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ABSTRACT 

 

 

We live in a data age, it means that today there is big problem for processing the data. Data 

processing is required everywhere like industry, educational centers or research center. So 

handling of these types of huge data is big problem. Graphs are analyzed in many 

important contexts like page rank, protein-protein interaction networks, and analysis of 

social networks. Many graphs of interest are difficult to analyze because of their large size, 

often spanning millions of vertices and billions of edges.  We believe that MapReduce has 

emerged as an enabling technology for large-scale distributed graph processing. Its 

functional abstraction provides an easy-to-understand model for designing scalable, 

distributed algorithms. The open-source Hadoop implementation of MapReduce has 

provided researchers with a powerful tool for tackling large-data problems. 

           In this work, we analyze the programmability and efficiency of minimum spanning 

tree graph algorithms on Hadoop using the MapReduce model. MapReduce provide 

parallel execution of the program that can be written in any language java, C++, Perl, Ruby 

etc. I have run a WordCount algorithm and design a minimum spanning tree (MST) 

algorithm called Round Robin minimum Spanning tree, in the MapReduce programming 

model. We have taken the problem of finding the minimum spanning tree by the Round 

Robin algorithm of a large graph, which is an important building block for many graph 

algorithms. Minimum Spanning Tree algorithm, comprising of three stages i.e. Find-Min, 

Connect-Component and Merge.  
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Chapter 1 

INTRODUCTION 

  

1.1  Introduction 

In the recent years, Data-intensive-computing and Cloud Computing [6] becomes 

more and more popular and growing rapidly. Almost all of the well-known enterprises in 

IT field were involved in this cloud computing carnival, including Google, IBM, Amazon, 

Sun, Oracle, and Microsoft and more. 

The industry is focusing on cloud computing not only because of its growing, but 

also for its outstanding flexibility, scalability, mobility, automaticity, and the most 

important point is that it helps organizations to reduce cost. Lots of companies have 

published their products which were claimed using cloud technology. The product line 

covered from low level abstraction such as Amazon‘s EC2 [13] to higher levels like 

Google‘s App Engine etc. 

The amount of data available and requiring analysis has grown at an astonishing 

rate in recent years. For example, Yahoo! Processes over 100 billion events, amounting to 

over 120 terabytes daily [7, 9]. Similarly, Facebook processes over 80 terabytes of data per 

day [9, 10, 11]. Although the amount of memory in commercially available servers has also 

grown at a remarkable pace in the past decade, and now it exceeds from hundreds of GB, it 

remains woefully inadequate to process such huge amounts of data. 

Modern computers provide high processing, but the manipulation of multiple 

gigabytes of data is still not feasible on a single PC. If one machine takes ten hours to solve 

a problem, one could expect two cooperating machines to do it in five hours. Such an ideal 

is called linear speedup. Additionally, if those two machines could solve a twice as large 

problem at the same time as one machine, there would be so-called linear scale-up. The 

computation has to be split between several machines. But these ideals are hard to attain in 

practice because: (1) in order to divide a problem into suitable sub-problems and prepare 

all participants, there will be some start-up and communication overhead, which eventually 

grows dominant,(2) as the number of participants increases, it will be increasingly hard to 

devise evenly sized sub-problems for all of them, causing bottlenecks, and (3) there may be 
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contention for shared resources, causing interference between participants and overall 

slowdowns. 

A distribution of work among a network of computers is more complicated than 

developing an application which runs on a single computer [28, 29]. The programmer has 

to find a way to divide the work - a task that might not be straightforward. Afterwards he 

has to implement different programs and coordinate their communication. The risk for the 

occurrence of failures and the time for their correction will increase significantly in such a 

system. Even if all programs contain no functional errors, it is not assured that they can 

interact properly. All of these problems lead to the idea of encapsulating the mechanisms 

for splitting the work between several computers in a library. With such a framework, this 

problem has to be solved only once and can be used for different data processing tasks. 

When building a system for manipulating huge amounts of data, the programmer only has 

to provide his own application code and does not have to mind the pitfalls of a distributed 

system. Rapid improvement and availability of cheap, commodity high-performance 

components were the driving force for a new era in computing to use networks of 

computers to handle large-scale computations [1, 6, 7, 11]. A very powerful but simple 

approach for implementing such a framework is provided by the MapReduce framework 

[1]. 

MapReduce was  introduced by Jeffrey Dean and Sanjay Ghemawat; Google‘s 

engineers [1, 2] made a great impact by demonstrating a simple, flexible and generic way 

of processing and generating large distributed datasets. It was designed for and is still used 

at Google for processing large amounts of raw data  to produce various kinds of derived 

data  Due to its simple programming interface, a novice programmer can also make 

effective use of large computing clusters [1]. It is more scalable and it works on commodity 

machines‘ cluster with integrated mechanisms for fault tolerance. MapReduce programs are 

written in a particular functional style and may be executed within a framework that 

automatically enables distributed and highly parallel execution. The programmer is only 

required to write specialized map and reduce functions as part of the Map/Reduce job and 

the Map/Reduce framework takes care of the rest. It distributes the data across the cluster, 

instantiates multiple copies of the map and reduce functions in parallel, and takes care of 

any system failures that might occur during the execution. 
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Since its inception at Google, MapReduce has found many adopters. Among them, 

the prominent one is the Apache Software Foundation, which has developed an Open-

Source version of the MapReduce framework called Hadoop  [7, 9, 11]. Hadoop is used for 

a number of large web-based corporates like Yahoo, Facebook, Twitter, Flipcart, Amazon, 

[10, 11] etc., that use it for various kinds of data-warehousing purposes. Facebook, for 

instance, uses it to store copies of internal logs and uses it as a source for reporting and 

machine learning. A lot of companies are owed to its ease of use, installation and 

implementation. 

Hadoop has found many uses among programmers. One of them is a minimum 

spanning tree over large scale graphs in social network sites. Efficient solution techniques 

had been known for many years. However, in the last two decades asymptotically faster 

algorithms have been invented. Each new algorithm brought the time bound one step closer 

to linearity and finally Karger et al. proposed the only known expected linear-time method. 

Modern algorithms make use of more advanced data structures and appear to be more 

complicated to implement. Most authors and practitioners refer to these, but still use the 

classical ones, which are considerably simpler but asymptotically slower.  

 This thesis explores the existing solutions and the more recent algorithmic 

developments. A particular algorithm, Round Robin Minimum Spanning Tree is chosen to 

be designed using Map-Reduce model, and implemented on Hadoop. Scalability and 

performance of this new designed algorithm are evaluated. 

  

1.2   Motivation 

In recent years, Social networks are getting popular and growing rapidly. They 

became consumers of cloud computation, because when the size of social networks 

growing larger, it is impossible to process a huge graph on a single machine in a ―real 

time‖ level execution time. Graph-based algorithms are becoming important not only on 

social networks, but also on IP networks, semantic mining and etc. To handle such large 

graphs data is not possible by the single machine. It can be handled by a distributed or the 

parallel computing way. But here, the programmer has to face a lot of problems like 

division of task, handling the task, integrate the results and the main thing is fault 

tolerance. The solution of such problem is given by MapReduce Framework. 
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Map-Reduce [1] is a distributed computing model proposed by Google. The main 

purpose of the Map-Reduce is to process large data sets paralleled and distributed. It 

provides a programming model in which users can specify a map function that processes a 

key/value pair to generate a set of intermediate key/value pairs, and a reduce function that 

merges all intermediate values associated with the same intermediate key. Map-Reduce has 

become a popular model for developments in cloud computing. 

The minimum-weight spanning tree problem, one of the most typical and well-

known problems of combinatorial optimization, is that of finding a spanning tree of an 

undirected, connected graph, such that the sum of the weights of the selected edges is 

minimum [38, 39]. The minimum spanning tree problem is an important and very popular 

for the following reasons: 

1. It is useful in many applications that uses it directly like, the design of computer 

and communication networks, power lines, leased-line telephone networks, wiring 

connections, links in a transportation network, piping in a flow network, etc. 

2. It is also used to provide a method of solution to other problems to which it 

applies indirectly, such as network reliability, clustering and classification problems. 

3. It is useful as a sub problem in the solution of other problems. E.g., minimum 

spanning tree algorithms are used in several exact and approximation algorithms for the 

travelling salesman problem, and in object matching problem. 

The algorithm to determine the minimum spanning tree used in the Hadoop tool kit 

uses a single mapper and single reducer. We are focused to implement the Round Robin 

algorithm in the Map-Reduce framework with a single mapper and reducer and then extend 

it with multiple mappers and reducers. 

 

1.3   Problem Statement 

Firstly, Map-Reduce model has its own weakness because during the runtime of 

map or reduce function no sharing of information among the different machine is possible, 

not all of graph based algorithms can be mapped onto it. And, even though some graph 

related problems can be solved by Map-Reduce, they may not be the best solutions in a 

cloud environment. Finding out which kinds of graph based algorithms are the most 

suitable for the Map-Reduce Model is another problem of the thesis.  
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Secondly, the term ―Minimum spanning tree‖ covered a large range of algorithms. 

So, how to categorize these algorithms and try to find patterns among them will be 

discussed. This problem also potentially indicates what class of algorithms can be 

implemented using Map-Reduce model.  

     Our main goal of this thesis is to design a Round Robin Minimum Spanning 

Tree algorithm in the MapReduce Framework and analyze the efficiency of the 

algorithm. It leads to the following sub questions: 

Q1 What are the characteristics of Graph? 

Q2 What are the characteristics of the MapReduce Framework? 

Q3 How can we represent a graph in MapReduce model? 

Q4 What will be the (key, value) pairs for Map and Reduce function? 

Q5 What will be the Partition Function? 

Q6 How reducer will communicate with HDFS in the middle to share information? 

 

1.4 Organization of the Thesis 

In Chapter 2, we give the overview on the basics of the MapReduce framework, cloud 

computing and Hadoop with the help of some graph-processing problem in MapReduce 

Model. It explains the fundamentals of the Minimum Spanning Tree algorithm and 

literature review on sequential and parallel algorithm.  It also discusses the previous works 

done in areas related to Minimum Spanning Tree in MapReduce framework on Hadoop. 

In Chapter 3, Some MapReduce version of the Round Robin Minimum Spanning Tree 

algorithm in detail are discussed that we have design. It is explained with an example and 

the storage and performance analysis of the algorithm. 

In Chapter 4, the installation of Hadoop on a system is described. We take a WordCount 

example and run it on Hadoop. Then we discussed the MST algorithm implementation in 

MapReduce framework on Hadoop and its results. In Chapter 5, conclusion and future 

scope of the project is given which is followed by the References. 
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Chapter 2  

LITERATURE REVIEW 

 

The first section gives a general overview about cloud computing. In the second 

section we discuss about MapReduce framework and in third section some graph problem 

and minimum spanning tree algorithms are discussed. The last section gives the 

implementation of some distributed minimum spanning tree algorithms in MapReduce 

framework. 

