Identity and Access Management Solutions (IAM)

Major Project report submitted for the
degree of Bachelor of Technology

In

Computer Science and Engineering
By

Angima Anthwal 181464

UNDER THE SUPERVISION OF
Dr. Ruchi Verma

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology, Waknaghat, 173234,
Himachal Pradesh, INDIA

CERTIFICATE

This is to certify that the work which is being presented in the project report titled
Identity and Access Management in partial fulfilment of the requirements for the
award of the degree of Bachelor of Technology in Computer Science and
Engineering & Information Technology, Jaypee University of Information
Technology, Waknaghat is an authentic record of work carried out by Angima Anthwal
during the period from January 2022 to May 2022 under the supervision of Dr. Ruchi
Verma, Department of Computer Science and Engineering & Information Technology,
Jaypee University of Information Technology, Waknaghat.

Angima Anthwal (181464)

The above statement made is correct to the best of my knowledge.

Supervisor Name: Dr. Ruchi Verma

Designation: Assistant Professor (Grade-II)

Department Name: Computer Science and Engineering

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his divine

blessing that made it possible to complete the project work successfully.

I am quite grateful to my supervisor, Dr. Ruchi Verma, Asst. Prof. Senior Grade,
Department of CSE Jaypee University of Information Technology, Waknaghat, for her
assistance. To complete this assignment, my supervisor has extensive knowledge and a
deep interest in the subject of Web Development. Her never-ending patience, intellectual
direction, constant encouragement, constant and energetic supervision, constructive
criticism, good suggestions, and reading many poor versions and fixing them at all stages

made it possible to finish this job.

I'd like to thank Dr. Ruchi Verma, Department of CSE, for her invaluable assistance in

completing my project.

I would also like to express my gratitude to everyone who has directly or indirectly
assisted me in making this project a success. In this unique scenario, I'd want to
appreciate the different staff members, both teaching and non-teaching, who have
developed their helpful assistance and facilitated my project. Finally, I must express my

gratitude for my parents' unwavering support and patience.

Angima Anthwal(181464)

Table of Contents

CONTENT PAGE NO.
CANDIDATE’S DECLARATION 2
ACKNOWLEDGEMENT 3
ABSTRACT 5
CHAPTER 1: INTRODUCTION 6-18
CHAPTER 2: LITERATURE SURVEY 19
CHAPTER 3: SYSTEM DEVELOPMENT 20-39
CHAPTER 4: CONCLUSION 40

ABSTRACT

Identity and access management, or IAM, is the security discipline that
makes it possible for the right entities (people or things) to use the right
resources (applications or data) when they need to, without interference,
using the devices they want to use.IAM is comprised of the systems and
processes that allow IT administrators to assign single digital identity

to each entity, authenticate them when they login, authorize them to
access specified resources, and monitor and manage those identities

throughout their lifecycle.

User identities and access rights are defined and managed by an Identity and
Access Management (IAM) system.Identity and access management ensures that the
right people and job responsibilities (identities) in your business have access to the
tools they need to execute their tasks. Identity management and access management
systems allow your company to manage staff apps without having to login as an
administrator to each one.Your organisation can manage a variety of identities,
including people, software, and hardware, such as robotics devices, with identity

and access management solutions.

The best approach to implementing an IAM solution is to do an audit of
existing and legacy systems. Identify gaps and opportunities, and
collaborate with stakeholders early and often. Map out all user types and

access scenarios, and define a core set of objectives the IAM solution must meet.

Chapter 01-Introduction 1.1 Introduction:

Single sign-on (SSO) is a session and user authentication service that permits a user to
use one set of login credentials -- for example, a name and password -- to access
multiple applications. SSO can be used by enterprises, smaller organizations and

individuals to ease the management of various usernames and passwords.

In a basic web SSO service, an agent module on the application server retrieves the

specific authentication credent Single sign-on (SSO) is a session and user authentication

service that permits a user to use one set of login credentials -- for example, a name and password
to access multiple applications. SSO can be used by enterprises, smaller

organizations and individuals to ease the management of various usernames and passwords.

In a basic web SSO service, an agent module on the application server retrieves the

specific authentication credentials for an individual user from a dedicated SSO policy

server, while authenticating the user against a user repository, such as a Lightweight
DirectoryaAccessaProtocola(LDAP)adirectory.aTheaserviceaauthenticatesatheaendauseraforaall

the applications the user has been given rights to and eliminates future password

prompts for individual applications during the same session for an individual user from a

dedicated SSO policy server, while authenticating the user against a user repository, such

as a Lightweight Directory Access Protocol (LDAP) directory. The service authenticates the end user
for all the applications the user has been given rights to and eliminates future password prompts for
individual applications during the same session.

