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ABSTRACT 

 
 

Data clustering is the grouping of similar data points in a cluster. Data clustering helps a lot 

in data analysis of big data. Map reduce framework is used for the parallel processing of big 

data. Map Reduce functionality can be used to implement clustering algorithms to cluster 

such huge amount of data. In this project, one modified Map Reduce clustering algorithm has 

been proposed that is computationally less expensive than the k-means via Map Reduce 

algorithm. The performance of the traditional k-means, k-means via Map Reduce and the 

modified clustering algorithm was compared. The proposed algorithm came out to be better 

than the k-means via Map Reduce, given that the dataset for clustering is huge. For small 

dataset, serial k-means performs better than the Map Reduce clustering algorithms. For large 

dataset, k-means takes a lot of time.   
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CHAPTER- 1 

INTRODUCTION 

 

1.1. Introduction 

 
With the advancement of technology, tons of data is generated that can no longer be managed 

and processed with the help of traditional file systems. This led to the introduction of the 

term “Big Data”. Big data refers to large datasets that are so voluminous and complex that 

new technology, storage system, and processing unit had to be developed to handle it[1]. For 

the analysis of such big data, data clustering helps a lot.  

 

Data clustering is the partitioning of a data set or sets of data into similar groups. It is a 

common technique used for the purpose of data analysis and has many applications in the 

field of statistics, data mining, and image analysis. In data clustering, we group the objects 

similar to one another and different from other groups. For this purpose, some attribute is 

used to identify the objects similar to each other that can be placed together in a group. In our 

study, distance measure is used for data clustering. There are many types of data clustering 

algorithms which include hierarchical algorithms, Lloyd’s algorithm etc.  Hierarchical 

algorithms build successive clusters using previously defined clusters. Hierarchical 

algorithms can be agglomerative or decisive. Agglomerative clustering algorithm follows a 

bottom up approach in which clusters are built by successively merging smaller ones. In 

divisive clustering algorithms, clusters are formed by splitting larger cluster and thus this 

approach is known as top-down approach of clustering.[2]  

 

Data clustering is computationally expensive in terms of both time and space complexity. In 

addition more time and space is consumed when precision and accuracy has to be met in 

terms of similarity within the data clusters. The situation becomes worse when the data is 

distributed. Hence, parallelizing and distributing expensive data clustering tasks becomes 

cumbersome. A good knowledge of parallel and distributed programming concepts are 

needed to carry out the data clustering tasks in such cases with great efficiency.  
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Apache Hadoop is an open source, java-based programming framework that helps in the 

storage and processing of big data.[2] MapReduce is the software framework for solving 

certain kinds of distributable problems that involve big data. It is a two step process that 

consists of Map and Reduce phase. Both the mapper and reducer phase take the input in the 

form of (key, value ) pair. The input file is given as input to the mapper phase which 

produces the intermediary output which is given as input to the reducer phase. The reducer 

phase gives the final output which is written in the file. Mapper phase includes multiple 

mapper tasks and each map task processes its part of the problem and outputs result as key-

value pairs.  The reduce step receives the outputs of the maps, where a particular reducer will 

receive only map outputs with a particular key and will process those.  

 

One of the biggest advantages of MapReduce is that Map and Reduce tasks can be 

distributed across different nodes. Hence, MapReduce provides a platform for distributed 

computing framework. Mapper and reducer both can run independently. Hadoop provides a 

number of features that make it suitable to process big data. Among these features is 

reliability that is achieved by replication and also provides the data lost in case of node 

failures and other disasters. 

 

The common data clustering algorithm implemented in this study is K-means, and moving 

forward we will be implementing a modified MapReduce clustering algorithm. Calculations 

required for k-means are computationally costly and perform well for data having the 

accompanying three qualities:  

 

 relatively low feature dimensionality,  

 limited number of clusters, and  

 a modest number of data points 

 

In this study we explore k-means application through MapReduce using Hadoop. The basic 

approach is to form clusters initially by random initialization and then by deliberate 

initialization and moving forward Spectral analysis can also be applied. This could be one of 

the future developments. 
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Chapter two explains the K-means clustering algorithm that we implement using 

MapReduce. Chapter three discusses Hadoop which is the MapReduce implementation we 

used. In this chapter we also detail the MapReduce strategy we use to tackle this particular 

data clustering problem. 

 

Chapter five summarizes the report and provides details on future directions. 

 

1.2. Problem Statement 
 
 

The time complexity of existing data clustering algorithms to cluster large datasets is huge 

and in Lloyd’s algorithm, distance is calculated in every iteration to find the new centroids 

which makes it computationally very expensive. Thus, to optimize the traditional algorithms 

Moreover, the clustering algorithm has to be optimized. 

 

1.3. Objective 

 
The objective of the project is to utilize the Map Reduce structure on an extensive dataset to 

distinguish the groups inside that dataset by forming k clusters.. The objective also includes 

comparative study between the traditional k-means, k-means++, k-means via Map Reduce 

and the modified Map Reduce clustering algorithm.  

 

1.4. Methodology 

 

For this project, we followed the following steps: 
 

Step 1. Data Collection: It is the first and primary thing that is to be done so that we can 

apply clustering algorithms over it. Data is randomly generated and large data set is taken 

from the STARNET lightning network. 

 

Step2. Load data on HDFS: The data set collected is put on the Hadoop distributed file 

system. 

 

Step3. Implement clustering algorithms: Serial k-means, k-means++ and modified map 

reduce clustering algorithm is designed in python and applied on the data collected. 

 



Page | 4  

 

Step4.  Store the result: The final clusters and time taken to implement the algorithms are 

written down to the output directory. 

 

Step5. Plot the graphs: The clusters so formed are represented using clusters and the final 

centroids are also plotted.  

 

1.4.1. Data Collection:  

 

Several data samples have been generated randomly or collected to perform MapReduce 

algorithm over it. Data samples used for the purpose are as follows: 

 

 Randomly generated data set:  This dataset is generated randomly using numpy 

module of Python. For each instance, there exists three attributes, one for the data 

point identifier and other two attributes determine the two dimensions. 

 

Data Set Characteristics: N/A 
Number of 

Instances: 
1126 

Attribute Characteristics: Integer 
Number of 

Attributes: 
3 

Associated Tasks: Clustering Missing Values? N/A 

 

Table 1.1  Randomly generated data set 

 

 Thunders data set: This data set represents the STARNET detection network in 

which clustering is based on the distances of longitude and latitude attribute of data 

points. 

 

Data Set 

Characteristics: 
N/A 

Number of 

Instances: 
10788 

Attribute 

Characteristics: 

Integer, 

Float 
Number of 

Attributes: 
29 
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Associated Tasks: Clustering Missing Values? N/A 

 

Table 1.2 Thunder Data set [3] 
 

 

1.4.2. MapReduce Algorithm: 

 

Map Reduce is the programming model of Hadoop that is used for the analysis and 

processing of big data. To perform spatial clustering(clustering based on the distance metric) 

over the data collected, we implemented mapper and reducer algorithms of k-means and k-

means++ in Python. An advancement in the mapper and reducer phase was made and 

implemented. The input data goes through the following stages before writing the final output 

in the output directory:[4]  

 

1. Input: The input directory that contains the large datasets is given as input to the 

MapReduce task. In this stage, input data is split into many independent data blocks 

that are given as input to multiple mappers for parallel processing. 