 

2.1 Literature Review on Cloud Computing 

2.1.1 Cloud Computing  

For maintaining data and applications, Cloud computing uses the internet and 

central remote servers. It allows businesses and consumers to use applications without 

installation and access their personal files on any computer with internet access [5, 6].  

2.1.2 Cloud computing Service Model  

The cloud computing service model is based on the three primary models:  

1. Infrastructure as a service (IaaS),  

2. Platform as a service (PaaS), and  

3. Software as a service (SaaS)  

Where IaaS is the most essential and each top model abstracts from the details of 

the lower models.  

Infrastructure as a service (IaaS): This is the most basic service model of cloud 

computing, cloud providers provide computers – as physical or further often as firewall, 

virtual machines, networks and load balancers. These are provided by IaaS providers on 

demand from their large pools installed in data centers. Local area networks (LAN) 

containing IP addresses are part of the offer. The Internet can be used or - in carrier clouds 

- dedicated, virtual private networks can be configured, for the wide area connectivity.  

 Cloud users install operating system images on the machines as well as their 

application software, to manage their applications. In IaaS model, it is the cloud user who 

takes responsibility for patching and maintaining the operating systems and application 

software. Cloud providers in the general bill IaaS services on an efficacy computing basis, 
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that is, the cost will reflect the amount of resources allocated and consumed.  

Platform as a service (PaaS): Cloud providers deliver a computing platform and or 

solution stack usually including operating system, software, web-servers and, programming 

language execution environment In the PaaS model. Application developers are able to 

develop and run their software solutions on a cloud platform not including the cost and 

complexity of buying and supervision the underlying hardware and software layers. 

Through some PaaS offers, the fundamental compute and storage resources to scale 

automatically to match application demand such that the cloud user doesn‗t have to assign 

resources manually [6].  

Software as a service (SaaS): In this service model, cloud users can access the software 

from cloud clients that application software install and operate by cloud providers. Cloud 

infrastructure and platform are not managed by the cloud users on which the application is 

running. This provides a facility to cloud users to do, not install and run applications on 

own computers it simplifies maintenance and support. Elasticity property makes cloud 

application different from the other application. We can achieve this by cloning tasks on 

multiple virtual machines at run-time to meet the varying work demand. Over the set of 

virtual machine the work is distributed by the load balancer. The Distribution process is 

transparent for the cloud user who sees only a single access point. To put up a large number 

of cloud users, a single instance of cloud applications can be multiple users at a same time, 

it means, any machine in the cloud serves more than one cloud user organization. It is 

frequent to refer to particular types of cloud based application software with a common 

naming caucus called: business process as a service, desktop as a service, communication 

as a service, and Test environment as a Service. 

 

2.2 Literature Review on MapReduce framework 

Although parallelism in a distributed system is always possible, this does not mean 

that it can speed up all single computations. In client-server architecture for example the 

work on the server might still be executed in sequence and therefore does not benefit from 

the parallelism between client and server. In the general reduction of processing time in 

such an environment can be achieved by giving the server more resources than the clients. 

For computations on very large data sets it might be more feasible to split the work among 
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multiple servers. So the algorithm performed by the server should be executable in parallel. 

For this the sequential algorithm has to be transformed into a parallel algorithm. But 

finding such a parallel algorithm is not always an easy task. In fact, it is still a topic for 

research if it is possible to find a parallel counterpart for every sequential algorithm [28, 

30]. Parallelism can be reached for many problems by splitting the input data and run the 

sequential algorithm on multiple processors at the same time. After each processor finished 

its work all computation results need to be merged together to get an overall result. With 

this method there is no need to modify the original algorithm to be applicable to parallel 

computation. 

In most cases the creation of distributed systems is more complex than building a 

single application. Therefore the code for splitting the work, controlling the progress and 

merging the output is placed inside a framework. The application programmer only adds 

his own algorithm to manipulate the data and does not have to care about parallel 

programming issues. It is obvious that the framework needs a simple but powerful interface 

to link the application code. One of the approaches for building such a library leads to the 

MapReduce concept which is used in commercial computer systems today. 

Map-Reduce [1] provides a programming model in which users need to define map 

and reduce functions to specify what kind of calculation should be performed on the 

partition of the input. The names and the general functionality of these two steps are 

borrowed from functional programming languages like LISP and Haskell. Map and reduce 

are standard functions in those languages and are used for list processing. 

Here are some of the simple and interesting examples that can be easily expressed 

in Map-Reduce framework [1, 2]. 

Distributed Grep: It takes a pattern and then finds that pattern in the given file. 

Count of URL Access Frequency: It emits the total count of any URL. 

Reverse Web-Link Graph: it gives the number of sources with names in which target 

URL is present. 

Inverted Index: it gives the list of documents in which a particular word falls. 

Distributed Sort: it returns the records in a sorted manner. 
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ˆ   

ˆ                                 Figure 2.1: Execution of MapReduce model 

 

One iteration of the map and reduce functions is called Map-Reduce Job. Job will 

be submitted to the master node of a machine cluster. According to the definition of Map-

Reduce Job, master machine will divide the input data into several parts and arrange a 

number of slave machines to process these input data partitions in map functions. The 

output of map function will be intermediate result in the form of key-value pairs. The result 

will be sorted and shuffled, then routed to the proper reducer according to the rule defined 

by the partition function. The intermediate result will be processed again in the reducers, 

and turned into the final result. Because of the programs are written in a functional style 

and scheduling of all works and fault tolerance are automatically done by the Map-Reduce 

system itself, those programmers who do not have any parallel and distributed 

programming experiences can study easily and use Map-Reduce to model their own 

problem and process data using the resources on a cloud. 
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The user defines the map function and reduce functions in the form of (keys, value) 

pairs; like, 

Map            :  (k1, v1)            -> list (k2, v2) 

Reduce :    (k2, list (v2))    -> list (v2) 

A mapper is a function (which may or may not be randomized) that receives one 

(key; value) pair as input. The mapper outputs a finite multiset of (key, value) pairs. A 

reducer is a function (which may or may not be randomized) that receives a key k, and a 

sequence of values v1, v2… all of which are binary strings. The reducer outputs a multiset of 

pairs of binary strings (k, vk1), (k, vk2) ... The key in the output pairs is the same as the key 

received by the receiver as input [37]. 

A MapReduce program consists of a finite sequence of MapReduce rounds (α1, β1, 

α2, β2, α3, β3…), where each αi is a mapper, each βi is a reducer, and the subsequence (αi, 

βi) denotes a MapReduce round. The input is a multiset of (key, value) pairs, denoted by 

U0, and Ui is the mightiest of (key, value) pairs output by round me.  

 

2.2.1 Bounds in MapReduce 

The metrics typically used for efficiency in a MapReduce algorithm are the number 

of rounds required, and the amount of communication per round. There currently exist no 

lower bound techniques which can give lower bounds on the number of rounds for 

problems in the MapReduce model. However, research has been done on bounding the 

communication cost of problems with the MapReduce model, which require one or two 

rounds. This is done by modeling the tradeoff between parallelism and communication; 

more parallelization requires more communication [37]. 

The problems are viewed as sets of inputs, outputs, and a mapping of outputs to 

inputs. For example, finding the triangles in a graph: the inputs are sets of two nodes 

(edges), the outputs are sets of three nodes (the triangles), and the mapping of outputs to 

inputs is the set of three inputs representing the edges making up a given triangle. Here q is 

defined as the maximum number of inputs a reducer can receive and r is the replication 

rate, or the number of key-value pairs that a mapper can create from each input. The 

parallelism/communication tradeoff can be seen here as smaller values of q require more 

machines to solve the problem, which leads to more communication. 
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The replication rate is used as a measure of the communication cost for an instance 

of the problem, and is defined in terms of q and the size of the input. Among other results, 

the upper and lower bound of r for finding the number of triangles in a graph of n nodes is  

 

   
 . Similarly, the upper and lower bound of r for finding paths of length two in a n node 

graph is  
  

 
 . The upper and lower bounds on r for matrix multiplication of an n × n matrix 

is 
   

 
however the upper bound only holds for q >=    [1]. 

 

2.2.2 MapReduce Class (MRC) 

The definition for the MapReduce paradigm provides a good framework for 

parallelization. However, it does not lie any restrictions on the program, or provide any 

notion of efficiency. Thus, a MapReduce Class (MRC) must be defined to help classify 

problems and algorithms. Without a restriction on the amount of memory any machine is 

allowed, any problem with a polynomial time classical algorithm could be solved in one 

round. However, the reason to use MapReduce is that the problem can't fit into the memory 

of one machine. Similarly, if any numbers of machines are allowed, the implementation 

becomes impractical [37]. Lastly, some restriction must be placed on the amount of time 

that can be taken. For example, allowing any reducer to run in exponential time would not 

make practical sense. Similarly, shuffling is time consuming because communication is 

orders of magnitude slower than processor speeds. Thus the number of MapReduce rounds 

should be bound in some way. These restrictions lead to the following definitions [10]: 

Definition2.2.2.1. A random access machine (RAM) consists of a finite program operating 

on an infinite sequence of registers, referred to as words [5]. 

Definition2.2.2.2. Fix an   > 0. Let   be some arbitrary problem. We say         if  

there exists an algorithm that takes in a finite sequence of (key; value) pairs,(kj, vj )such 

that n = ∑ (|  |   |  |) , and consists of a sequence of (α1, β1, α2, β2, α3, β3,…….), 

operations which outputs the correct answer with probability at least 
 

 
 , Where: 

 Each µr is a randomized mapper implemented by a RAM with O(log n)-length 

words, that uses O( n
1-ɛ  

 ) space and polynomial time, with respect to n. 
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 Each ρr is a randomized reducer implemented by a RAM with O(log n)-length 

words, that uses O( n
1-ɛ  

 ) space and polynomial time, with respect to n. 

 The total space,∑ (| |   | |)(   )     ) used by the (key; value) pairs output by µr is 

O( n
(2-2ɛ)  

). 

  The number of rounds R = O( log
i
 n). 

It is important to note that the space used by a RAM is measured by the number of 

words used. So, the definition above specifies that each mapper and reducer may use  

O( n
1-ɛ  

 ) words each of size O(log n). 

