
Identity and Access Management Solutions (IAM)

Major Project report submitted for the
degree of Bachelor of Technology

In

Computer Science and Engineering
By

Angima Anthwal 181464

UNDER THE SUPERVISION OF
Dr. Ruchi Verma

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology, Waknaghat, 173234,
Himachal Pradesh, INDIA

1



CERTIFICATE

This is to certify that the work which is being presented in the project report titled
Identity and Access Management in partial fulfilment of the requirements for the
award of the degree of Bachelor of Technology in Computer Science and
Engineering & Information Technology, Jaypee University of Information
Technology, Waknaghat is an authentic record of work carried out by Angima Anthwal
during the period from January 2022 to May 2022 under the supervision of Dr. Ruchi
Verma, Department of Computer Science and Engineering & Information Technology,
Jaypee University of  Information Technology, Waknaghat.

Angima Anthwal (181464)

The above statement made is correct to the best of my knowledge.

Supervisor Name: Dr. Ruchi Verma

Designation: Assistant Professor (Grade-II)

Department Name: Computer Science and Engineering

2



ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his divine

blessing that made it possible to complete the project work successfully.

I am quite grateful to my supervisor, Dr. Ruchi Verma, Asst. Prof. Senior Grade,

Department of CSE Jaypee University of Information Technology, Waknaghat, for her

assistance. To complete this assignment, my supervisor has extensive knowledge and a

deep interest in the subject of Web Development. Her never-ending patience, intellectual

direction, constant encouragement, constant and energetic supervision, constructive

criticism, good suggestions, and reading many poor versions and fixing them at all stages

made it possible to finish this job.

I'd like to thank Dr. Ruchi Verma, Department of CSE, for her invaluable assistance in

completing my project.

I would also like to express my gratitude to everyone who has directly or indirectly

assisted me in making this project a success. In this unique scenario, I'd want to

appreciate the different staff members, both teaching and non-teaching, who have

developed their helpful assistance and facilitated my project. Finally, I must express my

gratitude for my parents'  unwavering support and patience.

Angima Anthwal(181464)

3



Table of Contents

CONTENT PAGE NO.

CANDIDATE’S DECLARATION 2

ACKNOWLEDGEMENT 3

ABSTRACT 5

CHAPTER 1: INTRODUCTION 6-18

CHAPTER 2: LITERATURE SURVEY 19

CHAPTER 3: SYSTEM DEVELOPMENT 20-39

CHAPTER 4: CONCLUSION 40

4



ABSTRACT

Identityaandaaccessamanagement,aoraIAM,aisatheasecurityadisciplineathat

makesaitapossibleaforathearightaentitiesa(peopleaorathings)atoauseathearight

resourcesa(applicationsaoradata)awhenatheyaneedato,awithoutainterference,

usingatheadevicesatheyawantatoause.IAMaisacomprisedaofatheasystemsaanda

processesathataallowaITaadministratorsatoaassignaasingleadigitalaidentity

toaeachaentity,aauthenticateathemawhenatheyalogin,aauthorizeathemato

accessaspecifiedaresources,aandamonitoraandamanageathoseaidentities

throughoutatheiralifecycle.

UseraidentitiesaandaaccessarightsaareadefinedaandamanagedabyaanaIdentityaand

AccessaManagementa(IAM)asystem.Identityaandaaccessamanagementaensuresathatathe

rightapeopleaandajobaresponsibilitiesa(identities)ainayourabusinessahaveaaccessatoathe

toolsatheyaneedatoaexecuteatheiratasks. Identityamanagementaandaaccessamanagement

systemsaallowayouracompanyatoamanageastaffaappsawithoutahavingatoaloginaasaan

administratoratoaeachaone.Youraorganisationacanamanageaaavarietyaofaidentities,

includingapeople,asoftware,aandahardware,asuchaasaroboticsadevices,awithaidentity

andaaccessamanagementasolutions.

TheabestaapproachatoaimplementingaanaIAMasolutionaisatoadoaanaauditaof

existingaandalegacyasystems.aIdentifyagapsaandaopportunities,aanda

collaborateawithastakeholdersaearlyaandaoften.aMapaoutaallauseratypesaand

accessascenarios,aandadefineaaacoreasetaofaobjectivesatheaIAMasolution mustameet.

