wial86.tex; 26/01/2010; 8:39 p-1

Web Intelligence and Agent Systems: An International Journal 0 (2010) 1-22 1
DOI 10.3233/WIA-2010-0000
10S Press

Application of rough ensemble classifier to
web services categorization and focused
crawling

Suman Saha *, C.A. Murthy and Sankar K. Pal

Center for Soft Computing Research, Indian Statistical Institute
E-mail: {ssaha_r,murthy,sankar}@isical.ac.in

Abstract. This paper discusses the applications of rough ensemble classifier [27] in two emerging problems of web mining, the
categorization of web services and the topic specific web crawling. Both applications, discussed here, consist of two major steps:
(1) split of feature space based on internal tag structure of web services and hypertext to represent in a tensor space model, and
(2) combining classifications obtained on different tensor components using rough ensemble classifier. In the first application
we have discussed the classification of web services. Two step improvement on the existing classification results of web services
has been shown here. In the first step we achieve better classification results over existing, by using tensor space model. In the
second step further improvement of the results has been obtained by using Rough set based ensemble classifier. In the second
application we have discussed the focused crawling using rough ensemble prediction. Our experiment regarding this application
has provided better Harvest rate and better Target recall for focused crawling.

Keywords: Rough ensemble classifier, web service categorization, WSDL tag structure, focused crawling, URL prediction

1. Introduction

Classification of web services and focused crawling
are two emerging problems of web mining research.
The classification tasks related to these problems are
consists of special challenges, due to the semi struc-
ture nature of the data. A simple classifier is not di-
rectly applicable to these problems unless some spe-
cial changes are made to capture the available informa-
tion, and this special design play a crucial role in the
final classification results. In our previous article [27],
rough ensemble classifier has been designed for text
classification task. The rough ensemble classifier has
been designed in such a way that it can be use to clas-
sify the semi structured web data with all the available
information of the data captured in the final results of
classification. In this article two application of rough
ensemble classifier has been discussed in details.

“Corresponding author. E-mail: saha.suman@gmail.com.

With the expected growth of the number of Web ser-
vices available on the web, the need for mechanisms
that enable the automatic categorization to organize
this vast amount of data, becomes important. A ma-
jor limitation of the Web services technology is that
finding and composing services requires manual ef-
fort. This becomes a serious burden with the increas-
ing number of Web services. Describing and organiz-
ing this vast amount of resources is essential for re-
alizing the web as an effective information resource.
Web Service classification has become an important
tool for helping discovery and integration process to
organize this vast amount of data. For instance, for cat-
egorization in the UDDI (Universal Description Dis-
covery and Integration) registry, one needs to divide
the publicly available Web Services into a number
of categories for the users to limit the search scope.
Moreover, Web Services classification helps the de-
veloper to build integrated Web Services. Discovery
and integration of web services are becoming an im-

1570-1263/10/$17.00 (© 2010 — IOS Press and the authors. All rights reserved

wial86.tex; 26/01/2010; 8:39

2 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

portant area of research, some useful articles in this
regard are [5,8,19] and [21] to name a few. On the
other hand, discovery of useful resources from WWW
is an important problem. The visible Web consisting
of billions of pages offers a challenging useful re-
source discovery problem. Even with increasing hard-
ware and bandwidth resources at their disposal, search
engines cannot keep up with the growth of the Web
[18]. The retrieval challenge is further compounded
by the fact that Web pages also change frequently.
Thus, despite the attempts of search engines to index
the whole Web, it is expected that the subspace elud-
ing indexing will continue to grow. Therefore, col-
lecting domain-specific documents from the Web has
been considered one of the most important strategies to
take benefit from the large amount of resources. Since
late 1990s, there has been much research on differ-
ent tools to build domain-specific Web collections and
currently the most popular and widely-used tool is fo-
cused crawler [3,22].

Traditionally, Web Service classification is per-
formed manually by domain experts. However, human
classification is unlikely to keep pace with the rate
of growth of the number of Web Services. Hence, as
the web continues to increase, the importance of auto-
matic Web Service classification becomes necessary.
The information available to categorization algorithms
comes from two sources. First, the algorithms use the
web service description in the WSDL (Web Service
Definition Language) format (Fig. 1), which is always
available to determine a service’s category. Second,
in some cases, additional descriptive text is available,
such as from a UDDI entry. An example of Address-
Lookup web service and a part of its associated WSDL
file is shown in Fig. 1.

The problem of the automatic classification of Web
services has been addressed in the literature with the
help of two main approaches, (a) text classification ap-
proach [14] and (b) semantic similarity based classi-
fication approach [20]. Text classification is a long-
standing problem, most solutions to this problem are
based on term frequency analysis [2,12]. These ap-
proaches are insufficient in the web service context
because text documentations for web-service oper-
ations are highly compact, and preprocessing tech-
niques for HTML documents are not adequate to pre-
process WSDL documents.

Work in the area of semantic similarity based classi-
fication approach has developed several methods that
try to capture clues about the semantics similarity, and
suggests classification based on them [11,16]. Such

methods include linguistic analysis, structural analy-
sis, use of domain knowledge and previous classifica-
tion experience [25]. But these methods suffer from
lack of annotation which is a manual process.

We treat the determination of a web services cate-
gory as a tag based text classification problem, where
the text comes from different tags of the WSDL file
and from UDDI text. Unlike standard texts, WSDL de-
scriptions are highly structured. In this article tensor
space model is used to captures the information from
internal structure of WSDL documents along with the
corresponding text content and rough ensemble clas-
sifier is used to combine information of the individ-
ual tensor components for providing final classifica-
tion results. Our experiments demonstrate that splitting
the feature set based on structure improves the perfor-
mance of a learning classifier. By combining differ-
ent classifiers it is possible to improve the performance
even further.

A focused crawler based on a hypertext classifier
was developed by Chakrabarti et al. The basic idea
of the crawler was to classify crawled pages with cat-
egories in a topic taxonomy. To begin, the crawler
requires a topic taxonomy such as Yahoo. Focused
crawlers are programs designed to selectively retrieve
Web pages relevant to a specific domain for the use
of domain-specific search engines and digital libraries,
exploiting the graph structure of the Web to move from
page to page [9,10,17]. Unlike the simple crawlers be-
hind most general search engines which collect any
reachable Web pages in breadth-first order, focused
crawlers try to ‘predict’ whether or not a target URL
is pointing to a relevant and high-quality Web page
before actually fetching the page [6]. There has been
much research on algorithms designed to determine
the quality of Web pages. Basic architecture of a
crawler and a focused crawler is given in Fig. 2.

A frontier is the to-do list of a crawler that contains
the URLs of unvisited pages. The frontier is imple-
mented as a priority queue. It may be a dynamic ar-
ray that is always kept sorted by the estimated score of
unvisited URLs. At each step, the best URL is picked
from the head of the queue. Once the corresponding
page is fetched, the URLs are extracted from it and
scored based on some heuristic. They are then added
to the frontier in such a manner that the order of the
priority queue is maintained. Topic-driven crawlers are
more specialized in certain topics and rely on differ-
ent types of approaches to keep the crawling scope
within the desired domain. This approaches use dif-
ferent type of features extracted from already crawled

wial86.tex; 26/01/2010; 8:39

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

AddresslLookup

visit Wiki.CDYNE.com for more examples on how to use CDYNE services. You can find

everything from stand alone applications to developer code examples. Feel free to add your own!

Click here for a complete list of operations.

CheckAddress

This method checks an address with 1 line and only returns 1 match.
Test

To test the operation using the HTTP POST protocol, click the "Invoke” button.
Parameter Value

AddressLine: |
ZipCode: |

City: |
State Abbrev: |

LicenseKey: |

Invoke

(a) AddressLookup service

<wsdl:service name="AddressLookup">
<wsdl:documentation
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
This service corrects U.S. addresses, provides geocoding
(U.S. down to address level and Canadian to Postal Code
Level), and allows you to convert zip codes (and Canadian
Postal Codes) to city and state names. We also offer PMSA.
CMSA., and various other codes.
</wsdl:documentation>

<wsdl:operation name="CheckAddress">
<wsdl:documentation
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/">This
method checks an address with | line and only returns |
match.
</wsdl:documentation>
<wsdl:input message="tns:CheckAddressHttpGetIn"/>
<wsdl:output message="tns:CheckAddressHttpGetOut"/>
</wsdl:operation>

(b) WSDL file for AddressLookup service

Fig. 1. An example of (a) AddressLookup service and (b) a part of WSDL file for AddressLookup service.

wial86.tex; 26/01/2010; 8:39

4 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling
WWW Storage
Download Download
ages pages
PAES ! Parent
D Joad Ordered and
Downloader » Storage ownloader URL queue ancestor
pages
Get URL Add URL Add URL | !
\d
URL URLs Trained
URL queue queue classifier
(a) crawler (b) focused crawler

Fig. 2. Basic architecture of a (a) crawler and a (b) focused crawler.

pages. Most commonly used features are URL of the
unvisited page, anchor text of the unvisited page, in-
coming links to unvisited page, outgoing links of par-
ent page, category of parent page and categories of an-
cestor pages. The different types of features extracted
for focused crawling are represented in a tensor space
model, where different types of features are indexed
in different tensor components. A classifier trained on
a tensor component can be used to predict the cate-
gory of unvisited web page. Here we have used a com-
bination of all available predictions using rough set
based ensemble classifier [27]. This method extracts
the rules to decide the category of the unvisited URL.
Each rules extracted here is associated with a priority
value. Relevant web page decided by the high priority
rule will be crawled next. In this article a combined
method based on rough set theory has been applied. It
combines the available predictions using rough deci-
sion rules and can build much larger domain specific
collections.

