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ABSTRACT COVID-19 is an extremely dangerous disease because of its highly infectious nature. In
order to provide a quick and immediate identification of infection, a proper and immediate clinical support is
needed. Researchers have proposed various Machine Learning and smart IoT based schemes for categorizing
the COVID-19 patients. Artificial Neural Networks (ANN) that are inspired by the biological concept of
neurons are generally used in various applications including healthcare systems. The ANN scheme provides
a viable solution in the decision making process for managing the healthcare information. This manuscript
endeavours to illustrate the applicability and suitability of ANN by categorizing the status of COVID-19
patients’ health into infected (IN), uninfected (UI), exposed (EP) and susceptible (ST). In order to do so,
Bayesian and back propagation algorithms have been used to generate the results. Further, viterbi algorithm
is used to improve the accuracy of the proposed system. The proposed mechanism is validated over various
accuracy and classification parameters against conventional Random Tree (RT), Fuzzy C Means (FCM) and
REPTree (RPT) methods.

INDEX TERMS Artificial neural network, Back propagation network, multi-perceptron layer, security in
healthcare, COVID 19 patients’ identification

I. INTRODUCTION

THE onset of Coronavirus disease (COVID-19) has
pushed the world into a serious jeopardizing situation

and the infectious disease has already been classified by the
World Health Organization (WHO) as a pandemic. The virus
has been categorised as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) due to its visual similarity
to the SARS-CoV-1 [1], [2]. It is a highly contagious dis-
ease which spreads very rapidly and in order to end the
pandemic, the whole world is working with all its might.
Researchers are motivated to fight against COVID-19 by
exploring, understanding and devising new treatments and

techniques to terminate it from our current generation. In
addition, COVID-19 is severely endangering the healthcare
mechanisms because of its severe infectious nature. Severity
infection quantification is needed to provide a proper and
immediate clinical support to critical COVID-19 patients [3].
According to a WHO study, there are approximately 10.5 M
confirmed cases, 10.1 M recovered cases and 151k deaths.
Such cases have been detected in almost the entire world
from Germany, Italy, UK and USA to India, Japan and the
Korean Peninsula [4]–[6]. The prompt symptoms to detect
COVID-19 patients are tiredness, eye redness, fever, cold,
throat infection, respiratory problems etc. These symptoms
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habitually appear within 4-5 days after a person is infected.
Presently, remote monitoring and early detection schemes

to control the disease are highly desirable. Although,
COVID-19 diagnostic test and IRTC tests are helping the
patients to detect the virus accurately, however, these test are
not much effective and prompt in stop the spreading of the
disease [7]–[9]. Till now, no specific vaccine or medicines
are available to cure COVID-19, though American labs have
realised an antidote but it is very critical to analyze its side
effects from initial use. Apart from that, there is a lack
of communication and involvement between patients and
doctors. In such scenarios, efficient controlling and diagnosis
of virus at remote sites and homes has added a new challenge
for healthcare providers.

A. MOTIVATION

The immense potential of cloud computing, mobile comput-
ing and IoT sensors has made it possible to design smart
cloud-based heath care systems [10]–[19]. Various healthcare
systems have moved to IoT-based techniques to explore new
benefits and services of smart mentoring and record storing
of information [20], [21]. However, IoT applications generate
a huge data that is further difficult to analyze and generate
immediate reports of the patients. Recent smart technol-
ogy systems are not able to provide real time monitoring,
servicing and protection methods in hospitals, schools or
crowded areas [22]. Along with numerous success stories
in the biomedical and clinical diagnostic fields, Artificial
Intelligence (AI) assistance can be considered as a medium to
conduct quantification and remote automation of COVID-19
patients [23]–[25]. Although researchers have proposed var-
ious cloud-based, neural network and deep learning schemes
by deploying the automated tomography and chest radiog-
raphy. However, the advanced visualization and sensitivity
provisions provide reliable CT-based screening tests as com-
pared to traditional methods. In addition, the huge number
of asymptomatic patients and the early stage detection of
COVID-19 is still considered as a critical challenge because
of undistinguished, small, obscure and scattered infectious
regions [26], [27].