 

2. Map: It takes the input in the form of <key, value> pairs. Thus, the input phase is also 

responsible for converting the input data in the <key, value> pair form. Map 

functionality is then applied to each of the <key, value> pair. Map phase produces the 

intermediate result in the <key, value> pair form which is fed in as input to the next 

stage. 

 

3. Shuffle: In this phase, the <key, value> pairs that are given as output by the Map 

stage are sorted on the basis of the key and the <key, value> pairs that have the same 

key are merged in the form <key, list of values>.  

 

4. Reduce: This phase will iterate through the data points present in the list of values 

assigned to a particular key. The input is given in the form < key, {a list of values} > 

and the output is in the form < key, value > pair.  
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5. Output: This stage will write the results of the Reducer stage to the specified output 

directory.  

 

Operation mechanism of MapReduce is shown in Figure 1.1. 

 

 

Figure 1.1: Operation of MapReduce 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1. Hadoop and Big Data 
 

 

S. Vikram Phaneendra & E. Madhusudhan Reddy enlightened us by explaining the change in 

data and the way we can manage it. Initially, the amount of data generated and to be handled 

was less and thus could be easily managed and analyzed using RDBMS. Also, we had only 

structured data mainly that could be easily converted to relational databases. But, these days 

the data available might have a proper defined schema i.e. the Structured data or might be 

semi-structured or unstructured like audio clips, images etc. Also, the amount of this 

generated data is too high and is thus termed as Big Data.[1] The 5 dimensions of Big Data 

that differentiates it are : 

 

Figure 2.1: 5 V's of Big Data 

 

i. Volume: Big Data as the name describes refers to the huge amount of data. 

ii. Velocity: It refers to the speed at which this data is being generated and the speed 

required for storing and analyzing this huge amount of data. 

iii. Variety: It refers to the diverse content of data as we discussed earlier, it might be a 

mixture of structured, semi-structured and unstructured data. 
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iv. Veracity: It refers to the use of the generated data. The reliability of the data that we 

are storing is also an essential factor. 

v. Value: It refers to the useful information that we can obtain from this data. When we 

are ready to invest so much in storing and analyzing this huge amount of data then, 

we must get an output that would be beneficial for us.[1] 

 

Bernice Purcell stated that the huge datasets that are present in Big Data cannot be handled 

using simple relational databases and traditional RDBMS tools. Instead, we need a clustered 

Network Attached Storage for storing this huge amount of data. Hence, we needed something 

for proper storage and analysis of this data and the solution is Hadoop. The Hadoop 

architecture can be used for storing this huge amount of data and using various techniques we 

can extract meaningful information out of this structured, semi-structured and unstructured 

data. [5] 

 

Hadoop can be referred as a collection of many open source software utilities. It is basically a 

software platform that can be used to store high volume of data and perform large number of 

computations on that data in a very easy and precise way. Today almost every company uses 

it for both Research as well as for Production. Hadoop can be analyzed as an ecosystem 

consisting of all open source elements that brings out the fundamental changes in the way 

organizations work. It actually facilitates us by providing a large network of computers 

where we can store huge amount of data and perform all the programming operations 

depending upon the requirement we need. While designing the various modules of Hadoop 

the major consideration was the high failure rate of commodity hardware and thus it should 

be automatically handled by the software in the framework. It uses the Map Reduce 

programming model for performing all the computations and processing. 

 

This framework was originally designed for computer clusters that were made out of 

commodity hardware and thus, all the modules of the framework were designed in 

accordance to the high failure rate of commodity hardware. If we look at the core of Apache 

Hadoop, the storage part it consists of is known as HDFS i.e. Hadoop Distributed File 

System and the Map Reduce Programming model as a part of processing. Now considering 

the fact that Hadoop is a platform where we can deal easily with Big Data, we have to know 
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how it actually works. Hadoop splits the data files into large blocks and distributes them 

across the data nodes(systems) in a cluster. To process these data blocks on different 

machines, the packaged code is transferred to the data nodes(systems). In this way, huge 

datasets can be processed in a faster and more efficient way. 

 

Java Programming Language has been used for developing Hadoop. Although, java is the 

most common language for Hadoop Map Reduce, but we can use any programming language 

along with Hadoop Streaming to implement the Map Reduce programming model. 

 

Various modules of Apache Hadoop Framework are:  

 

 

 

Figure 2.2. Modules of Apache Hadoop 

 

Hadoop Common: It consists of all the libraries and utilities that are required by other 

modules and thus acts as Credential Provider. It is basically a Key Management Software. 

 

HDFS: The Hadoop Distributed File System lays its basis from Google File System, it is a 

distributed file system that stores all the data on commodity machines, thereby providing 

very high bandwidth across the clusters. 

 

Hadoop YARN: It manages the computer resources in clusters. 

 

Hadoop Map Reduce: The programming model for large scale data processing in Hadoop. 

Now let us explore Hadoop Architecture in detail. 
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Hadoop Architecture mainly explains how the file system in hadoop works and how the Map 

Reduce is used to process the large amount of data stored in these file systems.[1] 

 

2.2. HDFS 

 

The Hadoop Distributed File System is a portable as well as scalable file system written in 

java programming language. Harshawardhan S. Bhosale and Prof. Devendra P. Gadekar 

explained that Hadoop Distributed File System basically operates on the clusters of 

computers. Hadoop itself forms the clusters of computers and it is these clusters that HDFS 

lies its basis on. If we consider a cluster, it consists of many nodes. There are two types of 

nodes within the cluster, the name node and the data node. There is only one name node i.e. 

the node that contains all the meta data and is concerned with the namespace of the file 

system. As the name suggests data node consists of large blocks of data.[6] 

 

Now when data storage is a problem Hadoop Distributed File System is there to hold your 

large amounts of data varying from few gigabytes to terabytes with very high efficiency. It 

stores large files across multiple machines that are termed as Data nodes. It is these data 

nodes that serves all read and write requests of the clients. Initially the large files are broken 

into various blocks depending on their sizes. Each block is then stored at multiple places( 

Data Redundancy) so as to achieve high reliability. It is because of this replication of data 

across multiple hosts that (RAID) Redundant Array of Independent Disks is not required. 

The default replication value is 3 i.e. three copies of one data block are stored out of which 

two are stored on different machines within the same rack while third on some other rack. 

Also data nodes can communicate with each other to maintain the balance of data and thus 

keeping high reliability. 
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Figure2.3: Architecture of HDFS[7] 

 

But HDFS strictly follows - "Write once Read Many" model. Hence, we cannot write again 

and again instead, we can just open a file and append more data to it. But for this append 

operation as well as read operation the client needs to request for the access from the name 

node. [7] Once the name node provides the client all privileges then only one can perform 

read and write operations block by block. As we know, HDFS follows master slave 

paradigm- name node being the master and data nodes the slaves. 

 

To perform a HDFS write operation, client needs to request for the access from the name 

node then it is the name node that provides the address of the data node to the client where 

client can perform write operations. Once the write operations start, data pipeline is created 
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by the data node and the blocks are copied to other nodes also for maintaining the replica 

rate. 