Client - Server Architecture

The client server architecture consists of 2 components - a) Client - The user facing front-end application which
can make requests to obtain resources from a backend application. Information can be stored on the client side,
using - variables of javascript, cookies or local storage. Cookies and local storage serve different purposes.
Cookies are primarily for reading server-side, local storage can only be read by the client-side. Example

of cookies : document.cookie = "name=manish;email=mvsn98@gmail.com".

https://www.techtarget.com/searchsecurity/answer/What-are-the-most-common-digital-authentication-methods
https://www.techtarget.com/searchenterpriseai/definition/agent-intelligent-agent
https://www.techtarget.com/searchsecurity/definition/authentication
https://www.techtarget.com/searchoracle/definition/repository
https://www.techtarget.com/searchmobilecomputing/definition/LDAP
mailto:mvsn98@gmail.com

Cookies can have an expiry date, after which their data becomes unavailable on the server side. Such an expiry
date does not exist in case of data of local storage.
In case of local storage, there's an upper limit of 5 MB imposed upon storage of data, whereas, in case of

cookies, the limit if only 4 MB PER COOKIE!

Example of localstorage : localStorage.setltem("state", "firststate"); const state = localStorage.getltem("state");

localStorage.removeltem("state");

b) Server - The backend application which can accept requests from a client and respond to it by returning the
requested resources or an error, if something goes wrong while serving the request. Information can be stored

on server side using - variables of the backend programming language, cache or databases.

There are 3 layers in a client -server architecture - Client (Presentation Layer), Server (Application / Session

Layer), Database (Database Layer).

If all 3 layers are present on same machine, then it's a one- tier architecture (e.g., if using loopback address -
localhost / 127.0.0.1, for testing an application). If these 3 layers are distributed among 2 machines, then it's a
two- tier architecture and if all 3 layers are present on their own separate machines, then it's a three-tier

architecture.

CORS = Cross Origin Resource Sharing, refers to a set of policies that dictate whether a client can access the
resources on another server or not, depending upon if the Origin (Domain Name or IP Address) of the client's

request is whitelisted by the server for resource access, or not.

HTTP Requests

HTTP = Hyper Text Transfer Protocol

HTTP is called as a stateless protocol because each request is executed independently, without any knowledge
of the requests that were executed before it. Default ports on client side and server side for communication
using HTTP requests are - 80 and 80. Default Port from which an HTTP request is sent from a client, is

: 80 Default Port at which a server receives the HTTP request from a client, is : 80, unless changed.
Components of HTTP Requests :

A) HTTP METHODS

HTTP Request Methods define the basic purpose for which an HTTP request has been sent by the client to the

SCrver.

The HTTP methods are -

1. GET - To be used for OBTAINING a resource from the server.
2. POST - To be used for CREATING a new resource at the server.
3. PATCH - Used for UPDATING an existing resource at the server.
4. PUT - Used for REPLACING an existing resource at the server.

5. DELETE - Used for DELETING an existing resource at the server.

B) REQUEST HEADERS

They carry the meta data about the request and indicate the context of the request to the server.

e.g., Origin header defines the domain name of client that sent the request, Authorization header defines the
access token that client is using to request a resource from the server etc. Even the cookies which are stored

on the client side, are sent to the server, using the 'Cookie header.

8

C) DESTINATION ADDRESS
<domain_name of server>:<port>

e.g., http://localhost: 3001

D) ROUTE

Conveys the name of the application that is supposed to handle the request on the server- side, or it can also be

used to directly access the server-side resource.

e.g., http://localhost:3002/app OR http://localhost:3002/user/2

E) ROUTE PARAMETERS

They form a Dynamic part of request route to convey information to the server that is not in

a JSON object notation.

e.g., http://localhost:3001/test/1 OR http://localhost:3002/user/1/2

F) QUERY STRING

Used for conveying information in the form of Keypairs , using which server can take decisions on how to

serve the request, they're not a part of the route of the request. They are also called as Search Parameters.

{ name: 'Manish', subject: 'computers' }

e.g., http://localhost:3000/test?name=manish&subject=computers

G) REQUEST BODY

Carries the confidential payload of the request, which is to be delivered to the server, usually as part of

a POST request.
e.g., CURL -XPOST http://localhost:3000/test/2?student=manish
-H "Password: "mypassword"

d {id: 45}

ENCRYPTION

Encryption is the process of securely encoding data in such a way that only authorized users with a key or password
can decrypt the data to reveal the original. There are two basic types of encryption; symmetric key and public key. In
symmetric key, the same key is used to encrypt and decrypt data, like a password. In public key encryption, one key
is use to encrypt data and a different key is used to decrypt the data.

JSON WEB TOKENS (JWTs)

As we know, HTTP is a stateless protocol. So, an HTTP request does not have to know about the
context of execution of any other HTTP requests on a server. Since, an inter- relation of HTTP requests cannot be
created, it is possible to attach a string that contains authorization related information of a wuser, in the
Authorization header of each request made by the client, so that server always knows whether the request is being

made by an authorized user or not.

AJWT isa3 part string, that has the following structure :

[header].[payload].[signature]

Header defines 2 fields - "typ": "jwt" and "alg" which defines an encryption algorithm.
Payload field carries the list of all the information to be exchanged between client and server.

The header and payload fields of the string are ENCODED using BASE64 algorithm, and can be easily decoded

using the same, without the need of a decryption key.

The signature field is ENCRYPTED using a secret key and the encryption algorithm defined by "alg" field of
Header of the JWT. Anyone who possesses this secret key will be able to verify the issuer of this JWT. The encryption
algorithm can be made more secure by using public- private key encryption strategy rather than symmetric key

encryption strategy.
10

Account Management using JWTs and Hashing

At the time of creation of user, the password of the user is always stored in database using a one way hashing

function, such as one provided by Bcerypt library.

