
MAP REDUCE DATA PARTITIONING

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering

By

Aashrita Goel, 141290

Under the supervision of

Dr. Suman Saha

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

Page | ii

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “ Map Reduce Data

Partitioning” in partial fulfillment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information Technology

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic record

of my own work carried out over a period from August 2017 to April 2018 under the

supervision of Dr. Suman Saha, Assisstant Professor, Dept of CSE, JUIT.

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Aashrita Goel, 141290

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Suman Saha

Assisstant Professor(Senior Grade)

Department of CSE and IT

Dated:

Page | iii

ACKNOWLEDGEMENT

It is great pleasure to express my gratitude and words of appreciation to the people who have

been, in various ways, the source of help, inspiration and encouragement in my life. I express

my heartfelt gratitude to my guide Dr. Suman Saha for giving me an opportunity to work on

this project. I am also thankful for the constant guidance and motivation that he has put in. It

has been a good learning experience to work with him. I am thankful to all the members of

JUIT for their support in completing this project.

Page | iv

 TABLE OF CONTENTS

ABSTRACT .. vii

Chapter 1. INTRODUCTION

1.1. Introduction ... 1

1.2. Problem Statement .. 3

1.3. Objective ... 3

1.4. Methodology ... 3

 1.4.1. Data Collection ... 4

 1.4.2. Map Reduce Algorithm .. 5

Chapter 2. LITERATURE SURVEY

2.1. Hadoop and Big Data .. 7

2.2. HDFS ... 10

2.3. Map Reduce.. 14

2.4. Hadoop Streaming .. 16

2.5. k-means Clustering Algorithm ... 17

2.6. k-means++ .. 22

2.7. Choice of Python .. 23

Chapter 3. SYSTEM DEVELOPMENT

3.1. System design ... 25

3.1.1. Hardware requirements .. 25

3.1.2. Software requirements .. 25

3.1.3. Technologies used .. 26

3.2. k-means Algorithm ... 26

3.3. Sequential Clustering .. 26

3.3.1. Start-up ... 27

3.3.2. Assignment ... 28

3.3.3. Centroid Update .. 29

Page | v

3.4. k-means++ ... 30

3.5. k-means via Map Reduce .. 30

3.5.1. Start up .. 31

3.5.2. Mapper .. 32

3.5.3. Reducer ... 34

3.6. Modified MapReduce clustering algorithm .. 35

3.6.1. Initialization .. 36

3.6.2. Distance Computation .. 37

3.6.3. Mapper .. 37

3.6.4. Reducer ... 38

3.6.5. Driver program ... 39

Chapter 4. PERFORMANCE ANALYSIS

4.1. Experiments and Results ... 41

4.1.1. Experiment 1: Comparison of Map Reduce algorithms

 with small dataset ... 41

4.1.2. Experiment 2: Comparison of Map Reduce algorithms

 with large dataset .. 45

Chapter 5. CONCLUSION

5.1. Conclusion .. 49

5.2. Future Scope ... 50

REFERENCES ... 51

Page | vi

LIST OF TABLES

Table 1.1 Randomly generated data set.. 4

Table 1.2 Thunder Data Set ... 5

Table 4.1: Comparison of the clustering algorithms ... 44

Table 4.2: Comparison of clustering algorithms for STARNET dataset 48

LIST OF FIGURES

Figure 1.1: Operation of MapReduce .. 6

Figure 2.1: 5 V's of Big Data ... 7

Figure 2.2. Modules of Apache Hadoop .. 9

Figure 2.3. Architecture of HDFS .. 11

Figure2.4: HDFS write operation ... 12

Figure2.5: HDFS read operation ... 13

Figure 2.6: Architecture of Map Reduce ... 15

Figure2.7: (a) and (b) represents the Elbow curve ... 21

Figure 3.1. Structure of k-means via MapReduce algorithm 31

Figure 3.2. Structure of driver script of Modified Algorithm 40

Figure4.1: Cluster formation using k-means algorithm for k=3 42

Figure4.2: Cluster formation using k-means via Map Reduce for k=3 42

Figure4.3: Cluster formation using modified Map Reduce algorithm for k=3 43

Figure4.4: (a) shows the clusters formed and

 (b) shows the final coordinates for k=4 .. 43

Figure4.5: Comparison of clustering algorithms for Experiment 1 45

Figure4.6: (a) shows the clusters formed and

 (b) shows the final coordinates for k=3 .. 46

Figure4.7: Comparison of algorithms of Experiment 2 .. 48

Page | vii

ABSTRACT

Data clustering is the grouping of similar data points in a cluster. Data clustering helps a lot

in data analysis of big data. Map reduce framework is used for the parallel processing of big

data. Map Reduce functionality can be used to implement clustering algorithms to cluster

such huge amount of data. In this project, one modified Map Reduce clustering algorithm has

been proposed that is computationally less expensive than the k-means via Map Reduce

algorithm. The performance of the traditional k-means, k-means via Map Reduce and the

modified clustering algorithm was compared. The proposed algorithm came out to be better

than the k-means via Map Reduce, given that the dataset for clustering is huge. For small

dataset, serial k-means performs better than the Map Reduce clustering algorithms. For large

dataset, k-means takes a lot of time.

Page | 1

CHAPTER- 1

INTRODUCTION

1.1. Introduction

With the advancement of technology, tons of data is generated that can no longer be managed

and processed with the help of traditional file systems. This led to the introduction of the

term “Big Data”. Big data refers to large datasets that are so voluminous and complex that

new technology, storage system, and processing unit had to be developed to handle it[1]. For

the analysis of such big data, data clustering helps a lot.

Data clustering is the partitioning of a data set or sets of data into similar groups. It is a

common technique used for the purpose of data analysis and has many applications in the

field of statistics, data mining, and image analysis. In data clustering, we group the objects

similar to one another and different from other groups. For this purpose, some attribute is

used to identify the objects similar to each other that can be placed together in a group. In our

study, distance measure is used for data clustering. There are many types of data clustering

algorithms which include hierarchical algorithms, Lloyd’s algorithm etc. Hierarchical

algorithms build successive clusters using previously defined clusters. Hierarchical

algorithms can be agglomerative or decisive. Agglomerative clustering algorithm follows a

bottom up approach in which clusters are built by successively merging smaller ones. In

divisive clustering algorithms, clusters are formed by splitting larger cluster and thus this

approach is known as top-down approach of clustering.[2]

Data clustering is computationally expensive in terms of both time and space complexity. In

addition more time and space is consumed when precision and accuracy has to be met in

terms of similarity within the data clusters. The situation becomes worse when the data is

distributed. Hence, parallelizing and distributing expensive data clustering tasks becomes

cumbersome. A good knowledge of parallel and distributed programming concepts are

needed to carry out the data clustering tasks in such cases with great efficiency.

Page | 2

Apache Hadoop is an open source, java-based programming framework that helps in the

storage and processing of big data.[2] MapReduce is the software framework for solving

certain kinds of distributable problems that involve big data. It is a two step process that

consists of Map and Reduce phase. Both the mapper and reducer phase take the input in the

form of (key, value) pair. The input file is given as input to the mapper phase which

produces the intermediary output which is given as input to the reducer phase. The reducer

phase gives the final output which is written in the file. Mapper phase includes multiple

mapper tasks and each map task processes its part of the problem and outputs result as key-

value pairs. The reduce step receives the outputs of the maps, where a particular reducer will

receive only map outputs with a particular key and will process those.

One of the biggest advantages of MapReduce is that Map and Reduce tasks can be

distributed across different nodes. Hence, MapReduce provides a platform for distributed

computing framework. Mapper and reducer both can run independently. Hadoop provides a

number of features that make it suitable to process big data. Among these features is

reliability that is achieved by replication and also provides the data lost in case of node

failures and other disasters.

