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ABSTRACT 

This work presents the preliminary analysis of folded plates using three procedures .First one is 

Transverse slab analysis, longitudinal beam analysis and making compatibility of stresses. By 

using Winter-Pei method with correction analysis and without correction analysis and also 

design of reinforcement in folded plates and supporting diaphragms. This work also presents 

ananalysis of continuous folded plate roofs considering the effects of relative joint 

displacements. For this analysis the normal modes of the lateral beam vibration were used as the 

form of the deflection curve and the loading was sinusoidal. By using symmetry and anti-

symmetry, a possible method of analyzing prismatic folded plate roofs comprising one bay 

transversely but continuous over two or more spans longitudinally is suggested. 
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INTRODUCTION 

Folded plate structures have aroused attention in recent years because of their economic 

advantage and architectural appearance. Longer spans may be due to the inherent stiffness 

without an increase in material requirement. This type of structures has gained increasing 

popularity and offers more advantages than more complex structures, such as cylindrical shells, 

arches and frames. 

The ASCE Task Committee on Folded Plate Construction issued a report in 1963 in which they 

summarized the status of analyses for folded plate structures and provided an extensive list of   

references on prismatic shells. 

Most of the methods are limited to folded plates on simply supported spans.The primary purpose 

of this investigation is the determination of the stress distribution and the effects of relative joint 

displacements for folded plate structures continuous over two or more inter mediate supports. 

The analysis is based on extension of Gaafar’s method which has been modified and 

recommended as a dependable and satisfactory method of analysis for prismatic folded plates on 

simple spans by the ASCE Task Committee. 

Since one of the assumptions made in folded plate design is that the supporting members 

(diaphragms, beams frames, etc.) are infinitely in their own planes ,folded plate structures 

continuous over  two spans longitudinally might be considered as two separate spans with one 

end simply supported and the other built-in. If there are more than two spans, the structure could 

be analyzed by assuming that the middle spans have both ends built-in and the exterior span has 

one simply supported end the exterior span has one simply supported end and one built-in end.It 

is necessary to select a sinusoidal load so as to deflect the slab to confirm with the deformed 

plates. The distribution of these sinusoidal loads along the structure is according to the normal 

function of free vibration, which will make the plate deflection proportional to the load 

distribution. The use of the normal functions results in a considerably simplified procedure for 

finding the stresses and deflections in continuous structures, regardless of the type of external 

load acting on the structure. 

In analyzing continuous folded plate structures, the following basic assumptions will be followed 

which are recommended by the ASCE Task Committee. 



1. The material is homogeneous, isotropic, and linearly elastic. 

2. The actual deflections are minor relative to the overall configuration of the structure. 

Consequently, equilibrium conditions for the loaded structure may be developed using 

the configuration of the undeflected structure. 

3. The principle of super-position holds; this assumption is actually derivable from the 

previous two assumptions. 

4. Longitudinal joints are fully monolithic with the slab acting continuously through the 

joints. 

5. Each supporting end diaphragm is infinitely stiff parallel to its own plane but is perfectly 

flexible normal to its plane. 

6. The length of each plate is greater than twice its width, and the thickness is small 

compared to its width. 

7. The longitudinal joints are assumed completely monolithic. 

8. All plates are rectangular. Each plate has uniform thickness. 

9. The structure is supported on end diaphragms which are assumed to be completely rigid 

in the in-plane direction and perfectly flexible in the direction normal to the plane. 

 

In 1963, the American Society of Civil Engineers suggested a method for analyzing simply 

supported prismatic folded plate structures. It is based on Gaafar’s original paper, and has the 

following major assumptions: 

1. The longitudinal distribution of all loads on all plates is the same. 

2. The structural action is considered as a combination of transverse continuous one –way 

slab action and longitudinal plate action or beam action. The longitudinal stresses are 

assumed to vary linearly across the plate width. 

3. Displacements due to forces other than bending moments are neglected. 

 

 

 

 

 

 



CHAPTER - 2 

LITERATURE REVIEW 

The principle of folded plate construction was first developed by Mr. G. Ehlers and Mr. Creamer 

in Germany in 1930.They considered the various plate elements as beams supported at the joints 

and end diaphragms. Along the longitudinal edges, the plates were assumed to be connected by 

hinged joints. They proposed a folded plate theory based on a linear variation of longitudinal 

stress in each plate but neglected the effects of the relative displacements of the joints. Since that 

time, there have been numerous papers written on the subject. Messer’s. Winter and Pei 

published a paper in 1947 in which they transformed the algebraic solution into a stress 

distribution method, which has the advantage of numerical simplicity over the algebraic 

procedure. 

The first method to take into account the effect of relative joint displacement was proposed by 

Messer’s Gruber and Gruening.For determination of the ridge moments and displacements,Mr. 

Gruber developed his solution in the form of simultaneous differential equations of the fourth 

order. Consequently, he concluded that the influence of the rigid connections ought not to be 

neglected. 

Recently, Mr. I. Gaafar and Mr.Yitzhaki have introduced methods which consider separately the 

longitudinal distribution of transverse moments due to applied loads as distinct from that due to 

relative joint displacement. 

Finally, the ASCE Task Committee on folded plate construction has reported an interesting study 

of the available methods for the analysis of folded plate structures and recommended a design 

method for prismatic folded plates on simply supported spans. 

A limited amount of work was done on continuous folded  plate structures by Mr. Gruber in 

1952.He developed a series of simultaneous differential equations  of higher order for the 

solution. From a practical point of view, this work calls for prohibitively extensive mathematical 

computations. 

Portland Cement Association Bulletin suggests two approaches for analyzing folded plates, 

without further explanation ,the paper mentions the complexity of this theory for folded plate 

structures which is due primarily to the fact that the transverse distribution of longitudinal 

stresses is not uniform throughout the length of the folded plate as for simple spans. One 



expedient way which might be employed to overcome this difficulty is relaxing the requirement 

of satisfying the condition of compatible deflections at mid span. The deflection of each  plate at 

mid span is determined has been used and has given satisfactory results is to proportion the 

longitudinal stresses over the support and at mid span on the basis of the moments created in a 

continuous beam whose spans are equal to those of the folded plate. In this approximation, the 

transverse distribution is based on an effective span length equal to the distance between the 

points of inflection of the continuous beam. 

Mr.Ashdown presented a complete calculation for a three span continuous prismatic roof but 

neglected the effect of the relative joint displacement. He assumed that a plate which is 

continuous over supporting stiffeners can be considered as an ordinary continuous beam for the 

determination of the longitudinal bending moments at the ends of any span. 

As for the continuous folded plate structure considering the effect of relative joint displacement, 

Mr. D. Yitzhaki originated the particular loading and slope deflection method for analyzing 

continuous two span folded plate structures. 

An analytical solution for the interior panel of a multiple span, multiple bay, ribless prismatic 

shells was presented by Lee, Pulmano and Lin in February, 1965.The general approach is similar 

to the treatment of continuous ribless cylindrical shells, but the study is limited to the 

investigation of the interior panel of loads uniformly distributed in the longitudinal direction. 

It is also necessary to solve 8r simultaneous linear equations, where r is the number of plates, for 

each harmonic of the trigonometric series. 

The method developed in this thesis is a synthesis of many methods outlined above. It can be 

applied to multi-span continuous folded plate under symmetrical loadings which include 

distributed loads, concentrated loads and inclined loads. In order to make a comparison, the 

author of this paper used the same assumptions of loading and other conditions of Mr.Yitzhaki 

and Mr. Ashdown and extended Mr.Gaafar’s method to two and three-span continuous folded 

plate structures.Important to ensure that each of the project team members understand their 

responsible in order to achieve the required objectives. Besides that, the annual management 

review needs to be conduct by the top management to ensure the effectiveness of implementing 

the Quality Management System. On top of that, the availability of the resources is important for 

smooth construction process and the top management also needs to plan the optimal usage of the 

resources. 



CHAPTER- 3 

NUMERICAL ANALYSIS AND DESIGN 

3.1 PRELIMINARY ANALYSIS BY WINTER-PEI METHOD  

The preliminary analysis of a V-type folded plate a span of 18 m shown in fig is carried out .The 

thickness of a horizontal slab is 120 mm and that of inclined slabs, 100 mm .Assuming, applied 

live loading is 150 kg/m
2
. The dead load varies with the thickness of concrete. 

