
 DESIGN AND IMPLEMENTATION OF GLOBAL FREQUENT

PATTERN MINING ALGORITHM USING MAP REDUCE

Enrolment No. 122211

Name of Student Lucky Rajpoot

Name of supervisor Dr. Pardeep Kumar

MAY-2014

Submitted in partial fulfilment of the Degree of

Master of Technology

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT, DIST. SOLAN, (H.P.), INDIA

i

Table of content

Chapter No. Title Page No.

 Certificate IV

 Acknowledgement V

 Summary VI

 List of Figures VII-IX

Chapter 1 Introduction 1-17

 1.1 Data mining and knowledge discovery 1

 1.2 Frequent pattern mining 2

 1.2.1 Problem Statement 3

 1.3 Data mining task based on Frequent set 5

 1.3.1 Association rules 5

 1.3.2 Clusters 7

 1.3.3 Classifiers 7

 1.3.4 Correlation Sequences 8

 1.3.5 Frequent Episode 9

 1.4 Types of Data 10

 1.5 Kinds of Frequent Itemsets Mining 11

 1.5.1 Frequent Closed 11

 1.5.2 Maximal Frequent Itemsets 11

 1.5.3 Constrained Frequent Itemset 12

 1.5.4 Approximate Frequent Itemset 12

 1.5.5 Near-match Frequent Itemsets 12

 1.5.6 Top-k Frequent Itemset 12

 1.5.7 Frequent Free 12

 1.5.8 Frequent Essential Itemsets 12

 1.6 Real Time Frequent Mining 12

 1.7 Applications of Frequent Itemset Mining 14

 1.8 Problem Formulation 16

 1.9 Motivation 17

Chapter 2 Algorithms to Find Frequent Pattern from Static

Data

18-37

ii

 2.1 Apriori Algorithm 18

 2.1.1 Example of Apriori 19

 2.2 FP-growth Algorithm 21

 2.3 ECLAT Algorithm 24

 2.4 Relim Algorithm 27

 2.4.1 Preprocessing 27

 2.4.2 Transaction Representation 28

 2.4.3 Recursive Processing

 2.5 H-Mine: Hyper-Structure Mining of Frequent Patterns in

Large Databases

31

 2.5.1 Example of H-mine 31

Chapter 3 Frequent Patterns Mining on Streaming Data 38-42

Chapter 4 Hadoop 43-47

 4.1 Components of Hadoop 43

 4.2 Blocks 44

 4.3 HDFS (hadoop file system) 44

 4.4 Namenodes and Datanodes 45

 4.5 Map Reduce 45

 4.6 Problems Solved by Hadoop 47

Chapter 5 Proposed Approach 48-68

 5.1 Real Time Mining and its significance 48

 5.2 Proposed Approach 49

 5.3 Algorithm of Approach 51

 5.4 Advantages of Approach 53

 5.5 Example of the Proposed Approach
55

Chapter 6 Results
69-74

 6.1 Comparison between Apriori, FP-growth and Proposed

Algorithm
69

 6.2 Comparison between Relim, H-mine and Proposed

Algorithm
70

iii

 6.3 Performance of GFP
70

 6.4 Some Experimental Result
71

Chapter 7 Conclusion and Future Work
75-76

 References 77-80

iv

CERTIFICATE

This is to certify that the work titled “DESIGN AND IMPLEMENTATION OF

GLOBAL FREQUENT PATTERN MINING ALGORITHM USING MAP REDUCE”

submitted by “LUCKY RAJPOOT” in partial fulfilment for the award of degree of

M. Tech of Jaypee University of Information Technology, Waknaghat has been

carried out under my supervision. This work has not been submitted partially or

wholly to any other University or Institute for the award of this or any other degree

or diploma.

Signature of Supervisor ……………………..

Name of Supervisor Dr. Pardeep Kumar

Designation Assistant Professor, Department of CSE and ICT

Date ……………………..

v

ACKNOWLEDGEMENT

I take this opportunity to offer my honour and profound greetings on the success of my M.Tech

research work to my supervisor Dr. Pardeep Kumar, Assistant Professor-Department of

Computer Science and Engineering, Jaypee University of Information Technology, Waknaghat,

for his generous help and great support. I felt motivated from his incredible guidance and this

research work would not have been possible without his invaluable contribution.

I would also like to express my heartfelt thanks to my family and friends who have been my

inspiration. Their ideas and motivation have been my driving force throughout my research

tenure. Lastly, I would like to thank my friend Anubhav who has helped me in simulating my

research work.

Signature of the student ……………………..

Name of Student ……………………..

Date ……………………..

vi

SUMMARY

With the proliferation of computing in our daily lives, more and more amount of data is being

collected. Along with the traditional computing techniques, novel technologies like pervasive

computing, cyber physical systems and Internet of Things (IoT) have come out of their

incubation period and together they are generating highly complex and unstructured data which

is sometimes also termed as Big Data. In order to take intelligent decisions and create

applications that leverage from the treasure trove of information available we need to analyze

and discover new facts and subtle yet important relationships. We need to mine the data to

extract even the last bit of useful knowledge. In order to tackle this challenge we have developed

a frequent item set mining algorithm that operate on real world data. Our proposed technique

uses Map Reduce technique which is the key to exploit the inexhaustible and boundless potential

of the omnipresent cloud. Preliminary evaluation and analysis indicates that the proposed

approach has comparable, if not better, performance to other state of the art frequent item set

mining algorithms.

 __________________ _______________________

Signature of Student Signature of Supervisor

Name: Lucky Rajpoot Name: Dr. Pardeep Kumar

Date: Date:

vii

LIST OF FIGURES

Figure No. Figure Caption Page No.

1.1 Steps of KDD process 2

1.2 Example of classifying dataset using pattern extraction 8

1.3 Episode α 9

1.4 Episode β 9

1.5 Episode γ 9

2.1 Dataset to apply Apriori 19

2.2
Candidate itemset-1 with support count (left), frequent

1-itemset L1 (right)
20

2.3
Candidate itemset-2 (left), Candidate itemset-2 with

support count (middle), frequent 2-itemset L1 (right)
20

2.4
Candidate itemset-3 (left), Candidate itemset-3with

support count (middle), frequent 3-itemset L1 (right)
21

2.5
Transaction dataset(left), frequency of each item(2nd),

items sorted by frequency(3rd), filtered and sorted

traction database(right)

22

2.6 FP-tree of the transaction database 23

2.7 Frequent patterns of the transaction database 24

2.8
Transaction dataset(left), itemset belong to transaction

ID(middle), frequent itemset-1(right)
25

2.9
Candidate itemset-2 with TidSet(left), frequent

itemset-2middle), Candidate itemset-3 with

TidSet(right),

26

2.10 Candidate itemset-3 with TidSet 26

2.11

Transaction database (left), item frequencies (middle),

and reduced transaction database with items in

transactions sorted ascendingly w.r.t. their frequency

(right).

27

2.12

Procedure of the recursive elimination with the

modification of the transaction lists (left) as well as

the construction of the transaction lists for the

recursion (right).

30

viii

2.13 The Transaction Database TDB as Running Example 31

2.14 H-Struct. 32

2.15 Header Table Ha and ac-queue 33

2.16 Header Table Hac 34

2.17 Header Table Ha and ad-queue 35

2.18
Adjusted Hyperlinks after Mining a-projected

Database
36

3.1
Mining frequent itemsets from the latest W transaction

using sliding window model
39

3.2 Weighted sliding window model 40

3.3
Window size reduction and checkpoint (cp) movement

after change detection.
42

4.1 HDFS Architecture 45

4.2 Example of Map Reduce 46

5.1 All the Organization Store its Data at a Common Place 50

5.2 Mining Process 50

5.3 Block diagram of GFP algorithm 54

5.4 Dataset for day 1 55

5.5
Items with their support (left), frequent items in

descending order of their support(right)
56

5.6 Sorted and Filtered Day1 dataset’s transactions 57

5.7 FP-tree of the dataset of DAY 1 57

5.8 Frequent patterns of dataset DAY1 with their support 58

5.9 Dataset of DAY2 58

5.10 Items are arranged in descending order and less

frequent items are removed
59

5.11 Sorted and Filtered Day2 dataset’s transactions 59

5.12 FP-tree of the dataset of DAY2 60

5.13 Frequent patterns of dataset DAY2 with their support 60

5.14 Frequent pattern of DAY1(left) and frequent pattern of

DAY2(right)
61

5.15 Globally frequent pattern list 64

5.16 Stored data is split 65

ix

5.17 Each split is computed at spate cluster 65

5.18 Computed result of each cluster is combined at

common storage
66

5.19 Distributed frequent pattern mining using map reduce 66

6.1 Transaction Vs. Time Graph of GFP 73

6.2 Minimum Support Vs. Time Graph of GFP 73

1

Chapter 1

Introduction

1.1 Data mining and knowledge discovery [1]:

Data mining is the process of extracting interesting (implicit, nontrivial, earlier unknown

and potentially useful) information or patterns from large data repositories such as: data

warehouses, relational database, XML repository etc. Data mining is one of the core

processes of Knowledge Discovery in Database (KDD) which is the extracted knowledge

from the large datasets used for generating patterns and decision making.

There three main tasks in data mining:

 Pre-processing - This is the process which is executed before data mining

techniques are applied to the right data. The pre-processing includes data cleaning,

integration, selection and transformation.

 Data mining process – In this process hidden knowledge is produced by applying

different algorithm.

 Post-processing – After having the mining results, the mining result is evaluated

according to user’s requirements and domain knowledge.

The data sources may come from different databases, which may have some inconsistence

and duplicate data. So first we need to clean and integrate the databases by removing

noises from the data source. The second task is to select related data from the integrated

resources and transform them into a format that is ready to be mined. After selection of

relevant data, the database in which our data mining techniques are to applied will be much

smaller, consequently the whole process will be more efficient.

2

Fig 1.1 Steps of KDD process

Fig 1.1 shows the KDD process of extracting knowledge from data. KDD has evolved

from interaction and cooperation among such different fields as machine learning, pattern

recognition, database, statistics, artificial Intelligence, knowledge representation, and

knowledge acquisition for intelligent systems. The main idea in KDD is to discover a high

level knowledge (abstract knowledge) from lower levels of relatively raw data, or to

discover a higher level of interpretation and abstraction than those previously known.

1.2 Frequent pattern mining[2,3]:

Frequent pattern mining is the extraction of those items from the databases whose

frequency is more than a specified threshold or support. Frequent pattern mining is a

focused theme in researches of data mining over a decade. Large number of researches has

been dedicated to it and remarkable progress is achieved. Frequent pattern mining plays a

necessary role in several data mining tasks, like mining associations, sequential patterns,

classification, and clustering, max-patterns and frequent closed patterns.

The discovery of frequent patterns is one of the most prominent research problems in data

mining. Now a day in each and every field data is generated with a very high speed. To

3

extract the useful hidden information from the large amount of databases we use data

mining. In transaction databases there are frequent patterns which are important problem in

data mining. To solve this problem this problem many researches are going on. The

databases of each organisation are increasing at rapid rate, with the increment in size the

required memory and computation size also increases. User behaviour also becomes more

complex due to the increase in number of items. Many algorithms are applied to discover

frequent patterns from large databases.

Discovering all frequent itemset from large databases is quite challenging task as the

search space required is exponential to the number of items to the database. The output is

limited to reasonable space because of the support threshold. Support counting can be a

tough problem in the large databases which contains millions of transactions. A very large

number of frequent itemsets and rules are generated from a frequent pattern mining. It

reduces not only efficiency but also effectiveness of mining.