5



Chapter 01-Introduction 1.1 Introduction:

Singleasign-ona(SSO)aisaaasessionaandauseraauthenticationaserviceathatapermitsaaauserato

useaoneasetaofaloginacredentialsa--aforaexample,aaanameaandapassworda--atoaaccessa

multipleaapplications.aSSOacanabeausedabyaenterprises,asmalleraorganizationsaanda

individualsatoaeaseatheamanagementaofavariousausernamesaandapasswords.

InaaabasicawebaSSOaservice,aanaagentamoduleaonatheaapplicationaserveraretrievesathea

specificaauthenticationacredentaSingleasign-ona(SSO)aisaaasessionaandauseraauthentication

serviceathatapermitsaaauseratoauseaoneasetaofaloginacredentialsa--aforaexample,aaanameaandapassword

toaaccessamultipleaapplications.aSSOacanabeausedabyaenterprises,asmaller

organizationsaandaindividualsatoaeaseatheamanagementaofavariousausernamesaand passwords.

InaaabasicawebaSSOaservice,aanaagentamoduleaonatheaapplicationaserveraretrievesathea

specificaauthenticationacredentialsaforaanaindividualauserafromaaadedicatedaSSOapolicya

server,awhileaauthenticatingatheauseraagainstaaauserarepository,asuchaasaaaLightweight

DirectoryaAccessaProtocola(LDAP)adirectory.aTheaserviceaauthenticatesatheaendauseraforaall

theaapplicationsatheauserahasabeenagivenarightsatoaandaeliminatesafutureapassworda

promptsaforaindividualaapplicationsaduringatheasameasessionaforaanaindividualauserafromaa

dedicatedaSSOapolicyaserver,awhileaauthenticatingatheauseraagainstaaauserarepository,asuch

asaaaLightweightaDirectoryaAccessaProtocola(LDAP)adirectory.aTheaserviceaauthenticatesatheaendausera

foraallatheaapplicationsatheauserahasabeenagivenarightsatoaandaeliminatesafutureapasswordapromptsafora

individualaapplicationsaduringatheasameasession.

Clienta- Server Architecture

The client server architecture consists of 2 components - a) Client - The user facing front-endaapplication which

can make requests to obtain resources from a backend xapplication. Information can be stored on the clientaside,

using - variables ofajavascript, cookies or localastorage. Cookies and local storage serve different purposes.

Cookies are primarily for reading server-side, local storage can only be read by the client-side. Example

of cookies : document.cookie = "name=manish;email=mvsn98@gmail.com".

6

https://www.techtarget.com/searchsecurity/answer/What-are-the-most-common-digital-authentication-methods
https://www.techtarget.com/searchenterpriseai/definition/agent-intelligent-agent
https://www.techtarget.com/searchsecurity/definition/authentication
https://www.techtarget.com/searchoracle/definition/repository
https://www.techtarget.com/searchmobilecomputing/definition/LDAP
mailto:mvsn98@gmail.com


Cookies can have an expiry date, after which their data becomes unavailable on the server side. Such an expiry

date does not exist in case of data of localastorage.

In case of local storage, there's an upper limit of 5aMB imposed upon storage of data, whereas, in case of

cookies, the limit if only 4aMB PERaCOOKIE!

Example of localstoragec : localStorage.setItem("state", "firststate"); const state = localStorage.getItem("state");

localStorage.removeItem("state");

b) Server - The backend application which can accept requests from a client and respond to it by returning the

requested resources or anaerror, if something goes wrong while serving the request. Informationacan be stored

on serveraside using - variables of the backend programming language, cache or databases.

There are 3 layers in a clienta-server architecture - Client (PresentationaLayer), Server (Applicationa/aSession

Layer), Database (DatabaseaLayer).

If all 3alayers are present on sameamachine, then it's a one-atier architecture (e.g., if using loopback address -

localhost / 127.0.0.1, for testing an application). If these 3 layers are distributed among 2 machines, then it's a

two-atier architecture and if all 3 layers are present on their own separate machines, then it's a three-tier

architecture.

CORSa = CrossaOriginaResourceaSharing, refers to a set of policies that dictate whether a client can access the

resources on anotheraserver or not, depending upon if the Origin (DomainaNameaoraIP Address) of the client's

request is whitelisted by the server for resource access, or not.

