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ABSTRACT 

  

We know that human movement or activity recognition is growing relevance, not 

only in surveillance and security, but also due to diverse academics' interests in 

understanding human behavioural or movement patterns. 

 

Previously, efforts to solving the challenge included manually building features 

from training machine learning models and time series data based on fixed-sized 

windows. The challenge is that this feature engineering necessitates extensive 

knowledge of image/video processing. Deep learning methods such as one-

dimensional convolutional neural networks, or CNNs, and recurrent neural 

networks (RNNs) have recently been shown to provide state-of-the-art results on 

challenging activity recognition tasks with very little or no data feature 

engineering, instead relying on feature learning on raw data. 

 

Our project focuses on the identification of human activities (HAR) problem, with 

input from a camera in the form of multiple channels time series data. In this 

scenario, extracting the functional parts of the job identification is critical yet 

difficult. Much of the available work is based on its handcrafted feature design 

heuristic and shallow structural learning features, which can find those dividing 

factors and accurately separate different functions. We suggest a systematic 

investigation of the HAR problem in this work. 

 

We present an effective method for extracting a person's silhouette attributes from 

a video series in this study. Using morphological activities to measure the image 

silhouette, the suggested technique covers domain termination, edge recognition, 

circuit filling, and noise removal. To the best of our knowledge, the proposed 

method of erasing the silhouette requires finishing the background and 

discovering the first edge of its sort. In the Weizmann data set, we applied our 

proposed technique (standard). We applied those models on CNN after extracting 

features. 
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                                INTRODUCTION  
 

The interaction of machines and humans in the modern world has resulted in the 

development of new computer-based ideas such as the science of discovery, 

tracking, and, more broadly, identification of human behavior. The site's growth 

is motivated by the site's numerous and prospective uses in domains such as 

medical, surveillance, information rooms, and video detection and search. These 

advancements simplify machine behavior, enhancing human-machine 

interaction. Future computer vision systems are predicted to be able to discern 

between diverse movements, allowing them to identify and analyze human 

movements without being vector spatial structural indicators. In order to achieve 

this goal, we developed an algorithm based on silhouette vector spatial to detect 

continuous human activity in this project. 

 

 

Human action Researchers have paid close attention to recognition. Essentially, 

research on vision-based techniques has been spurred by interest in gait analysis, 

gesture analysis, and task perception. Model-based techniques frequently adhere 

to Johansson's postulate that human perception of activity is influenced by 

structural information. Rods, cardboard models, volumetric models, and hybrid 

models that track both edges and regions are used to execute structural approaches 

to identification. Hidden Markov modelling (HMM) and multidimensional 

indexing are two further ways based on active recognition modelling. All model-

based techniques, however, face the difficulty of comparing model parameters of 

varying complexity with human imagery. 

 

 

Non-model-based systems recognize human activity through unstructured means 

using gross-form motion capabilities. One expression of such motions is the 

periodicity of human movements, which is frequently employed as a recognition 

criterion. Polana et al. use periodicity and spatiotemporal magnitude patterns of 

movement to recognize motions like walking and running. 

 

Deep learning has recently evolved as a learning family of models aimed at 

creating a high-quality data summit model. In deep learning, a multi-layered in-

depth architecture is created for autonomous feature design. 
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Each level of Deep Structure, in particular, introduces an indirect change to the 

effect of the preceding level, therefore data in deep learning models is represented 

as a sequence of characteristics from low to high level. Convolutional neural 

networks, deep belief networks, and autoencoders are among the most well-

known deep learning models. Deep reading patterns can be investigated with or 

without supervision, depending on how the information on the label is used. 

Although computer diagnostics, natural language processing, and speech 

recognition all benefit deep learning models, they have never been properly 

exploited in the HAR area. 

 

In this paper, we address the HAR problem by improving one deep learning 

model in particular - convolutional neural networks (CNN). CNN's major feature 

includes a number of processing units (for example, convolution, pooling, 

sigmoid / hyperbolic tangent squashing, rectifier, and normalizing). A large 

number of processing units can produce an accurate representation of the signal's 

local strength. Then, deep architecture enables the placement of multiple layers 

of these processing units on the stack, allowing this in-depth learning model to 

exhibit the intelligence of the symbols on various sizes. As a result, CNN's 

features are work-dependent rather than manual. 

 

 

As stated in the next sections, we have integrated the notion of image processing 

for feature extraction and CNN into the HAR app. The input size is determined 

by the number of frames, frame height, and frame breadth, and is mapped 

correspondingly in the convolution network. We developed a new CNN model, 

which was trained on low resolution Weizmann datasets and tested on the same 

data set. The results suggest that the proposed technique is a highly competitive 

HAR algorithm. We are also looking on the effectiveness of CNN.  
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    LITERATURE REVIEW 

 

1. A survey of video datasets for human action and activity recognition  

Enrique J. Carmona, Jose M. Chaquet, and Antonio Fernández-Caballero 

 

 

 

 

 

The authors referred to the top Pictorial-based occurrence and movement 

recognition or detection in this work, which has many applications such as 

searching video, computer-human interface, or in personal computer's 

community for visual surveillance. The authors of this work discussed human 

movement detection utilising varied and numerous datasets. The datasets 

employed in the system for recognition match with the same input file. 

 

 

The research work presented by the authors in this paper is a comprehensive 

description of most of the datasets that are public in nature and are used for 

detecting human behaviour such as movement and activity based on visual or 

video, which has indeed allowed researchers to select the most suitable dataset in 

order to benchmark their algorithms, and the authors attempted to implement that 

work in this paper. The authors discussed human activity or movement and 

communicative-based recognition systems that aim to identify the activities and 

aims of more than one or one agent many observations in series with each of the 

agents who are of any given environment. The authors also noted how people are 

becoming more interested in using applications such as visual surveillance, video 

search, and human-computer interaction, and how this type of system or approach 

is utilised for behaviour recognition. According to the authors, detecting human 

movement or activity is the final step in a series of previously obtained tasks such 

as picture or visual capture, or segmentation of that, tracking of that, recognising 

that, and classifying that. The authors highlighted several studies that are roughly 

linked to human activity and action detection and are available, such as human 

motion or activity capture. There are numerous human action and activity 

detection datasets available. Authors testified on a total of 66 records when this 

survey was conducted. All of those records were taken between 2001 and 2012, 

but it was later discovered that roughly 80% of them were taken after 2005, with 

only 20% taken between 2001 and 2005. 

 

 

Later on, roughly an initial cataloguing was done which was gone to the area of 

various saved actions and its collections like 28 datasets which belonged that class 

which was currently there were all described and mentioned during this review 
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or report where a heterogeneous human based actions and movements related 

dedicated groups were there from which Authors referred. The authors referred 

to around 22 recordings, all of which were dedicated specifically to a specific 

motion or action. Authors referred to various different kinds and types of styles 

related to background and whether it was being used of and controlled, many 

different types of human interactions such as dangerous or any social or any 

diversity of different kinds of actors involved or different kind of ground related 

realities or truths, and many more from previous records. 