Frequent pattern mining of transaction databases is one of the important problems in data

mining as the size of databases is continuously increasing because of which the

computation time as well the memory required is also increasing. Many researches are

going to solve this problem. The best way to solve it, apply parallel and distributed

computing techniques to discover the frequent patterns from massive databases

In many of the data mining tasks, such as association rule, clusters and classifiers,

correlation sequences and episodes frequent set plays an essential role. Among these

association rule is one of the most popular problem of data mining. Many algorithms of

finding frequent pattern have been discovered on static databases as well as streaming

datasets.

1.2.1 Problem Statement[2]

Let I be a set of items. A set X = {i1, . . . , ik} ⊆ I is called an itemset, or a k-itemset if it

contains k items.

A transaction over I is a couple T = (tid, I) where tid is the transaction identifier and I is an

itemset. A transaction T = (tid, I) is said to support an itemset X ⊆ I, if X ⊆ I.

4

A transaction database D over I is a set of transactions over I. We omit I whenever it is

clear from the context.

The cover of an itemset X in D consists of the set of transaction identifiers of transactions

in D that support X:

 cover(X, D) := {tid | (tid, I) ∈ D, X ⊆ I} (1.1)

The support of an itemset X in D is the number of transactions in the cover of X in D:

 support(X, D) := |cover(X, D)|. (1.2)

The frequency of an itemset X in D is the probability of X occurring in a transaction T ∈

D:

 frequency(X, D) := P(X) =

 (1.3)

Note that |D| = support({}, D). We omit D whenever it is clear from the context.

An itemset is called frequent if its support is no less than a given absolute minimal support

threshold σabs, with 0 ≤ σabs ≤ |D|. When working with frequencies of itemsets instead of

their supports, we use a relative minimal frequency threshold σrel, with 0 ≤ σrel ≤ 1.

Obviously, σabs = σrel · |D|. In this thesis, we will only work with the absolute minimal

support threshold for itemsets and omit the subscript abs unless explicitly stated otherwise.

Definition: Let D be a transaction database over a set of items I, and σ a minimal support

threshold. The collection of frequent itemsets in D with respect to σ is denoted by

 F(D, σ) := {X ⊆ I | support(X, D) ≥ σ}, (1.4)

 or simply F if D and σ are clear from the context.

Problem: (Itemset Mining) Given a set of items I, a transaction database D over I, and

minimal support threshold σ, find F(D, σ).

5

1.3 Data mining task based on Frequent set

1.3.1 Association rules[4,5]

Formally, an association rule is an implication relation in the form between two

disjunctive sets of items X and Y. A typical example of an association rule on "market

basket data" is that "80% of customers who purchase bread also purchase butter ". Each

rule has two quality measurements, support and confidence.

The rule has confidence c if c% of transactions in the set of transactions D that

contains X also contains Y. The rule has a support S in the transaction set D if S% of

transactions in D contain . The problem of mining association rules is to find all

association rules that have a support and a confidence exceeding the user-specified

threshold of minimum support (called MinSup) and threshold of minimum confidence

(called MinConf) respectively.

The support of an itemset X denoted by S (X) is the ratio of the number of transactions that

contains the itemset X (|Tx|) to the total number of transactions (|D|). S(X) is defined by the

following formula:

 (1.5)

 The support of an association rule denoted by is the ratio of the number of

transactions containing both X and Y to the total number of transactions, |D|. If

the support of an association rule is 20% this means that 20% of the analyzed transactions

contain is defined by the following formula:

 (1.6)

 The confidence of an association rule indicates the degree of correlation between x and y

in the database. It is used as a measure of a rule's strength. The confidence of an

association rule denoted by C() is the ratio of the number of transactions that

contain X Y (S()) to the number of transactions that contain X (S(X)).

Consequently, if we say an association rule has a confidence of 87%, it means that 87% of

6

the transactions containing X also contain Y C() is defined by the following

formula:

 (1.7)

 Association rule mining is described as a two-step process as follows:

Step 1: extraction of all frequent itemsets.

Step 2: Strong association rules extractions from the obtained frequent itemsets.

 In general, association rules are considered interesting (frequent) if they satisfy both a

minimum support threshold and a minimum confidence threshold defined by users or

domain experts.

If the support and the confidence of an association rule is greater than or equal to

the user specified minimum support, minsupp and minimum confidence value, minconf

this rule is said to be frequent (interesting). A frequent rule is characterized by the

following properties:

 (1.8)

And

 (1.9)

Association rule mining is to find out association rules that satisfy the predefined minimum

support and confidence from a given database. It aims to extract interesting correlations,

frequent patterns, associations or casual structures among sets of items in the transaction

databases or other data repositories. Association rules are widely used in various areas such

as telecommunication networks, market and risk management, inventory control etc.

Generally, an association rules mining algorithm contains the following steps:

1.The set of candidate k-itemsets is generated by 1-extensions of the large (k -1)-itemsets

generated in the previous iteration.

7

2.Supports for the candidate k-itemsets are generated by a pass over the database.

3.Itemsets that do not have the minimum support are discarded and the remaining

itemsets are called large k-itemsets.

This process is repeated until no more large itemsets are found.

Suppose the support of an item is 0.1%, it means only 0.1 percent of the transaction contain

purchasing of this item. Confidence of an association rule is defined as the

percentage/fraction of the number of transactions that contain X Y to the total number of

records that contain X. Confidence is a measure of strength of the association rules,

suppose the confidence of the association rule X⇒Y is 80%, it means that 80% of the

transactions that contain X also contain Y together.

1.3.2 Clusters[6]

Now, how the frequent itemsets help in forming cluster? First we need to know what are

clusters? Clusters are sets of something which have same characteristics or properties.

Clustering is the process of grouping physical or abstract objects into similar ones.

It is the unstructured process of learning in which the number of classes is not prior

defined. Each and every transaction is clustered on the basis of characteristics and features.

The frequent itemset sets are maintained via clusters as the centre point of each cluster is

the transaction which is most frequent and every transaction is categorised by comparing

that transaction with the cluster centre. In this way each and every transaction is classified.

1.3.3 Classifiers[7,8]

Classifiers are just like clusters only, the only difference is that it is structured learning i.e.

the number of classes are prior known. In this we randomly select the transaction whose

Euclidean distance is high as a centre point. We select as many transactions as much we

need the classes as a centre point. Now to classify the transaction into the classes we follow

the same process as in clustering.

8

The idea to use frequent patterns is to define features or can be used as rules; classification

models which make use of these features or rules may be more accurate or simpler to

understand. Frequent pattern mining can be considered a propositionalization approach

which enables the use of propositional data mining and machine learning algorithms.

The main idea of pattern-based classification is that patterns define new features, which can

be used in a classification model. A simple example is provided in the figure below:

Fig 1.2: Example of classifying dataset using pattern extraction

Essentially, a pattern is a regularity that is observed in a number of examples, in this

example {A, B} is a pattern that occurs in the first example and third example. Whether

this regularity is present or not in an example can be seen as a feature of each example. A

prediction can be based on this, for instance, if an example includes items A and B we may

predict the example to be positive.

1.3.4 Correlation Sequences[9]

Correlation is up to how much one transaction is related to other. This can be calculated by

using Pearson correlation or Euclidean distance. Most of the database uses correlation as a

basic function for many analytic tasks. If we are having similar queries then it is required

to set the length and there is no proper way to define the proper length based on the needs

of different application.

Now a days in many application (such as network analysis, sensor network analysis,

financial data analysis and image processing) sequence data can be found. To analyse data

without prior knowledge of the query length Longest- lasting correlated sub sequences may

be useful. If we take the example of stock analysis, a stock analysis wants to find stock

9

whose price variance is similar to its competitor then he can find its answer easily by

subsequence matching.

1.3.5 Frequent Episode[10]

Episode can be defined as a partially ordered collection of events occurring together.

Informally, an episode is a partially ordered collection of events occurring together. These

ordered collections of events may carry useful information regarding correlations among

events types. Episodes can be described by directed acyclic graphs. An episode is said to

occur in an event sequence if there are events of appropriate event types in the data

sequence with a time ordering that conforms to the partial order specified by the episode.

For instance consider the episodes α, β, γ.

Fig 1.3.: Episode α

Episode α is a serial episode: this episode occurs in a sequence only if there are event of

types A and B that occur in this order in a sequence. This means that the event B is

followed by the event A in the sequence.

Fig 1.4: Episode β

Episode β is a parallel episode: no constraints on the relative order of A and B are given.

These events are independent of each other and occur independently.

A

B

B A

10

Fig 1.5: Episode γ

Episode γ is non-serial and non-parallel episode: In this the sequence of occurrence of

events A and B. they can occur in parallel or may occur one after another but the

occurrence of C will depend on event A and B.

A frequent episode is one whose frequency exceeds a user-specified threshold and based

on the same general idea as the Apriori algorithm. This method exploits the fact that a

necessary condition for an N-node episode to be frequent is that all its (N-1) nodes sub-

episodes should be frequent.

1.4 Types of Data[11]

I. Static Data: this data is passive and randomly accessed or it is a static data which

has been generated in past. In this training data is selected randomly and the result

accuracy does not depend on response time, the data is persistent and update speed

is minimal and respond in passive mode. In this the querying process is one time.

II. Stream Data: it contains transient data relation that is the data in the dataset is

temporary and changes continuously with time; in this the process of querying is

continuous. The data is continuously updated. The performance and result

accuracy is influenced with time. The data is accessed sequentially. The speed of

updating is high therefore the response type should be active. It is of two types:

online data and offline data. The streaming dataset mining has lead to study

frequent pattern mining on online data, which helps in many of the emerging

applications, such as network traffic analysis, web log and click stream mining,

A
C

B

11

business and stock market analysis, trend analysis and fraud detection in

telecommunications data and sensor network. With emergence of these

applications, it is becoming difficult to conduct advanced analysis and data mining

over fast-arriving and large data streams in order to capture interesting patterns,

trends and exceptions.

1.5 Kinds of Frequent Itemsets Mining [12]

We can mine the complete set of frequent itemsets, based on the completeness of patterns

to be mined: we can distinguish the following types of frequent itemset mining, given a

minimum support threshold:

1.5.1 Frequent Closed: if we have an itemset X then the closure of X is the set of all

items that appear in all transaction where X appears in a database r. Mathematically it can

be given as:

 { ⊆ (1.10)

 If cl(X) =X then X is said to be closed.

Closed frequent itemset can be find by first identifying all frequent itemsets then from this

group find those that are closed by checking to see if there exists a superset that has the

same support as the frequent itemset, if there is, the itemset is disqualified, but if none can

be found, the itemset is closed.

1.5.2 Maximal Frequent Itemsets: An itemset X is a maximal frequent itemset (or max-

itemset) in set S if X is frequent, and there exists no super-itemset Y such that and

Y is frequent in S.

first examine the frequent itemsets that appear at the border between the infrequent and

frequent itemsets then Identify all of its immediate supersets. If none of the immediate

supersets are frequent, the itemset is maximal frequent.

12

1.5.3 Constrained Frequent Itemset: An itemset X is a constrained frequent itemset in

set S if X satisfy a set of user-defined constraints.

1.5.4 Approximate Frequent Itemset: An itemset X is an approximate frequent itemset

in set S if X derive only approximate support counts for the mined frequent itemsets.

1.5.5 Near-match Frequent Itemsets: An itemset X is a near-match frequent itemset if

X tally the support count of the near or almost matching itemsets.