7



HTTP Requests

HTTP = HyperaTextaTransferaProtocol

HTTP is called as a statelessaprotocol because eacharequest is executedaindependently, without any knowledge

of the requests that were executed before it. Defaultaports on clientaside and serveraside for communication

using HTTParequests are -a80 and a80.aDefaultaPortafromawhichaanaHTTParequestaisasentafromaaaclient, is

:a80 Default PortaatawhichaaaserverareceivesatheaHTTParequestafromaaaclient, is : 80, unless changed.

Components of HTTPaRequests :

A) HTTPaMETHODS

HTTP Request Methods define the basic purpose for which an HTTP request has been sent by the client to the

server.

The HTTP methods are -

1. GETaa - To be used for OBTAINING a resource from the server.

2. POSTa - To be used for CREATING a new resource at the server.

3. PATCHa - Used for UPDATING an existing resource at the server.

4. PUTa - Used for REPLACING an existing resource at the server.

5. DELETEa - Used for DELETING an existing resource at the server.

B) REQUEST HEADERS

They carry the metabdata about thearequest and indicate the contextaof the request to thedserver.

e.g., Originaheader defines theddomain name ofcclient that sent therrequest, Authorizationbheader defines the

accessm token that clientais using to requestda resource from the serverdetc. Even theccookies which are stored

on the clientm side, are sent to thevserver, using the 'Cookiekheader.

8



C) DESTINATIONbADDRESS

<domain_name_of_server>:<port>

e.g., http://localhost:a3001

D) ROUTEa

Conveys the name of the application that is supposed to handle the request on the server-aside, or it can also be

used to directly access the server-side resource.

e.g., http://localhost:3002/app OR http://localhost:3002/user/2

E) ROUTE PARAMETERS

They form a Dynamicv part of requestaroute to convey information to the server that is not in

arJSONrobjectrnotation.

e.g., http://localhost:3001/test/1 OR http://localhost:3002/user/1/2

F) QUERYxSTRING

Used for conveyingdinformation in the form of Keypairsp, using whichdserver can take decisions on how to

serve the request, they're not a part of the routevof thenrequest. They are also called as SearchcParameters.

{ name: 'Manish', subject: 'computers' }

e.g., http://localhost:3000/test?name=manish&subject=computers

9



G) REQUESTxBODY

Carries the confidential payloadxof thedrequest, which is to be delivered to thedserver, usually as part of

azPOSTmrequest.

e.g., CURLc-XPOST http://localhost:3000/test/2?student=manish

-H "Password: "mypassword"

-d { id: 45 }

ENCRYPTIONa

Encryptionais the process of securelyaencodingadata in such a way that only authorizedausers with a keyaorapassword

can decryptbthebdata to reveal the original. There are two basicatypesaofaencryption; symmetricxkey and publicakey. In

symmetricdkey, the same key is used to encryptcandcdecrypt data, like a password. In publicvkeyvencryption, one key

is use to encryptxdata and a differentxkey is used to decryptxthexdata.

JSONaWEBvTOKENSv(JWTsv)

As we know, HTTPz is a statelessrprotocol. So, an HTTPxrequest does not have to know about the

contextxofxexecution of any other HTTPxrequests on axserver. Since, an inter-arelation of HTTPdrequests cannot be

created, it is possible to attach a string that containsxauthorization related information of a user, in the

Authorizationxheader of each request made by thexclient, so that serverdalways knows whether thecrequest is being

made by an authorizedxuser or not.

A JWTdis a 3cpartcstring, that has the following structure :

[headerc].[payloadc].[signaturec]

Header defines 2 fields - "typ": "jwt" and "alg" which defines an encryptiondalgorithm.

Payloadcfield carries the list of all thedinformation to be exchanged between clientxandxserver.

Thedheaderdanddpayloaddfieldsdof thedstring aredENCODEDdusingxBASE64dalgorithm, and can be easily decoded

using the same, without the need of a decryptionxkey.

ThexsignaturexfieldxisxENCRYPTED using a secretckey and the encryptiondalgorithm defined byc"alg"cfield of

Headercof the JWT. Anyone who possesses this secretckey will be able to verify the issuer of thiscJWT. Thecencryption

algorithmccan be made moregsecure by using public-dprivate key encryptiondstrategy rather than symmetricgkey

encryptionzstrategy.

10



AccountxManagementxusingxJWTsxandxHashing

At the time of creation ofauser, thexpasswordxofxthexuserxisxalwaysxstoredxinxdatabasexusingxaxonexwayxhashing

function, suchxasxonexprovidedxbyxBcryptxlibrary.

