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CHAPTER 1

Nanobiocatalysis: an introduction
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1.1 Introduction

The most common enzymes are made of protein structure mostly used in the biocataly-
sis industry owing to their high specificity, activity, and selectivity under mild conditions
(Garcia-Galan, Berenguer-Murcia, Fernandez-Lafuente, & Rodrigues, 2011; Kumar
et al., 2019; Sharma, Sharma, Meena, Kumar, & Kanwar, 2018). Enzymes are highly
efficient in their action and can increase the rate of reaction up to 10" folds and
employed at low concentrations compared with chemical catalysts (Osbon & Kumar,
2019). In the last decades, there is a rise in the potential use of enzymes in fishery waste
valorization, pharmaceutical research, food modification, agroindustry, biofuel produc-
tion and laundry (Choi, Han, & Kim, 2015; Narancic, Davis, Nikodinovic-Runic, &
OC, 2015; Sharma & Kumar, 2021; Sharma et al., 2019). In brief, enzymatic processes
are cost-effective, ecofriendly, and more sustainable. However, applications of enzymes
are limited by their low stability and the requirement of reusability properties when they
are applied in industrial processes (Kumar, Wu, & Liu, 2018; Patel, Singh, & Kumar,
2017; Sharma, Meena, & Kanwar, 2018). Fortunately, in the last few years, immobiliza-
tion becomes a powerful tool that allows increased industrial applications of enzymes in
many fields. After immobilization, the biocatalyst 1s expected to tolerate harsh conditions
including extreme pHs, high temperature, high 1onic strengths, solvents with enhanced
activity, and reusability (Kumar, Patel, & Mardan, 2018; Kumar, Gudiukaite, &
Gricajeva, 2020; Sharma, Sharma, Kamyab, & Kumar, 2020). However, various meth-
odologies for recovering enzymes from the reaction system are poorly developed.
Hence, it is important to choose the enzyme proper matrix with robust, separable, and
biocompatible features. Among the various carriers used for enzyme immobilization,
magnetic nanoparticles could be simply segregated from the reaction mixture by the use
of external magnets (Sharma, Verma, Kumar, & Kamyab, 2018).

Nanomaterials for Biocatalysis C) 2022 Elsevier Inc.
DOI: hetps://doi.org/10.1016/B978-0-12-824436-4,00003-4 All rights reserved.
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With the continuous growth in nanotechnology, nanomaterials have been evolved
and widely used for enzyme immobilization (Rahman, Culsum, Kumar, Gao, & Hu,
2016). The range of nanomaterials was established by considering quantum mechanics
approach that ranges between 1 and 100 nm with exceptional electric, magnetic, optical,
and structural properties. The living cells are “nanometric entities,” and the size of cell
metabolic components exceeds several times 100 nm. Some nanomaterial occurs naturally,
and some are engineered to perform specific functions and utilized at industrial level. The
size. of nanomaterial and their ability to engineer nanomaterial according to specific
requirements offers various advantages compared to other traditional bulk materials used
for enzyme immobilization (Indu, Mandal, & Dubey, 2020). The development of nano-
material with exceptional features and functions comprises (1) addition of functional group
on the nanomaterial surface for immobilizing enzyme, (2) creation of a special structure
for facilitating substrates and products diffusion, increasing the surface area, reusing nano-
material (3) improving thermal and mechanical stability of nanomaterial. Moreover, nano-
materials can be in the form of tubes, fibers, rods, or particles. Nanoscale materials such as
nanotubes, nanofiber, nanowires, nanoparticles, and nanosheets have been reported for
immobilization of several enzymes (Kumar, Park, & Patel, 2019; La, Truong, & Pham,
2020; Sharma et al., 2017; Yogeswaran & Chen, 2008). As emerging materials, efforts
have been made to design a nanomaterials with various components such as metal oxides
(Fe504, SiO,, Cu,0), noble metals (Au), polymers (i.e., polycaprolactone, polylactic gly-
colic acid, aldehyde-derived pluronic polymers) carbon-based (carbon nanotubes, carbon
dots) and complex compounds such as (Mn3(POy),, Cus(PO,)2:3H,0, Cuy(OH),)SOy,
CagH,(PO,)s, and Co3(PO4)»'8H,0) (An, Li, & Zhang, 2020). In recent years, various
nanomaterials reported for enzyme immobilization are summarized in Table 1.1.