1.5.6 Top-k Frequent Itemset: An itemset X is a top-k frequent itemset in set S if X is

the k most frequent itemset for a user-specified value, k

1.5.7 Frequent Free: in a given dataset r, if there is no exact rule of the form X1 → X2

where X1 and X2 are distinct subsets of X then an itemset X is said to be free. We can find

weather an itemset is free or not efficiently by the following property:

 X is free ⇐⇒ ∀x ∈ X, sup(X) < sup(X − x) (1.11)

1.5.8 Frequent Essential Itemsets: An itemset X is said to be essential if there is no

disjunctive rule of the form where are distinct elements in

X. As for free sets, they can be efficiently tested exploiting the following property:

 ∈ (1.12)

 Where { ∈

1.6 Real Time Frequent Mining[3,13]

Real time mining is basically the mining which is done on continuous data to keep them

updated. Its importance is increasing because of thrust in many business applications

recommender system, e-commerce and supply chain management and group decision

support systems. A embarrassment of economical algorithms are planned until date

13

If we have the dense data sets, the performance of the algorithms based on the real dataset

degrades significantly and these are the algorithms which fulfill the real world requirement

and are suited to respond in real-time.

Business intelligence is playing an essential role in achieving business goal such as

profitability, efficiency, customer preservation and market incursion. In most of the cases

of frequent pattern mining we use historic data. Now the thing is that, if the historic data

can help us in making good decision then how real time mining can make the decision

process better. By using up to date information we can get rid of delays and speed up in the

competitive environment. In various areas real-time decision making is important some of

them are real-time supply chain management system, real-time customer relationship

management, real-time recommender systems, real-time stock management and vendor

inventory, real-time enterprise risk and vulnerability management, real-time operational

management in which critical real-time information is required such application is in

mission, airline industry, fraud detection, real time negotiation and many other areas like

real-time dynamic pricing and discount offering to customers in real-time.

In the present era we need to be up to date and need to know the present demand, for that

we need to analyze the activities regularly and take the decisions by analyzing the patterns

generated from that set of data. Analyzing real time data (data of certain interval) can help

in doing so. For having good patterns we have to maintain the past history, means on the

basis of past and present we can take decision for future. This only concept we are using in

our approach and through an example we will be able to know how we will find the

frequent itemsets and how the approach is beneficial for the business analysis and maintain

the stocks.

For knowledge discovery we need to have patterns from the process of data mining. The

large databases in business in which we have transaction records is of great interest and we

need to extract patterns from them. Frequent pattern mining is of great use for discovering

patterns from the set transaction. Frequent pattern mining is quite complex and also the

search space required for finding all frequent items is huge. Many of the algorithms have

been proposed to make the search fast and accurate.

14

1.7 Applications of Frequent Itemset Mining[14]:

I. Web log and click-stream mining: in the web browser each and every click is

notified and according to your clicks it will analyze your behavior. If you have

noticed then in youtube it shows the recommended videos, all those videos are the

result of the previous clicks that you have made. Or if you visit any ecommerce

site then it also show some recommended things. This all are done by analyzing

the behavior of the user or the previous result like most of the people purchase

conditioner with shampoo. Like this way they can manage the site and can

improve their profit and can improve the customer relationship.

II. Network traffic analysis: many researches are going to examine the structure

and dynamics of network on the internet. This can be done by using packet

analysis and network flow data. Traffic analysis is required for network

management and security task. It is quite difficult task as it is difficult to manage

large volume of data and to inspect the packets for the security and privacy

concern. The security is provided by analyzing network and for that frequent

pattern mining can help to extract those IP’s which seems to be threatening for

the network. By doing so we can find the unwanted IP’s and can block them so

that they cannot harm the organization.

III. Trend analysis: trend analysis is basically a practice of collecting information

and attempt to spot a pattern. Future events can be predicted by using the

collected information. Uncertain events which is happened in past can also be

estimated by it such as based on data such as the average years which other

known kings reigned and what is the frequency of a certain event during some

period of time.

IV. Fraud detection in telecommunications data: for having fraud detection the

data must be cleaned, relevant, adequate and available and there must be well

defined tool and data mining process to detect frauds. In the competitive world

fraud is a critical problem as there can be some procedure in which a company

15

can face fraud. For that there should be proper mechanism to detect, control and

automate fraud. We are having the set of transaction and the telecommunication

data. By analyzing the telecommunication data we are able to find the fraud. We

have the machine learning process which help in knowing what kind of activity

can give rise to any fraud. Frequent mining can be one of the data mining

algorithm which can be used in training data and can help in preventing the

organization from fraud.

V. E-business and stock market analysis[14]: e-business and stock market is one

of the most prominent application of the frequent pattern mining because it helps

a lot in predicting the future and helps in taking better decision. For having good

e-business they need to analyze user’s behavior so that they can to better

recommend the things other than he want. There should be proper

synchronization between the things he is searching and the product that the site is

recommending. Same in case of the stock market, by analyzing the past pattern

we can predict the future.

VI. Sensor networks: sensor network is the network of sensor which senses the

surroundings and stores the sensed information. That information needs to be

analyzed to recover the unwanted events or to predict the future. Sensor networks

are also used for training machines so that automatic decision can be taken.

Making the system smart and expert we need to have knowledge base and the

knowledge base is created through the data mining process which gives some

pattern by analyzing the past data.. Suppose we have sensor which sense

temperature we will be having the past record of the sensor and by that we can

predict temperature of the next day.

VII. Healthcare[15]: frequent pattern mining can be used to find abnormity, and can

help in managing medicines and can help doctors to make better decisions

regarding treatment and can discover more knowledge about the genes and the

past result can help them in giving better result. As in past many experiment is

carried out that is if someone is facing this symptom then he suffer from this

disease so by frequent pattern mining it is able to know that if a patient is having

16

some disease than by knowing the symptoms we can predict that what can be the

disease.

VIII. Education [16]: frequent pattern mining can help in alter the teaching method by

analyzing the previous results of students. It also helps in managing projects

which help in making the student focused. As by the past result we will do certain

experiments that are by doing so the result is improving and so. The policy which

gives the better result will be applied and can help in making the education better

and guide the students in better way. Research is done instead of administration

by applying these data mining processes.

IX. Disaster prevention [17]: by analyzing temperature, humidity and wind we can

forecast any disaster and can reduce loss and casualties. The frequent pattern

mining can help in doing so by having the past results it can predict the future that

there can be any chance of natural calamity and people of that are can be made

aware of the natural calamity which is predicted so that they can take better

decision and get prepared for the thing going to happen in future.

1.8 Problem Formulation

Discovering all frequent itemset from large databases is quite challenging task as the

search space required is exponential to the number of items to the database. The output is

limited to reasonable space because of the support threshold. Support counting can be a

tough problem in the large databases which contains millions of transactions. A very large

number of frequent itemsets and rules are generated from a frequent pattern mining. It

reduces not only efficiency but also effectiveness of mining.

Frequent pattern mining of transaction databases is one of the important problems in data

mining as the size of databases is continuously increasing because of which the

computation time as well the memory required is also increasing. Many researches are

going to solve this problem. The best way to solve it, apply parallel and distributed

computing techniques to discover the frequent patterns from massive databases.

17

1.9 Motivation

The motivation of searching frequent item set comes from the need to analyse the

transactions of super market, in order to examine the customer behaviour of purchasing

products. Frequent set defines that which set of products is buoyed together. For the

business analyses it is often used i.e. what is the demand of customer?, what are the items

that are often sold together?, which product should be launched together?, what

compliments to what? All these answer are given by the frequent item analysis.

It helps in finding interesting patterns from the databases for example association rules,

sequences, episodes, correlations, classifiers and clusters

The mining of association rules is one of the most popular problems of all these. The

identification of sets of items, products, symptoms and characteristics, which often occur

together in the given database, can be seen as one of the most basic tasks in Data Mining.

18

Chapter 2

Algorithms to Find Frequent Pattern from Static Data

In this section discuss some algorithms which are used for frequent data mining are

discussed so that we may clearly understand that how the frequent itemsets are generated

from the databases and how the result is used in decision making? We are having many

algorithms, some are based on the traditional databases and some are for the massive

databases. To find the frequent itemset from large databases we need to use those

algorithms which are distributed and parallel in nature so that communication and

computation complexity can be balanced. Now some of the algorithm is discussed as:

Frequent pattern mining studies are classified into two types: (1) the generate-and-test

(Apriori-like) approach [18] and the frequent pattern growth approach [19].

2.1 Apriori Algorithm[18]

In Apriori-like method a candidate itemset of size (k+1) from frequent itemset of size k is

generated iteratively. The database is scanned repetitively to test the frequency of

candidate itemset. The shortcomings of the apriori are:

i. The cost of memory required is high to handle large number of generated candidate

itemsets.

ii. Even though all the candidate set are loaded into the memory, the performance of

accumulating frequency will be low as most of the time is spent in searching

candidate set from a large pool of data.

The shortcoming of apriori has been solved by frequent pattern tree, in which transactions

are compressed and stored. In this frequent patterns are generated without candidate

generation, hence the scalability of the method is enhanced. Only two scans of database is

required to construct FP-tree and the execution time greatly reduced. Fp-tree was also

having some disadvantages, if the database is large then a complex FP-tree is generated

19

which is difficult to store in memory. This problem is solved by further proposed algorithm

for frequent itemset mining which are based on parallel and distribution mining technique.

2.1.1 Example of Apriori[2]:

The apriori algorithm can be better understood by example. Lets take an example and solve

it by using the algorithm. Following are the steps to solve Apriori

Fig 2.1: Dataset to apply Apriori

There are 9 transaction in this database so, |D|=9. Now we will use the above dataset to

find frequent itemset using apriori

1. In the iteration, we will find 1-itemsets C1, in which each item is a candidate set. In

this step whole database is scanned to find items with their frequency (the number

of occurrence of each item).

2. The minimum support is required so that we can prune the dataset. Suppose the

min_sup=2. Find the set of frequent 1-itemset, L1 by removing those itemset which

have support less than min_sup.

20

Fig 2.2. Candidate itemset-1 with support count (left), frequent 1-itemset L1 (right).

3. In this step, find the candidate set of 2-itemset and from that generate set of

frequent 2-itemset L2 and prune those itemset who have the sup.count less than

min_sup.

4. In this step, find the candidate set of 2-itemset and from that generate set of

frequent 2-itemset L2 and prune those itemset who have the sup.count less than

min_sup.

Fig 2.3. Candidate itemset-2 (left), Candidate itemset-2 with support count (middle),

frequent 2-itemset L1 (right).

21

5. Next, the support of each 2-itemset in dataset D is scanned as shown in middle

table and the 2-itemset whose support is less than min_sup is pruned.

6. From the C2 candidate set generate, L2 which contains the itemset whose support is

larger than the min_sup as shown in last table.

7. Do this process until you find the largest frequent itemset that is Ck and Lk

Fig 2.4. Candidate itemset-3 (left), Candidate itemset-3with support count (middle),

frequent 3-itemset L1 (right).

8. In this the largest frequent itemset is of size three which is shown in the above

figure.

2.2 FP-growth Algorithm[19]

Han et al.[19] has proposed a data structure, FP-tree which is a tree-based data structure,

and a mining algorithm, FP-growth, for discovering frequent patterns. In this algorithm the

complete mining task require only two scan of database. In the first scan we calculate the

frequency of each item and create a header table which records the item name and its

corresponding frequency. The first node-link links to the first node with the same item

name in the FP-tree. Items in the header table are sorted in descending order of their

frequency. The items with support count less than min supp is filtered in second pass, and

the residual items are sorted in descending arrange of the frequency values. The FP-tree is

constructed using sorted items in each transaction. where item-name is the name of item

for identification, count is the frequency .