When a user logs into thexserver using axclientxside, the serverxissues a JWTxsigned using an encryptionxkey, to the

client. ThexJWT is issued with an expiryxdate, so that user can only stayxlogged in for a limited period of time. This

JWTxconsists of thexID of thexuser who made thiscrequest, and nothing confidential such as 'password' is put inside

payloadcfield ofcJWT, because the payloadcfield is Nevercencrypted in case of a SignedcJWT, and thus can becdecoded

easily. ThiscJWT is also pushed inside thecarray of JWTscfor the existingxuser.

If the user needs to access some privately available information, the user must first send this JWTxtoxbackendxserver.

The servercverifies the issuer of thiscJWT, decodes and retrievescthecIDcofcthecuser, and checksxthexdatabase to find

the userxwhoxhasxthe samexID and whosexarrayxofxJWTsxalso containsxthexJWTxreceived by thexserverxfrom the

client. If suchxaxuser is found then the requestxisxserved, otherwise,xserverxreturnsxanxerror.

If the userxneedsxtoxlogout, they must sendxaxrequest along with their JWTxtoxthexserver, and oncexserverxverifies

thexJWT, it will removexthisdJWT from the arraydofdJWTs of this userdanddredirectdthedclientdtodthedlogoutdpage.

JWTsxare of 2 kinds - JWSxandxJWE.

JSONxWebxSigningx(JWSx)

If thexpayload that is being carriedxbyxaxJWT is notxinxanxencryptedxform, then it's axJWS. We can onlyxverify the

signaturexof thexJWS using itsxSignaturexEncryptionxKey to checkxwhetherxthisxJWT is valid and whether this has

been issuedxbyxaxspecificxserver or not.

JSONxWebxEncryptionx(JWE)

If the payloadxbeing carried by thexJWT is in anxEncryptedxfrom, then it's ajJWE. Such azJWT is veryzsecure, because

even if thezJWT gets stolen by azhacker, they can neverzdecode the payloadzfield of thezJWT, since it'szencrypted,

usingza differentzkey.

11



1.2 Objective:

This project seeks to provide axsolutiondthat lets usersxauthenticatexthemselvesxonce
anddaccessddifferentdapplicationsdwithoutdreauthentication.dSSOdassistsdusersdthrough
alldthedproceduresdrequireddtodaccessdheterogeneousdapplications.dUsingdapplications
becomesdeasier,dtechnical-dassistancedcostsdgoddown,danddsecuritydimproves.
However,agettingatheamostaofatheasolutionarequiresaunderstandingarelatedadomains
suchxasxcentralxuserxadministration,xthexenterprisexdirectory,xandxWebxsingle sign-xon.
SSOxisxaxmovingxtargetxinxaxchangingxcontext. Manyxnewxdevices,
applications,xandxauthenticationxmethodsxarexonxthexhorizon,xandxalthoughxthe
generalxissuexremainsxrelativelyxsimplexandxclearlyxdefined,xthexsolution'sxintegrationx
inxanxITxenvironmentxcanxbecomexcomplicated.

The mainxfeatures of our softwarex/product are as mentioned below:

● SSOx(SinglexSign-On)xFacility
● UsingxSocialxMediaxAccountsxtoxCreatexYourxOwnxIdentity
● FormxforxUserxRegistration
● PolicyxonxPasswordxExpiration
● RolexbasedxAccessxManagementxforxAuthorization
● OnexTimexPasswordsxwithxMultixFactorxAuthentication

Identityaandaaccessamanagementaensuresathatathexrightapeopleaandajobaresponsibilities
a(identities)ainayourabusinessahaveaaccessatoathextoolsatheyaneedatoaexecuteatheiratask
Identityamanagementaandaaccessamanagementxsystemsaallowayouracompanyatoamanag
eastaffaappsawithoutahavingatoaloginaasaanxadministratoratoaeachaone.Youraorganisatio
nacanamanageaaavarietyaofaidentities,includingapeople,asoftware,aandahardware,asuchaa
saroboticsadevices,awithaidentity andaaccessamanagementasolutions.