Nowadays, nanomaterials have been broadly utilized in chemistry, medicine, envi-
ronmental monitoring and remediation, pharmacy, and microelectronics. Advances in
nanoscience develop various nanomaterials, and enzymes immobilization on these
nanomaterials has been considered as a propitious method to increase enzyme perfor-
mance. Generally, the enormous benefits of nanomaterials as immobilization matrices
can be expected as their huge specific surface area/volume ratio, unique mechanical,
physicochemical, and cost-effective features (Kumar, Kim, Patel, & Lee, 2018; Liu &
Dong, 2020; Nadda & Kanwar, 2012; Rahman et al., 2016). It must be noted that it
is crucial to control the matrix -biocatalyst interactions to know about the modifica-
tions that could be made and its possible applications. Nanomaterials can be expected
to meet the necessities of the immobilization matrix, while some may not be appropri-
ate for the immobilization of some enzymes, because of enzymes tend to aggregate
displaying detrimental properties and/or just by denaturing the protein structure.
Furthermore, the linking between the nanomaterial and enzyme has been reported by
physical methods such as encapsulation, entrapment, absorption, and/or by chemical
methods like covalent attachment, ionic bonds, hydrophobic interactions and



Table 1.1 Various nanomaterials reported for enzyme immobilization.

Nanomaterial Enzyme Immabilization Immobilization Application Reusability Reference

method yield (%)

Muldwalled carbon Asparaginase Adsorption 90.0 Food industry, - Cristovio, Almeida, and Barros
nanotubes (MWCNTS) biosensor (2020)

Polyacrylic acid coated Lipase Covalent - p-NPP hydrolysis 5 Esmaeilnejad-Ahranjani, Kazemeini,
magnetic silica Singh, and Arpanaei (20116)
nanocomposite

Chitosan nanoparticles Lysozyme Tonic - Antimicrobial 8 Wang, Li, and Jin (2020)

activity

Magnetic nanoparticles Asparaginase Covalent - L-asparagine 8 Orhan and Aktag Uygun (2020)

hydrolysis

Superparamagnetic few- Lipase Electrostatic — Biodiesel 5 Nematian, Shakeri, Salehi, and
layer graphene oxide production Saboury (2020)

Hollow core-mesoporous Protease Physical and 75.6 Laundry 12 [brahim, Al-Salamah, and El-Toni
shell silica nanospheres covalent detergent (2016)

formulations
Gold nanoparticles Horseradishperoxidase Chemical and - Biosensor - Luo, Xu, Zhang, Yang, and Chen
absorption (2005)
MWCNTs Laccase Covalent 76.7 Removal of 7 Xu, Tang, Zhou, Li, and Zhang
diclofenac (2015)
Iron oxide nanoparticles Glucosidase Covalent 93.0 Biofuel 16 Verma, Chaudhary, Tsuzuki,
production Barrow, and Puri (2013)
ZnO nanowires Lipase Adsorption - Esterification of 12 Shang, Li, and Zhang (2015)
phytosterols
with oleic
acid
Chitosan-MWCNTs Galactosidase Covalent 95.0 Aroma 10 Celik, Dinger, and Aydemir (2016)
enhancement
of tea extract

MWCNTs Laccase Covalent - Dye 10 Othman Abdelmageed, Gonzilez-

decolonzation Dominguez, Sanroman, Correa-
Duarte, and Moldes (2016)
Graphene oxide Horseradish Electrostatic - Phenolic 7 Zhang, Zheng, and Zhang (2010)
peroxidase compounds
removal

(Continued)



Table 1.1 (Continued)