22

For inserting transaction t in dataset D into FP-tree F, When two or more transactions share

same prefix then their path can be overlapped. The number of times the path is overlapped

the counter is increased. Node-links or pointers are maintained between nodes containing

the same item and a singly linked list (dotted lines) is created. For each transaction in D

recursively perform the insertion until each item is inserted into the FP-tree. The

compression will be higher when more paths are overlapped and the FP-tree can be fitted

in the memory. Once the FP-tree is constructed, FP-growth algorithm is used to discover

the frequent patterns. An item in the header table is selected to construct the conditional

FPtree by inserting all prefix paths of the item, which can be retrieved using the node-link

structure in header table. The item name is called the conditional pattern base. Example of

FP-Growth:

Step 1: In the first scan of whole database and the support of each item is calculated and

stored in a table. All the elements are scanned with their support and the elements with less

than min_sup is pruned. In the second scan of dataset all the transactions are filtered and

sorted. Filter means that the entire item which has the support less than min_sup is

removed from the dataset and sorted means all the transaction is sorted by the items in the

transaction according to the descending order of the support of the items in the transaction.

Fig 2.5: Transaction dataset (left), frequency of each item(2
nd

), items sorted by

frequency(3
rd

), filtered and sorted traction database(right)

23

Step 2: once the whole dataset is scanned, filtered and sorted we will construct the FP-tree.

Fp-tree is constructed by the following process:

1. FP-Growth reads 1 transaction at a time and maps it to a path

2. Fixed order is used, so paths can partly cover when transactions share items (when

they have the same prefix).

 This is case, counter are incremented

3. Pointers are maintain between nodes contain the same item, create singly linked

lists (dotted lines)

 The more paths that overlap, the higher the compression. FP-tree may fit in

memory.

4. Frequent itemsets extracted from the FP-Tree.

Fig 2.6: FP-tree of the transaction database

24

Step 3: after constructing the FP-tee, find the frequent items from the FP-tree by the

following steps:

1. FP-Growth extracts frequent itemsets from the FP-tree.

2. Bottom-up algorithm - from the leaves towards the root

3. Divide and conquer: first look for frequent itemsets ending in e, then de, etc. . . then

d, then cd, etc. . .

4. First, extract prefix path sub-trees ending in an item(set). (hint: use the linked lists).

Fig 2.7: Frequent patterns of the transaction database

In this way we can find the frequent pattern by using FP-growh by first constructing the

FP-tree and then find the frequent pattern from that FP-tree

2.3 ECLAT ALGORITHM[20,21]

Eclat uses the vertical database layout and uses the intersection based approach to compute

the support of an itemset. In éclat for every item we create a list of transaction id’s and

store in which the item occurs, denoted by tidlist. For every itemset, its tidlist equals the

intersectionof the tidlists of two of its subsets.

The Eclat algorithm is given as

Step 1. Find TidSet of each item i.e. the set of transaction the item belong (Data Scan)

25

Step 2. TidSet of item is exactly the list of transactions containing item

Step 3. If |TidSet|item >min_sup then it is frequent else the item is infrequent.

Step 4. After finding the frequent item create i-candidate set with its TidSet

Step 5. Repeat the step to find k-candidate set which is frequent.

Eclat algorithm is a depth first search based algorithm. It uses a vertical database layout i.e.

instead of explicitly listing all transactions; each item is stored together with its cover (also

called tidlist) and uses the intersection based approach to compute the support of an

itemset. It requires less space than apriori if itemsets are small in number. It is suitable for

small datasets and requires less time for frequent pattern generation than apriori.

Fig 2.8: Transaction dataset(left), itemset belong to transaction ID(middle), frequent

itemset-1(right)

In fig 2.8 we have a dataset on which we will apply éclat algorithm, first we will scan the

database to find the transactions to which a item belong and list all the transation to which

a item belong in TidSet. The support of an item is the length of TidSet, if the length of

TidSet is greater than min_sup than the item or set is frequent. The rightmost table contains

all the frequent items of length 1.

26

Fig 2.9: Candidate itemset-2 with TidSet(left), frequent itemset-2middle), Candidate

itemset-3 with TidSet(right),

Once we find the frequent items of length 1, we will make a set of length 2 from 1 length

frequent itemset. Then we will find the transaction to which the pair belongs. The result is

pruned that is all the infrequent itemsets are removed and with remaining set we create 3-

candidate set.

Fig 2.10: Candidate itemset-3 with TidSet

Find all the 3-candidate set with its TidSet i.e. the set of transactions containing that set

and at last find the itemset with TidSet> min_sup. In this way we can find the frequent

itemset with length k.

This algorithm works as Apriori . It requires less space than apriori if itemsets are small in

number .It is suitable for small datasets and requires less time for frequent pattern

generation than apriori.

27

2.4 Relim Algorithm[22,23]

Relim is recursive elimination algorithm. Recursive elimination is associate degree rule for

locating frequent itemsets that is powerfully impressed by the FP-growth rule and very

kind of like the H-mine rule. It does its work while not prefix trees or the other

sophisticated knowledge structures, process the transactions directly. Its main strength isn't

its speed (although it's not slow, even outperforms Apriori and Eclat on some knowledge

sets), however the simplicity of its structure. Essentially all the work is completed in one

simple algorithmic perform, which may be written with comparatively few lines of code.

2.4.1 Preprocessing

Fig 2.11, shows an example dealings information on the left. The frequencies of the things

during this information, sorted ascendingly, area unit shown within the table within the

middle. If we tend to area unit given a user such that stripped support of three transactions,

things f and g may be discarded. When doing therefore and sorting the things in every

dealings ascendingly w.r.t. their frequencies we tend to get the reduced information.

Fig 2.11: Transaction database (left), item frequencies (middle), and reduced transaction

database with items in transactions sorted ascendingly w.r.t. their frequency (right).

28

2.4.2 Transaction Representation

Each dealing is pictured as straightforward arrays of item identifiers (which are whole

number numbers). The initial dealings info is become a group of dealings lists, with one

list for every item. These lists are kept in a very easy array, every component of that

contains a support counter and a pointer to the top of the list. The list components

themselves consist solely of a successor pointer and a pointer to (or rather into, see below)

the dealings. The transactions are inserted one by one into this structure by merely

victimization their leading item as associate index. However, the leading item is far from

the dealings, that is, the pointer within the dealings list component points to the second

item. Note that this doesn't lose any data because the 1st item is implicitly pictured by the

list the dealings are in.

To illustrate this, Fig 2.11 shows, at the terribly prime, the illustration of the reduced

information of the dataset. The primary list, such as the item e, contains the second,

seventh and eight dealings, with the item e removed. The counter within the array

component states the amount of transactions containing the corresponding item. It ought to

be noted, as can become clear later, that this counter isn't invariably adequate the length of

the associated list, though this can be the case for this first illustration of the information.

Variations result from (shrunk) transactions that contain no alternative things and area unit

therefore not diagrammatical within the list.

For implementations it's vital to notice that the delineated theme, with a pointer into the

dealing so the leading item is skipped, will solely be applied in languages that yield pointer

arithmetic. In languages during which this is often not possible (like, for example, Java) the

things within the transactions is also sorted the opposite means spherical and a component

counter, hold on within the list parts, could wont to specify the set of the things that's to be

thought-about.

2.4.3 Recursive Processing

Recursive elimination works as follows: The array of lists that represents a (reduced)

dealing information is “disassembled” by traversing it from left to right, process the

transactions in a very list in a very algorithmic decision to seek out all frequent item sets

29

that contain the item the list corresponds to. When an inventory has been processed

recursively, its parts area unit either reassigned to the remaining lists or discarded

(depending on the transactions they represent), and also the next list is worked on. Since all

reassignments area unit created to lists that deceive the correct of the presently processed

one, the list array can finally be empty (will contain solely empty lists).

Before a group action list is processed, however, its support counter is checked, and if it

exceeds the user-specified minimum support, a frequent item set is rumoured, consisting of

the item related to the list and a attainable prefix related to the entire list array.

One group action list is processed as follows: for every list part the leading item of its

(shrunk) group action is retrieved associate degreed used as an index into the list array;

then the part is value-added at the top of the corresponding list. In such a duty assignment,

the leading item is additionally aloof from the group action, which may be enforced as a

straightforward pointer increment (or as a counter decrement, see above). Additionally, a

duplicate of the list part (with the leading item of the group action already removed by the

pointer increment) is inserted within the same method into associate degree as initio empty

second array of group action lists. (Note that solely the list part is derived, not the group

action. each list components, the reassigned one and also the copy confer with constant

group action.)

The process is illustrated for the foundation level of the formula in Fig 2.12, that shows the

group action list illustration of the initial info at the terribly prime within the initiative all

item sets containing the item e square measure found by process the left list the weather of

this list square measure reassigned to the lists to the correct (grey list elements) and copies

square measure inserted into a second list array (shown on the right). This second list array

is then processed recursively, before continuing to following list, i.e., the one for item.

30

Figure 2.12: Procedure of the recursive elimination with the modification of the

transaction lists (left) as well as the construction of the transaction lists for the recursion

(right).

Scan tid

10

31

2.5 H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases

[23,24]

This is the algorithm for frequent itemset mining which uses a simple and hyperlinked data

structure, H_struct and adjusts the links dynamically in the mining process. The most

distinct feature of this algorithm is that is has limited and precisely predictable space

overhead and in memory based settings, it runs really fast. The large databases can be

handled through this algorithm by data portioning and for the dense dataset, FP-tree can be

constructed dynamically as a part of mining process. H-mine shows high performance in

various kinds of data and it is scalable for mining large databases.

2.5.1 Example of H-mine

H-mine (Mem): memory based hyper structure mining First we need to define the problem

statement of frequent pattern mining.

Let I be the set of items where I = {x1, x2, ….xn}. A subset of item is an itemset denoted by

X i.e. X_I anitemset X= {x1, x2, ….xm}..

Let the first two columns of Table 1 be our running transaction database TDB. Let the

minimum support threshold be min_sup =2.

Fig 2.13: The Transaction Database TDB as Running Example

32

Fig 2.14: H-Struct.

A header table H is created, where each frequent item entry has three fields: an item-id, a

support count, and a hyper-link. When the frequent-item projections are loaded into

memory, those with the same first item (in the order of F-list) are linked together by the

hyper-links as a queue, and the entries in header table H act as the heads of the queues. For

example, the entry of item a in the header table H is the head of a-queue, which links

frequent-item projections of transactions 200, 300, 400. These three projections all have

item a as their first frequent item (in the order of F-list). Similarly, frequent-item projection

of transaction 100 is linked as c-queue, headed by item c. The d-, e – and g-queues are

empty since there is no frequent-item projection that begins with any of these items.

Clearly, it takes one scan (the second scan) of the transaction database TDB to build such a

memory structure (called H-struct). Then the remaining of the mining can be performed on

the H-struct only, without referencing any information in the original database. After that,

the five subsets of frequent patterns can be mined one by one as follows:

First, let us consider how to find the set of frequent patterns in the first subset, i.e., all the

frequent patterns containing item. This requires to search all the frequent-item projections

containing item a i.e., the a-projected database, denoted as |TDB|a. Interestingly, the

frequent-item projections in the a-projected database are already linked in the a-queue,

which can be traversed efficiently to mine the a-projected database, an a-header table Ha is

created, as shown in Fig 2.14. In Ha, every frequent item, except for itself, has an entry

with the same three fields as H, i.e., item-id, support count and hyper-link. The support

33

count in Ha re (i.e., frequent-item projections in the a-queue), thus the support count in the

entry c of Ha is 2.

Figure 2.15: Header Table Ha and ac-queue.

By traversing the a-queue once, the set of locally frequent items, i.e., the items appearing at

least times, in the a-projected database is found, which is {c:2, d:3, e:2} Note: g:1 is not

locally frequent and thus will not be considered further.). This scan outputs frequent

patterns {ac:2, ad:3, ae:2} and builds up links for header Ha as shown in Figure 2.15.

Similarly, the process continues for the ac-projected database by examining the c-queue in

Ha, which creates an ac-header table Hac, as shown in Figure 2.16.