When a user logs into the server using a client side, the server issues a JWT signed using an encryption key, to the
client. The JWT is issued with an expiry date, so that user can only stay logged in for a limited period of time. This
JWT consists of the ID of the user who made this request, and nothing confidential such as 'password' is put inside
payload field of JWT, because the payload field is Never encrypted in case of a Signed JWT, and thus can be decoded
easily. This JWT is also pushed inside the array of JWTs for the existing user.

If the user needs to access some privately available information, the user must first send this JWT to backend server.
The server verifies the issuer of this JWT, decodes and retrieves the ID of the user, and checks the database to find
the user who has the same ID and whose array of JWTs also contains the JWT received by the server from the

client. If such a user is found then the request is served, otherwise, server returns an error.

If the user needs to logout, they must send a request along with their JWT to the server, and once server verifies

the JWT, it will remove this JWT from the array of JWTs of this user and redirect the client to the logout page.

JWTs are of 2 kinds - JWS and JWE.
JSON Web Signing (JWS)

If the payload that is being carried by a JWT is not in an encrypted form, then it's a JWS. We can only verify the
signature of the JWS using its Signature Encryption Key to check whether this JWT is valid and whether this has

been issued by a specific server or not.

JSON Web Encryption (JWE)

If the payload being carried by the JWT is in an Encrypted from, then it's a JWE. Such a JWT is very secure, because
even if the JWT gets stolen by a hacker, they can never decode the payload field of the JWT, since it's encrypted,
using a different key.

11

1.2 Objective:

This project seeks to provide a solution that lets users authenticate themselves once

and access different applications without reauthentication. SSO assists users through
all the procedures required to access heterogeneous applications. Using applications
becomes easier, technical- assistance costs go down, and security improves.
However, getting the most of the solution requires understanding related domains
such as central user administration, the enterprise directory, and Web single sign- on.
SSO is a moving target in a changing context. Many new devices,

applications, and authentication methods are on the horizon, and although the
general issue remains relatively simple and clearly defined, the solution's integration
in an IT environment can become complicated.

The main features of our software /product are as mentioned below:

SSO (Single Sign-On) Facility

Using Social Media Accounts to Create Your Own Identity
Form for User Registration

Policy on Password Expiration

Role based Access Management for Authorization

One Time Passwords with Multi Factor Authentication

Identity and access management ensures that the right people and job responsibilities

(identities) in your business have access to the tools they need to execute their task
Identity management and access management systems allow your company to manag
e staff apps without having to login as an administrator to each one.Your organisatio
n can manage a variety of identities,including people, software, and hardware, such a
s robotics devices, with identity and access management solutions.

12

1.3 Problem Statement:

It is usually not practical by asking one user to maintain different pairs of id
entity and passwords for different serviceproviders, since this could increase the
workload of both users and service providers as well as the communication
overhead of networks. So, for this it requires a single sign-on authentication
mechanism that is a single login for multiple service providers, which

would not increase the workload. There are various attacks and parameters that
need to be considered while providing security to authentication system. In

this paper, we provide a comprehensive review of existing work done on Single
sign-on. Then for security of single sign-on, what parameters and attacks
should be covered.

Next, Implementation of Single Sign-on for distributed computing using user-id
and password along with biometric verification. Then security analysis is done.
Next, the comparison is made and lastly we conclude specifying the future work.

Account management of the users poses another challenge for administrators.
Single Sign-On (SSO) can be the solution by providing a service of centralized
authentication and user account management. This study applies a token- based
SSO architecture and uses Json Web Token (JWT) to grant permission authorities,
since JWT can provide a claim process between parties. Additionally, the built-in
dashboard lists associated information systems to facilitate accessing for the
authenticated users.

13

1.4 Methodology:

To start with, we present user-id and password, secured user authentication scheme. In this project, we
are using One-way hash function and AES Encryption/ Decryption algorithm. This work is divided into 3
parts: 1-Client side, 2- Authentication party, 3- Server side.

NON-SSO SCENARIO

Ask for login info, Ask for login info,
authenticates user authenticates user
domainl.com —— _ domain2.com
Stores Cookie Stores Cookie
Browses to Browses to
User
Fig 1.

Every SSO protocol consists of three phases :
Phase 1: registration and trust establishment between Service Provider (SP) and
Identity Provider (IdP)
Phase 2: End-User authentication on the IdP
Phase 3: End-User authentication on the SP via the authentication token

14

(1.) N = issuer [subject l
(2.) § L = timestamp [expired J nonce

= audience (4.) F;ﬁﬁ = signature

Fig 2.
Enduser Service Provider |dentity Provider
(https://sp.com) fhitps://idp.com)

|

Phase 1: Trust Establishment)

: Joken Generation

Phase 3: Token Redemption)

Fig 3.

In the first phase the trust establishment phase between SP and IdP is provided. In
classical SSO systems, trust is established by an administrator manually registering a
specific IdP on the SP. A typical example is SAML. The administrator visits the 1dP
and downloads the IdP's metadata, for instance its certificate. Next, he uploads it on the SP
and configures further parameters like important URLs of the IdP. We call this full rust
establishment since only those authorized people (the administrator) can invoke this
manual trust establishment.