In order to realize the specified objectives, Sec-
tions 2 and 3 presents tensor space model and rough
set based ensemble classifier respectively. Section 4
and 6 covers the application of rough ensemble clas-
sifier for web service classification and focused crawl-
ing respectively. Finally, the experimental results are
reported in Sections 8 and 9.

2. Tensor space model

Tensors provide a natural and concise mathemati-
cal framework for formulating and solving problems
in high dimensional space analysis [2]. An n-order ten-
sor in m-dimensional space is a mathematical object
that has n indices and mn components and obeys cer-

tain transformation rules. Each index of a tensor ranges
over the number of dimensions of space. Tensors are
generalizations of scalars (0-order, which have no in-
dices), vectors (1-order, which have a single index),
and matrices (2-order, which have two indices) to an
arbitrary number of indices.

Document indexing and representation has been a
fundamental problem in information retrieval for many
years. Most of previous works are based on the Vec-
tor Space Model (VSM). The documents are repre-
sented as vectors, and each word corresponds to a di-
mension. In this section, we introduce a new Tensor
Space Model (TSM) for web services representation
(Fig. 3). In Tensor Space Model, a web service is rep-
resented as a tensor. Each element in the tensor cor-
responds to a feature (word in our case). The tensor
space model is based on different types of features ex-
tracted from the WSDL document and UDDI descrip-
tion. It offers a potent mathematical framework for an-
alyzing the internal markup structure of WSDL docu-
ments along with text content. The TSM for web ser-
vices consists of a rank two tensor, where first rank
represents the types of features considered and the sec-
ond rank represents the terms of corresponding types
extracted from the WSDL and UDDI description. For
each type of feature an individual tensor component
is constructed. A tensor component is a vector, which
represents the terms of particular type corresponding
to the component. The tensor space model captures the
structural representation of web services.

2.0.1. Mathematical formulations of TSM

Let W be a web service. Let .S be a set represent-
ing W. Let, S* = {e{,e4,..., e } be the set cor-
responding to features of UDDI description, S°" =
{ei™,e3",...,e;} be the set corresponding to the

features of service name, S*¢ = {ej?,es?, ..., e3?

wial86.tex; 26/01/2010; 8:39

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling 5

\,m\mt

Hlfld ‘_"T" dress oeand
checks an address with | line and only

S Soggs

All features of a web service

Features of a vector are the union of fea-
tures of service name, service description,
operations name, operations description,
UDDI description, parameters and param-
eters description.

The features appears in more than one
components will be considered as same
features.

(a) TSM

(b) VSM

Fig. 3. Web services representation using (a) tensor space model and (b) vector space model.

be the set corresponding to the features of service
description, S°" {ef™,e8", ..., ep'} be the set
corresponding to the features of operation names,
Sod = {egd,e3%, ... €5t} be the set correspond-
ing to the features of operation descriptions, SP" =
{el™,eb"™, ... e} be the set corresponding to the
features of parameter names and SP¢ = {el“, d egd, cey
efjj} be the set corresponding to the features of pa-
rameter descriptions. Clearly S = S“ U S U
Ssd Y §on y Sed y §pnoy §P4. Let Sp be the set
of features which presents in more than one com-
ponents. So, S1 = U yer)gazyS® N SY, where,
F = {u, sn,sd,on,od,pn,pd}. Let, s be an element
of S7. That is s has occurred in more than one com-
ponents of a web service. For each appearance of s in
different components s may have different significant
regarding the categorization of the web services. Now
the multiple appearance of s is ignored in S, as it is a
set of union of the sets corresponding to the compo-
nents of web services.

In the vector space model, vectors are constructed
on S, that is, occurrence of s € S’ in different compo-
nents is ignored. In some advanced vector space model
elements of different components are tagged, that is
S’ = ¢. Let |.| denote cardinality of a set. Number
of features exist in the different components varies
highly. For example, |S"| << |S¢|. In this represen-
tation, importance of the elements corresponding to
the components with low cardinality, is ignored during
magnitude normalization.

In the tensor space model the features correspond-
ing to different components of web services are repre-
sented in different components of a tensor. Let 7 be
the tensor space corresponding to a collection of web
services. Each member T" of 7 is of the form T' = T},;

where, z € Fand 1 < i < |S7], i
(x,1) is 7. Note that ¢ depends on z, so it is not just a
matrix.

2.0.2. Similarity measures on TSM

Cosine similarity is a measure of similarity between
two vectors of n dimensions by finding the angle be-
tween them, often used to compare documents in text
mining. Given two vectors of attributes, A and B,
the cosine similarity, sim(A, B) = ‘Lﬁ I%ll where the
word vectors A and B are represented after removing
stop words and stemming. For text matching, the at-
tribute vectors A and B are usually the tf-idf vectors of
the documents. The resulting similarity will yield the
value of 0 meaning, the vectors are independent, and 1
meaning, the vectors are same, with in-between values
indicating intermediate similarities.

Let 7 be the tensor space corresponding to a collec-
tion of web services. Each member 1" of 7 is of the
form T' = T, s where r ranges on the types of features
considered and s ranges on number of terms extracted
of particular types. The tensor similarity between two
tensor 7; and Tj of 7 is defined as sim(T;,T;) =
>, sim(Tyr, Tyr), where sim(T;r, Tjr) is the simi-
larity between 7" component of 7; and 7}. Now, for
each r the rth component of a tensor 7; is a vector. So,
sim(T;r, Tjr) is basically the similarity between two
vectors. Note that, here cosine similarity is considered
as vector similarity measure.

2.0.3. Computational complexity on TSM

Let n be the total number of features of a collec-
tion of web services. Let nq, no, . .., n, be the number
of features associated with the 1%¢, 274 .. rt" com-
ponents of the tensor respectively. From the definition

of TSM we obtain) ;_, n; = n. Let m be the num-

wial86.tex; 26/01/2010; 8:39

6 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

instance,

8¢, | [8¢ ... [BC,

" lass]
meta instances I ¢

instance, 0 1 1 1

(a) Meta instancel

instance, %‘

meta instances IBCf I lB(': J ‘BC,, [\L‘.’ass |

0 1 1 1

instance, 1 0 0 0

(b) Meta instance?2

Fig. 4. Construction of decision table from the output of base clas-
sifiers. In sub figures (a) and (b) it have been shown that data in-
stances are classified by base classifiers (denoted as BC) and their
outputs along with the actual class have been considered to construct
decision table.

ber of documents. The complexity of an algorithm, .4
constructed on VSM can be expressed as f(m,n, «),
where « is corresponding to specific parameters of
A. The expression of complexity f(m,n,«) is writ-
ten as: O(m'n?a¥). The complexity of the same al-
gorithm, A constructed on TSM can be written as:
O(minla®), where ny = max’_ {ni,na,...,n.}.
Since, n; < n, we can write (n;)? < n’. Hence,
O(minla®) < O(minia*). Hence the following the-
orem can be stated.

Theorem 1. Computational complexity of an algo-
rithm performing on tensor space model using tensor
similarity measure as distance is at most the computa-
tional complexity of the same algorithm performing on
vector space model using vector similarity measure as
distance.

Rough Set based i

Classifier e of rutes
claracterizing different
classes)

B¢, | [BC. | ... [BG, | [Class

meta instances

instance, 0 1 1 1
instance, 1 0 0 0

(a) Training REC

{B¢, |0 1
{5} J
B

\ instance J--- ‘ Rough set based

Classifier

e
!
meta instance VBCf l {BC—‘ l IBC" I

instance 0 1 1

(b) Testing REC

Fig. 5. Graphical representation of REC have been explained here.
In sub figures (a) training of REC has been shown. Finally in sub
figure (b) meta classifier has been used to obtain output.

3. Rough ensemble classifier

Our approach named REC is designed to extract de-
cision rules from trained classifier ensembles that per-
form classification tasks [27]. REC utilizes trained en-
sembles to generate a number of instances consisting
of prediction of individual classifiers as conditional at-
tribute values and actual classes as decision attribute
values. Then a decision table is constructed using all
the instances with one instance in each row (Fig. 4).