 

 

According to the authors, further classifications were presented that took into 

account behaviors such as professional amateur or common person, the number 

of views (mono or Multiview), and whether or not the camera was moving. Older 

datasets with simple hand annotations delivered the authors' specified ground 

truth, whereas the most recent datasets provided the highest quality ground truth. 

The authors cited the widespread use of popular XML-based description 

languages such as Viper and CVML, which sped up the annotation process and 

allowed for a more detailed description of what happened in each frame, as well 

as BEHAVE, CAVIAR, and ETISEO, all of which are mentioned by the authors 

of the Virat dataset. Viewers, for example, have a variety of constantly updated 

activity records. The extension of MOCAP databases is another relevant topic 

that the authors of this paper could research. These are particularly appealing for 

action detection since they provide parametric data that can be used to build a 

thorough 3D model. The authors emphasised that new datasets encompassing a 

wide range of records have been developed in recent years, such as the 9 new 

datasets created between 2010 and 2012, which are among the datasets mentioned 

in the article as part of the authors' research effort. The authors also mentioned 

excellent outreach as well as more targeted and engaged action packages. 

 

 

 According to the authors, this study, conducted as part of the research, conceals 

the lack of a detailed description of crucial public datasets for video-based nudity 

recognition and tries to aid researchers in selecting the best appropriate dataset 

for benchmarking algorithms. 

 

 

 

 

 

 

 

 

 



 
5 

 

The authors compared all data sets on a variety of practical aspects, such as B. 

actual terrain data, scene shapes, the number of activities and actors, and 

references to earlier work that used these datasets. 

 

 

 

 

 

Using the prior article, we discovered many forms of public records available for 

HAR in various categories: 

 

 

i)Heterogeneous Action: Activities such as leaping, walking, sprinting, and 

waving are examples of heterogeneous action. 

ii) Specific Action: abandoned goods, everyday activities, crowd behaviour, fall 

detection, pace, pose, and gestures are examples of specific actions. 

iii) Other: This category covers motion capture (MOCAP), infrared imaging, and 

thermal imaging. 

After finding a number of different behaviours from the above categories, we 

chose the Weizmann activities dataset from 2005. We chose a collection from the 

Heterogenous Action category and worked on the Weizmann Actions Data set, 

which was recorded in 2005. 
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2. 

Actions as Space-Time Shapes  

Ronen Basri, Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and 

Lena Gorelick 

The authors of this work discuss human movement in video sequences, which can 

be seen as silhouettes of a shifting torso and sticking out limbs in process 

articulated motion. The human actions were described as third-dimensional 

shapes induced by silhouettes within the space-time container, according to the 

authors. The authors of this study used a new technique for reading 2D shapes 

and generalized it to deal with volumetric space-time movement shapes. 

 

 

 

 

 

 

Authors used houses of the response to the Poisson equation to extract space-time 

functions as well as neighborhood space-time saliency, movement dynamics, 

form shape, and orientation in their suggested study. These functions are 

beneficial for movement reputation, detection, and clustering, according to the 

authors. The authors' technique in this Research study is quick, in which video 

alignment was no longer necessary and was no longer significant in many 

scenarios where the historical past is known. Furthermore, the Authors 

demonstrated the durability of their approach in the face of partial occlusions, 

non-inflexible deformations, large scale and viewpoint changes, severe 

abnormalities within the overall performance of a movement, and the occasional 

first-rate video. Human movement detection is an important component in a 

variety of computer vision applications, including video surveillance, human-

computer interaction, video indexing and browsing, recognition of gestures, 

sports evaluation, and dance choreography, according to the authors. The authors 

of this work represented movements as space-time forms and demonstrated that 

one of the pictures included a plethora of information about the movement done 

by the authors. 

 

 

 

The quality of the recovered functions was proven, according to the authors, by 

the completion of the extremely simple classification scheme applied, such as 

nearest friends’ classification and Euclidian distance. The authors also claimed 

that in many cases, the information contained in a single space-time dice was 
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adequate to make a reliable classification, which was confirmed in the first 

classification experiment. According to the authors, trustworthy overall 

performance in real-life applications can be achieved by integrating data from the 

entire input sequence, including all of its space-time cubes, as demonstrated by 

the robustness studies. The Authors' proposed method has various advantages, 

including the elimination of the need for video alignment. Second, it was 

extremely linear within the form's range of space-time components. On a Pentium 

4, 3.0 GHz, the typical processing time for a 1107050 pre-segmented movie, such 

as correcting the Poisson equation and extracting functions in MATLAB, was 

less than 30 seconds, according to the authors. Third, it could deal with low-

quality video data, which would cause problems for other techniques that are 

predominantly focused on depth functions, such as gradients. 

 

 

 

 

 

The authors also emphasized that when we focus on the most effective space-time 

form, we often overlook the form's deep truths. This paper technique may be 

combined with depth-based completely functions in the future to further improve 

overall performance. It was also possible to expand the number of space-time 

functions retrieved using the Poisson equation in this proposed technique in order 

to meet more difficult tasks and human gait reputation. Finally, the proposed 

technique can be implemented with little or no modification to current 3-D shape 

illustration and matching. 

 

 

We downloaded data from this research that comprises of 90 low-resolution video 

sequences of nine different persons executing ten different everyday motions 

such as walking, running, skipping, jumping-jack, jumping-forwards, waving, 

and so on. The data is 180 × 144 pixels at 50 frames per second. 
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3. Extraction of Features from Video File Using Different Image Algebraic 

Point Operations. 

Nachamai M, Pranti Dutta 

 

The authors of this research stated that in the realm of human-computer 

interaction (HCI), facial point analysis and birth are the most crucial steps that 

can lead to a stable and effective bracket system such as facial expression 

identification and emotion bracket. Authors have given an approach or technique 

to the problem of automatic facial point birth from various films employing 

multiple image algebraic operations in this work. Those operations dealt with 

pixel intensity values as a group via a fine concept used in image analysis and 

metamorphoses. The authors proposed 11 operations in this paper, which include 

point deduction or subtraction, point addition, point addition, point division, edge 

detecting, average neighboring filtering, image stretching, log implementation, 

exponential operation, inverse filtering, and image thresholding, which were 

implemented and tested on images that were uprooted from three different tone-

recorded videos, dubbed video1, video2, and video3. Those videos came in three 

different formats: avi, mp4, and wmv. 