 

 

 

Figure2.4: HDFS write operation[8] 

 

Each cluster consists of a particular primary name node and the secondary name node that 

are interconnected. The primary name node contains all the meta data i.e. the data about the 

data stored in data nodes and location of all the blocks etc. But if the situation arises that the 

primary name node fails, this is where secondary name node comes into action. The 

secondary name node on regular intervals take snapshots from the primary name node and 

stores them to local directory so that if primary node fails at any point of time these images 

could be easily used to restart a primary node again. Since the name node is the single point 

of storage of meta data so, the risk of this huge loss cannot be taken in today's world, this 

could turn as a huge bottle neck in the storage management of an organization. Although 

snapshots are taken periodically and saved but still true redundancy is not provided by the 

secondary name node. 
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To perform a HDFS Read operation client needs to request for the access from name node 

only then name node checks for the particular privileges, and then provides the address of the 

data node to the client from where client can directly read the block. Then, the client is able 

to access the data nodes directly where the blocks of file are already stored. [9] 

 

 

 

Figure2.5: HDFS read operation[8] 

 

The main basis in Hadoop is to get higher throughput. Hence, it considers the high cost of 

collecting data at a single place performing all the computations there only and then 

transferring the results to the various other nodes in the whole network. So, instead of 

performing such high cost tasks the idea is to move the application closer to the data for 

performing all the required computations i.e. either on the same data node or on a node 

within the same rack thereby reducing the costs and increasing the throughput. 

 

Hadoop also facilitates us by providing Hadoop Streaming. It is Hadoop streaming that 

makes it possible to run any executable as a mapper and a reducer for performing all the 

computations. 
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2.3. Map Reduce Engine 

 

Now, as we know HDFS is used for storing the large amount of data, but we also need to 

perform computations on this data and thus, we have the Map Reduce paradigm. The Map 

Reduce engine contains a job tracker. Whenever a client submit a map reduce job to the 

application, it reaches out directly to the job tracker. Also, we have the task tracker nodes to 

which the tasks are assigned by the job tracker. Now the main priority of job tracker is to 

assign the tasks to be performed and it knows the location of machines where the data to be 

computed resides and the machines nearest to that machine within the same racks and the 

same clusters, so the job of the job tracker is to assign the tasks in such a way that 

computations should be performed closer to the data as much as possible. If it is not possible 

to assign the work to the same node on which data resides then it is assigned to the machine 

within the same rack. The reason behind the whole task is to keep network traffic as low as 

possible. But, there is always a single job tracker where as Task trackers are multiple. Also, 

each node has the potential to act as a slave task tracker. 

 

If the task tracker is not able to fulfill the job in time or if it fails, that particular part of job 

can be rescheduled. Also, the job tracker can keep a record of number of available slots for a 

particular task tracker nodes in the cluster. Whenever a map or reduce task is activated, one 

of these slots is filled up. Thus the job tracker allocates the job to the nearest task tracker 

where at least one slot is available. But it does not consider the actual load of the system and 

hence the real availability is not known. Sometimes even the task tracker might be too slow 

and thus might delay the map or reduce job or even both. But for such cases we can even 

execute this particular task on multiple slave nodes. 

 



Page | 15  

 

 

 
 

Figure 2.6: Architecture of Map Reduce 

 

 

Jeffrey Dean and Sanjay Ghemawat explained that Map Reduce is an implementation for the 

process of generating and managing large data sets. It normally consists of two functions i.e. 

mapper and the reducer. It is these functions that perform the various computations and give 

us the desired results. It is the user only that defines both mapper as well as reducer for the 

computations to be performed. Map step takes input data and generates intermediate key 

value pairs and these key value pairs are taken as input via reduce function that performs 

computation on these pairs and gives us the desired results. We can consider map and reduce 

to be as separate steps on data that can occur in parallel. Although the result of mapper is 

used by reducer still they are executed multiple times in parallel. [10] 

 

For instance, a huge amount of data can be easily and efficiently reduced to smaller chunks 

of data where we can apply data analytics easily. When we are working with Hadoop such 
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operations are performed as map reduce jobs. Once these operations are performed, we can 

write the desired results back to HDFS. So basically, we have two functions in MapReduce: 

 

 Map function: It takes a section of data values as an input, perform the desired 

operation on each input thereby generating an intermediate output. The output is in 

the form of key value (key, value) pairs. 

 

Once the map step is over, the outputs from the map step are sorted and it is taken as 

input in reducer. In betwen, the combiner might also be used. The data transfer takes 

place from mapper to reducer. All the values belonging to a particular key from the 

output of mapper function are aggregated at a single node where reducer for that 

particular key has to be executed. 

 

 Reducer function: The reducer function then takes this aggregated values for a 

particular key as an input and finally generate a key value pair as a desired output for 

all particular keys i.e. if we consider the intermediate key value pairs generated by the 

mapper function many key value pairs were generated with non unique keys but then, 

the similar keys were aggregated at a single node where reducer performed the 

necessary computations to generate a single output for a single key which demarcates 

our desired result.[11] 

Thus, when it comes out to be dealing with Big Data and its analysis, Map reduce is 

the best suited. 

 

2.4. Hadoop Streaming 

 

Hadoop distribution has hadoop streaming as one of its utilities. We can create and run map 

as well as reduce jobs with any executable as a mapper or reducer with the help of this utility. 

The utility creates the job and assign it to a specific cluster where it could be completed 

thereby generating the appropriate result. [12] 

In hadoop streaming, the number of mappers assigned to do the task depends on the number 

of data points. The number of reducers is also chosen by the hadoop streaming by default. 

However, user can specify the number of reducers.   
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By using hadoop streaming, we can write mapper and reducer code in any programming 

language. 

 

2.5. k-means Clustering Algorithm 
 

As we discussed above, to handle Big Data we need Hadoop and thus we need to organize 

the machines in the forms of clusters and each system serves as data point in the cluster. 

Before all this we need to partition the data sets also and this partitioning of data sets into 

clusters is required in most of the applications these days. We have many clustering 

algorithms for partitioning of data sets. The most common and widely used algorithm is 

Lloyd's algorithm. Lloyd's algorithm is the simplest algorithm for clustering of data sets as it 

just requires one single input k i.e. the number of clusters required and thus commonly 

known as K-means algorithm. The complexity is another factor that makes this algorithm so 

useful.[15] 

 

The k-means algorithm and its other variants can also be implemented using map reduce and 

thus get its importance. Let us suppose we have n objects in our data set, then k-means is 

basically implemented to partition these n data points into k clusters and this partitioning is 

done based on both similarities and differences within the data points. The clusters are made 

based on similarities i.e. within the cluster all the data points have a common trait and thus 

have a high intra cluster similarity. Instead, the inter cluster similarity is very low. Also, k-

means sets a center of gravity for every cluster and this center of gravity depends on the 

number of objects inside the cluster. So basically, if there is any change in the objects present 

in the cluster, the center of gravity also makes a shift. 

 

To begin with the algorithm, we have n data points and the input k i.e. number of clusters. 