In addition, the lack of reliable data sets may further en-
hance the criticality of patient recognition at its early stages.
AI based learning has been widely integrated in medical
systems for its unprecedented performance. Various literature
studies have been investigated for segmenting the COVID-
19 patients including UNet++, FCN, U-Net and ResUNet.
However, COVID-19 lesions segmentation is still considered
as a critical challenge due to its diffused, patchy and scattered
infectious distributions [28] . Furthermore, the generated
contextual information does not properly converge into final
reconstruction, thus, resulting in sub-optimal performances.
Therefore, the goal of this paper is to propose an efficient and
intelligent monitoring of COVID-19 patient’s using artificial
network.

B. PAPER CONTRIBUTION
In this paper, COVIDSys, an AI based system has been
proposed that is capable of performing precise categorization
of COVID-19 patients using three different algorithms. The
intrinsic network of the proposed framework which includes
Back Propagation (BP), Bayesian rule algorithm (BR) and
viterbi schemes provides an immediate and effective solution
by overcoming conventional approaches. The potential con-
tribution of the paper is discussed as follows:

1) An integrated AI based mechanism is proposed com-
bining the decision tree generation based on 15 symp-
tomatic results of COVID-19 patient such as skin rash,
fever, bleeding, score throat, eye pain, joint pain, mus-
cle pain, nausea, fatique, itching, vomiting, abnormal
pain, redness, breadth issue, cold of 2831 volunteers.
The presented data set contains 180131 records con-
taining source, target, start and end time of interaction
with an interval of 24 hours.

2) The AI network is further combined with multi-layered
stage having BP and BR schemes to generate an op-
timal and error free categorization of COVID-19 pa-
tient’s while analyzing their symptoms.

3) The viterbi algorithm is further integrated with BP and
BR algorithms to select the best category of COVID-19
patients by improving the accuracy and susceptibility
of the system [29].

4) The present study identifies the applicability and suit-
ability of multi-layered network to further classify the
patients into four different categories namely Infected
(IN), Uninfected (UN), Exposed (EP) and Susceptible
(ST).

5) The proposed system is simulated, analyzed and com-
pared over various existing schemes including Ran-
dom Tree (RT), Fuzzy C Means (FCM) and REPTree
(RPT) methods against several performance measuring
parameters.

The rest of this paper is organized as follows. A discussion
on ANN techniques by different researchers is presented in
Section 2. A secure ANN mechanism using BP, BR and
Viterbi models is presented in Section 3. The validation of the
proposed approach and its comparison is described in Section
4. Section 5 concludes the paper.

II. RELATED WORK
Chen et al. [30] have proposed a low-cost pervasive sensor
by developing a novel signal algorithm after eliminating the
un-necessary noise. The proposed model conducted the tests
in different modes such as breathing, coughing and others
for detecting the respiratory rates. The proposed mechanism
achieved 98.98% respiration estimation and 97.33% of cough
detection accuracy. The authors claimed the effectiveness of
proposed system for screening the COVID-19 patient’s and
enabling the large scale diagnosis and monitoring.

Rodriiguez et al. [31] have used CNN and deep learning
algorithms for determining the directions and path of a person
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by analyzing its threshold limit. The proposed approach
results indicated the efficient implementation of the module
by seeking its control of maximum population generated by
SARS-COV-2 virus. The proposed approach tests were con-
ducted on AMD Ryzen 7 3750H processor that determined
the number of persons entering or exceeding the capacity
permitted by pandemic on 50% of the original population.

Moura et al. [32] have proposed a novel automatic scheme
for classifying the X-ray images into three different cate-
gories. The authors have applied three deep learning algo-
rithms based on CNN architecture. The proposed scheme is
validated against specific dataset by retrieving the various
X-ray images of patient’s. The proposed system claimed
79.62%, 90.27% and 79.86% of global accuracy by facili-
tating the decision making progress in the system.

Laguarta et al. [33] have proposed an AI mechanism for
identifying the COVID-19 patients through a voice recording
model via smart phone. The authors have designed an AI
speech recognition system by extracting the COVID-19 pa-
tient’s features. The authors have further provided a saliency
map in real time scenarios for monitoring their conditions.
The authors have used a learning algorithm to further test
the proposed framework. The authors have validated the
obtained results with the specificity and sensitivity of 94.2%
and 98.5%. The authors have concluded to practically use
case the worker, students, jobs and public transport sectors.