 

 

Grayscale and RGB data were used to test this project. The Authors analyzed 

three parameters to determine the success of each operation: processing time, 

frames per second (FPS), and sharpness of edges of point and points founded on 

image slants. The perpetration in this paper was done by the authors in MATLAB 

R2017a. The authors stated that the trade between man and machine is a truly 

ironic field in image processing with a vast horizon of investigation. The authors 

also stated that HCI is becoming more prevalent in fields such as pattern 

recognition, object discovery, face discovery, face recognition, emotion 

discovery through face and speech, target recognition, remote seeing, optic 

character recognition (OCR),3d business based on shape, nonstop fairly 

shadowing of business, and so on. Authors mentioned that Those fields were 

complicated due to factors like one to numerous mappings, intricate calculation 

and recognition problem. Picture processing has numerous steps with approaches 

to split these challenges down, according to the authors, including image 

acquisition, pre-processing, point birth, segmentation, representation/ 

description, recognition, and interpretation. 
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The authors of this research propose to investigate the performance of three 

different image algebraic point operations on three different films in order to 

improve the point birth approach. According to the authors, all procedures 

performed better in grayscale than RGB when measured in frames per second. 

Still, according to the authors, point addition was the fastest at 23.558 FPS, while 

average neighborhood filtering was the slowest at 3.155 FPS. 

 

 

 

The authors discovered that in terms of processing time, grayscale outperformed 

RGB in all of those procedures. The authors discovered that point addition took 

the least amount of time to process (205.35 s) while average neighborhood 

filtering took the most time (s). The frames kept in edge discovery procedure had 

the highest sharpness 7.905 of any operation, whereas image thresholding had the 

smallest sharpness 0.021 in grayscale, according to the authors. Because the 

created law did not support RGB picture frames in MATLAB, the authors 

discovered that each procedure in RGB had three different sharpness values, 

except for edge finding and image thresholding. 

 

 

 

4.Automatic Motion Tracking of Human in a Surveillance Video 

Murtaza A. Khan, Mohammad A. AlGhamdi, and Sultan H. ALMotiri 

The authors present a method for monitoring a person's movement in a sequence 

of video frames in this article. The method presented by the authors can be used 

to follow a walking or running individual on surveillance video captured by a 

single fixed camera. The method in this technique started with removing noise 

from the acquired images, then segmenting them using frame difference and 

binary conversion techniques, and then tracking the subject horizontally and 

vertically using a bounding box based on the occurrence of high intensity values. 

 

 

The findings of the simulation revealed that the technology may be utilized for 

real-time tracking of persons in films with a frame rate of 25/30 frames per 

second, according to the authors. The proposed system by the authors served as 

part of the Internet of Things (IoT) and communicated the recorded video to the 

control center for processing in the context of a smart city, according to the 

authors. Motion tracking, according to the authors, is the act of detecting and 

tracking a moving object in a series of video frames. 

 



 
10 

 

 

The authors also mentioned that human motion tracking in video was a hot topic 

in machine vision research. Surveillance, human-computer interaction, and 

virtual reality were among the applications. The authors of this research proposed 

a simple method for tracking persons in films automatically. Filtering, 

segmentation, and monitoring are the three primary aspects of the procedure 

described in this study. The filter phase, which used an average filter to eliminate 

noise from images, was the first of the three phases. The Authors assumed that 

high intensities contributed to motion, so the segmentation phase calculated frame 

differences and then converted the frame difference images into two-level like 

black and white images to separate high and low intensity values, and the tracking 

phase drew the bounding box around the human-like moving object. The Authors 

had scanned the row and column of each two-layer image in the trace to determine 

the bounding box's height and breadth, respectively. The Authors' proposed 

method can be used for real-time monitoring and has applications in security and 

surveillance. 

 

 

 

5. A Novel Approach for Human Silhouette Extraction from Video Data 

Debotosh Bhattacharjee, Amlan Raychaudhuri, Satyabrata Maity, Amlan 

Chakrabarti, and Amlan Raychaudhuri 

 

 

The authors proposed a method for efficiently extracting human silhouettes from 

video sequences in this research. Background removal, edge detection, area 

filling, and noise removal were all proposed in this study as ways to estimate an 

image's silhouette using morphological processes. The Authors' proposed 

approach for silhouette extraction, which included backdrop removal and edge 

recognition, was the first of its type. 

 

 

The authors used their proposed technique on a Weizmann-like standard dataset 

and then compared the results to the most recent related research work in this 

model. In this study, the authors discovered that statistical measurements like as 

precision, recall, and F-measure clearly demonstrated the superiority of their 

strategy and so validated its uniqueness. The authors stated that the extraction of 

human silhouettes from video was an essential step toward shape-based analysis 

for many person-based video applications.  

 

 

The authors also mentioned several video applications, such as CCTV cameras 
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for indoor surveillance, geriatric monitoring, and office floor surveillance, where 

the camera is fixed in a specific position, and background information extraction 

is a crucial step. Our suggested method rapidly removes the backdrop to 

accurately extract human silhouettes as foreground objects. The authors 

developed an approach for generating an efficient human silhouette from video 

sequences in this research. 

 

 

 

 

The authors stated that precise human silhouette synthesis from a video sequence 

was extremely valuable in a variety of application fields such as gait recognition, 

human activity recognition, human detection and tracking from movies, and so 

on. The method suggested by the authors in this study can also be used to obtain 

silhouettes for other moving objects such as animals, cars, and so on, which will 

be valuable for object recognition and classification problems. According to the 

authors, their proposed method produced great results for such video sequences. 

However, the shortcoming of this system was that the camera had to remain 

stationary during the movie sequence. The research could be expanded to create 

an effective human silhouette extraction process that works when a human's body 

color or garment color is very near to the background color. 

 

 

This paper describes an efficient method for extracting the human silhouette from 

a video clip. To measure picture silhouette, this paper approach covers 

background removal, edge detection, circuit filling, and noise removal utilizing 

morphological processes. For the first time, a method for removing the silhouette 

that combines the removal of the background and the acquisition of the edge is 

presented in this study. We proposed strategies in the standard Weizmann 

database and compared the outcomes to the most recent related academic work. 

Comparisons using mathematical measurements such as accuracy, memory, and 

F-measure clearly demonstrate the superiority of this approach. 
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6. Video-Based Human Activity Recognition for Elderly Using 

Convolutional Neural Network   

Ponniamma M., Vijayaprabakaran K., Sathiyamurthy K. 

 

 

The authors of this research discussed a typical healthcare application for the 

elderly to track everyday activities and provide assistance. The authors stated that 

the system's automatic image processing and classification was difficult in 

comparison to human vision. The authors also mentioned some difficult 

challenges for activity recognition from surveillance video, such as the 

complexity of scene analysis in observations with irregular lighting and low-

quality frames. The Authors' solution in this article uses machine learning 

algorithms to improve activity detection accuracy. 