Once the decision table is constructed, rough set at-
tribute reduction is performed to determine core and
minimal reducts [26]. The classifiers corresponding to
a minimal reduct are then taken to form classifier en-
semble for REC classification system. From the mini-
mal reduct, the decision rules are computed by finding
mapping between decision attribute and conditional at-
tributes. These decision rules obtained by rough set
technique are then used to perform classification tasks

(Fig. 5).

wial86.tex; 26/01/2010; 8:39

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling 7

Web service features

WSDL features

|

UDDI description

1

Service Service Operation
Name Description Name

Description Name

Parameters
Description

Parameters

Operation

Fig. 6. Features of a web service.

3.1. Mathematical formulations of REC

In the problem of classification we train a learning
algorithm and validate the trained algorithm. This task
is performed, using some test-train split on a given cat-
egorized dataset. In the notion of rough set, let U be the
given categorized dataset and P = {C},C5,...,Cy}
where C; # ¢ fori = 1,2,3,....k, UF_C; = U
and C;NCj = ¢fori # jandi,j = 1,2,3,...,k
be a partition on U which determines given categories
of U. Output of a classifier determines a new parti-
tion on U. This new partition is close to the given one
with respect to some measure. In rough set terminol-
ogy each class of the given partition is a given concept
about dataset and output of classifiers determines new
concepts about same dataset. Now given concepts can
be expressed approximately by upper and lower ap-
proximation constructed by generated concepts [27].
Following theorems exists regarding performance of
REC.

Theorem 2. Rough set based combination is an opti-
mal classifier combination technique [27].

Theorem 3. The performance of the rough set based
ensemble classifier is at least same as every one of its
constituent single classifiers [27].

4. Classification of web services using rough
ensemble classifier on tensor space model

4.1. Features of web services

A web service is typically published by registering
its WSDL file and a brief description in UDDI reg-
istries. The WSDL file describes the functionalities of
the web service and a text description in the UDDI

registry describes the web service in words. Different
types of features are extracted from WSDL file and
UDDI text for categorization. These features are de-
scribed below (Fig. 6).

1) UDDI text: Text description in the UDDI registry
is a text file. The unique terms found in the text are
features.

2) Service name: A service name consists of few
number of terms i.e., features. These features are very
informative for categorization purpose.

3) Service description: Service description occurs
in the documentation tag below the service name in the
WSDL file. This is a small text content. The unique
terms found inside this text are features.

4) Operation name: Each operation of the web ser-
vice are determined by its name. Operation names are
found in the WSDL file. all the unique terms of op-
eration names provide several features. These features
are more meaningful towards the functionality of web
services.

5) Operation description: Operation descriptions
occur in the documentation tag below the correspond-
ing operation name in the WSDL file. These are small
text contents. The unique terms found inside this texts
are features.

6) Parameter name: Each parameter of the web
service are determined by its name. Parameter names
are found in the WSDL file. all the unique terms of pa-
rameter names provide several features. These features
are often found to be informative for categorization of
web services.

7) Parameter description: Parameter descriptions
occur in the documentation tag below the correspond-
ing parameter name in the WSDL file. These are small
text contents. The unique terms found inside this texts
are features.

wial86.tex; 26/01/2010; 8:39

8 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling
R —— I
L i Service e = — =
| 1 | Name L |
- | o
Processing | \ Sefvipe i | Pagltlons
tati om
- []/v [Description o [(.
‘ j ‘ Operation | | o
I | Name o
WSDL | | oo — | || set
pages | | Operation | - based
\ | ; Description | | I| Partition | classifier
Processing ‘ ! from I
.| Sy : : s
‘ escriptionsi—-a. || Parameters :_T Descriptions |
| |
= {{ ubbDI |: — —
. | [Descriptions| | Decision table
WSDL parser e I
Tensor

Fig. 7. Block diagram of proposed method.

5. Rough ensemble classification of web services

In this article tag based tensor space model is used
for the representation of web service documents and
Rough ensemble approach for its classification. Splits
of the features has been performed based on tag set ex-
isting in the WSDL documents corresponding to web
services. Tensor space model has been used to repre-
sent the services according to tag structure. Base level
classification has been performed on individual tensor
components. Finally combined classification has been
obtained by using rough set based ensemble classifier.

5.1. Algorithmic steps

— Preprocessing of web services: We parse the
port types, operations and messages from the
WSDL and extract names as well as comments
from various “documentation” tags. We do not
extract standard XML Schema data types like
string or integer, or information about the service
provider. The extracted terms are stemmed with
Porter’s algorithm (Porter 1980), and a stop-word
list is used to discard low-information terms.

— Tensor space model: We assume the tensor space

+ Partitions from components corresponding
to names: We consider the terms in a name as a
bag of words. We have constructed three differ-
ent bags from service name, operation names
and input/output parameter names respectively
and constructed three tensor components from
each of this bags. Classification algorithm is
applied on these tensor components after pre-
processing. We obtain three different partitions
from three different tensor components corre-
sponding to names of service, operations and
parameters.

+ Partitions from components corresponding
to description: To obtain the partitions from
descriptions corresponding to services, opera-
tions and parameters, we consider the docu-
mentation as a bag of words. Word stemming
and stopword removal have been performed to
preprocess the data. Classification algorithm is
applied on the preprocessed bags to obtain par-
titions from the tensor components correspond-
ing to service description, operation descrip-
tion and parameter description.

model for tag based representation of web ser- - Final classification: A decision table is con-

vices in our classification task. First we select
a set of relevant tags from a WSDL document.
For each tag an individual tensor component is
constructed. One more tensor component is con-
structed for UDDI description. A tensor compo-
nent is a vector, which represents the terms found
in the text under a particular tag or in UDDI text.
— Base level classifications on TSM: We now de-
scribe how we generate partitions for each one of
the components of the tensor using classifiers.

structed using the output of base level classifica-
tions. Instances of the decision table are found by
utilizing trained ensembles to generate a number
of instances consisting of prediction of individual
classifiers associated with each tensor component
as condition attribute values and the known actual
class as decision attribute value. Then a decision
table is constructed with one instance in each row.
Once the decision table is constructed, rough set
based attribute reduction is performed to deter-

wial86.tex; 26/01/2010; 8:39

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling 9

| Features

[Features of parent | [Unvisited page I
URL of Title of Content of Text window .
parent parent parent around the link Anchor text URL

Fig. 8. Features used to predict unvisited pages.

mine core and minimal reduct. From the minimal
reduct, the decision rules are computed by find-
ing mapping between decision attribute and con-
dition attributes. These decision rules obtained by
rough set technique are then used to perform the
final classification task.

6. Focused crawling using rough ensemble
prediction on tensor space model

6.1. Hypertext features used to predict unvisited
pages

Focused crawlers rely on different types of ap-
proaches to keep the crawling scope within the desired
domain. This approaches use different type of features
extracted from already crawled pages. Most commonly
used features are URL of the unvisited page, anchor
text of the unvisited page, incoming links to unvisited
page, outgoing links of parent page, category of parent
page and categories of ancestor pages. These features
are described below (Fig. 8).

1. URL of the unvisited page: Uniform resource
locators (URLs), which mark the address of a
resource on the World Wide Web, can be used
to predict the category of the resource. A URL
is first divided to yield a baseline segmentation
into its components as given by the URI proto-
col (e.g., scheme :// host / path elements / doc-
ument . extension), and further segmented wher-
ever one or more non-alphanumeric characters
appear (e.g., faculty-info — faculty info).

2. Anchor text of the unvisited page: Anchor text
usually gives the user relevant descriptive or con-
textual information about the content of the link’s
destination. Thus it can be used to predict the cat-

egory of the target page. Anchor text can pro-
vide a good source of information about a target
page because it represents how people linking to
the page actually describe it. Several studies have
tried to use either the anchor text or the text near
it to predict a target page’s content.

3. Neighborhood features: Category of the already
classified neighboring pages can be used to de-
termine the categories of unvisited web pages.
Chakrabarti et al. have studied the use of cita-
tions in the classification of IBM patents where
the citations between them were considered as
‘hyperlinks” and the categories were defined
in a topical hierarchy. Recent research showed
that breadth-first search could be also used to
build domain-specific collections. The assump-
tion here is that if the starting URLs are relevant
to the target domain, it is likely that pages in the
next level are also relevant to the target domain.
Results from previous studies have shown that
simple crawlers that fetch pages in a breadth-first
order could generate domain-specific collections
with reasonable quality. However, the size of col-
lections built by such simple crawlers cannot be
large because after a large number of Web pages
are fetched, breadth-first search starts to lose its
focus and introduces a lot of noise into the final
collection.