 

2.2.3 Deterministic MapReduce Class (DMRC) 

MRC is defined for randomized reducers and mappers. We can similarly define a 

deterministic MapReduce Class, DMRC as follows [37]: 

Definition2.2.3.1. Fix an   > 0. Let   be some arbitrary problem. We say          if 

there exists an algorithm which takes in a finite sequence of (key, value) pairs, (kj, vj) such 

that n = ∑ (|  |   |  |) , and consists of a sequence (α1, β1, α2, β2, α3, β3,…….) of 

operations which outputs the correct answer where: 

 Each µr is a randomized mapper implemented by a RAM with O(log n)-length 

words, that uses O( n
1-ɛ  

 ) space and polynomial time, with respect to n. 

 Each ρr is a randomized reducer implemented by a RAM with O(log n)-length 

words, that uses O( n
1-ɛ  

 ) space and polynomial time, with respect to n. 

 The total space,∑ (| |   | |)(   )     ) used by the (key; value) pairs output by µr is 

O(n
(2-2ɛ)

). 

  The number of rounds R = O( log
i
 n). 

Because the shuffle phase is so time consuming, the goal when designing 

MapReduce algorithms is O(1) rounds, typically a small constant. Even O (log n) rounds 

are often impractical.  

 

2.2.4 Map-Reduce Example 

We are taking two simple examples to better understand the MapReduce 

Framework. 
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Example 1: Lets, the problem to count the number of occurrences of every word in a large 

collection of documents. Here, the user has to write the following pseudo-code: 

Map(String key, String value): 

 // key: document name 

 // value: document contents 

For each word w in value 

EmitIntermediate(w, "1"); 

Reduce(String key, Iterator values): 

// key: a word 

// values: a list of counts 

int result = 0; 

for each v in values: 

result = result +ParseInt(v); 

Emit(AsString(result)); 

So if a user gives input ―We are here.‖ Then the output of the reducer is like, 

[(a, 1), (e, 4), (h, 1), (r, 2), (w, 1)] 

It is a very simple example. MapReduce model is used for large datasets. 

Example 2: 

Following pseudo-code to the map and reduce functions for categorizing a set of 

numbers as even or odd. 

Map(String key, Integer values) 

{ 

//key :File Name 

//values :list of numbers 

for each v in values: 

if(v%2==0) 

EmitIntermediate("Even", v) 

else 

EmitIntermediate("Odd", v) 

} 

Reduce(String key, Iterator values) 
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{ 

//key: Even or Odd 

//values : Iterator over list of numbers 

//(categorized as odd or even) 

String val = ""verbatim 

While (values.hasnext()) 

 { 

Val=val+","+values.toString() 

} 

Emit(key, val) 

} 

So if we give a list [3, 45, 12, 56, 4, 9, 90, 13, 32], then the final result look like, 

Even 12, 56, 4, 90, 32 

Odd   3, 45, 9, 13 

 

2.2.5 Hadoop 

Hadoop [8, 10] is projected by the Apache Software Foundation. Hadoop is an open 

source and Java based implementation of the MapReduce framework. Hadoop is scalable 

and reliable. It is a framework that supports distributed processing of large datasets across 

clusters of computers with the help of a simple programming model. [1] The advent of 

Hadoop was inspired by Google's MapReduce and GFS [4]. Due to the capability and 

simplicity, Hadoop has become a popular infrastructure for cloud computing. However, the 

Hadoop project is still young and immature. The weaknesses of Hadoop have manifested 

themselves mainly in the areas of Resource Scheduling [7, 9], Single Point Failure [10] and 

etc.  

Not only the team in Apache, but also the Hadoop developers from all over the 

world are continually making their best effort to improve and perfect the Hadoop system 

and relevant projects of Apache. As an excellent large scale data mining platform, Hadoop 

is regarded as a good framework for graph related processing.  

Hadoop provides the tools for processing vast amounts of data using the 

Map/Reduce framework and, additionally, implements the Hadoop Distributed File System 
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(HDFS).  Figure 2.2 shows that how the data is flowed in MapReduce model. It can be 

used to process vast amounts of data in-parallel on large clusters in a reliable and fault-

tolerant fashion.  

           Hadoop has two features: 

1. Hadoop Distributed File System (HDFS) and  

2. MapReduce processing engine.  

 

 

                 Figure 2.2: Detailed Hadoop MapReduce data flow 

 

Hadoop uses master-slave architecture for both distributed computation and storage. 

In the distributed storage, the NameNode is the master and the DataNodes are the slaves. In 

the distributed computation, the JobTracker is the master and the TaskTrackers are the 

http://hadooptutorial.wikispaces.com/Hadoop+architecture#hdfs
http://hadooptutorial.wikispaces.com/Hadoop+architecture#MapReduce%20Job%20Processing
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slaves. An entire Hadoop execution of a client request is called a job. Users can submit a 

job request to the Hadoop framework, and the framework processes the jobs. Hadoop uses 

a Remote Procedure Call to communicate among the nodes. 

Hadoop uses the four entities to process a job:  

1. The User: submits the job and specifies the configuration. 

2. The JobTracker: a program that coordinates and manages the jobs. It 

accepts the jobs from users, provides job monitoring and control, and manages the 

distribution of tasks in a job to the TaskTracker nodes. Normally there is one 

JobTracker per cluster. 

3. The TaskTrackers: are the actual node that runs the Hadoop job. It 

processes the map and reduce tasks of a process. One or more TaskTracker 

processes per node in a cluster exist. 

4.  The Distributed File System: such as HDFS. 

                         

 

2.2.6 HDFS 

HDFS is a distributed file system designed for storing very large files with 

streaming data access patterns, running on clusters on commodity hardware [12]. HDFS 

was designed keeping in mind the ideas behind Map-Reduce and Hadoop. What this 

implies is that it is capable of handling datasets of much bigger size than conventional file 

systems (even petabytes). These datasets are divided into blocks and stored across a cluster 

of machines which run the Map/Reduce or Hadoop jobs. This helps the Hadoop framework 

to partition the work in such a way that data access is locally as much as possible. 

http://en.wikipedia.org/wiki/Remote_procedure_call
http://hadooptutorial.wikispaces.com/Hadoop+architecture#hdfs
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                                    Figure 2.3: HDFS Architecture 

 

Design of HDFS  

HDFS is running on a cluster of commodity hardware for storing very huge files 

with streaming data access patterns [8, 10].  Now, we know the meaning of the statement.  

Very large Files: We live in data age, and now a day in industry or education system 

everywhere data is so huge or files are very large it means that the file contain hundreds of 

megabytes (MB), gigabytes (GB), or terabytes (TB) in size. Today Hadoop clusters running 

with petabytes of data storage.  

Streaming data access: HDFS is planned that the mainly well-organized data processing, 

pattern is a write-once and read-many-times pattern. We typically generated a data set or 

copied it from source, and after that various analyses are performed on that dataset over 

time. 

Commodity hardware: Designing of Hadoop is to run on clusters of commodity hardware 

(commonly accessible hardware available from multiple vendors) therefore for large 

clusters the chance of node failure is high. It doesn‗t have need of expensive, highly 

consistent hardware to run on. Failure notification in HDFS is not known by the user and 
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the working is carried on.  

 Low-latency data access: Applications that have need of low-latency access to data, in the 

tens of milliseconds range, did not work fine with HDFS. Keep in mind, HDFS is 

optimized for delivering a high throughput of data, and this may be at the any cost of 

latency.  

Hadoop is designed to run on clusters of machines. HDFS fulfills this requirement. 

HDFS has also some specific features, these are following: 

1. A very important feature of HDFS is ―streaming access‖. 

2. HDFS can handle large data sets. 

3. HDFS supports a cluster of machines. 

4. HDFS provides a write-once-read-many access model. 

HDFS is written in Java language which provides it portability across various 

platforms. 

 

Blocks in HDFS  

The block size of the disk is the minimum amount of data that it can read or write. 

Blocks of filesystem are generally a few kilobytes (KB) in size, although disk blocks are 

normally 512 bytes. The filesystem user, who is simply reading or writing a file of any 

length, is generally known about this. On the other hand, there are tools like df and fsck, to 

perform filesystem maintenance, that operate on the filesystem block level. HDFS, also, 

has the concept of a block, but its blocks are much larger unit—64 MB (Megabytes) by 

default. HDFS files are broken into block-sized chunks, which are stored as independent 

units; same as a single disk file system. A filesystem for a single disk occupies a whole 

block, but in HDFS files that are smaller than a single block doesn‗t occupy a whole 

block‗s worth of underlying storage. Blocks of HDFS are larger than disk blocks, for 

minimizing the cost of six. The time to transfer the data from the disk can be made to be 

significantly larger than the time to seek to the start of the block, by making a block size 

large enough. Therefore, the time to transfer a large file made of multiple blocks operates at 

the disk transfer rate.  
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NameNode and DataNodes in HDFS  

There are two types of nodes in an HDFS cluster, operating in a master-worker 

prototype: a NameNode (the master) and a number of DataNodes (workers).An HDFS 

cluster has a single NameNode, works as a master server that manage the file system 

namespace with controls right to use of files through clients. On the other hand, there are a 

number (more than one) of DataNodes; typically each cluster has one node, for managing 

the storage attached to the nodes so as to they run on. HDFS exposes a file system 

namespace as well as allowing user data to be stored in files. Within, a file is divided into 

single or extra blocks and these blocks are stored in a set of DataNodes. File system 

namespace operations like renaming files, closing, and opening and directories are 

executed through the NameNode. Mapping of blocks to DataNodes is also managed by the 

NameNode. The DataNodes also performs the block design, removal, and duplication 

ahead instruction from NameNode as well as DataNode are also liable for serving read as 

well as write desires from the file system‗s clients. [8] The NameNode as well as DataNode 

be pieces of software conscious to run on commodity apparatus. This machinery is 

naturally run a GNU Linux operating system (OS). HDFS is constructed using Java 

language; whichever machine that supports Java be capable to run the NameNode and 

DataNodes software. HDFS is able to be deployed on an extensive variety of machines 

using the advantage of portability of the Java language. 

 A usual operation has a devoted machine to runs merely the NameNode software. 

Every other machine within the cluster runs a single instance of the DataNode software. 

The architecture doesn‗t prevent running multiple DataNodes on the identical machine, 

however in an actual operation that is not often the case. The presence of a single 

NameNode into a cluster really simplifies the architecture of the system. The NameNode is 

the arbitrator with store for all HDFS metadata. The system is considered in such a way so 

as to user data never flow through the NameNode.  

 

Data Replication in HDFS 

HDFS efficiently store very huge files across machines in a huge cluster. Hadoop 

distributed file system stores all files as a series of blocks and all the blocks in a file, not 

including the last block are the same size. HDFS provides a good fault tolerance; therefore 
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the blocks of a file are replicated across all the machines. The duplication aspect and block 

size are configurable for each file Replicas of a file are dependent on the application. The 

duplication factor can be notified at file formation time also can be altered later. HDFS 

files are writing-once and mutually exclusive it means they contain exactingly one writer at 

every instant. The NameNode is one who only takes a decision about duplication of blocks. 