Since only item d:2 is locally frequent item in the ac-projected database, only acd:2 is

output, and the search along this path completes.

34

Figure 2.16: Header Table Hac.

Then the recursion backtracks to find patterns containing a and d but no c. Since the queue

started from d in the header table Ha , i.e., the ad-queue, links all frequent-item projections

containing items a and d (but excluding item c in the projection), one can get the complete

ad-projected database by inserting frequent-item projections having item d in ac-queue into

the ad-queue. This involves one more traversal of the ac-queue. Each frequent-item

projection in the ac-queue is appended to the queue of the next frequent item in the

projection according to F-list. Since all the frequent-item projections in the ac-queue have

item d, they are all inserted into the ad-queue, as shown in Figure 2.17.

It can be seen that, after the adjustment, the ad-queue collects the complete set of frequent-

item projections containing items a and d. Thus, the set of frequent patterns containing

items a and d can be mined recursively.

35

Figure 2.17: Header Table Ha and ad-queue.

Please note that, even though item c appears in frequent-item projections of ad-projected

database, we do not consider it as a locally frequent item in any recursive projected

database since it has been considered in the mining of the ac-queue. This mining generates

only one pattern ade:2 Notice also the third level header table Had can use the table Hac

since the search for Hac was done in the previous round. Thus we only need one header

table at the third level. Later we can see that only one header table is needed for each level

in the whole mining process. For the search in the ae-projected database, since contains no

child links, the search terminates, with no patterns generated.

After the frequent patterns containing item a are found, the a-projected database, i.e., a-

queue, is no longer needed in the remaining of mining. Since the c-queue includes all

frequent-item projections containing item c except for those projections containing both

items a and c, which are in the a-queue. To mine all the frequent patterns containing item c

but no a, and other subsets of frequent patterns, we need to insert all the projections in the

a-queue to the proper queues.

We traverse the a-queue once more. Each frequent-item projection in the queue is

appended to the queue of the next item in the projection following a in the F-list, as shown

in Figure 2.18. For example, frequent-item projection acde is inserted into c-queue and

adeg is inserted into d-queue

36

Figure 2.18: Adjusted Hyperlinks after Mining a-projected Database

By mining the c-projected database recursively (with shared header table at each level), we

can find the set of frequent patterns containing item c but no a. Notice item a _ will not be

included in the c-projected database since all the frequent patterns having have already

been found.

Similarly, the mining goes on. It is easy to see that the above mining process finds the

complete set of frequent patterns without duplication. The remaining mining process is left

as an exercise to interested readers.

Notice also that the depth-first search for mining the first set of frequent patterns at any

depth can be done in one database scan by constructing the header tables at all levels

simultaneously.

The general idea of H-mine(Mem) is shown in the above example. Comparing with other

frequent pattern mining methods, the efficiency of H-mine(Mem) comes from the

following aspects.

37

First, H-mine(Mem) avoids candidate generation and test by adopting a frequent-pattern

growth methodology, a more efficient method shown in previous studies. H-mine(Mem)

absorbs the advantages of pattern growth.

Second, H-mine(Mem) confines its search in a dedicated space. Unlike other frequent

pattern growth methods such as FP-growth, it does not need to physically construct

memory structures of projected databases. It fully utilizes the information well organized in

the H-struct, and collects information about projected databases using header tables, which

are light-weight structures. That also saves a lot of efforts on managing space.

Third, H-mine(Mem) does not need to store any frequent patterns in memory. Once a

frequent pattern is found, it is output to disk. In contrast, the candidate-generation and- test

method has to save and use the frequent patterns found in the current round to generate

candidates for the next round.

38

Chapter 3

Frequent Patterns Mining on Streaming Data

 With the emergence of new application, include network traffic analysis, web click stream

mining, network intrusion detection; the data we process is continuous data stream not

static one [25]. Today’s information society has become a restless generator of data of

various kinds. Huge amount of data is being generated, from web click stream, credit card

records, telephone calls records, traditional retail market store transaction [26]. These

records are an extremely valuable source of information. Being continuous, unbounded

flow of data which can be read only once, there is several limitation of data stream mining.

Firstly, each item can be examined only once. Secondly, limited memory, though the data

generated continuously. Finally, the mining results must be as fast as possible. To

overcome these limitation, a data stream mining algorithm must be a single pass algorithm,

must extract the useful information from the current data stream, which can be used to

derive various information required once the data stream has been expired. Transaction

arriving in series, forms data stream. Itemset is a set of items. A k-itemset is a set of k

items. The support of itemset X (sup(X)) is a percentage of transactions containing the

itemset[27]. Frequent itemset is an itemset X whose sup(x) ≥ s, where “s” is the minimum

support given by user. Any subset of frequent itemset is also frequent (priori property).

Due to which frequent itemset mining algorithms suffer from the problem of combinatorial

explosion. To alleviate this problem, maximal frequent itemset and closed frequent itemset

were discovered. A frequent itemset is maximal frequent itemset if none of its proper

supersets is frequent.. Various Time models, like Landmark window model, Time-fading

model, Sliding window model, are used to mine continuously generated data streams.

Landmark window model performs mining over all the data from landmark point (usually

the time the system start) to current time of mining. Time fading model, does not treat all

the data equally as, landmark model, and distinguish new data from old data by assigning

different weights. It also considers data from start of stream up to current time. Both

landmark model and time fading model does not provide time-sensitivity while performing

mining and support count of entire data, from start to end is to be counted. These

39

limitations are being overcome in sliding window model, which fulfil all the requirements

for data stream mining; Time-sensitivity, Approximation, Adjustability[28]. Sliding

window models utilizes only latest W transaction received, W is the size of window,

defined by the user.

 Number of algorithms has been proposed using different time models, for the extraction of

frequent itemset from data stream. One challenge all these algorithm faces is to develop a

data structure that can capture full stream content, in a memory-efficient manner, with a

single pass. We are discussing algorithms proposed using the sliding window time model

for mining data streams.

1. Moment Algorithm: Chi et al.(2006)[29] introduced one algorithm, Moment, to extract

closed frequent itemset within sliding window. They designed, a prefix based data

structure, CET (Closed Enumeration Tree), to maintain closed frequent itemset. CET

maintains the boundary between closed frequent itemset and rest of itemset, which

makes the boundary relatively stable, whenever any itemset changes its state (frequent

to non-frequent vice-versa), ultimately reducing the updating cost. An efficient

algorithm to incrementally update the CET, which update the CET when newly arrived

transaction change the content of window or oldest transaction being deleted from the

window.

Stream

 Current

 Current

 Current

 System start

Fig 3.1: Mining frequent itemsets from the latest W transaction using sliding window

model

40

When a transaction arrives/expires, Moment traverse the part of CET related to that

transaction. For each node visited, Moment, update the CET by incrementing/decrementing

its frequency. The merit of Moment is that it computes the exact set of closed frequent

itemset over a sliding window. Although an update to a node result in a propagation of the

node insertion and deletion in the CET, most of the nodes related to an incoming or

expiring transaction do not change their type often. Therefore, the average update cost in

the CET is small. Limitation of Moment algorithm is, it stores transaction using data

structure, FP tree (Han et al.2004), which require a considerable amount of memory.

Secondly, if the size of window is too large, CET can huge.

2. WSW algorithm: Pauray S.M. Tsai(2009)[30], proposed a new framework data stream

mining, called weighted sliding window model, which allows user to specify the number

of windows, weight of window and size of window. A single pass algorithm, called

WSW, has been proposed to extract frequent itemset from data streams. The motivation

for weighted sliding window model come from the fact, that the size of traditional sliding

window model is fixed or defined by the number of transaction, say W. Though recent W

transactions are considered, the time to cover these W transactions may be long or varies,

which may effectively decrease the mining result. The weighted sliding window model

defines window size by time not by the number of transaction and user can specify the

number of windows, with each window assign with different weight (sum of all window

weight equals to 1). For example data may be more influential at current moment and

hence, should be assigned higher weight.

 W14 W13 W12 W11

 W24 W23W22 W21

 W34 W33 W32 W31

Figure 3.2: Weighted sliding window model

41

 The algorithm WSW scans the data once in each window, and calculates the support

count for each item present in current window, to find out frequent k-itemset (k=1).

Based on this information candidate (k+1)-itemset are pointed out to find frequent (k+1)-

itemset. The process terminates when no further candidates itemset can be generated. If

the number of windows increases the time to determine frequent itemset increases. To

reduce this runtime they proposed an improvement of WSW algorithm called, WSW-

imp, which further reduce the time of deciding whether a candidate itemset is frequent or

non-frequent itemset.

3. TMoment Algorithm: Fatemeh Nori et al. (2012)[31], proposed another efficient

algorithm, called TMoment, for closed frequent itemset mining using sliding window

model. This algorithm uses single novel prefix tree based data structure, TCET

(Transaction Translate Closed Enumeration Tree), for storing both transaction of the

window and closed frequent itemset. This reduces the considerable amount of main

memory usage. The proposed algorithm, Tmoment, consist of four steps: Computing

support using transaction, Building TCET, Eliminating the oldest transaction, adding the

new transaction. Tmoment overcomes the limitation of Moment, high memory usage,

with the help of TCET. Tmoment does not require a separate data structure (FP-Tree), as

used in moment for storing transactions of window. TCET stores both transaction and

corresponding frequent itemset, which considerably reduces the memory usage. On the

other hand TCET affects the runtime in negative manner. List-intersection has been used

to find out support of itemsets, which makes the run-time of Tmoment no better than

Moment.

4. VSW Algorithm: Mahmood Depyir et al. (2012)[32] proposed a new algorithm, VSW

(Variable Size sliding Window frequent itemset mining) which is suitable for observing

recent changes in set of frequent itemset. In Transactional sliding window the window

size is to be kept constant, which is being obtained from user. In order to determine the

precise size of window, the user must have advance knowledge about time and scale of

changes within data stream, which cannot be easily determined due to unpredictable

changing nature of data streams. To overcome this limitation of fixed window size,

VSW, algorithm has been developed. In this window size is determined dynamically

based on amount concept change that occurs within the arriving data streams. Initially

42

window size is given by user and then adjusted based on the change of frequent pattern

embedded in the incoming data stream. The window size expands as the concept

becomes stable and shrinks when a concept change occurs.

 W

 cp cp

Figure 3.3: Window size reduction and checkpoint (cp) movement after change

detection.

Fig. 3.3 shows the process of cutting old transaction and forming the new window.

Concept change is calculated with respect to checkpoint (tid of last transaction received).If

a concept change is detected, all information before the checkpoint is removed from the

window and new window formed (window shrinks). If not detected, window size continues

to grow with further no action.

43

Chapter 4

Hadoop

As the data is increasing day by day, it is becoming quite difficult to manage it. We need to

have records of almost all the field and the data produced by many field is unstructured. To

manage large and unstructured data there is need of special framework which is Hadoop.

The Apache Hadoop software library is a framework that allows for the distributed

processing of large data sets across clusters of computers using simple programming

models. It is designed to scale up from single servers to thousands of machines, each

offering local computation and storage. Rather than rely on hardware to deliver high-

availability, the library itself is designed to detect and handle failures at the application

layer, so delivering a highly-available service on top of a cluster of computers, each of

which may be prone to failures [33]. It can handle big data which is terabytes in size and

mostly semi structured or unstructured. Big data cannot be handled with the traditional

technologies.

4.1. Components of Hadoop [33]

Hadoop has two components:

I. HDFS (hadoop file system) and

II. Map Reduce

Both these terms are inspired with Google papers published in last decades.

Before discussing components of hadoop we must know about some terms which is mainly

used in hadoop

44

4.2 Blocks

Physical disk and a file system is divided in blocks, so block is the fundamental unit of

space. In Hadoop also we divide the large file in blocks and the default size of block is 64

MB and it can be customized. Unlike file system for a single disk, HDFS block do not take

up the whole block if its size is smaller. It provides benefit over it

 First, a file on the HDFS node can be larger than the single disk in the network.

