 PM 1 29 10 

SM 4 0 41 
Classifier used CM CA (%) OCA (%) Misclassification 

SSVM  
hierarchical 
classifier 1 

 PB M 
97.4 (3/115) 

89.6 12/115 

PB 27 3 
M 0 85 

SSVM  
hierarchical 
classifier 2 

 PM SM 
89.4 (9/85) PM 31 9 

SM 0 45 
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The misclassification analysis for SSVM based three class classifier design and 

SSVM based hierarchical classifier design for characterization of benign and malignant 

FLLs is reported in Table 6.8. The SSVM based three class classifier yielded total 20 

misclassifications i.e., 5, 11, and 4 for primary benign, primary malignant and secondary 

malignant classes, respectively. A total of 12 (12 out of 115 cases) misclassifications have 

been yielded by SSVM based hierarchical classifier including 3 (3 out of 30 cases) and 9 

(9 out of 40 cases) misclassification cases for primary benign and primary malignant 

classes, respectively. It is worth mentioning that all the cases of secondary malignant class 

have classified correctly. 

Table 6.8. Misclassification analysis of 115 cases of testing dataset with SSVM based hierarchical 
classifier. 

Misclassification analysis of HEM cases 
 PB PM SM 
Total cases 30 

Typical HEM: 5 
Atypical HEM: 25  

40 
Small HCC: 9 
Large HCC: 31 

45 
Typical MET: 5 
Atypical MET: 45 

ICA ICAPB = 90 % 
ICATypicalHEM =  100 % 
ICAAtypicalHEM =  88 % 

ICAPM = 77.5 % 
ICASHCC = 77.8 % 
ICALHCC = 77.4 % 

ICASM = 100 % 
ICATypicalMET = 100 % 
ICAAtypicalMET = 100 % 

Correctly classified cases 27 31 45 
Misclassified cases 3 9 0 
Misclassified cases 
description 

3 out of 25 atypical 
HEM cases 

2 out of 9 SHCC cases 
7 out of 31 LHCC cases 

- 

Note: ICA: Individual Class Accuracy; ICAPB: ICA of primary benign class; ICATypicalHEM: ICA of Typical 
HEM class; ICAAtypicalHEM: ICA of Atypical HEM class; ICAPM: ICA of primary malignant class; ICASHCC: 
ICA of Small HCC class; ICALHCC: ICA of Large HCC class; ICASM: ICA of secondary malignant class; 
ICATypicalMET: ICA of Typical MET class; ICAAtypicalMET: ICA of Atypical MET class. 

 

6.5      Concluding Remarks 

In the present study, an efficient SSVM based hierarchical CAD system for the 

classification of benign and malignant FLLs of gray scale B-mode liver US images has 

been proposed. By visualizing the performance of SSVM based hierarchical classifier 

design, some interesting facts are observed: 

(a) The decision is made at SSVM classifier 1, whether the ROI selected by radiologists is 

benign or malignant. If further investigation of malignant instances as HCC or MET is 

required then the instance will be passed to second SSVM based classifier. 

(b) Three class classifier design creates three binary classifiers between PB/PM, PM/SM, 

and SM/PB, while two binary classifiers were created internally at each node for SSVM 

based hierarchical classifier design i.e., PB/M and PM/SM binary classifiers. 
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Chapter 7 

Conclusion and Future Scope   

The main objective of the research work presented in the thesis is to enhance the 

diagnostic potential of conventional gray scale B-Mode ultrasound for diagnosis of liver 

diseases by removing speckle noise from the US images and by developing efficient CAD 

system designs using a comprehensive and representative image database. The present 

work has been carried out for despeckling of performance evaluation of B-Mode liver US 

images. The CAD system for the differential diagnosis between primary benign and 

primary malignant has been evaluated. Also, a hierarchical CAD system design has been 

proposed in the present work for characterization of benign and malignant liver lesions. 

7.1. Conclusion- Despeckle filtering and performance evaluation of B-Mode liver 
US images 

Although Speckle noise in ultrasound images makes the subjective diagnosis difficult 

but it is a well known fact that speckle in US images also contains diagnostic information 

so the despeckling of US images should be carried out such that the diagnostic features 

such as edges and structure of the image is preserved while the speckle is removed from 

the uniform areas. Subjective analysis for performance evaluation of Despeckle filtering 

algorithms is difficult as it requires the time of experienced medical experts and is also 

subjected to inter and intra observer variability. Objective analysis for performance 

evaluation offers a more accurate method for performance evaluation of Despeckle 

filtering algorithms. From the exhaustive experiments carried out in the present work it 

can be observed that the liver US images despeckled by Lee-sigma method yield the 

highest values for PSNR, FOM, and SSIM metrics. Thus, it can be concluded that US liver 

images processed by Lee-Sigma despeckling algorithm results in better edge and structure 

preservation while providing adequate smoothing in the uniform areas. 