It occasionally receives a Block Report and a Heartbeat from every of the DataNodes in the 

cluster from time to time gives the block report and heartbeat to the NameNode. DataNode 

is functioning properly is known by reception of Heartbeat, and Block Report contain a 

record of all blocks on DataNode. 

 

2.2.7 Related Projects 

Although the idea of implementing map and reduce functions in functional 

programming languages is not new, the transfer of this concept into a distributed 

framework is still under research. There are three mentionable projects: Google 

MapReduce [1], Apache Hadoop [10, 11] and Nokia‘s Disco [12]. 

 Google MapReduce 

Google MapReduce was developed in 2004 at Google Inc. [1, 2]. It was designed to 

be able to run processes on the large input data of the company's search engine. Although 

the system itself is proprietary and only little detail knowledge is published, it is regarded 

as the prototype for a distributed MapReduce system. The core programming of software is 

written in C and it runs on thousands of machines in the company's data centers around the 

world. 

Apache Hadoop 

The Apache Hadoop system is a distributed MapReduce project of the Apache 

Foundation [9, 10]. As it is published under the Apache License, its source code is 

available for download. One aim of the project is the ability to be platform independent; 

therefore it is implemented in Java. 

It is used in many commercial applications. In 2008, Yahoo! started to build parts 

of search engine‘s index with the help of Hadoop [10, 11]. It is also used in the Amazon 

Elastic Compute Cloud [13]. 
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Nokia’s Disco 

The distributed MapReduce system Disco [12] was introduced in 2008 by the Nokia 

Research Center in Palo Alto. Disco‘s source code can be downloaded and is published 

under the revised BSD license. 

In the Disco framework the map and reduce functions are specified in Python, but 

the core of the system is written in the functional programming language Erlang. Therefore, 

this software might be a good example for the development of a similar framework in 

Haskell. Currently there are no reports that Disco is used in bigger commercial 

applications, but like Hadoop it can easily be used in Amazon Elastic Compute Cloud [13], 

too. 

 

2.3 Literature review on Graph algorithms in MapReduce Framework 

A graph is a type of mathematical structures. The graph is an ordered pair G = (V, 

E). V is the set of vertices or nodes which indicate the objects, people need to study, and 

the elements in set E are edges or lines which are abstraction of relations between different 

objects. If each pair of vertices is connected by edges which do not have incoming or out 

coming states, the edges are undirected. Otherwise, the edges are directed from one vertex 

to another. 

Vertices and edges could have values or states on them. Some graph theory 

problems focus on those states (e.g. Single Source Shortest Path Problem, Minimal 

Spanning Tree Problem, etc.). Most of graph-based algorithms can be categorized into two 

classes, vertex-oriented and edge-oriented. But if the main part of an algorithm is to 

compute the states of edges or message transmitting, (e.g. PageRank [34, 35]), the 

algorithm will be considered edge-oriented. 

MapReduce is very well suited for naïve parallelization for example; counting how 

many times a word participated in a data set.  Jinn et al. [34] an example, graph is split 

into blocks and taken as input of map function. In map function, the value of each vertex is 

divided by the edge number of that vertex, and the result is stored as a key / value pair 

{neighbor ID, result}. Before reduce function, each machine will fetch a certain range of 

key/value pairs onto its local storage, and performs reduce function on each key value. In 

this example, reduce function reads all values under the same key (vertex ID), sum them 
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up, and write the result back as the new value of this vertex. Some graph algorithms are 

here that have converted in the MapReduce model. 

Parallel breath first search in MapReduce: [1] [26] the mappers emit distances to 

reachable nodes, while the reducers select the minimum of those distances for each 

destination node. Each iteration (one MapReduce job) of the algorithm expands the search 

frontier by one hop. Breadth first search is an important searching technique in the graph. 

Basically, this algorithm works sequentially, but with the help of the MapReduce we can 

make it parallel breath search. In the Data intensive text processing [1] given by the Jimmy 

Lin and Chris Dyer has proposed this breath search algorithm in the map reduce, and they 

found that it is faster than the sequential breath first algorithm.  

Page Rank with MapReduce [26]: PageRank [21] [26] is used to measure the web page 

quality based on the structure of the hyperlink graph. Although only one of thousands of 

features is taken into account in Google's search algorithm, it is one of the best most 

studied and known. [10] First all the nodes are given to the map function and then 

processing in map phase the intermediate key-value pair is generated, this key-value pair is 

as input to the reducer. After this whole process the page rank is calculated parallel and the 

result set generated. 

 

2.4 Literature review on Minimum Spanning Tree Algorithms 

Computing a minimum spanning tree is one of the most studied problems in 

combinatorial optimization [17, 29]. Formally, an MST of a given undirected connected 

Graph G = (V, E) with vertices V = {v0, v1, v2…., vn-1} and weighted edges E, |E|=m, can be 

defined as an acyclic subgraph of G which connects all vertices in V with the least total 

weight. 

The two theorems on the optimality conditions for a MST are stated below without 

proofs. Two elegant proofs can be found in [16, 28, 29, 30].  

Theorem 1: (Fundamental cut-set optimality).A spanning tree T in a weighted graph is a 

MST if and only if every edge in the tree is a minimum-weight edge in the fundamental 

cutset defined by that edge. 
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Theorem 2: (Fundamental cycle optimality).A spanning tree T in a graph G is a MST if 

and only if every edge e   ( E - T ) is a maximum weight edge in the unique fundamental 

cycle defined by that edge. 

The MST problem is solved by a simple incremental, greedy method in which the 

MST is built by taking small edge and excluding other large ones. The technique is greedy 

in the sense that at every stage, the best possible edge is chosen for inclusion in the MST 

without producing a cycle in the subgraph constructed so far or for exclusion from the MST 

without disconnecting the graph. Tarjan [15, 21] represents the construction process as 

one of edge coloring.Starting from an initial uncolored edge set, we colour one edge at a 

time either blue (included) or red (excluded) according to the following two rules: 

Blue rule: Select a cutset that does not contain a blue edge. Select a minimum weight from 

the cutset among the uncoloured edges and colour it blue. 

Red rule: Select a simple cycle containing no red edges. Select a minimum weight on the 

cycle among the uncoloured edges and colour it red. 

These two rules have a lot of direct and indirect applications of the fundamental 

cutset and fundamental cycle optimality theorems. 

The most important property of the greedy method is that it colours all the edges of 

any connected graph and maintains a MST containing all of the blue edges and none of the 

red ones. 

. 

2.4.1 Sequential Minimum Spanning Tree Algorithms 

Classical algorithms 

The three classical algorithms differ in their starting states and coloring steps. In 

other words, they differ in the criterion used to select the next edge or edges to be added in 

each iteration. The Boruvka algorithm [18] starts with the initial set of n blue trees. Each 

blue tree initially, consisting only one vertex and no edge. And then repeat the following 

step until there is only one blue tree.  

Coloring step: For every blue tree T, select a minimum weight edge incident to T. Colour 

all selected edges blue. The algorithm builds the trees uniformly throughout the graph. It is, 

therefore, suitable for use in parallel computations. It runs in O (m log n). 
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The Kruskal algorithm [19]: Sort the edges in the order of increasing weights and apply 

the following step to the edges in the sorted list until the number of blue edges is n-1.  

Colouring step: If the edge considered has both endpoints in the same blue tree, colour it 

red; otherwise colour it blue. The algorithm builds up blue trees in an irregular fashion 

dictated only by edge weights. It is worth noting that the algorithm is best in situations 

where the edges are given in sorted order or can be sorted fast (like when the weights are 

small integers, making it possible to employ radix sort)or where the graph is sparse. If 

edges are in disorder with respect to their weight, the Kruskal algorithm requires O(m log 

n) time. 

 Given a sorted edge list, finding a MST requires O(m α (m, n)) time assuming the 

use of the disjoint set union algorithm of Tarjan[27, 26],Whereα (m, n) is the inverse 

Ackermann's functionα (m, n) is defined as 

Α (m, n) = min {i >= 1 | A (i, └m/n┘) > log n)}, for m >= n >= 1  

Where Ackermann's function A (i, j) for i, j >= 1 is given by 

A (1, j) = 2
j
 for j >= 1, 

A (i, 1) = A (i-1, 2) for i >= 2, 

A (i, j) = A (i-1, A (i, j-1)) for i, j >= 2. 

The function A (i, j) grows exponentially fast and hence α (m, n) is a very slowly growing 

function, α (m, n) <= 3 for n < 2
16

.  Hence, for all practical purposes α (m, n) is assumed to 

be a constant not larger than four. 

The Prim algorithm [20] Use an arbitrary starting vertex s and apply the following step n-1 

times.  

Colouring step: Let T be the blue tree containing s vertices. Now, Select a minimum weight 

edge that is incident to T and colour it blue. 

The algorithm generates only one nontrivial blue tree from a single root. The Prim 

algorithm with an implementation using d-heaps, as proposed by Johnson, runs 

in                  . In the case of binary heaps (i.e., d=2), the time complexity is O(m 

log n). Thus, the algorithm with Johnson's implementation is well suited for dense graphs 

as well as sparse ones and the method is asymptotically worse than that of Kruskal only if 

the edges are presorted. 
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Modern algorithms 

          Yao [22] was the first to discover an implementation of Boruvka which had a faster 

asymptotic running time. It has the complexity O(m log log n) . Cheriton and Tarjan [23] 

followed by proposing a similar but slightly more practical algorithm. It runs in O(m log 

log n) time. Both algorithms are based on the general blue rule algorithm given above. 

They both use heaps to implement efficient Boruvka-like colouring steps. With the 

invention of an efficient form of heap, called the Fibonacci heap (F-heap), Fredman and 

Tarjan [23] developed an implementation of the minimum spanning tree algorithm which 

runs in O(m β(m, n)). 

Where β(m, n) = min{i| log
(i)

 n) <= m/n } with log
(0)

 n=n.  

In addition, they pointed out that the use of an F-heap in its simplest form in the 

implementation of the Prim algorithm, i.e., replacing the binary or d-heap with an F-heap 

solves the MSTP in O (n log n+ m) time. Gabow et al. [24] introduced the use of packets 

in conjunction with F-heaps and modified the Fredman and Tarjan algorithm to achieve the 

slightly better time complexity of O(m log β(m, n)). The method of Gabow et al. was the 

fastest theoretically until recently. Karger et al. [25] proposed a randomized minimum 

spanning tree which gives the linear time complexity. It has O (n log n + m) time 

complexity. Karger et al. [25] stands as theoretically the fastest linear expected-time 

algorithm of till now. It is a randomized and recursive algorithm which also requires the 

solution of a related problem, that of verifying whether a given spanning tree is minimum. 

