

Serverless Application on AWS

Project report submitted in partial fulfillment of the requirement for the

degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Aditya Sharma (181395)

Under the supervision of

Dr. Rajinder Sandhu

To

Department of Computer Science & Engineering and Information

Technology Jaypee University of Information Technology Waknaghat,

Solan-173234,

Himachal Pradesh

i

CERTIFICATE

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Serverless application on

AWS” in partial fulfillment of the requirements for the award of the degree of Bachelor

of Technology in Computer Science and Engineering/Information Technology

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic

record of my own work carried out over a period from February 2022 to July 2022 under

the supervision of Dr. Rajinder Sandhu

(Assistant professor Senior grade Computer Science Engineering).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Aditya Sharma-181395

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Rajinder Sandhu

Assistant Professor (SG)

Computer Science Engineering Dated: 01/12/2021

ii

ACKNOWLEDGEMENT

To begin with, I want to express my heartfelt gratitude to almighty God for His divine

blessing, which has enabled us to successfully complete the project work.

Supervisor Dr.Rajinder Sandhu, Assistant Professor (SG), Department of CSE Jaypee

University of Information Technology, Waknaghat, deserves my deepest gratitude. My

supervisor's deep knowledge and keen interest in the field of "Data Science and Machine

Learning" made it possible to complete this project, as well as his relentless patience,

scholarly guidance, persistent and enthusiastic supervision, constructive criticism,

insightful advice, and reading many inferior draughts and correcting them at all stages.

I'd like to express my heartfelt gratitude to Dr. Rajinder Sandhu of the Department of CSE

for his invaluable assistance in completing my thesis.

I'd also like to express my gratitude to everyone who has assisted me in making this

project a success, whether directly or indirectly. In this specific circumstance, I'd like to

express my gratitude to the numerous staff members, both teaching and non-teaching,

who have provided me with valuable assistance and facilitated my project.

Finally, I must express my gratitude for my parents' unwavering and unflagging love,

support and utmost patience in putting up with me.

Aditya Sharma(181395)

iii

ABOUT THE COMPANY

Andris Zoltners and Prabhakant (Prabha) Sinha, two Ph.D. classmates who eventually

became college professors at Northwestern University's Kellogg School of Management,

created ZS in 1983.

ZS assisted eight of the top ten pharmaceutical corporations in the world align regions and

shrink their sales forces in its first three years. By 2011, ZS has partnered with 49 of the

top 50 pharmaceutical companies and 17 of the top 20 medical device companies.

Today, ZS works with firms all around the world and in a variety of areas, including

healthcare, high-tech, financial services, and more. ZS's knowledge and services have also

grown dramatically. We now assist clients with everything from research to

commercialization, as well as the strategy, analytics, and technology required to make it

all possible.

iv

ABSTRACT

Serverless computing is a relatively new cloud programming and deployment paradigm

that is gaining a lot of traction. Serverless products such as Amazon Web Services (AWS)

Lambda, Google Functions, and Azure Functions automatically execute simple functions

uploaded by developers, in response to cloud-based event triggers. The serverless

abstraction makes integrating concurrency and parallelism into cloud applications much

easier, and it allows for the low-cost deployment of scalable distributed systems and

services.

In this work we have used an API gateway in AWS by making use of a SAM template for

information extraction and modification. The gateway is triggered by a lambda function

written in Python and this data is stored in a database in a sequential ordering by making

use of SNS Queue. Another layer of security is added by making use of Amazon Cognito

for Authentication purposes.

v

TABLE OF CONTENTS

Title Page No.

Declaration i

Acknowledgment ii

About the Company iii

Abstract iv

Chapter - 01: INTRODUCTION

1.1 Introduction 1

1.2 Motivation 2

1.3 Objectives 3

1.4 Language Used 3

Chapter - 02: LITERATURE SURVEY 4

Chapter - 03: MAJOR PROJECT SDLC

 3.1 Feasibility Study 6

 3.2 Use Case Diagram 7

 3.3 DF Diagram 7

 3.4 AWS Services Used 8

3.5 Authentication Methods 11

Chapter - 04: IMPLEMENTATION

 4.1 Database Initialization 14

 4.2 Creating API 17

 4.3 Order Poller Addition 33

 4.4 Authentication Phase 35

vi

Chapter - 05 : RESULTS

 5.1 Discussion about result achieved 37

 5.2 Application of the project 46

5.3 Limitations of the project 47

 5.4 Future Work 47

REFERENCES 48

1

CHAPTER 01: INTRODUCTION

 1.1 PROJECT INTRODUCTION

The AWS Serverless Application Model (SAM) denotes a framework that consists of an