Assuming, 

              Slope of 31
0 

             Width about 1/5 span 

              Such that 18/5=3.5 m giving a rise of the system as L/10=1.8 m 

 

Fig 3.1 V type folded plate 

3.1.1 Preliminary Analysis 

Plate No. Width(m) Platewidth/Hori.projection Thickness(m) ϕn(degrees) αn(degrees) 

1 2.1 2.1/1.80   0.12 329 298 

2 3.5 3.5/3.0   0.1 31 62 

3 3.5 3.5/3.0   0.1 329 298 

Table 3.1 Dimensions of folded plates – span-18 m 

Symmetric with respect to junction 3 

-Φ is the angle made by the plate to the horizontal    

-α is the angle between the plate and the next plate 



plate no. 

cross section 

area 

Transverse                          

analysis Longitudinal analysis 

 

 

(m
2
) IT×10

-3
(m) IL(10

-4
) ZL(10

-3
) 

1 0.252 0.144 0.0926 0.0882 

2 0.35 0.0833 0.3573 0.2042 

3 0.35 0.0833 0.3573 0.2042 

Table 3.2 Geometric properties of plates in meter 

IL in plate 1=0.12×2.1
3
/12=0.0926 

Z is in m
3
. For conversion to cm units, multiply by 10

6
 when we work in cm units 

 (Consider unit meter along span) 

(Insulation + LL)=150kg/m
2.
 DL for thickness of slab @2400 kg/m

3 

Plate 

no. Total load Horizontal span Support moment 

 

Kg/m span (m) (kg.m) 

1 919.8 1.8 (918.8×1.8)÷2=827.8 

2 1365 3 (1365×3)÷12= ±341.3 

3 1365 3 (1365×3)÷12= ±341.3 

Table 3.3 Loads and support moment for transverse analysis 

   (Kg and m units) 

PLATE 1 2 3 

Dist. Factor 0 1   1/2  1/2 

Support moment +827 -341                   +341 

-486 

-341                  + 341 

  -243 

+122 

 

122 

  61 61 

Final values 827 -827                   +202 -202                   +410 

Table 3.4 Transverse analysis by moment distribution supported at joints 



 (R=W/2+M/dncosΦn from both sides) 

Description 

 

R0 R2 R3 R3 

      UDL from left span 0 919.8 682.5 682.5 

UDL from left span 0 682 682.5 682.5 

Mleft/dncosøn 

 

0 0 -208.4 69.4 

Mleft/dncosøn 

 

0 208.4 -69.4 69.4 

Total Reaction 0 1810.7 1087.2 503.8 

Table 3.5 Calculation of reactions at supports 

Rn=
w

2
 ±

M

dnCOS ϕn

 

                                                        Trigonometric Values 

Angle Sine Cos 

329 -0.515 0.8572 

31 0.515 0.8572 

62 0.8829 0.4695 

298 -0.8829 0.4695 

   Table 3.6 Calculation of P loads (in-plane loads in plates) 

P1 = R1

COSϕ1

Sinα1
= 1810

COS 31

sin 298
= −1758 kg 

P2 = −R1

COSϕ1

Sinα1
 + R2

COSϕ2

Sinα2
= 2814 kg 

P3 = −R1

COSϕ1

Sinα1
 + R2

COSϕ2

Sinα3
= −2516 kg 

 

 

 



        (In kg per meter units) 

Plate no. P load (per meter) (kg) 

1 -1758 (jt.0 to jt.1) 

2 +2814 (jt.2 to jt.1) 

3 -2516 (jt.2 to jt.3) 

Table 3.7 Calculation of P forces (in-plane loads in plates 

 Loads from lower to higher joints are –ve, loads from higher to lower joints are +ve 

Plate 1: Load=1758 kg/m =17.58 kg/cm 

f=
PL2

8Z
= ±

17.58×1800 2

8×888200
= ±80.7 kg/cm2 

Table 3.8 Stresses (f values ) (at ends (L=18m=1800 cm) 

Distribution in proportion to inverse of areas, i.e. 1/A and carry over -1/2 

Plate 1 2 3 

Distribution 0.419 0.581                   0.5 0.5 

Stresses -80.7                 +80.7 

 

 

-10.4 

+55.8                -55.8 

 

 

+14.5                   -2.9 

-49.9                 +49.9 

 

 

-3.0 

 +5.2 

 

                           -0.6                                                                                                                                                              

1.5                       -7.3 

 

+0.9                    +3.7 

1.5 

 

-3.6 

Final values -74.8 +68.8                 -57.0 -57.0                    +53 

Table 3.9 Stress Distribution for compatibility of stresses 

Plate no. p load(kg/cm) Z(cm
3
) f(kg/cm

2
) 

1 17.58 888200 ∓80.7 

2 28.14 204200 ∓55.8 

3 25.316 204200 ∓49.9 



Now joints which are not free (restrained) have to be corrected for rotation of joints by Simpson 

method. 

3.1.2 Calculation of Plate Deflections 

y=
f n−1 −fn

9.6×dn
×

L2

E
=

1800 2

9.6×2×105 ×
f n−1 −fn

dn
=

1.688(f n−1 −fn

dn
 

 

 

 

 

Table 3.10 Deflection in Preliminary Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate.no f(n-1) fn f(n-1)-fn dn y=(cm) 

1 -74.8 68.8 -143.6 210 -1.154 

2 68.8 -57 125.8 350 0.607 

3 -57 53 -110 350 0.53 



3.2 DESIGN OF FOLDED PLATE FOR SHEAR 

 

 

Fig 3.2 Shear Reinforcement in folded plates 

 

Fig 3.3 Layout of transverse steel in folded plates 

 



Reference Steps Calculation 

 1 Find shear between joints 

Take stresses at joints 0 to 4=92,62,-60,-65,60kg/cm
2
 

Tn=Tn-1+An/2(fn-1+fn) 

Joint 1,T1=
20×10

2
 92 + 62 = 15400 𝑘𝑔 

Joint 2,T2=15400+
1400

2
 62 − 60 = 16800𝑘𝑔 

Joint 3,T3=16800+
400

2
 −60 − 65 =-8200 kg 

Joint 4,T4=-8200+
1400

2
 −65 + 60 =-11700 kg 

Joint 5,T5=-11700+
400

2
 60 + 60 =12300kg 

 2 Find the point of max. shear between plates and its values 

Stress at 1=62. Stress at 2=-60 

Distance of zero stress from joint 1 

             X=71cm from joint 1 

Tmax=37410kg/m 

This is the total tension from the edge to point of zero tension 

IS 456 

Table 22 

Fs= 140 

3 Calculation shear stress 

             V=0.83x1000x100= 83000 N 

In N/mm
2
=0.83 N/mm

2
 

(we designas in cylindrical shells. Steel is placed diagonally (with 

direction as with diagonal steel in beams) for principal stress 

taken equal to shear stress as direct stress is small. 

[take max shear at support in plate 2=.83. it varies as cosine 

function= .83cosπx/l 

Design for max shear per meter length(4000mm) and thickness of 

plate=100mm 

                V=0.83× 1000 × 100 = 83000N 

Using 415 steel 

Area of steel AS=360mm
2
 

12mm@200mm gives 565mm
2
 provides 12mm at 20cm 

diagonally 

Table 3.11 Folded plate designed for shear 



3.3 DESIGN OF STEEL IN FOLDED PLATES IN TRANSVERSE DIRECTION 

Reference Step            Calculations 

 1 Find effective depth 

    d=100-15-5=80mm 

 2 Check depth(thickness) required 

Fe415 steel M20 concrete 

M=460cm kg/cm width=460× 100𝑁/10𝑚𝑚 

b=10mm;d=(
46000

0.917×10
) = 70.8 < 80𝑚𝑚 

available d=80mm (thickness 100mm) 

 

 3 Find the area of steel required using elastic design (as it is a 

roof and crack control is need , we will use elastic design. We 

can also use limit sate) 

AS=
M

f.j
=

46000

230 ×0.9×80
= 2.77mm 

For B =10mm 

Spacing of 10mm rods=283mm 

Adopt 10mm@275mm spacing top and bottom 

Table 3.12 Design of Steel in Folded Plates in Transverse Direction 

 

 

 

 

 

 

 

 



3.4 DESIGN OF STEEL IN FOLDED PLATES IN LONGITUDINAL DIRECTION 

reference step Calculation 

 1   Design in plate (fully in tension) 

T=[
92+62

2
]× 10 × 20 = 15400kg[platebreadth = 20cm 

 2 Find area of steel required(ELASTIC DESIGN) 

AS=
154000

230
= 669 mm

2
 

4 rods of 16mm gives 804mm
2
 

These rods are placed equal distance in plate 1 

  Design of plate 2(partly in tension and partly in compression) 

 1 Find point of zero stress 

Let it be at x from joint 1. 

𝑥

62
=

140

122
 

           X=71cm 

Total tension =
62

2
× 71 × 10 = 22010𝑘𝑔 

AS=
220100  N 

230
= 957mm2 

5 rods of 16mm gives 1005cm
2
 

This steel is provided in the tension zone 

(we can also check in the composite region) 

 2 Check stress at compression zone 

Max stress in compression =60kg/cm
2
 

(for M20concrete,fc in varying compression can be up to 7N/mm
2 

hence safe) 

 3 Provide minimum steel in compression zone. 

Min.steel=0.12% 

Total steel=
(140−71)×10×0.12

100
=0.828cm

2
=83mm

2
 

Length of compression zone=69cm 

Provide 5nos. 8mm rods(giving 201mm
2
)equally spaced 

Table 3.13 Design of Steel in Folded Plates In Longitudinal Direction 



3.5 DESIGN OF DIAPHRAGMS (SUPPORTS) 

The diaphragm must be designed for self-weight+Pforces in the plates. 

Calculate the p forces acting on the diaphragms from the folded slabs. 

Value of x Values for p for unit x=1 m.kg/cm 

Plate 1 Plate 2 Plate 3 Plate 4 

X1=4.0 

X2=4.26 

X3=0.05 

1.11 3.86 

-3.90 

 

-7.07 

7.05 

-1.103 

3.89 

-3.887 

0 

Table 3.14 Correction Analysis X and P values 

To convert to kg/m run, we multiply above values by 100. 

From the above, we get the value of P for total analysis. 