 

 

The system has a Convolutional Neural Network (CNN), a machine learning 

method used for picture classification, according to the authors. The system 

presented by the authors in this work intends to recognize and support the human 

activities of the elderly by exploiting entrance surveillance footage. The authors 

mentioned the RGB image in the dataset that was utilized for training, which 

required greater processing power to classify. They also mentioned that by 

employing the CNN network for image classification, they acquired an accuracy 

of 79.94 in the experimental section, indicating that their model achieves good 

accuracy for image classification when compared to other pre-trained models. 

 

They claimed that the Human Activity Recognition (HAR) technology is growing 

popular in the intelligent healthcare setting as artificial intelligence grows. 

However, according to them, the major purpose of activity detection is to identify 

human actions from a series of studies of human actions and their ambient state. 

Artificial intelligence has made significant advances in identifying diseases, 

evaluating medical imaging, and prescribing medications to patients, among other 

things. They discussed several machine learning algorithms offered in this study 

to gain deeper insight into the sensor data produced by the numerous devices that 

monitor persons in a smart health environment. This research addressed the issue 

of video-based human activity detection in the intelligent health environment for 

the elderly.  They introduced a deep convolutional neural network in this paper 

to extract features from successive video frames. These frames were first 

processed with pre-processing procedures. To improve routing, the deep 

convolutional network's poor training in the middle layers incorporates shortcuts 

between network levels utilizing three alternative methodologies. A Deep 

Convolutional Neural Network with hopping connections from the initial layer to 
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all layers outperforms the other proposed models among these three upgraded 

deeper models. 

 

The experimental findings revealed that the suggested model outperformed other 

traditional models such as ResNet, VGG, and AlexNet.  They employed 2D 

representations of video frames to represent people's actions in this work, and the 

spatial features of the information were only used for recognition. 

 

The study could be expanded further by incorporating temporal aspects and 

experimenting with different kinds of representation as input. 

 

7. 

Human Activity Recognition Based on Silhouette Directionality  

Meghna Singh, IEEE Student Member, Anup Basu, IEEE Senior Member, 

and Mrinal Kr. Mandal, IEEE Senior Member 

The authors discussed current advancements in computer vision and pattern 

recognition that have fueled several programmers targeted at intelligently 

recognizing human activities in this research. The authors present an algorithm 

for detecting non-contact human activity in this study. The authors extracted 

motion information and generated silhouettes (foreground) from the input films 

using an adaptive background-foreground separation technique. The authors then 

constructed feature vectors based on the directionality of the silhouette contours 

(direction vectors) and used the discrete data distribution of the directional 

vectors in a vector space for clustering and recognition. They also used human 

motion's dynamic nature to smooth judgments over time and eliminate activity 

detection errors. Their method is monocular, tolerant of mild view alterations, 

and applicable to most activities' front and side perspectives. The authors cite 

trials using short and lengthy video sequences that show strong detection under 

diverse viewing angles, zoom depths, backdrops, and frame speeds. 

 

 

They also noted that the dynamic interactions between machines and humans 

have resulted in the establishment of a new discipline of computer vision that 

includes the science of identifying, tracking, and generally recognizing human 

behavior. The authors went on to say that computer vision research is 

continuously seeking to catch up to human vision research. They also highlighted 

that researchers' efforts to establish a universal approach for detecting human 

activity continue to face problems. They presented a novel non-model-based 
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silhouette direction technique for identifying human activity under the premise of 

limited occlusion in this work. In contrast to most recent work, which deals with 

template matching of preset static activity poses, the algorithm they proposed 

captured the static and dynamic like transitional aspects of human activity.  

 

 

 

The authors' solution is storage efficient since each action is saved and indexed 

as an eight-dimensional vector. Furthermore, because they are only concerned 

with the silhouette's contour, they eliminate the computational overhead of 

computing the motion for each body part or template match.  

 

 

 

 

 

The algorithm suggested in this research is translation-independent and can 

manage changes in viewing angle, scale, backdrop, and clothing. It can also 

manage limited occlusion. However, the scientists also stated that for people with 

considerably different body shapes, the algorithm must be taught with a 

completely separate training set and is no longer compatible with the previous 

training data. 

 

 

 

The experimental findings of this suggested model demonstrated good detection 

rates with rare misclassifications caused primarily by poor foreground-

background separation characteristics. When considering eight activities without 

temporal smoothing, the CRRs achieved in their studies ranged from 85 percent 

to 99 percent. A performance evaluation for noisy data, which could come from 

the loss of pixels in the foreground, was also given. CRR increases with frame 

rate, and when temporal smoothing is used, 100 percent detection is attained. The 

algorithm's promise is indicated by its ease of implementation. The authors' 

proposed method can be used to track numerous identities and detect actions of 

persons in nursing homes or special care facilities. 
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ALGORITHMS 
 

We extracted video frames and converted them to grayscale frames. After 

subtracting the backdrop frame from the current frame, a new image is formed. 

The foreground is extracted from the subtracted image using a threshold value 

equal to the standard deviation of the subtracted image. 

Formula Used: 

 

RGB to Grayscale: 

 
I(g)=0.299 ∙ R + 0.587 ∙ G + 0.114 ∙ B 

 

 

   
 
Subtracted Frame: 

 

𝐼 = (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑓𝑟𝑎𝑚𝑒 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) 
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Foreground Detection: 

 

 𝐼1 (𝑥, 𝑦)  = 1, 𝑖𝑓 |𝐼(𝑥, 𝑦)| > 𝜎 𝑒𝑙𝑠𝑒 0 

  

 𝜎 is standard deviation 

  
   

 

          N is the population size.  

  

          x(i) = each individual value from the population 

 

 

  = the population average  
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Boundary Edge Detection: 

For edge detection, we used canny edge detection. As a result, we have a new 

image that we can refer to as I2. 

 

Canny Edge Detection: This is a technique for extracting useful structural data 

from various visual items and drastically reducing the amount of data to be 

processed. It has been extensively tested in a variety of computer vision 

frameworks. Canny discovered that the requirements for facet detection utility 

on varied computer vision structures and very similar domains. 

 

 
 

 

 

Merging of Two image: 

 

𝐼3 (𝑥, 𝑦)  = 1, 𝑖𝑓  𝐼1(𝑥, 𝑦) == 1 𝑜𝑟 𝐼2(𝑥, 𝑦) == 1  𝑒𝑙𝑠𝑒 0 
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Morphological Operation: 

 

After integrating two separate bits of information to get the final silhouette image, 

morphological processes are employed to lessen the effect of undesired noise. 

Some human silhouette pixels may be identified as background pixels, while 

others may be considered as foreground pixels. By performing morphological 

manipulations on the image I3, these misclassifications can be decreased. Fill the 

bounded sections with foreground color that is surrounded by an edge boundary 

in the first phase. This step is required if certain foreground pixels within the 

foreground boundary are regarded as background pixels. The resulting image may 

have some noise outside of the silhouette zone. The morphological erode 

procedure is then used to remove noises from outside the human silhouette. 

 

After employing all of the aforementioned procedures, we obtained a new image 

that may be regarded as a new frame. 