15

Token Generation

In the second phase, the SP typically forwards the End-User to the IdP. This is
usually an HTTP redirect to apre-registered URL on the IdP with additional
parameters (e.g., the identity of the SP). The End-User then logs in at the IdP, which
then generates an SSO token. This token is then submitted to the SP.

Token Redemption

In the final phase, the SP receives the SSO token in order to authenticate the End- User.
This is a security critical process since the token contains multiple parameters which must
be verified.

Wakiaila A
A —
Lsarname
. p‘.""ﬁ'l'l"."'d w‘:b”t':‘ﬁ
A ' " ——
Use W00
"=k l||'|||".r!:'||1'|': |:
——
Fig 4.

16

1.5 SYSTEM OVERVIEW:

Single Sign-On (SSO) is a concept to delegate the authentication of an
End- User on a Service Provider (SP) to a third party - the so-called Identity
Provider (IdP). Standardized in 2014, OpenID Connect is the latest SSO protocol
and is supported by large companies like Amazon , Google , Microsoft and
PayPal . In 2015 Google announced that developers should abandon the preceding
protocol OpenID 2.0 (OpenlD) and recommended switching to its OAuth 2.0
(OAuth) based successor OpenlD Connect. The OpenID Connect specification
itself offers a list of available libraries supporting OpenlD Connect and an
additional list of certified libraries. On the one hand, using such a library makes the
integration of OpenID Connect into a web application quite easy since the entire
authentication (including all security-related operations) can be delegated to it. On
the other hand, the security of the web application then depends on the library
being used.

To start with, we present
user-id and password, secured user authentication scheme. In this project, we are

using One-way hash function and AES Encryption/ Decryption algorithm. This
work is divided into 3 parts: 1-Client side, 2- Authentication party, 3- Server side.

Every SSO protocol consists of three phases :

Phase 1: registration and trust establishment between Service
Provider (SP) and Identity Provider (IdP)

Phase 2: End-User authentication on the IdP

Phase 3: End-User authentication on the SP via
the authentication token

17

FLOW CHART:

/ Token /
¥
Token Validation

The
validation
firme IS Deadore
exp 7

valid JwT?

Generate session

|

Provided services on
information system

Vahd
signature 7

Expired token

Invalkd token

End

¥

Fig 5.

1.5 Organization:

The project report is broken down into 5 sections. The first chapter covers the
background and motivation for the proposed application, the problem statement and
aims to answer the issue statement, the recommended technique or research, and the
highlighting of successful proposed applications. Chapter 2 illustrates the literature
survey of the project from which we took the references. The system development
chapter includes the site map, use case diagram, activity diagram, and system
wireframe, which is the proposed application's user interface. Software design
approach, tools, requirements, system performance specifications, and timescales are
discussed in Chapter 4. The fifth chapter concludes the implementation, project

evaluation, benefits and future scope of the project.

18

Chapter 02- Literature Survey

Authors Year Description Outcomes

Alessandro 2008 The real advantage of Introduced
Armando, formal analysis relies on AuthScan, a
Carbone, L finding generic issues in penetration
;ia,cﬁgrgia specifications like in testtlng tt'ooil that
Cuellar SAML, Browserld and automa 1cahy
OAuth . extractg t'e
authentication
protocol based
on HTTP traces
and JavaScript
code.
Shows a more
convenient
approach
combining
program code
analysis with
formal analysis
Dominic 2016 The application of an The real advantage
Scheirli attacker IdP can be of formal analysis
ck and additionally enforced in relies on finding
Scott some scenarios by the generic issues in
Geary HTTP vulnerability or specifications like in

by settingpecifc HTTP
GET parameters in a
request

SAML , Browserld
and OAuth.

19

Chapter 3
System Development

Language Used:

React JS
Node JS
HTML
CSS

Platform Used:
Visual Studio Code
Tools Used:

e MongoDB:MongoDB is an open-source, cross-platform, and distributed document-based database designed
for ease of application development and scaling. It is a NoSQL database developed by MongoDB Inc.

MongoDB name is derived from the word "Humongous" which means huge, enormous. MongoDB database is
built to store a huge amount of data and also perform fast.

MongoDB is not a Relational Database Management System (RDBMS). It's called a "NoSQL" database. It is
opposite to SQL based databases where it does not normalize data under schemas and tables where every table has
a fixed structure. Instead, it stores data in the collections as JSON based documents and does not enforce schemas.
It does not have tables, rows, and columns as other SQL (RDBMS) databases.

e PostMan:Postman began as a REST client and has evolved into today's comprehensive Postman API
Platform.

e MongoDB Atlas:MongoDB Atlas is a fully-managed cloud database that handles all the complexity
of deploying, managing, and healing your deployments on the cloud service provider of your choice
(AWS , Azure, and GCP). MongoDB Atlas is the best way to deploy, run, and scale MongoDB in the
cloud.

e Mongoose:Mongoose is a Node.js-based ObjectaData Modeling (ODM) library for
MongoDB . Itis akinto n Object Relational Mapper (ORM) such as SQLAlchemy for
traditional SQL databases. The problem that Mongoose aims to solve is allowing developers to
enforcea specific schema at the application layer. In addition to enforcing a schema,
Mongoose also offers a variety of hooks, model validation, and other features aimed at making
it easier to work withaMongoDB.