open source template to build serverless applications. It provides shorthand syntax to

express functions, APIs, databases, and event source mappings. You can define the

application you want and model it using YAML with just a few lines per resource. SAM

transforms and expands the SAM syntax into AWS CloudFormation syntax during

deployment, enabling you to build serverless applications faster.

The AWS SAM CLI is required to begin developing SAM-based applications. SAM CLI

is a Lambda-like execution environment that allows you to build, test, and debug apps

locally using SAM templates or the AWS Cloud Development Kit (CDK). The SAM CLI

can be used to deploy applications to AWS or to build secure continuous integration and

deployment (CI/CD) pipelines that interact with AWS' native and third-party CI/CD

systems.

Shorthand syntax for functions, APIs, databases, and event source mappings is provided

by AWS SAM. SAM converts and expands SAM syntax into AWS CloudFormation

syntax during deployment. After that, CloudFormation provides a very reliable

deployment tool for the resources employed.

A serverless application's architecture is represented by a SAM template file, which is a

YAML configuration. The template is used to declare all of the AWS resources that make

up your serverless app in one place. Any resource that you may declare in an AWS

CloudFormation template can likewise be defined in an AWS SAM template, making it

easy to work with.

2

1.2 MOTIVATION

India is the home to the one of the largest consumer markets in the world. During the

financial year 2021-2022, the volume of digital payments in India increased by 33% year

on year . According to the Ministry of Electronics and Information Technology, there

were 7,422 crore digital payment transactions in FY 2020-21, up from 5,554 crore in FY

2020-21. Order processing is used many phases of large scale businesses eg. payment

business, delivery business etc. Digital transactions are becoming increasingly widespread

in everyday life. From 2020 to 2021, transactions connected to telecom and electricity

bills increased by 3640 percent and 2353 percent, respectively. In 2020, lifestyle and

fashion were the leading contributors to e-commerce transactions, but in 2021, groceries

overtook them with a 233 percent increase. Fitness-related transactions increased by 611

percent in 2021, indicating that more individuals are becoming health-conscious. During

the holiday season, nearly one-third of all e-commerce transactions occurred, as projected.

With remote and hybrid work becoming the norm, professionals may be settling back in

their hometowns, since this sector grew by over 210 percent in tier 2 and tier 3 cities

between 2010 and 2020. Online meal orders have increased in popularity by 284.89

percent in the last year. While consumer-driven e-commerce dominated in 2020,

Wholesale E-commerce expanded by over 1500% in 2021, indicating a rise in business

digital adoption. The popularity of Fantasy League and Esports has led to an increase in

usage in the Games sector. Game developer tools were in demand due to increased

consumer demand for games, with transaction volume for the sub-sector increasing by

365.83 percent in 2021. To manage such a huge load of data the system that needs to be

built must have sufficient fault tolerance to process such transactions. The API provides a

level of abstraction that can help to extract only the data which can be revealed without

compromising confidential data. Such systems provide a way for smooth communication

between client and the server to ensure smooth transactions. Therefore AWS is a scalable

platform wherein a Serverless system can be deployed for the purpose of managing the

transactions received by building fault tolerant and robust systems. AWS SAM makes it

simple to organize and manage related components and resources on a single stack. AWS

SAM allows you to share resource configuration (such as RAM and timeouts) and deploy

all associated resources as a single, versioned entity.

3

1.3 OBJECTIVES

● Make use of SAM AWS template due to the various advantages offered

● Build an API gateway by using SAM template and storing the configurations in

template.yml file

● Initialize Dynamo DB database for storing data that will be extracted

● Creating lambda function to trigger the API gateway to perform various operations.

● Initialize a SNS queue to perform order processing and store it in the way they come in

● Use Authentication method to provide a layer of security for the system.