 

Erosion: This operator requires two inputs. The first is an image to be degraded, 

and the second is a set of coordinate points known as kernels. Kernel calculates 

the exact effect of erosion on the provided image. 

 

On binary images, erosion can be represented mathematically as follows: 

 

I Assume X is the set of Euclidean coordinates for input images and K is the 

kernel element coordinate. 

ii) Assume K(x) reflects K's translation such that x can be the origin. 

iii) The set of all points x such that K(x) is a subset of X is the erosion of X by 

K. 
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As indicated in the picture, the kernel is a 3 × 3 square matrix with the center as 

the origin. 

 

1 1 1 

1 1 1 

1 1 1 

  

 

The coordinates are as follows: =  

{(-1, -1), (0, -1), (1, -1), 

  (-1,0), (0,0), (1,0), 

  (-1,1), (0,1), (1,1)} 

 

To calculate the erosion on the binary input image by the aforementioned kernel 

element, we must consider each foreground pixel in the given image turn by 

turn. We superimposed the kernel on top of the given image for each foreground 

pixel, so that the kernel's origin is at the given pixel coordinates. 
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Machine learning Model 

 

Construction of Model: 

 

For the data we have, a simple convolutional model is built. The model 

comprises layers that alternate between convolutional and pooling. The 

advantages of having such a model are that it may be used to encode the content 

of an image into a vector with less height and breadth but more depth. This 

means that the convolutional layers will be used to make the input deeper (raise 

the depth of the picture, resulting in a stack of numerous feature maps), whilst 

the pooling layers will be used to minimize the spatial dimensions of the input. 

 

 

We must configure the following parameters for each convolution layer: 

Filters: This is the feature that is utilized as the convolution output layer. 

 

kernel size: This is the size of any window that will be convolved with all of the 

input data axes to produce a single feature map. 

 

strides: The number of pixels by which our convolution window should be 

displaced. 

 

padding: It determines what happens at the edges. 

 

activation: The activation function should be employed at that layer; in this 

case, we are using RELU activation. 

 

Pooling is a pooling process that computes the maximum value for a feature 

map's patches and utilizes it to produce a down sampled (pooled) feature map. 

 

pool size: The window's size. 

strides: The number of pixels the pooling window should shift by. 

padding: To control what happens around the edges. 

 

Data Preparation: 

 

We compiled a library of 90 low-resolution (180 x 144, deinterlaced 50 fps) 

video sequences of nine different persons performing 10 normal actions such as 

walking, jumping, waving, and so on. We transformed these 90 data points into 

183 low-resolution videos when working with data. Each frame of the movie 

was processed and decreased by 128 by 128. 
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Model Training: To avoid the problem of model overfitting, we separated the 

dataset into two portions for training and testing reasons. 66 percent (120) of the 

data set was chosen for model training, while the remaining 34 percent (63) was 

chosen for testing. The training dataset was further subdivided into training data 

sets and validation data sets. We employed 30 data points for model validation, 

while the remaining data points were used for model training. 

 

Comparison 
 

 

Method Accuracy 

Bag of 3D points 74.70% 

HOJ3D 79.00% 

Actionlet Ensemble 82.22% 

Depth Motion Maps 88.73% 

HON4D 88.89% 

Moving Pose 91.70 

SNV 93.09% 

CNN+SAE 74.6% 

Proposed Model 30.00% 
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Flow Chart of feature extraction: 
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Flow chart of Machine Learning Model: 
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Model Summary: 

 

 

Model 1: 
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Result: 

 

 
 

We may conclude from the graph above that the above model is overfitted as 

the value difference between training loss and Validation grows. 

 

To avoid overfitting, we presented another model: 
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Model 2: 

 

Summary 
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Result: 

 

 

 
 

The accuracy of the above model is 30%. 
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Model 3: 

 

Summary: 
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Result: 
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Tool used: 

 

OpenCV: OpenCV is a cross-platform library that can be used to create real-

time neural network models. It focuses on image processing, video recording, 

and analysis, with capabilities like face and object detection.  

 

 

Colab: 

 

Colab is a cloud-based Jupyter notebook environment that is completely free. 

Most significantly, it does not require any setup, and the notebooks you create 

can be changed concurrently by your team members, much like documents in 

Google Docs. Many common machine learning libraries are supported by Colab 

and can be quickly loaded into your notebook. 

 

CNN: 

 

CNN is a powerful imaginative, artificial intelligence (AI) system that uses deep 

learning to execute productive and descriptive tasks, frequently combining 

picture and video identification, as well as programmers to promote and process 

natural language. 

 

CNN employs a multi-layer perceptron technology optimized for low 

processing requirements. CNN layers include an input layer, an output layer, 

and a hidden layer with several dynamic layers, integration layers, completely 

integrated layers, and standard layers. The removal of constraints and increased 

image processing efficiency resulted in a highly efficient, user-friendly training 

system that restricts image processing and natural language processing. 

 

Application: 

 

I This method can be used for video surveillance. 

ii) It can be used to monitor patients. 
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CONCLUSION AND FUTURE  SCOPE 

 

Conclusion  

We proposed a new method for extracting features for human activity recognition 

in this study. To examine multichannel time series data, the suggested method 

constructs a new deep architecture for the CNN. To capture the distinctive 

patterns of the human silhouette at multiple time scales, this deep architecture 

primarily employs convolution and pooling techniques. All found noteworthy 

patterns are rigorously harmonized across several channels before being mapped 

into various kinds of human activities. The following are the primary benefits of 

the proposed method: 

 

 

I feature extraction is done in a task-dependent and non-handcrafted manner; 

 

ii) extracted features have more discriminative strength in terms of human 

activity classifications; 

 

iii) Feature extraction and classification are combined in a single model to 

improve their mutual performance. 

 

iv) With a small adjustment, we can reduce the feature's noise to a minimum. 

We show in the trials that the suggested CNN technique outperforms other 

state-of-the-art methods, and we believe that the proposed method can serve as a 

competitive tool for feature learning and classification for HAR situations. 
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Future Scope 

 

 

More and more algorithms: For this problem, only eight machine learning 

algorithms were tested; try other line approaches and possibly more indirect and 

integral methods. 

 

Tuning the algorithm: We can experiment with different layer combinations, 

different types of models, and adjusting the varied form of input with varying 

number of epochs or kernel size. 