It has O (m) time complexity. Cheriton and Tarjan Algorithm [23]: For each blue tree, a 

heap is maintained and that holds the edges with at least one endpoint in the tree and which 

are candidates for becoming blue; the cost of an edge being its key in the heap. It differs 

from the Boruvka algorithm because here in each iteration we pick one blue tree in the 

forest for the merge operation. In conjunction with the heap, the selection rule for picking a 

blue tree for merging plays an important role in beating the O(m log n) time bound. Two 

alternatives are [23]: 

1. Pick uniformly the first in a queue of candidate blue trees (implementation with a 

doubly linked list is sufficient to have an O(1) time operation including deletion from the 

queue), 

2. Pick the smallest candidate tree (less efficient with an O(n) implementation). 
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Cheriton and Tarjan‘s algorithm is asymptotically faster than any of the three 

classical algorithms for sparse graphs, but is slower by a factor of O(log log n) than the 

Prim algorithm for dense graphs. 

 

2.4.2 Parallel Minimum Spanning Tree Algorithms 

Numerous models of parallel computation have been proposed in the literature, 

while the most prevalent model in theoretical computer science is the PRAM. In a PRAM, 

an arbitrary number of processors shared a large memory space. Same shared input is given 

to produce some output. There are different types of PRAMs algorithms, based on issues of 

reading and writing in shared memory. In this model, if we have a problem of size n, then 

polynomial in n number of processors is required. It is a necessary, but hardly sufficient, 

condition to ensure efficiency. 

There are two general strands of PRAM research [38]. The first asks, with a 

polynomial number of processors what problems can be solved in polylog time on a 

PRAM? Polylog time serves as a standard for parallel running time, and a polynomial 

number of processors provide a necessary condition for efficiency. The second strand of 

research asks which algorithms can be efficiently parallelized. While theoretically 

appealing, the PRAM model suffers from the practical drawback that fully shared memory 

machines with large numbers of processors do not exist to date (though they may in the 

future) and simulations are slow. It seems difficult to build a large computer with a large 

robust shared memory. Prim‘s and Kruskal‘s algorithms are inherently sequential, while 

Boruvka‘s algorithm has natural parallelism. There are a lot of parallel algorithms that have 

been proposed [28, 29]. 

Therefore, most parallel MST algorithms are based on Boruvka‘s approach Even 

though these algorithms achieve parallel speedup for relatively regular graphs; none of 

these Boruvka‘s algorithm-based implementations runs significantly faster than the best 

sequential algorithm for a wide range of irregular and sparse graphs.  
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2.5 Literature review on Minimum Spanning Trees algorithms in 

MapReduce Framework 

With the increasing of graph size, there have been a lot of studies on the distributed 

algorithms for finding MST with the goal of reducing both the running time and the 

number of messages exchanged among computing nodes. 

H. Karloff et al. [37] demonstrate how algorithms can take advantage of 

MapReduce model to compute an MST of a dense graph in only two rounds, as opposed to 

(log (n)) rounds needed in the standard PRAM model. He proposed an easily parallelized 

algorithm for MST [16]. Denote the graph, vertex set; edge set by G, V, E, the procedure of 

this algorithm is as follows: 

Step 1: Vertex set V is partitioned into k equally sized subsets,  

V=V1 U V2 U…Vk with Vi ∩ Vj = NULL for i ≠j and |Vi| =N/k 

For every pair {i, j}, let Ei,j is subset of E be the edge set induced by Vi U Vj, i.e. Ei,j = {(u, 

v)   E | u, v   Vi U Vj}, denote the resulting sub graph by Gi,j = (Vi U Vj, Ei,,j) 

Step 2: for each of ( 
 
) the sub graphs Gi,j, compute the unique minimum spanning forest 

Mi,j; then let H be the graph consisting all of the edges present in Mi,j , H= (V, Ui,j Mi,j) 

Step 3: Now, compute the minimum spanning tree M of H. 

The algorithm is not so good as best sequential algorithm, but easy parallelization is 

there. More importantly, it has been demonstrated that it can be implemented with 

MapReduce framework. Here MapReduce MST algorithm works in two rounds: 

-Adjacency matrix M is used to denote the graph G as shown in figure 

 

 

              Figure 2.4: Adjacency matrix representation [30] 
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-Now the vertex set is partitioned into k equally sized sub sets. This can be achieved 

by putting vertex I in sub set (I(n/k)), shown in following figure; 

 

                            Figure 2.5: Partitioned adjacency matrix 

In the first round;  

.-Matrix M is partitioned to ( 
 
)  blocks, each block with a unique partition ID. 

- Denote partition ID by PID, which is in the form of [Row Element] [Column 

Element] 

-Since G is undirected, it'll suffice only considering the upper triangular part of the 

matrix. 

This partition process is accomplished by the Mapper. Input for the mapper is matrix M 

and output of mapper is partitioned vertices with neighbor vertex and weight. 

Map1: 

Input (Key, Value) pair for first Mapper is  

< Line Number, ( firstVertex, secondVertex, weight ) > 

And Output (Key, Value) pair or the intermediate keys are like 

< [first] [Second], ( firstVertex, secondVertex, weight) > 

Reduce1: 

            Input (Key, Value) pair for first Reducer is PID and an edge list of  Ei,j. 

< PID, List (firstVertex, secondVertex, weight) > 

And the output of reducer is like  

< PID, (firstVertex, secondVertex, weight) > 
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In the Second Round:  

The work of second round is to collect edges of every Mij and compute the global 

MST. The map of this round is different than Map1 and reduce job is same as the first 

round. 

Map2: Input- < PID, ( firstVertex, secondVertex, weight ) > 

          Output- < MST, ( firstVertex, secondVertex, weight) > 

Where MST: Select all the MST edges into one list and setting the key ―MST‖. 

S. Chung et al. [28, 36] made an improvement in this algorithm, he use Kruskal's 

algorithm, when computing the MST of each sub graph. The reason is as follows: 

1. Kruskal outperforms Boruvka's algorithm on a general basis. 

2. When the graph is disconnected, Kruskal finds the minimum spanning forest of 

the graph. However, Prim can only find MST in connected graph. 

 They apply the following two operations between step 2 and step 3 of the basic 

algorithm: 

1. Removing the duplicated edges; 

2. Let G=H, and k=k-1. Then go to step 1. 

Repeat the above operations until the edge number of H is small enough. 

In this paper he suggests that we can reduce the edge number of H by setting a 

smaller k. So the edge number of H can be greatly reduced by repeating the above two 

operations. The reason why we don't set k to a very small value initially is to allow more 

parallelization on the original graph. By analyzing the procedure of the basic algorithm, we 

decompose the implementation into two rounds of MapReduce job. Step 1 and step 2 are 

completed in the first round and step 3 in the second round. Assume without loss of 

generality that the input file comprises edge records, with the form of (first vertex, second 

vertex, weight) and each record per line. The file of a graph G with n vertexes and m edges 

will have m records, and the vertexes in G are labeled by 0 to (n-1). (Here we discuss the 

MST of an undirected graph, (first vertex, second vertex, weight) and (second vertex, (first 

vertex, weight) vertex is smaller than the second vertex, just for unity). 

 Based on the flow of basic algorithm's task‘s there is one new MapReduce job 

which needs to be designed. That is the job of removing duplicated edges. This can be 

achieved as follows. 
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The map sets edge record as the output key and integer ―1‖ as output value. The 

framework will group the same keys together (since the key is edge record, actually the 

same edges are grouped together). The reduce outputs the key (i.e. edge record) received 

from map line by line. 

The job of removing duplicated edges is added between the first round and the 

second round.  

Map: 

 Input (key, value) pair- (lineNumber, <firstVertex, secondVertex, weight>) 

Input value is set to the output key. 

Output (key, value) pair- (< firstVertex, secondVertex, weight>, 1) 

Reduce: 

Input (key, value) pair-(<firstVertex, secondVertex, weight>, List<> (1)) 

Duplicated edges are group together because of they have the same key. Reduce set  

edge as output value. 

Output (key, value) pair-(NULL, <firstVertex, secondVertex, weight>) 

 

 

 

 

 

                

                        Figure 2.6: Removing duplicate edges 
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Chapter 3 

PROPOSED WORK 

 

Graph based algorithms covered a wide range of problems. To make the research 

significant, the algorithms chosen here must be representative. That algorithm should fulfill 

the following factors: 

1. Chosen algorithms should be useful and have been widely used.  

2. That would not be considered easy to map-reduce.  

3. That should be comparable, by which it means, that should have a certain level of 

similarity of data inputs, outputs and purposes of the algorithm themselves.  

4. That algorithm which has not been applied on the Map-Reduce model would be 

considered first.  

Here, we select Round robin MST algorithm which follows all the points defined 

above. First, we will discuss the basic concept of Round Robin MST algorithm and then 

focused to generate a MapReduce version of the Round Robin MST algorithm. We know 

that in a sequential way it has the complexity O (m log log n) which is better than 

Boruvka‘s minimum spanning tree and all others in practical aspects. A sequential 

algorithm of RRA MST can be understood from the Robert Tarzan‘s book [46]. He used 

the Leftist Heap data structure to implement the queue.  

Step 1: Set- data structure is used for storing the vertex set, a mapping function is 

used for providing the mapping between the canonical vertex set and their vertices heap.  

Step 2: Now we perform the MakeSet (x) operation on all vertices to form make 

sets and creates the leftist heap for these vertex sets.  

Step 3: Now the first element from the queue is taken out and FindMin(x) operation 

is executed in the leftist heap for that vertex set. For which it comes minimum that vertex 

or the edge is considered and Merge (H1, H2) operation is performed. And we take the 

union of these two vertex sets; represented by a canonical vertex and then it is inserted into 

the rear of the queue. Step 3 is repeated until (queue size > 1). In the final we got a 

minimum spanning tree of the input graph. 
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Now we will perform all these steps (defined above) in a parallel way so that it can 

be used in MapReduce framework. We know that the map operation is stateless (because it 

operates on one pair at a time). It allows for easy parallelization to our algorithm. So the 

different inputs are processed by different machines. Each mapper emits the intermediate 

keys.  In the shuffle phase intermediate keys are read by the reducer with the help of the 

master. The partition function is the base for this shuffle phase. If the same key is sent to 

the reducer than this framework gives the best results. Partition function affects a lot for 

this MapReduce model. Here we use partition function (w mod R) i. e. based on the weight. 