1.4 TOOLS USED

This project makes use of the Python programming language for its implementation. The

use of Python was required for creating lambda functions to use the API gateway created.

The AWS services employed during the project are listed below:

● AWS Lambda

● Amazon API Gateway

● Amazon DynamoDB

● AWS Step Functions

● Amazon Cognito

● Amazon cloud formation

https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-api-gateway
https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-api-gateway
https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-dynamodb
https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-dynamodb

4

CHAPTER 02: LITERATURE SURVEY

The Serverless framework[1] streamlines the Lambda application development process.

Using an offline mode, users can debug Lambda functions locally with this plugin.

Dockerlambda is a reverse-engineered sandbox for AWS Lambda. It is compatible with

all Lambda runtimes. On AWS Lambda, this guarantees the same behaviour. Josef

Spillner researched FaaS and put Snafu[2] into practising a modular framework that

works with AWS LambdaDebug Lambda apps with this tool.

The only other existing AWS debugging and analysis support CloudWatch and X-Ray,

two logging tools, are used to create Lambda applications. AWS Lambda monitoring is

provided by New Relic[3] and Dashbird[4], which summarise data. Courtesy of AWS

Cloudwatch Zipkin[5] is a Google Dapper[35]-based distributed tracing system.

Obtaining causal ordering to aid debugging Performance analysis is well-known and

widely used has been thoroughly investigated.

According to Schwarz et al.[6], understanding distributed applications requires describing

the causal link. Bailis et al. review causality in [7] in the context of real-world

applications and propose a number of intriguing model expansions.

In distributed applications, several systems track causal links. Dapper[8], Google's

production distributed systems tracing infrastructure, is now open to the public. The

report explains how they achieved reduced overhead, application-level transparency, and

large-scale deployment.

Fonseca et al. presented X-trace[9], a tracing framework that provides a comprehensive

view of behaviour of a modern Internet system with many applications distributed across

various administrative domains. Kronos [10] determines the order of interdependent

processes in a distributed system via a separate event ordering service system. Several

sample applications are used by Escriva et al. to highlight the value of having a Kronos

API.

5

New ways to achieving causal consistency in distributed and scalable datastore systems

are being developed in other studies. COPS[11], a key-value store suggested by Lloyd et

al., provides causal consistency across a large area. They discover and define a new

consistency model known as causal consistency with convergent conflict resolution. Bolt-

on[12] is a solution suggested by Bailis et al. that provides a shim layer on top of general-

purpose and widely deployed datastores that provides causal consistency.

Saturn[13] is a geo-replicated data management system metadata service. It can be used to

ensure that remote activities are carried out in a visible and causally correct order. Saturn

has been tested on Amazon EC2, and the results show that weakly consistent datastores

can outperform finally consistent models (by causal consistency).

6

CHAPTER 03: MAJOR PROJECT SDLC

 3.1 Feasibility Study

 3.1.1 Financial Feasibility

Our project does not take up any major financial investment, but the cost for AWS

account for services was incurred. The baseline costs involved are mentioned below:

● DynamoDB: <$0.1

● API Gateway: <$0.1

● Step Functions: <$0.1

● S3: <$0.1

● Cognito: <$0.1

● SQS: <$0.1

3.1.2 Technical Feasibility

The project resulted in Serverless application at Scale on AWS platform can be used to

make order requests by making use of API gateway. This scalable application can take

into account the workload incurred and ramp up or decrease the resources needed

accordingly. The Serverless Application Management template allows easy

communication between client and server by means of lambda function which can be

programmed in any language desired by the user (e.g. python, javascript, etc.) by making

use of frameworks like Django or node.js etc. The project required creating an AWS

account and setting up a Cloud9 workshop with required services employed for its

completion.