The common data clustering algorithm implemented in this study is K-means, and moving

forward we will be implementing a modified MapReduce clustering algorithm. Calculations

required for k-means are computationally costly and perform well for data having the

accompanying three qualities:

 relatively low feature dimensionality,

 limited number of clusters, and

 a modest number of data points

In this study we explore k-means application through MapReduce using Hadoop. The basic

approach is to form clusters initially by random initialization and then by deliberate

initialization and moving forward Spectral analysis can also be applied. This could be one of

the future developments.

Page | 3

Chapter two explains the K-means clustering algorithm that we implement using

MapReduce. Chapter three discusses Hadoop which is the MapReduce implementation we

used. In this chapter we also detail the MapReduce strategy we use to tackle this particular

data clustering problem.

Chapter five summarizes the report and provides details on future directions.

1.2. Problem Statement

The time complexity of existing data clustering algorithms to cluster large datasets is huge

and in Lloyd’s algorithm, distance is calculated in every iteration to find the new centroids

which makes it computationally very expensive. Thus, to optimize the traditional algorithms

Moreover, the clustering algorithm has to be optimized.

1.3. Objective

The objective of the project is to utilize the Map Reduce structure on an extensive dataset to

distinguish the groups inside that dataset by forming k clusters.. The objective also includes

comparative study between the traditional k-means, k-means++, k-means via Map Reduce

and the modified Map Reduce clustering algorithm.

1.4. Methodology

For this project, we followed the following steps:

Step 1. Data Collection: It is the first and primary thing that is to be done so that we can

apply clustering algorithms over it. Data is randomly generated and large data set is taken

from the STARNET lightning network.

Step2. Load data on HDFS: The data set collected is put on the Hadoop distributed file

system.

Step3. Implement clustering algorithms: Serial k-means, k-means++ and modified map

reduce clustering algorithm is designed in python and applied on the data collected.

Page | 4

Step4. Store the result: The final clusters and time taken to implement the algorithms are

written down to the output directory.

Step5. Plot the graphs: The clusters so formed are represented using clusters and the final

centroids are also plotted.

1.4.1. Data Collection:

Several data samples have been generated randomly or collected to perform MapReduce

algorithm over it. Data samples used for the purpose are as follows:

 Randomly generated data set: This dataset is generated randomly using numpy

module of Python. For each instance, there exists three attributes, one for the data

point identifier and other two attributes determine the two dimensions.

Data Set Characteristics: N/A
Number of

Instances:
1126

Attribute Characteristics: Integer
Number of

Attributes:
3

Associated Tasks: Clustering Missing Values? N/A

Table 1.1 Randomly generated data set

 Thunders data set: This data set represents the STARNET detection network in

which clustering is based on the distances of longitude and latitude attribute of data

points.

Data Set

Characteristics:
N/A

Number of

Instances:
10788

Attribute

Characteristics:

Integer,

Float
Number of

Attributes:
29

Page | 5

Associated Tasks: Clustering Missing Values? N/A

Table 1.2 Thunder Data set [3]

1.4.2. MapReduce Algorithm:

Map Reduce is the programming model of Hadoop that is used for the analysis and

processing of big data. To perform spatial clustering(clustering based on the distance metric)

over the data collected, we implemented mapper and reducer algorithms of k-means and k-

means++ in Python. An advancement in the mapper and reducer phase was made and

implemented. The input data goes through the following stages before writing the final output

in the output directory:[4]

1. Input: The input directory that contains the large datasets is given as input to the

MapReduce task. In this stage, input data is split into many independent data blocks

that are given as input to multiple mappers for parallel processing.

2. Map: It takes the input in the form of <key, value> pairs. Thus, the input phase is also

responsible for converting the input data in the <key, value> pair form. Map

functionality is then applied to each of the <key, value> pair. Map phase produces the

intermediate result in the <key, value> pair form which is fed in as input to the next

stage.

3. Shuffle: In this phase, the <key, value> pairs that are given as output by the Map

stage are sorted on the basis of the key and the <key, value> pairs that have the same

key are merged in the form <key, list of values>.

4. Reduce: This phase will iterate through the data points present in the list of values

assigned to a particular key. The input is given in the form < key, {a list of values} >

and the output is in the form < key, value > pair.

Page | 6

5. Output: This stage will write the results of the Reducer stage to the specified output

directory.

Operation mechanism of MapReduce is shown in Figure 1.1.

Figure 1.1: Operation of MapReduce

Page | 7

CHAPTER 2

LITERATURE SURVEY

2.1. Hadoop and Big Data

S. Vikram Phaneendra & E. Madhusudhan Reddy enlightened us by explaining the change in

data and the way we can manage it. Initially, the amount of data generated and to be handled

was less and thus could be easily managed and analyzed using RDBMS. Also, we had only

structured data mainly that could be easily converted to relational databases. But, these days

the data available might have a proper defined schema i.e. the Structured data or might be

semi-structured or unstructured like audio clips, images etc. Also, the amount of this

generated data is too high and is thus termed as Big Data.[1] The 5 dimensions of Big Data

that differentiates it are :

Figure 2.1: 5 V's of Big Data

i. Volume: Big Data as the name describes refers to the huge amount of data.

ii. Velocity: It refers to the speed at which this data is being generated and the speed

required for storing and analyzing this huge amount of data.

iii. Variety: It refers to the diverse content of data as we discussed earlier, it might be a

mixture of structured, semi-structured and unstructured data.

Page | 8

iv. Veracity: It refers to the use of the generated data. The reliability of the data that we

are storing is also an essential factor.

v. Value: It refers to the useful information that we can obtain from this data. When we

are ready to invest so much in storing and analyzing this huge amount of data then,

we must get an output that would be beneficial for us.[1]

Bernice Purcell stated that the huge datasets that are present in Big Data cannot be handled

using simple relational databases and traditional RDBMS tools. Instead, we need a clustered

Network Attached Storage for storing this huge amount of data. Hence, we needed something

for proper storage and analysis of this data and the solution is Hadoop. The Hadoop

architecture can be used for storing this huge amount of data and using various techniques we

can extract meaningful information out of this structured, semi-structured and unstructured

data. [5]

Hadoop can be referred as a collection of many open source software utilities. It is basically a

software platform that can be used to store high volume of data and perform large number of

computations on that data in a very easy and precise way. Today almost every company uses

it for both Research as well as for Production. Hadoop can be analyzed as an ecosystem

consisting of all open source elements that brings out the fundamental changes in the way

organizations work. It actually facilitates us by providing a large network of computers

where we can store huge amount of data and perform all the programming operations

depending upon the requirement we need. While designing the various modules of Hadoop

the major consideration was the high failure rate of commodity hardware and thus it should

be automatically handled by the software in the framework. It uses the Map Reduce

programming model for performing all the computations and processing.

This framework was originally designed for computer clusters that were made out of

commodity hardware and thus, all the modules of the framework were designed in

accordance to the high failure rate of commodity hardware. If we look at the core of Apache

Hadoop, the storage part it consists of is known as HDFS i.e. Hadoop Distributed File

System and the Map Reduce Programming model as a part of processing. Now considering

the fact that Hadoop is a platform where we can deal easily with Big Data, we have to know

Page | 9

how it actually works. Hadoop splits the data files into large blocks and distributes them

across the data nodes(systems) in a cluster. To process these data blocks on different

machines, the packaged code is transferred to the data nodes(systems). In this way, huge

datasets can be processed in a faster and more efficient way.

Java Programming Language has been used for developing Hadoop. Although, java is the

most common language for Hadoop Map Reduce, but we can use any programming language

along with Hadoop Streaming to implement the Map Reduce programming model.

Various modules of Apache Hadoop Framework are:

Figure 2.2. Modules of Apache Hadoop

Hadoop Common: It consists of all the libraries and utilities that are required by other

modules and thus acts as Credential Provider. It is basically a Key Management Software.

HDFS: The Hadoop Distributed File System lays its basis from Google File System, it is a

distributed file system that stores all the data on commodity machines, thereby providing

very high bandwidth across the clusters.