6.2. URL ordering in the focused crawling frontier

The goal in designing a focused crawler is to vis-
its topic relevant pages, for some definition of topic
relevancy. Of course, the crawler will only have avail-
able crawled pages, so based on these it will have to
guess what are the topic relevant pages to fetch next.
A crawler keeps a queue of URLs it has seen dur-
ing a crawl, and must select from this queue the next

wial86.tex; 26/01/2010; 8:39

p. 10

10 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

URL to visit. The ordering metric O is used by the
crawler for this selection, i.e., it selects the URL wu
such that O(u) has the highest relevancy among all
URLs in the queue. The O metric can only use in-
formation available in the crawled pages. The O met-
ric should be designed with an importance metric in
mind. For instance, if we are searching for the pages
of a particular domain, it makes sense to use features
of URL to design ordering metric. Based on the fea-
ture set used, these kind of ordering algorithms can
be categorized into many types. If we are interested
for particular content then content-based analysis al-
gorithms should be preferred, which apply indexing
techniques for text analysis and keyword extraction to
help determine whether a page’s content is relevant to
the target content. Assigning a higher weight to words
and phrases in the title or headings is also standard
information-retrieval practice that algorithm can apply
based on appropriate HTML tags. The anchor text of-
ten contains useful information about a page. Several
studies have tried to use either the anchor text or the
text near it to predict a target page’s content. Note that,
most of the ordering algorithms are based on the as-
sumption that the author of a Web page A, who places
a link to Web page B, believes that B is relevant to A.

6.3. Different types of focused crawling based on
different types of predictions

Focused crawlers rely on different types of algo-
rithms, based of different types of features, to keep the
crawling scope within the desired domain. Different
types of algorithms, based of different types of fea-
tures, to predict the category of unvisited pages are
stated below.

1) Prediction algorithm based on URL of unvisited

page:
— Preprocessing:

*+ A URL is first divided to yield a baseline
segmentation into its components as given by
the URI protocol (e.g., scheme :// host / path
elements / document . extension), and fur-
ther segmented wherever one or more non-
alphanumeric characters appear.

+ These segmented substrings are treated as
words. All these words found in a URL will
be represented as a vector. A vector space cor-
responding to URLs of the unvisited pages is
constructed using these vectors.

— Classification:

* First a vector space corresponding to URLs of
training samples is constructed.

* A base line classifier (naive bayes) is trained on
these training vectors.

* During the crawling process the URL of unvis-
ited page is tested by the classifier to decide the
category of the page.

* Relevant URL is added to the crawling frontier.

2) Prediction algorithm based on anchor text:
— Preprocessing:

* Anchor text is a small text content. The text
is stemmed using Porter’s stemming algorithm
and stop words are removed.

* Unique words present in the anchor text are
represented as a vector. A vector space corre-
sponding to the anchor texts is constructed us-
ing these vectors.

— Classification:

* First a vector space corresponding to anchor
texts of training samples is constructed.

* A base line classifier (naive bayes) is trained on
these training vectors.

* During the crawling process the anchor text of
unvisited page is tested by the classifier to de-
cide the category of the page.

* URL of the relevant anchor text is added to the
crawling frontier.

3) Prediction algorithm based on URL of parent
page:
— Preprocessing:

* A URL is first divided to yield a baseline
segmentation into its components as given by
the URI protocol (e.g., scheme :// host / path
elements / document . extension), and fur-
ther segmented wherever one or more non-
alphanumeric characters appear.

* These segmented substrings are treated as
words. All these words found in a URL will be
represented as a vector. A vector space corre-
sponding to URLs of the parent pages is con-
structed using these vectors.

— Classification:

* First a vector space corresponding to URLs of
training samples is constructed.

wial86.tex; 26/01/2010; 8:39

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling 11

* A base line classifier (naive bayes) is trained on
these training vectors.

* During the crawling process the URL of par-
ent page is tested by the classifier to decide the
category of the page.

x If URL of the parent page is relevant, then
corresponding unvisited URL is added to the
crawling frontier.

4) Prediction algorithm based on title of parent
page:
— Preprocessing:

* Title is a small text content. The text is stemmed
using Porter’s stemming algorithm and stop
words are removed.

* Unique words present in the title are repre-
sented as a vector. A vector space correspond-
ing to the title of the parent page is constructed
using these vectors.

— Classification:

* First a vector space corresponding to title of
training samples is constructed.

* A base line classifier (naive bayes) is trained on
these training vectors.

* During the crawling process the title of the par-
ent page is tested by the classifier to decide the
category of the page.

x If title of the parent page is relevant, then corre-
sponding unvisited URL is added to the crawl-
ing frontier.

5) Prediction algorithm based on text content of par-
ent page:

— Preprocessing:

* The text is stemmed using Porter’s stemming
algorithm and stop words are removed.

+* Unique words present in the text are repre-
sented as a vector. A vector space correspond-
ing to the text contents of the parent page is
constructed using these vectors.

— Classification:

* First a vector space corresponding to text con-
tent of the of training samples is constructed.

* A base line classifier (naive bayes) is trained on
these training vectors.

* During the crawling process the text contents
of the parent page is tested by the classifier to
decide the category of the page.

* If text content of the parent page is relevant,
then corresponding unvisited URL is added to
the crawling frontier.

6) Prediction algorithm based on text window
around the URL:

— Preprocessing:

* The text in the window is stemmed using
Porter’s stemming algorithm and stop words
are removed.

* Unique words present in the text window are
represented as a vector. A vector space corre-
sponding to the text contents of the parent page
is constructed using these vectors.

— Classification:

* First a vector space corresponding to text win-
dow of training samples is constructed.

* A base line classifier (naive bayes) is trained on
these training vectors.

* During the crawling process the text window
around the URL is tested by the classifier to
decide the category.

* If text window around the URL is relevant, then
the URL is added to the crawling frontier.

7. Rough ensemble prediction for focused
crawling

In this article we use a novel technique for com-
bining the predictions about the category of unvis-
ited page. Category of unvisited page can be predict
using different ways. These predictions are generally
made using different types of features available in the
crawled pages. Features are extracted from URL, an-
chor text, and features of neighborhood pages. Predic-
tions from these different types of features are used in
the literature to guide a web crawler for topic specific
web resource discovery. A combination of all these
available predictions to decide the next URL to be
crawled has been studied in this article (Fig. 9). Here
rough set has been used to combine the predictions
made by individual classifiers. Rough set based at-
tribute reduction has been performed to remove redun-
dant predictions. Rough set based decision rules has
been used to decide the category of the unvisited web
page. Rules obtained in this method are ranked accord-
ing to their certainty score, which assigned with each
rules. URLs corresponding to the most certain rule will
be crawled first. In case of many URLSs associated with
same rule first obtained URL will be selected first.

wial86.tex; 26/01/2010; 8:39

12 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling
URL — — — 4
e -
| Anchor
— ! text L
[URL of : Decision Rough
— | parent ™ | table using set
Hypertext i different » based
documents | Title of . types of combined
‘| parent predictions prediction
Parent's
I .
i content
|
| Tetwindow | 1 |
I| around URL |
onr mae Decision table
Source of features of predictions

Fig. 9. Block diagram of proposed method.

8. Experimental results of web services application
8.1. Data sets

We gathered a corpses of web services from SAL-
Central and webservicelist, two categorized web ser-
vice indices. These web service indices are multi-level
tree-structured hierarchy. The top level of the tree,
which is the first level below the root of the tree, con-
tains 11 categories in SALCentral dataset (Table 1) and
again 11 categories for web servicelist dataset (Table
2). Each of these categories contains sub-categories
that are placed in the second level below the root. We
use the top-level categories to label the web services in
our experiments.

8.1.1. SALCentral data set

The SALCentral data set is obtained from salcen-
tral.com. This web service index is manually classified
by the human experts. The extracted subset consist-
ing of 424 web services, which are distributed among
11 top level categories. The largest category (Country
Info) consists of 64 web services; while the smallest
category (Mathematics) consists of only 10 web ser-
vices. The minimum of 3 and 10% of the total pages
in a category is taken as training sample, out of 424
web services 43 web services are taken as training
samples and rest are considered as test samples. De-
tailed information about number of pages and number
of training and testing are given in Table 1(a). We have
also demonstrated the number of individual features
in each components of web services. In case of SAL-
Central data set maximum number of features found

in UDDI description (1355) and minimum number of
features found in service name (132). Detailed infor-
mation about the features of SALCentral data set is
provided in Table 1(b).

8.1.2. Webservicelist data set

The webservicelist data set is obtained from webser-
vicelist.com. This is another available manually clas-
sified web service index. The extracted subset consist-
ing of 444 web services, which are distributed among
11 top level categories. The largest category (Busi-
ness) consists of 97 web services; while the small-
est category (Sales) consists of only 20 web services.
The minimum of 3 and 10% of the total pages in a
category is taken as training sample, out of 444 web
services 48 web services are taken as training sam-
ples and rest are considered as test samples. Detailed
information about number of pages and number of
training and testing are given in Table 2(a). We have
also demonstrated the number of individual features in
each components of web services. In case of webser-
vicelist data set maximum number of features found
in UDDI description (1537) and minimum number of
features found in service name (190). Detailed infor-
mation about the features of webservicelist data set is
provided in Table 2(b).