Hossain et al. [34] have proposed an B5G by utilizing
the 5G networks having high bandwidth, low latency by
detecting the CT scan and X-ray images of the persons. The
authors have developed a surveillance mechanism to monitor
the mask wearing, social distance and body temperature
features. In addition, the authors have proposed three deep
learning mechanism having deep tree, ResNet50 and incep-
tionv3 for investigating the patients. Further, they have used
a blockchain network to ensure the security of each patient
record in the hospital. Vedsei et al. [35] have presented a
potential application of IoT along with social distancing from
preventing the COVID-19 patient. The authors have proposed
a three layer framework including IoT devices, Machine
learning schemes and smart phone applications fir regularly
monitoring the BP, blood oxygen, cough rate and tempera-
ture. The proposed frameworks guided the users for maintain
the social distance and environmental hazards due to virus
spread while updating the information regularly. The authors
have considered two different scenarios for comparing the
results in environmental constraints. The authors claimed to
assistance the COVID-19 exposure.

Ndiaye et al. [36] presented the up to date survey on
COVID-19 and illustrated how it affected the entire world.
The authors have discussed the usage of latest technolo-
gies such as IoT and smart devices while tracking, tracing
and spread mitigation of the virus. In addition, the authors
have discussed the hardware deployment of systems to see
the spreading pandemic. Further, the effects of COVID-19
on management and evolution of latest architectures have
been discussed. The authors have provided the use of IoT

techniques for surveillance and managing the COVID-19
patients. Further, the authors have also highlighted the future
of IoT devices in global virus pandemic detection. Alshehri et
al. [37] have illustrated a comprehensive literature on IoMT
and IoT smart healthcare system [38] by focusing on various
published articles between 2014-2020. The authors have
answered various concerns related to AI, IoMt, IoT, cloud
and edge computing and medical signals etc [39], [40]. In
addition, the authors have addressed the ongoing challenges
and future directions in this research.

III. PROPOSED TRUST COMPUTATION MECHANISM
ANN can be defined as a machine designed to perform a
task similar to the way brain functions. Recently, various
ANN applications have been explored including in the field
of health care management systems. The ANN has previ-
ously been used by many researchers in health care systems
covering the data management, record security, interactions
between doctor and patient and so on. In terms of analyzing
the patient’s health, the ANN method to multi-objective opti-
mization has offered efficient solution to further improve the
decision making process. The ANN-based Computer Aided
Designing (CAD) system is considered as a promising tool to
generate immediate and accurate results for patients’ health
by assisting the biological neurons. Though ANN-CAD sys-
tems have been studied over last two decades, however, most
of the literature still highlights only the various common
concerns such as:
• Few previous studies focus on using ANN for managing

or recording the patients’ data in healthcare systems.
The management systems are determined by analyzing
the obtained models.

• Previous healthcare systems focus on categorizing the
patients into two different categories i.e. healthy and
infectious.

Building from the earlier described work, the paper further
attempts to improve the classification quality for COVID-19
patients’ healthcare categorization. The proposed system has
the mentioned categories:
• The COVID 19 patient classification is carried based

upon 15 different symptoms suffering. The mentioned
15 symptoms have been proven [41] as input to classify
the patient’s category.

• This paper proposes the use of 15 symptoms of COVID-
19 as input for ANN to categorize the patient’s health
automatically.

• The present study identifies the applicability and suit-
ability of multi-layered network to further classify the
patients into four different categories namely Infected
(IN), Uninfected (UN), Exposed (EP) and Susceptible
(ST).

A. MULTI-LAYERED PERCEPTRON (MLP) NETWORK
ANN is a computational system that is inspired by the biolog-
ical concept of neural networks called neurons. The neurons
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are miniature cells that our brain is made of. A biological
neuron is determined as an assortment of billions of neurons
that are considered as the base for ANN to model biological
structures in terms of both operation and architecture. ANN
works as a mathematical computational model for data clas-
sification, non-linear function and non-parametric/clustering
regression. The ANN is capable in providing performance re-
liability in automatic decision making process. Multi-layered
perceptron is considered as one of the most commonly used
ANN type.

FIGURE 1. Multi-layered Perceptron Architecture Network

Figure 1 depicts the perceptron model proposed by Rosen-
blatt in 1958 in a layer to form a network. The neural network
depicted in Figure 1 is known as MLP architecture consisting
of n outputs, mh hidden and mi input modes that can be
expressed as equation 1 :

Yz(t) =

mh∑
y=1

W 2
yzF (.)

