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ABSTARCT

Multiple-input, multiple-output (MIMO) systems are the most promising technique in
wireless communication systems, because of their improvement in terms of performance
and bandwidth efficiency. The major advantages of MIMO systems are to increase system
reliability through diversity and to achieve higher data rates through spatial multiplexing.
MIM O techniques werefirst investigated for single-user scenario and now it is extended to
multi-user MIMO (MU-MIMO) systems. Now days, the important research topic is the
study of multi-user MIMO (MU-MIMO) systems. MU-MIMO sysems are a key
technology for future wireless communication systems because these systems satisfy most
of the requirements of the next generations. Such systems have the potential to combine
the high throughput achievable with MIMO processing with the benefits of space division
multiple access (SDMA). Joint processing of MIMO channels yields maximum diversity
regardless of the level of multi-user interference.

In this thess, dirty paper coding (DPC) and various decoding schemes are discussed
where there is no limit of transmitting antennas, receiving antennas and users. | have
introduced linear and non-linear MU-MIMO processing (decoding) techniques. Linear
equdizers are zero forcing (ZF) and minimum mean square error (MMSE) while
maximum likelihood (ML), sphere decoder (SD) and fixed sphere decoder (FSD) are non-
linear equalizers. The MU-MIMO decoding techniques that are proposed in this thesis are
ZF, MM SE, ML and SD. The major focus will be on SD.

Asit was previoudly reported in the literature, ZF technique nullifies the interference or
in other words, it inverts the effect of channel. MMSE technique is optimum for single-
antenna UTs. However, MM SE suffers from a performance loss when users are equipped
with more than one antenna. ML calculates the Euclidean distance between the received
signal vector and the product of al possible transmitted signal vectors with the given
channel H, and finds the one with the minimum distance. SD intends to find the
transmitted signal vector with minimum ML metric (i.e. to find the ML solution vector)
inside the sphere. However, it considers only a small set of vectors within a given sphere
rather than all possible transmitted signal vectors. Thus, complexity and processing time
reduce in case of sphere decoder.

Then, BER performance is analyzed using SINR, MGF and PEP based approach in
MU-MIMO systems with different equalizing techniques (ZF, MMSE, ML and SD). First,
assuming the perfect channel knowledge at the transmitter and receiver i.e. the channel
state information (CSl) is available both side. Thus, transmitted signal is defined such that
the channel fading effect is greatly mitigated. This will improve the bit error rate (BER)
performance of the MU-MIMO system.
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For proposed schemes, it is observed that BER performance improves as | go toward
non-linear equalizes. After simulation, it is also observed that the BER performance of
MU-MIMO system with SD is better than the ML, MM SE and ZF.



Chapter 1
| ntroduction

The next generation of wireless mobile communication systems requires the reliable
transmission of high-rate data under various types of channels and scenarios. Current
wireless mobile, data, and fixed access communication systems are converging into a data
oriented wireless networks with high spectral efficiency. Future wireless communication
systems should be flexible and adaptive to various scenarios and Quality-of-Service (QoS)
requirements. The system should be robust to the influence of fading, interference, and
hardware imperfections.

The very high data rate that is required for future wireless systems in reasonably large
areas do not appear to be feasible with the conventional techniques and architectures.
Frequency bands that are envisioned for future wireless communication systems are well
above 2 GHz. The radio propagation in these bands is significantly more vulnerable to
non-line-of sight (NLOS) conditions, which is typical in modern urban communications.

The efficient design of wireless systems will require the use of multiple antennas,
advanced adaptive modulation and coding schemes, relaying nodes, cooperative networks
and users, and cross-layer design. The goal of reaching high data rates is particularly
challenging for systems that are power, bandwidth, and complexity limited. However,
another domain can be exploited to significantly increase channel capacity: the use of
multiple transmit and receive antennas.

Pioneering work done in [1], [2], and [3], ignited much interest in this area by
predicting remarkable spectral efficiencies for wireless systems with multiple antennas
when the channel exhibits rich scattering and the channel state information (CSI) can be
accurately tracked. This initial promise of exceptional spectral efficiency resulted in an
explosion of research activities to characterize the theoretical and practical issues
associated with MIMO channels and to extend these concepts to multi-user systems.

The main question from both a theoretical and practical standpoint is whether the
enormous initially predicted capacity gains can be obtained in a more realistic operating
scenarios and what specific gains result from adding more antennas and computational
power to obtain CSI at the transmitter and receiver.



For single-user (SU) systems, a transmission and reception strategy that exploits this
structure achieves capacity on approximately min (Mt, Mg) separate channels, where Mt
is the number of transmit antennas and Mg is the number of receive antennas. Thus,
capacity scales linearly with min (M1, MR) relative to a system with one transmit and one
receive antenna. The capacity increase requires a scattering environment such that the
matrix of channel gains between each transmit and receive antenna pair has full rank and
independent entries and that perfect estimates of these gains are available at the transmitter
and receiver.

Space-time coding (STC) [4], [5], and spatial multiplexing (SMUX) [3], [6], provide
full diversity and achieve high data rates over MIMO channels, respectively. Spatial
multiplexing involves transmitting independent streams of data across multiple antennas to
maximize throughput, whereas space-time coding maps input symbol streams across space
and time for diversity and coding gain at a given data rate. Neither scheme requires CSl a
the tranamitter. However, to achieve the maximum information rate and/or the diversity
and array gain afforded by increased computational complexity, appropriate precoding and
modulation techniques are necessary.

Generalized designs of ajointly optimum linear precoder and decoder for a SU MIMO
system, using a mean-squared error (MSE) criterion are presented in [7] and [8]. The
framework presented in this thesis is general and addresses severa optimization criteria
like minimum MSE (MMSE), minimum bit error rate (BER) and maximum information
rate. It is assumed that the channel is known at the receiver as well as at the transmitter.

An important research topic is the study of multi-user MIMO (MU-MIMO) systems.
Such systems have the potential to combine the high capacity achievable with MIMO
processing with the benefits of space division multiple access (SDMA). In the MU-MIMO
scenario, a base station (BS) or an access point (AP) is equipped with multiple antennas
and it is simultaneously communicating with a group of users. Each of these usersis also
equipped with multiple antennas. We focus on systems where the complex signa
processing is performed at the BS/AP. The BSAP will use the CSI available at the
transmitter to allow these users to share the same channel and mitigate or completely
eliminate multi-user interference (MUI) in an ideal case.

In an MU scenario, capacity becomes a K-dimensional region defining the set of al rate
vectors (Ry, . . ., Rk) smultaneously achievable by all K users. Two MU-MIMO scenarios
can be distinguished. In the first scenario, multiple non-cooperative terminals are
transmitting to a single receiver. This scenario is often referred to as the MU-MIMO
uplink (UL) channel. In the information theory, it is known as the MIMO multiple access
channel (MAC). The scenario, in which a single terminal is transmitting to multiple non-
cooperétive receivers, isreferred to as MU-MIMO downlink channel or broadcast channel
(BC).



The capacity region of ageneral MIMO MAC was obtained in [2], [9]-[10]. It has been
shown that a linear detection with successive interference cancellation (SIC) provides the
maximum sum rate capacity of a MU MAC system. However, the capacity of aMIMO BC
is an open problem due to the lack of a general theory on non-degraded broadcast
channels. Pioneering work done in [11], a set of achievable rates for the MIMO BC was
obtained by applying Costa’s “dirty-paper” coding (DPC) technique at the transmitter [12].
In [12], Costa proved that DPC is a technique that alows non-causally known interference
to be “pre-subtracted” at the transmitter. It was also shown in [11] that the sum rate MIMO
BC capacity equas the maximum sum rate DPC achievable region by demonstrating that
the achievable rate meets the Sato upper bound [13]. In [14], [15] it was shown that the
achievable region of the MIMO BC obtained using DPC is equal to the capacity region of
the MIMO MAC using uplink-downlink duality. DPC can achieve the maximum sum rate
of the system and provide the maximum diversty order [16], [17]. However, these
techniques require the use of a complex sphere decoder or an approximate closest-point
solution, which makes them hard to implement in practice, especially when the number of
users is large [17]. So, to decode the data, various decoding algorithms are used. These
algorithms can be linear or non-linear. Linear decoding techniques are zero-forcing,
minimum mean square error while non-linear decoding techniques are maximum
likelihood, sphere decoder and fixed complexity sphere decoder etc.

Linear MU-MIMO processing techniques [18]-[24] are less computationally demanding
than non-linear, and they can use either instantaneous channel knowledge or long-term
statistics of the channel to perform precoding or decoding. In this thesis it will be
empirically shown that linear processing techniques reach the sum-rate capacity of the BC
channel aso when the total number of antennas at the user terminals is equal to or greater
than the number of antennas at the base station. Non-lineer MU-MIMO processing
techniques [24]-[27] require the instantaneous knowledge of the channel transfer function
a the BS. On the other hand, linear MU-MIMO processing techniques can be used with
various degrees of channel state information. Thus, linear techniques are more flexible and
more favourable for practical implementation than non-linear techniques.

1.1 Objectiveof Thesisand Thesis Organization

In this thesis, a general framework is introduced for the design of the MU-MIMO
decoding matrices [28]-[40]. Main god isto define MU-MIMO algorithm that will be able
to address several optimization criteria like minimum MSE (MMSE), minimum bit error
rate (BER), and maximum information rate [41],[42]. It has been shown in the literature
that the simulation results are based on MU-MIMO precoding and decoding algorithms
that are DPC [27],[41],[43]-[55], ZF [56]-[61], MMSE[60]-[79], ML[65],[80]-[95], SD
[95]-[102] and FSD; considering all users are equipped with one antenna.



The link between the user terminals and the base station in a wirel ess multi-user MIMO
scenario is the wireless propagation channel.

In Chapter 2 we describe the MIMO channel modes that will be used in the
simulations. An overview of the SU MIMO processing techniques is given in Chapter 2.
First, we will review techniques that do not need any CSl & the transmitter to extract
diversity gain or spatial multiplexing gain. These techniques do not require CSl & the
transmitter to encode the user’s data. A short overview of various MIMO gains like
diversity gain, spatial multiplexing gain, array gain etc., is given in this Chapter.

In Chapter 3 provides an overview of fundamentals of multi-user MIMO channel. A
brief introduction about the capacity of the MAC and the BC channels is provided. Some
benefits and limitations of MU-MIM O systems are aso discussed in this Chapter.

In Chapter 4, A short overview of the dirty paper coding has given. This is the most
relevant multi-user precoding techniques that we have used as a starting point in our
investigations.

In Chapter 5, a short overview has been given, of the most relevant multi-user decoding
techniques that we have used as a starting point in our investigations. Each of these
techniques has certain drawbacks that have significant impact on the performance and
design of the multi-user MIMO systems. The zero forcing (ZF) decoder tries to nullify the
interference but has noise enhancement. Minimum mean-square-error (MM SE) decoder
balances the multi-user interference mitigation with noise enhancement and minimizes the
total error. The drawback of this technique is that it is limited to single antenna user
terminas. In a MU-MIMO system employing MM SE decoding, if the user termina is
equipped with more than one antenna, the signal transmitted over each antenna needs to be
decoded independently. Block Diagonalization (BD) is more appropriate to be used with
user terminals with multiple numbers of antennas [25]. However, it has a limitation that
the tota number of antennas at the user terminas has to be less than or equal to the
number of antennas at the base station.

Maximum likelihood calculates the Euclidean distance between the received signal
vector and the product of all possible transmitted signal vectors with the given channel H,
and finds the one with the minimum distance. SD [95-102] intends to find the transmitted
signal vector with minimum ML metric (i.e. to find the ML solution vector) inside the
sphere. However, it considers only a small set of vectors within a given sphere rather than
al possble transmitted signal vectors. Thus, complexity and processing time reduce in
case of sphere decoder.



A novel approach that is sphere decoder for MU-MIMO systems has been implemented
to reduce the computationa complexity and to achieve better BER performance. At the
end of Chapter 7, a short overview has been given, of the computational complexity of ML
and SD.

Chapter 6 portrays SINR, MGF and PEP based BER performance analysis of MU-
MIMO system with linear (ZF and MM SE) and non-linear (ML and SD) equalizers. BER
analysis based on this unique gpproach is also done with i.i.d (independent and identically
distributed) and spatidly correlated channels.

The results of the system level investigations of MU-MIMO decoding techniques are
given in this Chapter. The results show that MU-MIMO systems with sphere decoder can
provide improved BER performance than ZF, MMSE and ML. The channel estimation
errors are investigated on the performance of the MU-MIMO decoding techniques in this
Chapter.