8.2. Evaluation measures
We employ the standard measures to evaluate the

performance of Web classification, i.e. precision, recall
and F'|-measure.

wial86.tex; 26/01/2010; 8:39

p. 13

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling 13

Table 1
Class distribution and features of the Salcentral dataset

(a) Categories

(b) Features

Categories #services | #train | %train | #test | %test Components Corpus | Train
Business 22 3 13.63 19 86.36 UDDI description 1355 453
Communication 44 4 9.09 40 90.90 Service name 132 64
Converter 43 4 9.30 39 90.69 Service description 1167 388
Country Info 62 6 9.67 56 90.32 Operations name 359 92
Developers 34 3 8.82 31 91.17 Operations description 1243 403
Finder 44 4 9.09 40 90.90 Parameters 486 161
Games 42 4 9.52 38 90.47 Total 4742 1561
Mathematics 10 3 30 7 70 Union 3290 1131
Money 54 5 9.25 49 90.74 Additional 1452 430
News 30 3 10 27 90
Web 39 4 10.25 35 89.74
Total 424 43 10.14 381 89.85
Table 2
Class distribution and features of the Web service list dataset
(a) Categories (b) Features
Categories #services | #train | %train | #test | %test Components Corpus | Train
Access 27 3 11.11 24 88.88 UDDI description 1537 548
Locations 57 6 10.52 51 89.47 Service name 190 71
Business 97 10 10.30 87 89.69 Service description 1426 405
Developers 54 5 9.25 49 90.74 Operations name 331 121
Databases 24 3 12.5 21 87.5 Operations description 1432 476
Politics 56 6 10.71 50 89.28 Parameters 408 179
Validations 26 3 11.53 23 88.46 Total 5324 1800
Stock 31 3 9.67 28 90.32 Union 3821 1246
Search 22 3 13.63 19 86.36 Additional 1503 554
Sales 20 3 15 17 85
Retail 30 3 10 27 90
Total 444 48 10.81 396 | 89.18

Precision (P) is the proportion of actual positive
class members returned by the system among all pre-
dicted positive class members returned by the system.

Recall (R) is the proportion of predicted positive
members among all actual positive class members in
the data.

[measure is the harmonic average of precision and
recall. It is computed as:

2PR

F:
" PrR

To evaluate the average performance across multiple
categories, there are two conventional methods, micro-
average and macro-average. Micro-average precision

is the global calculation of precision measure regard-
less of categories. Macro-average precision is the av-
erage on precision scores of all categories. Micro-
average recall is the global calculation of recall mea-
sure regardless of categories. Macro-average recall is
the average on recall scores of all categories. Micro-
average F is the global calculation of F; measure re-
gardless of categories. Macro-average Fj is the aver-
age on F scores of all categories. Micro-average gives
equal weight to every document, while macro-average
gives equal weight to every category, regardless of its
frequency. In our experiments, micro precision, mi-
cro recall, micro F} macro precision, macro recall and
macro F; will be used to evaluate the performance of
classifications.

wial86.tex; 26/01/2010; 8:39

14 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

Table 3
Classification results using vector similarity and tensor similarity

(a) Salcentral dataset

Measures Micro Macro
VSM | TSM | VSM | TSM
Precision | 43.17 | 52.67 | 41.62 | 51.82
Recall 37.50 | 47.94 | 36.23 | 45.30
Fy 40.13 | 50.20 | 38.73 | 48.34

(b) Webservicelist dataset

Measures Micro Macro
VSM | TSM | VSM | TSM
Precision | 62.56 | 67.64 | 60.67 | 66.80
Recall 54.57 | 60.68 | 52.19 | 62.93
Fy 5829 | 6397 | 56.11 | 64.80

8.3. Comparison of classification results using vector
similarity and tensor similarity for k-NN
classifier.

Decisions of many vector space classifiers are based
on a notion of distance, e.g., when computing the near-
est neighbors in k-NN classification. For evaluation of
the tensor space model for web service representation,
we have constructed two k-NN classifier. In the first
k-NN classifier on vector space representation for web
services is considered and vector similarity measure
is used to compute nearest neighbor. In the second k-
NN classifier on tensor space model for web service
representation is considered and tensor similarity mea-
sure is used to compute nearest neighbor. distance as
the underlying distance. The performance of these two
classifier has been observed on above mentioned data
set. The classification results of comparison is shown
in Tables 3(a) and 3(b). It can be observed from the
tables that classification results are better when ten-
sor space model for web service representation is con-
sidered compared to classification results when vector
space model for representation is considered. The re-
sults has been shown in terms of precision, recall and
F} measures.

8.4. Classification results on individual components
and combined results.

In this subsection we have provided the results of
experiments regarding classifications of web services.
Classifications of web services have been performed
on different types of feature sets found in UDDI de-
scriptions and associated WSDL documents, i.e. it
has been performed on different components of ten-

sor space model. We have also provided the results of
classification performed on, vector space model using
union of all features. The combined results of classifi-
cation is provided using two combination techniques,
majority vote and rough set based ensemble classifier
(REC). The cases considered are given below.

A) Classification based on features of UDDI de-
scription.

B) Classification based on features of Service name.

(') Classification based on features of Service de-
scription.

D) Classification based on features of Operations
name.

E) Classification based on features of Operations
description.

F) Classification based on features of Parameters.

() Classification based on union of features in a
VSM.

H) Classification based on majority vote on TSM.

I) Classification based on Rough set based ensem-
ble classifier.

Note that, all the classifications tasks have been
done using a single classification algorithm, in case
of combined classifier this algorithm has been treated
as base classifier. We have used three such classifica-
tion algorithms, naive bayes (NB), support vector ma-
chine (SVM) and decision tree (DT). The detailed re-
sults in terms of micro precision, micro recall, micro-
F1, macro precision, macro recall and macro-F; of
A, B, C, D, E, F G, Hand I on salcentral and web-
servicelist data set, using naive bayes classifier have
been reported in Tables 4 and 5. Classification results
in terms of I measures, using support vector machine
and decision tree classifiers have been given in Ta-
ble 6.

8.5. Comparisons with some recent web services
classification techniques

We have compared our method with other web ser-
vice classification algorithms. A brief review of three
existing web services classification techniques (A, B
and C) have been given below. Three classification
methods on tensor space model (D, E and F) have been
considered for comparison with other methods.

A1) The article, “An Approach to support Web Ser-
vice Classification and Annotation” [20], proposes an
approach to automatically classify services to specific
domains and to identify key concepts inside service
textual documentation, and build a lattice of relation-
ships between service annotations. Support Vector Ma-

wial86.tex; 26/01/2010; 8:39

p. 15

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling 15

Table 4

Classification results on Salcentral dataset

Micro Macro
Methods | Precision | Recall Fy Precision | Recall Fy
A 40.51 36.70 | 38.51 40.27 36.11 | 38.07
B 34.01 31.86 | 32.89 32.48 30.18 | 31.28
C 39.88 3570 | 37.67 40.77 37.56 | 39.09
D 35.31 31.27 | 33.16 33.72 30.88 | 32.23
E 38.80 35.00 | 36.80 36.65 33.86 | 35.19
F 36.86 3423 | 3549 34.73 31.23 | 32.88
G 46.86 4242 | 44.52 46.34 42.02 | 44.07
H 52.77 47.89 | 50.21 51.98 46.84 | 49.27
I 64.29 59.42 | 61.75 63.11 60.31 | 61.67
Table 5
Classification results on Web service list dataset
Micro Macro
Methods | Precision | Recall F1 Precision Recall 3
A 58.83 5493 | 56.81 57.89 54.33 | 56.05
B 48.43 4428 | 46.26 48.42 43.56 | 45.86
C 52.90 49.17 | 50.96 51.43 47.87 | 49.58
D 49.61 4743 | 4849 48.96 46.48 | 47.68
E 56.19 52.11 54.07 55.66 51.77 | 53.64
F 54.88 51.84 | 53.31 52.60 49.72 | 51.11
G 61.68 57.21 59.36 59.15 57.65 | 58.39
H 68.92 62.61 65.61 67.53 63.73 | 65.57
I 74.35 70.38 | 72.31 73.16 69.34 | 71.19
Table 6

Classification results using SVM and Decision Tree, on Salcentral and Web service list dataset

Sal-central

Web-service-list

Methods SVM Decision Tree SVM Decision Tree

Mi-F7 | Ma-F; | Mi-Fy | Ma-F1 | Mi-F; | Ma-Fy | Mi-F; | Ma-F;
A 43.17 42.35 41.62 39.23 62.56 57.61 60.67 57.48
B 36.74 35.62 35.87 34.27 52.51 4491 49.35 46.63
C 41.95 38.80 40.81 36.84 55.41 50.86 53.02 48.25
D 37.70 34.49 37.09 33.40 54.95 55.51 55.86 53.87
E 40.00 36.62 39.38 38.58 59.71 55.07 58.96 54.99
F 39.88 36.24 38.56 34.04 58.35 54.72 56.70 52.79
G 55.50 52.07 49.23 47.34 65.57 60.96 64.19 60.18
H 58.78 56.19 56.31 53.47 73.63 67.88 70.90 67.53
I 66.27 62.93 65.35 62.96 76.35 67.58 74.97 72.78

chines and Formal Concept Analysis have been used
to perform the two tasks.