 

Data scalability: The data has already been scaled to [0,1], possibly per 

participant. Investigate whether additional scaling, such as standardization, can 

improve performance, particularly on algorithms sensitive to scaling, such as 

kNN. 
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# -*- coding: utf-8 -*- 

"""Copy of Major_Project.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1pko34l1MA9l-

iG_snoFKa81t2gmjrxem 

""" 

 

import cv2 

import os 

import statistics 

import matplotlib.pyplot as plt 

 

from google.colab.patches import cv2_imshow 

 

 

 

import numpy as np 

from scipy import stats 

from itertools import product 

 

import csv 

 

def getdata(): 

  

cap=cv2.VideoCapture("/content/drive/MyDrive/datasets/walk/eli_wa

lk.avi") 

  v=[] 

  frame_width = int(cap.get(3)) 

  frame_height = int(cap.get(4)) 

  size = (frame_width, frame_height) 

  kernel=np.array([[0,-1,0],[-1,5,-1],[0,-1,0]]) 

  

res=cv2.VideoWriter('/content/drive/MyDrive/vieodata/filename1.avi'
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, cv2.VideoWriter_fourcc(*'XVID'),10, size,0) 

  while (cap.isOpened(),): 

    ret,frame=cap.read() 

    if ret==True: 

      frame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) 

      frame=cv2.filter2D(src=frame,ddepth=-1,kernel=kernel) 

      res.write(frame) 

      cv2_imshow(frame) 

    else: 

      break 

  cap.release() 

  cv2.destroyAllWindows() 

  return 

getdata() 

 

def getbackgrounddata(file): 

  

cap=cv2.VideoCapture("/content/drive/MyDrive/datasets/background

s/"+file) 

  a=0 

  while (cap.isOpened()): 

    ret,frame=cap.read() 

    frame = cv2.medianBlur(frame, 3) 

    if ret==True and a==3: 

      return frame 

    elif ret==True and a!=3: 

      a+=1 

    else: 

      break 

  cap.release() 

  cv2.destroyAllWindows() 

  return 

 

# background=getbackgrounddata() 

# cv2_imshow(background) 

# background=cv2.cvtColor(background,cv2.COLOR_BGR2GRAY) 

# cv2_imshow(background) 
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def getdata1(fl,fn,back): 

  

cap=cv2.VideoCapture("/content/drive/MyDrive/datasets/"+fl+"/"+fn) 

  v=0 

  t=0 

  kernel=np.array([[1,1,1],[1,1,1],[1,1,1]]) 

  

background=cv2.cvtColor(getbackgrounddata(back),cv2.COLOR_BG

R2GRAY) 

  frame_width = int(cap.get(3)) 

  frame_height = int(cap.get(4)) 

  size = (frame_width, frame_height) 

  res=cv2.VideoWriter('/content/drive/MyDrive/vdata/'+fl+'/'+fn, 

cv2.VideoWriter_fourcc(*'XVID'),10, size,0) 

  re=cv2.VideoWriter('/content/drive/MyDrive/vdata/'+fl+'/'+'0'+fn, 

cv2.VideoWriter_fourcc(*'XVID'),10, size,0) 

  while (cap.isOpened(),): 

    ret,frame=cap.read() 

    if ret==True: 

      frame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) 

      print("After Converting on Gray Scale") 

      cv2_imshow(frame) 

      fr=frame.copy() 

      ed=cv2.Canny(fr,100,200) 

      print("After Edge Detection") 

      cv2_imshow(ed) 

      #std=np.std(frame) 

      #print(std) 

      #print("After Implementing Noise") 

      fr = cv2.medianBlur(fr, 3) 

      #std=(np.std(fr)) 

      #cv2_imshow(fr) 

      f=[] 

      foreground=[] 

      for i in range(len(frame)): 

        r=[] 
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        for j in range(len(frame[0])): 

           r.append(abs(frame[i][j]-background[i][j])) 

        foreground.append(r) 

      foreground=np.reshape(foreground,(len(frame),len(frame[0]))) 

      foreground=foreground.astype("uint8") 

      print("After Background Subtraction") 

      cv2_imshow(foreground) 

      std=np.std(foreground) 

      for i in range(len(frame)): 

        r=[] 

        for j in range(len(frame[0])): 

          if foreground[i][j]>0: 

            if foreground[i][j]>std: 

              r.append(255) 

            else: 

              r.append(0) 

          else: 

            r.append(0) 

        f.append(r) 

      f=np.reshape(f,(len(frame),len(frame[0]))) 

      f=f.astype("uint8") 

      print("After Foreground Detection") 

      cv2_imshow(f) 

      a=f+ed 

      erosion = cv2.erode(a,kernel,iterations=2) 

      print("Eroded") 

      cv2_imshow(erosion) 

      if v < 14: 

        res.write(erosion) 

        v+=1 

      else: 

        if v<28: 

          re.write(erosion) 

          v+=1 

        else: 

          break 

    else: 
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      break 

  cap.release() 

  cv2.destroyAllWindows() 

getdata1("walk","denis_walk.avi","bg_038.avi") 

 

arr = os.listdir("/content/drive/MyDrive/datasets") 

print(arr) 

 

print(arr) 

arr.remove("IndividualDetails.csv") 

arr.remove("Indian States Population and Area.xlsx") 

arr.remove("covid_19_india.csv") 

arr.remove("classification_masks.mat") 

arr.remove("backgrounds") 

print(arr) 

 

for i in arr: 

  file_arr=os.listdir("/content/drive/MyDrive/datasets/"+i) 

  bg=[''] 

  for j in file_arr: 

    if j=="daria_bend.avi" or j=="daria_jack.avi" or 

j=="daria_jump.avi" or j=="daria_pjump.avi" or j=="daria_run.avi" or 

j=="daria_side.avi" or j=="daria_skip.avi" or j=="daria_walk.avi" or 

j=="daria_wave1.avi" or j=="daria_wave2.avi": 

      bg[0]="bg_026.avi" 

    elif j=="denis_bend.avi" or j=="denis_jack.avi" or 

j=="denis_jump.avi" or j=="denis_pjump.avi" or j=="denis_run.avi" 

or j=="denis_side.avi" or j=="denis_skip.avi" or j=="denis_walk.avi" 

or j=="denis_wave1.avi" or j=="denis_wave2.avi": 

      bg[0]="bg_038.avi" 

    elif j=="eli_bend.avi" or j=="eli_jack.avi" or j=="eli_jump.avi" or 

j=="eli_pjump.avi" or j=="eli_run.avi" or j=="eli_side.avi" or 

j=="eli_skip.avi" or j=="eli_walk.avi" or j=="eli_wave1.avi" or 

j=="eli_wave2.avi": 

      bg[0]="bg_062.avi" 

    elif j=="ido_bend.avi" or j=="ido_jack.avi" or j=="ido_jump.avi" or 

j=="ido_pjump.avi" or j=="ido_run.avi" or j=="ido_side.avi" or 
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j=="ido_skip.avi" or j=="ido_walk.avi" or j=="ido_wave1.avi" or 

j=="ido_wave2.avi": 

      bg[0]="bg_062.avi" 

    elif j=="ira_bend.avi" or j=="ira_jack.avi" or j=="ira_jump.avi" or 

j=="ira_pjump.avi" or j=="ira_run.avi" or j=="ira_side.avi" or 

j=="ira_skip.avi" or j=="ira_walk.avi" or j=="ira_wave1.avi" or 

j=="ira_wave2.avi": 

      bg[0]="bg_062.avi" 

    elif j=="shahar_bend.avi" or j=="shahar_jack.avi" or 

j=="shahar_jump.avi" or j=="shahar_pjump.avi" or 

j=="shahar_side.avi" or j=="shahar_skip.avi" or j=="shahar_walk.avi" 

or j=="shahar_wave1.avi" or j=="shahar_wave2.avi": 

      bg[0]="bg_062.avi" 

    elif j=="lena_jack.avi": 

      bg[0]="lena_bg_jack.avi" 

    elif j=="moshe_run.avi": 

      bg[0]="moshe_bg_run.avi" 

    elif j=="shahar_run.avi": 

      bg[0]="shahar_bg_run.avi" 

    else: 

      bg[0]="bg_038.avi" 