Hadoop YARN: It manages the computer resources in clusters.

Hadoop Map Reduce: The programming model for large scale data processing in Hadoop.

Now let us explore Hadoop Architecture in detail.

Page | 10

Hadoop Architecture mainly explains how the file system in hadoop works and how the Map

Reduce is used to process the large amount of data stored in these file systems.[1]

2.2. HDFS

The Hadoop Distributed File System is a portable as well as scalable file system written in

java programming language. Harshawardhan S. Bhosale and Prof. Devendra P. Gadekar

explained that Hadoop Distributed File System basically operates on the clusters of

computers. Hadoop itself forms the clusters of computers and it is these clusters that HDFS

lies its basis on. If we consider a cluster, it consists of many nodes. There are two types of

nodes within the cluster, the name node and the data node. There is only one name node i.e.

the node that contains all the meta data and is concerned with the namespace of the file

system. As the name suggests data node consists of large blocks of data.[6]

Now when data storage is a problem Hadoop Distributed File System is there to hold your

large amounts of data varying from few gigabytes to terabytes with very high efficiency. It

stores large files across multiple machines that are termed as Data nodes. It is these data

nodes that serves all read and write requests of the clients. Initially the large files are broken

into various blocks depending on their sizes. Each block is then stored at multiple places(

Data Redundancy) so as to achieve high reliability. It is because of this replication of data

across multiple hosts that (RAID) Redundant Array of Independent Disks is not required.

The default replication value is 3 i.e. three copies of one data block are stored out of which

two are stored on different machines within the same rack while third on some other rack.

Also data nodes can communicate with each other to maintain the balance of data and thus

keeping high reliability.

Page | 11

Figure2.3: Architecture of HDFS[7]

But HDFS strictly follows - "Write once Read Many" model. Hence, we cannot write again

and again instead, we can just open a file and append more data to it. But for this append

operation as well as read operation the client needs to request for the access from the name

node. [7] Once the name node provides the client all privileges then only one can perform

read and write operations block by block. As we know, HDFS follows master slave

paradigm- name node being the master and data nodes the slaves.

To perform a HDFS write operation, client needs to request for the access from the name

node then it is the name node that provides the address of the data node to the client where

client can perform write operations. Once the write operations start, data pipeline is created

Page | 12

by the data node and the blocks are copied to other nodes also for maintaining the replica

rate.

Figure2.4: HDFS write operation[8]

Each cluster consists of a particular primary name node and the secondary name node that

are interconnected. The primary name node contains all the meta data i.e. the data about the

data stored in data nodes and location of all the blocks etc. But if the situation arises that the

primary name node fails, this is where secondary name node comes into action. The

secondary name node on regular intervals take snapshots from the primary name node and

stores them to local directory so that if primary node fails at any point of time these images

could be easily used to restart a primary node again. Since the name node is the single point

of storage of meta data so, the risk of this huge loss cannot be taken in today's world, this

could turn as a huge bottle neck in the storage management of an organization. Although

snapshots are taken periodically and saved but still true redundancy is not provided by the

secondary name node.

Page | 13

To perform a HDFS Read operation client needs to request for the access from name node

only then name node checks for the particular privileges, and then provides the address of the

data node to the client from where client can directly read the block. Then, the client is able

to access the data nodes directly where the blocks of file are already stored. [9]

Figure2.5: HDFS read operation[8]

The main basis in Hadoop is to get higher throughput. Hence, it considers the high cost of

collecting data at a single place performing all the computations there only and then

transferring the results to the various other nodes in the whole network. So, instead of

performing such high cost tasks the idea is to move the application closer to the data for

performing all the required computations i.e. either on the same data node or on a node

within the same rack thereby reducing the costs and increasing the throughput.

Hadoop also facilitates us by providing Hadoop Streaming. It is Hadoop streaming that

makes it possible to run any executable as a mapper and a reducer for performing all the

computations.

Page | 14

2.3. Map Reduce Engine

Now, as we know HDFS is used for storing the large amount of data, but we also need to

perform computations on this data and thus, we have the Map Reduce paradigm. The Map

Reduce engine contains a job tracker. Whenever a client submit a map reduce job to the

application, it reaches out directly to the job tracker. Also, we have the task tracker nodes to

which the tasks are assigned by the job tracker. Now the main priority of job tracker is to

assign the tasks to be performed and it knows the location of machines where the data to be

computed resides and the machines nearest to that machine within the same racks and the

same clusters, so the job of the job tracker is to assign the tasks in such a way that

computations should be performed closer to the data as much as possible. If it is not possible

to assign the work to the same node on which data resides then it is assigned to the machine

within the same rack. The reason behind the whole task is to keep network traffic as low as

possible. But, there is always a single job tracker where as Task trackers are multiple. Also,

each node has the potential to act as a slave task tracker.

If the task tracker is not able to fulfill the job in time or if it fails, that particular part of job

can be rescheduled. Also, the job tracker can keep a record of number of available slots for a

particular task tracker nodes in the cluster. Whenever a map or reduce task is activated, one

of these slots is filled up. Thus the job tracker allocates the job to the nearest task tracker

where at least one slot is available. But it does not consider the actual load of the system and

hence the real availability is not known. Sometimes even the task tracker might be too slow

and thus might delay the map or reduce job or even both. But for such cases we can even

execute this particular task on multiple slave nodes.

Page | 15

Figure 2.6: Architecture of Map Reduce

Jeffrey Dean and Sanjay Ghemawat explained that Map Reduce is an implementation for the

process of generating and managing large data sets. It normally consists of two functions i.e.

mapper and the reducer. It is these functions that perform the various computations and give

us the desired results. It is the user only that defines both mapper as well as reducer for the

computations to be performed. Map step takes input data and generates intermediate key

value pairs and these key value pairs are taken as input via reduce function that performs

computation on these pairs and gives us the desired results. We can consider map and reduce

to be as separate steps on data that can occur in parallel. Although the result of mapper is

used by reducer still they are executed multiple times in parallel. [10]

For instance, a huge amount of data can be easily and efficiently reduced to smaller chunks

of data where we can apply data analytics easily. When we are working with Hadoop such

Page | 16

operations are performed as map reduce jobs. Once these operations are performed, we can

write the desired results back to HDFS. So basically, we have two functions in MapReduce:

 Map function: It takes a section of data values as an input, perform the desired

operation on each input thereby generating an intermediate output. The output is in

the form of key value (key, value) pairs.

Once the map step is over, the outputs from the map step are sorted and it is taken as

input in reducer. In betwen, the combiner might also be used. The data transfer takes

place from mapper to reducer. All the values belonging to a particular key from the

output of mapper function are aggregated at a single node where reducer for that

particular key has to be executed.

 Reducer function: The reducer function then takes this aggregated values for a

particular key as an input and finally generate a key value pair as a desired output for

all particular keys i.e. if we consider the intermediate key value pairs generated by the

mapper function many key value pairs were generated with non unique keys but then,

the similar keys were aggregated at a single node where reducer performed the

necessary computations to generate a single output for a single key which demarcates

our desired result.[11]

Thus, when it comes out to be dealing with Big Data and its analysis, Map reduce is

the best suited.

2.4. Hadoop Streaming

Hadoop distribution has hadoop streaming as one of its utilities. We can create and run map

as well as reduce jobs with any executable as a mapper or reducer with the help of this utility.

The utility creates the job and assign it to a specific cluster where it could be completed

thereby generating the appropriate result. [12]

In hadoop streaming, the number of mappers assigned to do the task depends on the number

of data points. The number of reducers is also chosen by the hadoop streaming by default.

However, user can specify the number of reducers.

Page | 17

By using hadoop streaming, we can write mapper and reducer code in any programming

language.

2.5. k-means Clustering Algorithm

As we discussed above, to handle Big Data we need Hadoop and thus we need to organize

the machines in the forms of clusters and each system serves as data point in the cluster.