By) The article “Iterative Ensemble Classification
for Relational Data: A Case Study of Semantic Web
Services” [15], proposes the use two separate classi-

fiers for the intrinsic and the relational (extrinsic) at-
tributes and vote their predictions. It also introduce a
new way of exploiting the relational structure.

(1) In the article “A Heuristic Approach to Seman-
tic Web Services Classification” [7], a heuristic based

wial86.tex; 26/01/2010; 8:39

. 16

16 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling
Table 7
Comparison of classification results on Salcentral dataset
Micro Macro
Methods | Precision | Recall Fy Precision | Recall Fy
Ay 45.34 46.39 | 45.86 45.23 41.36 | 43.21
B 50.59 46.05 | 48.21 47.16 43.18 | 45.08
Ch 51.15 4325 | 46.87 47.24 44.16 | 45.65
D1 52.67 4794 | 50.20 51.82 45.30 | 48.34
Eq 52.77 47.89 | 50.21 51.98 46.84 | 49.27
F1 64.29 59.42 | 61.75 63.11 60.31 61.67
Table 8
Comparison of classification results on Web service list dataset
Micro Macro
Methods | Precision | Recall Fy Precision | Recall Fy
Ay 61.37 60.83 | 61.10 61.35 58.24 | 59.76
B 63.79 61.39 | 62.57 63.43 61.72 | 62.57
Ch 65.06 63.94 | 64.49 61.65 58.64 | 60.11
Dy 67.64 60.68 | 63.97 66.80 62.93 | 64.80
Eq 68.92 62.61 65.61 67.53 63.73 | 65.57
F1 74.35 70.38 | 72.31 73.16 69.34 | 71.19

mechanism is proposed, that enables service publish-
ers to classify their services in a service taxonomy,
managed by a service repository.

D) Here we have considered k-NN classification
algorithm on tensor space model. The classifier use
proposed tensor similarity measure for comparing web
services.

E4) Here we have considered naive bayes classifica-
tion on each different components in the tensor space
model. The classification results have been combined
using majority voting method.

F'1) Here we have considered naive bayes classifica-
tion on each different components in the tensor space
model. The classification results have been combined
using rough set based ensemble classifier.

Results in terms of micro precision, micro recall,
micro-F, macro precision, macro recall and macro-F
of Ay, B1, C1, D1, Eq1 and F on salcentral and web
service list data set have been reported in Tables 7 and
8 respectively.

9. Experimental results of focus crawling
application

Our experiments are run over sixteen top level top-
ics that are obtained from the Open Directory Project
(ODP). For each topic, we have positive and negative

examples. The positive examples are Web pages that
have been manually judged to be on the topic, and
negative examples are randomly selected Web pages
from other topics. We keep the number of negatives
to be twice the number of positives. The positive and
negative examples are represented in TF-IDF (term
frequency-inverse document frequency) vector space.
Hence, all of the examples are parsed and tokenized
to identify the words within them. The stop-words are
removed and the remaining words are stemmed using
the Porter stemming algorithm [Porter 1980]. These
stemmed words or terms from all of the negative and
positive examples form our vocabulary V for the topic.
This vocabulary may differ across topics. Both the pos-
itive and the negative example pages represented as
TF-IDF based feature vectors are used for training a
classifier. We call the trained classifier the crawling
classifier since we will use it to guide a topical crawler.
We have explored combinations of classifiers using
rough set that perform well.

9.1. Focus crawling data

We obtained topics for our crawls from topic direc-
tories of Dmoz and Yahoo. First we have collected the
topic listing and the external pages relevant to each
topics. These relevant pages have been judged to be
relevant to the topic by human experts. In our experi-

wial86.tex; 26/01/2010; 8:39

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

Table 9

.17

17

Categories, related cites, seeds and targets of Dmoz and Yahoo

(a)

(b)

ments we have considered top sixteen topics of Dmoz
and top fourteen topics of Yahoo. For each topic we
have divided the relevant pages into two random dis-
joint subsets. The first set is the seeds. This set of
URLs will be used to initialize the crawl as well as
provide the positive examples to train the classifiers.
The second set is the targets. These targets will be
used only for evaluation of crawl performance. Details
about categories, related cites, seeds and targets are
given in Tables 9.

9.2. Performance metrics

The output of a crawler is a temporal sequence
of pages crawled. Any evaluation of crawler perfor-
mance is hence based on this output. The key ques-
tion for evaluation is: How do we judge the relevance
of crawled pages? If the Web was a small controlled
collection, we could use human judges to classify all
pages as relevant or irrelevant to a given topic. With
this knowledge, we could estimate the precision and
recall of a crawler after crawling t pages. The precision
would be the fraction of pages crawled that are relevant
to the topic and recall would be the fraction of relevant
pages crawled. However, the Web is neither controlled
nor small. The relevant set for any given topic is un-
known and, hence, the true recall is hard to measure
[24]. The precision could be measured using manual
relevance judgment on the crawled pages. However,

Categories Cites | Seeds | Targets Categories Cites | Seeds | Targets
Arts 60 20 40 Arts and Humanities 86 29 57
Business 96 32 64 Business and Economy 79 27 52
Computers 85 29 56 Computers and Internet 112 38 74
Games 79 27 52 Education 84 28 56
Health 62 21 41 Entertainment 123 41 82
Home 86 29 57 Government 78 26 52
Sports 54 18 36 Health 106 36 70
Kids and Teens 78 26 52 News and Media 91 31 60
News 63 21 42 Recreation and Sports 88 30 58
Recreation 89 30 59 Reference 108 36 72
Reference 65 22 43 Regional 102 34 68
Regional 72 24 48 Science 135 45 90
Science 74 25 49 Social Science 85 29 56
Shopping 59 20 39 Society and Culture 126 42 84
World 52 18 34

Society 97 33 64

the manual relevance judgment for each of the crawled
pages is extremely costly in terms of man-hours when
we have millions of crawled pages spread over more
than 100 topics. Even if we sample for manual evalu-
ation, we will have to do so at various points during a
crawl to capture the temporal nature of crawl perfor-
mance. Hence, even such samples would be costly to
evaluate over 100 topics. Hence, the two standard in-
formation retrieval (IR) measures, recall and precision,
can only be estimated using surrogate metrics. Below,
we describe harvest rate which we use as an estimate
of precision and target recall which we use as an esti-
mate of recall.

9.2.1. Harvest rate

Harvest rate estimates the fraction of crawled pages
that are relevant to a given topic. Since manual rele-
vance judgment of Web pages is costly, we depend on
multiple classifiers to make this decision. That is, we
use a set of evaluation classifiers that act as an auto-
mated judges to decide on the relevance of a crawled
page. For each topic, we take one classifier at a time
and train it using the pages corresponding to the en-
tire ODP relevant set (instead of just the seeds) as the
positive examples. The negative examples are obtained
from the ODP relevant sets of the other topics. The
negative examples are again twice as many as the posi-
tive examples. These trained classifiers are called eval-
uation classifiers to distinguish them from the crawl-

wial86.tex; 26/01/2010; 8:39 p. 18

18 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling
Table 10
Results of focus crawling with different type of feature sets on Dmoz
Features 1000 pages 2000 pages 3000 pages 4000 pages
HR TR HR TR HR TR HR TR
Fy 0.3574 | 0.1225 | 0.3433 | 0.1546 | 0.3272 | 0.1720 | 0.3131 | 0.1811
Iy 0.3334 | 0.1071 | 0.3095 | 0.1406 | 0.2897 | 0.1641 | 0.2670 | 0.1852
F3 0.3078 | 0.0788 | 0.2827 | 0.1170 | 0.2700 | 0.1266 | 0.2548 | 0.1428
Fy 0.2842 | 0.0676 | 0.2763 | 0.1032 | 0.2594 | 0.1113 | 0.2499 | 0.1356
Fs 0.3307 | 0.0861 | 0.3139 | 0.1168 | 0.2942 | 0.1230 | 0.2692 | 0.1652
Fg 0.1443 | 0.1039 | 0.1357 | 0.1125 | 0.1314 | 0.1341 | 0.1218 | 0.1555
Table 11
Results of focus crawling with different type of feature sets on Yahoo
Features 1000 pages 2000 pages 3000 pages 4000 pages
HR TR HR TR HR TR HR TR
"y 0.3503 | 0.1175 | 0.3396 | 0.1465 | 0.3184 | 0.1660 | 0.3040 | 0.1764
Fy 0.3243 | 0.0938 | 0.3121 | 0.1344 | 0.3061 | 0.1549 | 0.2990 | 0.1780
F3 0.2934 | 0.0699 | 0.2898 | 0.0983 | 0.2665 | 0.1170 | 0.2483 | 0.1326
Fy 0.3035 | 0.0584 | 0.2878 | 0.0951 | 0.2743 | 0.1109 | 0.2509 | 0.1245
F5 0.3206 | 0.0747 | 0.3071 | 0.1079 | 0.2903 | 0.1229 | 0.2784 | 0.1500
Fs 0.3304 | 0.0584 | 0.3253 | 0.0808 | 0.3113 | 0.0994 | 0.3028 | 0.1273