    #print(i,j) 

    getdata1(i,j,bg[0]) 

 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn import datasets 

from sklearn.decomposition import PCA 

import pandas as pd 

from sklearn.preprocessing import StandardScaler 

plt.style.use('ggplot') 

 

from sklearn.datasets import load_files 

import os 

 

from sklearn.model_selection import train_test_split 
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print(os.getcwd()) 

raw_data=load_files(os.getcwd()+ 

r'/drive/MyDrive/vdata',shuffle=True) 

target=raw_data['target'] 

 

len(raw_data) 

 

files = raw_data['filenames'] 

train_files, test_files, train_targets, test_targets = train_test_split(files, 

target, test_size=60, random_state=196) 

 

len(train_files) 

 

valid_files = train_files[90:] 

valid_targets = train_targets[90:] 

 

train_files = train_files[:90] 

train_targets = train_targets[:90] 

 

print(raw_data['target_names']) 

 

for label in zip(range(10), raw_data['target_names']): 

    print(label) 

 

for pair in zip(train_files[:5], train_targets[:5]): 

    print(pair) 

 

pip install sk-video 

 

import numpy as np 

from skvideo.io import FFmpegReader, ffprobe 

from skvideo.utils import rgb2gray 

from PIL import Image 

from tqdm import tqdm 

from keras.preprocessing import image 

 

def _read_video(path): 
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  cap=FFmpegReader(filename=path) 

  list_of_frames=[] 

  fps=int(cap.inputfps) 

  target_size=(128,128) 

  required_fps=fps 

  for index,frame in enumerate(cap.nextFrame()): 

    capture_frame=True 

    if required_fps !=None: 

      is_valid=range(required_fps) 

      capture_frame=(index % fps) in is_valid 

    if capture_frame: 

      temp_image=image.array_to_img(frame) 

      

frame=image.img_to_array(temp_image.resize(target_size,Image.AN

TIALIAS)).astype('uint8') 

      list_of_frames.append(frame) 

  temp_video=np.stack(list_of_frames) 

  cap.close() 

  temp_video=rgb2gray(temp_video) 

  return np.expand_dims(temp_video, axis=0) 

 

def read_videos(paths): 

  normalise_pixel=(0,1) 

  list_of_videos=[_read_video(path) for path in tqdm(paths)] 

  tensor=np.vstack(list_of_videos) 

  if len(normalise_pixel)==2 and len(normalise_pixel)== tuple: 

    base=normalise_pixel[0] 

    r=normalise_pixel[1]-base 

    mini=np.min(tensor,axis=(1,2,3),keepdims=True) 

    maxi=np.max(tensor,axis=(1,2,3),keepdims=True) 

    return ((tensor.astype('float32')-mini)/(maxi-mini))*r+base 

  return tensor 

 

import numpy as np 

import matplotlib.pyplot as plt 

from tensorflow.keras.utils import to_categorical 
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x_train=read_videos(train_files) 

y_train=to_categorical(train_targets,num_classes=10) 

print("Shape of Training data: ", x_train.shape) 

print("Shape of Training Targets: ", y_train.shape) 

 

# Commented out IPython magic to ensure Python compatibility. 

import numpy as np 

import matplotlib.pyplot as plt 

import skvideo.io 

# %matplotlib inline 

 

 

# The path of a sample video in the training data 

sample_files = train_files[:1] 

 

# An object of the class 'Videos' 

sample = skvideo.io.vread(sample_files[0]); 

 

print('\nShape of the sample data:', sample.shape) 

 

# Displaying a frame from the sample video 

plt.imshow(sample[10]) 

 

x_valid=read_videos(valid_files) 

y_valid=to_categorical(valid_targets,num_classes=10) 

print("Shape of validation data:",x_valid.shape) 

print("Shape of validation Labels:",y_valid.shape) 

 

x_test = read_videos(test_files) 

y_test = to_categorical(test_targets, num_classes=10) 

print('Shape of testing data:', x_test.shape) 

print('Shape of testing labels:', y_test.shape) 

 

y_train.shape[1:] 

 

from sklearn.pipeline import Pipeline 

from sklearn.cluster import KMeans 
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from sklearn.linear_model import LinearRegression 

from sklearn.linear_model import LogisticRegression 

from sklearn import preprocessing 

from keras.models import Sequential 

from keras.layers import Dense 

 

from sklearn.metrics import f1_score 

from sklearn.model_selection import cross_validate 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import confusion_matrix 

from sklearn.model_selection import cross_val_score 

 

from keras.models import Sequential 

from keras.layers import Conv3D, MaxPooling3D, 

GlobalAveragePooling3D 

from keras.layers.core import Dense, Dropout 

 

from keras.models import Sequential 

from keras.layers import Conv3D, MaxPooling3D, 

GlobalAveragePooling3D 

from keras.layers.core import Dense, Dropout 

model = Sequential() 

model.add(Conv3D(filters=16, kernel_size=(10, 3, 3), strides=(5, 2, 2), 

padding='same', activation='relu',input_shape=(14,128,128,1))) 

model.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model.add(Conv3D(filters=64, kernel_size=(5, 3, 3), strides=(3, 1, 1), 

padding='same', activation='relu')) 

model.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model.add(Conv3D(filters=256, kernel_size=(3, 3, 3), strides=(3, 1, 1), 

padding='same', activation='relu')) 
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model.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model.add(GlobalAveragePooling3D()) 

model.add(Dense(32, activation='relu')) 

model.add(Dense(16, activation='relu')) 

model.add(Dense(10,activation="softmax")) 

model.summary() 

 

from keras.callbacks import ModelCheckpoint 

from keras import optimizers 

 

model.compile(loss='categorical_crossentropy', optimizer="adam", 

metrics=['accuracy']) 

checkpoint = ModelCheckpoint(filepath='Model.weights.best.hdf5', 

save_best_only=True, verbose=1) 

hist = model.fit(x_train, y_train, batch_size=10, epochs=40, 

validation_data=(x_valid, y_valid),verbose=2,callbacks=[checkpoint]) 

print(hist) 