Before all this we need to partition the data sets also and this partitioning of data sets into

clusters is required in most of the applications these days. We have many clustering

algorithms for partitioning of data sets. The most common and widely used algorithm is

Lloyd's algorithm. Lloyd's algorithm is the simplest algorithm for clustering of data sets as it

just requires one single input k i.e. the number of clusters required and thus commonly

known as K-means algorithm. The complexity is another factor that makes this algorithm so

useful.[15]

The k-means algorithm and its other variants can also be implemented using map reduce and

thus get its importance. Let us suppose we have n objects in our data set, then k-means is

basically implemented to partition these n data points into k clusters and this partitioning is

done based on both similarities and differences within the data points. The clusters are made

based on similarities i.e. within the cluster all the data points have a common trait and thus

have a high intra cluster similarity. Instead, the inter cluster similarity is very low. Also, k-

means sets a center of gravity for every cluster and this center of gravity depends on the

number of objects inside the cluster. So basically, if there is any change in the objects present

in the cluster, the center of gravity also makes a shift.

To begin with the algorithm, we have n data points and the input k i.e. number of clusters.

Now we have to select k centers of gravity for k clusters, we select them out of n data points

that we have. Now we consider all the other n-k data points and assign every data point to

one of these k selected centers based on a similarity (to be chosen by user). When all the data

points are alloted a center, we have with us k clusters but these are not the true centers of

Page | 18

gravity and even the clusters are not proper even. So, we need to perform various iterations to

get the desired clusters and the perfect centers of gravity for each one of them.

Now we have all the clusters for once and thus we can move forward for the calculation of

new centers of gravity. The above two steps have to be performed iteratively until and unless

we get the desired result i.e. we reach out the convergence condition. Now, in k-means

clustering comparing the similarity level is the most challenging task. Once the new centers

gravity have been calculated, then we again check for all the data points for similarity with

the data centers and if it matches with some other center of gravity then it is allotted that

particular cluster.[16][17]

For calculation of assigning the objects their new desired clusters the algorithm has to

perform around n*k calculations i.e. the distance computations. Although few of the steps

like calculation of distances between data points and the new centers of gravity can be

computed in parallel but we cannot go for all the iterations in parallel as new centers of

gravity have to be calculated for every iteration. Since the centers of gravity i.e. the mean of

all the clusters changes with each iteration so we cannot go for parallel computation

haphazardly, thus it gets the name - "Serial K-means algorithm" .[13]

There are many implemented forms for K-means clustering but the most common is

heuristic. It uses a refinement technique iteratively. Although it is just heuristic but

sometimes it is mistaken as k-means clustering algorithm only.[16] In Lloyd's algorithm the

data is divided into k sets using or method or even arbitrarily. Once we have formed the

clusters for the first time i.e. for the first iteration by calculating the distance with these

randomly selected centroids then we have to calculate fresh centroids for all the clusters. The

fresh centroids can be calculated by computing the means of the clusters that have been

formed in the previous iteration. After calculating these new means, we can associate all the

data points with their nearest means by calculating distances. This is how there is a change

associated with every iteration as new data points are added into some clusters while some

data points are removed from some clusters. This algorithm is repeated again by calculating

new centroids and the iterations continue. But as we know there must be an endpoint

Page | 19

associated with every algorithm, so we have to perform the iterations but only till we reach

the convergence condition.[18][19]

When we go on iterating, there come a stage when centroids no longer change and therefore

all the clusters will remain uniform after that, this is the phase of algorithm that we call as

convergence condition. The convergence condition in Lloyd's heuristic is reached very

quickly thus making it more popular.

But the input value k in the k-means algorithm is both friend and a foe. It is advantageous as

we don't have to give so many inputs, just the desired number of clusters and thats enough

for it. But at the same time, it turns out to be a foe for our systems as if we won't choose the

appropriate value for k, it might give us poor results.

Moreover, the convergence condition can be set according to the requirement of the users.

Basically, the convergence is when there is no total error in between the iterations. But, in

some implementations the convergence condition can be modified to the situation when the

total error drops below a certain threshold level. In k-means the time complexity depends on

three factors: first is the number of data points is the data sets that have to be partitioned ,

second is the number of clusters to be made and third is the dimension of the data points.[20]

We can apply k-means using a distributed setting also. We can apply the distributed version

using map reduce paradigm. As we know that map reduce paradigm works in Hadoop where

we can split the total computations into two parts: using method map and using method

reduce. So basically, we will be breaking each iteration into 2 steps first step would be

applied using mapper function and the other one using the reducer function.

So basically the first step would compute the data points that are closest to the centroid.

Thus, at the end of application of mapper function we would get the data points associated

with each centroid. In the second phase i.e. the reducer phase we can simply compute the

new centroid using the existing clusters. This completes our 1 complete iteration. This tells

us the fact that we need to execute mapper and reducer function again and again until we

reach the convergence condition.

Page | 20

For instance, if we have a data point x in the data set , the map phase applies on each data

point x and generates the key value pair as output where key is the index of the mean i.e.

nearest to x and value (x,1) is returned. The reduce phase operates on these key value pairs.

For each key, one reducer works and does the pair-wise summation over all the values

belonging to that particular key. But as we know, these iterations i.e. every mapper and every

reducer has to be executed on a different machine, thus every machine must have the list of

means that would be broadcasted to all of them after every iteration.

Here in the case of map reduce application we can consider the time complexities differently

for different phases. If we consider the map phase, total work depends on three factors: first

is the number of data points present in the data sets for which the computations are being

performed, secondly the number of desired clusters and third the dimension of the data

points. The number of data points along with their dimension decides the communication

costs but we can definitely reduce it by using combiners. Also the reducer cost mainly

depends on the number of data points only.

As we discussed earlier the biggest disadvantage of k-means is the selection of an optimum

value of k that gives us the best desired results. The selection of a wrong value might take us

to poor results. Also, in k-means it does not matter if the result is proper or not, it would just

show us the clusters. Hence, we need a way to define and get to know whether the value of k

that we are using is the right number of clusters or not. So let us discuss one of the methods

to determine the correctness of the value of k. The method we are discussing is known as

Elbow method.

The basis of elbow method is to execute k-means for a definite range of values for the data

set where we want to partition the. So basically, we will compute the clusters using k-means

for a certain range of values and then we have to calculate the SSE i.e. Sum of Squared

Errors.

We have to calculate SSE for all the values of k for which we are computing the clusters.

Then we can construct the graph between the values of k and the corresponding SSE value.

Page | 21

The graph is a bit arm shape and the nest value that can be considered for k is where the

curve bends like elbow and thus gets its name- Elbow curve.

The curve clearly shows that as the value of k increases the value of SSE keeps on decreasing

and when the value of k approaches n i.e. the number of data points within the data sets then,

the value of SSE approaches 0. That would be best ideally, but we need lesser number of

clusters such that we even get a lower SSE. So the idea behind this elbow curve is that the

beginning of elbow demarcates the point from where further decrement in the value of k

would lead to diminishing returns in SSE as shown in Figure2.7(a).