First, assuming the perfect channel knowledge at the transmitter and receiver i.e. the
CSl isavailable both side. Thus, transmitted signal is defined such that the channel fading
effect is greatly mitigated. This will improve the BER performance of the MU-MIMO
system. For proposed schemes, it is observed that BER performance improves as | go
towards non-linear equalizer. After simulation, it is also observed that the BER
performance of MU-MIMO system with SD is better than the ML, MM SE and ZF.

Finally, in chapter 7, conclusions are drawn. Chapter 7 also portrays the future scope of
the work done.



Chapter 2
MIMO SYSTEM MODEL

The goal of future wireless communication systems isto provide a wide variety of high
quality high rate services with minimum regquirements on spectrum, power consumption
and hardware complexity. Towards this end, proper system structures as well as robust
system designs are required to meet the chalenges in wireless transmissions, such as
multipath fading, limited spectrum resource and interference. Recent research results have
unveiled the multiple input multiple output (MIMO) system as a potential candidate to
play a key role in future wireless. MIMO is a multiple antenna technology which uses
number of antennas at both transmitter and receiver side. Early work on multi antenna
systems involves the use of antenna arrays at the receiver to provide spatial diversity
against the random destructive effect of fading. MIMO technique is advancement over
various previous technologies like SISO, SIMO and MISO etc. The improvement in
reliability of a MIMO system compared to that of a traditional SISO system is typically
guantified by the diversity gain and coding gain.

A profound understanding of MIMO system model is crucial in selecting proper
signalling strategies in MIMO wireless systems. Simple models have been used to get the
insight into the impact of propagation conditions on MIMO channel. In this chapter we
review the construction of wireless MIMO channels which we will use in ssimulations, its
sampled model, as well as the input-output signal model.

21 MIMO Communication System

The basic building blocks those comprise a MIMO communication system is shown in
Fig. 2.1. The information bits to be transmitted are encoded and interleaved. The
interleaved codeword is mapped to data symbols (QAM) by the symbol mapper. These
data symbols are input to a space time encoder that outputs one or more atial data
streams. The spatial data streams are mapped to the transmit antennas by the space-time
precoding block. The signals launched from the transmit antennas propagate through the
channel and arrive at the receiver antenna array.

The receiver collects the signal at the output of each receive antenna element and
reverses the transmitter operation in order to decode the data: receive space-time
processing, followed by space —time decoding, symbol de-mapping, de-interleaving and
decoding. Each of the building blocks offers the opportunity for significant design
challenges and complexity performance trade-offs.
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2.2() MIMO System Model

If we want to design the efficient communication agorithms for MIMO systems and to
get the knowledge of the performance limits, it isimportant to understand the nature of the
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Figure 2.1: Block Diagram of MIMO Communication System

Transmitter

Receiver

MIMO system and channel. Figure 2.2 shows the generalized MIMO system model.

Transmitter

Figure 2.2: Block Diagram of MIMO System Model

A MIMO channel with Mt transmit antennas and Mg receive antennas is typically
represented as a matrix H of dimension Mg X M+, where [H];; represents the complex
Gaussian random variable that models fading gain between the | transmitter and the "

receiver. The MIMO channel model is presented in (2.1)-

Y=HXx+w

Receiver

2.1)



where w is a vector of additive Gaussian noise with zero mean and unit variance and
having dimension of Mg 1, Y isthe vector of received datawith dimension Mg 1, X is
the vector of transmitted data with dimension M+ 1 and H is channel matrix with
dimensonMgr M.

2.2 (i) Wireless Channel/MIMO Channel Model

The link between the user terminals and the base station in a wireless multi-user MIMO
scenario is the wireless propagation channel. One of the distinguishing characteristics of
wireless channel is the fact that there are various paths between transmitter and receiver.
These various components experience different path loss and phases. If there is a direct
path between the transmitter and the receiver, it is called the line of sight (LOS) path. LOS
path does not exist when large objects obstruct the line between Tx and Rx. If LOS exists,
the corresponding signal received through LOS is the strongest and the dominant signal.
The signal from the LOS is more deterministic while its strength and phase may change
due to mobility.

There is various non-line of sight (NLOS) path along with LOS. An electromagnetic
wave experiences different propagation mechanisms. These propagation mechanisms
which are used to characterize the channel model are path loss exponent, reflection,
diffraction, scattering, refraction, absorption, attenuation, fading, shadowing etc.

The effect of these propagation mechanisms result in many properties of the received
signa that are unique to wireless channel. These effects may reduce the power of the
signa in different ways. There are two general aspects of such a power reduction that
require separate treatments. One facet is the large scale effect which corresponds to the
characterization of the signal power over large distances or the time-average behaviours of
the signal. This is called attenuation or path loss and sometimes large-scale fading. The
other aspect is the rapid change in the amplitude and power of the signal and thisis called
small-scale fading or simply fading.

Attenuation- Attenuation or large scale fading is caused by many factors including
propagation losses, antenna losses and filter losses. The average received signal or
the large scale fading factor, decreases logarithmically with distance. The
logarithm factor or the path loss exponent depends on the propagation medium and
the environment between Tx and Rx.

Fading — Fading is basically a random variation in signal strength. Fading or small
scale fading is caused by interference between two or more versions of the
transmitted signal which arrive at the receiver at different times. These signals,

8



called multipath waves, combine & the receiver antenna and provide an effective
combined signal. Thisresultant signal can vary widely in amplitude and phase.

2.2.1 SU-MIMO System Model

A MIMO channel with M+ transmit antennas and Mg receive antennas comprises of
M+Mgr SISO channels.

In case of single-user MIMO (SU-MIMO) system as shown in Fig. 2.3), al the received
datais available for processing while in the case of MU-MIMO, received data is distributed
among different users. If each user has only one receive antenna then user is restricted to
access only one element of the received data 'Y .

User 1 }

Y Base Station
User 2 ; f

j l,,"'bhannel K
User K }

Figure2.3: Single-User MIMO System Model

The channel matrix is denoted by H. The ij-th component of the matrix H, denoted by
hij , represents the channel gain between the j" transmit and i™ receive antenna pair.

é hyy hy, . . thT u
é u
é hy ha : : hZMT a
H= é ua
—é a (2.2
é _ a
: G
S hMRl hMR2 hMRMT H



Thei™ column of H is often referred to as the spatial signature of the i™ transmit antennas
across the receive antenna array. The relative geometry of the Mt spatia signatures
determines the distinguishability of the signals launched from the transmit antennas a a
receiver. This is particularly important when independent data streams are launched from
the transmit antennas, as is done in the case of spatial multiplexing. The MIMO system
model as shown in Fig. 1 uses multiple antennas at both transmitter and receiver side to
improve the communication performance.

2.3 Gain/ Benefitsof MIMO Systems

By using multiple antennas various gains can be achieved-

Diversity gain
Capacity gain

Array gain
Interference mitigation

2.3.1 Spatial Diversity Gain

Spatia diversity gain is realized by providing the receiver with multiple copies of the
transmitted signals in space, time or frequency. With an increasing number of independent
copies (the number of copiesis often referred as the diversity order), the probability that at
least one of the copies is not experiencing a deep fade increases, thereby improving the
quality and reliability of reception. A MIMO channel with M+ transmit antennas and Mg
receive antennas potentially offers MgM+ independently fading links, and hence a spatial
diversity order of MgMr.

Space-time diversity methods assume that the receiver has perfect channel knowledge
and the transmitter has no channel knowledge. They are designed to perform well over
averaged channel statistics, to provide diversity gain. Diversity gain reduces fading effect,
BER and improves the quality of signal. Thus, diversity gain provides reliable
communication.

2.3.2 Spatial Multiplexing Gain

MIMO systems offer a linear increase in data rate through spatial multiplexing [12,17,
40], i.e., transmitting multiple, independent data streams within the bandwidth of operation.
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Each data stream experiences a least the same channel quality that would be
experienced by a SISO system, effectively enhancing the capacity by a multiplicative factor
equal to the number of streams. In general, the number of data streams that can be reliably
supported by a MIMO channel equals the minimum of the number of transmit antennas and
the number of receive antennas, i.e.,, min. {Mr, Mg}. The spatial multiplexing gain
increases the capacity of awireless network.

By transmitting and receiving paralel independent symbol streams in the same
frequency bandwidth, spatial multiplexing obtains a linear increase in data rates, with
increase in the number of antennas. We note that spatial channel multiplexing does not
require channel knowledge at the transmitter.

2.3.3 Array Gain

Array gain is the increase in receive SNR that results from a coherent combining effect
of the wireless signals at the receive antennas array and/or spatial pre-processing at the
transmit antenna array. Array gain improves resistance to noise, thereby improving the
coverage and the range of a wireless network. Array gain is proportiona to the number of
receive antennas used.

2.3.4 Interference Mitigation

Co-channel interference adds to the overal noise of the system and deteriorates
performance. Interference reduction allows use of aggressive reuse factors and improves the
system capacity. Interference in wireless networks results from multiple users sharing time
and frequency resources. Interference may be mitigated in MIM O systems by exploiting the
spatial dimension to increase the separation between users. For instance, in the presence of
interference, array gain increases the tolerance to noise as well as the interference power,
hence improving the SINR. Additiondly, the spatia dimension may be leveraged for the
purposes of interference avoidance, i.e., directing signal energy towards the intended user
and minimizing interference to other users. Interference reduction and avoidance improve
the coverage and range of awireless network.

In generd, it may not be possible to exploit simultaneoudy all the benefits described
above due to conflicting demands on the spatial degrees of freedom. However, using some
combination of the benefits across a wireless network will result in improved capacity,
coverage and reliability.

11



Interference reduction can also be implemented at the transmitted side, where the goal is
to enhance the signal power at the intended receiver and minimize the interference energy
sent towards co-channel users.

MIMO systems add the diversity so the robustness of the system improves. MIMO
systems aso provide high data rate and high spectral efficiency. To achieve high data rate
with low BER, thereisatrade-off between data rate and BER.

Drawbacks of MIMO systems are that these systems are very costly and complex
because it requires large number of antenna array and powerful DSP unit. Thus, signa
processing also becomes very complex.
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Chapter 3
Multi-User MIMO channels

3.1 Multi-User MIMO (MU-MIMO) System Model

MU-MIMO is a MIMO system in which multiple users can take participation in data
transmission simultaneously. In the uplink of cellular network, users transmit signals to
the base station over the same channel but it is difficult for the base station to separate
these signals. If transmitter provides channel feedback information back to the users then
coordination among users may be possible. For this coordination each user must know
channels experienced by other users as well as its own channel. In uplink, base station
receives the data from multiple users. It is also known as uplink- MAC (multiple access
channel). It isa multipoint to point communication.

In the downlink, base station transmits information simultaneously to a group of users.
But there is some inter-user interference because signal received by one user will act as
interference signal for other remaining users. It is also known as downlink-BC (broadcast).
It isapoint to multipoint communication.

User 1 }

B R Base Station

Y

User 2

~“Channel K .-~

'
.

User K

Figure 3.1: Multi-User MIMO system model
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In SU-MIMO channel, MIMO system takes the advantage of coordination among all
the transmitters and receivers but there is no coordination among the usersin case of MU-
MIM O channel.

Consider an MU-MIMO system model for downlink data transmission for a cellular
system [1]-[3]. Fig. 3.1 shows the MU-MIMO system model. This system employs asingle
base gation (BS) which has Mty transmit antennas and K users where each user has Mgx
receive antenna. Let s¢ denotes the transmitted data intended for user k. For each user
symbol s is multiplied by a beam former vector ¢, thus the signal vector x ~ ¢! can be
written as

K

Xx= &GS =Cs (3.1)
k=1

where C = [¢1Co. 6] €Y= isabeam forming matrix, and s = gs;s,,.. s ™

¢K'lis the signal vector. Hence, the received signal vector Y; of the i user can be
expressed as

Y i=Hix+w (32)
Yi=H Cs+w
Yi=Hcs+ & Hics + Wi (33
k=1kti
—_ Mg . - M,
Where Y - gyl, yzq%%.yKH “ S= @,SZ,%%.SKH "
H=T(h)"™,(h,)"™ .o, (h )™ ]
C=lcn Ol i W= @0y, Wy, Wi

The noise w;  C™="*is independent complex Gaussian distributed noise with zero
mean and unit variance. The MIMO channel H for the i user isH;  ¢M=)"Ms  MIMO

channel is basically a realization of standard i.i.d Rayleigh fading channel. The received
signal vector Y; of thei™ user at thet™ symbol interval can also be written as

Yilt] = Hi[t] C[t] sft] + wi[t] (3.4)
WM:HMQMﬂﬂnEJﬂmeM+WM (3.5)

where s, satisfies E[s¢ s ]= Es and Es is the symbol energy.
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3.2 Capacity Region of Multi-User MIMO Channels

In this section, single-user and multi-user MIMO channel capacities in the Shannon
theoretic sense are given. The Shannon capacity of atime-invariant channel is defined as
the maximum mutual information between the channel input and output. This is the
maximum data rate that can be transmitted over the channel with arbitrarily small error
probability. When the CSl is perfectly known at both the transmitter and the receiver, the
transmitter can adapt its transmission strategy relative to the instantaneous channel state. If
the channel is time variant, the ergodic capacity is the maximum mutual information
averaged over all channel states. The ergodic capacity is typically achieved using an
adaptive transmission policy where the power and data rate vary relative to the channel
state variations.