ing classifiers that are used to guide the crawlers. Har-
vest rate, H (t), after crawling the first ¢ pages is then
computed as: H(t) = 1/t Y._, r; where r; is the bi-
nary (0/1) relevance score for page ¢ based on a ma-
jority vote among the evaluation classifiers. In order to
obtain the trajectory of crawler performance over time,
the harvest rate is computed at different points during
the crawl. Here, time is estimated by ¢, the number of
pages crawled. We have one such trajectory for each
topic and each crawler. However, to provide an idea of
the crawler’s performance in general, we average the
harvest rate at various points over the 100 topics cho-
sen for the experiment and draw this average trajectory
over time for each crawler. We also compute the stan-
dard error around the average harvest rates. The per-
formance trajectory can help an application designer
decide on an appropriate crawler based on the length
of crawl required by the application. For example, a
crawler may perform well for crawls of a few hundred
pages but poorly for longer crawls.

9.2.2. Target recall

Target recall is an estimate of the fraction of relevant
pages (on the Web) that are fetched by a crawler. As
described earlier, true recall is hard to measure since
we cannot identify the true relevant set for any topic
over the Web. Hence, we treat the recall of the target

set, i.e., target recall, as an estimate of true recall. If
targets are a random sample of the relevant pages on
the Web, then we can expect target recall to give us
a good estimate of the actual recall. The target recall,
R(t), after first crawling ¢ pages for a given topic is
computed as: R(t) = % where C(t) is the set
of first ¢ pages crawled, 7" is the set of targets, and
|T| is the number of targets. As with harvest rate, we
compute the average target recall, the standard error,
and represent the crawler’s performance as a trajectory
over time.

9.3. Results of focus crawling with different set of
features

Results of crawl based on different type of pre-
dictions made by the classifiers trained on different
feature sets are shown in Tables 10 and 11. Focused
crawler considered hare are F} (prediction from URL
of unvisited page), F5 (prediction from Anchor text),
F5 (prediction from URL of parent page), F; (predic-
tion from title of parent page), F5 (prediction from
content of parent page), Fgs (prediction from text win-
dow (10) around the URL). Crawling process have
been performed on sixteen top level ODP categories
and average harvest rate and average target recall are

wial86.tex; 26/01/2010; 8:39

p. 19

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling 19

Table 12
Harvest rate of voting and rough set based combined prediction on Dmoz

Algorithm 1000 pages | 2000 pages | 3000 pages | 4000 pages | 5000 pages | 6000 pages
Voting 0.5210 0.5078 0.4959 0.4813 0.4685 0.4604
RS-Combined 0.5873 0.5822 0.5787 0.5695 0.5639 0.5631
Table 13
Harvest rate of voting and rough set based combined prediction on Yahoo
Algorithm 1000 pages | 2000 pages | 3000 pages | 4000 pages | 5000 pages | 6000 pages
Voting 0.5210 0.5078 0.4959 0.4813 0.4685 0.4604
RS-Combined 0.5873 0.5822 0.5787 0.5695 0.5639 0.5631
Table 14
Target recall of voting and rough set based combined prediction on Dmoz
Algorithm 500 pages | 1000 pages | 1500 pages | 2000 pages | 2500 pages | 3000 pages
Voting 0.0312 0.0602 0.0755 0.0804 0.0923 0.0995
RS-Combined 0.0534 0.1104 0.1535 0.1708 0.1986 0.2094
Table 15
Target recall of voting and rough set based combined prediction on Yahoo
Algorithm 500 pages | 1000 pages | 1500 pages | 2000 pages | 2500 pages | 3000 pages
Voting 0.0333 0.0575 0.0713 0.0814 0.0918 0.1004
RS-Combined 0.0518 0.1123 0.1510 0.1687 0.1961 0.2089

reported. Note that for each topics same seeds have
been considered for all the crawlers. It can be observed
from the table that performance corresponding to F7,
F5 and Fj5 are good but performance corresponding to
F3, Fy and Fj are relatively poor.

9.4. Comparison of combination techniques on Dmoz
and Yahoo topics.

Average harvest rate of focused crawler using com-
bination of different predictions has been shown in Ta-
bles 12 and 13. Performance of two combination tech-
niques, voting and rough set based combination is re-
ported on Dmoz and Yahoo. It cab be observed that
average harvest rate of rough set based combination is
better than that of voting method with respect to dif-
ferent number pages crawled.

Average target recall of focused crawler using com-
bination of different predictions has been shown in Ta-
bles 14 and 15. Performance of two combination tech-
niques, voting and rough set based combination is re-
ported Dmoz and Yahoo. It cab be observed that aver-
age target recall of rough set based combination is bet-

ter than that of voting method with respect to different
number pages crawled.

9.5. Comparisons with widely used focus crawling
results

We have compared our method with other focused
crawling algorithms. A brief review of these algo-
rithms is given below.

— Best-first [23]:

A best-first crawler represents a fetched Web page
as a vector of words weighted by occurrence fre-
quency. The crawler then computes the cosine
similarity of the page to the query or descrip-
tion provided by the user, and scores the unvisited
URLs on the page by this similarity value. The
URLSs are then added to a frontier that is main-
tained as a priority queue based on these scores.
In the next iteration each crawler thread picks the
best URL in the frontier to crawl, and returns with
new unvisited URLs that are again inserted in the
priority queue after being scored based on the co-
sine similarity of the parent page.

wial86.tex; 26/01/2010; 8:39

p. 20

20 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

— Topic sensitive page rank [13]:
In this approach to topic-sensitive PageRank, the
importance scores are precomputed with ordinary
Page-Rank. A set of scores of the importance of
a page with respect to various topics are com-
puted. At query time, these importance scores are
combined based on the topics of the query to
form a composite PageRank score for those pages
matching the query. This score can be used in
conjunction with other IR-based scoring schemes
to produce a final rank for the result pages with
respect to the query. The improvements to PageR-
ank’s precision is shown.

— Info-spider [1]:
In InfoSpiders, an adaptive population of agents
search for pages relevant to the topic. Each agent
is essentially following the crawling loop while
using an adaptive query list and a neural net
to decide which links to follow. The algorithm
provides an exclusive frontier for each agent. In
a multi-threaded implementation of InfoSpiders
each agent corresponds to a thread of execution.
Hence, each thread has a non-contentious access
to its own frontier. A back-propagation algorithm
is used for learning. Such a learning technique
provides InfoSpiders with the unique capability
to adapt the link-following behavior in the course
of a crawl by associating relevance estimates with
particular patterns of keyword frequencies around
links.

— Shark-search [4]:
SharkSearch is a version of FishSearch with some
improvements. It uses a similarity measure for es-
timating the relevance of an unvisited URL. How-
ever, SharkSearch has a more refined notion of
potential scores for the links in the crawl fron-
tier. The anchor text, text surrounding the links
or link-context, and inherited score from ances-
tors influence the potential scores of links. The
ancestors of a URL are the pages that appeared on
the crawl path to the URL. SharkSearch, like its
predecessor FishSearch, maintains a depth bound.
That is, if the crawler finds unimportant pages on
a crawl path it stops crawling further along that
path. To be able to track all the information, each
URL in the frontier is associated with a depth and
a potential score.

Results on harvest rate and target recall of above men-
tioned algorithms and RS-combined on Dmoz and Ya-
hoo has been reported in Tables 16 and 17 respectively.

Same seeds have been considered for all the algorithms
and average results on sixteen top level ODP category
is taken for comparison. It can be observed that perfor-
mance of RS-combined is marginally better than Best-
first and Page-rank in terms of average harvest rate and
average target recall.

10. Conclusion

We discussed the problem of classifying a web ser-
vice and focused crawling using rough ensemble clas-
sifier on tensor space model. The classification of web
services is treated as a split merge classification prob-
lem. Splits of the features have been performed based
on tag set exists in the WSDL documents correspond-
ing to web services. Tensor space model has been used
to represent the services according to tag structure.
Base level classification has been performed on indi-
vidual tensor components. Finally combined classifi-
cation has been obtained by using rough set based en-
semble classifier. Two step improvement on the ex-
isting classification results of web services has been
shown. In the first step we achieve better classification
results by using tensor space model. In the second step
further improvement of the results has been obtained
by using Rough set based ensemble classifier.