Now we have to select k centers of gravity for k clusters, we select them out of n data points 

that we have. Now we consider all the other n-k data points and assign every data point to 

one of these k selected centers based on a similarity (to be chosen by user). When all the data 

points are alloted a center, we have with us k clusters but these are not the true centers of 
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gravity and even the clusters are not proper even. So, we need to perform various iterations to 

get the desired clusters and the perfect centers of gravity for each one of them. 

 

Now we have all the clusters for once and thus we can move forward for the calculation of 

new centers of gravity. The above two steps have to be performed iteratively until and unless 

we get the desired result i.e. we reach out the convergence condition. Now, in k-means 

clustering comparing the similarity level is the most challenging task. Once the new centers 

gravity have been calculated, then we again check for all the data points for similarity with 

the data centers and if it matches with some other center of gravity then it is allotted that 

particular cluster.[16][17] 

 

For calculation of assigning the objects their new desired clusters the algorithm has to 

perform around n*k calculations i.e. the distance computations. Although few of the steps 

like calculation of distances between data points and the new centers of gravity can be 

computed in parallel but we cannot go for all the iterations in parallel as new centers of 

gravity have to be calculated for every iteration. Since the centers of gravity i.e. the mean of 

all the clusters changes with each iteration so we cannot go for parallel computation 

haphazardly, thus it gets the name - "Serial K-means algorithm" .[13] 

 

There are many implemented forms for K-means clustering but the most common is 

heuristic. It uses a refinement technique iteratively. Although it is just heuristic but 

sometimes it is mistaken as k-means clustering algorithm only.[16] In Lloyd's algorithm the 

data is divided into k sets using or method or even arbitrarily. Once we have formed the 

clusters for the first time i.e. for the first iteration by calculating the distance with these 

randomly selected centroids then we have to calculate fresh centroids for all the clusters. The 

fresh centroids can be calculated by computing the means of the clusters that have been 

formed in the previous iteration. After calculating these new means, we can associate all the 

data points with their nearest means by calculating distances. This is how there is a change 

associated with every iteration as new data points are added into some clusters while some 

data points are removed from some clusters. This algorithm is repeated again by calculating 

new centroids and the iterations continue. But as we know there must be an endpoint 
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associated with every algorithm, so we have to perform the iterations but only till we reach 

the convergence condition.[18][19] 

 

When we go on iterating, there come a stage when centroids no longer change and therefore 

all the clusters will remain uniform after that, this is the phase of algorithm that we call as 

convergence condition. The convergence condition in Lloyd's heuristic is reached very 

quickly thus making it more popular. 

 

But the input value k in the k-means algorithm is both friend and a foe. It is advantageous as 

we don't have to give so many inputs, just the desired number of clusters and thats enough 

for it. But at the same time, it turns out to be a foe for our systems as if we won't choose the 

appropriate value for k, it might give us poor results. 

 

Moreover, the convergence condition can be set according to the requirement of the users. 

Basically, the convergence is when there is no total error in between the iterations. But, in 

some implementations the convergence condition can be modified to the situation when the 

total error drops below a certain threshold level. In k-means the time complexity depends on 

three factors: first is the number of data points is the data sets that have to be partitioned , 

second is the number of clusters to be made and third is the dimension of the data points.[20] 

 

We can apply k-means using a distributed setting also. We can apply the distributed version 

using map reduce paradigm. As we know that map reduce paradigm works in Hadoop where 

we can split the total computations into two parts: using method map and using method 

reduce. So basically, we will be breaking each iteration into 2 steps first step would be 

applied using mapper function and the other one using the reducer function. 

 

So basically the first step would compute the data points that are closest to the centroid. 

Thus, at the end of application of mapper function we would get the data points associated 

with each centroid. In the second phase i.e. the reducer phase we can simply compute the 

new centroid using the existing clusters. This completes our 1 complete iteration. This tells 

us the fact that we need to execute mapper and reducer function again and again until we 

reach the convergence condition. 



Page | 20  

 

 

For instance, if we have a data point x in the data set , the map phase applies on each data 

point x and generates the key value pair as output where key is the index of the mean i.e. 

nearest to x and value (x,1) is returned. The reduce phase operates on these key value pairs. 

For each key, one reducer works and does the pair-wise summation over all the values 

belonging to that particular key. But as we know, these iterations i.e. every mapper and every 

reducer has to be executed on a different machine, thus every machine must have the list of 

means that would be broadcasted to all of them after every iteration. 

 

Here in the case of map reduce application we can consider the time complexities differently 

for different phases. If we consider the map phase, total work depends on three factors: first 

is the number of data points present in the data sets for which the computations are being 

performed, secondly the number of desired clusters and third the dimension of the data 

points. The number of data points along with their dimension decides the communication 

costs but we can definitely reduce it by using combiners. Also the reducer cost mainly 

depends on the number of data points only. 

 

As we discussed earlier the biggest disadvantage of k-means is the selection of an optimum 

value of k that gives us the best desired results. The selection of a wrong value might take us 

to poor results. Also, in k-means it does not matter if the result is proper or not, it would just 

show us the clusters. Hence, we need a way to define and get to know whether the value of k 

that we are using is the right number of clusters or not. So let us discuss one of the methods 

to determine the correctness of the value of k. The method we are discussing is known as 

Elbow method. 

 

The basis of elbow method is to execute k-means for a definite range of values for the data 

set where we want to partition the. So basically, we will compute the clusters using k-means 

for a certain range of values and then we have to calculate the SSE i.e. Sum of Squared 

Errors. 

 

We have to calculate SSE for all the values of k for which we are computing the clusters. 

Then we can construct the graph between the values of k and the corresponding SSE value. 
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The graph is a bit arm shape and the nest value that can be considered for k is where the 

curve bends like elbow and thus gets its name- Elbow curve. 

 

The curve clearly shows that as the value of k increases the value of SSE keeps on decreasing 

and when the value of k approaches n i.e. the number of data points within the data sets then, 

the value of SSE approaches 0. That would be best ideally, but we need lesser number of 

clusters such that we even get a lower SSE. So the idea behind this elbow curve is that the 

beginning of elbow demarcates the point from where further decrement in the value of k 

would lead to diminishing returns in SSE as shown in Figure2.7(a). 

  

   (a)      (b) 

Figure2.7: (a) and (b) represents the Elbow curve [14] 

 

But, there might be the cases where our working and identification with the elbow curve 

might also fail as sometimes the elbow is not clearly visible in the plot as shown in Figure2.7 

(b). [14] There might be the cases when we won't even get the arm like structure instead, we 

would get smooth curves and thus we need other methods for computing the nest desired 

value for k in the application of k-means algorithm 

 

 

2.6. K-Means++  

 

Another algorithm that can be used for partitioning of data sets is the extension of standard k-

means only. The only difference between k-means and k-means++ is the way in which 

centroids or means are initialized in the very first iteration. In k-means, k centroids are 
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initialized randomly where as in k-means++ there is defined algorithm according to which 

the centroids are initialized and the rest of the iterations are same in both of them. Basically, 

this algorithm helps us to define the centroids that are well separated from each other. This 

approach was developed to improve the total error that is left in the end i.e. when we reach 

convergence condition.[20] 

 

In the initialization process in this algorithm, the first mean is chosen at random out of k, so 

we have to select k-1 more means from the data points. Now the squared distance is 

calculated between data points and the nearest centroid. Then, we can choose the next mean 

whose probability is proportional to the squared distance i.e. the one that would be far would 

have more probability of being chosen. Thus we can repeat the above iteration again and 

again i.e. k-1 times so as to get k initial centroids that we require to begin with the standard k-

means algorithm.[13][21] 

 

If we consider the complexity of this initialization algorithm, it again depends upon the 

number of data points present in the data sets that we are considering , the dimensions of the 

data points and the number of means that have been initialized already. So, the number of 

means already initialized will keep on incrementing with every iteration. Thus, the 

complexity depends upon the square of number of clusters to be found and the number of 

data points to be performed computations upon and their dimensions as well.[22] 

 

But, again here we have an issue in selecting the value of K. The selection of a wrong value 

might take us to poor results. Also, in k-means it does not matter if the result is proper or not, 

it would just show us the clusters. Hence, we need a way to define and get to know whether 

the value of k that we are using is the right number of clusters or not.  