No. Analysis Plate1 Plate2 Plate3 Plate4 

1 Preliminary -322 998 -116 -908 

2 For X2=4.0 440 1552 -2828 1556 

3 For X3=4.260   3006 -1656 

4 For X4=0.051   -571  

             Net value             118           895        -509        -1008 

Table 3.15 P forces in plates 

These P forces can be resolved into vertical and horizontal loads on the diaphragm.For a half-

length span of 9m, the forces along the plate will be as follows from net values 

Plate1=118× 9 = 1062kg = 1.1t 

Plate2=895× 9 = 8055kg = 8.1t 

Plate3=509× 9 = 458kg = 4.5t 

Plate4=-1008× 9 = −9072kg = −9.02t 

 

 

 



CHAPTER - 4 

PROPOSED METHOD OF ANALYSIS OF CONTINUOUS 

FOLDED PLATE ROOFS 

The complexity of the analysis of continuous folded plates is primarily due to the fact that the 

end restraint of continuous folded plates creates longitudinal stresses at the intermediate 

supports, which are infinitely stiff in the plane of loads and are assumed as clamped.  

In dealing with continuous folded plates with two equal spans, since the loading is symmetrical 

about the intermediate support, only one span need be investigated.  The statical behavior of 

every span is that of a singleshell, built-in at the middle traverse and freely supported at the outer 

traverse. The stresses and elastic curves are similar to that of a beam with one end built-in and 

the other freely supported. For three-span and Multiplan continuous folded plates, the same 

assumption will be made in exterior spans, and the support condition of intermediate spans will 

be considered as built-in at both ends.  

The analysis is divided into three parts in the same manner as the method of analysis for simply 

supported shells, and in addition, the effect of continuity over the supports is considered. 

4.1 ELEMENTARY ANALYSIS 

The first step in the analysis is the computation of the forces and of the transverse and 

longitudinal stresses acting at the edges of each plate element, neglecting the effect of the 

relative displacement of the joints. The roof in the transverse direction is considered to be a 

continuous one way slab supported on rigid supports at the joints. All loads carried transversely 

to the joints are considered to be transferred longitudinally to the end supporting members by the 

plates acting as inclined simple beams. The reactions at the joints are resolved into plate loads in 

the planes of the plates. Longitudinal stresses will be determined from these plate loads, and 

corrected in a manner similar to the moment distributionmethod. From the equalized edge 

stresses, the plate deflection at 0.41 of the exterior span and at mid-span of the middle span will 

be obtained. 

 

 



4.2 CORRECTION ANALYSIS 

The second step in the analysis is to provide for the effect that the relative transverse 

displacement of the joints has on the transverse and longitudinal stresses. This operation is most 

easily accomplished by applying arbitrary relative joint displacements successively to each plate. 

and computing the resulting plate deflections. A number of simultaneous equations equal to the 

number of restrained plates can be set up from the geometrical relation and solved for the actual 

relativejoint displacements. 

4.3 SUPERPOSITION 

The results of the elementary analysis are added algebraically to the corresponding values in the 

correction analysis to give the final forces, moments, stresses and displacements. 

4.4 NORMAL CURVES 

The principal problem associated with the analysis of folded plates is that of making the 

displacements computed from the longitudinal behavior compatible with the displacements 

obtained from the transverse behavior. A few points along a strip, but the requirement should be 

satisfied at all points on the surface. To secure this, it is necessary to express the external loads as 

a sinusoidal load. In the case of single-span roofs symmetrically loaded with respect to the 

middle of the span, the relative deflections can be represented by half of a s1ne curve, instead of 

assuming them to vary as the elastic line of the corresponding loaded beam. In the case of 

multispan roofs, or of roofs on whole the loads are far from being symmetrical about the middle 

of the span, this sine curve treatment cannot be used withaccuracy, and a specific form of elastic 

curves, known as the normal modes of lateral beam vibrations have to be adopted. The form of 

the deflection curve of a folded plate isthe same as that of a beam, which depends mainly on its 

support conditions, regardless of the longitudinal variation of the load. The use of normal curves 

would greatly simplify the analytical treatment in continuous folded plate·. Design for- the two 

most important. 

"Normal Mode" of vibration of the beam is a definite shape 1n which the beam will deflect while 

vibrating harmonically. The mathematical expressions which define the normal modes are called 

characteristic functions. For each type of beam with specified end conditions there is an infinite 



set of these functions. The function of the normal modes will be derived from the condition of 

identity in form of the load and the corresponding elastic curves, expressed in the form:  

N ( X ) = ky ( X )                                   (1) 

 

 

Fig 4.1 Normal curve 

Substituting this relation into the differential equation of the elastic curve 

 N(x) = EI  d y(x)

dx 4  
                                                                                                                                 (2) 

      

The load and deflection curves will be expressed 1n the form N(x) = N0 f(x), y = y0 f(x), where 

N0, y0, are the maximum ordinates of the load and deflection curves, f(x) is a function of the 

coordinate x defining the shape of the normal mode of vibration under consideration, which is 

referred to as the normal function. Equation (l) becomes  

    EI f IV (x) = kf(x)                         (3) 

from which the normal functions for any particular case can be obtained, and the general solution 

of this equationwill have the following form: 

f(x) = c1(cosnx +coshnx) + c2(cosnx +coshnx) + C3(sin nx + sinhnx) + c4(s1n nx + sinhnx)      (4)               

                



In Eq. (4) c1 , c2 , c3, c4are constants which should be determined in each particular case from the 

conditions at the ends of the beam.  

4.4.1 The beam built-in at one end and freely supported at the other end 

Assuming that the left end (x= o) is simply supported, the following end conditions are obtained: 

(a) f (x) =0, x=O,) 

(b) f(x):O, x=L, 

(c) f'(x)=O, x=L, 

(d) f"(x)=O, x=O. 

The conditions of (a) and (d) yield c1=C 2=0 1n the .general solution of Eq. (4). The remaining 

two cond1t1ons give the following equations: 

c3(sin nL + sinhnL) + c4 (sin nL - sinhnL)      = 0                                     (5) 

c3(cosnL + coshnL) + c4 (cosnL - coshnL) = 0             (6) 

A solution for the constants c3 and c4, different from zero, can be obtained only when the 

determinant of Eqs. (5) and (6) is equal to zero. Therefore, 

tanhnL = tan nL            (7) 

The consecutive roots of this equation are: 

 

      n1L             n2L   n3L              n4L  

3.9266023    7.06858275   10.21017613 13.5176878 

 

For purposes of design only the first term needs to be used. The effort of the succeeding term 

will 'be important only in the vicinity of the supports, and will not produce any significant 

stresses at the section of maximum deflection and maximum moment 1n the span.Substituting 

the n1L value into Eq. (5) And Eq. (6). The ratio c3/ c4 for the first mode of Vibration can be 

calculated and the shape of the deflection curve will then be obtained. 

F(x)= sin 
n1X

L
+ 0.02787494 sin 

n1X

L
                                                                     (8) 

   From Eq. (8), it was found that the maximum deflection would occur at 

approximately x = 0.419L, and the maximum moment at x = 0.383L. It would not make a large 

difference if 0.4L is selected for maximum moment and maximum deflection. This 



approximation, while acceptable for determining the critical stresses and moments, tends to 

obscure the exact distribution of stresses.  

When f(x)x=0. 4L = 1.0641)76, the following equations are obtained: 

 

Deflection curve: 

fy N =
1

1.0641376
(sin3.9266

X

L
+ 0.02787494 sinh3.9266

X

L
) 

 

Moment curve – 

fMN=
−10641376 L2

(3.9266 )2×0.93586229
f
II

yN=  
L2

13.56
f
II

yN 

=
−1

0  .93586229
(−sin3.9266

X

L
+ 0.02787494 sinh3.9266

X

L
 

 

Shear curve  

fSN=
−1.0641376 L3

(3.9233 )3×0.9721251
f
III

yN =  
−L3

55.3L
f
II

yN 

   

  =
−1

0.9721251
(−0.00s3.9266

X

L
+ 0.02787494 00sh3.9266

X

L
) 

Load curve – 

  fN = 
L4

(3.9266 )4f
IV

yN =  
L4

237.72
f
IV

yN 

   

  = 
1

1.0641376
(sin3.9266

X

L
+ 0.02787494 sinh).9266

X

L
) 

 

Maximum deflection - 

  yo = 
No L4

237 .72EI
 = 

NM o L2

13.56EI
       at X = 0.4L 

 

Maximum moment - 

  Mo  = 
No L2

17.60
  = 

13.56 yo  EI
.