 Second, blocks simplify the storage subsystem in terms of metadata management

of individual files.

 Finally, blocks make replication easier, providing fault tolerance and availability.

The blocks are replicated on the other machines (at least three). The replication is done on

multiple machines, if the file become unavailable due to corruption or machine failure then

it can be recovered from the other machine. The failure is transparent to the user that is , if

file is unavailable from one machine then it will read from other machine and all this

process is transparent to user.

4.3 HDFS (hadoop file system) [34]:

HDFS is the component which handles the storage of data. It is the file system which

handles the efficient storing and processing of large files on one or more clusters. It is

designed on the philosophy of write once and read many times so that the computing can

be made more efficient. The biggest advantage of HDFS is fault tolerance without losing

data. In HDFS the large file is broken into small blocks and distributed over clusters of low

cost hardware. Each block is copied at least on three clusters so that they can be made fault

tolerance.

45

4.4 Namenodes and Datanodes

Hadoop works in multiple cluster environments. It works on master-slave architecture one

cluster works as master and all other works as slave. The master node contain namenode

and the slaves have datanodes. The filesystem namespace ,where the data will be stored,

the filesystem tree, and the metadata for all the files and directories is managed by

Namenode. Namenode keeps track of all the datanodes that which datanode is residing on

which cluster. Datanode contains the HDFS blocks and notify the namenode that which

data or block it is containing.

Fig 4.1: HDFS Architecture

 4.5 Map Reduce [36]

It is the processing component of Hadoop. It is a programming model for parallel

processing. Map reduce has two phases: map phase and reduce phase. In map phase the

problem is divided into sub problems and processes independently and in reduce phase the

46

output of the map phase is combined to give the output of the large problem. The

developers define the corresponding map and reduce function.

As input and output, each function has key-value pairs. In the map reduce A MapReduce

job there is a mapper program, a input data and the configuration details. Hadoop runs a

job by dividing it into two types of tasks: map tasks and reduce tasks.

Fig 4.2: Example of Map Reduce

 The map task invokes a user-defined map function that processes the input key-value pair

into a different key-value pair as output. When the demand of high processing is there, then

it is better to add more mapreduce job rather than adding more map and reduce functions.

In creating a MapReduce program, the first step for the developer is to set up and configure

the Hadoop development environment. Then the developer can create two separate map

and reduce functions. Ideally, unit tests should be included along the way in the process to

maximize development efficiency. Next, a driver program is formed to run the job on a

subset from the developer’s development environment, where the debugger can identify a

potential problem. Once the MapReduce job runs as expected, it can be run against a

cluster that may surface other issues for further debugging. Two node types control the

MapReduce job execution process: a job tracker node and multiple task tracker nodes. The

job tracker coordinates and tracks all the jobs by scheduling task trackers to run tasks.

47

They in turn submit progress reports back to the job tracker. If a task fails, the job tracker

reschedules it for a different task tracker. Hadoop divides the input data set into segments

called splits. One map task is created for each split, and Hadoop runs the map function for

each record within the split. Typically, a good split size matches that of an HDFS block

(64MB by default but customizable) because it is the largest size guaranteed to be stored

on a single node. Otherwise, if the split span two blocks, it may be possible that the

processes gets slow as some of the split is to be transferred across the network to the node

operation the map task. Because map task output is an intermediate step, it is written to

local disk. A reduce task ingests a map task output to produce the final MapReduce output

and store it in HDFS. If a map task were to fail before handing its output off to the reduce

task, Hadoop would simply rerun the map task on another node. When many map and

reduce tasks are involved, the flow can be quite complex and is known as “the shuffle.”

Due to the complexity, tuning the shuffle can dramatically improve processing time.

4.6 Problems Solved by Hadoop

Hadoop solves three major challenges of scale-out computing using low-cost hardware:

1. Slow disk access to data;

2. Abstraction of data analysis (separating the logical programming analysis from the

strategy to physically execute it on hardware);

3. And server failure.

The data abstraction that MapReduce solves is described by the Namenode which allow the

access of the required data only; the two other challenges are solved by using hadoop by

applying elegant strategy of using low cost hardware. If all the data is on single disk then

the access of data will take time but if distribute the data on clusters then the disk access

speed can be increased as the data will be accessed parallel. The storage capacity can also

be maintained as the number of clusters can be included when needed.

48

Chapter 5

Proposed Approach

Mining large amount of data is quite difficult. To scan and manage large databases increase

the computation time very much. The time to find the frequent itemset is much less than

scanning the whole databases. Most of the approaches works on the parallel and distributed

mining, but it faces a problem of the communication cost. In parallel and distributed

mining we use the divide and conquer strategy. But in this there is a problem of

transferring divided to each machine which is time consuming. If the data is so large and

complex in terms of items and user behavior then this strategy suffers a lot.

5.1 Real Time Mining and its significance

Real time mining is basically the mining which is done on continuous data to keep them

updated. Frequent pattern mining in real-time is of increasing thrust in many business

applications such as e-commerce, recommender systems, and supply chain management

and group decision support systems, to name a few. A plethora of efficient algorithms have

been proposed till date. However, with dense datasets, the performances of these

algorithms significantly degrade.

Business intelligence is playing an essential role in achieving business goal such as

profitability, efficiency, customer preservation and market incursion. In most of the cases

of frequent pattern mining we use historic data. Now the thing is that, if the historic data

can help us in making good decision then how real time mining can make the decision

process better. By using up to date information we can get rid of delays and speed up in the

competitive environment. In various areas real-time decision making is important some of

them are real-time supply chain management system, real-time customer relationship

management, real-time recommender systems, real-time stock management and vendor

inventory, real-time enterprise risk and vulnerability management, real-time operational

management in which critical real-time information is required such application is in

49

mission, airline industry, fraud detection, real time negotiation and many other areas like

real-time dynamic pricing and discount offering to customers in real-time.

5.2 Proposed Approach

In the present era we need to be up to date and need to know the present demand, for that

we need to analyze the activities regularly and take the decisions by analyzing the patterns

generated from that set of data. Analyzing real time data (data of certain interval) can help

in doing so. For having good patterns we have to maintain the past history, means on the

basis of past and present we can take decision for future. This only concept we are using in

our approach and through an example we will be able to know how we will find the

frequent itemsets and how the approach is beneficial for the business analysis and maintain

the stocks.

I have proposed a real time mining strategy, in which mining is done on the regular basis.

In my approach the data is directly save on the cloud and we will set the time or period at

which the mining algorithm mine the data collected.

In this algorithm we will find the frequent patterns which are frequent on the present date.

In this we will maintain a list of frequent itemset which will be stored in the list which is

globally frequent.

All the transactional databases of organisation will be stored in the common storage.

Storage can be cloud or can be their own storage system. This figure can be better

understood by an example; take the example of vishal mega mart. There are many stores of

Vishal mega mart around India. The transactions of all the stores are stored on common

storage system for mining. Now you must be thinking it is centralized that is damage in the

storage system will crash the whole organisation. But this is not true for this we are having

fault tolerance system that is the storage system has its replicated copy of data at another

storage system which is the supportive system and used for load balancing and security and

fault tolerance.

50

Fig 5.1: All the Organization Store its Data at a Common Place

The mining will be done on the regular bases, set a time interval at which the data mining

algorithm starts mining data mine.

Fig 5.2 Mining Process

51

How the mining process is going on is shown by figure 5.2.

5.3 Algorithm of Approach

In the very first step the data collected in the first interval under goes mining by using FP-

growth algorithm. The advantage of FP-growth algorithm is that it generates FP-tree

without generating candidate sets. It requires only two scan of database to generate FP-tree.

Hence the computation cost of this algorithm is low than any other algorithm. After

generating the FP-tree we will convert it into bFPT (briefest FP-tree) so that less storage is

required to store the result. From the FP-tree we generate frequent patterns which are

further used in getting the result of mining next interval. Fig3 shows the flow chart of how

the process of mining is done on the regular basis. If we mine on daily basis the scenario

would be as

 Day 1: the data is stored from various sources. Suppose at 12:00 am mining process

is triggered automatically, all the data stored in Day 1 goes under processing and

the FP-tree is generated by the FP- growth algorithm. This is further compressed

and store in the form of bFPT for future use. Now the patterns are generated from

the FP-tree which will act as input for the global list of frequent itemset.

 Day 2: the data is stored from various sources. Suppose at 12:00 am mining process

is triggered automatically, all the data stored in Day 2 goes under processing and

the FP-tree is generated by the FP- growth algorithm. This is further compressed

and store in the form of bFPT for future use. Now the patterns are generated from

the FP-tree which will act as input for the global list of frequent itemset.

 Now we have the data of day1 and day2. We will merge the frequent pattern to find

the globally frequent patterns. In merging process we will find the average of a

pattern from both the frequent dataset if the average is greater than t he min_sup

then include it in global set of frequent mining otherwise the pattern is infrequent.

52

 Once the global list of frequent itemset is generated we will merge the further

frequent patterns into the global list by the process we had followed in merging the

dataset of day1 and day2

 Now we will merge global frequent pattern (GFP) and dayN dataset

 Today: data frequent pattern of yesterday and data stored today are mined though

the algorithm and we have the updated result.

Note: It is not necessary that the mining should be on daily basis. It can be weakly or at

alternate days. It depends on the requirement of the user or on the size of the data stored.

The only thing that this approach wants to say is that the mining should be automatically

triggered periodically as set by the user.

This is the procedure that how the approach is working and how it is reducing computation

as well as communication cost. In what sense it is easy to maintain. As all the process is

automatic so this is easy to implement and also convenient to use. It keeps you upto date

and helps you to take business decision on the present requirement. It helps you to know

what the present requirement is. On this basis business analyst can take better decision as

its knowledge extracted from frequent patterns is up to date.

So this approach not only reduces time and space complexity but also helps in taking better

decisions.

Pseudo code of algorithm (GFP)

Step 1: Collect data from various sources of first interval.

Step 2: Apply frequent pattern mining algorithm to get frequent patterns on dataset of first

interval.

Step 3: Collect data for interval 2 from various sources.

53

Step 4: Apply frequent pattern mining algorithm to get frequent patterns on dataset of

second interval.

Step 5: Merge the frequent patterns of the datasets to find the globally frequent itemset

(i) Find the average of frequent pattern from both the dataset.

(ii) Repeat step (i) for all the frequent item of both the intervals.

Step 6: Create list of globally frequent list of frequent itemset by merging the frequent

patterns of the dataset of interval 1 and interval 2.

Step 7: Collect the data set of interval 3 and find the frequent patterns of interval k

Step 8: Merge the frequent pattern generated with the global frequent itemsets.

Step 9: Repeat the step 6 –step 8 for the dataset of each interval.

Above is the pseudo code for the proposed approach which mine on real time basis and

keep you updated regarding the frequent patterns of the transactions.

5.4 Advantages of Approach

 Mining is done at regular bases: the data is directly stored in the database where the

mining is done. So the mining is always done on the updated data. This is one of

the advantages of this approach.

 Frequent patterns are upto date: the results are always upto date as the mining is

done on the recent data. By doing so we have various advantage, if we talk about

the already proposed algorithm then they mining do on large databases which is

petabytes in size which is generated in years in a organisation, it may be possible

the pattern which is frequent is not frequent now i.e if first 100 transaction shows

the pattern frequent but after first 100 transaction it becomes un frequent, but still it

will be shown frequent in result, but in our approach this won’t happen the frequent

patterns will change with time.