20

https://www.mongodb.com/company

What are Rest APIs?

Application programming interfaces (APIs) are everywhere. They enable
software to communicate with other pieces of software—internal or external — which is

a key ingredient in scalability, not to mention reusability.

It’s quite common nowadays for online services to have public -facing APIs .

These enable other developers to easily integrate features like social media logins,
credit card payments, and behavior tracking. The de facto standard they use for this is
called REpresentational State Transfer (REST).

While amultitude of platforms and programming languages can be used for the task—

Node.js

As a asynchronous event-driven JavaScript runtime, Node.js is designed to build scalable
network applications. Upon each connection, the callback is fired, but if there is no work to

be done, Node.js will sleep.

Express, which vastly simplifies building out common web server tasks under Node.js and is
standard fare in building a REST API back end

Express JS is a web application framework that provides you with a simple API to build
websites , web apps and back ends. With Express JS, you need not worry about

low levelprotocols, processes , etc.
Mongoose, which will connect our back end to a MongoDB database

Mongoose is a Node.js-based ObjectaData Modeling (ODM) library for MongoDB . It is akin
to n Object Relational Mapper (ORM) such as SQLAIchemy for traditional SQL databases.
The problem that Mongoose aims to solve is allowing developers to

enforcea specific schema at the application layer. In addition to enforcing a schema,

Mongoose also offers a variety of hooks, model validation, and other features aimed at making
it easier to work with MongoDB.

21

Following are the APIs I have created in my Login-System

auth
t User = require(’../schema/u

t nodemailer = require(nodemailer');
t uwid = require(uuid")

B0 = h N B W R e

=
=Rt}

var transport = nodemailer.createTransport({
host: p-relay.sendinblue. "

o
=

port:
auth: {

[R T e T]
W 00 = h b1 oA W

router.post(”

B B2 B R
E= N VR 5 By)

it user.getPublicProfile(),

Fig 6.
In the above figure, I have implemented a login API.
The user is logged in successfully, only if he/she is registered prior to it on the backend.

The other APIs have been created in a similar way.

22

const = new User({

username: users.username,

email :users.email,

password:users.password,

theme: users.theme

B

ffconsole. log(user)

try{

await user_save()

const token = await user.generatefuthToken()

res.send({
result:trus,
message: "Registered successftully™,
user: await user.getPublicProfile(),
token

)
Ycatch(err){
res._status(488).send(err)

Sfgetting all users
router.get(" fusers’',{(req,res)=>{
User.find({}).then((users)=>{
res.send{users)

¥).catch(({e)=>{
res.status(500).send()

1)

= await User.findByCredentials{req.body.email,req.body.password)

st token = await user.generateauthToken()
console.log(token)
res.send({
result:true,
message: "Logged in successfully”,
user: await user.getPublicProfile(),
token
1)
Ycatch(e}{
res.status{4e8).send{{
result:false,
message: "Unable to login™

B

)

ffsignup route
router.post(”/register”,async({req, resj)=>{
const users = req.body

if(await User.findOne({email: users.email})){
res.status(488).send(

result: false,
message: "User already exists”™

router.post(’'/delete’,auth,async (req,res)=>{

const user = await User.findById(req.body. id)
if(luser)q
return res.status(468).send({
| message: "User not found”
1)
}
await User.deleteOne({user)
return res.status{2e8).send({
result: true,
message: “"User deleted!”

1)

}catch{e){

return res.send(e)

1)

module.exports = router

const pass= uuid.v4().replaceAll{"'-","")
user[‘password’] = pass
var mailOptions = {
from: "anthwalangimaa@gmail.com@gmail.com’,
to: req.body.email,
subject: "Your new Password’,
text: "Your new password is: '+pass
1s
await user.save()
transport.sendMail (mailOptions)
return res.status{268).send({
"'result” :true,
'message”:"Email sent’,
[luser
1)
Ycatch(e){
| return res.status{481).send{e)

¥

1)
router.post('/delete’,auth,async (reg,res)=»{
try{
const user = await User.findById{req.body. id)
if(luser)q
return res.status(468).send({
| message: "User not found”

1)

What is React Router?

React Router is a standard library for routing in React. It enables
the navigation among views of various components in a React Application,
allows changing the browser URL, and keeps the Ul in sync with the URL.

Let us create a simple application to React to understand how the React Router works.

In My Login-System the App.js file contains all the routes to the other files. Following is the list of routes:
e Login

Edit

Home

Register

Forgot Password

import Logout +rom .,
import ForgotPassword from '
function Themel(){

return(

> exact path="/
> path="/edi

> path

> path

> path

lement={<Login/>}></Route
{<Edit Route
Route
] Route

[

et
Mm M M M
El
m
=1
+
]

m M

export default Themel;

25

What are React Hooks?

Hooks are the new feature introduced in the React 16.8 version. It allows you to use state and
other React features without writing a class. Hooks are the functions which "hook into" React
state and lifecycle features from function components. It does not work inside classes.