L2 at X = 0.4L 

 

 



Minimum moment - 

  Mmin = - 1.5105 Mo=  
−𝐍𝐨𝐋

𝟐

𝟏𝟏.𝟔𝟎
at X=L 

  

Maximum shear– 

  so  = 55.30  
−yo  EI

L3  = 
𝐍𝐨

𝟒.𝟑𝟎
 

4.4.2 The beam with both ends built-in 

In the case of a beam with both ends fixed the boundary conditions are 

(a) f(x}=O, x=O,   (b) f'(x)=O, x=O, 

(C) f ( X) =0 , X=L , (d) f'(x)=O, x=L, 

In order to satisfy the conditions (a) and (b) the Constants 𝑐 1 and 𝑐 2 should be equal to zero in 

eq. (4) and from conditions (o) and (d) we obtain 

C2(cosnL - coshnL) + c4(s1n nL - sinhnL) = 0      (9) 

C2 (sin nL +sinhnL) +  c4 ( cosnL+coshnL) = 0                (10) 

in which the frequency equation will be : 

cosnLcoshnL = 1                              (11) 

The first four consecutive roots of this equation are as follows:  

n1L            n2L                n3L n4L  

4.7300408    7.8532046   10.9956078   14.1371655 

Substituting the n1L value into Eqn. (9) and (10),the shape of deflection curve will be obtained, 

when 

f(x) = 1.58815  at X = 0.5L 

 

Deflection curve: 

FyN=
1

1.58815
 (cosh4.73 

X

L
– cos4.73 

X

L
) − 0.9825(sinh4.73 

X

L
 – sin4.73

X

L
) 

 

Moment curve:  

fMN=
1.58815 L2

(4.73)2×1.21565
fII

yN=  
L2

17.13
fII

yN 

 



=
−1

1.21565
[ cos4.73

X

L
+ cos 4.73

X

L
 − 0.9825  sinh4.73 

X

L
+ sin4.73  

X

L
 ] 

fyN =
1

1.58815
(cosh 4.73

X

L
− cos 4.73) − 0.9825 (sinh 4.73

X

L
− sin 4.73 

X

L
) 

 

 Shear curve –  

fSN=    
1.58815 L3

(4.73)3×1.9650
fIII

yN =  
L3

130 .93
fII

yN 

   

=
−1

1.9650
[ sinh 4.73

X

L
− sin4.73

X

L
 − 0.9825 (cosh 4.73 

X

L
+ cos 4.73 

X

L
)]  

 

Load curve –  

  fN = 
L4

(4.73)4fIVyN=  
L4

500 .55
fIV

yN 

   

   =
1

1.58815
 cos4.73

X

L
− cos 4.73

X

L
 - 0.9825(sin h 4.73 

X

L
 – sin 4.73

X

L
)] 

 

Maximum deflection – 

  yo =
No L4

500.55EI
 = 

Mo L2

17.1EI
 at X = 0.5L 

 

Maximum moment – 

  Mo  = 
No L2

29.2
  = 

17.1 yo  EI

L2  at X = 0.5L  

    

Minimum moment – 

  Mmin =  
−𝐍𝐨𝐋

𝟐

𝟏𝟕.𝟕𝟓
  at X= 0 

   

Maximum shear –  

  so =  
𝐍𝐨𝐋 

𝟑.𝟕𝟓
 

 

 

 



In comparing the deflection curves caused by the normal curve load and uniform load for 

different support conditions.(Appendix) it is observed that the discrepancy in the ordinates of the 

normal curve corresponding to the ordinates of the deflection curve caused by uniform loadis 

evidently quite small. Hence, the error introduced into the analysis by replacing a deflection 

curve w1th a normal curve can be neglected. The elastic curve of a beam with one fixed end and 

one simply supportend that carries a uniform load, having the maximum deflection y0 at 0.4L, is 

expressed by 

 

fyw = 3.86 
X

L
− 3

X3

X3 + cos 2
X4

L4  

 

The elastic curve produced by a uniform load for a beam with both ends fixed, having the 

maximum deflection y0 at mid-span, is 

 

fyw =16  
X2

L2 − 2
X3

X3 +
X4

L4  

 

4.5 CONTINUOUS FOLDED PLATES WITH TWO EQUAL SPANS 

A continuous prismatic folded plate of the shape shown in Figure 2, with two equal spans, and 

continuous over the middle traverse will be analyzed. Since the loading is symmetrical about the 

center line support, only one span need be considered. 

4.5.1 Resolution of ridge loads 

Consider a prismatic folded plate loaded along all joints. Since in the actual structure there are no 

Supports at the various joints, forces of equal but opposite magnitude to the reactions are applied 

to the platestructure. These ridge loads are assumed to be resisted by the plates acting 

long1tud1nal as deep beams. For this purpose the reaction are resolved into components parallel 

to the plates as shown in Figure 



 

Fig 4.2 (a) Dimensions of Example 1 

 

 

Fig 4.2 (b) Dimensions of Example 1 

 



 

Fig 4.3 Resolution of Ridge Loads 

From fig 4.3(c), using the sine law 

sn +1,n

Rn +1,n
 = 

sin ⁡(90o  −∅n +2

sin αn +1,n +2
 

   sn+1,n = Rn+1  
cos ∅n +2

sin ∅n +1,n +2

 

By the same reasoning𝑅𝑛  is resolved into its components 𝑆𝑛,𝑛+1and 𝑆𝑛,𝑛−1 

   sn+1,n = Rn  
cos ∅n

sin ∅n ,n +2

 

 



It 1s seen that the total load acting in the plane of plate n+l is 

    Pn+l= Sn+1,n- Sn,n+l 

    Pn = Rn
cos ∅n +1

sin ∅n−1,n
      (12) 

4.5.2 Stress Distribution method 

These plate loads are applied to the plates as loads acting along the entire length as shown in 

Figure 4. In computing the stresses the plates are assumed at first to act independently of each 

other. Moreover it is assumed thatthe plates arehomogeneousandtherefore the stress is equal to 

the moment divided by the section modulus. But this can generally only be possible 1f a 

longitudinal shearing force Tn isacting along this joint which tends to equalize thestresses 1n 

both plates meeting at the common Junction. 

 

Fig 4.4 Longitudinal stresses at a Joint of Two Adjacent plates 



The stress of junction n of plate n due to the moment Mn may be written as: 

fn,n= - 
Mn

Zn
 

Where the minus sign indicates compression. 

Similarly, 

fn,n+1 =  
Mn +1

Zn +1
 

It is observed from Figure 4.that the longitudinal stress at junction n will be 

fn = fn,n + 
4Tn

An
  =  fn,n+1 - 

4Tn

An +1
 

        (13) 

From which Tn can be determined: 

Tn = ( fn,n+1 – fn,n)
An An +1

4(An +An +1)
 

(14) 

When the value of ~n from Eq. (14) is substituted into Eq. (l3), the stress can be obtained   

Fn= fn,n+1+ ( fn,n+1 – fn,n) 
An An +1

An +An +1
 

                        (15a) 

= fn,n+1-( fn,n+1 – fn,n) 
An An +1

An +An +1
 

           (15b) 

Eqs. (15a,b) provide the basis for the stress distribution method by which the stresses can be 

determined without knowing the shearing forces Tn.  

The distribution factor for plate n at Junction Dn,nis: 

Dn,n = 
An

An +An +1
 

             (16a) 

For plate n+l at junction n the distribution factoris:  

Dn,n+1 = 
An

An +An +1
 

            (l6b) 



Now it is seen from Figure 4 that the shearing force Tn causes at junction n-1 of plate n the stress 

-2Tn/An and at junction n+l of plate n+l the stress 2Tn/An Comparing these stresses with those 

caused by Tn at junction n, it will be found that they are minus one-half of their magnitude. This 

denotes that the carry-over factor is -1/2.).  

 

4.5.3 Shearing stresses 

 For a complete design, it is necessary to check the shearing stresses. The shearing stresses v at 

any point in the folded plates are induced by the shearing forces T, which can be calculated from 

the equilibrium of the horizontal forces (Figure .5) 

 

Fig4.5 Equilibrium of Horizontal Forces 

T =  fsA 

The resultant shearing forces N can be obtained by 

N =  Tdx 

Thus beg1n1ng at the left edge, the resultant forces at the ridges will be: 

N1 = -1/2 (f0+ f 1) A1 

N2 = N1-1/2 (f1+ f 2) A2 

N3 = N2 -1/2 (f2 + f 3) A3 

The general form can be written as: 

 



Nn =Nn-1 -1/2 ( fn-1 + fn)An                                               (17) 

The longitudinal shearing force Ny at any point between joints is 

NY= N2 -1/2 (f2+ fy) ty                     (18) 

                                            Or         

    Ny= Nn-1- 1/2 ty(fn-l + fn-1
h−y

h
) -1/2 tyfn

y

h
       (19) 

The resultant shearing force at the middle of the plates can be written: 

    Ny =
Nn−1 +Nn

2
– An /8 (fn-1 – fn)                                (20) 

Since the variation of the. Longitudinal shearing force Ny is similar to the moment Mn due to the 

load Pn it varies parabolic ally. 

For a simply supported structure, subjected to a uniformly distributed load,  

Mmax = wL
2
/8, and the moment at any distance x from the support is 

Mx= 
wx (L−x) 

2
= Mmax

4x (L−x)

L2                                            (21) 

Ny= Nmax
4x (L−x)

L2                                                        (22) 

Because'Ny is proportional to Mx' then 

Ny= (Nmax/Mmax)Mx' and 

v = 
1

t

dN y

dx
= 

4Nmax  (L−2x)

tL2                                                       (23) 

vmax = 
1

t

Nmax dM x

Mmax  dx
  =  

Nmax vx

tM max
 

= 
Nmax wL /2 

t wL2/8
=

4N max

tL
                                                       (24)  

and if loaded by a sine curve load the shearing stress becomes: 

    M = Mmaxsin
πx

L
                                                 (25) 

    N = Nmaxsin
πx

L
                                                                            (26) 

    V = Nmaxπ cos 
πx

L
                                            (27) 

Therefore, combiningEqs. (22), and (26), the total shearing stress can be obtained. For practical 

design the shearing stress obtained by the sine curve load or normal curve load is quite small 

compared with the value obtained by the elementaryanalysis, hence, the second .term, Eq, (26), 

can beneglected. 