 

We can apply k-means++ also using a distributed setting. We can apply the distributed 

version using the map reduce paradigm. As we know the map reduce paradigm works in 

hadoop where we can split the computations into two parts: using map method and using 

reduce method. So basically, we will be breaking each iteration into two steps, first step 

would be applied using mapper function and second using reducer function. 
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Now in k-means++ we have two phases: first to calculate the squared distance between each 

point and its nearest centroid and second, to add new centroid to the set by selecting the one 

with the largest distance i.e. the largest probability. So, we can use map reduce to apply this 

algorithm with two different phases such that mapper function would operate on each data 

point in the dataset. The mapper function then computes the squared distance between the 

data point and each centroid and computes the nearest centroid to that data point on which it 

is being operated. Thus, here mapper function generates a single value only i.e. the squared 

distance from the nearest centroid. The reducer function takes this value as an input and it 

aggregates these emissions. Basically, the aggregation is done based on the probabilities i.e. 

the squared distances. 

 

Thus, the map reduce produces a single value as an output i.e. the centroid that needs to be 

added to the set of centroids. As we discussed earlier, the new set of means has to be 

broadcasted to all the data sets. 

 

If we consider the time complexity of this algorithm using map reduce it depends upon the 

current set of initialized means. Also we have the communication costs that depend upon the 

number of data points present in data sets and their dimension and the number of means or 

centroids to be chosen as well. Since, the reducer function that we are using for computation 

is also commutative as well as associative thus, we can reduce the communication costs also. 

 

2.7. Choice of Python 

 
For the project, python has been chosen as the programming language. Python is easy to 

learn and provide a number of built-in functions. Python modules help to make our work 

easier. Numpy module can be used to create random data set. It provides a number of built-in 

functions to compute mean, median etc. in minimum time. [23] Pandas module is a important 

module for data analysis. It provides a number of functionalities to work with the dataframes. 

It has become easy to search content, analyze data in the csv and text files with the help of 

Pandas.[23] Python also provides a built-in function to compute the k-clusters using k-means 

algorithm.[24] Matplotlib module is an important module for the project that helps us to 
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visualize the implementation. It is a module that helps to create plots and graphs. This 

module of python is of great help for this project. 

 

Since Python provides a handful of useful libraries that can make our work easier, so Python 

is chosen to implement the algorithms.[25] 
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CHAPTER 3 

SYSTEM DEVELOPMENT  

 

In this chapter, the machine configurations, softwares used, technologies used have been 

discussed. Also, the algorithms used have been discussed in this.  

 

3.1. System Design 

 

In this section, the machine configuration and the softwares used to implement the map 

reduce clustering algorithms have been discussed. Machine configuration plays an important 

part in the working and efficiency of the algorithm. Moreover, the efficiency also depends on 

the versions of software used and the technologies implemented.  

 

3.1.1.  Hardware Requirements 

 

To implement the traditional k-means, k-means via map reduce and the modified MapReduce 

algorithm, a machine is needed. The hardware specifications of the machine used for 

implementing the project are as follows:  

 Processor: Intel(R) Core(TM) i5-5200U CPU @2.20GHz 2.20GHz 

 RAM: 8GB 

 64-bit Operating System( CentOS 7) 

 

3.1.2. Software Requirements 

 

For this project, different data sets of different sizes are taken into consideration. To manage 

different sizes of data efficiently, Python is chosen as the programming language because 

python provides pandas module that makes data analysis a lot much easier. Thus, Spyder 

needs to be installed. Moreover, for running the Map Reduce task, Apache Hadoop needs to 

be installed. Thus, the softwares used for implementing the project are as follows: 

 Apache Hadoop 2.7.4 

 Spyder  
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3.1.3. Technologies used 

 

In the project, the main objective is to form clusters. Thus, data clustering and data 

partitioning are the important aspects of this project. Moreover, when mapper and reducer 

functions are written in Python, then Hadoop Streaming helps to run our mapper and reducer 

in Apache Hadoop. Thus, the important aspects needed in this project are: 

 Data Clustering 

 Data Partitioning 

 Hadoop Streaming 

 

3.2. k-means Algorithm 
 

Let X={x1, ……, xn} be a set of n data points, each with a dimension d. The objective of k-

means is to find a set of k means M = {m1, …., mk} which minimizes the function  

 

 

 

In other words, k-means aims to minimize the Euclidian distance between every data point 

and the mean closest to that point. It is a NP-hard problem. So, exact solution may or may 

not exist. There are other good algorithms that gives approximate solutions for the problem. 

 

 

3.3. Sequential Clustering 

 

To study how effective MapReduce clustering algorithms are when compared to the 

sequential clustering algorithms, we perform serial k-means algorithm which consists of 

three phases:[16] 

1. Startup : k-centroids are initialised randomly and it checks for the convergence 

criterion 

2. Assignment: Each data point is assigned to one of the k centroids or cluster 

3. Update: The centroid of the cluster is calculated again 
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3.3.1. Start-up 

In the start-up program, we initialise k centroids randomly from the set of n data points. 

Then, we call the Assignment procedure where each data point is assigned to the cluster id 

which contains the centroid with the minimum distance. The centroids are calculated again in 

the Update procedure. The Start-up program, then, repeats the Assignment and Update 

procedure until the convergence criterion is met or the position of centroids remains the 

same. 

 

 

Require: 

  A set of n data points data points X= {x1,  x2,...., xn} of dimension d 

  k, which specifies the number of final clusters to be formed where k < n 

Output:  

 A new set of centroid,  

 number of iterations used to output the final clusters,  

  k number of clusters and  

 time taken for convergence 

 

1: centroid_list1 <= randomly choose k centroids  

2: initialise convergenceTime, Iterations, finalCluster 

3: startTime <= currentTime() 

4: M <= call Assignment 

5: updated_centroid <= M 

6: Iterations <= 1 

7: while (updated_centroid != centroid_list1) || (threshold limit is met)  do 

8:  centroid_list1 <=  updated_centroid 

9:  M  <= call Assignment 

10:  Iterations <= Iterations + 1 

11:  updated_centroid <=  M 

12: end while 

Algorithm 1: Algorithm for Startup 
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13: endTime <= currentTime() 

14: convergenceTime <= (endTime - startTime) 

16: finalClusters <= updated_centroids 

17: write finalClusters  

18: return finalClusters, Iterations , convergenceTime 

 

3.3.2. Assignment 

 

In this phase, we use Euclidean distance to calculate the distances. For each data point, the 

distance is calculated between the data point and the centroid of every k- cluster. The 

centroid which gives the minimum distance with the data point is noted and the data point is 

assigned to the cluster containing that centroid. 