 

model.load_weights('Model.weights.best.hdf5') 

(loss,accuracy)=model.evaluate(x_test,y_test,batch_size=10,verbose=

0) 

print("Accuracy: ",accuracy*100) 

 

plt.figure(figsize=(12, 8)) 

 

loss = hist.history['loss']                          # Loss on the training data 

val_loss = hist.history['val_loss']                  # Loss on the validation 

data 

epochs = range(1, 41) 

 

plt.plot(epochs, loss, 'ro-', label='Training Loss') 

plt.plot(epochs, val_loss, 'go-', label = 'Validation Loss') 

plt.xlabel('epochs', fontsize=14) 

plt.ylabel('loss', fontsize=14) 

plt.legend() 
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model2 = Sequential() 

model2.add(Conv3D(filters=16, kernel_size=(10, 3, 3), strides=(5, 2, 

2), padding='same', activation='relu',input_shape=(29,128,128,1))) 

model2.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model2.add(Conv3D(filters=64, kernel_size=(5, 3, 3), strides=(3, 1, 1), 

padding='same', activation='relu')) 

model2.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model2.add(Conv3D(filters=256, kernel_size=(3, 3, 3), strides=(3, 1, 

1), padding='same', activation='relu')) 

model2.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model2.add(GlobalAveragePooling3D()) 

model2.add(Dense(32, activation='relu')) 

#model2.add(Dense(16, activation='relu')) 

model2.add(Dropout(0.5)) 

model2.add(Dense(10,activation="softmax")) 

model2.summary() 

 

model2.compile(loss='categorical_crossentropy', optimizer="adam", 

metrics=['accuracy']) 

checkpoint2 = ModelCheckpoint(filepath='Model2.weights.best.hdf5', 

save_best_only=True, verbose=1) 

hist = model2.fit(x_train, y_train, batch_size=15, epochs=40, 

validation_data=(x_valid, 

y_valid),verbose=2,callbacks=[checkpoint2]) 

print(hist) 

 

model2.load_weights('Model2.weights.best.hdf5') 

(loss2,accuracy2)=model2.evaluate(x_test,y_test,batch_size=15,verbo

se=0) 

print("Accuracy: ",accuracy2*100) 

 

plt.figure(figsize=(12, 8)) 
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loss2 = hist.history['loss']                          # Loss on the training data 

val_loss2 = hist.history['val_loss']                  # Loss on the validation 

data 

epochs = range(1, 26) 

 

plt.plot(epochs, loss2, 'ro-', label='Training Loss') 

plt.plot(epochs, val_loss2, 'go-', label = 'Validation Loss') 

plt.xlabel('epochs', fontsize=14) 

plt.ylabel('loss', fontsize=14) 

plt.legend() 

 

model3 = Sequential() 

model3.add(Conv3D(filters=16, kernel_size=(10, 3, 3), strides=(5, 2, 

2), padding='same', activation='relu',input_shape=(29,128,128,1))) 

model3.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model3.add(Conv3D(filters=64, kernel_size=(5, 3, 3), strides=(3, 1, 1), 

padding='same', activation='relu')) 

model3.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model3.add(Conv3D(filters=256, kernel_size=(3, 3, 3), strides=(3, 1, 

1), padding='same', activation='relu')) 

model3.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model3.add(GlobalAveragePooling3D()) 

model3.add(Dense(64, activation='relu')) 

model3.add(Dense(32, activation='relu')) 

#model3.add(Dense(16, activation='relu')) 

model3.add(Dropout(0.5)) 

model3.add(Dense(10,activation="softmax")) 

model3.summary() 

 

model3.compile(loss='categorical_crossentropy', optimizer="adam", 

metrics=['accuracy']) 

checkpoint2 = ModelCheckpoint(filepath='Model3.weights.best.hdf5', 

save_best_only=True, verbose=1) 
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hist = model3.fit(x_train, y_train, batch_size=10, epochs=25, 

validation_data=(x_valid, 

y_valid),verbose=2,callbacks=[checkpoint2]) 

print(hist) 

 

model3.load_weights('Model3.weights.best.hdf5') 

(loss2,accuracy3)=model3.evaluate(x_test,y_test,batch_size=10,verbo

se=0) 

print("Accuracy: ",accuracy3*100) 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

 

 

 

 

import cv2 

import os 

import matplotlib.pyplot as plt 

from google.colab.patches import cv2_imshow 

 

 

 

model10 = Sequential() 

model10.add(Conv3D(filters=16, kernel_size=(10, 3, 3), strides=(5, 2, 

2), padding='same', activation='relu',input_shape=(14,128,128,1))) 

model10.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model10.add(Conv3D(filters=32, kernel_size=(5, 3, 3), strides=(3, 2, 

1), padding='same', activation='relu')) 

model10.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model10.add(Conv3D(filters=64, kernel_size=(5, 3, 3), strides=(3, 1, 

1), padding='same', activation='relu')) 

model10.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 
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model10.add(Conv3D(filters=256, kernel_size=(3, 3, 3), strides=(3, 1, 

1), padding='same', activation='relu')) 

model10.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2), 

padding='same')) 

model10.add(GlobalAveragePooling3D()) 

model10.add(Dense(32, activation='relu')) 

#model2.add(Dense(16, activation='relu')) 

model10.add(Dropout(0.5)) 

model10.add(Dense(10,activation="softmax")) 

model10.summary() 

 

model10.compile(loss='categorical_crossentropy', optimizer="adam", 

metrics=['accuracy']) 

checkpoint2 = 

ModelCheckpoint(filepath='Model10.weights.best.hdf5', 

save_best_only=True, verbose=1) 

hist = model10.fit(x_train, y_train, batch_size=10, epochs=40, 

validation_data=(x_valid, 

y_valid),verbose=2,callbacks=[checkpoint2]) 

print(hist) 

 

model10.load_weights('Model10.weights.best.hdf5') 

(loss10,accuracy10)=model10.evaluate(x_test,y_test,batch_size=10,v

erbose=0) 

print("Accuracy: ",accuracy10*100) 

 

model10.load_weights('Model10.weights.best.hdf5') 

(loss10,accuracy10)=model10.evaluate(x_test,y_test,batch_size=15,v

erbose=0) 

print("Accuracy: ",accuracy10*100) 

 

plt.figure(figsize=(12, 8)) 

 

loss2 = hist.history['loss']                          # Loss on the training data 

val_loss2 = hist.history['val_loss']                  # Loss on the validation 

data 

epochs = range(1, 41) 
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plt.plot(epochs, loss2, 'ro-', label='Training Loss') 

plt.plot(epochs, val_loss2, 'go-', label = 'Validation Loss') 

plt.xlabel('epochs', fontsize=14) 

plt.ylabel('loss', fontsize=14) 

plt.legend() 

 

 