Mod R is applied to the weight, so the same edge is passed to same reducer. At the reducer 

side, we use another function, i.e. the Compact function. It reduces the redundancy and 

creates the forest by merging the edges of the vertex sets. Every forest is represented by a 

canonical vertex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure 3.1: Working of a single Mapper and Reducer System 
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3.1 Proposed Algorithm:  

Firstly, we will use a single mapper and reducer framework and implement this 

round robin algorithm in MapReduce environment. As we shall exhibit, this algorithm will 

take advantage of the interleaving of sequential and parallel computation that MapReduce 

offers algorithm designers.  

 Input      :        Graph G (V, E) 

Output   :        Minimum spanning tree 

 

 

 

 

 

 

 

 

 

                          

 

 

 

             Figure 3.2: Working of a multiple Mapper and Reducer system 

 

Initially, we apply an initialization round of MapReduce that converts an input 

graph G (V, E) into the format [{x}, h (x)]; which will be suitable to work further round for 

RRMST-MapReduce algorithm. Where {x} is union-find data structure and x is the 

canonical vertex of the set (initially that contains single vertex by applying the makeset (x) 

operation on each vertex of the graph G); and h (x) is the leftist heap for a vertex (   ) 

that contains all the edges of the graph incident to vertex x. The outputs of initial round are 

inserted into the queue in HDFS. So the queue contains the vertex set with its heap stored 

in the HDFS (Hadoop Distributed File System) in the following format, 

Queue:    ,  〈* +  ( )〉 〈* +  ( )〉 〈* +  ( )〉        〈* +  ( )〉   - 

Mapper 1 Reducer 1 

Until queue >1 

            HDFS 

       PF: Partitioning Function 

       PF: (W mod R) 

Reducer 2 

Reducer 3 

Reducer 

R 

Mapper 2 

Mapper 

M 
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The following data structure is used for implementing the algorithm in MapReduce, 

Set {}: It is a union-find data structure that stores the edges of the blue trees that 

will form a minimum spanning tree. 

Map: f = [(x1, y1), (x2, y2),…, (xn, yn)] is a set of ordered pairs that have no two 

same first element in the set. 

 Heap: h(x) is the leftist heap that stores all the edges of the graph incident to the 

vertex x or vertex set.  

Cost: (Cost = cost + w) 

Algorithms for Map phase: 

Input:        (    )   

   Class Mapper (Vertex set x, Heap h (x)) 

1.  Mapper checks the minimum weighted edge in the heap by using FindMin(x) 

operation 

2. It returns an edge like {x, y} with its weight. These are the intermediate keys. 

3. These intermediate keys are used as input to the reducer. 

Output: ,     〈*   +  (   )  〉  - 

Now partition function is applied on the intermediate keys so that these 

intermediate keys are perfectly sent to the particular user. 

Partition Function ():  

We are using a simple partition function, i.e. ((W) mod R). 

Algorithm for Reduce phase: 

Input:     , *   +   ( )-   

Class Reducer (w, List of edges and heaps) 

1. Add edge (x, y) in set S. 

2. Now, checks the condition: if  Find(x) ≠ Find(y) then  

3. Merge the heap tree of  {x} and {y} into one; Merge (h (x), h (y)) -> h (x) 

4. Delete (x, y) edge from the heap h (x). 

5. Update the cost. 

Output:  *   + ,  (   )  - 

Compact Function () 

If Parent (x) = Parent (y)  
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Then, UNION (x, y)  

Now these outputs are written into the HDFS. All vertex sets are inserted into the 

queue from rear side with their heaps. By combining these steps called around and these 

rounds are repeated until size (queue) >1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 3.3: Workflow diagram of proposed algorithm 
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The first initialization round is applied, which makes the data used for next rounds in 

MapReduce framework. In this we make the partition of data and send it to the mapper. 

Mapper performs their function and with the help of partition function intermediate keys 

are sent to the reducers. The output of a round is minimum spanning forests. Because 

redundancy may be exist in the outputs of the reducer so we use a compact function which 

reduces the redundancy. So the output of the reducer is sent to the compact function. It 

merges the vertex sets of common vertices and forms the minimum spanning forest. After 

each round at most half of the minimum spanning forest generates to the previous one. 

Now, this output is send to the HDFS, and queue, cost, blue tree set are updated. This 

process repeats until size (queue) >1. We can understand it from the following diagram, 

 

3.2 Example: 

 

 

 

                             Figure 3.4: A simple graph G (V, E) 

 

We process this graph by a single mapper and reducer, 

 

First Round 

Map: Graph G is input to the mapper. Mapper emits the intermediate keys by 

applying the partition function on the inputs in the following format 
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,    〈*   +  (   )  〉-  

 

So these are following: 

,  〈*   +  ( )  〉-  

,  〈*   +  ( )  〉-   

,  〈*   +  ( )  〉-  

,  〈*   +  ( )  〉-   

,  〈*   +  ( )  〉-  

,  〈*   +  ( )  〉-  

Reduce: 

Now these values are read by the reducer which checks the condition; if find (x) 

≠find (y) then merge the heaps of these edges vertex and this edge is written in the blue tree 

set. And cost is updated. So outputs are like, 

,   〈*   +  ( )  〉-  

,   〈*   +  ( )  〉-  

  ,   〈*   +  ( )  〉-   

,   〈*   +  ( )  〉-  

Now the output of the reducer is act as input for the compact function which merges 

the edges which have something (i.e. vertex) common. The outputs of this function are like, 

,〈*   +  ( )  〉 〈*       +  ( )   〉- 

Now the graph is looking like, 

 

 

 

                           Figure 3.5: After the completion of first round 
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Now these values are inserted into the HDFS, Blue tree and cost is updated, the 

queue is updated. And first round is finished. 

 

Next Round 

Map: Output of the first round is input to the mapper. Mapper emits the 

intermediate keys in the format 

,    〈*   +  (   )  〉-  

So these are followed: 

                                               ,*   + 〈*   +  ( )  〉 -, 

                                                     ,*       + 〈 *   +  〉] 

 

Reduce: Now these values are read by the reducer which checks the condition; if 

find (x) ≠ find (y).  So outputs are like, 

 *           + ,  ( )    -   

 

 

Figure 3.6: After the completion of second round, generated MST 

 

We repeat, as much as round until size (queue) >1. Here, in this example algorithm 

is terminated because after two rounds queue size became one. 

 

3.3 Storage and performance complexities 

There are several metrics that one can use to measure the efficiency of a 

MapReduce algorithm [38, 39]. These are following: 
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 t: the number of rounds (map-shuffle-reduce phases) that the algorithm uses. 

 n1, n 2…… the reducer I/O sizes for round I and nij is the size of the inputs and 

outputs for reducer j in round i. 

  Mi: the message complexity of round i of the algorithm. It is the total size of the 

inputs and outputs for reducers in round i, that is,    ∑      and    ∑   
 
     

for the entire algorithm. 

 Ii: the internal running time for round i. It is the maximum internal running time 

taken by a reducer in round i, where we assume Ii  ≥  maxj (nij ), since a reducer 

must have a running time that is at least the size of its inputs and outputs. For 

entire algorithm internal running time,    ∑   
 
   . 

 λ: the buffer size for reducers, that is, the maximum size of the working memory 

needed by a reducer to process its inputs and outputs (in addition to the storage 

used for the input itself), taken across all t rounds of the algorithm. 

 L: the latency L of the shuffle network. It is the time that a mapper or reducer has 

to wait until it receives its first input in a given round.  

 β: the bandwidth of the shuffle network. It is the number of elements in a 

MapReduce computation that can be delivered by the shuffle network in any time 

unit. 

Thus the total running time, T, of an implementation of a MapReduce algorithm 

can be crudely characterized as follows: 

 

   (∑  

 

   

      ⁄ ) 

                                                          (        ⁄  ) 

It is the MapReduce running time. For example, if there is D document which 

have n words. A simple word-count MapReduce algorithm has a worst-case performance 

of t being 1, M being O(n), and I being O(n); hence, its overall worst-case time 

performance is O(n). Therefore, focusing exclusively on the number of rounds in a 

MapReduce algorithm can actually lead to inefficient algorithms. For example, if we 

consider the number of rounds, t, then the most efficient algorithm would always be one 
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that maps all the inputs to a single key and then has the reducer for this key perform a 

standard sequential algorithm to solve the problem. This approach would run in one round, 

but it would not use any parallelism. It would have a running time of (  ( )        ⁄  ) 

Where τ (n) is the running time of the sequential algorithm; hence, this MapReduce 

algorithm would be only as efficient as the best sequential algorithm.  

 

3.3.1 Rounds/Time: Sequential round robin algorithm takes   (         ) time 

complexity [20, 22]. The CREW PRAM model requires Ω (log n) time [16, 37]. In 

MapReduce model complexity is calculated in number of rounds in which algorithm 

completes and provides the desired result. Proposed RRMST-MR (round robin minimum 

spanning tree algorithm in MapReduce) algorithm takes  (    ) rounds to generate MST, 

but in general, MST is generated in fewer rounds like in two or three. 

 

 

Figure 3.7: Graph vertices v/s rounds (initialization round is excluded) 
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Figure 3.8: Graph rounds v/s vertices (when initialization round is included) 

 

3.3.2 Memory: For an input of size N, and a sufficiently small ɛ > 0, there are N
1-ᵋ

 

machines, each with N
1-ᵋ

 memory available for computation. As a result, the total amount 

of memory available to the entire system is O(N
2-2ᵋ

). An algorithm in MRC belongs to 

MRC
i
 if it runs in worst case O(log

i
 N) rounds [39]. Thus, when designing a MRC

0
 

algorithm there are three properties that need to be checked:
 

• Machine Memory: In each round the total memory used by a single machine is at 

most O (N
1-ᵋ

) bits. 

• Total Memory: The total amount of data shuffled in any round is O (N
2-2ᵋ

) bits
2
. 

• Rounds: The number of rounds is a constant. 

Let G = (V, E) be an undirected graph, and denote by n = |V | and m = |E|. We will 

call G, c-dense, if m = n
1+c

 where 0 < c ≤ 1. In what follows, we assume that the machines 

have some limited memory η. We will assume that the number of available machines is O 

(m/η). Notice that the number of machines is just the number required to fit the input on all 

of the machines simultaneously. All of our algorithms will consider the case where η = n
1+ᵋ 

for some  ɛ > 0. For a constant, the algorithms we define will take a constant number of 

rounds and lie in MRC
0
 [ 37, 38], beating the Ω (log n) running time provided by the 

PRAM simulation constructions (see Theorem 7.1 in [37]). However, even when η = O (n) 

our algorithms will run in O (log n) rounds. This exposes the memory vs. rounds tradeoff 
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since most of the algorithms presented take fewer rounds as the memory per machine 

increases. 