 (a) (b)

Figure2.7: (a) and (b) represents the Elbow curve [14]

But, there might be the cases where our working and identification with the elbow curve

might also fail as sometimes the elbow is not clearly visible in the plot as shown in Figure2.7

(b). [14] There might be the cases when we won't even get the arm like structure instead, we

would get smooth curves and thus we need other methods for computing the nest desired

value for k in the application of k-means algorithm

2.6. K-Means++

Another algorithm that can be used for partitioning of data sets is the extension of standard k-

means only. The only difference between k-means and k-means++ is the way in which

centroids or means are initialized in the very first iteration. In k-means, k centroids are

Page | 22

initialized randomly where as in k-means++ there is defined algorithm according to which

the centroids are initialized and the rest of the iterations are same in both of them. Basically,

this algorithm helps us to define the centroids that are well separated from each other. This

approach was developed to improve the total error that is left in the end i.e. when we reach

convergence condition.[20]

In the initialization process in this algorithm, the first mean is chosen at random out of k, so

we have to select k-1 more means from the data points. Now the squared distance is

calculated between data points and the nearest centroid. Then, we can choose the next mean

whose probability is proportional to the squared distance i.e. the one that would be far would

have more probability of being chosen. Thus we can repeat the above iteration again and

again i.e. k-1 times so as to get k initial centroids that we require to begin with the standard k-

means algorithm.[13][21]

If we consider the complexity of this initialization algorithm, it again depends upon the

number of data points present in the data sets that we are considering , the dimensions of the

data points and the number of means that have been initialized already. So, the number of

means already initialized will keep on incrementing with every iteration. Thus, the

complexity depends upon the square of number of clusters to be found and the number of

data points to be performed computations upon and their dimensions as well.[22]

But, again here we have an issue in selecting the value of K. The selection of a wrong value

might take us to poor results. Also, in k-means it does not matter if the result is proper or not,

it would just show us the clusters. Hence, we need a way to define and get to know whether

the value of k that we are using is the right number of clusters or not.

We can apply k-means++ also using a distributed setting. We can apply the distributed

version using the map reduce paradigm. As we know the map reduce paradigm works in

hadoop where we can split the computations into two parts: using map method and using

reduce method. So basically, we will be breaking each iteration into two steps, first step

would be applied using mapper function and second using reducer function.

Page | 23

Now in k-means++ we have two phases: first to calculate the squared distance between each

point and its nearest centroid and second, to add new centroid to the set by selecting the one

with the largest distance i.e. the largest probability. So, we can use map reduce to apply this

algorithm with two different phases such that mapper function would operate on each data

point in the dataset. The mapper function then computes the squared distance between the

data point and each centroid and computes the nearest centroid to that data point on which it

is being operated. Thus, here mapper function generates a single value only i.e. the squared

distance from the nearest centroid. The reducer function takes this value as an input and it

aggregates these emissions. Basically, the aggregation is done based on the probabilities i.e.

the squared distances.

Thus, the map reduce produces a single value as an output i.e. the centroid that needs to be

added to the set of centroids. As we discussed earlier, the new set of means has to be

broadcasted to all the data sets.

If we consider the time complexity of this algorithm using map reduce it depends upon the

current set of initialized means. Also we have the communication costs that depend upon the

number of data points present in data sets and their dimension and the number of means or

centroids to be chosen as well. Since, the reducer function that we are using for computation

is also commutative as well as associative thus, we can reduce the communication costs also.

2.7. Choice of Python

For the project, python has been chosen as the programming language. Python is easy to

learn and provide a number of built-in functions. Python modules help to make our work

easier. Numpy module can be used to create random data set. It provides a number of built-in

functions to compute mean, median etc. in minimum time. [23] Pandas module is a important

module for data analysis. It provides a number of functionalities to work with the dataframes.

It has become easy to search content, analyze data in the csv and text files with the help of

Pandas.[23] Python also provides a built-in function to compute the k-clusters using k-means

algorithm.[24] Matplotlib module is an important module for the project that helps us to

Page | 24

visualize the implementation. It is a module that helps to create plots and graphs. This

module of python is of great help for this project.

Since Python provides a handful of useful libraries that can make our work easier, so Python

is chosen to implement the algorithms.[25]

Page | 25

CHAPTER 3

SYSTEM DEVELOPMENT

In this chapter, the machine configurations, softwares used, technologies used have been

discussed. Also, the algorithms used have been discussed in this.

3.1. System Design

In this section, the machine configuration and the softwares used to implement the map

reduce clustering algorithms have been discussed. Machine configuration plays an important

part in the working and efficiency of the algorithm. Moreover, the efficiency also depends on

the versions of software used and the technologies implemented.

3.1.1. Hardware Requirements

To implement the traditional k-means, k-means via map reduce and the modified MapReduce

algorithm, a machine is needed. The hardware specifications of the machine used for

implementing the project are as follows:

 Processor: Intel(R) Core(TM) i5-5200U CPU @2.20GHz 2.20GHz

 RAM: 8GB

 64-bit Operating System(CentOS 7)

3.1.2. Software Requirements

For this project, different data sets of different sizes are taken into consideration. To manage

different sizes of data efficiently, Python is chosen as the programming language because

python provides pandas module that makes data analysis a lot much easier. Thus, Spyder

needs to be installed. Moreover, for running the Map Reduce task, Apache Hadoop needs to

be installed. Thus, the softwares used for implementing the project are as follows:

 Apache Hadoop 2.7.4

 Spyder

Page | 26

3.1.3. Technologies used

In the project, the main objective is to form clusters. Thus, data clustering and data

partitioning are the important aspects of this project. Moreover, when mapper and reducer

functions are written in Python, then Hadoop Streaming helps to run our mapper and reducer

in Apache Hadoop. Thus, the important aspects needed in this project are:

 Data Clustering

 Data Partitioning

 Hadoop Streaming

3.2. k-means Algorithm

Let X={x1, ……, xn} be a set of n data points, each with a dimension d. The objective of k-

means is to find a set of k means M = {m1, …., mk} which minimizes the function

In other words, k-means aims to minimize the Euclidian distance between every data point

and the mean closest to that point. It is a NP-hard problem. So, exact solution may or may

not exist. There are other good algorithms that gives approximate solutions for the problem.

3.3. Sequential Clustering

To study how effective MapReduce clustering algorithms are when compared to the

sequential clustering algorithms, we perform serial k-means algorithm which consists of

three phases:[16]

1. Startup : k-centroids are initialised randomly and it checks for the convergence

criterion

2. Assignment: Each data point is assigned to one of the k centroids or cluster

3. Update: The centroid of the cluster is calculated again

Page | 27

3.3.1. Start-up

In the start-up program, we initialise k centroids randomly from the set of n data points.

Then, we call the Assignment procedure where each data point is assigned to the cluster id

which contains the centroid with the minimum distance. The centroids are calculated again in

the Update procedure. The Start-up program, then, repeats the Assignment and Update

procedure until the convergence criterion is met or the position of centroids remains the

same.

Require:

 A set of n data points data points X= {x1, x2,...., xn} of dimension d

 k, which specifies the number of final clusters to be formed where k < n

Output:

 A new set of centroid,

 number of iterations used to output the final clusters,

 k number of clusters and

 time taken for convergence

1: centroid_list1 <= randomly choose k centroids

2: initialise convergenceTime, Iterations, finalCluster

3: startTime <= currentTime()

4: M <= call Assignment

5: updated_centroid <= M

6: Iterations <= 1

7: while (updated_centroid != centroid_list1) || (threshold limit is met) do

8: centroid_list1 <= updated_centroid

9: M <= call Assignment

10: Iterations <= Iterations + 1

11: updated_centroid <= M

12: end while

Algorithm 1: Algorithm for Startup

Page | 28

13: endTime <= currentTime()

14: convergenceTime <= (endTime - startTime)

16: finalClusters <= updated_centroids

17: write finalClusters

18: return finalClusters, Iterations , convergenceTime

3.3.2. Assignment

In this phase, we use Euclidean distance to calculate the distances. For each data point, the

distance is calculated between the data point and the centroid of every k- cluster. The

centroid which gives the minimum distance with the data point is noted and the data point is

assigned to the cluster containing that centroid.

Require:

 A set of n data points data points X= {x1, x2,...., xn}, each of dimension d

 initial list containing k centroids C = {c1, c2,...., ck}

Output: A dictionary list consisting of each centroid and the data points assigned to them.

This list is then passed as an argument to the CentroidCalculator program.