 

 

 

Require: 

 A set of n data points data points X= {x1,  x2,...., xn}, each of dimension d 

  initial list containing k centroids C = {c1,  c2,...., ck} 

Output: A dictionary list consisting of each centroid and the data points assigned to them. 

This list is then passed as an argument to the CentroidCalculator program. 

 

1: Initialize clusters as dictionary 

 2: centroid_set <= C 

3: distance (x, y) =      

  where xi (or yi) is the coordinate of x (or y) in dimension i 

4: for all xj  X such that 1 <=  j  <= n do 

5:  chosenCentroid <= null 

6:  minDistance <= ∞ 

7:  for all centroid in centroid_set do 

8:   dist <= distance(xj, centroid) 

Algorithm 2: Algorithm for Assignment 





d
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9:   if chosenCentroid = null || dist < minDistance then 

10:    minDistance <= dist 

11:    chosenCentroid <= centroid 

12:   end if 

13:  end for 

14: clusters[chosenCentroid] <= ( xj) 

15:  j +=1 

16: end for 

17: call CentroidUpdate(clusters) 

 

 

3.3.3. Centroid Update 

 

The dictionary list that contains the centroids and the list of data points assigned to each 

centroid is passed as an input to the CentroidUpdate procedure. For each centroid, it loops 

through the data points assigned to it and calculate the new mean which becomes our updated 

centroid of the cluster. It, then, outputs the list of new centroids of k clusters. 

 

 

Algorithm 3: Algorithm for CentroidUpdate 
 

 

Require: 

Input: List of centroids and the list of data points assigned to these centroids 

Output: List of updated centroids 

1: output <= Output from Assignment 

2: a <= output 

3: updatedCentroidList <= null 

4: for all c in a do 

5:  updatedCentroid, sum, numofPoints<= null 

6:  for all point in a[c] do 

7:   sum += point 

8:   numofPoints += 1 
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9:  end for 

10:  updatedCentroid <= (sum / numofPoints) 

11:  updatedCentroidList.append (updatedCentroid) 

12: end for 

13: return updatedCentroidList 

 

 

3.4. k-means++ 

 
k-means++ is similar to k-means. It uses the same iterative process of k-means but uses a 

different initialization approach. It chooses the initial means in a different manner. The initial 

means are chosen such that they are far apart from each other. 

 

  

 
1: Choose a data point randomly from the set of n data points 

2: For each point, compute the distance d(x) between the data point and the centroid ( that 

has already been chosen)closest to that point. 

3: Choose the next centroid such that the probability is proportional to d(x)
2 

4:  Repeat steps 2 and 3 until we get the k- centroids  

 

3.5. k-means via MapReduce 
 

K-means is a clustering algorithm used to cluster a set of data objects into k number of 

clusters based on the Euclidean distance. The first step is keep the data points organized and 

generate the initial centroids using the initialization procedure of k-means++ and write these 

to the initial centroid file. 

 

Algorithm 4: Algorithm for Initialization of k-means++ 
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Figure 3.1. Structure of k-means via MapReduce algorithm 

 

3.5.1. Start up 

 

The start-up procedure is used to initiate the process and for the initialization of centroids of 

k clusters. It, then, calls the MapReduce procedure. In the mapper, each data point is assigned 

to the centroid(or cluster bearing the centroid) closest to the data point. The mapper function 

then calls the reducer. In the reducer, the new centroid is calculated by taking the mean of the 

data points associated with the cluster. 

 

The start-up procedure is also responsible for checking the convergence condition in which it 

checks whether the position of new centroids is different from that of current centroids or 

not. If different, then the MapReduce procedure is executed again. Otherwise, the new 

centroids and final clusters are written to a file.  
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Require: 

  A set of  n data points X= {x1,  x2,...., xn}, each of dimension d 

  k that specifies the number of clusters where k < n 

  initial list of centroids C = {c1,  c2,...., ck} contained in the initial centroid file 

Output: a new set of centroids, final clusters 

 

1: centroids_list1 <= C 

2: Initialize convergenceTime, Iterations, finalClusters 

3: startTime <= currentTime() 

4: M <= perform MapReduce using Hadoop Streaming 

5: updated_centroidList <= M 

6: Iterations <= 1 

7: while (updated_centroidList != centroids_list1) || (threshold limit is met)  do 

8:  current_centroids <=  updated_centroidList 

9:  C' <= perform MapReduce using Hadoop Streaming  

10:  Iterations <= Iterations + 1 

11:  updated_centroidList <=  M 

12: end while 

13: endTime <= currentTime() 

14: convergenceTime <= (endTime - startTime) 

16: finalClusters <= updated_centroids 

17: write finalClusters  

18: return finalClusters, Iterations , convergenceTime 

 

3.5.2. Mapper 

 

The input data files is distributed to multiple mapper. The number of mappers assigned to do 

the task depends on the data size. We can not specify the number of mappers for the job. This 

task of choosing the number of mapper is done by Hadoop streaming. The file containing the 

Algorithm 5: Algorithm for Startup 
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centroid of k-clusters is stored in a common directory accessible to all mapper or is 

distributed to each mapper separately.   

 

The centroid list contains the cluster id to which it belongs and the cluster id works as the key 

and the centroid is chosen as the value. Each input data point in the subset (x1, x2, ....., xm) is 

assigned to the closest centroid by the mapper procedure. Euclidean distance is used to assign 

the data point to the closest mean. When all the data points are assigned to the centroids by 

the mapper then Hadoop streaming job itself manages the task of sorting <key, value> pairs 

outputted by the mapper and arranges the output in the form <key, list of values>.  

 

 

 

Require: 

  A subset of  data points, {x1,  x2,...., xn} which is passed to every mapper 

  initial list of centroids C = {c1,  c2,...., ck} 

 

Output: A list of centroids and data points assigned to each centroid.  This dictionary list is 

written down to file and passed to the reducer. 

 

1: Xsubset <= {x1,  x2,...., xm} 

 2: centroids_set <= C 
 

3: distance (x, y) =  

  

 where xi (or yi) is the coordinate of x (or y) in dimension i 

4: for all xj  X such that 1 <=  j  <= m do 

5:  chosenCentroid <= null 

6:  minDist <= ∞ 

7:  for all cent in centroids_set do 

8:   dist <= distance(xj, cent) 

9:   if chosenCentroid = null || dist < minDistance then 

10:    minDistance <= dist 

Algorithm 6: Algorithm for Mapper 
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11:    chosenCentroid <= cent 

12:   end if 

13:  end for 

14: Append (xi, chosenCentroid) to outputList 

15:  i +=1 

16: end for 

17: return outputMapper 

 

3.5.3. Reducer 

 

The output of the mapper is fed in as input to the reducer. It accepts the <key,value> pair 

output from the mapper. For each centroid, the reducer calculates a new value based on the 

list of data points passed along with the centroid. This updated centroid list is emitted as the  

output of the reducer which is sent back to the start-up program to check for convergence. 