The proposed algorithm is a semi-external memory algorithm. If a graph G is d-

dense, m=n
1+d

; and if k = ND
‘/2
, for some d‘>=d>0. It is the high probability that required 

working memory for any mapper or reducer is O (|m|
1-ɛ

), for ɛ>0. It reaches to O (m) in the 

last round. At any time working memory is the size of the heap of a particular vertex set. 

 

3.3.3 Communication cost: Communication cost is the number of communication 

between any two nodes in the framework or cluster. We are considering only the part of 

communication when reducers communicate with the HDFS when compact function is 

applied in the reducers. This is the extra cost because of such type of algorithms where we 

need to interact with the HDFS in the middle of processing of any round and this 

communication cost is around O (n). 
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3.3.4 I/O Cost: I/O cost has linear time complexity.  

 ( )  (.  
 

 
/  .

 

 
 

 

  
/  .

 

  
 

 

 
/    .

 

    
 

 

  
/) 

 ( )      (  
 

 
  

 

  
 

 

 
  

 

    
 

 

  
)  

 

  
 

                                    ( )      (  (
 

  
))  

 

  
 

                                            ;                   

                   ( )       

                                    ( )    ( ) 



43 
 

Chapter 4  

IMPLEMENTATION 

 

To exemplify the flexibility of the MapReduce theory and give some ideas how to 

use the framework some example‘s program are introduced. I have implemented this 

algorithm in a MapReduce framework in Hadoop. In the first section I introduced how to 

install Hadoop and how to configure a machine to run Hadoop. In the second section I 

introduced a MapReduce example, i.e. WordCount. In the third section we implemented 

the minimum spanning tree algorithm in MapReduce framework. Here, we will implement 

a minimum spanning tree in a MapReduce framework for single mapper and reducer and 

then we will extend our Round Robin Minimum spanning tree algorithm for multiple 

Mappers and Reducer. 

 We are implementing our basic algorithm on Hadoop Framework (Hadoop-2.2.0) 

on Linux (Ubuntu-12.04) platform. Hadoop is an open source framework written in Java 

language. 

The HDFS provides the storage and the MapReduce executes the programs. 

Hadoop runs in three different modes:
 

 1. Standalone mode- Standalone mode is appropriate for running MapReduce 

programs during development, since it is easy to test and debug the programs. 

2. Pseudo-distributed mode: used for an emulated ―cluster‖ for single computer; 

good for testing purpose. 

3. Fully distributed operation mode: is used for a fully cluster. 

The proposed algorithm is implemented on standalone mode.
 

 

4.1 Installation of Hadoop: 

Prerequisite for Hadoop installation are, [11] 

1> Install Java: Hadoop requires Java 1.5 above version. However, Java 1.6 is 

recommended for running Hadoop. To install Java these commands are used; 

$ sudo apt-get update 

$ sudo apt-get install sun-java6-jdk 
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$ sudo update-java-alternatives -s java-6-sun 

If we want to check the version of java and javac following commands, (see in 

figure 4.1) 

$ java –version 

$javac -version  

 

Figure 4.1: Checking java and javac version 

 

2> Adding a user (dedicated Hadoop system): I am using a dedicated Hadoop user 

account for running Hadoop. 

$ sudo addgroup mhadoop 

$ sudo adduser --ingroup mhadoop hduser 

 

3> Configuring SSH: Hadoop requires SSH access to manage its nodes (remote 

machines and local machine). SSH must be installed and SSHD must be running to 

use the Hadoop scripts that manage remote Hadoop daemons. So we have to 

generate the SSH key for the hduser user. If the openssh - server is not installed on 

the system, then first install it (apt get install openssh-server). Now generate the ssh 
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keys for hduser and test by following commands, 

hduser@ubuntu:~$ ssh-keygen -t rsa -P "" 

hduser@ubuntu: ~$ cat $HOME/. ssh/id_rsa. pub >> $HOME/. 

ssh/authorized_keys 

hduser@ubuntu:~$ ssh localhost 

 

4> Disabling IPv6: To disable IPv6 on Ubuntu 12.04 LTS, open /etc/sysctl.conf in the 

editor and add the following lines to the end of the file: 

# disables ipv6 

net.ipv6.conf.all.disable_ipv6 = 1 

net.ipv6.conf.default.disable_ipv6 = 1 

net.ipv6.conf.lo.disable_ipv6 = 1 

 

Steps to Install Hadoop: 

1> Download Hadoop from the Apache Download Mirrors. There are many versions of 

Hadoop that are available on apache.org site. We have installed the stable version of 

Hadoop-2.2.0 which is available on site as Hadoop-2.2.0.tar.gz file and extract the 

contents of the Hadoop package to a location. I choose /usr/local. Then change the 

ownership of all files to the hduser user and hadoop group. 

$ cd /usr/local 

$ sudo tar xzf Hadoop-2.2.0.tar.gz 

$ sudo mv Hadoop-2.2.0 hadoop 

$ sudo chown –R hduser:Hadoop Hadoop 

2> Update $HOME/.bashrc 

# Set Hadoop-related environment variables 

export HADOOP_HOME=/usr/local/hadoop 

# Set JAVA_HOME  

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk 

# Some functions and convenient aliases for running Hadoop-related 

commands 

unalias fs &> /dev/null 
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alias fs="hadoop fs" 

unalias hls &> /dev/null 

alias hls="fs -ls" 

lzohead () { 

      hadoop fs -cat $1 | lzop -dc | head -1000 | less 

} 

# Add Hadoop bin/ directory to PATH 

export PATH=$PATH:$HADOOP_HOME/bin 

export PATH=$PATH:$HADOOP_HOME/sbin 

 

3> Configuration: 

The required environment variable we have to configure for Hadoop is 

JAVA_HOME. So open conf/hadoop.env.sh and update the following line:         

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk 

We will configure the directory where Hadoop will store its data files, the 

network ports. We will use the directory /app/hadoop/tmp and change the 

permissions and required ownerships. 

$ sudo mkdir -p /app/hadoop/tmp 

$ sudo chown hduser:hadoop /app/hadoop/tmp 

$ sudo chmod 750 /app/hadoop/tmp 

Now add the following snippets in the respective configuration XML file 

between the tags <configuration> ... </configuration>. 

In file conf/core-site.xml: 

<property> 

  <name>hadoop.tmp.dir</name> 

  <value>/app/hadoop/tmp</value> 

  <description>A base for other temporary directories.</description> 

</property> 

<property> 

  <name>fs.default.name</name> 

  <value>hdfs://localhost:54310</value> 
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  <description> 

  The name of the default file system.   

  The  uri's scheme determines the config property (fs.SCHEME.impl) 

naming 

  the FileSystem implementation class.   

</description> 

</property> 

In file conf/mapred-site.xml: 

<property> 

  <name>mapred.job.tracker</name> 

  <value>localhost:54311</value> 

  <description>The host and port that the MapReduce job tracker runs at.  If 

"local", then jobs are run in-process as a single map and reduce task. 

  </description> 

</property> 

In file conf/hdfs-site.xml: 

<property> 

  <name>dfs.replication</name> 

  <value>1</value> 

  <description> 

Default block replication.  </description> 

</property> 

 

4> Formatting the HDFS : 

The first step to starting up Hadoop installation is formatting the Hadoop 

filesystem which is implemented on top of the local filesystem of our ―cluster‖. We 

need to do this the first time we set up a Hadoop cluster. To format the filesystem, 

run the following command (see figure) 

hduser@ubuntu:~$ hdfs namenode –format 
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5> Starting single node cluster 

Run the command (see figure 4.2) 

hduser@ubuntu:~$ hadoop start-all.sh 

 

6> Stop single node cluster 

Run the command (see figure 4.2) 

hduser@ubuntu:~$ hadoop start-all.sh 

 

 

       Figure 4.2: Starting and stopping of hadoop cluster 

 

7> Running a MapReduce job: 

 We will use the WordCount example, which reads text files and counts how 

often words occur. The input is text files and the output is text files, each line of 

which contains a word and the count of how often it occurred, separated by a tab. 

To do this we have to follow following steps: 
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7.1 Write a MapReduce program and save as a java file: WordCount.java 

          package mywordcount;  

          import java.io.IOException; 

 import java.util.*; 

  import org.apache.hadoop.fs.Path; 

  import org.apache.hadoop.conf.*; 

  import org.apache.hadoop.io.*; 

  import org.apache.hadoop.mapred.*; 

 import org.apache.hadoop.util.*; 

   

  public class WordCount { 

   public static class Map extends MapReduceBase implements    

Mapper<LongWritable, Text, Text, IntWritable> { 

       private final static IntWritable one = new IntWritable(1); 

      private Text word = new Text(); 

   

       public void map(LongWritable key, Text value, OutputCollector<Text, 

IntWritable> output, Reporter reporter) throws IOException { 

        String line = value.toString(); 

         StringTokenizer tokenizer = new StringTokenizer(line); 

         while (tokenizer.hasMoreTokens()) { 

           word.set(tokenizer.nextToken()); 

           output.collect(word, one); 

         } 

       } 

    } 

  

     public static class Reduce extends MapReduceBase implements 

Reducer<Text, IntWritable, Text, IntWritable> { 

      public void reduce(Text key, Iterator<IntWritable> values, 

OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { 
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         int sum = 0; 

        while (values.hasNext()) { 

          sum += values.next().get(); 

         } 

         output.collect(key, new IntWritable(sum)); 

      } 

     } 

     public static void main(String[] args) throws Exception { 

       JobConf conf = new JobConf(WordCount.class); 

       conf.setJobName("wordcount"); 

       conf.setOutputKeyClass(Text.class); 

       conf.setOutputValueClass(IntWritable.class); 

       conf.setMapperClass(Map.class); 

       conf.setCombinerClass(Reduce.class); 

       conf.setReducerClass(Reduce.class); 

       conf.setInputFormat(TextInputFormat.class); 

       conf.setOutputFormat(TextOutputFormat.class); 

       FileInputFormat.setInputPaths(conf, new Path(args[0])); 

      FileOutputFormat.setOutputPath(conf, new Path(args[1])); 

       JobClient.runJob(conf); 

     } 

  } 

7.2 Compile the java code (see figure 4.3) 

7.3 Make a jar file (see figure 4.4) 

7.4 Copy local example data into the HDFS: Before we run the actual MapReduce job, 

we first have to copy the files from our local file system to Hadoop‘s HDFS by the 

following command, (see figure 4.4) 

hduser@ubuntu:~ $hadoop dfs -copyFromLocal  LocalFilePath inputPathHDFS 

7.5 Run the jar file (see figure 4.5 ) 

7.6 Retrieve the job result from the HDFS (see figure 4.6) 
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Figure 4.3: Compiling a MapReduce program code 

 

 

Figure 4.4: Making a jar file of classes and execution of a program 
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Figure 4.5: Output of the WordCount MapReduce job 

 

 

Figure 4.6: Retrieving the output from the HDFS 
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Example: calculate the value of pi 

 

Figure 4.7: Execution of pi MapReduce example 

 

Figure 4.7: Execution of pi MapReduce example 
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4.2 Proposed MST Algorithm 

We have written the code in java language and save it as Mst.java. 