In asingle-user MIMO system the link is point-to-point with a defined capacity. In a
multi-user MIMO system, the link is a multiple access channel on the uplink and broadcast
channel on the downlink. SU-MIMO suffers only a small penalty in information rate
without CSI a the transmitter. MU-MIMO has a much larger penalty on the downlink. Ina
SU-MIMO system, precoding at the transmitter and decoding at the receiver can be done
with full cooperation between the collocated antennas. In a MU-MIMO system, the
antennas can cooperate at the base station for precoding on the downlink and for decoding
on the uplink. However, the users cannot cooperate in decoding on the downlink or during
the precoding on the uplink. In a MU-MIMO system, cooperation between the users may
be possible in terms of power rates assigned to the users. In a SU-MIMO system, the
information rate isidentical on the uplink and downlink for same transmitting power if the
channel is known at the transmitter and the receiver.

3.2.1 Single-user MIMO capacity

When the channel is constant and known perfectly at the transmitter and the receiver,
the capacity of the channel can also be determined. If H is random, the channel capacity is
arandom variable too, and can vary from zero to infinity. If the exact CSl is not known at
the transmitter, the information rate maximization can now be performed only in terms of
the outage or ergodic capacity.

Capacity can be classified as-

Outage Capacity
Ergodic Capacity
Asymptotic Capacity
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Asymptotic capacity is used to characterize the distribution of capacity. Capacity can be
written as-

I +i2HRM H"
T SW T

C=log,

where R, =R, =E[xx"]= covariance matrix of transmitted vector.

For SISO channel, capacity can be presented as-

Similarly, For MIMO channel, capacity can be written as-

: & P o
C=mn.(MR,|\/|T)|ngg1+—2¢
Swo

3.22 Capacity region of MAC and BC channe

The union of achievable rates under all transmission strategies is called the capacity
region of the multi-user system. It defines the limit of error-free communications given
certain channel characteristics and it is used as the ultimate measure of channel capacity.

The MU-MIMO downlink channel in genera belongs to the class of non-degraded
Gaussian channels. The sum-rate capacity of a Gaussian broadcast channel, for multiple-
users each having multiple antennas, has been shown to satisfy [13]. The Sato bound is not
tight in general, but by introducing noise correlation at the different receivers, we can get a
much stronger bound [39], [40]. The downlink problem at the BS is to broadcast the user
signals with appropriate processing and spatial weighting, such that each user receives a
maximum or desired sgnal-to-interference and noise ratio (SINR), information rate or
BER. Antennas at the base station can cooperate during the encoding phase. Cooperation
between the users might either entail cooperative management of the rates or SINR at each
user.

The capacity region of the general non-degraded broadcast channels is unknown.
However, in [11] it was shown that Costa's " dirty-paper” coding is optimal in achieving
the sum-rate capacity, by demonsrating that the achievable rate meets the Sato upper
bound.
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The basic premise of DPCs is that if the transmitter has perfect, non-causal knowledge
of additive Gaussian interference in the channel, then the capacity of the channel is the
same as if there was no additive interference. DPC allow non-causally interference to be
“pre-subtracted” at the transmitter, but in such a way that the transmit power is not
increased.

The channel capacity is different for the uplink and the downlink due to the
fundamental differences between these channels. However, the fact that the downlink and
the uplink channels look like mirror images of each other implies that there is a dudlity
between these channels that allows the capacity region of either channel to be obtained
from the capacity region of the other. In a point-to-point communication, the capacity is
unchanged when the role of transmitters and receivers is interchanged. In case of downlink
linear processing followed by SU receivers at the user terminals (UTs), the choice of
transmit and receive matrices is closely related to a virtua uplink problem. Finally, the
capacity region of degraded Gaussian channels is the same as the capacity region of the
corresponding MAC with the transmit power constraint of the BC trandated to the sum of
powers in the MAC [41], [15]. The difference between the uplink and the downlink
channel is that on the downlink there is an additive noise term associated with each user
terminal, while on the uplink there is only one. Another important difference is that on the
downlink there isa single power constraint associated with the transmitter, whereas on the
uplink there is a different power constraint associated with each user. Finally, on the
downlink both the signal and interference associated with each user travel through the
same channel, whereas on the uplink these signals travel through the different channels.

3.3 Advantagesand Limitations

LOS communication has highly correlated channel. Thus, the channel rank degrades in
highly correlated channel. Whereas in MU-MIMO system, correlation among channel
coefficients is less, so channel rank loss does not happen. Simultaneously, MU-MIMO
system provides the capacity/ spatial multiplexing gain without the need of multiple
antennas at the UE.

MU-MIMO has various benefits over SU-MIMO such as better spectral efficiency, high
diversity gain, high capacity and interference suppression etc.

There are also some limitations of MU-MIM O systems.
- Each user has different channel characteristics so each user has to deal with

different channel conditions.
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- MU-MIMO systems consume more power because of multi-user and multiple
antennas. Thus, additional units are required which makes the system complex and costly.
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Chapter 4
Dirty Paper Coding Technique

To overcome the multipath effect and achieve high throughput transmission, channel
equalization or precoding techniques can be used. The original principle of precoding is
that if transmit side knows channel information, we can design the transmit signal so that
the 1Sl at the receive side is mitigated. In MIMO or MU-MIMO systems, if channel
information is known to the transmitter, precoding can be used to further improve the
system performance based on various design criteria

4.1 Introduction to precoding techniques

Precoding is a technique that exploits the channel information available at the
transmitter. Precoding schemes may be divided into three categories according to the
accessibility of channel information.

Tx has full channel information
Tx has partial channel information
Tx does not have any channel information

The precoding scheme with full channel information can achieve better performance
than other two schemes. Interference among multiple base stations that co-exists in the
same location, limits the capacity of wireless networks. The spectral efficiency in existing
cellular mobile and WLANS networks is also limited by interference. In cellular mobile
networks, the dominant interference comes from adjacent cells, while in co-working
WLANSs, the interference from other networks, operating in the same area, is a major
limiting factor. In the cooperative transmission scheme, multiple base stations (BSs) share
information about the transmitted messages to their respective users and wireless channels
via a backbone network. Individual BSs are equipped with multiple transmit antennas.
Each BS transmitter uses the information of the transmitted signals from other BSs and
wireless channel condition to precode its own signal. The precoded signal for each BSis
broadcast through all BS transmit antennas in the same frequency band at a given time
slot. The precoding operation and transmit-receive antenna coefficients are chosen in such
away as to minimize the interference coming from other BS transmissions. The calculated
receive antenna coefficients are then sent from the transmitter to the receiver through the
wireless channel prior to the data transmission.
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As MIMO is awidely accepted technology for all future wireless standards, due to its
high spectral efficiency, we consider multiple antennas at both the transmitter and
receivers.

A multi-user MIMO systems with multiple transmit-receive antennas has been
considered by severa researchers. In precoding techniques, a ZF method can be used to
exploit the availability of multiple receive antennas. Here transmit-receive antenna weights
arefirst jointly optimized by a ZF diagonalization technique and then a water-filling power
allocation method is applied to alocate power to each user. Nonlinear methods, utilizing a
combination of a ZF method with DPC and a combination of a ZF method with THP for a
multi-user MIMO system can be used to improve the BER performance by reducing
interference. Inthisthesis, | have implemented the combination of ZF with DPC.

The ZF method is used to eliminate part of the inter-link interference. DPC or THP are
then used to cancel the remaining interference. These schemes, however, are not practical
for cooperative MIMO systems, since their symbol-error-rate (SER) performance varies
from user to user. In particular, this SER variation is not desirable since the MIMO
systems can be deployed by different operators and they expect the systems to have similar
performance.

In this chapter, a cooperative transmission scheme employing precoding and
beamforming is brought in for the downlink of multi-user MIMO systems. In this
algorithm, the DPC cancels part of the interference while transmit-receive antennas
weights cancel the remaining interference. The DPC precoding technique offers a
significant improvement over a various precoding algorithms.

The first improvement is the enhancement of the SER performance.

The second improvement is the relaxation of the zero forcing constraints.
Assuming transmit signals intended for different users to interfere with each-other.
This interference is cancelled at the receiver where the sgnal is multiplied by the
receive antennaweights.

The third improvement comes from the complexity reduction. DPC scheme has a
much lower computational complexity than other methods.

The fourth improvement comes from the elimination of the dependency of the
number of receive antennas to the number of transmit antennas. In this precoding
technique, it is not necessary for the number of receive antennas to be at least equal
to the number of transmit antennas.
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4.2 Dirty Paper Coding

In this Chapter, we have illustrated an idea of dirty paper coding (DPC), showing that
an interference-free transmission can be realized by subtracting the potential interferences
before transmission.

In theory, DPC would be implemented when channel gains are completely known on
the transmitter side. Dirty paper coding (DPC) is a method of precoding the data such that
the effect of the interference can be cancelled subject to some interference that is known to
the transmitter. More specifically, the interferences due to the first up to (k-1)™ user signals
are cancelled in the course of precoding the k™ user signal. To simplify the exposition, we
just consider the case of M1=3, K=3, and Mg;=1, i=1,2,3. If the i user signal is given by

%i I , then the received signal isgiven as

€Y1 a ey ejﬁlu éw, U

GY a_ g_|DLu§€2u+qN a (41)

é'2(

@@H gH g@ksﬂ éwsH

where HP-T T2 isthe channel gain between base station and the i-th user. The channel
matrix H" can be LQ-decomposed as

d, 0 Ouégu
™= 221 l, O 32‘123 4.2
€2 lp |xbBLH
én O 0u éq
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where L= 821 l, 04 and Q=&by
€ I |33l?l &4

3 ~ -
where {qi}i:1| '3 are ortho-normal row vectors. Let X=[x1 X2 3] " denote a precoded

signal for ¥ =[¥; %, %3] . By transmitting Q"x, the effect of Q in equation (9) is
eliminated through the channel. Leaving the lower-triangular matrix after transmission, the
received signal is given as
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From (4.3), the received signal of the first user is given as
Y= luXe + Wy (4.4)

From the first-user perspective, therefore, the following condition needs to be met for
the interference-free data transmission

X, =¥ (4.9)

From (4.5), it can be seen that the following precoding cancels the interference
component, 1,,x,0r 1,.%, , on the transmitter side

I I
X2:%2'I—ZIX1:I(2'I—ZIII& (4.6)
2 2

From (4.6), it can be seen that the precoded signal x, is now composed of the user
signals, % and %. Finally, the received signal of the third user is given as

Ys= I31X1+ I32X2+ I33X3 + W3 (47)

where the precoded signals, x; and x,, are composed of the known user signals, IIIland I(z

, given in (4.5) and (4.6). From the perspective of the third user, the precoded signals, x;
and x,, are interference components, which can be cancelled by the following precoding on
the transmitter side:

I I
X3 =¥5- Iﬁxr |3—2X2 (4.8)
B B

The precoded signalsin (4.6), (4.7), and (4.8) can be expressed in amatrix as
équ él 0 0uéku

o= 1 ojgey 4.9)
cH &0 0 1HgH
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Combining the above three precoding matrices, we can express the DPC in the
following matrix form:
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Using the above precoding matrix, (4.3) can be re-written as
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From (4.13), it isobvious that the interference-free detection can be made for each user.

We can see that the precoding matrix in DPC is a scaled inverse matrix of the lower
triangular matrix which is obtained from the channel gain matrix, that is,
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This technique, “writing on dirty paper,” was with interference cancellation in mind; it
was shown that the capacity of a channel where the transmitter knows the interfering
signa is the same as if there were no interference. The dirty paper analogy comes from
comparing the interference in a communications channel to dirt that is present on a piece
of paper. The signd is the ink, which is chosen based on the interference (dirt) that is
present.