 

 

 

Input: <key, value> where key = chosenCentroid (cluster_id) and value = list of data points 

assigned to the cluster_id 

Output: <key, value> where key = cluster_id and value = updatedCentroid, which is the 

new centroid value calculated for the cluster_id. 

 

1: output = Output from Mapper 

2: a = {} 

3: updatedCentroidList <= null 

4: for all z in output do 

5:  cluster_id <= z.key 

6:  data <=  z.value 

7:  a[cluster_id] <= data 

8: end for 

9: for all cluster in a do 

Algorithm 7: Algorithm for Reducer 
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10:  updatedCentroid, sum, numofPoints<= null 

11:  for all point in a[cluster] do 

12:   sum += point 

13:   numofPoints += 1 

14:  end for 

15:  updatedCentroid <= (sum / numofPoints) 

16:  Append  < cluster, updatedCentroid > to updatedCentroidList 

17: end for 

18: return updatedCentroidList 

 

3.6. Modified MapReduce clustering algorithm 

 

In k-means and k-means clustering algorithm, the assignment and update phase is carried out 

iteratively until convergence criteria is met. Since assignment phase involves calculating 

distance between data point and centroid, so the number of computations to calculate 

distance increases with the number of iterations. Moreover, the same computation may occur 

several times in the iterative process.  

 

To minimize such number of computations, we can compute the pair- wise distance between 

the data points and store them in a comma separated file(csv file). Moreover, we modify our 

initialization procedure for initializing the centroids such that the initial centroids are a subset 

of the dataset. 

 

The python scripts needed to implement this algorithm: 

1. Initialization script 

2. Distance computation script 

3. Mapper script 

4. Reducer script 

5. Driver program script 

The functioning of these scripts and the algorithms used are explained in further.  

 

3.6.1. Initialization 
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In this, k- centroids are initialized using the k-means++ initialization algorithm. 

 

 

 

1:   init_centroids <= null 

2:   if length(init_centroids) = 0 

3: s <= choose xi randomly from X  

4: Append s to init_centroids 

5:  else if length(init_centroids) =1 

6: s <= init_centroids[0] 

7: k <= find xj such that distance(xj , s) is maximum 

8:   else 

9:   maxDist <= -1 

10:  maxDistCentroid <= -1 

11: for xi in X 

12:  closestCentroidDist <= ∞ 

13: for c in init_centroids 

14:  if i not in init_centroids 

15:   if distance(xj , c) < closestCentroidDist 

16:    closestCentroidDist <= distance(xj , c) 

17:   end if 

18:  end if 

19: end for 

20: if square(closestCentroidDist) > maxDist and closestCentroidDist != ∞ 

21:  maxDist <= square(closestCentroidDist) 

22:  maxDistCentroid <= xi 

23: end if 

24:  Append maxDistCentroid to init_centroids 

25: end for 

26: return init_centroids 

 

Algorithm 8 : Initialization algorithm 
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Call this algorithm k- times so that we have k initial centroids. 

 

3.6.2. Distance computation 

  

In this, the pair-wise distance between the data points is calculated and the distance matrix is 

written down in a csv file. This csv file is stored at a common location and is accessible to all 

the mappers.  

 

To compute the pair-wise distance of data points, we used the scipy.spatial module of 

Python. This module makes our task of finding pair-wise distance easy. For using the 

distance_matrix() function of scipy module, we need to first input the data points in the 

numpy array, dist and pass this array as an argument to the distance_matrix() function as 

shown below: 

 

 

 

This method works fine when we have numerical data. But this method doesn't work for the 

calculating the distance between the strings. 

 

3.6.3. Mapper  

 

In this, each data point belonging to the dataset is assigned to the closest centroid and 

distance between the data point and the centroid is read from the csv file containing the pair-

wise distance matrix. 

 

 

 

Input:  

i. set of cluster centers(i.e. centroids) 

ii. xi data point present in X 

Output  < zi , xi >,  where zi  is cluster id and xi is the data point 

 

1: mapper (  cluster_center_set , xi ){ 

>>>  scipy.spatial.distance_matrix(dist, dist) 

Algorithm 9 : Mapper algorithm 
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2:  df <= load dataPointdistance.csv using csv reader 

3: nearest_cluster_id <= null 

4: nearest_distance <= ∞ 

5:  for c in cluster_center_set 

6:  dist <= df [ xi ] [ c ] 

6:  if dist  <  nearest_distance 

7:   nearest_distance <= dist 

8:   nearest_cluster_id <= xi 

9:  end if 

10:  end for 

11:  emit (nearest_cluster_id ,  xi ) 

12: } 

 

3.6.4. Reducer  

 

In this, new centroids are calculated. Previously, in k-means we were using mean to find the 

new centroid. But in this modified MapReduce clustering algorithm, we've have used median 

to find the new centroid. The data point that has the median distance from the current 

centroid is chosen as the new centroid. 

 

 

Input 

i. j, cluster label key 

ii. data points assigned to cluster j 

Output:  < j , updatedCentroid > 

 

1: reduce (  j , x_in_cluster_j [x1, x2, ....] ){ 

2:  df <= load dataPointdistance.csv using csv reader 

3:  for xi in x_in_cluster_j 

4:  dist <= df [ xi ] [ j ] 

5:  store the data point xi  associated with dist 

6:  Append dist to distList 

Algorithm 10: Reducer Algorithm 
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7:  end for 

8:  find the median distance present in distList 

9: xj <= data point associated with the median distance is the new centroid 

10:  emit ( j ,  xj ) 

11: } 

 

3.6.5. Driver program 

 

This script is responsible for running the above mentioned scripts. Firstly, the centroids are 

initialized and the pair-wise data-point distances are written down to csv file. Then, it is 

responsible for calling the mapper and reducer scripts iteratively using Hadoop Streaming. It 

calls the MapReduce functionality until the convergence criteria is met or the threshold 

number of iterations is reached. Convergence criteria is met when there is no change in the 

positions of current centroids and the new centroids.   

 

Before running the driver script, the dataset is loaded on the HDFS. 
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Figure 3.2. Structure of driver script of Proposed Algorithm 
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CHAPTER 4 

PERFORMANCE ANALYSIS 

 

In this chapter, two experiments which include two different datasets have been discussed in 

detail. The efficiency and performance comparison of k-means, k-means via Map Reduce 

and the modified Map Reduce clustering algorithm was, thus concluded based on the results 

of the experiments and the results have been discussed in detail.  

  

4.1. Experiment and Results 

 

In this section, two experiments have been discussed. Experiment1 involves the use of small 

dataset and Experiment 2 involves a comparatively large dataset. The number of iterations, 

the convergence time taken by k-means, k-means via map reduce and the modified Map 

Reduce clustering algorithm were noted to compare the performance of the algorithms 

discussed in chapter two. 

 

4.1.1. Experiment 1: Comparison of Map Reduce algorithms with small dataset   

 

The objective is to compare the performance of k-means, k-means via map reduce and 

modified Map Reduce clustering algorithm on a small randomly generated dataset. 