7.2.  Conclusion- Design of an Efficient CAD System for Characterization of 
primary benign and primary malignant liver lesions 

Rigorous experiments were carried out for the design of an efficient CAD system for 

characterization of HEM and HCC lesions using B-Mode US images. The following main 

conclusions can be drawn: 
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(a) The texture of the region surrounding the lesion contributes significantly towards the 

differential diagnosis of HEM and HCC lesions. 

(b) The proposed SSVM based CAD system design is better in comparison to the SVM 

based CAD system design in terms of the OCA value, ICA values for atypical HEM class 

and computational efficiency. 

The promising results yielded by proposed SSVM based CAD system design indicate 

its usefulness to assist radiologists for the differential diagnosis of HEM and HCC lesions 

during routine clinical practice. 

7.3. Conclusion- Design of an Efficient Hierarchical CAD System for 
Characterization of benign and malignant liver lesions 

An efficient SSVM based hierarchical CAD system for the classification of benign 

and malignant FLLs of gray scale B-mode liver US images has been proposed. By 

visualizing the performance of SSVM based hierarchical classifier design, some 

interesting facts are observed: 

(a) The decision is made at SSVM classifier 1, whether the ROI selected by radiologists is 

benign or malignant. If further investigation of malignant instances as HCC or MET is 

required then the instance will be passed to second SSVM based classifier. 

(b) Three class classifier design creates three binary classifiers between PB/PM, PM/SM, 

and SM/PB, while two binary classifiers were created internally at each node for SSVM 

based hierarchical classifier design i.e., PB/M and PM/SM binary classifiers. 

7.4. Limitations and Future Scope 

      The limitation is that there is no benchmark data available and the present work has 

been carried out on real time liver US images. Therefore, it cannot be compared directly 

with any standard results.  

Following are the recommendations for future work: 

(i) The present work has been carried out on B-Mode liver US images processed by Lee-

Sigma despeckling algorithm which results in better edge and structure preservation while 

providing adequate smoothing in the uniform areas.  However the improvement with 

respect to classification of primary and secondary malignant FLLs by preprocessing the 

images with Lee-sigma method remains to be investigated. 
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(iii) In the present work, ROIs from liver US images are extracted manually. An algorithm 

for automatic ROI extraction can be developed by employing various pattern recognition 

concepts to identify the lesion and then extract an ROI of some specified size within its 

boundary. 

(iv) The performance of the proposed algorithms remains to be tested on images of 

different resolutions as the images used in the present work has been acquired from the 

single US machine. 
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Appendix-A 

Texture Features Used in the Present Work   

A.1. Statistical features 

A.1.1. First Order Statistics 

For the individual pixel values xi, the computed features are given as: 

Average Gray Level =
1
ܰ෍ݔ௜

௜

 

Standard Deviation =  
1

√ܰ − 1
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A.1.2. GLCM Features 
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Sum Entropy = ଵ݂ସ = −෍݌௫ା௬(݅)log (݌௫ା௬(݅))
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Information Measure of Correaltion2 = ଵ଼݂ = ඥ1 − ݁ିଶ(௔ି௕) 
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A.1.3. GLRLM Features 
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A.2. Signal Processing Methods based Features 

A.2.1. Laws’ Texture Features 

Laws’ masks of lengths 3, 5, 7 and 9 are used to compute different features. As an 

example Laws’ mask of length 3 is used for explanation purposes. The ROIs are 

convolved with each of the nine 2D Laws’ masks.  

For example an ROI of size M × N (32 × 32) is convolved with the mask S3S3 to form 

texture image (TIୗଷୗଷ). 

TIୗଷୗଷ = ROI ⨂ S3S3 
The mask L5L5 has zero mean and is used to form contrast invariant texture images (TIs). 

Normalize(TI୫ୟୱ୩) =  
TI୫ୟୱ୩
TI୐ଷ୐ଷ
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The normalized TIs are passed through a 15 × 15 square window to derive 9 texture 

energy images (TEMs). The TEM filters perform moving average non-linear filtering 

operation, i.e. 