We now turn to a nonlinear technique based on the concept of “writing on dirty paper”
introduced by Coga. In the thesis, the traditional additive Gaussian noise channel is
modified to include an additive interference term that is known at the transmitter:

Received signal = transmitted signal + interference + noise.

The simplest thing to do in such a scenario would be to set the transmitted signal equal
to the desired data minus the interference, but such an approach requires increased power.
Costa proved the surprising result that the capacity of this channel is the same as if the
interference was not present; no more power is needed to cancel the interference than is
used in a nomina additive Gaussian noise channel. To use Costa's analogy, writing on
dirty paper is information theoretically equivalent to writing on clean paper when one
knows in advance where the dirt is. Costa's approach is theoretical, however, and does not
provide a practica technique for approaching capacity.

The application of this principle to downlink transmission in multi-user MIMO
channels was proposed. Because the transmitter has CSl, it knows what interference user
1's signal will produce at user 2, and hence can design a signal for user 2 that avoids the
known interference.
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The most well-known dirty paper technique for the MIMO downlink uses a QR
decomposition of the channel, which we write here as the product of a lower triangular
matrix L with a unitary matrix H = LQ. The signal to be transmitted is precoded with the
Hermitian trangpose of Q, resulting in the effective channel L. The first user of this system
sees no interference from other users; its signal may be chosen without regard for the other
users. The second user sees interference only from the first user; this interference is known
and thus may be overcome using dirty paper coding. Subsequent users are dealt with in a
similar manner.

An important difference between the multi-user MIMO channel and the interference
channels for which dirty paper techniques are designed is that the interference depends on
the signal being designed. This problem is solved using QR-type decomposition, so the
interference for any particular user depends only on the interference generated by previous
users. Dirty paper coding is then applied to cancel this interference. Techniques based on
dirty paper coding perform much better and approach the theoretical limits of the channel,
but require complicated coding schemes.
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Chapter 5
Decoding Techniques

Decoders are used at the receiver side to detect or recover back the signal. Decoders can
be linear and non-linear. Linear signal detection method treats all transmitted signas as
interference except for the desired stream from the target transmit antenna. Therefore,
interference signals from other transmit antennas are minimized or nullified to detect the
desired signal from the target transmit antenna To facilitate the detection of desired
signals from each antenna, the effect of the channel is inverted by a weight matrix. The
detection of each symbol is given by a linear combination of the received signals. The
standard linear detection methods include ZF technique and MM SE technique.

Linear Non-Linear
Decoder Decoder

ZK MMSE ML SD FSD

Figure 5.1: Classification of various decoding techniques

Whereas, non-linear equalizers are adaptive in nature. Non-linear equalizers consider
channel effect optimization as well as inter symbol interference (1SI). Non-linear decoding
techniques are maximum likelihood (ML), sphere decoder (SD) and fixed complexity
sphere decoder (FSD).
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Any receiver technique such as zero-forcing (ZF), minimum mean square error
estimation and optima maximum-likelihood detection (MLD) can be applied directly.
MLD gives the best performance with a high computational complexity. ZF and MMSE
are less expensive techniques. In case of ZF, complexity reduction comes, however, at the
expense of noise enhancement which in general results in a significant performance
degradation (compared to the ML decoder). The diversity order achieved by each of the
individual data streams equals Mt — Mg + 1. The MM SE receiver balances inter-stream
interference mitigation with noise enhancement and minimizes the total error. At low
SNRs the MMSE receiver approximates a matched filter and is near optimal. It
outperforms the ZF receiver that continues to enhance noise. At high SNRs, the MM SE
receiver approaches ZF and therefore redizes the same diversity order as ZF for each data
stream [9].

By analyzing the various decoding techniques, it is said that, ML gives better
performance than ZF and MM SE but it has large computational complexity. To eradicate
this drawback, sphere decoder came into picture. SD gives slightly better performance than
ML with very less computations.

When channel state information is available at transmitter and receiver sides, channel
dependent decoding of data streams improves the system performance. The linear decoder
operates in the complex domain and removes any redundancy that has been introduced by
the precoder. The framework is general and addresses several optimization criteria like
minimum MSE (MM SE), minimum bit error rate (BER), and maximum information rate.

In this Chapter, a new approach will be introduced which will be used to derive a
general framework for MU-MIMO decoding design so we can target any optimization
criteriawith one universal algorithm like in the case of single-user MIMO processing.

5.1 Linear MU-MIM O decoding Techniques
Linear MU-MIMO decoding techniques are ZF and MM SE. These techniques consider
only channel effect.

5.1.1 Zero forcing decoding

Since the base station has no influence on the noise at the user terminas, the most
intuitive approach for decoding is a zero forcing equalizer (ZF) which eliminates all
interference a the user terminals. ZF decoding for single antenna receivers was
investigated extensively in the literature [56], [9].
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The zero forcing technique nullifies the interference by the following matrix, when
Mt=M R

Bz=H" (5.1)

When M 1#Mg, then, the solution to the optimization problem is a pseudo-inverse of the
combined channel matrix H:

Bze= (H'H)*H" (5.2)

Where ()" denotes the Hermitian transpose operation. In other words, it inverts the
effect of channel as

Yo =BrY (5.3)
=x+ (H'H)*H"w
=x+ Wy

Where W= Bz * w = (H"H)™H"w. Note that the error performance is directly

connected to the power of Wy, We assume that the complex data symbols are i.i.d.

uniformly distributed random variables and that the samples of the additive noise at the
input of receive antennas are i.i.d. complex Gaussian white random variables with mean
and variance, respectively.

The ZF decoding suffers from the noise enhancement problem and requires increased
transmit power. It is sub-optimal and results in significant performance degradation. The
diversity order and array gain of each stream is proportiona to M+ —Mg + 1 [9].

5.1.2 Minimum mean-squar e-error decoding

The ZF decoder completely eliminates multi-user interference at the expense of noise
enhancement. The minimum mean-square-error (MM SE) decoder balances the multiuser
interference mitigation with noise enhancement and minimizes the total error. Unlike the
ZF decoder, the MM SE decoder cannot be designed in such a straightforward way.

MM SE decoding is optimum when all users in the system are equipped with only one
antenna. MM SE balances the MUI in order to reduce the performance loss and improves
the diversity. However, MM SE suffers a performance loss when it attempts to mitigate the
interference between two closdy spaced antennas as in the case when the user terminal is
equipped with more than one receive antenna.
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In order to maximize the post-detection SINR, The MM SE decoder is defined as

Bumse= (H'H+s21)*H" (5.4)

Note that the MM SE recelver requires the gatistical information of noises? . Using the
MM SE weight matrix-

Xymse =BumseY
= %+ (H'H+s21)*H"w
=%+ Wy

where W= Bumse w= (H'H+s21 ) H W,

The MM SE decoder approximates a matched filter at low SNRs and is near optimal. At
high SNRs, the MM SE decoder converges to a ZF decoder and we can expect it to extract
Mt —Mg + 1 order diversity.

5.2 Non-Linear MU-MIMO decoding Techniques
Non-Linear MU-MIMO decoding techniques are ML,SD and FSD. These techniques
consider IST as well as channel effect.

5.2.1 Maximum Likelihood

Maximum likelihood (ML) detection calculates the Euclidean distance the received
signal vector and the product of al possible transmitted signal vectors with the given
channel H, and finds the one with the minimum distance. Let C denotes a set of signal
constellation symbol points. Then, ML detection determines the estimate of the transmitted
signal vector x as

Xy =agmin||Y - Hx I (5.5)

xi T

Where || Y - Hx || corresponds to the ML metric. The ML method achieves the optimal

performance as the maximum a posterior detection when all the transmitted vectors are
equally likely. However, its complexity increases exponentially as modulation order and/or
the number of transmit antennas increases. The required number of ML metric calculation

isICINIT , that is, the complexity of metric calculation exponentially increases with the
number of antennas. Even if this particular method suffers from computational complexity,
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its performance serves as a reference to other detection methods since it corresponds to the
best possible performance.

5.2.2 Sphere Decoding

Sphere decoding (SD) method intends to find the transmitted signal vector with
minimum ML metric, that is, to find the ML solution vector. However, it considers only a
small set of vectors within a given sphere rather than all possible transmitted signa
vectors.

SD adjusts the sphere radius until there exists a single vector (ML solution vector)
within a sphere. It increases the radius when there exists no vector within a sphere, and
decreases the radius when there exist multiple vectors within the sphere. The SD method
can be exploited as

agmin||Y - Hx|P=agmin(x- X)"H H(x- X) (5.6)
X X

where % =(H'H) *H™Y , which is the unconstrained solution of the real system. Consider
the following radius Rsp of sphere-

(x- R)THH(x- ) £R% (5.7)

The SD method considers only the vector inside a sphere. The complexity of SD in
terms of the sum of multiplication, division, and square-root operations, varies, as SNR
varies. As the SNR increases, the ZF solution X becomes more likely to coincide with the
ML solution vector. The main drawback of SD is that its complexity depends on SNR.
Furthermore, the worst-case complexity is the same as that of ML detection, although the
average complexity is sgnificantly reduced.

MIMO decoding should be done in such a way that the complexity of decoder gets
reduced while the performance of the system should be improved.

Sphere decoding (SD) method intends to unearth the transmitted signal vector with bare
minimum ML metric, that is, to find the ML solution vector. However, it considers only a
small set of vectors within a given sphere rather than all possible transmitted signal
vectors. SD adjusts the sphere radius until there exists a single vector (ML solution vector)
within a sphere. It increases the radius when there exists no vector within a sphere, and
decreases the radius when there exist multiple vectors within the sphere.

In the sequel, we sketch the idea of SD through an example. Consider a square QAM in
a2 2complex MIMO channel. The underlying complex system can be converted into an
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equivalent real system. Let Yjr and Y, denote the real and imaginary parts of the received
signal at the j" receive antenna, that is, Yir=Re{Y;} and Y; = Im{Y;}.

Similarly, the input signal x; from the ith antenna can be represented by xir = R{x} and
xi = Im{x}. Forthe2 2 MIMO channel, the received signal can be expressed in terms
of itsreal and imaginary parts as follows:

EYiR+iYy U_éyrtihy  Ppg+jhg 08 Xy O eW1R+JWJJ u

5.8
eY2R+JY2|u 3121R+Jh h22R+Jh22|uSXzR+JX2|u g’V2R+JW2|H )

where hij = Re{hij}, hij = Im{hij}, wi = Re{wi}, and wi = Im{wi}. The real and
imaginary parts of (5.8) can be respectively expressed as

eYlRu ehn_'LR MZR\Q(lRU ehlﬂ h12|U@(11U VR U

2RU %ZR h22R Ug(ZRU &Z.I h22| Ug(ZI u gNZRU

€Xr U
— i Mg -y -hyy USXZR m ewr U (5.9)
&r Npr - Ny -hy ngll 3 eWzRH )
X2 {0
&g U
éYy Uzél"nl b hir  Por U§<2Ru éwy u 510
&t & ha Mar Naeil ugxu H gNZI H (5.10)
X2 0
The following expression can be yield by combining (5.9) and (5.10)
€YirU €hpr  hpg - Ny -hip U€XR U éWig U
a & G G G
ngR Go@2ir Nzr - Doy Ny gngR Gy ngR G (5.11)
ey, u ehy  hy hiur  hipg UeXy U Ewy, H
eYa o ehay hyy hoir  Napr GEX2 0 W2 G
éYir U € Mg -y -hu &R U EWir U
&, U G G
here ¥ = @YzR 0 F= ghle hoor - Moy - hyy a SXZRU ad W= g\NZR a.
€Yy u ehyy hpy hpg g U €xy U ewy U
e é G é é "
eYa @ ehoy  hyy hoir  Noor éXo éWo 0
The SD method can be exploited as
LT T2 . ATOTD 2
agmin||Y - Hx[*=agmin(x- X)  H H(X- X) (5.12)
X X
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where x = (H"H) *H"Y , which is the unconstrained solution of the real system. It shows
that the ML solution can be determined by the different metric (x- x)" H'H(x - x) . Consider
the following radius Rsp of sphere-

(x- X)"H'H(X- X) £ RS, (5.13)

The SD method considers only the vector inside a sphere. Fig. 5.2 (a) illugrates a
sphere with the centre of §<=(F|H FI)'1 H Y and radius of Rsp. In this example, this sphere

includes four candidate vectors, one of which is the ML solution vector. No vector outside
the sphere can be the ML solution vector because their ML metric values are bigger than
the ones inside the sphere. The radius of the sphere can be reduced so that there remains a
single vector inside the sphere.