 

In this study, dataset of 1126 data points was randomly generated using Python modules. k-

means, k-means via MapReduce and the modified MapReduce clustering algorithm is 

applied on this small dataset. After implementing these algorithms, the clusters were graphed 

to see if these algorithms form the same clusters or if clusters formed by these algorithms 

vary to a great extent.  

 

These algorithms were applied to the dataset for k=3 and k=4.  

The clusters formed after implementing the serial k-means for k=3 are shown in Figure4.1. In 

this figure, the blue data points plotted belong to cluster 1, the blue data points belong to 

cluster 2 and the green data points belong to cluster 3. 
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Figure4.1: Clusters formation using k-means clustering algorithm for k=3 

 

The clusters formed after implementing the k-means via Map Reduce algorithm are shown in 

Figure4.2. In this figure, the green data points plotted belong to cluster 1, the orange data 

points belong to cluster 2 and the blue data points belong to cluster 3. 

 

Figure4.2: Clusters formation using k-means via map reduce for k=3 
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Figure4.3: Clusters formation using modified map reduce clustering algorithm for k=3 

 

The three clusters formed after implementing modified Map Reduce clustering algorithm are 

shown in Figure4.3. In this figure, the blue data points plotted belong to cluster 1, the green 

data points belong to cluster 2 and the red data points belong to cluster 3. 

 

Figure 4.1, 4.2, 4.3 represents the clusters formed after applying different algorithms to 

randomly generated data set. From these figures, we observe that the clusters formed by these 

algorithms are similar. This similarity is the proof of accuracy. This means that the modified 

clustering algorithm is correct and produces the needed result. 

 

 We implemented the same algorithms to form 4 clusters(k=4). The clusters formed for k=4 

is shown in the Figure4.4(a). The centroids of these four clusters are also plotted and are 

shown in Figure4.4(b). 

 

In Figure4.4(a), the green data points belong to cluster 1, the red data points belong to cluster 

2, the orange data points belong to cluster 3 and the blue data points belong to cluster 4. 
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(a)  

 

(b) 

 

Figure4.4: (a) shows the clusters formed and (b) shows the final coordinates for k=4 
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The time taken by these algorithms was thus noted to compare the performance and is listed 

as follows: 

 

Algorithm 

implemented 

Number of clusters 

(k) 

Number of 

Iterations (i) 

Time Taken ( in 

seconds) 

Serial k-means 
3 5 0.08754 

4 3 0.25349 

k-means via Map 

Reduce 

3 5 131.8220 

4 3 69.12158 

Modified Map Reduce 

clustering algorithm 

3 5 128.7115 

4 3 68.2985 

 

Table4.1: Comparison of the clustering algorithms 

 

From the Table4.1, we plotted the graph. 

 

Figure4.5: Comparison of clustering algorithms for Experiment 1 
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From the above plot, we observe that serial k-means is very fast as compared to other 

algorithms. The reason for the fast performance of serial k-means is attributed to the  size of 

the data. The dataset is very small and thus, the map reduce algorithms doesn't show any 

performance improvement for such data. The time taken to set up the mapper and reducer is 

included in the total time and the time taken to exchange data between the mapper and the 

reducer adds to the time complexity for such small data in map reduce algorithms. 

 

Another important thing to be noted in this plot is that the modified Map Reduce algorithm 

takes less time as compared to the k-means via map reduce. The reason behind this is the 

number of computations required to calculate the Euclidean distance in the mapper function. 

In the modified algorithm, we had already stored the pair-wise distances between the data 

points in a matrix and the distance matrix is stored in a common location from where all the 

mappers can access it. Hence, while implementing the modified algorithm, the distance 

matrix was directly used instead of computing the distance. this saved time. 

 

4.1.2. Experiment 2:  Comparison of Map Reduce algorithms with large dataset   

 

The objective of this experiment is to compare the performance of k-means via map reduce 

and modified Map Reduce clustering algorithm on a real time data taken from STARNET 

lightning network. 

 

In this experiment, a subset of the STARNET lightning data is used consisting of 10788 data 

points. This dataset contains 29 attributes and contains no unique identifier for the data 

points. Thus, a unique identifier was added to uniquely identify the data points. Two 

attributes, the latitude and longitude, were used to cluster the data. k-means via map reduce 

and modified Map Reduce algorithm were implemented to see the improvement in the 

modified algorithm. 
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(a) 

 

(b)  

Figure4.6: (a) shows the clusters formed and (b) shows the final coordinates for k=3 

 



Page | 48  

 

To compare the performance of the two algorithms over the STARNET dataset, the time 

taken to form the final clusters was noted and is listed in the Table4.2. 

 

Algorithm 

implemented 

Number of clusters 

(k) 

Number of 

Iterations (i) 

Time Taken ( in 

seconds) 

k-means via Map 

Reduce 

3 5 139.1514 

4 5 122.0934 

Modified Map Reduce 

clustering algorithm 

3 5 134.7864 

4 5 119.5520 

 

Table4.2: Comparison of clustering algorithms for STARNET dataset 

 

From this table, the bar chart has been plotted and is given in Figure4.7. 

 

 

Figure4.7: Comparison of algorithms of Experiment 2 

 

From this table, it is clear that the modified Map Reduce clustering algorithm takes less time 

as compared to the traditional k-means via map reduce. The performance of the modified 

clustering algorithm is better 
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CHAPTER 5 

CONCLUSION 

5.1. Conclusion 

In this study, we have discussed the clustering algorithms used to partition the large datasets. 

k-means is a clustering algorithm in which initial centroids are selected at random. The 

random initialization of the centroids lead to varying number of iterations needed to cluster 

the dataset. Moreover, it is difficult to find the k- parameter that tells us about the number of 

clusters that can partition our data efficiently for further analysis. k-means++ is an 

advancement over k-means where initialization of centroids follows a different approach and 

the initialized centroids are well separated from each other. Both k-means and k-means++ 

involve a lot of computations to calculate the Euclidian distance between data point and the 

centroids of cluster. Moreover computations were needed to find the mean of the cluster. The 

problem of increasing number of distance computations and time lag due to these 

computations is solved by the modified MapReduce clustering algorithm discussed in this 

study. 

 

The above discussed algorithm reduces the time taken to partition the given dataset but the 

large amount of memory space is required to store the distance matrix. Thus, the space 

complexity of this algorithm increases.  

 

Map reduce clustering algorithms  works best for the large datasets. But it doesn't work well 

for the small data sets because if the data is small that can be fitted in just a single mapper, 

then the overhead of passing data between mapper and reducer and other overheads of 

intermediate read/write make it unsuitable for smaller data sets. Performance of Map Reduce 

clustering algorithms can be increased by using the combiner since it reduces the 

intermediate read/write. Serial k-means algorithm works best for the small data but takes a 

lot of time to process large data sets.  
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5.2. Future Scope 

Clustering using K-means through MapReduce is a good technique to cluster huge data. Even 

the modified MapReduce clustering algorithm turned out to be a better algorithm but the 

space complexity of storing the distance matrix is huge. Moreover, the distance function used 

in this study is applicable only for the numerical values. This distance function can be 

improvised to work for both numerical and string data. Moreover, concepts of distributive 

computing can be applied so that the files stored in the common location can be accessed 

without any communication delay.  
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