7

3.2 Use Case Diagram

Fig 1: Use Case Diagram

3.3 DF Diagram

Fig 2: DF Diagram

8

3.4 AWS Services used

AWS Lambda

AWS Lambda is a serverless compute service that enables you to run code without having

to provision or manage servers, write workload-aware cluster scaling logic, maintain

event integrations, or manage runtimes. You can run code for nearly any form of

application or backend service with Lambda, and you don't have to worry about

administration. Simply upload your code as a ZIP file or container image, and Lambda

will assign compute execution power and run your code based on the incoming request or

event, at any scale. It can be used for over 200 AWS services and SaaS applications to

trigger the code, or can call it directly from any web or mobile app . This helps in easy

connection with API gateway endpoint to send request from the client

Lambda functions may be used to develop in whatever language you choose (Node.js,

Python, Go, Java, and more) and build, test, and deploy them using both serverless and

container tools like AWS SAM or Docker CLI.

Amazon API Gateway

The Amazon API Gateway service is a fully managed service that allows developers to

easily construct, publish, maintain, monitor, and protect APIs at any size. APIs allow

applications to access data, business logic, and functionality from your backend services

through a "front door." RESTful APIs and WebSocket APIs can be created with API

Gateway to enable real-time two-way communication applications. Web applications, as

well as containerized and serverless workloads, are supported by API Gateway.

API Gateway takes care of everything from traffic management to CORS support to

authorization and access control to throttling, monitoring, and API version management

for hundreds of thousands of concurrent API calls. There are no minimum fees or initial

costs with API Gateway. You pay for the API calls you receive and the data you send out,

and you can save money by using the API Gateway tiered pricing model as your API

usage grows.

https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-api-gateway
https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-api-gateway

9

Amazon Simple Queue Service (SQS)

SQS is a fully managed message queuing service from Amazon that lets you decouple and

scale microservices, distributed systems, and serverless applications. SQS removes the

complexity and overhead of managing and operating message-oriented middleware,

allowing developers to concentrate on work that is unique. You can send, store, and

receive messages across software components using SQS at any volume without losing

messages or necessitating the availability of other services. Using the AWS dashboard,

your preferred Command Line Interface or SDK, and three easy commands, you can get

started with SQS in minutes.

SQS provides two different types of message queues. Standard queues provide high

throughput, best-effort ordering, and delivery at least once. SQS FIFO queues are meant

to ensure that messages are processed only once, in the sequence in which they are

received.

Amazon DynamoDB

At any scale, Amazon DynamoDB is a key-value and document database with single-digit

millisecond performance. It's a fully managed, multi-region, multi-active, persistent

database for internet-scale applications with built-in security, backup and restore, and in-

memory caching. DynamoDB can handle over 10 trillion requests per day and up to 20

million requests per second at its peak.

AWS Step Functions

AWS Step Functions is a low-code visual workflow utility for orchestrating AWS

services, automating business processes, and developing serverless apps. Workflows take

care of failures, retries, parallelization, service integrations, and observability, allowing

developers to concentrate on higher-value business logic.

https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-simple-queue-service-(sqs)
https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-simple-queue-service-(sqs)
https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-dynamodb
https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-dynamodb

10

Amazon Cognito

Amazon Cognito allows you to quickly and easily add user sign-up, sign-in, and access

management to your online and mobile apps. Amazon Cognito scales to millions of

people and supports sign-in via SAML 2.0 and OpenID Connect with social identity

providers like Apple, Facebook, Google, and Amazon, as well as enterprise identity

providers.

Amazon cloud formation

AWS CloudFormation is a service that assists you in modelling and configuring your

AWS resources so you can spend less time maintaining them and more time working on

your AWS-based apps. You construct a template that outlines all of the AWS resources

you want (such as Amazon EC2 instances or Amazon RDS DB instances), and

CloudFormation handles provisioning and configuration for you. CloudFormation handles

the creation and configuration of AWS resources as well as determining what is

dependent on what. The situations below show how CloudFormation can assist.

AWS CloudFormation performs underlying service calls to AWS to provision and

configure your resources when you create a stack. Only activities that you have authority

to conduct can be performed by CloudFormation. For example, permissions to create

instances are required to use CloudFormation to generate EC2 instances. When you delete

stacks with instances, you'll need equivalent permissions to terminate instances. To handle

permissions, you utilise AWS Identity and Access Management (IAM).