Theoretically, for a beam fixed at one end, supported at the other, subjected to an uniform 

distributed load, the shearing stresses can be obtained from the following derivations. From 

Table I of the Appendix, 

    Mmax = wL
2/14.28 

    Mx = 
3wL

8
x- 

3w L2

2
= Mmax(

5.36x

L
−

7.14 x2

L2  )                              (28) 

    Ny= Nmax(
5.36x

L
−

7.14 x2

L2  )                                                (29) 

    V = 
1

t
Nmax(

5.36

L
−

14.28 x2

L2 )                                           (30)  

 

For a beam fixed ·at both ends, subjected to a uniform distributed load, the shearing stress will 

be expressed as follows: from Table II of the Appendix, 

    Mmax=wL
2
 / 24 

Mx= 
w

12
 (6Lx – L2- 6x2)      

                                                = Mmax(
2x

L
− 2 − 

12x2

L2 )          (31) 

    Ny= Nmax (
2x

L
− 2 − 

12x2

L2 )                     (32)  

    V = 
1

t
Nmax (

2

L
− 

24x

L2 )               (33) 

Practically, as the shearing stresses are small throughout the entire structure, the valueswill be 

obtained by considering the plate as a simply supported beam for convenience and simplicity. 

4.6 EXAMPLES 

4.6.1 Example 1 

The folded plate roof with two equal spans shown in Figure 2 will be analyzed for its own weight 

only. The loading was computed as follows: 

Weight of plate = 1/4 x 150 = 37.5 psf 

Weight of edge beam = 150 x 7/12 x 4 = 350 lb/ft. 

  Table I provides the general data of the crosssection. 

 

 



4.6.1.1 Elementary Analysis 

4.6.1.1.1 Transverse slab analysis 

 A unit strip taken from the folded plates is assumed to act as a continuous one way slab on 

unyielding supports. The transverse slab moments are determined in Table II, and the· reactions 

at each joint are computed. 

The moment distribution factors at joint 2 are 

D21 = 
3/4

1+3/4
= 0.428    

D23 = 
1

1+3/4
= 0.572 

 

 

Figure 6(a). Basic Loading of Example 1 The fixed end moment will be 

 

   MF21= 1/8 x 7.794 x 9x 37.5 = 328.8 ft – lb / ft. 

   MF23  = MF32  = 1/12 x 8.863 x 37.5 = 249.18 ft – lb / ft. 

General data 

(a) Plates 

Plate 

no. 

H, in 

feet 

T, in  

In. 

A,in 

SQ.FT 

S,in 

Cu.ft 

𝜙 sin𝜙 cos𝜙 

1 

2 

3 

4.0 

9.0 

9.0 

7 

3 

3 

2.233 

2.250 

2.250 

1.556 

3.375 

3.375 

90
0 

30
0 

10
0 

1.00 

0.50 

0.174 

0 

0.866 

0.985 



(b) Joints 

Joint ∝ sin∝ cot∝ 

0 

1 

2 

3 

 

0 

60 

20 

20 

0 

0.866 

0.342 

0.342 

0 

0.576 

2.750 

2.750 

 

c) Moment distribution constants 

Joint Plate Relative Stiffness Distribution 

O 

 

1 

 

2 

 

3 

1 

1 

2 

2 

3 

3 

4 

0 

Kl0 = 0 

Kl2 = 4 

K21 = 3/4(4) = 3 

K23=4 

K32 = 4 

K34=4 

0 

0 

1 

0.428 

0.572 

0.500 

0.500 

Table 4.1 General Data of Example 1 

 

 

 

 

 

 



1 2 3 Joint 

10                            

12 

21 23 32 Member 

 0.428 0.572 0 Dist. Factor 

 

 

 328.8 

-34.1 

-249. 2 

-45.5 

249.2 

 

 

-22.8 

F. E. Moment 

Distribution 

 

Carry over 

 294.7 -294.7 226.4 Final moment 

-37.8 37.8 7.7 -7.7 M/hcos 

168·.8 168·.8 168·.8 168·.8 wh/2 

480.9 383.08 322.1 Joint reaction 

Table 4.2 Shears and Joint Reactions in TransverseOne Way Slab at 0.4L from the Outer Support 

 

4.6.1.1.2 Longitudinal plate analysis 

4.6.1.1.2.1 Plate Loads 

Thevertical joint reactions are resolved into components parallel to the contiguous plates by 

using Eq. (12). The plate loads acting on each plate are tabulated in Table III.  

Resolution of Ridge Loads 



Joint (1) 

 

Reaction 

Lb./ft. 

(2) 

 

Cosøn+l/sin∝n 

(3) 

 

=(1) x(2) 

(4) 

 

Cosøn-1/ 

sin∝n-1 

(5) 

 

Rn-1×(4) 

(6) 

Plate 

Loads 

Lb./ft. 

1 

 

2 

480.90 

 

383.0 

 

 

2.877 

 

 

1101.95 

 

 

0 

 

 

0 

480.90 

 

1101.95 

Table 4.3 Resolution of Ridge Loads 

4.6.1.1.2.2 Free edge stresses 

 It is assumed temporarily that each plate bends independently due to plate loads. The maximum 

stress and deflection occur approximately at 0.4L from the outer support. The moment due to a 

uniform load will be (refer to Table I of the Appendix) 

M0.4L = PL2/14.28           (34) 

f = 
M

S
= PL2/14.28S                            (35) 

The free edge stresses are tabulated in Table 4.4 

4.6.1.1.2.3 Free edge stress distribution 

 The free edge stresses are distributed in order to determine the actual edge stresses, which must 

be equal at the joint. 

Free Edge Stresses 

Plate Plate S     fb  =  -ft   

 Load   L
2
 

= 

65
2
     

 lb/ft. cu. ft.  14,28 14.28  kip/sq. ft.   

1 480.9 1.556  295.87  91.45   

2 1101.9 3.375  295.87  96.60   

3 -44.36 3.375  295.87  -3.89   

           

Table 4.4 Free Edge Stresses Resulting From the Elementary Analysis 



The free edge stress distribution is shown in Table V; and is plotted in Figure 6. The stress 

distribution factors, by using Eq. (16), are 

D11 = A2 / (A1/ A2) = 
2.250

2.333 +2.250
 = 0.4909 

D12 = A1 / (A1/ A2) = 
2.333

2.333+2.250
 = 0.5091 

D22 = A2 / (A2/ A3) = 
2.250

2.250 +2.250
 = 0.500 

D23 = 0.500 

Stress Distribution 

 

Table 4.5 Stress Distribution 

0 1 2 3 JOINT MEMBER 

                    

11 

12              

22 

23   

              

0.491 

0.509           

0.50 

0.50  DIST.FACTOR 

                 -0.5                      -0.5              -0.5 C.O.FACTOR 

91. 4.5 -91.4.5 

92.33 

-96.60 

-95.72 

-96.60 

46.36 

-3.89 

-46.36 

3.89 F.E. Stress 

Distribution 

-46.17 -11.38 -23.18 

11.80 

47.86 

-23.93 

23.93 23.18 Carry Over 

Distribution 

5.69 5.88 11.97 

-6.09 

-5.90 

2.95 

-2.9.5 -11.97 Carry Over 

Distribution 

-2.94 -0.73 -1.48 

0.75 

3.05 

-1.52 

1.52 1.48 Carry Over 

Distribution 

0.36 0.37 0.76 

-0.39 

-0.38 

0.19 

-0.19 -0.76 Carry Over 

Distribution 

-0.19       -0.05                       

-0.05 

0.05 0.19 

-0.10 

0.10 0.09 Carry Over 

Distribution 

48.23 -4.99 -4.99 -27.84 -27.84 15.86 Final Stresses 



Since the moment at the intermediate support due to a uniform load is 1/8 wL
2
, the stresses are 

proportiona1 to the bending moment, but of. Opposite sign. 

    Fx =L = fx 0.4Lx  
−14.28

8
      (35a)  

 

 

Fig 4.7 Longitudinal Stresses from Elementary Analysis 

 

4.6.1.1.2.4 Plate deflections 

 From the equalized edge stresses, the plate deflections at 0.4L can be computed. For a uniform 

load, the deflection is  

     y0.4L= 
M L2

12.99 EI
           (36) 

in which the moment at x = 0.4L is 

     M0.4L = 
fb– ft

2
 s                      (37) 

Substituting Eq. (36) into Eq. (35) 

y0.4L= 
1

12.99 
(

fb– ft

2
)

SL2

EI
 



For a rectangular plate S/I = 2/h 

y0.4L= 
1

12.99 
(

fb– ft

h
)

L2

E
                      (38)  

 

Assuming E is 105 kip/sq.ft., the plate deflections in terms of the free edge stresses at X = 0.4L 

are found as follows: 

y30 = (-27.84 – 15.86) x 65
2
/ 12.99 x9 x E = - 0.0162 ft. 

y20 = (-4.99 + 27.84) x 65
2
 / 12.99 x9 x E = 0.00826 ft. 

y10 = (48.38 + 4.99) x 65
2
 / 12.99 x 4 x E = 0.0433 ft. 

4.6.1.2 Correction Analysis 

4.6.1.2.1 Transverse slab analysis 

 The analysis is made for an arbitrary rotation of the plate at the section o.4L from the outer 

support. The fixed end moment at edge 2, with edge 1 free to rotate, equals to EI∆/h
2
 = -3 ft – k. 

The fixed end moment at plate 3 is 6EI∆/h
2
= - 6ft-k. 

By moment distribution, the transverse moments, shears and joint reactions may be computed as 

in Table VI. 

4.6.1.2.2 Longitudinal plate analysis 

 The same procedure as the elementary analysis will be repeated for plate loads, stresses and 

deflections caused by the rotations of those plates. Longitudinal moments due to normal curve 

loads will therefore be 

     M0.4L = PL
2
/ 17.53S              (39)  

And, 

     f0.4L = M/S = PL
2
 / 17.53 S          (40) 

    y0.4L  = ML2/ 13.56 EI =  (
fb – ft

13.56
)

L2

Eh
                               (41) 

     Fx=L = f0.4L x 17.53/ 11.60          (42) 

Plate loads, free edge stresses and the stress distribution are shown in Tables, VIII, and IX. The 

plate deflections are computed from Eq. (40).  