What is Refactoring?
Refactoring or Code Refactoring is defined as systematic process of improving existing computer code,
without adding new functionality or changing external behaviour of the code. It is intended to change the
implementation, definition, structure of code without changing functionality of software. It improves
extensibility, maintainability, and readability of software without changing what it actually does.

Why should we refactor our code when it works fine?

The goal of refactoring is not to add new functionality or remove an existing one. The main goal of refactoring
is to make code easier to maintain in future and to fight technical debt. We do refactor because we understand
that getting design right in first time is hard and also you get the following benefits from refactoring:

e (Code size is often reduced

e (Confusing code is restructured into simpler code

Both of the above benefits greatly improve maintainability which is required because requirements always
keep changing.

When do we refactor?
e Before you add new features, make sure your design and current code is “good” this will help the
new code be easier to write.
e When you need to fix a bug
e When you do a peer review

e During a code review

How to identify code to refactor?

Martin Fowler proposed using “code smells” to identify when and where to refactor. Code smells are bad
things done in code, just like bad patterns in the code. Refactoring and Code smells are a few techniques that
help us identify problems in design and implementation. It also helps us in applying known solutions to these
problems.

26

React Redux:

Redux is an open-source JavaScript library for managing and centralizing application state. It is most commonly used
with libraries such as React or Angular for building user interfaces.

React Redux allows us to manage the state variables globally which allows us to use a common state for the multiple
components of the application. Making our application faster and also reducing the cost. The management of central state is
done with the help of reducers.

Below is the snippet of the reducers used below:

const initialState = {
token : ",
email : "",
id ",
theme : "",
username:""

export const reducer = (state=initialState,action)=>{
if(action.type=="USERNAME"}{
return{
weaS5tate,
username:action.payload

}
]
if(action.type=="TOKEN"){
return{
«usState,
token:action. payload
b
¥
if(action.type=="EMAIL"}{
return{

«w.5tate,
email:action.payload

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/JavaScript_library
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/React_(web_framework)
https://en.wikipedia.org/wiki/Angular_(web_framework)
https://en.wikipedia.org/wiki/User_interface

+
if({action.type=="TOKEN"){
return{
.« State,
token:action. payload

]
if(action.type=="EMATL"){
return{
... 5tate,
email:action. payload

}
if(action.type=="1D"){
return{
... 5tate,
id:action.pay load

}
if(action.type=="THEME"}{
return{
... 5tate,
theme:action. payload

React Components

Components are independent and reusable bits of code. They serve the same purpose as
JavaScript functions, but work in isolation and return HTML. Components come in two
types, Class components and Function components, in this tutorial we will concentrate on

Function components.

Class Component

A class component must include the extends React.Component statement. This statement creates an inheritance to

React.Component, and gives your component access to React. Component's functions.
The component also requires a render() method, this method returns HTML.
Function Component

A Function component also returns HTML, and behaves much the same way as a Class component, but Function
components can be written using much less code, are easier to understand, and will be preferred in this tutorial.

Below is the code of various components I created:

27

<Navbar theme={themel}/>

<form=

<div className='container-edit's>

<hl>Edit your details</hl=>

<hr/=

<label for='username'=<strong=Username</strong=></label>

<input type="text" name="username" placeholder="Username" id="user" walue={user.username} onChange={(e)==handleChangel
<label for='email'=<strong=Email</label>

<input type="text" placeholder="Enter email" name="email" id="email" value={user.email} onChange={{e)==handleChange(e|

<label for='psw'=><strong=Password=/strong=</label>
<input type={hidden?"password":"text"} placeholder="Enter Password" name="password" id="psw" value={user.password} ont
<i style={{marginLeft: '-3@px', cursor: 'pointer', color: 'black'}}
onClick={()== showPassword()}
className = {hidden?"bi bi-eye-slash":"bi bi-eye"}
></1i>

<label for='psw-repeat'=<strong=Confirm Password</strong=</label>
<input type={hiddenConfirm?"password":"text"} placeholder="Confirm password" name="confirmPassword" value={user.confi
<i style={{marginLeft: '-3@px', cursor: 'pointer', color: 'black'}}
onClick={()== showConfirmPassword()}
className = {hidden?"bi bi-eye-slash":"bi bi-eye"}
= fi>

<button type='submit' className={theme==='3"'?"updatebtn3":({theme==="'2"'?"updatebtn2":"updatebtn"}} onClick={updateUser]
<button type='submit' className={theme==='3"'?"updatebtn3":({theme==="'2"'?"updatebtn2":"updatebtn"}} onClick={deleteUser]

=/div=
return (
=>
=div style={{justifyContent:"center",alignltems: 'center', maxWidth:'60%', margin: 'auto’',marginTop: 8% '}}>
<h4>Forgot Password</hd4=>
<form onSubmit={forgotPassword}=
<ipput type="email" name="email" placeholder="Email" value={user.email} onChange={{e)=>handleChange(el}} re
<input type="submit" value="Send mail" className={theme==='3'?"login3":(theme==="'2"'7"1login2":"loginl")}/=
</form=>
</div=
<>
)

export default ForgotPassword

28

return(
=
<Navbar theme={finalTheme}/>
<div className="theme">
<hl=Choose your theme</hl=
<h5>{finalTheme==="'1'?"Theme 1":(finalTheme==="2'7?"Theme 2":"Theme 3")}</h5=>
<hr/>
=form onSubmit={updateUser}=
=div className="row-home'>
=div classMame="column">
<input type='radio' value='1l' name='theme' checked = {theme==='1'} onChange={()==>setTheme('1"'}}/>