∑
x=1

miW
1
xyPx(t)

0 + b1y (1)

1 <= z <= n where wxy and wyz denote the weight
connection between input, hidden layer and output layer
respectively. F (.) is defined as an activation function that
is normally selected as a sigmoid function. In addition, b1y
represents the hidden value threshold that is supplied to input
layer.

From presented in equation 1, wxy , wyz and by values
are determined using an appropriate algorithm consisting of
back propagation (BP), viterbi or Bayesian rule (BR) algo-
rithms. The BP algorithm is commonly used to determine the
optimum value because of its efficient implementation and
performance. The BP algorithm is based on error-correction
rule that automatically analyzes, categorizes and corrects the
patients’ category. In addition, two more algorithms called
Bayesian and viterbi algorithms are used to train the MLP
architecture network.

B. BACK PROPAGATION ALGORITHM
BPA is the commonly used gradient descent method that
generates the derivation values by modifying the weights ac-
cording to learning rate parameters. The BPA is the steepest
descent method where weights among yth neuron hidden
layer and xth neuron input layer are respectively modified
according to:

wxy(t) = wxy(t− 1) + δwxy(t)

by(t) = by(t− 1) + δby(t)

The increment δwxy(t) and δby(t) are given by:

δwxy(t) = ηwPy(t)Px(t) + αwxy(t− 1)

δby(t) = ηbPy(t) + αbδby(t− 1)

Where, b and w subscripts denote the threshold and weight
respectively. While αb and αw are considered as the mo-
mentum constants that illustrate the persuade of changes
in previous parameters on the movement of direction in
parameter space.

In addition, ηb and ηw determine the learning rates and
Py(t) determines the error signal of yth hidden layer neu-
rons that is propagated in the network. Since, the activation
function of the output layer is linear, the error signal at output
node is defined as in equation 2 :

P (t) = yz(t)− y
′

z(t) (2)

Where yz(t) is the expected putput. Further, the hidden
layer neurons are defined by equation 3 :

Py(t) = F
′
(Px(t))w

2
yz(t− 1) (3)

Where F
′
(px(t) is the first derivation of F (px(t) with

respect to px(t). Since the BP is steepest descent method, the
BP algorithm endures from a slow convergence rate. The BP
algorithm can be sensitive at selected parameters and global
minima may be trapped at local minima.

C. VITERBI ALGORITHM
Due to various behaviours of COVID-19 patients, the graph
of each patient will be different according to their updated
activity of recovery. The viterbi algorithm is used to compute
the probability of all states in hidden layer based upon their
emissions and activities in the environment. Algorithm 1
illustrates the viterbi algorithm steps for categorizing the
patients based upon their recovery rate. It uses the maxi-
mization function at each time instance to select/elect the
best category of patient according to the recovery rate. Let
σ ensures the maximum probability of a patient to end in a
state i with request sequence of length ‘l′ that results in first
‘o′ observations of hidden layers then σt(i) can be defined as
in equation 4 :

σt(i) = maxPr(q(1), q(2)....q(t−1; o(1), o(2).....o(t)|q(t) = ri)
(4)

Table 1 represents the notations of viterbi algorithm imple-
mentations:

The Viterbi algorithm is detailed as:
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TABLE 1. Viterbi Algorithm Notations

Symbol Meaning
σi(t) Prob. of patient to end in state ’i’ based upon its request length ’l’
bi(o(t)) Prob. of output o(t) upon initial state ’i’
aij Prob. transition from state i to state j.

Algorithm 1 Viterbi Algorithm
Begin
Step 1: Initialization of matrix and probability variable as:

σ1(i) = Pribi(o(1))

δ1(i) = 0

Step 2: Recurring for computing the requested arguments of
the patient’s by updating the output in δ.

σt(j) = maxi[σt−1(i)αij ]bj(o(t))

δt(j) = maxargi [σt−1(i)αij ]

Step 3: The recursion step termination based on given
conditions:

p∗ = maxi[αT (i)]

q∗T = maxargi [αT (i)]

Step 4: The best state is opted by backtracking as:

q∗T = δt+1(q
∗
t+1

End

D. BAYESIAN RULE ALGORITHM
The Bayesian rule algorithm is given as equation 5:

P (φ|I) = P (I|φ)
P (I)

(5)

Where, P (φ) is the prior probability of parameter φ and
P (φ|I) is the probability of information I .