TEM୧,୨ =  ෍ ෍ หNormalize(TI୧ା୳,୨ା୴)ห
଻

୴ୀି଻

଻

୳ୀି଻

 

Out of 9 TEMs 6 rotationally invariant texture energy images (TRs) are obtained by 
averaging, i.e. 

TRୗଷ୐ଷ =
TEMୗଷ୐ଷ +  TEM୐ଷୗଷ

2  

 

Table 1: Description of Laws’ masks of different lengths 

Length of 1-D filter 1-D filter coefficients No. of 2D 
Laws’ masks 

No. of TR images 

3 
L3=[1, 2, 1] 
E3=[-1, 0, 1] 
S3=[-1, 2, -1] 

9 6 

5 

L5= [1, 4, 6, 4, 1] 
E5= [-1, -2, 0, 2, 1] 
S5= [-1, 0, 2, 0, -1] 
W5= [-1, 2, 0, -2 1] 
R5= [1, -4, 6, -4, 1] 

25 15 

            7 
L7= [1, 6, 15, 20, 15, 6, 1] 
E7= [-1 -4, -5, 0, 5, 4, 1] 
S7= [-1, -2, 1, 4, 1, -2, -1] 

9 6 

            9 

L9= [1, 8, 28, 56, 70, 56, 28, 8, 1] 
E9= [1, 4, 4, -4, -10, -4, 4, 4, 1] 
S9= [1, 0, -4, 0, 6, 0, -4, 0, 1] 
W9= [1, -4, 4, -4, -10, 4, 4, -4, 1] 
R9= [1, -8, 28, -56, 70, -56, 28, -8, 1] 

25 15 

Note: TR: rotation invariant texture images. 

From the derived TRs five statistical parameters i.e. mean, standard deviation, 

skewness, kurtosis and entropy are computed, thus 12 Laws’ texture features (6 TRs × 2 

statistical parameters) are computed for each ROI. These statistical parameters are defined 

as:  

Mean =
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A.3.2. FPS Features 
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A.3.3. Gabor Filter based Features  

݊ܽ݁ܯ =
1
݉෍݅ ௜ܲ௝

௜

 

Variance = ෍ ௜ܲ,௝(݅ − ௜)²ߤ
௜,௝

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

70 
 

Appendix-B 

Plagiarism Report of the Present Work   

ORIGINALITY REPORT 
10 % 
SIMILARITY INDEX 

2 % 
INTERNET SOURCES 

10 % 
PUBLICATIONS 

0 % 
STUDENT PAPERS 

    

S. No. Title (Source) Plagiarism 

1 Edwards, K.. "An evaluation of bifocal lens performance and the design of 
a new fitting protocol", Journal of the British Contact Lens Association, 
1987. (Publication) 

2 % 

2 
Virmani, Jitendra, Vinod Kumar, Naveen Kalra, and Niranjan Khandelwal. 
"SVM-based characterisation of liver cirrhosis by singular value 
decomposition of GLCM matrix", International Journal of Artificial 
Intelligence and Soft Computing, 2013. (Publication) 

2 % 

3 
Virmani, Jitendra, Vinod Kumar, Naveen Kalra, and Niranjan Khandelwal. 
"Prediction of liver cirrhosis based on multiresolution texture descriptors 
from B-mode ultrasound", International Journal of Convergence 
Computing, 2013. (Publication) 

1 % 

4 Mittal, D. "Neural network based focal liver lesion diagnosis using 
ultrasound images",Computerized Medical Imaging and Graphics,201106.
(Publication) 

1 % 

5 momed.king.ac.uk (Internet Source) 1 % 

6 Jitendra Virmani. "Prediction of cirrhosis from liver ultrasound B-mode 
images based on Laws' masks analysis", 2011 International Conference on 
Image Information Processing, 11/201. (Publication) 

1 % 

7 C.P. Loizou. "Comparative evaluation of despeckle filtering in ultrasound 
imaging of the carotid artery", IEEE Transactions on Ultrasonics 
Ferroelectrics and Frequency Control, 10/2005. (Publication) 

< 1 % 

8 Yeh, W.C.. "Liver fibrosis grade classification with B-mode ultrasound", 
Ultrasound in Medicine & Biology, 200309. (Publication) 

< 1 % 

9 www.ito.umnw.ethz.ch (Internet Source) < 1 % 

10 Hiroyuki Yoshida. "Wavelet-packet-based texture analysis for 
differentiation between  benign and malignant liver tumours in ultrasound 
images", Physics in Medicine and Biology, 11/21/2003. (Publication) 