12



1.3 ProblemAStatement:

Itaisausuallyanotapracticalabyaaskingaoneauseratoamaintainadifferentapairsaofaid
entity andapasswordsaforadifferentaserviceproviders,asinceathisacouldaincreaseathe
workloadaofabothausersaandaserviceaprovidersaasawellaasatheacommunication
overheadaofanetworks. So, for this itarequires a singleasign-onaauthentication
mechanism that is a singlealogin foramultipleaserviceaproviders, which
would not increase theaworkload. There are variousaattacks and parametersathat
need to be consideredawhileaprovidingasecurityato authenticationasystem. In
thisapaper, we provide a comprehensiveareviewaofaexistingaworkadoneaonaSingle
sign-on.aThenaforasecurityaofasingleasign-on,awhataparametersaandaattacksa
should beacovered.

Next, ImplementationaofaSingleaSign-onaforadistributedacomputingausingauser-id
andapasswordaalongawithabiometricaverification. Thenasecurityaanalysis is done.
Next, the comparison is made and lastly we conclude,aspecifyingatheafuture work.

Accountamanagementaofatheausersaposesaanotherachallengeaforaadministrators.
SingleaSign-Ona(SSO)acan be the solution by providing a service ofacentralized
authenticationaand useraaccountamanagement. This study applies aatoken-abased
SSOaarchitecture andauses JsonaWebaTokena(JWT) to grant permissionaauthorities,
sinceaJWT can provide a claimaprocess betweenaparties. Additionally, the built-in
dashboardalists associated informationasystems to facilitateaaccessing for the
authenticatedausers.

13



1.4 Methodology:

To start with, we present user-idaandapassword,asecuredauseraauthenticationascheme. In thisa project, we
are using One-wayahashafunctionaandaAESaEncryption/aDecryptiondalgorithm. This work is divided into 3
parts: a1-Client side,a2- Authentication party,a3- Server side.

Fig 1.

EveryaSSOaprotocolaconsistsaofathreeaphasesa:

Phase 1:aregistration and trustaestablishmentabetweenaService Providera(SP) and

IdentityaProvidera(IdP)

Phase 2: aEnd-Useraauthentication on theaIdP

Phase 3: aEnd-Useraauthentication on theaSP via theaauthenticationatoken

14



Fig 2.

Fig 3.

In the firstaphaseatheatrustaestablishmentaphaseabetweenaSPaandaIdPaisaprovided. In
classicalaSSOasystems,atrustaisaestablishedabyaanaadministratoramanuallyaregisteringaa
specificaIdPaonatheaSP. AatypicalaexampleaisaSAML. The administratoravisits theaIdP
and downloads the IdP's metadata, for instance its certificate. Next, he uploads it on the SP
andaconfigures furtheraparameters like importantaURLs of theaIdP. We call this fullarust
establishmentasince only those authorizedapeoplea(the administrator) canainvoke this
manualatrustaestablishment.

15



Token Generation

In the secondaphase, the SPatypicallyaforwards theaEnd-Userato theaIdP. This is
usually anaHTTParedirect to aapre-registeredaURL on theaIdP with additionala
parametersa(e.g., the identity of the SP).aThe End-Userathenalogs in at theaIdP, which
thenagenerates anaSSOatoken. Thisatoken isathen submitted to theaSP.

Token Redemption

Inatheafinalaphase, theaSPareceives theaSSOatoken in orderatoaauthenticate the End-aUser.
Thisais aasecurity criticalaprocess since theatoken containsamultiple parametersawhich must
be verified.

Fig 4.

16



1.5 SYSTEM OVERVIEW:

SingleaSign-Ona(SSO)ais a concept toadelegateatheaauthenticationaof an
End-aUser on a Service Providera(SP) to aathird party - the so-calledaIdentity
Providera(IdP). Standardizedaina2014,aOpenIDaConnect is thealatestaSSOaprotocol
and is supportedabyalargeacompaniesalikeaAmazonz,aGooglez,aMicrosoftzaand
PayPalz. In 2015aGoogle announced that developers should abandon the preceding
protocolaOpenIDa2.0a(OpenID) and recommended switching to itsaOAuth 2.0
(OAuth)abased successoraOpenIDaConnect. TheaOpenID Connect specification
itself offers a list of available libraries supportingaOpenIDaConnect and an
additionalalist of certifiedalibraries. On the one hand, using such aalibrary makes the
integration of OpenIDaConnect into a webaapplication quiteaeasy since the entire
authenticationz (including allasecurity-relatedaoperations) can be delegated to it. On
the other hand, the securityaof theawebaapplication then depends on thealibrary
beingaused.