Your template declares all of the calls that CloudFormation does. Take, for example, a

template that describes an EC2 instance with the t2.micro instance type. When you use

that template to build a stack, CloudFormation uses the Amazon EC2 create instance API

with the t2.micro instance type.

https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-cognito
https://catalog.us-east-1.prod.workshops.aws/workshops/b34eab03-4ebe-46c1-bc63-cd2d975d8ad4/en-US/1-introduction/service-descriptions#amazon-cognito

11

3.5 Authentication Methods

Lambda Authorizers

A Lambda authorizer (previously known as a custom authorizer) is a Lambda function

that controls API access. This Lambda function is invoked using a request context or an

authorization token provided by the client application when your API is called. If the

caller is authorised to do the specified operation, the Lambda function returns true.

IAM Permissions

 AWS Identity and Access Management (IAM) permissions let you manage who can use

your API. IAM credentials must be used to authenticate users calling your API. Only an

IAM policy associated to the IAM user that represents the API caller, an IAM group that

contains the user, or an IAM role that the user assumes will allow calls to your API to

succeed.

Amazon Cognito user pools

Amazon Cognito user pools are Amazon Cognito user directories. A client of your API

must first sign a user into the user pool and get the user's identity or access token. The

client then uses one of the returned tokens to call your API. Only if the needed token is

valid does the API call succeed.

API Keys –

API keys are alphanumeric string values that you give to app developers to gain access to

your API.

12

Resource Policies

JSON policy documents that you can connect to an API Gateway API are known as

resource policies. To control whether a specific principal (usually an IAM user or role)

can invoke the API, utilise resource policies.

OAuth 2.0/JWT authorizers

To limit access to your APIs, you can use JWTs as part of the OpenID Connect (OIDC)

and OAuth 2.0 frameworks. API Gateway validates JWTs that clients submit with API

queries and permits or refuses requests depending on token validation and, optionally,

token scopes.

13

CHAPTER 04: IMPLEMENTATION

 Setting up the environment

First of all we install jq a lightweight package for processing Json files and set the AWS

region and also provide the name for the project.

SAM template for hello-world is cloned and then it will be modified to server purpose for

our app. We will be creating a folder called order-app using the following code.

The directory structure created is provided below:

14

Two folders are created which are:

Hello-world - This contains Lambda source code and tests written in Python. Returns a

HTTP 200 status with Hello world message.

template.yaml every components that is to be deployed into AWS environment is stored

here.

The template file looks as follows:

Build and Deploy the SAM project using following commands:

4.1 Database Initialization

For our Order Service, we'll be storing our orders in Amazon DynamoDB. To get started,

we'll construct a DynamoDB Table with the default settings.

The Partition Key will be user id, and the Range Key will be id in the DynamoDB table.

15

Partition key - A partition key is a simple primary key made up of only one property. The

sort key or range key is used to sort objects that belong to the same

partition. For example, the partition key for an Order table would be CustomerId, and the

sort key would be OrderId.

In the Cloud9 editor, open template.yaml. The DynamoDB Table resource will be added

to the Resources node, as shown below.

Then, in the Outputs area, add the following DynamoDB Table Name as an Output:

Construct and deploy our SAM template in Cloud9 Terminal to generate the DynamoDB

Table in AWS.

16

Let's add some sample data to our Order Table. Let's start by making a new folder and file

for this (seed-orderdb.js). After that, install the requirements (node-uuid, and aws-sdk).

After populating our database by using Python we can see the database below:

The first component of our RESTful API will be /GET Orders, which will return a list of

Orders. The get-orders lambda method will be written in Python.

To develop a getOrders function, navigate to the order-app project and create the get-

orders subdirectory.

17

4.2 Creating API

In the Cloud9 editor, open the app.py file and the following code block is executed.

18

It's time to update the SAM template for the app.py Lambda function deployment. We'll

create a Function resource and its output in the template.yaml file.

Execute the following resource into the template's Resources section.

19

Creating an empty file for API Gateway methods.

Execute the following OpenAPI definition for ApiGateway to GET resource in our

api.yaml file.

The API definition above creates a GET method under the /orders resource, as well as a

proxy to the GetOrders Lambda function.

As seen above, we'll be passing two resource outputs from the SAM template file name.

ApiGwExecutionRole and GetOrders are the two. Arn

In the SAM template.yaml file, create API Gateway and APIGwExecutionRole resources.