1: Initialize clusters as dictionary

 2: centroid_set <= C

3: distance (x, y) =

 where xi (or yi) is the coordinate of x (or y) in dimension i

4: for all xj X such that 1 <= j <= n do

5: chosenCentroid <= null

6: minDistance <= ∞

7: for all centroid in centroid_set do

8: dist <= distance(xj, centroid)

Algorithm 2: Algorithm for Assignment

d

i

ii yx
1

2)(

Page | 29

9: if chosenCentroid = null || dist < minDistance then

10: minDistance <= dist

11: chosenCentroid <= centroid

12: end if

13: end for

14: clusters[chosenCentroid] <= (xj)

15: j +=1

16: end for

17: call CentroidUpdate(clusters)

3.3.3. Centroid Update

The dictionary list that contains the centroids and the list of data points assigned to each

centroid is passed as an input to the CentroidUpdate procedure. For each centroid, it loops

through the data points assigned to it and calculate the new mean which becomes our updated

centroid of the cluster. It, then, outputs the list of new centroids of k clusters.

Algorithm 3: Algorithm for CentroidUpdate

Require:

Input: List of centroids and the list of data points assigned to these centroids

Output: List of updated centroids

1: output <= Output from Assignment

2: a <= output

3: updatedCentroidList <= null

4: for all c in a do

5: updatedCentroid, sum, numofPoints<= null

6: for all point in a[c] do

7: sum += point

8: numofPoints += 1

Page | 30

9: end for

10: updatedCentroid <= (sum / numofPoints)

11: updatedCentroidList.append (updatedCentroid)

12: end for

13: return updatedCentroidList

3.4. k-means++

k-means++ is similar to k-means. It uses the same iterative process of k-means but uses a

different initialization approach. It chooses the initial means in a different manner. The initial

means are chosen such that they are far apart from each other.

1: Choose a data point randomly from the set of n data points

2: For each point, compute the distance d(x) between the data point and the centroid (that

has already been chosen)closest to that point.

3: Choose the next centroid such that the probability is proportional to d(x)
2

4: Repeat steps 2 and 3 until we get the k- centroids

3.5. k-means via MapReduce

K-means is a clustering algorithm used to cluster a set of data objects into k number of

clusters based on the Euclidean distance. The first step is keep the data points organized and

generate the initial centroids using the initialization procedure of k-means++ and write these

to the initial centroid file.

Algorithm 4: Algorithm for Initialization of k-means++

Page | 31

Figure 3.1. Structure of k-means via MapReduce algorithm

3.5.1. Start up

The start-up procedure is used to initiate the process and for the initialization of centroids of

k clusters. It, then, calls the MapReduce procedure. In the mapper, each data point is assigned

to the centroid(or cluster bearing the centroid) closest to the data point. The mapper function

then calls the reducer. In the reducer, the new centroid is calculated by taking the mean of the

data points associated with the cluster.

The start-up procedure is also responsible for checking the convergence condition in which it

checks whether the position of new centroids is different from that of current centroids or

not. If different, then the MapReduce procedure is executed again. Otherwise, the new

centroids and final clusters are written to a file.

Page | 32

Require:

 A set of n data points X= {x1, x2,...., xn}, each of dimension d

 k that specifies the number of clusters where k < n

 initial list of centroids C = {c1, c2,...., ck} contained in the initial centroid file

Output: a new set of centroids, final clusters

1: centroids_list1 <= C

2: Initialize convergenceTime, Iterations, finalClusters

3: startTime <= currentTime()

4: M <= perform MapReduce using Hadoop Streaming

5: updated_centroidList <= M

6: Iterations <= 1

7: while (updated_centroidList != centroids_list1) || (threshold limit is met) do

8: current_centroids <= updated_centroidList

9: C' <= perform MapReduce using Hadoop Streaming

10: Iterations <= Iterations + 1

11: updated_centroidList <= M

12: end while

13: endTime <= currentTime()

14: convergenceTime <= (endTime - startTime)

16: finalClusters <= updated_centroids

17: write finalClusters

18: return finalClusters, Iterations , convergenceTime

3.5.2. Mapper

The input data files is distributed to multiple mapper. The number of mappers assigned to do

the task depends on the data size. We can not specify the number of mappers for the job. This

task of choosing the number of mapper is done by Hadoop streaming. The file containing the

Algorithm 5: Algorithm for Startup

Page | 33

centroid of k-clusters is stored in a common directory accessible to all mapper or is

distributed to each mapper separately.

The centroid list contains the cluster id to which it belongs and the cluster id works as the key

and the centroid is chosen as the value. Each input data point in the subset (x1, x2,, xm) is

assigned to the closest centroid by the mapper procedure. Euclidean distance is used to assign

the data point to the closest mean. When all the data points are assigned to the centroids by

the mapper then Hadoop streaming job itself manages the task of sorting <key, value> pairs

outputted by the mapper and arranges the output in the form <key, list of values>.

Require:

 A subset of data points, {x1, x2,...., xn} which is passed to every mapper

 initial list of centroids C = {c1, c2,...., ck}

Output: A list of centroids and data points assigned to each centroid. This dictionary list is

written down to file and passed to the reducer.

1: Xsubset <= {x1, x2,...., xm}

 2: centroids_set <= C

3: distance (x, y) =

 where xi (or yi) is the coordinate of x (or y) in dimension i

4: for all xj X such that 1 <= j <= m do

5: chosenCentroid <= null

6: minDist <= ∞

7: for all cent in centroids_set do

8: dist <= distance(xj, cent)

9: if chosenCentroid = null || dist < minDistance then

10: minDistance <= dist

Algorithm 6: Algorithm for Mapper

d

i

ii yx
1

2)(

Page | 34

11: chosenCentroid <= cent

12: end if

13: end for

14: Append (xi, chosenCentroid) to outputList

15: i +=1

16: end for

17: return outputMapper

3.5.3. Reducer

The output of the mapper is fed in as input to the reducer. It accepts the <key,value> pair

output from the mapper. For each centroid, the reducer calculates a new value based on the

list of data points passed along with the centroid. This updated centroid list is emitted as the

output of the reducer which is sent back to the start-up program to check for convergence.

Input: <key, value> where key = chosenCentroid (cluster_id) and value = list of data points

assigned to the cluster_id

Output: <key, value> where key = cluster_id and value = updatedCentroid, which is the

new centroid value calculated for the cluster_id.

1: output = Output from Mapper

2: a = {}

3: updatedCentroidList <= null

4: for all z in output do

5: cluster_id <= z.key

6: data <= z.value

7: a[cluster_id] <= data

8: end for

9: for all cluster in a do

Algorithm 7: Algorithm for Reducer

Page | 35

10: updatedCentroid, sum, numofPoints<= null

11: for all point in a[cluster] do

12: sum += point

13: numofPoints += 1

14: end for

15: updatedCentroid <= (sum / numofPoints)

16: Append < cluster, updatedCentroid > to updatedCentroidList

17: end for

18: return updatedCentroidList

3.6. Modified MapReduce clustering algorithm

In k-means and k-means clustering algorithm, the assignment and update phase is carried out

iteratively until convergence criteria is met. Since assignment phase involves calculating

distance between data point and centroid, so the number of computations to calculate

distance increases with the number of iterations. Moreover, the same computation may occur

several times in the iterative process.

To minimize such number of computations, we can compute the pair- wise distance between

the data points and store them in a comma separated file(csv file). Moreover, we modify our

initialization procedure for initializing the centroids such that the initial centroids are a subset

of the dataset.

The python scripts needed to implement this algorithm:

1. Initialization script

2. Distance computation script

3. Mapper script

4. Reducer script

5. Driver program script

The functioning of these scripts and the algorithms used are explained in further.

3.6.1. Initialization

Page | 36

In this, k- centroids are initialized using the k-means++ initialization algorithm.