To start with, we present
user-idaandapassword,asecuredauseraauthenticationascheme. In thisa project, we are
using One-wayahashafunctionaandaAESaEncryption/aDecryptiondalgorithm. This
work is divided into 3 parts: a1-Client side,a2- Authentication party,a3- Server side.

EveryaSSOaprotocolaconsistsaofathreeaphasesa:

Phase 1:aregistration and trustaestablishmentabetweenaService

Providera(SP) and IdentityaProvidera(IdP)

Phase 2: aEnd-Useraauthentication on theaIdP

Phase 3: aEnd-Useraauthentication on theaSP via

theaauthenticationatoken

17



FLOW CHART:

Fig 5.

1.5 Organization:

The project report is broken down into 5 sections. The first chapter covers the

background and motivation for the proposed application, the problem statement and

aims to answer the issue statement, the recommended technique or research, and the

highlighting of successful proposedaapplications. Chapter 2 illustrates the literature

survey of the project from which we took the references. The system development

chapter includes the site map, use case diagram, activity diagram, and system

wireframe, which is the proposed application's user interface. Software design

approach, tools, requirements, system performance specifications, and timescales are

discussed in Chapter 4. The fifthechapter concludes the implementation, project

evaluation, benefits and future scope of the project.

18



Chapter 02- Literature Survey

Authors dYear gDescription kOutcomes

Alessandro
aArmando,
Carbone,aL
ucaCom-pa
gna,aJorge
Cuellar

d2008 Thearealaadvantageaof
formalaanalysisareliesaon
findingagenericaissuesain
specificationsalikeain
SAML,aBrowserIdaand
OAutha.

Introduced
AuthScan,aa
penetrationa
testingatool that
automaticallya
extractsaathe
authenticationz
protocolabased
on HTTPatraces
andaJavaScript
code.
Showsaaamore
convenient
approachz
combining
programacode
analysisawith
formalaanalysis

Dominic
aScheirli
ack and
aaScott
aGeary

2016 Theaapplicationaofaan
attackeraIdPacanabe
additionallyaenforcedain
someascenariosabyathe
HTTPavulnerabilityaor
byasettingpecifcaHTTP
GETaparametersainaa
request

The real advantage
of formalaanalysis

reliesaon finding
genericaissues in

specificationsalike in
SAMLa,aBrowserId

andaOAuth.

19



Chapter 3
System Development

LanguageaUsed:

ReactaJS
NodeaJS
HTMLa:
CSSa:

Platform Used:

Visual Studio Code

Tools Used:

● MongoDB:MongoDB is an open-source, cross-platform, and distributed document-based database designed
for ease of application development and scaling. It is a NoSQL database developed by MongoDB Inc.

MongoDB name is derived from the word "Humongous" which means huge, enormous. MongoDB database is
built to store a huge amount of data and also perform fast.

MongoDB is not a Relational Database Management System (RDBMS). It's called a "NoSQL" database. It is
opposite to SQL based databases where it does not normalize data under schemas and tables where every table has
a fixed structure. Instead, it stores data in the collections as JSON based documents and does not enforce schemas.
It does not have tables, rows, and columns as other SQL (RDBMS) databases.

● PostMan:Postman began as a REST client and has evolved into today's comprehensive Postman API
Platform.

● MongoDB Atlas:MongoDB Atlas is a fully-managed cloud database that handles all the complexity
of deploying, managing, and healing your deployments on the cloud service provider of your choice
(AWS , Azure, and GCP). MongoDB Atlas is the best way to deploy, run, and scale MongoDB in the
cloud.

● Mongoose:MongooseaisaaaNode.js-basedaObjectaDataaModelinga(ODM)alibraryafor
MongoDBa.aIt is akin to anaObjectaRelationalaMappera(ORM) suchaasaSQLAlchemy for
traditionalaSQLadatabases. The problem thataMongooseaaims to solveaisaallowing developers to
enforceaa specificaschema at the applicationalayer. Inaaddition to enforcing aaschema,
Mongooseaalso offers a variety ofahooks, modelavalidation, and otherafeatures aimed at making
it easier to work withaMongoDB.

20

https://www.mongodb.com/company


What are Rest APIs?