Create and launch the SAM project: Create and launch the SAM project:

The GetOrders function and API Gateway have now been deployed.

In the Lambda console, look at the newly formed getOrdersfunction:

20

● Creating function

To develop a createOrder function, navigate to the order-app project and create the get-

orders subdirectory.

In the Cloud9 editor, open the app.py file and the following code block is executed.

21

Execute the following OpenAPI definition for ApiGateway to GET resource in our

api.yaml file.

22

Finally, let's update ApiGwExecutionPolicy for PostOrders function to give an access in

template.yaml file. Copy below condition into PolicyDocument Resource.

Build and Deploy the SAM project:

The Post Orders Lambda function has now been deployed and linked with the API

Gateway POST Method.

In the Lambda console, look at the newly formed postOrdersfunction:

23

24

● Updating function

To develop a updateOrder function, navigate to the order-app project and create the get-

orders subdirectory.

In the Cloud9 editor, open the app.py file and the following code block is executed.

Execute the following OpenAPI definition for ApiGateway to GET resource in our

api.yaml file.

25

Finally, let's update ApiGwExecutionPolicy for updateOrders function to give an access

in template.yaml file. Copy below condition into PolicyDocument Resource.

26

Build and Deploy the SAM project:

The Update Orders Lambda function has now been deployed and linked with the API

Gateway POST Method.

In the Lambda console, look at the newly formed updateOrdersfunction:

27

28

● Deleting function

To develop a deleteOrder function, navigate to the order-app project and create the get-

orders subdirectory.

In the Cloud9 editor, open the app.py file and the following code block is executed.

29

Execute the following OpenAPI definition for ApiGateway to GET resource in our

api.yaml file.

30

Finally, let's update ApiGwExecutionPolicy for deleteOrders function to give an access in

template.yaml file. Copy below condition into PolicyDocument Resource.

31

Build and Deploy the SAM project:

The Delete Orders Lambda function has now been deployed and linked with the API

Gateway POST Method.

In the Lambda console, look at the newly formed deleteOrdersfunction:

32

33

4.3 Order Poller Addition

We'll create a SQS Queue with a Dead Letter Queue in this section, then add the Order

Post function as an event source to the SQS Queue.

To construct SQS Queues, add Queue and Deadletter Queue to the template.yaml file.

We'll set maxReceiveCount to 5 to see how many messages we can process before

sending them to the Deadletter queue.

Copy the resources listed below into the Resources section of the template.yaml file.

34

To poll orders from SQS, add SQS as an event source to Post Orders Lambda. Now, in

template.yaml's PostOrders resource, add the following Events block in the same line as

Environment and Policies.

Update the Post Orders function to read SQS order messages.

Instead of utilising the uuid library for the Order's Id, we'll use the messageId generated

by SQS. Then, to read batches of messages from SQS, a for loop will be added.

Go to the post-orders directory, which contains the app.js file.

35

4.4 Authentication Phase

Authentication

Open the app.js file in the Cloud9 editor at /environment/$ORDER APP/src/order-

api/functions/post-orders, then replace the following item object with the previous one as

shown below.

Cognito delivers the cognito authorization parameters to API Gateway in a

requestTemplate when we integrate Cognito with API Gateway in lab1. The postOrders

function in this request template will now include the Cognito userid and username.

Open the api.yaml file in the Cloud9 editor and add cognito parameters to MessageBody

in requestTemplates in the POST section of the /environment/$ORDER APP/api.yaml

file.

36

Update the function 'Update Order': Open the app.js file in the Cloud9 editor at

/environment/$ORDER APP/src/order-api/functions/update-order, then replace the

following item object with the previous one as shown below.

'Delete Order' has been updated: Open the app.js file in the Cloud9 editor at

/environment/$ORDER APP/src/order-api/functions/delete-order, then replace the

following item object with the previous one as shown below.

'Get Single Order' has been updated: Open the app.js file in the Cloud9 editor at

/environment/$ORDER APP/src/order-api/functions/get-single-order, then change the

following item object with the previous one as shown below.

37

CHAPTER 05: CONCLUSIONS

5.1 Testing Results

Triggering the API Endpoint after installing the API gateway and GetOrders Function in

this section. The API endpoint can be found in the SAM output.