For (a) an arbitrary rotation of Plate 2 



    y1
′ = 

  68.27 + 90.73 × 652

13.56 ×4×E
 = 0.124ft. 

    y2
′ = 

 −90.73−146.50 × 652

13.56 ×9×E
 = -0.082ft 

    y3
′ = 

 146.50 −178 .99 × 652

13.56 ×9×E
 = 0.113ft 

 

(a) For an arbitrary rotation of plate 2 

0                          

1 

2 3 Joints 

10                        

12 

21 32 32 Members 

1.000 0.428 0.572 0.5000 Dist. Factor 

 -3.000 

1.286 

 

1.714 

 

0.857 

F.E. moment 

Distribution carry 

over 

 -1.714 1.714 .857 Final moment 

0.220 -0.220 -0.290 0.290 Without 

0.220 -0.510 0.580 Joint reaction 

For an arbitraryrotation of plate 3 

0                          

1 

2 3 Joints 

10                        

12 

21 23 32 Member 

1.000 0.428 0.572 0.500 Dist. Factor 

 2.568 -6.000 

3.342 

-6.000 

1.716 

F.E. moment 

Distribution carry 

over 

 2.568 -2.568 -4.284 Final moment 



-0.329 -0.329 -2.568 -0.773 a/hope 

-0.329   -1.546 Joint reaction 

Table 4.6 Slab Action And Plate Loads Due To An Arbitrary Rotation 

 

Resolution of Joint Reactions 

(a) For an arbitrary rotation of Plate 2 

Plate (1) 

Reaction 

(2) 

Cosøn+l/sin∝n 

(3) 

=(1)×(2) 

(4) 

Cosøn-1/ 

sin∝n-1 

(5) 

Rn-1×(4) 

Plate Loads 

k/ft 

1 

2 

3 

0.22 

-0.51 

0.58 

 

2.877 

2.877 

 

-1.467 

1.669 

 

0 

2.535 

 

0 

-1.29 

0.22 

-1.467 

2.961 

(b) For an arbitrary rotation of Plate 3 

1 

2 

3 

-0.329 

1.102 

-1.546 

 

2.877 

2.877 

 

3.l7 

-4.448 

 

0 

2.535 

 

0 

2.79 

-

0.329 

3.170 

-

7.242 

Table 4.7 Resolution of Joint Reactions for the Correction Analysis 

 

 

 

 

 



 

Free Edge Stresses for an Arbitrary Rotation 

Table 4.8 Free Edge Stresses foran Arbitrary Rotation 

(a) For an arbitrary rotation of plate 2 

 1 2 3 Plate 

 

0.5 

0.491 

0.5 

0.509 

0.5 

0.50 

0.5 

0.50 

0.5 

 

0.5 

Disat. Factor 

c. o. Factor 

45.87 -45.87 

-28.92 

-104.76 

29.98 

104.76 

53.35 

311.5 

-53.35 

-211.5 F.E. stress 

Distribution 

14.46 -13.10 -26.67 

13.58 

-14.99 

7.49 

-7.49 26.67 Carryover 

distribution 

6.5 -1.84 -3.75 

1.91 

-6.79 

3.40 

-3.40 3.75 Carry over 

distribution 

0.92 -0.83 -1.70 

0.85 

-0.95 

0.48 

-0.8 1.70 Carry over 

distribution 

Plate Plate 

Load  

k/ft 

S 

 

Cu.ft 

L 

2              652 

17.53=17.53 

Fb=-ft 

Kip/sq.ft. 

(a) For an arbitrary rotation of plate 2 

1 

2 

3 

0.22 

-1.467 

2.961 

1.56 

3.375 

3.375 

241.02 

241.02 

241.02 

45.87 

-104.76 

211.45 

For an arbitrary rotation of plate 3 

1 

2 

3 

-0.329 

3.170 

-7.242 

1.556 

3.375 

3.375 

241.02 

241.02 

241.02 

-68.59 

226.38 

-517.17 



0.42 -0.12 -0.24 

0.12 

-0.43 

0.21 

-0.21 0.24 Carry over 

distribution 

0.06 -0.05 -0.11 

0.05 

-0.06 

0.03 

-0.03 0.11 Carry over 

distribution 

68.27 -90.73 -90.73 146.50 146.50 - 178.99 Total 

(b) 

(b)for an arbitrary rotation of plate 3) 

-68.69 68.59 

77.48 

226 

-80 

-226.38 

-145.40 

-517.17 

145.40 

517.17 F. E. stress 

distribution 

-38.74 35.70 72.70 

-37.00 

40.16 

-20.08 

20.08 -72.70 Carry over  

Distribution 

-17.85 4.93 10.04 

-5.04 

18.50 

-9.25 

9.25 -10.04 Carry over  

Distribution 

-2.47 2.27 4.63 

-2.36 

2.55 

-1.28 

1.28 -4.63 Carry over  

Distribution 

-1.14 0.31 0.64 

-0.33 

1.18 

-0.59 

0.59 -0.64 Carry over  

Distribution 

-0.16 0.15 0.30 

-0.15 

0.16 

-0.08 

0.08 -0.30 Carry over  

Distribution 

-0.07 0.02 0.04 

-0.02 

0.08 

-0.04 

0.04 -0.04 Carry over  

Distribution 

-129.01 189.44 189.4 -340.45 -340.45 428.83 Total 

Table 4.9 Stress Distribution Resulting From an Arbitrary Rotation 

 



 

Fig 4.8Williot Diagram for Relative Joint Displacement 

For (b) an arbitrary rotation of Plate 3 

    y1
′′ = 

 −129.01− 189.44 ×652

13.56 ×4×E
 = -0.1238ft. 

    y2
′′ = 

 189.44− 340.45 ×652

13.56 ×9×E
 = 0.1834ft 

    y3
′′ = 

 −340.45− 428 .83 ×652

13.56 ×9×E
 = -0.2663ft 

The general expression of the geometrical relationship between deflections and rotations, as 

shown in Figure 7, is 

    ∆n= - 
yn−1

sin ∝n−1
 + yn (cot ∝n−1+ cot∝n) - 

yn +1

sin ∝n
        (43) 

The final deflections must be expressed in terms of numerical results obtained from the 

elementary analysis, y10, y20, y30' plus those for the various ·rotation solutions, each multiplied by 

an unknown factor kn. 

The arbitrary rotation was 

EI n∆

hn
2  = 1ft-k x kn           (44) 

Hence,  



    ∆2= - 
h2

2   ×1

EI2
 K2 = 

92  ×1 ×12

(
1

4
)3  ×105

k2= 0.622 k2    

     ∆3 = 0.622k3 

by geometrical relationships, using Eq. (42) 

   ∆1 = 0.622k2 = -l.l.5y1+ 3.32y2 - 2.92y3 

.   = -l.l.5 (ylO+ y1k2+ y1k3) +3 .32 (y 20+ y2k2+ y2k3) 

   ∆2 = 0.0238 -0.7442k2+1.6724k3 =0.622 k2         (45) 

Similarly,   

   ∆3 = -0.1571 +1.1887k2 -2.7790k3 = 0.622k3                    (46) 

Solving eqn. (43) and (44) 

    K2 = -0.0726        

    K3 = - 0.0701 

4.6.1.3 Superposition 

The final value of the longitudinal stresses, transverse moments and deflections by combining 

the elementary analysis and the correction analysis are. Summarized in Tables X, XI, and XII, 

and are plotted in Figures 8, 9 and 10. The stresses at the middle support can be obtained using 

Eqs. (35a) and  (42).  

 

 

(a) longitudinal stress at 0.4L 

joints Elementary 

Analysis 

Correction                      Analysis Total 

correction 

Final values 

k/sqrt 
Rotation of 

plate2 

Rotation of 

plate 3 

0 

1 

2 

3 

48.23 

-4.99 

-27.84 

15.86 

-4.96 

6.59 

-10.64 

12.99 

9.04 

-13.28 

23.8 

-30.07 

4.09 

-6.69 

13.23 

-17.08 

52.32 

-11.68 

-14.61 

-1.22 



Table 4.10 Final Longitudinal Stresses Of Example 1 

joints Elementary 

analysis 

Correction analysis Total 

correction  

Final 

values Rotation of plate 

1 

Rotation of 

plate 2 

1 0     

2 -294.72 -124.44 180.02 55.58 -239.1 

3 -226.4 62.00 -300.31 -238.09 -464.4 

Table 4.11 Final Transverse Moments Of Example 1 

 

Joints Elementary 

analysis 

Correction analysis Total 

correction  

Final 

values Rotation of plate 1 Rotation of 

plate 2 

1 0.0433 -0.001 0.0087 -0.0003 0.043 

2 0.0083 0.006 -0.0129 -0.0069 0.0014 

3 -0.0162 -0.0082 0.0187 0.0105 -0.005 

Table 4.12 Final Deflections of Example 1 

In the above analysis the intermediate supporting stiffener is assumed to be a rib. A tie between 

point 2 and 6 would effect a saving, but could be omitted because of headroom and appearance.. 

As the shearing stresses .are small, only a nominal amount of. Reinforcement is provide to resist 

shear. The rib must be designed for bending moments combined with direct forces. 

 

(b) Longitudinal stress at the middle support. 