Nanomaterial Enzyme Immobilization Immobilization Application Reusability Reference
method yield (%)
Amino-functionalized Lipase Covalent 620 p-NPB 11 Hu, Pan, Yu, Liu, and Xu (2009)
magnetic nanoparticles hydrolysis
PEGylated graphene oxide Cellulase Covalent 70.5 Saccharification of 3 Xu, Sheng, and Wang (2016)
nanosheets lignocellulose
Gold nanoparticles Chalesterol oxidase Covalent - Biosensor - Saxena, Chakraborty, and Goswani
2011)
Organic-inorganic Laccase = 75.3 Dichlorophenol 8 Qiu, Qin, Xu, Kang, and Hu
nanocomposites removal (20149)
Molybdenum sulfide F-amylase Cowalent 92.0 Industrial 10 Li. Mandgaonkar, and Wang (2017)
nanosheets processes
Palycthylencimine- Lipase Covalent and 91.7 Ethyl valerate 12 Khoobi ct al. (2015)
modified adsorption synthesis
superparamagnetic
Fe4O, nanoparticles
Polymeric materials Glucosidase Entrapment 93.0 Cellobiose [ Javed, Buthe, Rashid, and Wang
hydrolysis (2016)
MWCNT: Glucosidase Adsorption - Lactose 6 Ansari, Satar, Kashif Zaidi, and
hydrolysis Ahmad (2014)
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combined or other more sophisticated methods. Moreover, the nanoporous materials
provide an excellent surface area for the covalent binding or entrapment of biocatalyst,
substrate and products diffusion through the matrix, drugs, and biomolecules but the
major task is to make the desired structure with appropriate biocompatibility and sur-
face properties. Nowadays, several attempts have been made for the synthesis of meso-
porous materials and blend it with other molecules or structures so as to make a
matrix having large surface area to volume ratio and suitable pore size (Szczgsniak,
Choma, & Jaroniec, 2020). Furthermore, some basic parameters that should be consid-
ered during enzyme immobilization on nanomaterials are minimal enzyme deactiva-
tion, high immobilization yield, effective catalyst reutilization, high specific activity
that keeps the selectivity (i.e., chemo-, stereo- and regio-), and recovered activity
(Cipolatti, Valério, & Henriques, 2016; Rana, Sharma, Kumar, Kanwar, & Singh,
2020). In the present chapter, we provide an overview of various nanomaterials
utilized in biocatalysis and their applications.

1.2 Metallic nanomaterials

Nanomaterials containing metals are commonly known as metallic nanomatenials.
Hence, metallic nanomaterials have been generally utilized for fabricating nanobiocata-
lysts. Some metallic nanoparticles are also considered to be nontoxic and can be used
in drug delivery, radiotherapy enhancement, biosensors, magnetic resonance imaging,
and gene delivery (Ren et al., 2011; Yamada, Foote, & Prow, 2015). Since the 1970s,
the utilization of magnetic particles has increased in the field of medicine and biosci-
ence. Therefore the applications of metal and metal oxide nanomaterials in immobiliz-
ing the enzyme are discussed in this section.

1.2.1 Metal nanomaterials

The first category of nanomaterials made up of platinum, zine, gold, silver, thallium,
iron, and cerium are known as metal nanomaterials. Functional groups (e.g., amino,
phosphate, carboxylate, thiolate) are added onto the metal nanomaterial to form a
robust interfacial reaction with the biocatalyst, and subsequently to improve enzyme
immobilization (Ghodake, Shinde, & Saratale, 2019; Yaqoob, Ahmad, & Parveen,
2020). Metal nanomaterials have been synthesized by numerous methods like copreci-
pitation, hydrothermal synthesis, thermal reduction, biosynthesis, and micelle synthesis
(Misson, Zhang, & Jin, 2015). Among these nanomaterials, gold nanomaterials are
mostly utilized for enzyme immobilization because of their good biocompatibility,
porous network structure, large surface area, mechanical and thermal stability
(Cipolatti et al., 2016). In catalysis, there is growing interest in immobilizing enzymes
on gold nanomaterials, even though these are not considered as viable matrix due to
economic issues for most of applications at industrial level. Previously, a-amylase
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immobilized on gold nanorods by hydrophobic and electrostatic binding was
employed for starch processing and the immobilized a-amylase exhibited improved
thermal and storage stability (Homaei & Saberi, 2015). Saxena et al., (2011) functiona-
lized gold nanoparticles using N-hydroxysuccinimide and N-ethyl-N'-(3-dimethy
laminopropyl carbodiimide) for immobilization of cholesterol oxidase and successfully
used the immobilized enzyme for detection of cholesterol in human serum sample.
Moreover, the immobilization of various enzymes on nanoporous gold resulted in an
enhanced enzyme stability and biocatalytic performance (Wang et al., 2011).

Furthermore, silver nanoparticles have been proved to be beneficial for medical
applications because of exceptional antimicrobial effect against bacteria, viruses, and
complex microbial structures such as biofilms (Yaqoob et al., 2020). Previously, lactose
peroxidase was immobilized on silver nanoparticles showing enhanced antimicrobial
activity as compared to free lactoperoxidase (Sheikh, Yasir, & Khan, 2018). The most
known antimicrobial mechanism of metal nanoparticles is metal ion release, redox
properties, and interference with molecular transport and metabolism, denaturing
molecules and/or inhibiting central metabolism, etc., (Sangaonkar & Pawar, 2018).
The antimicrobial activity of metallic nanoparticles could be because of their nanosize
and high surface area to volume ratio, residual charges in surface which allows them to
penetrate inside the bacterial membrane.