Applicationaprogrammingainterfaces (APIs)aareaeverywhere. Theyaenable
softwareatoacommunicate with otherapieces ofasoftware—internalaor externala— which is
aakeyaingredient inascalability, notatoamention areusability.

It’s quiteacommon nowadaysaforaonlineaservicesatoahave publica-facing APIsa.
Theseaenableaotheradevelopersato easilyaintegrateafeatures likeasocial mediaalogins,
creditacardapayments, and behavioratracking. Theadeafactoastandardatheyauseaforathisais
calledaREpresentationalaState Transfera(REST).

While aamultitudeaof platformsaandaprogrammingalanguages can be used for the task—

· aNode.js

As anasynchronousaevent-drivenaJavaScriptaruntime, Node.jsais designed to buildascalable
networkaapplications.aUponaeachaconnection, the callbackaisafired,abut if there is no work to
be done, Node.jsawillasleep.

Express, which vastlyasimplifies buildingaout commonaweb serveratasks underaNode.js and is
standardafare inabuilding a RESTaAPI backaend

ExpressaJS is aawebaapplicationaframeworkathataprovidesayou awith a simpleaAPI toabuild
websitesa, webaapps and backaends. With ExpressaJS, you need not worry about
lowalevelprotocols, processesa, etc.

· a Mongoose, whichawill connect ouraback endatoaaaMongoDBadatabase

MongooseaisaaaNode.js-basedaObjectaDataaModelinga(ODM)alibraryafor MongoDBa.aIt is akin
to anaObjectaRelationalaMappera(ORM) suchaasaSQLAlchemy for traditionalaSQLadatabases.
The problem thataMongooseaaims to solveaisaallowing developers to
enforceaa specificaschema at the applicationalayer. Inaaddition to enforcing aaschema,
Mongooseaalso offers a variety ofahooks, modelavalidation, and otherafeatures aimed at making
it easier to work withaMongoDB.

21



Following are the APIsa, I have created in my Login-System-

Fig 6.

In the above figure, I have implemented a loginaAPI.

The user is loggedain successfully, only if he/she is registered prior to it on theabackend.

The other APIsahave been created in a similar way.

22



Fig 8,9

23



Fig 9,10

24



What isaReactaRouter?

ReactaRouterais aastandardalibraryaforaroutingainaReact. It enables
theanavigationaamongaviewsaofavariousacomponentsain aaReact Application,
allowsachangingatheabrowseraURL, and keepsathe UI in syncawithatheaURL.

Let us create aasimpleaapplication toaReact toaunderstand howathe ReactaRouter works.

In My Login-System the App.jsa file contains all the routesato the other files. Following is the list ofaroutes:
● Logina
● Edita
● Homea
● Registera
● Forgot Passworda

25



What are React Hooks?

Hooks are the new feature introduced in the React 16.8 version. It allows you to use state and
other React features without writing a class. Hooks are the functions which "hook into" React
state and lifecycle features from function components. It does not work inside classes.

What is Refactoring?
Refactoring or Code Refactoring is defined as systematic process of improving existing computer code,
without adding new functionality or changing external behaviour of the code. It is intended to change the
implementation, definition, structure of code without changing functionality of software. It improves
extensibility, maintainability, and readability of software without changing what it actually does.

Why should we refactor our code when it works fine?

The goal of refactoring is not to add new functionality or remove an existing one. The main goal of refactoring
is to make code easier to maintain in future and to fight technical debt. We do refactor because we understand
that getting design right in first time is hard and also you get the following benefits from refactoring:

● Code size is often reduced

● Confusing code is restructured into simpler code

Both of the above benefits greatly improve maintainability which is required because requirements always
keep changing.

When do we refactor?

● Before you add new features, make sure your design and current code is “good” this will help the

new code be easier to write.

● When you need to fix a bug

● When you do a peer review

● During a code review

How to identify code to refactor?

Martin Fowler proposed using “code smells” to identify when and where to refactor. Code smells are bad
things done in code, just like bad patterns in the code. Refactoring and Code smells are a few techniques that
help us identify problems in design and implementation. It also helps us in applying known solutions to these
problems.

26



React Redux:

Redux is an open-source JavaScript library for managing and centralizing application state. It is most commonly used
with libraries such as React or Angular for building user interfaces.

React Redux allows us to manage the state variables globally which allows us to use a common state for the multiple
components of the application. Making our application faster and also reducing the cost. The management of central state is
done with the help of reducers.