In other words, the ML solution vector is now contained in this sphere with a reduced
radius asillustrated in Fig. 5.2 (a), (b). Note that the new metric in (5.12) is also expressed
as

(X- %) HHR- %) =(X- %) RTRE- %) | RE&- )| (514)

where R is obtained from QR decomposition of the real channel matrix H= QR. When
Nt =Ngr =2, the metricin (5.14) isgiven as

x>
i
O

. N
€1 My Nz My Uéxl
é ag
a0 T T Iy 8Xs-
A e

é ¢

€0 0 ryp ryuUsx,-
€ Ua
80 0 0 rua6

x>
N
N

IR - %) 2= (5.15)

x>
[
\

x>
~
\

4"

- 2\12_ - S \2 - 2 - S \2
IRX- X)[IF= [raa(Xq - Xg) |© +]rs3(Xg - X3) + 134 (X4 - X4) |
— 2 — 2 — 2\ 2
+{ 1 (X5 - X3) +ra5(Xg - Xg) +154 (X, - Xg) |

+ g (% - X0) +15(%; - Xp) +hi3(Xg - Xg) +1g (X - Xg)
From (5.14) and (5.15), the spherein (5.13) can be expressed as

2\ 2 2\ 2 - 2 — A2
[ 144 (X4 = X) 7 +[15(X3- X3) + 13 (X4 - Xg) [T +]1n(X5 - X5) +15(X3 - X3) +154(X4 - %) |

+|I’]_.L(Xl- Xl)‘”lz(xz' X2)+I‘13(X3— X3)+r14()_(4' X4)| £Rs|3
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Figure 5.2 (a): Original Sphere in Working of Sphere Decoding
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Figure 5.2 (b): New Sphere with Reduced Radiusin Sphere Decoding
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Using the sphere in (5.16), the details of SD method are now described with the
following four steps:

Step 1: Referring to (5.16), we first consder a candidate value for %, inits own single
dimension, that is, which is arbitrarily chosen from the points in the sphere
[1pa(Xy - 724) |2£ RgD. In other words, this point must be chosen in the following range:

- R _ .~ R
T4 T4

Let X,denotethe point chosen in step 1. If there exists no candidate point satisfying the

inequalities, the radius needs to be increased. We assume that a candidate value was
successfully chosen. Then we proceed to step 2.

Step 2: Referring to (5.16) again, a candidate value forx, is chosen from the pointsin
the following sphere:

|r44(%4 - yA<4) F+] (X3~ yA(3)""’34(§t4 - >A<4) §2 Ré) (5.18)

which is equivalent to

~ ARG 1Ry - Xg) P - Fay(Ry - X RS gy~ Xg) P - raa(¥y - X
5, - YR - RIP - ma- %) o oo VR Iha- %) - R

4)
= - (5.19)

Note that %, in (5.19) isthe one already chosen in step 1. If a candidate value for x,
does not exist, we go back to step 1 and choose other candidate value%,. Then search for
X, that meets the inequalities in (5.19) for the givenk, . In case that no candidate value x,
existswith all possible values of %,, we increase the radius of sphere, RSD, and repeat the
step 1. Let %,and %, denote the final points chosen from step 1 and step 2, respectively.

Step 3: Given %,and %,, a candidate value for x,is chosen from the points in the
following sphere:

|r44(§§4 - >_A(4) P+ rss(%s - >_A(3) + r34(§§4 - i4) P+ (X - iz) + rzs(%s - is) + r24(%4 - >A(4) e RéD (5.20)



Arbitrary value is chosen for %,inside the sphere of (5.20). In choosing a point, the
inequality in (5.20) is used as in the previous steps. If no candidate value for x,exists, we
go back to step 2 and choose another candidate value%,. In case that no candidate vaue for
X, exists after trying all possible candidate values for %,, we go back to step 1 and choose
another candidate value fork,. The final points chosen from step 1 through step 3 are
denoted as %,, %,, and %,, respectively.

Step 4: Now, a candidate value for %, is chosen from the points in the following
sphere:

| r44(%4 - %) F +] rxs(%s - Xa) +r34(%4 - X,) F + rzz(%z - Xy) ‘”23(%3 - X3) +r24(%4 - Xg) P+ 105 (%; - X))
+2(Xs - Xp) +1i3(Ka - Xg) +a (¥, - X) FERG
(5.21)

An arbitrary value satisfying (5.21) is chosen forx, . If no candidate value for x, exists,
we go back to step 3 to choose other candidate value for , . In case that no candidate value
for x,exists after trying with all possible candidate values for %,, we go back to step 2 to
choose another value forx,. Let %, denote the candidate value forx,. Once we find all
candidate values, %,,%,, %,, and %, then the corresponding radius is calculated by using
(5.21). Using the new reduced radius, step 1 is repeated. If [ %, %, %, %,] turns out to be a

single point inside a sphere with that radius, it is declared as the ML solution vector and
our searching procedure stops.

ML detection over MIMO channels can achieve the lowest BER for a given scenario,
but at the expense of prohibitive complexity [1]. Thus, there is a continuous search for
computationally efficient detectors, such as the sphere decoding (SD) agorithms, which
are a set of tree search detectors with reduced complexity compared to the ML exhaustive
search detector due to setting a radius constraint [2].

These algorithms perform a closest lattice point search for each component of the
received vector, which is feasible due to the fact that the constellation set to which the
transmitted symbols belong is known in advance. The existing SD algorithms can be
implemented to operate within a finite set of real numbers, thus called real sphere decoders
(RSD) [3], or to perform the search directly within a finite set of complex numbers,
commonly known as complex sphere decoders (CSD) [4]. Since these detectors provide
the ML solution to the detection problem, their evaluation focuses only on their
complexity.
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The complexity of SD in terms of the sum of multiplication, division, and square-root
operations, varies, as SNR varies. Asthe SNR increases, the ZF solution x becomes more
likely to coincide with the ML solution vector. The main drawback of SD is that its
complexity depends on SNR. Furthermore, the worst-case complexity is the same as that
of ML detection, although the average complexity is significantly reduced.

5.3 Channel estimation errors

An important issue in a multi-user MIMO transmission is the impact of imperfect
channel state information on the general system performance.

In low SNR regions, MSE is dominated by the error due to the noise. Hence, the MSE
linearly decreases with the SNR. The influence of the channel estimation errors is much
higher at the user terminals than at the base station due to the processing and power limits.
In order to reduce the influence of the channel estimation errors on the performance of the
decoding techniques we can invest in more processing power to implement more efficient
channel estimation techniques.

One more straightforward way of reducing the channel estimation errors is to increase
the transmit power or antenna gain. Values of the transmit power and the antenna gain are
set by the government regulations so there we do not have too many options. Therefore, a
logical conclusion is that if we cannot improve the estimator performance by increasing
the processng power, then the other option is to either increase the number of antennas or
to reduce the number of spatial data streams.

In the next chapter, system level investigations and simulation results show that the last
approach (SD) gives very good results.
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Chapter 6
MGF and PEP based BER Performance
Analysis of Multi-User MIMO System
with Linear and Non-Linear Equalizers

MIMO is a 4G Wireless Communication Technique and is supposedly has the most
promising reign. MU-MIMO has an edge over 4G wireless systems due to their better
spectral efficiency, diversity gain and interference suppression. This paper incorporates the
moment generating function (MGF) based closed form upper bounds of pair wise error
probability (PEP), which are derived for MU-MIMO systems. These upper bounds are
then extended for different equalizers like, ZF , MMSE , ML and SD. BER expressions are
also derived for MU-MIMO system under independent and spatially correlated quasi-static
Rayleigh fading channels. Simulation results for upper bounds are drawn and akin
performance with the anal ytical results have been subsume in this paper.

In this Chapter, unique approach of coalescing SINR, MGF and PEP [94] is being
employed to derive bounds on BER for above mentioned MU-MIMO system. At the outset,
MGF of SNR is calculated for independent and identically distributed (i.i.d) and spatialy
correlated channels [95]. Later on, it isused to estimate PEP for the same system.

PEP [96]-[97] will act as basic building block for the derivation of union bounds to the
error probability. The Chernoff bound [98] is then applied to get closed form PEP
expression. These expressions are then extended for ZF, MMSE, ML and SD equalizersin
multi-user scenarios [97]-[98]. It is scrutinized that the computational complexity of SD
gets reduced than the ML. Also, we achieved diversity order of MgxM+t with M L-decoder
and Mg+ Mt — K+1 with ZF and MM SE equalizers, where K is the number of users.

The reported work incorporated the effect of imperfect CSI which caused due to both
CSl delay and channel estimation error [8]. This upshot is analyzed by calculating post
processing SINR and its relation with BER [99]-[102].

In this chapter, our intention is to analyze the BER performance for multi-user case. A
digtinctive approach based on SINR, MGF and PEP is used to derive and evauate
generalized closed-form BER expressions for MU-MIMO system. BER performance is
analyzed for the MU-MIMO system under different equalizers and different no. of users.
The analysis of BER performance is aso done for different modulation schemes with
independent and spatialy correlated channels.
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MU-MIMO channel is basically arealization of standard i.i.d Rayleigh fading channel.
The received signal vector Y; of thei™ user at the t™ symbol interval can also be written as

Yi[t] = H [ I o +wilg 6.9
Vi =HIg o sl & Hldaldsd +wi 62)

where s, satisfies E[s¢ s ]= Es and E; is the symbol energy. Assuming that the delay is
equal to ty symbol intervals, then the beam forming matrix C[t] can be generated with the
help of CSI (H[t- tg]). Here, delay tyis different for the different downlink symbol time slot.
For MU-MIMO downlink system with ZF equalizer, C[t] is normalized and inferred as

(HLt- tg])'
Clt] = —= 6.3
] Il (ALt- taD)" Il ©3
where H[t- td] is the channel estimation result a the (t- to)" symbol interval. For the
given H [t- tg], post-processing SINR is calculated. Substitute (6.3) into (6.1), the received
signal vector can be expressed as

A e [F2e[t- tl

(HIt- ty))'
Yilt] = Hilt] — o5 St + wil] (6.4)
Il (HIt- ta]) [l
oo Sk I Paft- 1)
éhyft- ta] 0 gre,ll:]l[t Wl . u
Shalt- tg]fl &reoholt-te] &Vt Ire2lZlt- tl g
~ - e u e u
S U=e uteé U (6.5)
¢ u e a é a
%’1[. ]é é a é _ U
k[t- ty % ﬁ[t-t]gé 1
eK"'K di] é > a
& Q

The elements of random matrix H [t- t4] arei.i.d zero mean complex Gaussian random
variables with unit variance having dimension K x M+, the elements of the random vector
(k[t-tq] are dso i.i.d zero mean complex Gaussian random variables with unit variance but
with dimension 1x M, pek IS the correlation coefficient between the actual channel gain
and its estimation for user k. It can be expressed as

per E{hglt- talh g lt- t4l} 6.6)

wherek=1, 2,...K; j=1,2,..... M1 ; 0<pex< 1. Both H[t] and H [t- tg] follow jointly
complex Gaussian distribution which can be presented as

39



. N

1-r tl -
éh[tlu érghft-ty] 0 m elt] :
Chalt]Y Srgoholt- tal z
eltly gla2nlt-lal g 1- |rd'2| eZ[t]L]

u= l:J+

(6.7)

u
u

g - : . :
[t & axhklt- ty1d & H
‘ " g1 o[ et

where the elements of the random vector e[t]are i.i.d zero mean complex Gaussian

random variables with unit variance having dimension 1 X M+, pqk iS the correlation
coefficient between the current channd gain and the delayed one for user k and is defined
as

> (D> (D> (D> (D> (D> (D> (D> (D

pax By [t]ﬁll,lj [t- t]} (6.8)

wherek=1, 2,....K; j=1,2,..... M1y; 0< pyx< 1. Because each user can have a different
mobile velocity, pqx Of each user can be different. Defining pk = pax pex and substituting
(6.5) and (6.7) into (6.6), then, the received signal vector can be expressed as

Y[t] = Seqft] + Weq[T] (6.9)

where syt]= gseqyl[t],seqyz[t],..,sequ[t]HMTX. Sy[t] is directed to effective post processing
signal which is given by

ér[tls[t] 0

. aroltls[tl
fl=——— & a 6.10
%i]IKWPtMVMQ { (619

€ : u

&  [tIsc[1]H

where weq[t]= gNeqvl[t],Weqqz[t],..,wequ[t]HMTx. Weqt] is referred to effective post processing
noise which is given by

rd,l\/l' IV e1 |221+\/1' " g1 fe H

u
rd,Z\/l' ITe2 |222+\/1' " g2 Fe, a
0 (Ht-tg))"
all (Lt ) I
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: d,K\/l' |7 ek Fz +\/1' 1" ax IZGKH

Weg[t] =

g+uft (6.11)
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The covariance of weq[t] can be computed as

E [Weqult] W eqilt]]= Ef1-| 1 2D+0°wi (6.12)

Based on (6.10) and (6.12), the post-processing SINR per symbol (y«[t]) on the data
stream of user k can be derived as

e il (6.13)
(o @ Iri P+ DI (ALt- D) I -

where ysx = EJ cszw,k_ vsk is the SINR of downlink data symbol for MU-MIMO ZF system.
The expression for the average BER [3] of MU-MIMO ZF system with M-QAM modulated
signals can be obtained from (6.13). If the SINR is y,x and MMSE is chosen for channel

estimation for user k, then
I ex| =,/g"%+ 6,0 (6.14)

The power spectrum for a time-varying Rayleigh fading channel follows the Jakes
model, which can be expressed as

PSyk= Jo(2ntyTs.Fak) (6.15)

where J, is a zero order Bessal function of the first kind, Fqx is the maximal Doppler
frequency shift of user k, and Ts is the symbol duration. So correlation coefficient can be

written as
L :Jo(aadz-a,k),/q%+qok) (6.16)

The expression of SNR vy isfurther used in the calculation of MGF, PEP and BER.