< 1 % 

11 Suzuki, K.. "Dependence of ultrasonic attenuation of liver on pathologic fat 
and fibrosis: Examination with experimental fatty liver and liver fibrosis 
models", Ultrasound in Medicine & Biology, 1992. (Publication) 

< 1 % 

12 g.lemaitre58.free.fr (Internet Source) < 1 % 

13 www.apforum.org (Internet Source) < 1 % 



  

71 
 

14 
Chu, Yong, Lihua Li, Dmitry B. Goldgof, Yan Qui, Robert A. Clark, and 
J. Michael Fitzpatrick.", Medical Imaging 2003 Image Processing, 2003.
(Publication) 

< 1 % 

15 
Aylward, Stephen, Lubomir M. Hadjiiski, Simranjit Kaur, Vipul Sharma, 
Sukhwinder Singh, and Savita Gupta. "A content based framework for 
mass retrieval in mammograms", Medical Imaging 2014 Computer-Aided 
Diagnosis, 2014. (Publication) 

< 1 % 

16 Christos P. Loizou. "Despeckle Filtering of Ultrasound Images", 
Atherosclerosis Disease <1% Management, 2011. (Publication) 

< 1 % 

17 
Jitendra Virmani. "Prediction of Cirrhosis Based on Singular Value 
Decomposition of Gray Level Co-occurence Marix and Neural Network 
Classifier", 2011 Developments in E-systems Engineering, 12/2011,
(Publication) 

< 1 % 

18 
A.K. Chong. "Computer Assisted Surgical Planner for Craniofacial 
Reconstruction -Imaging Techniques", Geometric Modeling and 

Imaging--New Trends (GMAI 06), 2006, (Publication) 

< 1 % 

19 kaskusjualbeli.net (Internet Source) < 1 % 

20 biosim.ece.ntua.gr (Internet Source) < 1 % 

21 Wu, C.H.. "Segmentation of kidney from ultrasound B-mode images with 
texture-based classification", Computer Methods and Programs in 
Biomedicine, 200612. (Publication) 

< 1 % 

22 Hamid R. Tizhoosh. "Increasing segmentation accuracy in ultrasound 
imaging using filtering and snakes", 2008 Canadian Conference on
Electrical and Computer Engineering, 05/2008. (Publication) 

< 1 % 

23 
Thomas C. Gerber. "Differentiation of Intracardiac Tumors and Thrombi 
by Echocardiography Tissue Characterization: Comparison of an Artificial 
Neural Network and Human Observers", Echocardiography, 2/2000.
(Publication) 

 

24 Joongkyu Choi. "A stochastic multi-item inventory model with unequal 
replenishment intervals and limited warehouse capacity", IIE Transactions, 
12/1/2005. (Publication) 

< 1 % 

25 

Al-Osta, Husam E. I.(Ipson, Stanley S. and Qahwaji, Rami S. R.). 
"Detection 
of breast cancer microcalcifications in digitized mammograms. Developing 
segmentation and classification techniques for the processing of MIAS 
database mammograms based on the Wavelet Decomposition Transform 
and Support Vector Machines.", University of Bradford, 2010.
(Publication) 

< 1 % 

26 Pakkurthi Srinivasu. "A Modified Kolmogorov Smirnov Correlation 
Based Filter Algorithm for Feature Selection", Advances in Intelligent and
Soft Computing, 2012. (Publication) 

< 1 % 

27 Miha Smolnikar. "Propagation Impairment Countermeasures in Mobile 
Stratospheric Operating Environment", VTC Spring 2009 - IEEE 69th 

< 1 % 



  

72 
 

Vehicular Technology Conference, 04/2009. (Publication) 

28 Jianmin Dong. "A novel smooth Support Vector Machines for 
classification and regression", 2009 4th International Conference on
Computer Science & Education, 07/2009. (Publication) 

< 1 % 

29 www.global-help.org (Internet Source) < 1 % 

30 G.A. Tsihrintzis. "A Middleware System for Web-Based Digital Music 
Libraries", The 2005 IEEE/WIC/ACM International Conference on Web 
Intelligence (WI 05), 2005. (Publication) 

< 1 % 

31 Tolba, A. S., H. A. Khan, A. M. Mutawa, and S. M. Alsaleem. "Decision 
Fusion for Visual Inspection of Textiles", Textile Research Journal, 2010.
(Publication) 