Now compile this file by javac compiler. 

Now, make a jar file and put all the classes into this jar file. 

Now, start the hadoop cluster and insert the local data files (Graph as a input) into the 

HDFS (hadoop distributed file system). 

Now, run that jar file by the command. 

Retrieve the output to local from the HDFS. 

 

 

Figure 4.8: Compiling and making a jar file 
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Figure 4.9: Insertion of the data files into HDFS and Running of the job 

 

Figure 4.10: Data in HDFS and execution of MST algorithm 
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                                  Figure 4.11: Output of the MST 
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Chapter 5  

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

MapReduce is a programming model to run the jobs parallel in the cluster and 

cloud. At the programmer's point of view, MapReduce hides the complexity of data 

distribution, load balancing and fault tolerance. MapReduce is a very good for processing 

huge data in a parallel way. It is the heart of cloud computing. We have decomposed 

Round Robin algorithm in MapReduce programming module to run on Hadoop framework, 

and analyzed that MapReduce provide a better approach to run jobs in parallel. In our 

work, Minimum Spanning Tree (MST) was taken as a basis for analyzing the efficiency 

and programmability of large scale graph processing because it is one of the most studied 

combinatorial problems and consists of different types of workings at each step. We give a 

MapReduce version of round robin minimum spanning tree algorithm. Our algorithm 

generates minimum spanning tree only in  (    ) rounds which is better than  (    ) of 

PRAM algorithms and  (        ) of sequential algorithm.  

 

5.2 Future Work  

In this project I configured Hadoop for a Standalone mode only. My Future work is 

to enhance the approach to standalone mode to pseudo distributed mode and fully 

distributed mode. This algorithm will work very well for the small graph problem. My 

future scope to remains to improve our optimized design patterns even further. For 

example, Partitioning could be done to cluster based on actual graph topology. We can 

extend this MapReduce so that reducer can interact with HDFS in between the processing.  
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 APPENDIX  

 

          Code: MST algorithm  

import java.io.IOException; 

import java.util.HashMap; 

import java.util.HashSet; 

import java.util.Iterator; 

import java.util.Map; 

import java.util.Set; 

import java.util.StringTokenizer; 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Counters; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

import org.apache.hadoop.util.ToolRunner; 

import org.apache.hadoop.util.*; 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.conf.Configured; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.apache.hadoop.util.Tool; 

import org.apache.hadoop.util.ToolRunner; 

 

public class Mst extends Configured implements Tool { 
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 static enum MstCounters { totalWeight } 

public static class MstMapper extends Mapper<Object, Text, IntWritable, Text> { 

public void map(Object key, Text value, Context context) 

                  throws IOException, InterruptedException { 

  

      String inputTokens[] = value.toString().split("\t");   

      String weight = inputTokens[0] ; 

                   try { 

       int wt = Integer.parseInt(weight); 

            IntWritable iwWeight = new IntWritable(wt); 

                          Text srcDestPair = new Text(); 

       srcDestPair.set(inputTokens[1] + ":" + inputTokens[2]); 

       context.write(iwWeight,srcDestPair); 

      } 

                        catch((NumberFormatException ex) { 

                        } 

          } 

  

static class MstReducer extends Reducer<IntWritable, Text, Text, Text> { 

Map<String, Set<String>> node_AssociatedSet = new HashMap<String, Set<String>>();  

public void reduce(IntWritable inputKey, Iterable<Text> values, Context context) 

   throws IOException, InterruptedException { 

   String strKey = new String(); 

   strKey += inputKey; 

   Text outputKey = new Text(strKey); 

   for (Text val : values) { 

//boolean values to check if the two nodes belong to the same tree, useful for cycle detection 

   boolean ignoreEdgeSameSet1 = false; 

   boolean ignoreEdgeSameSet2 = false; 

   boolean ignoreEdgeSameSet3 = false; 
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   Set<String> nodesSet = new HashSet<String>();   

   String[] srcDest = val.toString().split(":"); 

   //getting the two nodes of an edge 

   String src = srcDest[0];  

   String dest = srcDest[1]; 

//check if src and dest belong to the same tree/set, if so, ignore the edge 

   ignoreEdgeSameSet1 = isSameSet(src, dest); 

   //form the verticesSet 

   nodesSet.add(src); 

   nodesSet.add(dest);    

   ignoreEdgeSameSet2 = unionSet(nodesSet, src, dest);  

   ignoreEdgeSameSet3 = unionSet(nodesSet, dest, src); 

if (!ignoreEdgeSameSet1 && !ignoreEdgeSameSet2 &&  !ignoreEdgeSameSet3) 

{ 

   long weight = Long.parseLong(outputKey.toString()); 

         

context.getCounter(MstCounters.totalWeight).increment(weight); 

  context.write(outputKey, val); 

    } 

   } 

  } 

private boolean unionSet(Set<String> nodesSet, String node1, String node2) { 

  boolean ignoreEdge = false; 

/* boolean value to determine whether to ignore the edge or not. If the map does not 

contain the key, add the key, value pair */ 

  if (!node_AssociatedSet.containsKey(node1)) { 

   node_AssociatedSet.put(node1, nodesSet); 

   } 

                      else { 

   // get the set associated with the key 

   Set<String> associatedSet = node_AssociatedSet.get(node1); 
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   Set<String > nodeSet = new HashSet<String>(); 

   nodeSet.addAll(associatedSet);  

   Iterator<String> nodeItr = nodeSet.iterator(); 

   Iterator<String> duplicateCheckItr = nodeSet.iterator(); 

/* first check if the second node is contained in any of the sets from node1 to nodeN if so, ignore 

the edge as the two nodes belong to the same set/tree */ 

   while(duplicateCheckItr.hasNext()){ 

   String node = duplicateCheckItr.next(); 

   if(node_AssociatedSet.get(node).contains(node2)){ 

    ignoreEdge =  true; 

    } 

   } 

/* if the associatedSet contains elements {node1 , node2, .., nodeN}. Get the sets associated with 

each of the element from node1 to nodeN */ 

   while (nodeItr.hasNext()) { 

   String nextNode = nodeItr.next(); 

   if (!node_Assoc iatedSet.containsKey(nextNode)) { 

   node_AssociatedSet.put(nextNode, nodesSet); 

    } 

/* add the src and dest to the set associated with each of the elements in the associatedSet, the src 

and dest will get added to the set associated with node1 to nodeN */ 

   node_AssociatedSet.get(nextNode).addAll(nodesSet); 

    } 

   } 

   return ignoreEdge; 

 } 

  private boolean isSameSet(String src, String dest) { 

  boolean ignoreEdge = false; 

 // boolean value to check whether the edge should be ignored iterating through the map 

  for (Map.Entry<String, Set<String>> node_AssociatedSetValue : 

node_AssociatedSet.entrySet()) { 
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  Set<String> nodesInSameSet = node_AssociatedSetValue .getValue(); 

//if the src and dest of an edge are in the same set, ignore the edge 

   if (nodesInSameSet.contains(src) 

   && nodesInSameSet.contains(dest)) { 

   ignoreEdge= true; 

    } 

   } 

   return ignoreEdge; 

  }  

 } 

  

//the method to call the functions that run the jobs 

public int run(String[] args) throws Exception { 

  formMSTJob(args[0], args[1]); 

  return 0; 

 } 

//method to run the job that forms the MST 

private void formMSTJob(String inputPath, String outputPath) 

  throws Exception { 

  Job mstJob = getMSTJobConf(); //get the job configurations 

  FileInputFormat.setInputPaths(mstJob, new Path(inputPath));  

                    // setting the input files for the job 

  FileOutputFormat.setOutputPath(mstJob, new Path(outputPath)); 

                   // setting the output files for the job 

  mstJob.waitForCompletion(true); 

  Counters jobCntrs = mstJob.getCounters(); 

                   //get all the counters associated with mstJob 

  long totalWeight = jobCntrs.findCounter(MstCounters.totalWeight) 

   .getValue(); 

  System.out.println("The total weight of the MST is " + totalWeight ); 

 } 
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protected Job setupJob(String jobName, JobInfo jobInfo) throws Exception { 

  Job job = new Job(new Configuration(), jobName); 

  job.setJarByClass(jobInfo.getJarByClass()); 

  job.setMapperClass(jobInfo.getMapperClass()); 

  if (jobInfo.getCombinerClass()!= null) 

  job.setCombinerClass(jobInfo.getCombinerClass()); 

  job.setReducerClass(jobInfo.getReducerClass()); 

  job.setNumReduceTasks(3); 

  job.setOutputKeyClass(jobInfo.getOutputKeyClass()); 

  job.setOutputValueClass(jobInfo.getOutputValueClass()); 

  return job; 

 } 

 

//get the job configuration  for formMST mapper and reducer 

 private Job getMSTJobConf() throws Exception { 

  JobInfo jobInfo = new JobInfo() { 

                        @Override 

   public Class<? extends Reducer> getCombinerClass() { 

    return null; 

   } 

   @Override 

   public Class<?> getJarByClass() { 

    return Mst.class; 

   } 

   @Override 

   public Class<? extends Mapper> getMapperClass() { 

    return MstMapper.class; 

   } 

   @Override 

   public Class<?> getOutputKeyClass() { 
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    return IntWritable.class; 

   } 

   @Override 

   public Class<?> getOutputValueClass() { 

    return Text.class; 

   } 

   @Override 

   public Class<? extends Reducer> getReducerClass() { 

    return MstReducer.class; 

   } 

  }; 

  return setupJob("formMST", jobInfo); 

 } 

 

public static void main(String[] args) throws Exception { 

  int res = ToolRunner.run(new Configuration(), new Mst(), args); 

  if (args.length != 2) { 

  System.err.println("Usage: MST <in> <output > "); 

  System.exit(2); 

  } 

  System.exit(res); 

 } 

public abstract class JobInfo { 

                     public abstract Class<?> getJarByClass(); 

  public abstract Class<? extends Mapper> getMapperClass(); 

  public abstract Class<? extends Reducer> getCombinerClass(); 

  public abstract Class<? extends Reducer> getReducerClass(); 

  public abstract Class<?> getOutputKeyClass(); 

  public abstract Class<?> getOutputValueClass(); 

 } 

} 