6.1 Performance Analysisof MU-MIMO Systems

MU-MIMO system is analyzed using MGF, PEP and BER and their expression are
derived in subsequent sections.
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6.1.1 Moment Generating Function (M GF) Analysis

For a given random variable y and probability distribution function p (y), MGF can be
written as

My(S) Elexp(-sy)] (6.17)
The evaluation of the probabilityisp P (§>o), whose MGF can be expressed as

M:(9)  Elexp(- )] (6.18)
Mo(S)  Elexp(-sw] (6.19)

where £ and o are random variables and consider b=x- w. Now probability is p=P
(A<0). Assume that the MGF of A is as follows

Ma(s) Efexp(- sD)] (6.20)

If random variables are independent, then MGF can be written as

M4(S) = Mo(S) M (-9) (6.21)
Ma(S)  Elexp(- sD)]
= Mg(s) Mo(-5)
= M(s) (1-29 2 (6.22)

For MU-MIMO system, the receiver combines the signals through Mgy receive antennas
coming from M+ transmit antennas optimally for k users. Thus, the MU-MIMO channel
can be represented with fading coefficients as

1 Mg M; K
H= a a ahd 6.23
MRMTk i=1 j:]_k:]_ k ( )
The equivalent SNR can be expressed as
%= G IHIE (6:24)
- _ 1 RE
9 = MMk N, (6.25)



where R is code rate, Es is symbol energy and N, is block length [4]. Now, MGF is
calculated on the basis of correlation among fading coefficients [5].

6.1.1.1 Uncorrelated channels

When the coefficients of the MU-MIMO channel H are independent, the resulting SNR
will be the sum of Mg M+ and k independent exponentia variables and follows chi-square
distribution. When the fading coefficients of channel matrix H are independent i.e. thereis

no correlation among them. Then, the MGF of probability distribution function can be
presented as

M,(s) = § (1-sg)® (6.26)

where D= Mg MK, is known as diversity factor.

6.1.1.2 Spatial-correlation channels

If the fading coefficients are spatialy correlated and assuming that the correlation
among the fading coefficientsis time-invariant. Then, the MGF of SNR is given by

1

Mp My K ’
M,(9=O O O@-d,l;«q) (6.27)
i=1 j=1k=1

where A and Ajx are Eigen values of correlation matrices of MU-MIMO system at the

receiver and transmit side respectively. From (6.23) and (6.24), MU-MIMO channel can be
presented as
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(6.24) can be rewritten as
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Then by using (6.28) into (6.27), the expression of MGF can be derived as

M,(s) =E [exp (-s & [HI)] (6.29)
M M: K
M.() = gggE{ap( 9 i PG ) (6:30)

PEP can be expressed in terms of MGF as follows

P=E[Q (9] (6.31)

where § is random variable which can be represented for |F (Independent fading) and BF
(block fading) channel as shown below

IT 1 MR M K
i r & & &{IH)%0D- %GDIP}  (Forerre)

T TV, i =k
X=f

it 1 Ma My (6.32)
il & &{IHGXED- %) (BRchere)
’|‘T b =1 j=1

6.1.2 Pair wise Error Probability (PEP) Analysis

PEP serve as basis for calculation of union bounds on the error probability. An MGF-
based approach is presented here for the exact calculation of the PEP which guarantees
arbitrarily high accuracy [6], [7]. This approach is described here for the calculation of E
[Q (4/x )] for anon-negative random variable &

M:(s) E[exp(- x)] (6.33)

The PEP calculation is done for different equalizers which is described bel ow

6.1.2.1 PEP calculation with ZF Equalizer

ZF equalizer is also known as linear equalizer which has lower complexity than ML
equalizer. In MU-MIMO system model ZF equalizer can be implemented as

B (H'HyH' (6.34)



This matrix is known as ZF equalizer. By multiplying (6.35), on the both side of (3.2)

BYi= BHix + Bw; (6.35)
K
where XxX=agsg=Cs
k=1

Equation (6.35) can be further decomposed, then the covariance of noise is calculated
as (H™H);} . PEP given on H with ZF equalizer can be calculated as

P(Xk1® Xkz2H) = Q(d2N\2) (6.36)
_ _ |9 11D, [P
where DX =X1- Xz, G2 = [T —E2 and [JAX| =X Xz I
(H'H)k

1

The density function of random variable -
(H'H)k

1 Mg +Mq- K

= m exp(- a) (6.37)

Therefore, PEP with ZF equalizer can be caculated using (6.37) and can be expressed as

&g, [| D I a %"= exp(- a)
P (Xk1® Xk 2H) = oQ‘é > B M+ M- - K)! da (6.38)

1¥ &g |IDx P aOaMR+MT exp(- a)
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By comparing the upper bound, it can be observed that the diversity order of ZF
equalizer is Mrc+ M1y -K+1. The diversity order of ZF isless than the ML equalizer. Hence
decoding complexity decreases in ZF equalizer. Actualy, the complexity of ZF increases
linearly with the user number K, while in M L-decoder it increases exponentially [8]-[10].

6.1.2.2 PEP calculation with MM SE Equalizer

MMSE equalizer is dso a linear equalizer which has lower complexity than ZF
equalizer. MM SE equalizer can be implemented as

Fumse (é I +HH) H' (6.41)

By multiplying Fymse, on the both side of (3.2) we get

Fumse Yi= Fumse Hi X + Fumse Wi (6.42)

wherex = éK ¢s. = Cs Equation (6.42) can be further decomposed. The SINR (y) can
k=1

be calculated as

& -1

(6.43)

OvmsEk = 1

geil +H' H_
e % k

Then, the PEP calculation on channel matrix H, can be done with the help of MGF as

shown below

M (x) = Q=S 2]y (6.44)

The PEP averaging on channel matrix H can be calculated as

)= E(quimex ) (645)

Pumsex(Xai— %,

g\/IME,le(kl w1 & 6egqvu\/lik|D(k| a0

»—E(}e<pé —_._ 6E§9§D§ Té (6.46)
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Further it can be concluded that the diversity order of MM SE equalizer is Mprx+ Mty -
K+1 same as ZF equalizer. But the PEP of ZF equalizer is greater than the MMSE
equalizer. Hence, the complexity of MM SE equalizer is less than the ZF equalizer. PEP
error performance can be calculated and analyzed in two cases of fading distribution-

6.1.2.2 [A] IF Channel

In this fading channel, the transmitted symbols are affected by independent fading
realization [10]. For thisfading channel, PEP isgiven as

wLRX MoTX Ié . .. . 2 . .. . 2. @
P ® %) =Pgh & El{nyko,n-Hko.l)xk(unn {1k (D H(.)% 0D 1R <0z (6.48)
1=l =1L k= e

MRX MTX K

o o o .. - & . L;I
T & {1 (%09~ % (0 ”2})5 (6.49)

é
P(x, ® %)= EgQ(

where N, is block length.

6.1.2.2 [B] BF Channel

In this fading channel, transmitted symbols are affected by the same fading realization.
For this fading channel, PEP is given as

1 MrMr u
& é{IIH(J,i)X(i,J)-ﬁ(iyl)llz})g (6.50)

Ny izt j=1

P(X® ) = EgQ(
é

Here, consider d= x ® %, whered is known as Hamming weight. Now assuming all-zero
codeword is transmitted, the PEP of a codeword with weight d given the MU-MIMO
channel H with SNR vy of the fading block is

MRX MTX K
P(d[H, y) =Q(/2 él j'{ll élg,,-(k)) (6.51)
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Q-function can adso be written as

p

12
Q(x) =— (-
Po

2

X
6.52
pEmme (6.52)

Now, by rewriting the conditional PEP and taking average over SNR vy to get

P(d[H) =E[P(dH, )]

<
3

LN CDZ7U
NG
’|T O

¥

R
X

(6.53)

H)O,I\)\'O

1 5
Pq 1g0

Here the inner integral is the MGF of SNR y, M(s) =E[€"]. It is evaluated at s=1/sin0
and can be represented as

N\'o

hk

12 1
P(d]H) = & é\n( — q)H o (6.54)

For IF channel, expression of PEP using Chernoff bound can be expressed as
.-D
- U
g a
an ) dgf - (1+dgk) (6.55)
Q

, N T
1%

(u)) ('D/)_{D) (0N

1
P(dlH)= 00

For BF channel, expression of PEP using Chernoff bound (at high SNR) can be
expressed as

K _
P(H) £20 (d5) " 656)
k=1

where D= MgM+k, D isdiversity factor [10].
6.1.2.3 PEP Calculation with ML Equalizer
The density function of received signals is required to analyze the performance of ML-

decoder. To get this function, let us assume that a signal vector x is transmitted from k
users simultaneously. Here channel H is known to base station.
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The density function denoted asf(Y), can be represented as

Z

R

fYIHY= &

i=1

Tx

2 &0C 1Y, (1D~ Hieix .9 1P) (6.57)

[e]

K
A v vk
=p

From (6.57), ML- decoder for decoding signals xx is designed as follows
()’\(l,)’\(z,.., )A(K) = al‘g min()zl’;(ZM;(K)T )A(ll )A(zl )A(K ” Y = HX ” (658)

To decode x, K comparisons of |x,|" |x,|".." x| are required. Where |x| means
cardinality of a set x. Now, calculate the PEP of decoding signals xx. Assuming the signal

vector x; istransmitted and g, is decoded.

Probability of event x, * % can be calculated as Q (d1/72), where Q is the error function

DX=x;- }jand d; = \/ gr(HD((IZ)()T HT) . Approximate of Q-function is as follows

Q> oot T) e 2/)) (659)
By using this approximation, the PEP can be approached as
1 1
P{ X! %H} »Ee@( d%ﬁéexp( d%) (6.60)
1 1
= et IO HH) + opt- 1) HH) (6:61)

From assumptions on the channel matrix H, it is known that the density function of H is

1
K &Pe tr(H"H)) . Therefore, the PEP averaging on H is presented as
\ 1 & 1 T
P{ X1 %} = X X1|H}W9<p(' tr(H H))aH (6.62)

fo@@( tr((HGY' (HGY))cH Gp# P 1(HG) (HEH (6.6

where Glz‘/lK+gD<(D<)Jr , Gz=‘/l,<+—gli)x(D<)Jr _
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To calculate the integrals, use integral transforms A1=HG; and A,=HG,. Thus, dHi=

| det(Gy) [ 2M M) dA, and dH,=| det(G,) [2Mr M%) dA, respectively. Hence, PEP is
written as

UUNEES Q2<MR'MT' K) i 1 Q2<MR' M K)
b 128G 6E0kI(G,) 5 (6.64)
By putting the value of G; and G; into (6.64)
Mg MK Mg My K
x 0 x (0}
1¢ 1 N 1§ 1 N
=3¢ T +=6 T (6.65)
126443 +IpqpotSE 8¢5, +Ipx(Do ™S
& & 4 20 & gf 3 20
Mg My K Mg M; K
x 0 x 0
1¢ 1 N 1§ 1 N
=5 - -6 - (6.66)
12 o+ 6 o+ )
A gt T, + IO
& 4 P & 3 P

Above approximation is very similar to Chernoff bound of PEP for a MIMO system
with Mt transmit antenna and Mg receive antennas. Since each user or transmitter is
independent of transmitting signals, so there is no cooperation among the transmitters.
Moreover, the mgor concern is the PEP for each user in the system. Hence, this
approximation is required to be changed into PEP for each user.