1.2.2 Metal-oxide based nanomaterials

Metal oxide nanomaterials including iron oxide, zinc oxide, and titanium oxide are
mostly used to immobilize biocatalysts. With large surface area, high biocompatibility,
TiO, nanocarriers have been mostly utilized for immobilizing biocatalyst and in the var-
ious applications such as wastewater treatment, biosensor, and so on. The most common
methods for synthesis of TiO, nanomaterials are hydrothermal, direct oxidation, sol-
vothermal, sol-gel, and chemical vapor decomposition methods (Liu & Dong, 2020).
Lipase was immobilized on phenylaminopropyl trimethoxysilane functionalized meso-
porous TiO, by hydrophobic interactions and used for the synthesis of cinnamyl acetate.
In addition, immobilized enzyme retained good operational stability after ten successive
runs and showed improved thermal stability (Gao et al., 2018). Furthermore, horseradish
peroxidase was immobilized on TiO, nanotube coated with polydopamine for con-
structing a novel photoelectrochemical bio-sensing platform (PEC). The PEC exhibited
good selectivity as well as sensitivity for the biosensing of H>O, (Li, Li, & Zhao, 2018).
In recent years, ZnO with different nanostructures are a promising matrix for
enzyme immobilization, as they are nontoxic, biocompatible, chemically stable having
high catalytic efficacy, strong absorption ability, and displays antimicrobial activity.
The wet chemical route is mostly used to fabricate ZnO nanostructures, including
nanorods, mnanosheets and nanoparticles. The ZnO nanostructure shows high
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isoelectric point with negatively charged surface in the reaction medium, and appro-
priate for electrostatic absorption of the biocatalyst. Ahmad et al., showed a new
method for making glucose biosensor using glucose oxidase absorbed on a single ZnO
nanofiber (Ahmad, Pan, Luo, & Zhu, 2010). The result showed that a single ZnO
nanofiber is a good matrix for immobilizing the enzyme and could be utilized in
numerous applications. On the other hand, Fe;O4 nanoparticles are frequently utilized
for the development of iron oxide magnetic nanoparticles, because they have a large
surface area, less mass transfer resistance, and easy separation from the reaction medium
(Orfanakis, Patila, & Catzikonstantinou, 2018). Previously, the lipase immobilized on
polyethyleneimine functionalized super magnetic Fe;O, by absorption and covalent
attachment was used for the synthesis of ethyl valerate. The study showed that immo-
bilized enzyme retained 80% of original activity after 12 reaction cycles (Khoobi et al.,
2015). Despite various reported methods for immobilization of the enzyme on a
metallic nanomaterial, there is still demand for efficient and cost-effective methods.

1.3 Carbonaceous nanomaterial

Carbonaceous materials such as graphene, reduced graphene oxide, and carbon nano-
tubes (CNT) have been widely used for enzyme immobilization because of their
superior benefits. These nanomaterials have engrossed wide attention in various appli-
cations (Table 1.1), including drug delivery, catalysis, bioremediation, and contaminant
biotransformation (Anwar, Kim, & Kumar, 2017; Czepirski et al., 2016). With the
recent development in nanotechnology, the role of carbonaceous materials will be
more and more significant in the future.

1.3.1 Graphene and graphene oxide

Graphene is one atom thick two-dimensional honeycomb crystal structure of carbon
atoms, which seems to be an ideal matrix for immobilization owing to its large surface
area (~2630m”g ") that helps to enhance enzyme loading, strong mechanical
strength increases the reusability of biocatalysts, and extraordinary thermal, optical and
electrical features. Graphene-based nanomaterials mostly interact with enzymes by
VanderWaals forces, hydrophobic and electrostatic interactions. In addition, graphene
immobilized biocatalysts are mostly used in biosensors because of their exceptional
electric conductivity (Ahmad et al., 2010). In a previous study, glucose oxidase was
immobilized on polyvinylpyrrolidone-protected graphene for the creation of an elec-
trochemical glucose biosensor. The biosensor exhibited a broader linearity range
(2—14 mM), that ensured blood sugar detection (Shan et al., 2009). On the other
hand, graphene oxide is the precursor of graphene, has been widely used for enzyme
immobilization as they exhibit ultrahigh surface area, thermal and mechanical proper-
ties. Graphene oxide has oxygen-containing functional groups like carboxyl, hydroxyl,
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and epoxy which are useful for enzyme immobilization (Compton & Nguyen, 2010).
The three most popular methods reported for the synthesis of graphene oxide are
Staudenmaier, Hummers and Brodie (Compton & Nguyen, 2010). Xu et al., (2016)
covalently immobilized cellulase on graphene oxide nanosheets and used for saccharifi-
cation of lignocellulose. After immobilization cellulase retained 70% of its original
activity. Various authors reported that enzyme immobilized in graphene oxide has
shown different operational stability, catalytic efficiency, and application potential.