0 

1 

2 

3 

-89.23 

8.91 

49.70 

 

7.49 

-9.95 

16.07 

19.54 

-13.57 

20.03 

-36.07 

45.45 

-6.18 

10.11 

-19.99 

25.81 

-95.40 

19.03 

29.71 

-2.50 



4.6.1.4 Folded Plates Continuous Over Three Spans 

Since the loading and span are symmetrical about the center line, only the center and left exterior 

spans will be investigated. These will be considered individually. The exterior spans have the 

same behavior as that analyzed in the previous example of two equal spans, and the center 

portion has both ends fixed. There exists a considerable difference in the determination of the 

longitudinal moment over each of the two inner traverses in comparison with the moment over 

the middle traverse of two equal spans. That is, the end moment, wL2/8, of a single beam 

subjected to a uniformly distributed load with one simply supported end and one fixed end is 

exactly equal to the moment at the middle support of a continuous beam with two equal spans. 

Therefore, the stresses at the middle traverse are proportional to the maximum stresses at 0.4L of 

the span. But the longitudinal moment over each of the two inner traverses in a continuous 

folded plate with three spans is not the same as the end moment of a beam with one end simply 

supported and one end fixed. It is known that the effect of continuity over the supports on 

stresses in shells is similar to the effect ofcontinuity on stresses 1rt.ord1nary beams. Thus, for the 

purpose evaluating the stresses on each of the inner traverses, the bending moment will have to 

becalculated from the three moment equation or one of the other acceptable methods in common 

use.The shearing stress in multi-span continuous foldedplates will' be further investigated and 

will be emphasizedin Example 2. Figure 11 shows a moment diagram for a uniformly loaded 

folded plate with three continuous spans. 

 

Fig 4.9 Relationship between Moments and Shearing Forces for a Uniformly Loaded Plate with 

Three Continuous Spans 

 

As explained before, the shearing force N can becalculated since it is proportional to the bending 

moment.Nmax represents the shearing force at mid-span. The bendingmoment on the plate at a 

distance x from the firstinterior support, considering continuous beam action only, is 



 

Mx  = 
WX

2
 (L-x) +M′+(M′′ -M′)

X

L
         (47) 

Nx  =Nmax
4x(L−X

L
 +N′  + (N′′ -N′)

X

L
                    (48)   

V= 
1

t

dN x

dx
 = 

4Nmax

tL 2 (L- 2x) + (N′′ - N′)/L        (49) 

For the exterior span, 

V = 
4Nmax

tL 2 (L- 2x) - N′/L          (50) 

4.6.2. EXAMPLE 2 

Figure 12 shows the dimensions of the roof, the longitudinal spans of which are respectively 

30ft. (L1), 40ft. (L2) and 30ft. (L3).  

 

 

Fig 4.10 Dimension of Example 2 

The general properties of the system are given in Table XIII. 

4.6.2.1 Elementary Analysis 

The transverse moment distributions are shown in Table XIV. The resolved plate loads are also 

shown in Figure 12. The moment distribution factors at· joint 2 are 0.428 and 0.572.The fixed 

end moments are computed as follows: 

 

    



 

General Data 

Plate H,inft T,in 

inch 

A,insq 

inch 

S,incub 

inch 

Ø Sinø Cosø 

1 2.667 5 160 853 90
0 

1.00 0 

2 9.00 3 324 5832 45
0 

0.707 0.707 

3 9.00 3 324 5832 0
0 

0 1.00 

Table 4.13 General Data of Example 2 

 

Slab Moments Due to External Loads 

1 2 3 Joint 

12 21 23 32 Member 

 0.428  0.572 Dist. Factor 

 7.16w 

-0.17 

-6.75w 

-0.23 

6.75w 

0.23 

F.E.M 

Dist. 

 0 

-0.05 

0.12 

-0.02 

-0.12 

0.07 

C.0. dist. 

 0 

-0.01 

0.03 

-0.02 

-0.03 

0.02 

C.0. dist. 

 6.91w -6.91w 6.91w Final moments 

-1.09w 1.09w   m/hcosø 

Table 4.14 Slab Moments Due To External Loads 

MF22 = WL
2
/12 = 6.75w ft –lb/ft. 

MF21 = Wah /8 = 7.155w ft- lb /ft 

The moment M over each of the two stiffeners is obtained by the theorem of three moments 

    2M (L1 +L2) +ML2–PL2
3 /4 –PL2

3 /4 

Then, 

  M = P(L2
3  +L2

3 )/ 4(2L1 +3L2) = -126.39 P ft-lb = -1516.7P in –lb 

From the foregoing data, the calculation of the free edge stresses can be tabulated thus: 

 



 

Free Edge Stresses from the Elementary Analysis 

Plate 1                             2 3 

Plate load, lb/ft. 420 735 0 

s, cubic in. 853 5832 5832 

(1)Free edge stresses at the intermediate support 

Fb  = - ft= M/S, Lb./sq. ft.
 -747 -192 0 

(2) Free edge stresses for the exterior span at 0.4L 

fb =- ft = (PL1
2×12)/14.28 372.4 95.3 0 

(3) Free edge stresses for the center span at mid-span 

fb =-ft= (PL2
2×12)/24 394 101 0 

Table 4.15 Free Edge Stresses fromthe Elementary Analysis 

Stress Distribution Factors: 

    D11 = 324/ 160+324= 0.67 

    D12 = 1- 0.67 = 0.33 

    D22 = D23 =0.50 

The stress distributions are performed in Table XVI. In determining the deflections, E is assumed 

to be 2 x 106 psi. For a uniform load, the deflections at 0.4L in the exterior span are: 

y20= 
(−63.4+6.4)

12.99 ×9 ×E 
 x 30

2 
x 12 = - 0.00263 in. 

y10= 
(218 .0+63.4)

12.99 ×2.67×E 
 x 30

2 
x 12 = - 0.04380 in 

and at mid-span of the middle span are as follows: 

y20= 
(−66.7+6.9)

16 ×9 ×E 
 x 40

2 
x 12 = - 0.003986in. 

y10= 
(230 .5+66.7)

16 ×2.67 ×E 
 x 40

2 
x 12 = - 0.06678 in. 

 



4.6.2.2 Correction Analysis 

In determining the effect of the relative displacements of the joints, a unit transverse strip is 

considered, and the ·fixed end moment at edge 3 is 

MF = 
3EI∆

h2
2  =  

3 x 2 x 103 x 144 x 1 /12 x ( 3/12)3 x 1/12

92  = 1.5474 ft. kip per ft 

 

Stress Distribution Resulting from the Elementary Analysis 

01 10 12                             

21 

23 Member 

                                        

0.67 

0.33                         

0.5 

0.5 Dist. Factor 

-0.5                      -0.5 C.O.Factor 

(a) Stress distribution for the intermediate support 

747 -747.0 

629.1 

192.0 

-309.9 

-192.0 

96 

0 

-96.0 

F.E.Stress Distribution 

-

314.6 

-32.2 -48.0 

15.8 

155 

-53.5 

48.0 

53.5 

Carry Over 

Distribution 

16.1 18.0 26.8 

-8.8 

-7.9 

-9.5 

-26.8 

9.5 

Carry Over 

Distribution 

-9.0 3.2 4.8 

-1.6 

4.4 

-4.6 

-4.8 

4.6 

Carry Over 

Distribution 

-1.6 1.5 2.3 

-0.8 

0.8 

-1.5 

-2.3 

1.6 

Carry Over 

Distribution 

-0.75 0.5 0.8 

-0.3 

0.4 

-0.6 

-0.8 

0.6 

Carry Over 

Distribution 

-0.25 0.2 0.3 

-0.1 

0.2 

-0.2 

-0.3 

0.2 

Carry Over 

Distribution 

436.8 -126.7 -126.7 -13.0 -13.0 Final Stress 

(b) Stress distribution for the intermediate support 



372.4 -372.4 

313.4 

95.3 

-154.3 

-95.3 

47.7 

0 

-47.7 

F.E. Stress Distribution 

-

156.7 

-16.0 -23.8 

7.9 

77.2 

-26.7 

23.8 

26.7 

Carry Over 

Distribution 

8.0 9.0 13.3 

-4.4 

-4.0 

-4.7 

-13.4 

4.7 

Carry Over 

Distribution 

-4.5 1.6 2.4 

-0.8 

2.2 

-2.3 

-2.4 

2.3 

Carry Over 

Distribution 

-0.8 0.8 1.2 

-0.4 

0.4 

-0.8 

-1.2 

0.8 

Carry Over 

Distribution 

218.0 -63.4 -63.4 -6.4 -6.4 Final Stress 

(C)Stress distribution for the intermediate support 

394.0 -394.0 

332.0 

101.0 

-163.0 

-101.0 

50.5 

0 

-50.5 

F.E. Stress Distribution 

-166.0 -17.0 -25.3 

8.3 

81.5 

-28.1 

25.3 

28.1 

Carry Over 

Distribution 

8.5 9.4 14.1 

-4.7 

4.2 

-4.9 

-14.1 

4.9 

Carry Over 

Distribution 

-4.7 1.7 -2.5 

-0.8 

2.4 

-2.4 

-2.5 

2.4 

Carry Over 

Distribution 

-0.85 0.9 1.3 

-0.4 

0.4 

-0.9 

-1.3 

0.9 

Carry Over 

Distribution 

-0.45 0.3 0.5 

-0.2 

0.2 

-0.4 

-0.5 

0.4 

Carry Over 

Distribution 

230.5 -66.7 -66.7 -6.9 -6.9 Final Stress 

Table 4.16 Stress Distribution Resulting From the Elementary Analysis 

The free edge stresses due to the rotation at plate 2 can be obtained. 