The Baye’s rule was generally used to illustrate the poste-
rior probability of o given information I . This offers an entire
distribution over possible o values. The given process is ap-
plied over ANN by defining the probability distribution over
weights w and training information P (w|I). The posterior
distribution over weights is further determined by equation
6:

P (w|I) = P (I|w)P (w)
P (I)

P (w|I) = P (I|w)
P (I|w)P (w)dw

(6)

In Bayesian rule algorithm, the weights learning deter-
mines the belief changing about prior weights P (w) to
posterior P (w|I) as a consequence of information seeing as
depicted in Figure 2. The mentioned Figure 2 illustrates the
change of weights by determining or analyzing the patient’s
category according to BR algorithm. Further, the analysis of
weights comparison between prior and posterior values are
determining by varying the time and the probability rate.

Figure 3 and Figure 4 represent the tree visualization and
life cycle of COVID-19 patient in Weka. Figure 3 represents
the decision tree after classifying the data components cat-
egorizes the patients into IN, UI, EP and ST categories. As
represented in Figure 3, the user is separated as susceptible if
the patient shows symptoms such as cold, fever, throat pain
etc.

In addition, the category EP represents that the user is
infectious at the present stage by recognizing the initial
symptoms. Further, IN is the one where the patient shows the
complete symptoms of the virus and has maximum infection
that can be contagious to other people. Furthermore, UN
means that the person does not have any symptom and is clear
from the infection.

Further, Figure 4 depicts the life cycle of COVID-19
patients where the patient’s can be categorized into healthy
and infectious category by analyzing their infection risks and
immune system response. The depicted Figure 4 represents
the analysis of the person’s category by leading it into an
susceptible state by following certain predefined procedures.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL RESULTS
This paper study applies similar analysis for classifying the
data done by [27], [42]. Initially, the optimum analysis is
undertaken and experimented to illustrate the hidden number
of nodes that may generate best COVID-19 patient classifi-
cation. For the numerical analysis, the multi-layered network
is trained over 3600 epochs with the time taken of 9.763 s,
5.248 s and 4.321 s using BP, BR and viterbi algorithms.

FIGURE 2. Changing prior weights to posterior weights
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Table 2 depicts the results and obtained various training
methods.

TABLE 2. Optimized Structure Results using BP, BR and Viterbi Algorithms

Multi-layered Algo Optimized Hidden Nodes
BP 8
BR 4
Viterbi 4

The experimental analysis is categorized over three differ-
ent sections namely, data integration/acquisitions, decision
tree and graph-based evaluation as detailed in [27], [42].
• Data acquisition and integration: Symptom-based data

set is attained including 15 attributes such as skin rash,
fever, bleeding, score throat, eye pain, joint pain, muscle
pain, nausea, fatique, itching, vomiting, abnormal pain,
redness, breadth issue, cold of 2831 volunteers. The
5124 data set cases having environment attributes are
obtained from including daily reports generated from
[42]. The symptom generated data set is combined with
environment to test the proposed system. The presented
data set contains 180131 records containing source,
target, start and end time of interaction with an interval
of 24 hours.

• Decision tree: The decision tree is used to categorize
the patients into IN, UN, ST and EP that is further
implemented on weka. Various statistical parameters are
considered to examine the generated records of COVID-
19 patients.

• Specificity: It is called as false positive rate and it cat-
egorizes the percentage of patients who are diagnosed
incorrectly by the system.

• Sensitivity: It is defined as true positive rate and con-
siders the patients who are correctly identified by the
system.

FIGURE 3. Tree visualization of COVID-19

• F-measure and ROC: These are used to determine the
accuracy of classifying the proposed scenario.

In addition, the performance comparison is done by doing
the second analysis phase depending upon the first analysis.
The analysis is done through an accurate classification of
COVID-19 patients for testing and training the data. The clas-
sified details of decision tree and the results of the proposed
framework under different training schemes are represented
in Table 3 and 4.

Table 3 represents the evaluated values of various classi-
fied patient’s that are categorized according to various classes
such as specificity, sensitivity, precision, recall, F-measure
and ROC. The depicted Table 3 represents the evaluated value
of proposed mechanism using BP, BP and Viterbi algorithms.
Further, Table 4 represents the individual training and testing
data values of a; the proposed algorithm over number of
epochs and time required to run that particular algorithm
to categorize or classify the patient’s category into various
types.