1.3.2 Carbon nanotube

CNTs are one-dimensional hollow tubes made up of carbon atoms. CNTs are of two
types of single-wall carbon nanotubes (SWCNTs) with three isoforms and multiwalled
carbon nanotubes (MWCNTs) that have been mostly used for enzyme immobiliza-
tion. CNTs exhibit extraordinary electrical, thermal, and mechanical properties. Arc
discharge, chemical vapor deposition and laser ablation methods are used for the syn-
thesis of CNTs. CNTs show increasing application possibilities in enzymes immobili-
zation, especially for the synthesis of biofuel cells and biosensors (Feng & Ji, 2011).
Previously, laccase was immobilized on to MWCNTs for the biodegradation of diclo-
fenac. The results of this study showed that immobilized laccase exhibits better storage
stability, reusability and high biotransformation efficiency of diclofenac (Xu et al,,
2015). Also, using the carbodiimide coupling technique, laccase was covalently immo-
bilized on MWCNTs and used for dye decolorization. Immobilized laccase showed
enhanced thermal stability and retained 95% of activity after 12 cycles of repetitive use
(Othman Abdelmageed et al., 2016). Furthermore, (3-glucosidase immobilized on
MWCNTSs and used for aroma enhancement of tea extracts. The immobilized enzyme
showed better reusability, thermal and storage stability (Celik et al., 2016). Moreover,
to completely examine the potential of CNTs enzyme complex, it is important to find
an optimum technique for enzyme immobilization.

1.4 Other nanomaterials

Besides the nanomaterials discussed here, other nanocarriers such as silica, cellulose,
metal-organic frameworks (MOFs), chitosan, and other bio-based nanomatenals have
also been utilized for enzyme immobilization, some of them will be analyzed in detail in
the following chapters. Moreover, silica can be modified using a silane blocking agent to
add reactive groups including carboxyl, epoxy, thiol, and amino groups for immobilizing
the biocatalyst. According to morphological and physicochemical features silica can be
categorized into natural, micro, meso, macro, and synthetic material. Nowadays, meso-
porous silica also known as nanosilica is mostly studied and has various benefits such as
huge surface area (300—1500 m’ g_l), uniform pore diameter (2—40 nm), inert and
stable at higher temperature (Zhou & Hartmann, 2013). Besides silica, chitosan and
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cellulose-based nanomaterials are mostly combined with other materials for enzyme
immobilization. Particularly, chitosan, a biopolymer obtained by partial deacetylation of
chitin, and can be regarded as an attractive matrix for enzyme immobilization because of
its low cost, biodegradability, and presence of functional groups (Tang, Qian, & Shi,
2007). Recently MOFs are getting attention because of their large pore volume, three-
dimensional structure, and tremendous absorption ability. Some enzymes including
lipase, catalase, and carbonic anhydrase have been successfully immobilized onto MOFs
(Ren, Feng, & Wen, 2018). Integration of enzyme as guest species into MOFs would
provide an artificial biocatalytic system promising for biosensing, biomedical devices, and
biocatalysis (Sharma A. et al. 2020; Sharma T. et al., 2020).

1.5 Conclusion

Nanomaterial immobilized biocatalysts generally exhibit improved activity, stability,
and reusability by creating a unique microenvironment. Although large-scale produc-
tion of immobilized enzyme is a vital matter for their applications because of technical
and economic issues. However, at the same time, it cannot deny that immobilization
nanotechnology could makes enzymes commercially available in reactions where
selectivity and purity of enzymes are important like in delicate processes of chemical
precursor’s synthesis, biomedicine, and pharma. With efforts from many academic
fields like biochemistry, bioprocess engineering, molecular biologyt, and others, the
production of immobilized enzyme reactors including microchannel, packed bed, and
fluidized bed reactors could be successtully commercialized in the future.
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