On the other hand, several techniques of focused
crawling have been proposed recently for topic spe-
cific resource discovery. All these crawlers use differ-
ent types of hypertext features to predict the relevance
of unvisited page. A combined method based on rough
set theory has been studied in this article. Rough set
based attribute reduction has been performed to re-
move redundant predictions. Rough set based decision
rules has been used to decide the category of the un-
visited web page. Results reported in the experimen-
tal section shows that performance of rough set based
combined crawler is better than other focused crawling
methods.

Acknowledgements

The authors would like to thank the Department
of Science and Technology, Government of India, for
funding the Center for Soft Computing Research: A
National Facility. This paper was done when one of the
authors, S.K. Pal, was a J.C. Bose Fellow of the Gov-
ernment of India.

wial86.tex; 26/01/2010; 8:39

S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

Table 16
Harvest rate and Target recall of popular methods and rough set based combined predictions on Dmoz

.21

21

(a) Harvest rate on Dmoz

Algorithm 1000 pages | 2000 pages | 3000 pages | 4000 pages | 5000 pages | 6000 pages
Best-First 0.5654 0.5589 0.5520 0.5467 0.5332 0.5229
TSPage-Rank 0.5381 0.5313 0.5206 0.5058 0.4841 0.4711
Info-spider 0.5237 0.5169 0.5022 0.4876 0.4716 0.4665
Shark-search 0.5019 0.4969 0.4824 0.4738 0.4618 0.4532
RS-Combined 0.5873 0.5822 0.5787 0.5695 0.5639 0.5631
(b) Target recall on Dmoz
Algorithm 500 pages | 1000 pages | 1500 pages | 2000 pages | 2500 pages | 3000 pages
Best-First 0.0614 0.0945 0.1265 0.1538 0.1751 0.2026
TSPage-Rank 0.0626 0.0843 0.1029 0.1312 0.1502 0.1662
Info-spider 0.0682 0.0868 0.1167 0.1429 0.1653 0.1871
Shark-search 0.0539 0.0783 0.1015 0.1381 0.1591 0.1737
RS-Combined 0.0628 0.1193 0.1641 0.1822 0.2030 0.2164
Table 17

Harvest rate and Target recall of popular methods and rough set based combined predictions on Yahoo

(a) Harvest rate on Yahoo

Algorithm 1000 pages | 2000 pages | 3000 pages | 4000 pages | 5000 pages | 6000 pages
Best-First 0.4689 0.4821 0.4576 0.4370 0.4576 0.4567
TSPage-Rank 0.4649 0.4190 0.4239 0.4077 0.4244 0.3653
Info-spider 0.4492 0.4594 0.4198 0.4157 0.3871 0.3751
Shark-search 0.4130 0.4444 0.3918 0.4306 0.3859 0.3435
RS-Combined 0.4896 0.5122 0.4764 0.5053 0.4988 0.5160
(b) Target recall on Dmoz

Algorithm 500 pages | 1000 pages | 1500 pages | 2000 pages | 2500 pages | 3000 pages
Best-First 0.0534 0.0843 0.1177 0.1384 0.1670 0.1952
TSPage-Rank 0.0531 0.0736 0.0933 0.1202 0.1459 0.1551
Info-spider 0.0605 0.0792 0.1101 0.1332 0.1585 0.1764
Shark-search 0.0464 0.0737 0.0915 0.1310 0.1521 0.1627
RS-Combined 0.0533 0.1087 0.1538 0.1769 0.2002 0.2113

References

[1] C. Aggarwal. Collaborative crawling: Mining user experiences
for topical resource discovery, 2002.

[2] Deng Cai, Xiaofei He, and Jiawei Han. Tensor space model for
document analysis. SIGIR ’06: Proceedings of the 29th annual
international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 625-626, 2006.
Soumen Chakrabarti, Martin van den Berg, and Byron Dom.
Focused crawling: a new approach to topic-specific Web re-
source discovery. Computer Networks (Amsterdam, Nether-
lands: 1999), 31(11-16):1623-1640, 1999.

Chen, Zhumin Ma, Jun Lei, Jingsheng Yuan, Bo Lian, and
Li. An improved shark-search algorithm based on multi-
information. In Fourth International Conference on Fuzzy

3

=

[4

=

Systems and Knowledge Discovery, pages 659—-658, Haikou,
China, 24-27 Aug. 2007.

[5] Antonella Chirichiello and Gwen Salaiin. Encoding process al-
gebraic descriptions of web services into BPEL. Web Intelli-
gence and Agent Systems, 10S Press, 5(4):419-434, 2007.

[6] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Effi-
cient crawling through URL ordering. Computer Networks and
ISDN Systems, 30(1-7):161-172, 1998.

[71 M.A. Corella and P. Castells. A heuristic approach to seman-
tic web services classification. International Conference on
Knowledge-Based and Intelligent Information and Engineer-
ing Systems, 2006.

[8] Alfredo Cuzzocrea. Combining multidimensional user models
and knowledge representation and management techniques for

wial86.tex; 26/01/2010; 8:39

p. 22

22 S. Saha et al. / Application of rough ensemble classifier to web services categorization and focused crawling

making web services knowledge-aware. Web Intelligence and

Agent Systems, 10S Press, 4(3):289-312, 2006.

Darren Davis and Eric Jiang. Exploring content and linkage

structures for searching relevant web pages. Advanced Data

Mining and Applications, Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 4632:15-22, 2007.

[10] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence,
C. Lee Giles, and Marco Gori. Focused crawling using con-
text graphs. In 26th International Conference on Very Large
Databases, VLDB 2000, pages 527-534, Cairo, Egypt, 10-14
September 2000.

[11] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity search for web services. In Proc. of VLDB, 2004.

[12] A. Wong G. Salton and C.S. Yang. A vector-space model for
information retrieval. In Journal of the American Society for
Information Science, 18:13-620, 1975.

[13] Taher Haveliwala. Topic-sensitive pagerank. In Proceedings of
the Eleventh International World Wide Web Conference, May
2002.

[14] Andreas Heb and Nick Kushmerick. Learning to attach seman-
tic metadata to web services. The IEEE International Confer-
ence, 2003.

[15] Andreas Heb and Nick Kushmerick. Iterative ensemble classi-
fication for relational data: A case study of semantic web ser-
vices. ECML/PKDD 2004, Pisa, Italy, 2004.

[16] Yu Jianjun, Guo Shengmin, Su Hao, Zhang Hui, and Xu Ke. A
kernel based structure matching for web services search. WWW
'07: Proceedings of the 16th international conference on World
Wide Web, pages 1249-1250, 2007.

[17] John King, Yuefeng Li, Xiaohui Tao, and Richi Nayak. Mining
world knowledge for analysis of search engine content. Web In-
telligence and Agent Systems, 10S Press, 5(3):233-253, 2007.

[18] Steve Lawrence and C. Lee Giles. Searching the World Wide
Web. Science, 280(5360):98-100, 1998.

[9

—

[19] Eric Lo, David Cheung, C.Y. Ng, and Thomas Lee. Wsipl: An
xml scripting language for integrating web service data and
applications. Web Intelligence and Agent Systems, 10S Press,
4(1):24-41, 2006.

[20] M. Bruno, G. Canfora, M. Di Penta, and R. Scognamiglio. An
approach to support web service classification and annotation.
The 2005 IEEE International Conference on e-Technology, e-
Commerce and e-Service, pages 138-143, 2005.

[21] Zakaria Maamar, Quan Z. Sheng, and Boaulem Benatallah.
Towards a conversation-driven composition of web services.
Web Intelligence and Agent Systems, 10S Press, 2(2):145-150,
2004.

[22] Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie
Seymore. Building domain-specific search engines with ma-
chine learning techniques. In Proc. AAAI-99 Spring Sympo-
sium on Intelligent Agents in Cyberspace, 1999, 1999.

[23] F. Menczer, G. Pant, and P. Srinivasan. Topical web crawlers:
Evaluating adaptive algorithms, 2003.

[24] Filippo Menczer, Gautam Pant, Padmini Srinivasan, and
Miguel E. Ruiz. Evaluating topic-driven web crawlers. In Re-
search and Development in Information Retrieval, pages 241—
249, 2001.

[25] Nicole Oldham, Christopher Thomas, Amit P. Sheth, and
Kunal Verma. Meteor-s web service annotation framework
with machine learning classification. SWSWPC, 3387:137—
146, 2004.

[26] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning
About Data. Kluwer, Boston, pages 41-48, 1991.

[27] Suman Saha, C.A. Murthy, and Sankar K. Pal. Rough set based
ensemble classifier for web page classification. Fundamentae
Informetica, 76(1-2):171-187, 2007.