1: init_centroids <= null

2: if length(init_centroids) = 0

3: s <= choose xi randomly from X

4: Append s to init_centroids

5: else if length(init_centroids) =1

6: s <= init_centroids[0]

7: k <= find xj such that distance(xj , s) is maximum

8: else

9: maxDist <= -1

10: maxDistCentroid <= -1

11: for xi in X

12: closestCentroidDist <= ∞

13: for c in init_centroids

14: if i not in init_centroids

15: if distance(xj , c) < closestCentroidDist

16: closestCentroidDist <= distance(xj , c)

17: end if

18: end if

19: end for

20: if square(closestCentroidDist) > maxDist and closestCentroidDist != ∞

21: maxDist <= square(closestCentroidDist)

22: maxDistCentroid <= xi

23: end if

24: Append maxDistCentroid to init_centroids

25: end for

26: return init_centroids

Algorithm 8 : Initialization algorithm

Page | 37

Call this algorithm k- times so that we have k initial centroids.

3.6.2. Distance computation

In this, the pair-wise distance between the data points is calculated and the distance matrix is

written down in a csv file. This csv file is stored at a common location and is accessible to all

the mappers.

To compute the pair-wise distance of data points, we used the scipy.spatial module of

Python. This module makes our task of finding pair-wise distance easy. For using the

distance_matrix() function of scipy module, we need to first input the data points in the

numpy array, dist and pass this array as an argument to the distance_matrix() function as

shown below:

This method works fine when we have numerical data. But this method doesn't work for the

calculating the distance between the strings.

3.6.3. Mapper

In this, each data point belonging to the dataset is assigned to the closest centroid and

distance between the data point and the centroid is read from the csv file containing the pair-

wise distance matrix.

Input:

i. set of cluster centers(i.e. centroids)

ii. xi data point present in X

Output < zi , xi >, where zi is cluster id and xi is the data point

1: mapper (cluster_center_set , xi){

>>> scipy.spatial.distance_matrix(dist, dist)

Algorithm 9 : Mapper algorithm

Page | 38

2: df <= load dataPointdistance.csv using csv reader

3: nearest_cluster_id <= null

4: nearest_distance <= ∞

5: for c in cluster_center_set

6: dist <= df [xi] [c]

6: if dist < nearest_distance

7: nearest_distance <= dist

8: nearest_cluster_id <= xi

9: end if

10: end for

11: emit (nearest_cluster_id , xi)

12: }

3.6.4. Reducer

In this, new centroids are calculated. Previously, in k-means we were using mean to find the

new centroid. But in this modified MapReduce clustering algorithm, we've have used median

to find the new centroid. The data point that has the median distance from the current

centroid is chosen as the new centroid.

Input

i. j, cluster label key

ii. data points assigned to cluster j

Output: < j , updatedCentroid >

1: reduce (j , x_in_cluster_j [x1, x2,]){

2: df <= load dataPointdistance.csv using csv reader

3: for xi in x_in_cluster_j

4: dist <= df [xi] [j]

5: store the data point xi associated with dist

6: Append dist to distList

Algorithm 10: Reducer Algorithm

Page | 39

7: end for

8: find the median distance present in distList

9: xj <= data point associated with the median distance is the new centroid

10: emit (j , xj)

11: }

3.6.5. Driver program

This script is responsible for running the above mentioned scripts. Firstly, the centroids are

initialized and the pair-wise data-point distances are written down to csv file. Then, it is

responsible for calling the mapper and reducer scripts iteratively using Hadoop Streaming. It

calls the MapReduce functionality until the convergence criteria is met or the threshold

number of iterations is reached. Convergence criteria is met when there is no change in the

positions of current centroids and the new centroids.

Before running the driver script, the dataset is loaded on the HDFS.

Page | 40

Figure 3.2. Structure of driver script of Proposed Algorithm

Page | 41

CHAPTER 4

PERFORMANCE ANALYSIS

In this chapter, two experiments which include two different datasets have been discussed in

detail. The efficiency and performance comparison of k-means, k-means via Map Reduce

and the modified Map Reduce clustering algorithm was, thus concluded based on the results

of the experiments and the results have been discussed in detail.

4.1. Experiment and Results

In this section, two experiments have been discussed. Experiment1 involves the use of small

dataset and Experiment 2 involves a comparatively large dataset. The number of iterations,

the convergence time taken by k-means, k-means via map reduce and the modified Map

Reduce clustering algorithm were noted to compare the performance of the algorithms

discussed in chapter two.

4.1.1. Experiment 1: Comparison of Map Reduce algorithms with small dataset

The objective is to compare the performance of k-means, k-means via map reduce and

modified Map Reduce clustering algorithm on a small randomly generated dataset.

In this study, dataset of 1126 data points was randomly generated using Python modules. k-

means, k-means via MapReduce and the modified MapReduce clustering algorithm is

applied on this small dataset. After implementing these algorithms, the clusters were graphed

to see if these algorithms form the same clusters or if clusters formed by these algorithms

vary to a great extent.

These algorithms were applied to the dataset for k=3 and k=4.

The clusters formed after implementing the serial k-means for k=3 are shown in Figure4.1. In

this figure, the blue data points plotted belong to cluster 1, the blue data points belong to

cluster 2 and the green data points belong to cluster 3.

Page | 42

Figure4.1: Clusters formation using k-means clustering algorithm for k=3

The clusters formed after implementing the k-means via Map Reduce algorithm are shown in

Figure4.2. In this figure, the green data points plotted belong to cluster 1, the orange data

points belong to cluster 2 and the blue data points belong to cluster 3.

Figure4.2: Clusters formation using k-means via map reduce for k=3

Page | 43

Figure4.3: Clusters formation using modified map reduce clustering algorithm for k=3

The three clusters formed after implementing modified Map Reduce clustering algorithm are

shown in Figure4.3. In this figure, the blue data points plotted belong to cluster 1, the green

data points belong to cluster 2 and the red data points belong to cluster 3.

Figure 4.1, 4.2, 4.3 represents the clusters formed after applying different algorithms to

randomly generated data set. From these figures, we observe that the clusters formed by these

algorithms are similar. This similarity is the proof of accuracy. This means that the modified

clustering algorithm is correct and produces the needed result.

 We implemented the same algorithms to form 4 clusters(k=4). The clusters formed for k=4

is shown in the Figure4.4(a). The centroids of these four clusters are also plotted and are

shown in Figure4.4(b).

In Figure4.4(a), the green data points belong to cluster 1, the red data points belong to cluster

2, the orange data points belong to cluster 3 and the blue data points belong to cluster 4.

Page | 44

(a)

(b)

Figure4.4: (a) shows the clusters formed and (b) shows the final coordinates for k=4

Page | 45

The time taken by these algorithms was thus noted to compare the performance and is listed

as follows:

Algorithm

implemented

Number of clusters

(k)

Number of

Iterations (i)

Time Taken (in

seconds)

Serial k-means
3 5 0.08754

4 3 0.25349

k-means via Map

Reduce

3 5 131.8220

4 3 69.12158

Modified Map Reduce

clustering algorithm

3 5 128.7115

4 3 68.2985

Table4.1: Comparison of the clustering algorithms

From the Table4.1, we plotted the graph.

Figure4.5: Comparison of clustering algorithms for Experiment 1

Page | 46

From the above plot, we observe that serial k-means is very fast as compared to other

algorithms. The reason for the fast performance of serial k-means is attributed to the size of

the data. The dataset is very small and thus, the map reduce algorithms doesn't show any

performance improvement for such data. The time taken to set up the mapper and reducer is

included in the total time and the time taken to exchange data between the mapper and the

reducer adds to the time complexity for such small data in map reduce algorithms.

Another important thing to be noted in this plot is that the modified Map Reduce algorithm

takes less time as compared to the k-means via map reduce. The reason behind this is the

number of computations required to calculate the Euclidean distance in the mapper function.

In the modified algorithm, we had already stored the pair-wise distances between the data

points in a matrix and the distance matrix is stored in a common location from where all the

mappers can access it. Hence, while implementing the modified algorithm, the distance

matrix was directly used instead of computing the distance. this saved time.