Below is the snippet of the reducers used below:

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/JavaScript_library
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/React_(web_framework)
https://en.wikipedia.org/wiki/Angular_(web_framework)
https://en.wikipedia.org/wiki/User_interface


React Components

Components are independent and reusable bits of code. They serve the same purpose as

JavaScript functions, but work in isolation and return HTML. Components come in two

types, Class components and Function components, in this tutorial we will concentrate on

Function components.

Class Component

A class component must include the extends React.Component statement. This statement creates an inheritance to

React.Component, and gives your component access to React.Component's functions.

The component also requires a render() method, this method returns HTML.

Function Component

A Function component also returns HTML, and behaves much the same way as a Class component, but Function

components can be written using much less code, are easier to understand, and will be preferred in this tutorial.

Below is the code of various components I created:

27



28



Solutions proposed by our team:

According to Norton Security, more than 800000 online accounts get hacked every year. Even the most secure systems

present are prone to the brute force attacks by the hackers. Due to this the username and password are vulnerable and

can be stolen by the third parties. Also in today’s market there is lack of proper access control, which increases the risk

of unauthorized access to the physical and the logical systems.

One way organizations can recruit and retain the best talent is to remove the constraints of geographic location and offer

a flexible work environment. A remote workforce allows businesses to boost productivity while keeping expenses in

check—as well as untethering employees from a traditional office setting. However, with employees scattered all over a

country or even the world, enterprise IT teams face a much more daunting challenge: maintaining a consistent

experience for employees connecting to corporate resources without sacrificing security. The growth of mobile

computing means that IT teams have less visibility into and control over employees’ work practices .

29



The goal of our organization is to develop a secure, fast, reliable and user friendly system for identity and access

management. We are going to enhance our systems User Experience by providing facility for single sign on and we

would enhance the security using multifactor authentication. We are also developing customizable user interface that

will allow different organizations to update the user interface based on their requirements.

After the above task our motive is to provide the software developed to different organizations as software as a service

(SaaS).

We proposed the following solution to overcome the above problems:

● · Secure Authentication with OAuth2 Security framework.

● · Single Sign On (SSO) facility.

● · Authorization with Role based access management.

● · Multi factor authentication.

● · Authentication for mobile apps.

● · Completely Customizable Authentication User Interfaces.

● · Password-less Authentication through Account Access Link.

● · Username and password based standard login system.

● · Authorization with Role based Access Management

● · Password Expiry Policy

● · QR Code based Login

● · Captcha for Bot Detection

30



Context Switching In React JS

Context provides a way to pass data through the component tree without having to pass props down
manually at every level.

● In a typical React application, data is passed top-down (parent to child) via props, but such usage
can be cumbersome for certain types of props (e.g. locale preference, UI theme) that are required
by many components within an application. Context provides a way to share values like these
between components without having to explicitly pass a prop through every level of the tree.

When to Use Context
● Before You Use Context

● API

○ React.createContext

○ Context.Provider

○ Class.contextType

○ Context.Consumer

https://reactjs.org/docs/context.html#when-to-use-context
https://reactjs.org/docs/context.html#before-you-use-context
https://reactjs.org/docs/context.html#api
https://reactjs.org/docs/context.html#reactcreatecontext
https://reactjs.org/docs/context.html#contextprovider
https://reactjs.org/docs/context.html#classcontexttype
https://reactjs.org/docs/context.html#contextconsumer


MARKET ANALYSIS

IAM is a growing industry in India, and is supposed to be a $ 27.5 Billion dollar marker by 2026.

Currently no big Indian company is in this area and is being dominated by the US players.



32



Business Model:

33



Our Progress:
● We have developed the theme switching feature for our application which allows a user to switch

themes when he wants to.
● We have successfully developed the dashboard for the application.

Dashboard screenshots:



34



Screenshots of various themes designed:

Theme-1

35



36



Theme-2



37



38





39



Chapter-5

CONCLUSIONS

Conclusion:

In conclusion we would be able to develop a fully functional, fast, reliable and secure Identity

and Access Management System with single sign-on with all the solutions provided by us

(mentioned above) by August, 2022 and would be launched for the users by November, 2022

with all the features.

Future Scope:

• Adding features so that the pages created can be customized by the organization based

on their needs.

• Integrating web apps with single sign on features.

• Generating tokens for session management.

• Implementing IAM.

40



41