To get the PEP for each user, say the jth user, Xi1= Xiz for kK #1, 1< k < K, and X7 Xgo-
Thus, ||JAX|[? in (70) is equal to [|AX|P=|Xki- X«2 |, and

(Mg My K)

(Mg M;"K)
R 1 (0% 20
X b X »—a?[+— Dx, | =
P ) » 15+ D4 1P«

13?[ O 20
+= o+ | Dx, |P=
6% 3 Il DX, |l 5 (6.67)
From this upper bound it can be concluded that diversity order of the performanceis M+

X Mg, which is consistent with the case of MIMO system having M transmit antenna and
MR receive antennas.

Although the diversity order is high, but smultaneously the decoding complexity is also
very high. It increases exponentially with the user number [8]-[10].
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6.1.2.4 PEP calculation with SD Equalizer

Sphere Decoder is non-linear equalizer which has lower computational complexity than
ML equalizer. Sphere Decoder adjusts the radius of sphere until there exists a single ML
solution vector within the sphere. The density function f(Y) of SD, can be represented as

f(YH, X)=4 & & ———
i=1 j=1k=t MgM{K

exp{- (x- R)THTH(x - >”<)} (6.68)
From (6.68), SD-decoder for decoding signals Xk is designed as follows

(R, Ko X)) =AGMING 5 5 5%, % (X ) HTH(x- %) (6.69)

where % =(H"H) *H™Y . ML solution vector for SD can be determined by the metric
(x- X)"H'H(x- X) . Considering the following sphere with radius Rsp-

(x- X' H'HXx- )< R% (6.70)

Probability of event X, %.can be caculated as Q (Rsp/V2), where Q is the error

function and Dx=x, - X;. Approximate of Q-function is as follows

1  @®RL,0 1 @2R%0
Q(Rsp) o &P —, E+6 exp 3 E (6.71)
By using this approximation, the PEP can be approached as
1 » i &i ﬁg l &i R_éDg
P{x,t % [H} o e(pg . I+a+6 e(pg 3 3 (6.72)
1.9 T o Loy 9 iyt
=——eq(- ~tr(Dx(Dx) H'H)) +—exq(- ~tr(Dx(Dx) ' H'H) (6.73)
12 4 6 3
From assumptions on the channel matrix H
(x- )THH(X- %)= (x- %) RpRX- %) F| R (x- 1) (6.74)

It is known that the density function of H isexp(- tr(RéDRSD)). Therefore, the PEP
averaging on H is presented as
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o . N 1
P{ Xll Xl} = OF{Xl ! Xl | RSD} Mg, Mp K eXp(' tr(R;DRSD)) dRSD (675)
H p " X

Hence, SD reduces the computational complexity than the ML solution vector. The
main drawback of SD is that its complexity depends on SNR [8]-[10]. The worst case
complexity of SD isthe same as that of ML equalizer.

6.2 BER Analysisfor Multi-User MIMO System

In this section, expression for average BER can be presented using two different
approaches: direct SNR based approach and M GF based approach.

7.2.1 BER analysisusing SNR

If the modulation scheme used for transmitting signals is uncoded M-QAM and the
congtellation sizeisM= 2%, BERin AWGN is

i 169, U
r,»0.2expj- Y 7
b p% = lf\; (6.76)

where y is post processing SNR [3]. Substituting (6.8) into (6.76), then the BER at the
t" symbol interval, denoted by py[t], is as follows for the data stream of user k .

foxt] » 02exp) - 2O%OY
1

(6.77)

Because Iy in (6.77) depends on channel estimate H [t- tg], then the expectation of

Mok ON H [t- td] is given as

5 | lea, fI_ “a,
Mokt O.ZE‘XD% (2q-1)x% 0.2exp[ K} (6.78)
, Ht- t) |12 16%/
where 8 /%k(l‘|rk|2)+]l ;X HE-t D' lE . & #-1
K K
X=3 . =3
8 e a M (6.79)
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where ) isasingular value of H[t- tq] and A=( ). SO pux depends on the square Ay of
each singular value of H[t- tg] [3], [11],[12]. The dements of H[t- t4] are i.i.d zero-mean
complex Gaussian random variables with unit variance, so the joint probability density
function (PDF) of the square A, denoted by f(A1, A2, Ak), can be written as follows

K
-ale K | Mr-K

—a k 5 _1.)2
f ] gyl ) =€ S(K-k)!(MTX-k)!S('k 1) (6.80)

Therefore the average BER, denoted by %bk, can be obtained as

~ #ly g _
ok @K M) = 00- 00209 % « 0l gl 0 . 4y (6.81)
00 O a—

k=1! k

The BER function #,, dependson three parametersincluding a, K and My [12].

7.2.2 BER analyssusing MGF
From (6.19)

1= G lIHIE
Thus, the SNR distribution of above expression can be expressed as

Tk

1
fyy) =5 o [‘ ﬁ} (6.82)

Then, the MGF of SNR y with probability distribution function f,(y) is

¥
M,(s) = gegksfg(g)dg (6.83)
K1
M:(8) = Elexp (sl = Q e (6.84)

After calculating the MGF, pair wise error probability can be expressed in terms of
MGF asfollows
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eXp?
G

P= oQ(@ ) f4(0) dg= oQ(JE ) ——Ldg (6.85)

Now, by writing the conditional PEP and taking average over SNR vy to get

P(dlH) =E[P(d[H, )]

% ..

12MaM K ¥ g (K) 6
== 0000 pexpe —5—dg ;(K)dg (6.86)

Pg=0i=l j=Llk=1g=0 € 2SiN“Qg

Here the inner integral is the MGF of SNR y, M,(s) =E[€""] evaluated a s=1/sin’0. Now
we can write

1/2 MTK

e d o
== OOOOM ke <5 -dq
P (dH) = Povia i 29 dn?qz (6.87)
BER expression can be calculated using (6.87)
d L
pb— EA «P(d|[H) (6.88)

Here 1<L.<d, d is hamming weight, A4 is multiplicity of the symbol with hamming
weight d and P (d|H) is PEP of SNR v [3]. Thus, the BER expression is evaluated using
MGF and PEP. The MGF based approach is used to evaluate PEP and then PEP is used to
analyze and to get the expression of BER.

6.3 Simulation M odel

For a comprehensive assessment of multi-antenna techniques, it is mandatory to
consider the performance at system level, since many effects of spatial processing, like
multi-user decoding, the impact of spatially-colour interference, and the benefits of
interference management techniques are not tractable at the link level. In this section, we
will investigate the performance of MU-MIMO techniques with precoding and different
decoding techniques.



Major requirements for the next generation of wireless systems include among others
high performance, robustness and adaptability to a wide range of scenarios and terminal
classes.

A

Random Data | Modulation Precoding —
Generator

Demodulation P Equalizer i , { } Channel |

A

Figure6.1: MATLAB Simulation Model

Fig. 6.1 shows the MATLAB simulation model which contains-

Random Data Generator - To generate random binary data, random data generator
is used. It generates data serially. Data stream generated by random data generator
represents the data information to be transmitted.

M odulation- This block does the modulation on the transmitted data stream. | have
used BPSK, QPSK and 16-QAM modulation technique. This block does mapping
of data to symbol using constellation.

Precoding- When symbol is mapped accordingly with modulation scheme then the
stream is fed to precoding block which format the transmitted signal in such a way
that the effect of channel in the transmitted signal get reduced if the transmitter side
knows the channel state information.
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Fading Channel- Precoded data then pass through the channel and experiences
various channel effects.

Equalization- This technique is used independently or in random to improve
receive signal quality. Equalization is used at receiver to mitigate the effect of
channel on received signal by knowing channel response.

Demodulation- This block does demodulation of the signal output form equalizer
block corresponding to the modulation scheme used at the transmitter side.

Some of the goals for the future wireless systems are:

* Improved BER performance with reduced computational complexity
* Improved spectral efficiency and increased user peak datarate

* Increased range or coverage in a cost-efficient manner

» Enhanced interference management

* Adaptivity to scenario and channel conditions.

Channel knowledge is typically described with two sorts of measures; channel state
information and channel quality indicators (CQIl). The term CS| usudly refers to
knowledge of the complex valued radio channel, while CQI, on the other hand, is rather a
real valued measure of the quality of the channel, for example an SINR after receiver
processing that may be used to adapt the code rate, modulation order, and spreading at the
transmitter. The amount of channel knowledge dictates which methods are applicable and
the potential benefits of spatial processing techniques.

MU-MIMO precoding and decoding facilitates the simultaneous transmission of
multiple data streams (SMUX) to multiple users (SDMA) which results in a significant
throughput improvement. In the previous chapter, we have introduced several linear and
non-linear decoding techniques.

Non-linear decoding techniques provide higher diversity than linear techniques at high
SNRs. However, the point where non-linear decoding techniques become better than linear
depends on the specific antenna configuration of the system, e.g., the number of antennas
at the base gtation and the number of user terminals and antennas at the user terminals.

Linear decoding techniques can achieve the sum-rate capacity bound of the broadcast
channel when the number of usersin the system is large and appropriate spatial scheduling
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of users is performed or when the total number of antennas at the user terminas is greater
than the number of antennas at the base station.

Together with a lower computational complexity this renders linear decoding
technigues more favourable for practica implementation than nonlinear decoding
techniques but to achieve improved BER performance, non-linear decoding algorithms are
preferable.

6.4 Simulation parameter

TABLE 6.1 SMULATION PARAMETERS

No. of Receiving Antenna 1
No. of Users 4
Modulation Scheme 16-QAM
Decoding Scheme ZF, MMSE, ML,SD
Spectral Efficiency 4 bits/sec/Hz

The environment specific characteristics that will be used later for system level
investigations are given in the Table 6.1, [70]. The channel is modelled using the
parameters reported in [34].
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6.5 Simulation Results

In this section, simulation results are plotted on the basis of different modulation
schemes for MU-MIMO system. BER performance results are also plotted depending on
no. of users and different equalizers.

6.5.1 Simulation results with different equalizers

In this section, we will focus on the system level performance of both linear and non-
linear decoding techniques.

Fig. 6.2 shows BER performance for Zero forcing decoding technique. Table 6.1 shows
the simulation parameters used in this simulation. Here, | have analyzed the BER
performance for four users equipped with single antenna. Data generated by random data
generator is modulated with 16-QAM modulation scheme. Fig. 6.2 shows that with the use
of zero forcing equalizer, 10"-4 BER can be achieved at an SNR of around 26 dB.
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Figure 6.2: BER analysis for Zero-Forcing Decoder with four users
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Fig. 6.3 shows BER performance for MU-MIMO system which is precoded with dirty
paper coding technique and decoded with Zero forcing technique. Table 6.1 shows the
simulation parameters used in this simulation. Here, | have analyzed the BER performance
for four users equipped with single antenna. Data generated by random data generator is
modulated with 16-QAM modulation scheme. Fig. 6.3 shows that with the use of Dirty
paper coding and zero forcing decoding, 10"-4 BER can be achieved at an SNR of around
17.6 dB. Thus, it can be concluded that combination of ZF with DPC improves the system
performance.
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Figure 6.3: BER analysis for DPC-ZF Multi-User (4) System
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Fig. 6.4 shows BER performance for MU-MIMO system which is decoded with
minimum mean sguare error (MMSE) technique. Table 6.1 shows the simulation
parameters used in this simulation. Here, | have analyzed the BER performance for four
users equipped with single antenna. Data generated by random data generator is modulated
with 16-QAM modulation scheme. Fig. 6.4 shows that with the use of MMSE decoding
technique, 10"-4 BER can be achieved at an SNR of around 17.6 dB, same as combination
of dirty paper coding and zero forcing decoding techniques. Thus, it can be concluded that
combination of ZF with DPC gives the same performance as MM SE.