Extracting the API ENDPOINT from SAM and store it as an environment variable:

Curl:

curl -s $API_ENDPOINT | python3 -m json.tool

Output:

38

Triggering the API Endpoint after installing the API gateway and PostOrders Function in

this section. The API endpoint can be found in the SAM output.

creating an Order now. Sending a JSON Payload to our API Gateway.

Sample Payload:

Curl:

curl -s --header "Content-Type: application/json" \

 --request POST \

 --data '{"name":"Burger","restaurantId":"Restaurant 2","quantity":2 }' \

 $API_ENDPOINT | python3 -m json.tool

Output:

39

Triggering the API Endpoint after installing the API gateway and UpdateOrders Function

in this section. The API endpoint can be found in the SAM output.

Replace the OrderID into <YOUR-ORDER-ID> field:

Curl:

curl -s --header "Content-Type: application/json" \

 --request PUT \

 --data '{"name":"Sushi","restaurantId":"Fancy Restaurant","quantity":12 }' \

 $API_ENDPOINT/$ORDERID | python3 -m json.tool

Output:

Triggering the API Endpoint after installing the API gateway and deleteOrders Function

in this section. The API endpoint can be found in the SAM output.

Replace the OrderID into <YOUR-ORDER-ID> field:

40

Curl:

curl -I -s --request DELETE $API_ENDPOINT/$ORDERID

Output:

Creating another Order. API Gateway will submit the order to SQS as a message at this

time. The Lambda consumer will then poll it, process it, and store the results in

DynamoDB.

Output:

41

Let's make a new Order with OAuth2 scope to remove.

42

Respond with an HTTP 401 is provided Unauthorized error. Because the delete order

scope is set to the Delete method.

We must visit the Cognito domain using delete scope in order to obtain an Access token

with Oauth2 scope. The Cognito Domain name can be found in the Cognito console or

SAM Output. However, because the response code argument is required, we must login to

HostedUI in Lab4 with our Username and Password, then copy the response code and

paste it at the end of the callbackurl.

In Cognito Pool's App Client Settings, click the Hosted UI button:

43

44

As shown in the screen photo above, get the RESPONSE CODE variable from Cognito

Console:

45

To set the Cognito Domain url, App client id, and App Client secret, run the commands

below.

Let's try sending a Curl request to the Cognito Domain to get an Access Token with

OAuth2 scope (order-api/delete order), response code, client id, and client secret.

Let's try deleting something using ACCESS TOKEN and ORDERID>.

46

(To list orders and acquire the single order id, go to the Fetch Orders Testing Section.)

5.2 Conclusion

In this project we were able to create a serverless application which can use API gateways

to fetch the data by making use of the AWS SAM template . The SNS queue was used for

order processing and for the purpose of Authentication we made use of Amazon Cognito

which provided the results which were intended. The use of AWS SAM template ensures

that best practices are used to deploy the application and the system built inturn is

scalable. The authentication provides a layer of security to restrict user access as desired

by the application vendor, making the communication between client and server secure.

47

5.3 Application of the project

The order processing mechanism defined within the scope of this project provide its

applications in various industries across the market. The API calling for obtaining

information can be used to create data abstraction and help in getting important

information only. The application used in this project is for food ordering service but it

can be further extended to other applications of online transactions like for payment or

handling website traffic. The various functions can be used to create , update or delete

orders as per the wish of the client by making use of API gateway provided and the order

of these requests is maintained by the SNS pipeline used in this project. The

authentication method provides an extra layer of security which can be utilised in case of

handling of sensitive information.

5.4 Future Work

In Future we can enhance the order management by making use of AWS Step functions to

perform various operations like showing payment , order checking and sending notice to

the client. The step function can be used in combination with proposed architecture to

enhance the client and server interaction. For authentication purposes advanced methods

of authentication like OAuth 2.0 service of AWS or API keys can be used to add further

layer of security in case of high sensitive data. This can be used if the data that needs

obtained to related to banking. This can also provide restricted access to the only user for

whom the information is intended.