4.1.2. Experiment 2: Comparison of Map Reduce algorithms with large dataset

The objective of this experiment is to compare the performance of k-means via map reduce

and modified Map Reduce clustering algorithm on a real time data taken from STARNET

lightning network.

In this experiment, a subset of the STARNET lightning data is used consisting of 10788 data

points. This dataset contains 29 attributes and contains no unique identifier for the data

points. Thus, a unique identifier was added to uniquely identify the data points. Two

attributes, the latitude and longitude, were used to cluster the data. k-means via map reduce

and modified Map Reduce algorithm were implemented to see the improvement in the

modified algorithm.

Page | 47

(a)

(b)

Figure4.6: (a) shows the clusters formed and (b) shows the final coordinates for k=3

Page | 48

To compare the performance of the two algorithms over the STARNET dataset, the time

taken to form the final clusters was noted and is listed in the Table4.2.

Algorithm

implemented

Number of clusters

(k)

Number of

Iterations (i)

Time Taken (in

seconds)

k-means via Map

Reduce

3 5 139.1514

4 5 122.0934

Modified Map Reduce

clustering algorithm

3 5 134.7864

4 5 119.5520

Table4.2: Comparison of clustering algorithms for STARNET dataset

From this table, the bar chart has been plotted and is given in Figure4.7.

Figure4.7: Comparison of algorithms of Experiment 2

From this table, it is clear that the modified Map Reduce clustering algorithm takes less time

as compared to the traditional k-means via map reduce. The performance of the modified

clustering algorithm is better

Page | 49

CHAPTER 5

CONCLUSION

5.1. Conclusion

In this study, we have discussed the clustering algorithms used to partition the large datasets.

k-means is a clustering algorithm in which initial centroids are selected at random. The

random initialization of the centroids lead to varying number of iterations needed to cluster

the dataset. Moreover, it is difficult to find the k- parameter that tells us about the number of

clusters that can partition our data efficiently for further analysis. k-means++ is an

advancement over k-means where initialization of centroids follows a different approach and

the initialized centroids are well separated from each other. Both k-means and k-means++

involve a lot of computations to calculate the Euclidian distance between data point and the

centroids of cluster. Moreover computations were needed to find the mean of the cluster. The

problem of increasing number of distance computations and time lag due to these

computations is solved by the modified MapReduce clustering algorithm discussed in this

study.

The above discussed algorithm reduces the time taken to partition the given dataset but the

large amount of memory space is required to store the distance matrix. Thus, the space

complexity of this algorithm increases.

Map reduce clustering algorithms works best for the large datasets. But it doesn't work well

for the small data sets because if the data is small that can be fitted in just a single mapper,

then the overhead of passing data between mapper and reducer and other overheads of

intermediate read/write make it unsuitable for smaller data sets. Performance of Map Reduce

clustering algorithms can be increased by using the combiner since it reduces the

intermediate read/write. Serial k-means algorithm works best for the small data but takes a

lot of time to process large data sets.

Page | 50

5.2. Future Scope

Clustering using K-means through MapReduce is a good technique to cluster huge data. Even

the modified MapReduce clustering algorithm turned out to be a better algorithm but the

space complexity of storing the distance matrix is huge. Moreover, the distance function used

in this study is applicable only for the numerical values. This distance function can be

improvised to work for both numerical and string data. Moreover, concepts of distributive

computing can be applied so that the files stored in the common location can be accessed

without any communication delay.

Page | 51

REFERENCES

[1] Phaneendra, S. Vikram, and E. Madhusudhan Reddy. "Big Data-solutions for RDBMS

problems-A survey." 12th IEEE/IFIP Network Operations & Management Symposium

(NOMS 2010)(Osaka, Japan, Apr 19 {23 2013). 2013.

[2] Mythili, S., and E. Madhiya. "An analysis on clustering algorithms in data

mining." International Journal of Computer Science and Mobile Computing 3.1 (2014): 334-

340.

[3] Morales,C.A.; Neves. J.R; Anselmo. E.M.; "SFERICS TIMING AND RANGING

NETWORK - STARNET: EVALUATION OVER SOUTH AMERICA" XIV International

Conference on Atmospheric Electricity, August 08-12, 2011, Rio de Janeiro, Brazil

[4] Mishra, Shweta, and Vivek Badhe. "Improved Map Reduce K Mean Clustering

Algorithm for Hadoop Architecture." International Journal Of Engineering And Computer

Science5.7 (2016).

[5] Bernice Purcell "The emergence of "big data" technology and analytics" Journal of

Technology Research 2013.

[6] Bhosale, Harshawardhan S., and Devendra P. Gadekar. "A review paper on Big Data and

Hadoop." International Journal of Scientific and Research Publications 4.10 (2014): 1-7.

[7] Sagar S. Lad, Naveen Kumar, Dr. S.D. Joshi. "Comparison Study on Hadoop HDFS with

Lustre File System"- International Journal of Scientific Engineering and Applied

Science(IJSEAS)- Volume-1, Issue-8, November 2015

[8] HadoopTutorials.co.in " Understand the internals of HDFS block read/writes "

http://hadooptutorials.co.in/tutorials/hadoop/internals-of-hdfs-file-read-operations.html

Page | 52

[9] Dr. T. Suryakanthi and V.S.J.Pallapolu. "A Comparative Study on Performance of

Hadoop File System with MapR File System to process Big Data Records"- IJCSI

International Journal of Computer Science Issues, Volume 13, Issue 1, January 2016.

[10] Jeffery Dean and Sanjay Ghemawat "MapReduce: Simplified Data Processing on Large

Clusters" Google, Inc.

[11] P.Sudha and Dr. R. Gunavathi "A Survey Paper on Map Reduce in Big Data"-

International Journal of Science and Research(IJSR) Volume 5, Issue 9, September 2016

[12] Piyush Gupta, Pardeep Kumar, Girdhar Gopal "Sentiment Analysis on Hadoop with

Hadoop Streaming"- International Journal of Computer Applications(0975-8887) Volume

121- No.11, July, 2015

[13] Max Bodoia. "MapReduce Algorithms for k-means Clustering "

Retrieved from Stanford University Repository

[14] Robert Gove’s Block "Using the elbow method to determine the optimal number of clusters for k-

means clustering" https://bl.ocks.org/rpgove/0060ff3b656618e9136b

[15] Grace Nila Ramamoorthy "K-means Clustering Using Hadoop MapReduce " Retrieved

from the UCD School of Computer Science and Informatics repository(2011)

[16] Kanungo, Tapas, et al. "An efficient k-means clustering algorithm: Analysis and

implementation." IEEE transactions on pattern analysis and machine intelligence 24.7

(2002)

[17] Raval, Unnati R., and Chaita Jani. "Implementing and Improvisation of K-means

Clustering." IJCSMC 4.11 (2015)

https://bl.ocks.org/rpgove

Page | 53

[18] Ekanayake, Jaliya, et al. "Twister: a runtime for iterative mapreduce." Proceedings of

the 19th ACM international symposium on high performance distributed computing. ACM,

2010.

[19] Cui, Xiaoli, et al. "Optimized big data K-means clustering using MapReduce." The

Journal of Supercomputing 70.3 (2014)

[20] Kapoor, Akanksha, and Abhishek Singhal. "A comparative study of K-Means, K-

Means++ and Fuzzy C-Means clustering algorithms." Computational Intelligence &

Communication Technology (CICT), 2017 3rd International Conference on. IEEE, 2017.

[21] Bahmani, Bahman, et al. "Scalable k-means++." Proceedings of the VLDB

Endowment 5.7 (2012)

[22] Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful

seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 2007.

[23] McKinney, Wes. Python for data analysis: Data wrangling with Pandas, NumPy, and

IPython. " O'Reilly Media, Inc.", 2012.

[24] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." Journal of machine

learning research 12.Oct (2011)

[25] Millman, K. Jarrod, and Michael Aivazis. "Python for scientists and

engineers." Computing in Science & Engineering 13.2 (2011)