< 1 % 

 


	 
	 
	 
	 
	Dr. JITENDRA VIRMANI
	NIMISHA MANTH (132019)




	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Abstract
	 
	1.1       Motivation
	1.1.1 Diffuse Liver Diseases
	1.1.2 Focal Liver Diseases
	1.1.2.1 Liver Cyst
	1.1.2.2 Hemangioma (HEM)
	1.1.2.3 Hepatocellular Carcinoma (HCC)
	1.1.2.4 Metastasis (MET)

	1.1.3 Ultrasound Imaging

	1.2      Sonographic Appearances of Different Liver Image Classes used in the Present Research Work
	1.2.1 Sonographic Appearance of Normal (NOR) Liver
	1.2.2 Sonographic Appearance of Cirrhotic Liver
	1.2.3  Sonographic Appearance of Typical FLLs
	1.2.4 Sonographic Appearance of Atypical FLLs
	1.2.5    Sonographic Appearance of Small and Large HCCs


	1.4       Need for CAD Systems for Liver Diseases using B-Mode Ultrasound Images
	1.6       Organization of Thesis
	2.2       Literature Review for Classification
	2.3       Concluding Remarks


	Chapter 3
	Methodology
	3.2       Materials
	3.2.1  Data Collection
	3.2.2  Data Collection Protocol
	3.2.3    Selection of Regions of Interest (ROIs)
	3.2.4    Selection of ROI size

	3.3       Methods
	3.3.1    Generalized CAD System Design
	3.3.2    Feature Extraction Module
	3.3.3    Classification Module
	3.3.3.1 Support Vector Machine (SVM) Classifier
	3.3.3.2 Smooth Support Vector Machine (SSVM) Classifier


	3.4      Concluding Remarks


	Chapter 4
	Comparative analysis of Despeckle filters for Liver US images
	 
	4.2.1    Local Statistics Filters
	4.2.1.1 dsf - Lsmv (despeckle filter - Local statistics mean variance)
	4.2.1.2 dsf - Lee (despeckle filter - Lee)
	4.2.1.3 dsf - Leesigma (despeckle filter - Leesigma)
	4.2.1.4 dsf - enLee (despeckle filter – enhanced Lee)
	4.2.1.5  dsf - Kaun (despeckle filter – Kaun)
	4.2.1.6 dsf - Frost (despeckle filter – Frost)

	4.2.2    Non-Linear Filters
	4.2.2.1 dsf - Median (despeckle filter – Median)
	4.2.2.2 dsf – GF (despeckle filter – Geometric)

	4.2.3    Diffusion Based Filters
	4.2.3.1 dsf - Ad (despeckle filter – Anisotropic Diffusion)
	4.2.3.2 dsf - Srad (despeckle filter – Speckle Reducing Anisotropic Diffusion)


	4.3       Despeckle Filtering: Performance Parameters
	4.4       Results
	4.5       Concluding Remarks


	Chapter 5
	CAD System Design for Classification of Primary benign and Primary malignant FLLs
	 
	5.4.1    Statistical Texture Features (F1- F30)
	5.4.2    Spectral Texture Features (F31- F74)
	5.4.3    Spatial Filtering Based Texture Features (F75- F86)

	5.5.1  Experiment 1: To evaluate the performance of TFV1 with SVM and SSVM          classifier.
	5.5.2  Experiment 2: To evaluate the performance of TFV2 with SVM and SSVM     classifier
	5.5.3  Experiment 3: To evaluate the performance of TFV3 with SVM and SSVM classifier
	5.5.4  Experiment 4: To evaluate the computational efficiency of SVM and SSVM classifier with TFV3.

	5.6       Discussion
	5.7       Concluding Remarks


	Chapter 6
	Hierarchical CAD System Design for Classification of benign and malignant FLLs
	6.5      Concluding Remarks


	Chapter 7
	Conclusion and Future Scope
	Publications from the Present Work

	Referred Journal Publications
	References

	Appendix-A
	Texture Features Used in the Present Work

	OLE_LINK2
	OLE_LINK3
	Appendix-B
	Plagiarism Report of the Present Work

	Mittal, D. "Neural network based focal liver lesion diagnosis using ultrasound images",Computerized Medical Imaging and Graphics,201106. (Publication)
	Christos P. Loizou. "Despeckle Filtering of Ultrasound Images", Atherosclerosis Disease <1% Management, 2011. (Publication)