TABLE 3. Classification Accuracy of Decision Tree

Class IN UN ST EP
Specificity 0.00 0.041 0.058 0.021
Sensitivity 1.00 0.891 0.876 0.832
Precision 1.00 0.732 0.612 0.613
Recall 1.00 0.871 0.513 0.589
F-Measure 1.00 0.701 0.683 0.732
ROC 1.00 0.673 0.611 0.512

B. RESULTS AND DISCUSSION
Initially, the various classification algorithms are analyzed
including two statistical measures, namely, classification
time and accuracy. The classification accuracy is depicted
in Figure 5 that determines that the decision tree using BP,
BR and Viterbi algorithms performs better as compared to
Random Tree (RT), Fuzzy C Means (FCM) and REPTree
(RPT) methods. The classification of the data according to
their behaviours are efficiently determined using BP and BR
algorithms to select best category of COVID-19 patient’s by
improving the susceptibility and accuracy of the system. The
out performance of proposed mechanism is due to BP algo-
rithm that ensure the accuracy and specificity in the network
while classifying the patient’s into certain categories.

In addition, Figure 6 depicts the classification time of
decision tree, RPT, FCM and RT using various data-sets.
The time required to categorize the patient’s into IN, UN,
EP and SP is less as compare to other existing schemes
because of BP,and BR schemes which generates an optimal
and immediate category by recognizing their symptoms. The
depicted graph concludes that the decision tree takes less
classification time as compared to existing schemes. The
reason is due to accurate classification using probabilistic
scenarios using Viterbi algorithm that may further provides
an error free and immediate categorization of patient’s.

Further, Figure 7 represents the eigen vector distribution of
the proposed graph which explains how the data is smoothly
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FIGURE 4. COVID-19 patient life cycle outbreak

TABLE 4. Classification Accuracy of Decision Tree

Multi-Layered network Training Testing Overall Epochs No. Time (sec)
BP 68.87 71.31 61.20 35000 9.895
BR 93.51 84.78 91.50 10 4.362
Viterbi 89.32 88.23 90.89 10 3.512

FIGURE 5. Classification Accuracy to determine the patient’s category

distributed in the network and further categorized widely by
the proposed phenomenon. The integration of multi-layered
schemes along with Viterbi algorithm improves the data dis-
tribution for reducing the classification time of the patient;s
category.

Furthermore, Figure 8 represents the specificity, sensitivity
and precision of the proposed framework as compared to
the existing schemes. he proposed mechanism outperforms
because of its accurate judgement of patients’ classification
by identifying various symptoms through artificial neural
network. However, the existing schemes provides less accu-
racy with significant delay while analyzing the symptoms to
categorize the patient’s as compared to proposed approach. In
addition, the integration of Viterbi algorithm with BP and BR
ensures an accurate and efficient classification mechanism.

Finally, Figure 9 depicts the recall, ROC and F-measure
parameters of the proposed scheme as compared to the

FIGURE 6. Classification time required to category the COVID-19 patient’s

conventional FCM, RT and RPT methods. The following
parameters determines the accuracy of categorizing the pa-
tient’s through ANN as compare to existing schemes be-
cause of integrated system of BP, BR and Viterbi algorithm.
The depicted values represents significant improvements as
compare to conventional mechanisms because of accurate
decision and recognition of patient’s symptoms using error
free classification using BP algorithm.

V. CONCLUSION
This paper aims to analyze the categories of COVID-19
patients with respect to various time events. The paper de-
termines the ANN network in terms of health monitoring and
result analysis with the biological scrutinizing approach. The
paper has used BP, BR and viterbi algorithms to illustrate the
progress and monitoring of COVID-19 patients’ category on
timely basis. The proposed mechanism validates the suitabil-
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FIGURE 7. Eigen vector Distribution to analyze the smooth distribution of the
data

FIGURE 8. Specificity, Sensitivity, Precision values of proposed phenomenon

ity of AI systems and is capable of classifying the COVID-
19 patients based on various symptoms. The experimental
results of the proposed mechanism depict higher accuracy
and less response time for various patient categories using
decision tree.

In addition, further analysis and improvements can be
made to upgrade the proposed scheme. Various case studies
may be done to test the reliability and capability of the
system. Another good implication is by using various AI
networks and engaging learning mechanisms.
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