<h4=Theme l</hd4=
=/div=>
=div classMame="column">
<input type='radic' value='2' name='theme’ checked = {theme==='2'} onChange={{)==>setTheme('2"')}/>
=
<h4=Theme 2</hd4=>
=/div=>
=<div className="column"=>
<input type='radio’ value='3' name='theme' checked = {theme==='3'} onChange={()==>setTheme('3"')}}/>

<hd4=Theme 3</hd=>
=/div=
</div>
<button type="submit" classMame={finalTheme==='3"'?"btn3":(finalTheme==="2"'?"btn2":"btn")}=Update Theme</bj
=/form=
</div>

Solutions proposed by our team:

According to Norton Security, more than 800000 online accounts get hacked every year. Even the most secure systems
present are prone to the brute force attacks by the hackers. Due to this the username and password are vulnerable and
can be stolen by the third parties. Also in today’s market there is lack of proper access control, which increases the risk

of unauthorized access to the physical and the logical systems.

One way organizations can recruit and retain the best talent is to remove the constraints of geographic location and offer
a flexible work environment. A remote workforce allows businesses to boost productivity while keeping expenses in
check—as well as untethering employees from a traditional office setting. However, with employees scattered all over a
country or even the world, enterprise IT teams face a much more daunting challenge: maintaining a consistent

experience for employees connecting to corporate resources without sacrificing security. The growth of mobile

computing means that IT teams have less visibility into and control over employees’ work practices.

29

The goal of our organization is to develop a secure, fast, reliable and user friendly system for identity and access

management. We are going to enhance our systems User Experience by providing facility for single sign on and we

would enhance the security using multifactor authentication. We are also developing customizable user interface that

will allow different organizations to update the user interface based on their requirements.

After the above task our motive is to provide the software developed to different organizations as software as a service

(SaaS).

We proposed the following solution to overcome the above problems:

Secure Authentication with OAuth2 Security framework.
Single Sign On (SSO) facility.

Authorization with Role based access management.

Multi factor authentication.

Authentication for mobile apps.

Completely Customizable Authentication User Interfaces.
Password-less Authentication through Account Access Link.
Username and password based standard login system.
Authorization with Role based Access Management
Password Expiry Policy

QR Code based Login

Captcha for Bot Detection

Your passwordless login link | ACH nbes =

Manish Varma ~mvanfBamgmmall coms

o rmee =

Hallix Mamnksh
Plaasa click on the fallowing link to log into X7 Pwt Ltd
hitp=.hoyz. comifoauthiredirect Mtoken = lkdenicoq 13231 jmAFE

Thiank Yo

30

Lpa s Sl

"Wicsi s sy s Ml el |
f K= in

CrarE Hem St

Context Switching In React JS

Context provides a way to pass data through the component tree without having to pass props down
manually at every level.

e In atypical React application, data is passed top-down (parent to child) via props, but such usage
can be cumbersome for certain types of props (e.g. locale preference, Ul theme) that are required
by many components within an application. Context provides a way to share values like these
between components without having to explicitly pass a prop through every level of the tree.

When to Use Context
e Before You Use Context

e API
o React.createContext
o Context.Provider
o Class.contextType

o Context.Consumer

https://reactjs.org/docs/context.html#when-to-use-context
https://reactjs.org/docs/context.html#before-you-use-context
https://reactjs.org/docs/context.html#api
https://reactjs.org/docs/context.html#reactcreatecontext
https://reactjs.org/docs/context.html#contextprovider
https://reactjs.org/docs/context.html#classcontexttype
https://reactjs.org/docs/context.html#contextconsumer

MARKET ANALYSIS

[AM is a growing industry in India, and is supposed to be a $ 27.5 Billion dollar marker by 2026.

Currently no big Indian company is in this area and is being dominated by the US players.

Revenue (LUSD)

) Doy L m

$27_5 Billlon

%21 Billien

$15.42 Bilhon

#12.36 Billion

P

$9_53 Billion

Sl ot ey
" Faviegea dersn
Forvrw Bl e m g Ty g Mg

5
|
|] WP L,
" - -.
FIRs mawrie e Framres e — 1
Emsrpies Dgewl _
FoMi el |
R B
#-'\-'ld-:ﬂm-.:lh ey Faading |
1
By e Thar il ':I:-#D_
ﬁ Shis U Ll _'_FI:Ia-
= — lprern: bmememes Mam

.__;-""" [

_.I;I"Jf — A PR R b s
e AU

L

gt P s e

N0 iy — T Trdvreern SA

Jar-rnoyims Froch

gt BT R
Wl e i =kl Aoy o IE
|
|

LRt TR 5 F B o g ol o IJl.-p,:lru.r'

F .
=l vkl e =

_.li"--.n-l'l.lqurr. Mtk i
4

Business Model:

Feature | Flan
Aol basad User ADoess Condml
Bl & lod Adslhssnbesbon usig O TPs
OR oodi Based Loge
Fully Cusinmizabie Authantcabon GLUIs
Peaasswoed | xpiry Pobicy
Capbchs fof Bol Dedechnsn

Ihmor FPeodibs Mo ras s |

Entorprise Plan Pricing :

$45 for additional features of the plan.
510 par additional web app or mobile app.
£5 per additional monthly active user.