For the exterior span:  

Plate 2: fb
′  = −ft

′  = =  
−148 × 302   ×12

17.53 ×5832
 = -15.63 psi 



Plate 1: fb
′  = −ft

′  = =  
105  × 302   ×12

17.53 ×853
 =75.40 psi 

For the middle span: 

Plate 2: fb
′  = −ft

′  = =  
−148 × 402   ×12

29.2 ×5832
 =-60.7 psi 

Plate 1: fb
′  = −ft

′  = =  
105 .0 × 402   ×12

29.2 ×853
 = 80.5 psi 

These free edge stresses again show incompatibilities which must be removed by stress 

distribution (Table 4.17). 

Stress Distribution Resulting from an Arbitrary RotationStress 

0                                  1      2 Joint Dist. Factor 

                          

0.67 

0.33                 

0.5 

0.5  

(a) Exterior span:Stress distribution for Δ2=1.in 

75.4 -75.4 

40.1 

-15.6 

-19.7 

15.6 

-7.8 

7.8 F.E. Stress 

Distribution 

-20.0 2.6 3.9 

-1.3 

9.9 

-6.9 

-3.9 

6.9 

Carry Over 

Distribution 

-1.3 2.3 3.5 

-1.1 

0.7 

-2.1 

-3.5 

2.1 

Carry Over 

Distribution 

-1.2 0.7 1.0 

-0.3 

0.6 

-0.8 

-1.0 

0.8 

Carry Over 

Distribution 

-0.4 0.3 0.4 

-0.1 

0.2 

-0.3 

-0.4 

0.3 

Carry Over 

Distribution 

52.4 -29.4 -29.4 9.0 9.0 Final Stress 



(b) Center span: Stress distribution for Δ2=1.in 

80.5 -80.5 

42.7 

-16.7 

-21.1 

16.7 

-8.4 

0 

8.4 

F.E. Stress 

Distribution 

-21.4 2.8 

 

4.2 

-1.4 

10.6 

-7.4 

-4.3 

7.4 

Carry Over 

Distribution 

-1.4 2.5 3.7 

-1.2 

0.7 

-2.2 

-3.7 

2.2 

Carry Over 

Distribution 

11.25 0.7 1.1 

-0.4 

0.6 

-0.9 

-1.1 

0.9 

Carry Over 

Distribution 

-0.35 0.3 0.5 

-0.2 

0.2 

-0.4 

-0.5 

0.4 

Carry Over 

Distribution 

56.0 -31.5 -31.5 9.6 9.6 Final Stress 

Table 4.17 Stress Distribution Resulting From an Arbitrary Rotation 

The calculated deflections due to the rotation of Plate 2 are as follows: 

For exterior span: 

y2
′ =  

(−29.4−9.0)× 302   ×12

29.2 ×5832
 = -0.001697 in 

y1
′ =  

(52.4+29.4)× 302   ×12

13.56 ×2.67 ×E
 = 0.01220in 

For center span: 

y2
′ =  

(−31.5−9.6)× 402   ×12

17.1 ×9×E
 = -0.00256 in 

y1
′ =  

(56.0+31.5)× 402   ×12

17.1 ×2.67 ×E
 = 0.0184in 

Therefore, the total deflections of these plates will be expressed in terms of the deflections of the 

elementary analysis and the relative transverse displacements∆. By using Eq. (43), the values can 

be computed from the geometrical relations. 



Exterior span:  

    y2 = -0.00263 -0.001697 ∆2 

    y1=   0.04380 + 0.01220∆2 

from eqn. (43)  

    ∆2 = 
−y1

sin 45 0 + y2 ( 2cot 450) = 
−y1

0.707
 + 2 y2   (44) 

Substituting y2 and y1 into eq. (44) 

    ∆2 = - 0.0657 

Centre span: 

    y2 = -0.00399 -0.00256∆2 

    y1=   0.06678 + 0.0184∆2 

Similarly using eq. (44) 

    ∆2 = - 0.099385 

4.6.2.3 Superposition 

The final results of the analysis will be determined by combining the elementary solutions and 

each of them correction solutions multiplied by its respective ∆n. The final results are shown in 

Tables XVIII and XIX. 

The value of the deflection which is parallel to the plate element, shown in Table XIX, is a 

relative value because an arbitrary modulus of elasticity was used. The vertical deflection of any 

joint can be calculated from the plate deflections. The relationships between these deflections are 

shown in Figure 7 and are expressed as follows: 

    Vn = yn
cos ∅n

sin ∝n
 - yn+1

cos ∅n

sin ∝n
 

The shearing forces N along the joints may be calculated from Eq. (17) 

    N1 = -1/2 ( -436.8 + 126.7 )x 160 = 24800 lb 

N2 = 24800 -1/2 (126.7 + 13.0) x 324 = 2200 lb 

The shearing stresses are computed from Eq. (49) and Eq. (50) as follows. 

Plate 1. - At the supports of the exterior spans, the positive simply supported bending moment is 

P2 = 30
2
/8 = 112.5P2 ft-1b. 

Then,  

    Nmax= 24800 x 112.5/126.4 = 22100 lb 



From eq. (50)  

    V1 = 
4 ×22100

4.5 ×360
 - 

24800

4.5 ×360
 = 54.7 -15.3 = 39.41 lb/ sqft. 

    V= 0 

At the inner support x = L1 

V1 = -54.7 - 15.3 = -70.0 lb/sqft 

 

At each support of the center span the simple span moment is P2  40
2
/8 = 200 P2 ft-lb 

 

N max= 24800 X 200/ 126.4  = 39,400 

From Eq. ( 49) 

V1 = 39400 x 4/ 4.50x 480 = 73 lb/ sqft. 

Plate 2. - At the support of the exterior spans at Joint 1 

Nmax = 22100 lb 

    V1 = 
4 ×22100

3×360
 - 

24800

4.53×360
 = 82 -23 = 59 lb/ sqft. 

and at Joint 2 

Nmax= 2200 x (112.5/ 126.4) = 1960 lb. 

V2 = 
4 ×1960

3×360
 - 

2200

3×360
 = 7.28 – 2.04 = 5.24 lb/ sqft. 

At x = L1   

    V1 = -82 -23 = -105 l / sqft. 

    V2 = -7.28 -2.04 = -9.32 lb/sqft. 

At each support of the center span, and at Joint 1, 

    Nmax= 24800x(200/126.4) = 39200lb 

    V1 = (4 x 39200) / (3 x 380) = 109 lb/ sqft. 

And at joint 2, Nmax=2200 x (200/ 126.4) = 3480 lb 

    V2 = (3480 x 4) / (3 x 480 ) = 9.65 lb/ sqft. 

 

 

 

 



Longitudinal Stresses 

(a)Longitudinal stresses at the intermediate support 

Joints Elementary 

analysis 

Correction analysis Total correction Final values psi 

0 

1 

2 

-436.8 

126.7 

13.0 

 -436.8 

126.7 

13.0 

(b)Longitudinal stresses for the exterior span at 

0 

1 

2 

218.0 

-63.4 

-6.4 

52.4 

-29.4 

9.0 

-3.44 

1.93 

-0.59 

214.6 

-61.4 

7.0 

(c)Longitudinal stresses for the center span at mid-span 

0 

1 

2 

230.5 

-66.7 

-6.9 

56.0 

-31.5 

9.6 

-5.6 

3.13 

-0.95 

224.9 

-63.6 

-7.9 

Table 4.18 Final Longitudinal Stresses of Example 2 

 

 

 

 

 

 

 

 



(I) Transverse Moments 

(a)Transverse moments for the exterior span at 0.4L1 

Joints Elementary Analysis Correction analysis Total  Correction Final values 

2 -355.0 664.0 -43.0 -398.6 

(b)Transverse moments for the center span at mid-span 

2 -355.0 664.0 66.0 421.0 

(II) Deflections 

(a)Deflections for the exterior span at 0.4L1 

1 

2 

0.04380 

-0.00263 

0.01220 

-0.001697 

-0.008 

0.0001 

0.043in 

-0.0025in 

(b)Deflections for the center span at mid-span 

1 

2 

0.06678 

-0.00399 

0.01840 

-0.00250 

-0.0018 

0.0003 

0.064in 

-0.0037in 

Table 4.19 Final Transverse Moments and Deflections of Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER -5 

CONCLUSIONS 

The proposed method of analysis of folded plates developed in this paper yields satisfactory 

results for the analysis of continuous folded plate roofs in comparison to the values obtained by 

Yitzhaki's slope-deflection method. Although the study presented herein suggests a practical 

method to design continuous folded plate roofs with symmetrical loading, it can also be applied 

to symmetrical folded plate roofs, unsymmetrical loaded, by dividing the unsymmetrical load 

into symmetrical and anti-symmetrical loads. The final stresses and deflections will be obtained 

by superimposing the results of the two cases. The determination of the spacing of the 

intermediatesupports would be based on an economic study. The thickness, depths, the 

magnitude of the angles between the individual plates, and the rigidity of the transverse stiffener 

are all important factors which will affect the spacing of the intermediate supports. The stiffeners 

must be designed to carry their own dead load plus the reactions imparted to them by the 

shearing forces from the adjoining plates. The stresses and the design of the intermediate 

stiffener need to be further investigated. The loads of folded plates have been assumed to be 

transmitted to the joints by transverse moments. All loads are finally carried by one-way slab 

action to the end support. Torsional stresses due to twist1ng of the plates may be ignored in this 

analysis. 
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