54

Fig 5.3 Block diagram of GFP algorithm

 Computation time is low: as the computation is done on regular basis, the time for

computing is low. The data collected in a day can maximum reach to GB’s which

not much large data to mine is. So the time to mine the data is small as compared to

mine large amount of data.

 No need to have high computation devices (like super computers) for computation:

computation power required for mining can be moderate that is we don’t need the

55

system with very high computation power. All other approaches require high

computation power because of large amount of databases.

 Cheap to apply: All other approaches require high amount of storage, high

computation power and high RAM which is very costly, but our approach is very

cheap in comparison to all other approaches. Storage cost is very much less than

computing cost and our approach although requires much storage but computation

cost is less in comparison to other approaches. So this algorithm is much cheaper to

apply. By implementing this approach we can make mining cheap and convenient

process.

 Complexity reduces: generally the complexity increase with the increase in size of

the database and also increases with the increase in itemsets. Our approach solves

this problem by reducing the complexity by reducing the size of data to be mined.

5.5 Example of the Proposed Approach

Consider a dataset for interval 1

Fig:5.4 Dataset for day 1

56

Suppose the dataset in fig 5.4 is the data of the Day 1. First we create the FP_tree of this

dataset. Consider the support of 30%. The fp tree of the dataset of day1 is generated by

applying FP-growth algorithm. It follows the following steps:

1. In the first scan of dataset the support of each item is calculated and stored in the

frequency table. The items having the frequency less than the min_sup is pruned.

2. In the second scan of the items in all the transaction is arranged in descending order of

their support.

3. After having the sorted and filtered transaction we will apply the algorithm to construct

the FP-Tree, so that we can find the frequent items from that tree.

Fig 5.5: Items with their support (left), frequent items in descending order of their support(right)

Left hand side table is showing the support of each item and stored in the table. It is the

result after the first scan of dataset. The table in the RHS is showing the table in which all

the items in the LHS list are sorted in the descending order and the items having the value

less than 30% is removed from the list.

Sort in descending

order and remove

infrequent items

57

Fig 5.6: Sorted and Filtered Day1 dataset’s transactions

The above is the result of second scan of the dataset. In this all the items in transaction is

arranged in descending order of their support. From this table we will construct the fp-tree,

which stores all the transaction in the form of tree. And the this tree also stores how and

when an item is appearing in which transaction.

Fig 5.7: FP-tree of the dataset of DAY 1

58

After constructing Fp-tree from the dataset find the frequent patterns from the FP-tree.

Fig 5.8: Frequent patterns of dataset DAY1 with their support

From the tree generated by applying the FP-growth algorithm find all frequent itemset.

Frequent pattern mining has the property if a set is frequent then all its subset will be

frequent. So we need not to mention all the frequent sets, just mention the superset with it

support in percentage.

Day 2: collect the data of the second day. Table below shows the data collected on 2nd

day. And apply the same process to extract the frequent itemset as applied on the dataset of

day 1.

Fig 5.9: Dataset of DAY2

59

Fig 5.10: Items are arranged in descending order and less frequent items are removed

As we have done in first dataset we will sort all the transaction in descending order.

Fig 5.11: Sorted and Filtered Day2 dataset’s transactions

From the above table we will generate FP-tree and find the frequent itemsets from the tree

by using FP-growth algorithm.

Sort in descending

order and remove

infrequent items

60

Fig 5.12: FP-tree of the dataset of DAY2

From the tree of Day2 we will extract the frequent patterns which is shown in the below

figure.

Fig 5.13: Frequent patterns of dataset DAY2 with their support

61

Now we have the table of frequent itemsets of day1 and day2.

By combining the frequent itemset of both the day we will generate set globally frequent

itemset. Once we have set of globally frequent itemset, we will combine the result of

succeeding day with the global frequent set. In this way we can maintain the past history

and can also focus on present.

Now we will discuss how global frequent set is generated and how the further results are

merged in it.

 Fig 5.14: Frequent pattern of DAY1(left) and frequent pattern of DAY2(right)

We have the frequent item sets of day1 and day2. Now we have to merge the itemsets to

have the global set of frequent items.

The itemsets which will be in the global set are those which have the support greater than

min_ sup. The support of itemset is the average of the support in both the frequent item

dataset. This will be clearer by the example.

Calculation of itemsets to be in global set:

62

Find the support of the frequent itemset that will be in global list of frequent item set. The

support of itemsets to be in global frequent list is calculated by having the average of the

frequent pattern from both the list.

The dataset of day 1 gives the frequent itemset {b,f,a,m,c,p} with support of 40% while

this set is not frequent in the dataset of day2, so the average of support is 20%. The

frequent pattern {b,f,a,m,c,p} is not frequent in the global list as its support is less than the

min_sup.

 The support of pattern {b,f,a,m,c,p}

{ }

 The support of pattern {b,f,a,m,h}

{ }

 The support of pattern {b,f,a,m}

{ }

 The support of pattern {b,f,c}

{ }

 The support of pattern {b,f,p}

{ }

 The support of pattern {b,f}

{ }

63

 The support of pattern {b,f,a,c}

{ }

 The support of pattern {b,f,a}

{ }

 The support of pattern {b,a,c}

{ }

 The support of pattern {a,f,m}

{ }

 The support of pattern {b,a}

{ }

 The support of pattern {a,f}

{ }

 The support of pattern {a,h}

{ }

64

 The support of pattern {a}

{ }

Fig 5.15 Globally frequent pattern list

In this way we can find the frequent patterns which are globally frequent and maintain a

global list. Once the global list is generated the frequent patterns of further datasets will be

merged with the global list and the process will be same as we have merged two dataset

above to construct the global list.

In this way we can keep our self-updated and can keep track of all the branches and

manage the need of each branch remotely. This process has various advantages which we

have discussed above.

Parallel frequent mining on large data:

The data is stored from the various sources it may be possible that the data collected

becomes large in size. In that case we will apply distributed frequent mining.

Now how we will apply distributed algorithm on the large data.

65

1. Divide the large data into the smaller data.

2. Now the problem is how to partition the data such that the FP-tree of smaller dataset is

independent of the other. So divide the data into small data

Fig 5.16: Stored data is split

3. On each cluster there will be the processing, which will compute the frequency of each

item in the subpart or subset of data. In this way the first scan of dataset in FP-growth

which gives the frequency of each item will be computed in parallel by dividing data into

smaller part.

5.17: Each split is computed at spate cluster

4. The result computed by each cluster is given back to stored data and the result is

combined.

66

Fig 5.18: Computed result of each cluster is combined at common storage

5. Once we get the frequency list of each item we can eliminate all those items which are

not frequent from all the transaction in the dataset. This can also be done in parallel by

again dividing the dataset and with each subset pass the frequency list.

Fig 5.19: Distributed frequent pattern mining using map reduce

67

Map Reduce Steps:

Step 1: Splitting: Dividing DB into consecutive parts and storing the parts on P different

computers. Such partition and allocation of data is called sharding, and each part is called a

shard1.

Step 2: Parallel Counting : in this there is a MapReduce pass which is used to count the

support values of all items that show in DB. Each shard of DB is the input of a mapper.

This step implicitly discovers the items' vocabulary I, which is usually unknown for a huge

DB. The result is stored in F-list.

Step 3: Grouping Items: Dividing all the |I| items on F- List into Q groups. The list of

groups is called group list (G-list), where each group is given a unique group-id (gid). As

F-list and G-list are both small and the time complexity is O(|I|), this step can complete on

a single computer in few seconds.

Step 4: Parallel Mining : The key step of PFP. This step takes one MapReduce pass, where

the map stage and reduce stage perform different important functions:

 Mapper (Generating group-dependent transactions): Each mapper instance is fed

with a shard of DB generated in Step 1. Before it processes transactions in the shard

one by one, it reads the G-list. With the mapper algorithm, it outputs one or more

key-value pairs, where each key is a group-id and its corresponding value is a

generated group-dependent transaction.

 Reducer FP-Growth on group-dependent shards: once all mapper finishes their

work and give a group id to the related transactions, the mapper reducer will

automatically work on it and categorize each transaction automatically.

 Each reducer instance is assigned to process one or more group-dependent shard

one by one. For each shard, the reducer instance builds a local FP-tree and growth

68

its conditional FP-trees recursively. During the recursive process, it may output

discovered patterns.

Step 5: Aggregating: the last step is used to aggregate the results generate in Step 4 as our

final result.

Above are the steps how we can compute frequent itemset in parallel if we have large

dataset by using map reduce method. The mapper will divide the data into cluster and

reducer will compute the output on each cluster and gives the result back.

The approach proposed is a real time mining of frequent data itemsets which keeps us

updated regarding the present frequent patterns of the market. This approach is suitable for

the business in which the decisions have to be done on daily bases data collection. I have

shown how this approach will work and how it can help in finding frequent patterns.

69

Chapter 6

Results

6.1 Comparison between Apriori, FP-growth and Proposed Algorithm (GFP)

We have taken various parameter and matrices to compare the previously proposed

approaches with the proposed algorithm (GFP).

Table 1: Comparison between apriori, FP-growth and GFP

 Approaches

Parameters

Apriori

FP-growth

Proposed

Algorithm

(GFP)

Technique Use Apriori property and

join and property

It constructs

conditional

FP_tree and

contional pattern

base which

satisfy min_sup

It divides the data

and then construct

the FP-tree of each

divided part.

Memory utilization Due to large number of

candidate generated it

requires large memory

 Due to compact

structure and no

candidate

generation it

requires les

memory

Less as all the

patterns are

generated in parallel

No. Of scan Multiple scans for

generating candidate set.

Scan the db only

twice

Scan the db only

twice

Time Execution time is more as

time is wasted in

producing candidates

every time

Execution time is

less than apriori

Execution time is

less than FP-growth

70

6.2 Comparison between Relim, H-mine and Proposed Algorithm (GFP)

We have taken various parameter and matrices to compare the previously proposed

approaches with the proposed algorithm (GFP).

Table 2: Comparison between Relim, H-mine and GFP

6.3 Performance of GFP

We have done the study on various parameter effects on the proposed algorithm GFP. We

have analyzed what is the effect on the algorithm by varying the parameter and have

noticed the effect of that parameter variation on the proposed algorithm (GFP).

 Approaches

Parameters

H-Mine

Relim

Proposed

Algorithm

(GFP)

Data Structure H- Struct Relim Data

structure

Fp-tree

Memory utilization High due to tree like

structure

 High due to tree

like structure

Very high due to

parallel tree

structure

No. Of scan Scan the db only twice Scan the db only

twice

Scan the db only

twice

Time Less than relim moderate less

71

Table 3: Performance metrics for GFP Algorithm

S. No. Parameter Effect

1 Increasing number of cluster Speed up the performance

2 Increasing min_sup Time taken to find frequent itemset

decreases

3 Increasing size of data set Time taken to find frequent itemset

increases

4 Number of frequent item

increases

Time taken to find frequent itemset

increases

5 Number of distinct item

increases

Time taken to find frequent itemset

increases

6.4 Some Experimental Result

We have done many experiments on the various datasets downloaded from various

repositories. We have compared it from other algorithms of finding frequent pattern

In this chapter we have analyzed and simulated the performance of approach. We have

compared it with different approaches using JAVA(jdk1.7.0) and hadoop environment.