Feature I Flan
Morthiby SSCinen LUlsiaas
Mot ol ¥Yiob Agpa o Mabilo Apps
LiAwlhy Secuehy Frobictson

Standard Lsearmame & Fasswond based
Authenbcabon

Snohe Sogn On
Lty Fopges b st ion Foimms

Mutpls Authonlicnbcn Usor indofnces o
i il [Fodm

Eirg vour Ceam anbiy

Pamarced - beses Athordicalcn

Laodnc] Sanlas Tomm

Ciodncl Sl Tomm

oS

Our Progress:

e We have developed the theme switching feature for our application which allows a user to switch

themes when he wants to.

e We have successfully developed the dashboard for the application.

Dashboard screenshots:

Ace
Cloud
Hosting

Dashboard

¥ Account Settings

"D Loging History

= Switch To Admin Panel

CPA::

App 1

Ice

" Clickto

Hello, Manish!

You may log into one of the following applications :

CPA:
App 1

" Clickto

CPA: <
App 1

" Clickto

Manish Verma ‘ a -

Administrator

Login
History

Last login Date :
Sunday, 1 May
2022

Country : United
States

IP Address :
1,541,605,760

View full
table

Ace
Cloud
Hosting

@ Dashboard

£ Account Settings

D Loging History

Ace
Cloud
Hosting

@ Dashboard

& Account Settings

D Loging History

= Switch To Admin Panel

Date
May 1, 2022
May 2, 2022
May 2, 2022
May 2, 2022
May 2, 2022

May 2, 2022

Loging History
Country App Name

United States App 1
China App 2
China App 2
China App2
China App2
China App2

= Switch To Admin Panel

Account Settings
Photo Profile

Manish Verma

Administrator

IP Address
1,541,605,760
330,321,408
330,321,408
330,321,408
330,321,408

330,321,408

Manish Verma

Administrator

Change Photo Remove Change Password
First Name * Last Name *
v ®
Looks good! Please input a last Name.

Nate nf Rirth *

34

Rander *

Screenshots of various themes designed:

Theme-1

Forgot Password

Email

35

Theme App Home Edit Logout

Choose your theme

Theme 1
O
=
[)
Theme 1 Theme 2 Theme 3
Update Theme
Theme App Home Edit Logout

Edit your details

Username

181266juit

Email

181266juit@gmail.com

Password

Enter Password

Confirm Password

Confirm password

36

Theme-2

M [Loginpece x [BF - a8 X
< C (@ 127.0.0.1:5500/loginpage.html#create-acc a8 8 7= :

Login

[W :nthwalangimaa@gmail.

LOGIN

abcd1@gmail.com

CONTINUE
EEGISTER NEW FORGOT
ACCOUNT! PASSWORD?

37

Control Panel

Home

Edit

LOGIN

Theme 1

Theme 2

EDIT YOUR PROFILE

abcd1@gmail.com

DELETE SAVE CHANGES

38

Logout

REGISTER ACCOUNT

RESET SUBMIT

You've Logged Out
Successfully!

39

Chapter-5

CONCLUSIONS

Conclusion:

In conclusion we would be able to develop a fully functional, fast, reliable and secure Identity
and Access Management System with single sign-on with all the solutions provided by us
(mentioned above) by August, 2022 and would be launched for the users by November, 2022

with all the features.

Future Scope:

* Adding features so that the pages created can be customized by the organization based
on their needs.

* Integrating web apps with single sign on features.

* Generating tokens for session management.

e Implementing [AM.

40

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

D) -
Type of Document (Tick): PhD Thesis| [M.Tech Dissertation/ Report| [B.Tech Project Report | Paper

Name: __Department: Enrolment No

Contact No. E-mail.

Name of the Supervisor:

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters):

UNDERTAKING

| undertake that | am aware of the plagiarism related norms/ regulations, if | found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

— Total No. of Pages =

— Total No. of Preliminary pages =

— Total No. of pages accommodate bibliography/references =

(Signature of Student)
FOR DEPARTMENT USE
We have checked the thesis/report as per norms and found Similarity Index atc.c........ (%). Therefore, we

are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

(Signature of Guide/Supervisor) Signature of HOD
FOR LRC USE
The above document was scanned for plagiarism check. The outcome of the same is reported below:
Copy Received on Excluded Similarity Index Generated Plagiarism Report Details
(%) (Title, Abstract & Chapters)
o All Preliminary WERI Calnts
Pages
Report Generated on » Bibliography/ima Character Counts
Be5/iuate : Submission ID Total Pages Scanned
® 14 Words String
File Size
Checked by
Name & Signature Librarian

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)
through the supervisor at plagcheck.juit@gmail.com

D —————

41