48

REFERENCES

1. “Serverless Framework,” https://serverless.com/, [Online; accessed 11-September-2017]

2. J. Spillner, “Snafu: Function-as-a-service (faas) runtime design and implementation,”

CoRR, vol. abs/1703.07562, 2017.

3. “New Relic Monitors Serverless Computing with AWS Lambda Integration,”

https://blog.newrelic.com/2016/11/29/ aws-lambda-integration-serverless-infrastructure/,

[Online; accessed 11-September-2017].

4. “Dashbird,” https://dashbird.io/, [Online; accessed 11- September-2017].

5. “Zipkin,” http://zipkin.io/, [Online; accessed 11-September2017].

6. B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S.

Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed systems tracing

infrastructure,” Google, Inc., Tech. Rep., 2010. [Online]. Available: https:

//research.google.com/archive/papers/dapper-2010-1.pdf

7. P. Bailis, A. Fekete, A. Ghodsi, J. Hellerstein, and I. Stoica, “The potential dangers of

causal consistency and an explicit solution,” in Proceedings of the Third ACM

Symposium on Cloud Computing, ser. SoCC ’12, 2012.

8. R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “X-trace: A pervasive network

tracing framework,” in USENIX Conference on Networked Systems Design and

Implementation, 2007.

9. R. Escriva, A. Dubey, B. Wong, and E. Sirer, “Kronos: The design and implementation

of an event ordering service,” in European Conference on Computer Systems, ser.

EuroSys ’14, 2014.

49

10. W. Lloyd, M. Freedman, M. Kaminsky, and D. Andersen, “Don’t settle for eventual:

Scalable causal consistency for wide-area storage with cops,” in ACM Symposium on

Operating Systems Principles, 2011.

11. P. Bailis, A. Ghodsi, J. Hellerstein, and I. Stoica, “Bolt-on causal consistency,” in ACM

SIGMOD International Conference on Management of Data, 2013.

12. M. Bravo, L. Rodrigues, and P. V. Roy, “Saturn: A distributed metadata service for

causal consistency,” in European Conference on Computer Systems, 2017.

13. https://www.statista.com/topics/5593/digital-payment-in-india/

14. Hazari, S. S., & Mahmoud, Q. H. (2019, January). A parallel proof of work to improve

transaction speed and scalability in blockchain systems. In 2019 IEEE 9th annual

computing and communication workshop and conference (CCWC) (pp. 0916-0921).

IEEE.

15. Mishra, A. (2017). Amazon Web Services for Mobile Developers: Building Apps with

AWS. John Wiley & Sons.

16. Yu, J. Y., & Kim, Y. G. (2019, January). Analysis of IoT platform security: A survey. In

2019 International Conference on Platform Technology and Service (PlatCon) (pp. 1-5).

IEEE.

17. Sbarski, P., & Kroonenburg, S. (2017). Serverless architectures on Aws: with examples

using Aws Lambda. Simon and Schuster.

18. Rajan, R. A. P. (2018, December). Serverless architecture-a revolution in cloud

computing. In 2018 Tenth International Conference on Advanced Computing (ICoAC)

(pp. 88-93). IEEE.

https://www.statista.com/topics/5593/digital-payment-in-india/

50

19. Lin, W. T., Krintz, C., Wolski, R., Zhang, M., Cai, X., Li, T., & Xu, W. (2018, April).

Tracking causal order in aws lambda applications. In 2018 IEEE International

Conference on Cloud Engineering (IC2E) (pp. 50-60). IEEE.

20. zs.com/about/our-story

	Serverless Application on AWS
	Computer Science and Engineering/Information Technology
	Aditya Sharma (181395)
	Dr. Rajinder Sandhu
	Candidate’s Declaration

	Chapter - 01: INTRODUCTION
	Chapter - 02: LITERATURE SURVEY 4
	Chapter - 03: MAJOR PROJECT SDLC
	Chapter - 04: IMPLEMENTATION
	Chapter - 05 : RESULTS
	1.3 OBJECTIVES
	● Make use of SAM AWS template due to the various advantages offered
	1.4 TOOLS USED
	AWS Lambda
	Amazon API Gateway
	Amazon Simple Queue Service (SQS)
	Amazon DynamoDB
	AWS Step Functions
	Amazon Cognito