0

10 :::::::::i::::‘:::::::::i:::: ::::‘::::j:::: p e p—
FCC--O-C-C-CIC-C-C-I-CC---o--ZZ1----CH . M
————— ~-- -t --r---a----a----rq —O©— MMSE Equalizer {
””” e e e e |
'''' s e e e e e e e e |

S S H N P IS N

| | | | | |

.1 | | | | | |
77777777777777777 e ) (N

10 e Y _ L - _ -~ - - _ _J_ - ‘[ ””4gJ-_”-_”-”3J--”-—-—btZ-Z-—~-d
FC--O----1-°°JL_---J-C---1----C---o---Z-1----ct----
””””””” B e I E e
777777777777777 5 e N E

7777777777 e e e e
| | | | | |
””” i R R B E e R
. | | | | | | |
102:i:::‘::::i::::b::::‘:::: - - T-TZ-—Z=-—<—<™— ‘:::::‘::::E::::
77777 B o S
C - - - I ”_ """ E”_””_J”"”-”-”~-1=°x%&&» [ N |
***** { e e e -4 ===t === —
D: """ I e e D e I
|_|J ***** { i o e e e e S i -+ - = - -t - = - —
o L____ A A S IV B [ R AR
| | | |
.3 | | | |
77777 l_ - _ 1 - _ _ L _ _ _ >,

10 8 o . o
FCC-C-O-C-CC-IC-C-C-ICC-C-C-OC-CC-C-Ii--C-CZCC-I-C-o-ZIZC-®W-I--ZCZ-Zo:
**** (e e e E |
77777 \—-—- - - T- - - - - - - 7\- - == |
""" \-—-——-T - - - - - - -\ - -~ |

| | | | |
77777 T T R N N e R N
- | | | | |

104:::::‘::::£::::E::::‘ ,,,,,,,,,,,,,, e e S
77777 B |
e I ) DY
***** /-t - |/-"—-"—-"—-"+-"—-"—-"—-"FF—-—"——"—-—"|-"—"—— 74— == —f - - - —
77777 5 [ H
***** |-t/ -"—-"—-"—-"*4+-"—-—"—-"—"FF—-"—="——=-"—"=—"—"74 == =" - = = —
,,,,, o __+‘t____v___‘____4+____v___ 0 ___________]

| | | | | | | | |
| | | | | | | | |

10'5 ! ! L L L L ! ! !

0 2 4 6 8 10 12 14 16 18 20
SNRin dB

Figure 6.4: BER analysis for MM SE Decoder with four users
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Fig. 6.5 shows BER performance for MU-MIMO system which is decoded with
maximum likelihood (ML) technique. Table 6.1 shows the simulation parameters used in
this smulation. Here, | have analyzed the BER performance for four users equipped with
single antenna. Data generated by random data generator is modulated with 16-QAM
modulation scheme. Fig. 6.5 shows that with the use of ML decoding technique, 10"-4
BER can be achieved at an SNR of around 10 dB, which is far better than the linear
decoding techniques and the combination of dirty paper coding and zero forcing decoding
techniques. Thus, it can be concluded that non-linear decoding techniques provides better
performance than linear. Simultaneoudy, ML has large computational complexity.
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Figure 6.5: BER analysisfor ML Decoder with four users
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Fig. 6.6 shows BER performance for MU-MIMO system which is decoded with sphere
decoding (SD) technique. Table 6.1 shows the simulation parameters used in this
simulation. Here, | have analyzed the BER performance for four users equipped with
single antenna. Data generated by random data generator is modulated with 16-QAM
modulation scheme. Fig. 6.6 shows that with the use of SD technique, 10"-4 BER can be
achieved at an SNR of around 9 dB, which is far better than the linear decoding techniques
and the combination of dirty paper coding and zero forcing decoding techniques. Thus, it
can be concluded that non-linear decoding techniques provides better performance than
linear. Simultaneously, SD gives slightly better performance than ML. It also mitigate the
drawback of ML. SD has very less computational complexity.
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Figure 6.6: BER analysis for Sphere Decoder with four users
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Table 6.2 shows the smulation results of all the decoding techniques.

TABLE 6.2: COMPARISON OF SIMULATION RESULTS

Zero- Forcing 10"-4 26
Zero- Forcing with DPC 10"-4 17.6
MMSE 1074 17.6

Maximum Likelihood 10"-4 10

Sphere Decoder 10"-4 9

6.5.2 Simulation results with various parameter:-

In this section, smulation results are plotted on account of different modulation
schemes in both i.i.d and spatially correlated Rayleigh channel. BER performance results
are also simulated depending on no. of users, diversity order and different equalizers.

Fig. 6.7 demonstrates BER performance analysis in i.i.d Rayleigh channel with two
users under different modulation schemes like BPSK, QPSK and 16-QAM etc. From this
Fig., we get BER of 10° at SNR of about 6.8, 7.4 and 8.2 dB in BPSK, QPSK and 16-QAM
respectively. Simulation results show that BER performance is better with BPSK as
compared to QPSK and 16-QAM modulation scheme.
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Figure 6.7: BER analys s with different modulation schemesin i.i.d Rayleigh channel
with two users

Fig. 6.8 shows BER performance scrutiny in spatially correlated Rayleigh channe with
two users. From thisFig., we get BER of 10 at SNR of about 7.5, 8.2 and 8.9 dB in BPSK,
QPSK and 16-QAM respectively. Results in Fig. 6.8 are of same pattern as of Fig. 6.7. On
comparing results of Fig. 6.7 and 6.8, it can be concluded that the BER performance of i.i.d
is better than the satially correlated Rayleigh channe for each modulation scheme.
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Figure 6.8: BER analysis with different modulation schemes in spatially correlated
(p=0.7) Rayleigh channel with two users

Fig. 6.9 shows the BER performance for multi-user environment. Simulation results are
plotted for single, 2-user and 4-user. From this Fig., we get BER of 10° at SNR of about
7.9, 6.7 and 5.6 dB in single, 2-user and 4-user respectively. Simulation results in Fig. 6.9
illustrate that BER performance improves as the no. of usersincreases.
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Figure 6.9: BER analysis with multiple users

Fig. 6.10 shows BER performance analysis for different equalizers (ZF, MMSE, ML and
SD-equalizer) with two users. From this Fig., we get BER of 10® at SNR of about 9.6, 8.9,
6.7 and 6.4dB in ZF, MMSE, ML and SD-equalizer respectively. Simulation results show
that BER performance is approximately similar in ML and SD- equalizer. Further it can be
concluded that BER performance is improved in SD-equalizer than ML, MM SE and ZF.
Simulation result also shows that MM SE has better BER performance than ZF-equalizer.
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It can aso be concluded that al the theoretical results are approximately similar to
simulated results.
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Chapter 7
Conclusion and Future Scope

In this thesis, the problem of designing multi-user MIMO processing techniques has
been addressed. The goal was to define one technique that can target several optimization
criteria, a technique that will be able to adapt to different qualities of channel state
information and that can combine instantaneous and long-term channel state information.

Information theoretic results have shown that the linear increase of capacity in a
multiuser MIMO system is possible to obtain only by spatially multiplexing users and by
sending multiple data streams to each user. It is known that the maximum sum-rate
capacity in a multi-user uplink system is achieved by MM SE decoding and successive
interference cancellation. In order to achieve high data rates foreseen by the information
theoretic investigations in a multi-user downlink system, it is necessary to use "dirty
paper” codes (DPCs). DPCs are in general very complex and almost impossible to
implement. MMSE suffers from a performance loss when users are equipped with more
than one antenna.

The other way to improve the system performance is to perform joint processing over a
group of multi-user MIMO channels in different frequency and time slots. Joint processing
of MIMO channels yields maximum diversity regardless of the level of multi-user
interference. Asthese techniques rely on the fact that there is either instantaneous or long-
term channel state information (CSI) available at the base station to perform precoding and
decoding, it is very important to investigate the influence of the transceiver front-end
imperfections and channel estimation errors on their performance. The CSI a the
transmitter can be acquired either through feedback of the channel coefficients or by using
the estimates of the channel transfer function and the reciprocity principle. In a TDD
system the reciprocity principle allows us to use the estimates of the channel on the uplink
to perform precoding on the downlink. This significantly reduces required feedback
needed to acquire the channel state information at the transmitter. However, in this case
the problem of the influence of the radio front-end characteristics on the performance of
the system arises. This is a consequence of the fact that the transfer functions of the
transmit RF chain and the receive RF chain in general are not identical. In order to cope
with the RF front-end impairments and to meet the conditions so that reciprocity principle
holds, it is necessary to either perform calibration or use reciproca transceivers. We have
shown in our simulations that channel estimation errors result in an SNR loss and that by
using the self-calibration methods reported in the literature only at the base station, the
influence of the calibration errors on the system performance is almost negligible.
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Another important issue is the complexity of the multi-user MIMO precoding and
decoding techniques. RF complexity is directly related to the number of antennas and the
number of separate RF chains. The baseband complexity is related to the relative energy
and cycle count required for one run of the multi-user MIMO processing algorithm.

Non-linear decoding techniques provide higher diversity than linear techniques at the
high SNRs. However, the point where non-linear decoding techniques become better than
linear techniques depends on the specific antenna configuration of the system, e.g., the
number of antennas at the base station and the number of user terminals and antennas at
the user terminals. Linear decoding techniques can approach the sum-rate cgpacity bound
of the broadcast channel when the number of usersin the system is large and appropriate
spatial scheduling of users is performed or when the total number of antennas at the user
terminals is greater than the number of antennas at the base station. Furthermore, linear
decoding techniques can adapt from instantaneous CSl to the long-term CSI and alow the
combination of instantaneous and long-term CSI unlike non-linear decoding techniques
which reguire the exact CSI in order to be able to pre-subtract the non-causal interference.

Together with a lower computational complexity this renders linear decoding
techniques more favourable for practical implementation than non-linear decoding
techniques but linear decoding techniques are only concerned about channel effect
optimization, whereas non-linear decoding techniques are adaptive in nature and these
decoding techniques consider channel effect optimization as well as inter symbol
interference (I1S1). On the other hand, linear decoding techniques have less computational
complexity than non-linear decoding techniques.

System level investigations have shown that MU-MIMO precoding and decoding
techniques provide several times higher data rates than SISO systems with only slightly
increased pilot and control overhead. The biggest problem is the influence of user
mobility, and calibration and channel estimation errors on their performance. A
straightforward way to reduce the sensitivity of these techniquesto real-life impairmentsis
to deploy more antennas at the base station or to jointly process the signal from a group of
spatialy distributed antenna arrays. Distributed antenna arrays are capable of providing
very large spectral efficiencies with reduced sensitivity to the real-life impairments at the
cost of increased complexity.

This thesis aso endows with SINR, MGF and PEP based BER performance analysis for
MU-MIMO system. The analysis is done for both i.i.d and spatially correlated channels.
As anticipated BER performance is better using i.i.d channels than spatially correlated.
Further, the MU-MIMO system is anal ysed by varying number of users, applying different
modulation schemes and with different equalizers.
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Finally, this chapter is wrapped up that MU-MIMO system offers best results for 4
users with BPSK modulation under i.i.d channels. Performance of MU-MIMO system is
better with SD than the linear (ZF, MMSE) and non-linear (ML) equalizers. Work can be
extended to build up new-fangled agorithms which can further trim down system
complexity and provide improve BER.

At the end, it can be concluded that multi-user MIMO processing is capable of
providing high spectral efficiencies and thus will be an important part of the next
generation wireless systems. However, special care must be taken during the system
design, in order to account for the deployment scenario characteristics, hardware
imperfections and limitations that might reduce their gain.
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Appendix A

Derivation of (33)
We prove-
agmin||Y - Hx |P=argmin(X- X)" H'H(X- X) (33)
X X

WhereX = (HTH) *HTY | which is the unconstrained solution of the real system. It

shows that the ML solution can be determined by the different metric (X- X)" H'H(X- X).
Consider the following expansion-

Y - B |?=)| Y - HX - HX + HX |]?

I
<

(¥ - Fx-

;

X +Hx)" (Y - HX - HX +HX)

{(\7- FR)T + (F - FI)’()T}{(\_(- FiX) +(F% - F®)}
{

(V- FR)T(Y - R} +{ (Fk- FR)T (k- P}

+ (FR- FR)T (Y - B0} +{ (7 - )" (FR - i)}

Where {(FD_A(- FD_()T(V- I:l)_A()} :{(7_ F[)_A()T(FDA(_ F|)_()} =0
Thus 1Y - AR IP={ (Y - FROT (Y - FIR) +{ (A~ Fi)T (P - Fi)
Aswe know X=(HH)*HTY

I~ P P={ (7 - FGHTRY SRT9)" (V- RETRY ST ) +{ - 0TRTRG- %)
Since (Y- HHHY 'HTY) :{ - H(HTH)-l} v
V{1~ AETRY AT {1 - FETRY Y)Y = V1< FETRY TRT)1 - TR ) Y
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