 Configure hadoop by using the manual

 http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-

single-node-cluster/

http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/

72

 I have taken various dataset from various repositories, the repository is Frequent

Itemset Mining Dataset Repository:

 Chess: http://fimi.ua.ac.be/data/

 Mushroom: https://archive.ics.uci.edu/ml/datasets/Mushroom

 Connect: http://archive.ics.uci.edu/ml/datasets/Connect-4

 Pumsb: http://fimi.ua.ac.be/data/

 T10I4D110K: http://fimi.ua.ac.be/data/

The dataset I have taken is from UCI machine learning

 http://archive.ics.uci.edu/ml/

From the UCI repository we have taken the Wholesale customers and other dataset

 http://www.rdatamining.com/resources/data

 http://fimi.ua.ac.be/data/(Frequent Itemset Mining Dataset Repository)

 The following dataset was donated by Tom Brijs and contains the (anonymized)

retail market basket data from an anonymous Belgian retail store.

 retail (.gz)

Table 4: Values of the dataset taken

Dataset Number of items

Average trans

size No. of trans

Chess 75 37 3196

Mushroom 119 23 8124

Connect 129 43 67557

Pumsb 2113 74 49046

T10I4D100K 1000 10 100000

http://archive.ics.uci.edu/ml/
http://www.rdatamining.com/resources/data
http://fimi.ua.ac.be/data/retail.dat
http://fimi.ua.ac.be/data/retail.dat.gz
http://fimi.ua.ac.be/data/retail.dat.gz

73

Fig 6.1: Transaction Vs. Time Graph of GFP

The first experiment (figure 6.1) is time vs size of dataset(no. of transactions) . the time did

not change much with the increase in data size. The time required to find frequent itemsets

is increased gradually with the increase in datasize. The proposed approach is not much

effected by the size of dataset. So this approach works well for little large datasets

Fig 6.2: Minimum Support Vs. Time Graph of GFP

74

The second experiment (figure 6.2) which we have done is time vs support i.e. what is the

effect on time when we increase or decrease min_support and we find by increasing the

min_sup the time required for finding frequent itemset is decrease. The time required to

find the frequent itemset is decrease with the min_sup, high the min_sup low the time

require to mine.

75

Chapter 7

Conclusion

As the data is increasing with a great extent, leaving the work for tomorrow will make

the work complex and overhead to solve the problem. In the literature review many

algorithms of frequent pattern mining is explained.

 Apriori is the first algorithm which was used for finding the frequent patterns but it

was having many disadvantages like, if we have n-frequent length-1 itemset, then there

will be n(n-1)/2 length-2 candidates, so large amount of memory cost is required to

have k+1 itemsets or to handle large number of candidates. The second disadvantage is

that discovering of length l-frequent pattern requires generating 2
l
-2 candidates. So the

scalability of Apriori-like algorithms is restricted by the large memory cost.

The problems of apriori-like methods are solved by FP-growth methods to much extent.

The multiple scanning of the dataset in apriori is resolved by FP-growth algorithm, to

find the frequent patterns it requires only 2-scan of the dataset. The scalability of

appriori was restricted by the candidate generation as to find l length pattern we require

to have 2
l
-2 which is exponential. So on increasing the length of pattern the complexity

will increase exponentially. This problem is solved by the FP-growth algorithm to

much extent as it does not require candidate generation for generating frequent patterns.

In FP-growth algorithm first transactions are compressed and then stored. But still this

approach has some disadvantage; it is not much scalable because all of the

reconstructed FP-trees with the header table are stored in main memory and we have

limited amount of main memory. The FP-tree requires more memory space as it is tree

like structure. Handling complex data through FP-growth algorithm will lead to the

construction of complex tree and the patterns extracted from them can be complex. If

we have complex dataset then the reconstructed FP-trees will be more and they all have

to be stored in main memory which is quite costly. So handling complex datasets

though this method, is not a feasible solution.

76

The next algorithm explained is relim known as recursive elimination. This algorithm is

inspired by FP-growth method and solved the problem of FP-growth method. In FP-

growth method we need to construct the prefix trees and other complicated data

structures. Relim does not need to construct the complex structures, it process the

transactions directly. The strength of this algorithm is not its speed but the simplicity of

its structure. This algorithm is based on step by step elimination of items from the

dataset with recursive processing of transaction subsets. This algorithm works in

various steps Pre-processing, Transaction Representation, Recursive Processing,

Optimization.

After relim H-mine is discussed, in this algorithm there is simple and hyperlinked data

structure called H-struct and H-mine takes the advantage of this structure and

dynamically adjusts links in the mining process. The advantage of this algorithm is that

it has very limited and precisely predictable overhead of space and in memory-based

settings it runs really fast.

This algorithm can be scaled up to massive databases by portioning databases, and

when dataset becomes dense, we can construct the FP-tree dynamically as mining

process part. This is a mining method for frequent itemstes which has given high

performance in various kind of data and performs better than the previous algorithm. It

works well on massive databases and is space preserving mining method.

Then we have discussed some of the algorithm based on the streaming data and

discussed about the map reduce.

The proposed algorithm GPF is a real time mining of frequent data itemsets which

keeps us updated regarding the present frequent patterns of the market. This approach is

suitable for the business in which the decisions have to be done on daily bases data

collection. With the help of an example we analysed that how the algorithm is working.

We have done various experiments regarding the approach and it gives better result for

real time data.

77

References

1. Usama Fayyad ,Gregory Piatetsky - Shapiro ,and Padhraic Smyth, “The KDD Process for

Extracting Useful Knowledge from Volumes of Data” in Magazine of Communications

of the ACM Volume 39 Issue 11, Nov. 1996, Pages 27-34

2. Han, Jiawei, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques.

Morgan kaufmann, 2006.

3. Thabet Slimani and Amor Lazzez “Efficient Analysis of Pattern and Association Rule

Mining Approaches” in International Journal of Information Technology and Computer

Science(IJITCS) Vol. 6, No. 3, February 2014

4. Sotiris Kotsiantis, Dimitris Kanellopoulos, “Association Rules Mining: A Recent

Overview”, in GESTS International Transactions on Computer Science and Engineering,

Vol.32 (1), 2006, pp. 71-82

5. R. Agrawal and R. Srikant. “Fast algorithms for mining association rules.” in J.B. Bocca,

M. Jarke, and C. Zaniolo, editors, Proceedings 20th International Conference on Very

Large Data Bases, pages 487–499. Morgan Kaufmann, 1994.

6. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering

of high dimensional data for data mining applications. In SIGMOD’98, pages 94–105.

7. B. Liu, W. Hsu, and Y. Ma, “Integrating classification and association rule mining” in

KDD’98, pages 80–86.

8. Bj¨orn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann, “Pattern-Based

Classification:A Unifying Perspective”

9. Yuhong Li et al. “Discovering Longest lasting Correlation in Sequence Databases” in

The 39th International Conference on Very Large Data Bases, August 26th 30
th

 2013,

Riva del Garda, Trento, Italy. Proceedings of the VLDB Endowment, Vol. 6, No. 14 Data

Mining and Knowledge 289 (1997Discovery 1, 259–)

10. Srivatsan Laxman, P.S. Sastry and K.P. Unnikrishnan, “Discovering Frequent Episodes

and Learning Hidden Markov Models: A Formal Connection” in IEEE transactions on

knowledge and data engineering, vol. 17, no. 11, november 2005

78

11. Frédéric Flouvat, Fabien De Marchi, Jean-Marc Petit, “A new classification of datasets

for frequent itemsets” in Journal of Intelligent Information Systems-2010 Volume 34,

Issue 1 , pp 1-19

12. Thabet Slimani and Amor Lazzez, “Efficient Analysis of Pattern and Association Rule

Mining Approaches” in International Journal of Information Technology and Computer

Science (IJITCS), vol.6, no.3, pp.70-81, 2014

13. Rajanish Dass and Ambuj Mahanti ,” An Efficient Real-Time Frequent Pattern Mining

Technique Using Diff-Sets “ in Computational Science – ICCS 2005, pp 818-821

14. Paul B. Chou, Edna Grossman, Dimitrios Gunopulos, Pasumarti Kamesam “Identifying

Prospective Customers” in Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining Pages 447-456

15. Takuya Oyama, Kagehiko Kitano, “Mining Association Rules Related to Protein-Protein

Interactions” in Genome Informatics 11: (2000), pages 358–359

16. Yiming Ma, Bing Liu, Ching Kian Wong, Philip S. Yu, Shuik Ming Lee, “Targeting the

Right Students Using Data Mining” in Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining -2000, Pages 457-464

17. Zhongnan Zhang and Weili Wu, “Mining dynamic interdimension association rules for

local-scale weather prediction” Computer Software and Applications Conference, 2004.

COMPSAC 2004. Proceedings of the 28th Annual International .

18. R Aggrawal., T Imielinski.,A Swami.. “Mining Association Rules between Sets of Items

in Large Databases”. InProc. Int’l Conf. of the 1993

19. ACM SIGMOD Conference Washington DC, USA. J. Han, J. Pei, Y. Yin, and R. Mao.

“Mining frequent patterns without candidate generation: A frequent-pattern tree

approach”. Data Mining and Knowledge Discovery, 2003

20. U.Chandrasekhar et al., “A Survey of latest Algorithms for Frequent Itemset Mining in

Data Stream” in International Journal of Advanced Computer Research (ISSN (print):

2249-7277 ISSN (online): 2277-7970) Volume-3 Number-1 Issue-9 March-2013

21. Aakansha Saxena, Sohil Gadhiya, “A Survey on Frequent Pattern Mining Methods

Apriori, Eclat, FP growth”, IJDER, vol 2, issue 1, 2014

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9304
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9304

79

22. Christian Borgelt, “Keeping Things Simple: Finding Frequent Item Sets by Recursive

Elimination” in Proceeding OSDM '05 Proceedings of the 1st international workshop on

open source data mining: frequent pattern mining implementations Pages 66 – 70.

23. B. Goethals "Survey on Frequent Pattern Mining", manuscript, 2003

24. Jian Pei et al “H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases”

in Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference .

25. Jiawei Han, Hong Cheng ·& Dong Xin ·Xifeng Yan. “Frequent pattern mining:

current status and future directions”.Springer (2007).

26. Hua-Fu Li, Chin-Chuan Ho. “incremental updates of closed frequent itemsets over

continuous data streams .” Expert Systems with Applications pp.2451-2458, Elsevier

2009.

27. Manku,g., & motwani, R.” Approximate frequency count over data streams” In

proceeding of the VLDB conference, pp.346-357 , 2002.

28. Gannella,c.,Han,J.,pei,j.,Yan,X.,& Yu,P.s.” Mining frequent pattern in data stream at

multiple time granularities.” Next generation data mining, pp.191-210, (2003)

29. Yun Chi, Haixm Wang. “Catch the moment: maintaining closed frequent itemset

over a data stream sliding window.” Springer-Verlag 2006

30. Pauray S.M Tsai.” Mining frequent itemsets in data streams using the weighted sliding

window model”, Expert Systems with Applications, Vol. 36,pp. 11617–11625, Elsevier

2009.

31. F.Nori, Mahmood Deypir. “A sliding window based algorithm for frequent closed

itemset mining over data streams”. J. Syst. Software (2012), Elsevier

32. Mahmood Deypir, M Sadreddini, & S Hashemi. “Towards a variable size sliding

window model for frequent itemset mining over data streams”.Elsevier(2012).

33. http://hadoop.apache.org/

34. Andrew Lampitt, “Hadoop: A platform for the big data era” HPC and HadoopDeep Dive,

INFOWORLD.COM

35. http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html

http://hadoop.apache.org/
http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html

80

36. Jeffrey Dean and Sanjay Ghemawat,” MapReduce: Simplied Data Processing on Large

Clusters” in Magazine Communications of the ACM - 50th anniversary issue: 1958 –

2008 Volume 51 Issue 1, January 2008, Pages 107-113.

37. http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-

cluster/

http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/

	cover page
	chapter 0- starting page
	chapter 1- Introduction
	chapter 2- algorithms to find
	chapter 3- Frequent pattern mining on streaming data
	chapter 4- hadoop
	Chapter 5- Proposed Approach
	chapter 6- implementation
	Chapter 7-Conclusion
	Chapter 8- References

