

 Human Activity Recognition

Major project report submitted in partial fulfillment of the requirement for the

degree of Bachelor of Technology

 in

 Computer Science and Engineering

By

 HRISHABH TRIPATHI (181298)

 TANMAY KUMAR (181352)

UNDER THE SUPERVISION OF

 Dr. Pradeep Kumar Gupta

 Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology, Waknaghat,173234,

Himachal Pradesh, INDIA

 DECLARATION

We hereby declare that this project has been done by us under the supervision of

Dr. Pradeep Kumar Gupta, Associate Prof, Department of CSE Jaypee

University Of Information Technology. We also declare that neither this project

nor any portion of this project has been submitted for the granting of any degree

or diploma elsewhere.

Supervised by:

Dr. Pradeep Kumar Gupta

Prof

Department of Computer Science & Engineering And Information Technology

Jaypee University Of Information Technology

Submitted by:

Hrishabh Tripathi

(181298)

Tanmay kumar

(181352)

Department of CSE

Jaypee University of Information Technology

 CERTIFICATE

This is to certify that the work presented in the project report titled "HUMAN

ACTIVITY RECOGNITION" in partial fulfilment of the requirements for the

award of the degree of B.Tech in Computer Science And Engineering and

submitted to the Department of Computer Science And Engineering, Jaypee

University of Information Technology, Waknaghat is an authentic record of work

carried out by "Hrishabh tripathi (181298)" and "Tanmay Kumar (181352)"

during the period from August 2021 to December 2021 under the supervision of

Dr. Pradeep Kumar Gupta, Department of Computer Science And

Engineering, Jaypee University of Information Technology, Waknaghat.

Hrishabh Tripathi

(181298)

Tanmay Kumar

(181352)

To the best of my knowledge, the preceding statement is correct.

Dr. Pradeep Kumar Gupta

Professor

Computer Science & Engineering And Information Technology

Jaypee University of Information Technology, Waknaghat, India

Dated:

 ACKNOWLEDGMENT

First We convey our heartfelt thanks and gratitude to Almighty God for His divine

grace, which has enabled us to successfully complete the project.

We are grateful to and grateful to Dr. Pradeep Kumar Gupta, Associate

Professor, Department of CSE Jaypee University Of Information Technology,

Wakhnaghat. My supervisor's extensive knowledge and genuine interest in the

topic of "Human Activity Recognition" enabled me to complete this research.

His unending tolerance, intellectual direction, constant encouragement, frequent

and energetic supervision, constructive criticism, good advice, reading many poor

draughts and revising them at all levels allowed us to finish this job.

We would like to offer our heartfelt gratitude to Dr. Pradeep Kumar Gupta,

Department of CSE, for his generous assistance in completing my project.

We would also like to express our gratitude to everyone who has directly or

indirectly assisted us in making this initiative a success. In this unique situation,

we would like to thank the many staff members, both teaching and non-teaching,

who have created their convenient assistance and helped my project.

Finally, we must express our gratitude for my parents' unwavering support and

patience.

Hrishabh Tripathi

(181298)

Tanmay Kumar

(181352)

ABSTRACT

We know that human movement or activity recognition is growing relevance, not

only in surveillance and security, but also due to diverse academics' interests in

understanding human behavioural or movement patterns.

Previously, efforts to solving the challenge included manually building features

from training machine learning models and time series data based on fixed-sized

windows. The challenge is that this feature engineering necessitates extensive

knowledge of image/video processing. Deep learning methods such as one-

dimensional convolutional neural networks, or CNNs, and recurrent neural

networks (RNNs) have recently been shown to provide state-of-the-art results on

challenging activity recognition tasks with very little or no data feature

engineering, instead relying on feature learning on raw data.

Our project focuses on the identification of human activities (HAR) problem, with

input from a camera in the form of multiple channels time series data. In this

scenario, extracting the functional parts of the job identification is critical yet

difficult. Much of the available work is based on its handcrafted feature design

heuristic and shallow structural learning features, which can find those dividing

factors and accurately separate different functions. We suggest a systematic

investigation of the HAR problem in this work.

We present an effective method for extracting a person's silhouette attributes from

a video series in this study. Using morphological activities to measure the image

silhouette, the suggested technique covers domain termination, edge recognition,

circuit filling, and noise removal. To the best of our knowledge, the proposed

method of erasing the silhouette requires finishing the background and

discovering the first edge of its sort. In the Weizmann data set, we applied our

proposed technique (standard). We applied those models on CNN after extracting

features.

TABLE OF CONTENTS

DECLARATION 1

CERTIFICATE 2

ACKNOWLEDGMENT 3

ABSTRACT 4

INTRODUCTION 1

LITERATURE REVIEW 3

ALGORITHMS 15

Flow Chart of feature extraction: 22

Flow chart of Machine Learning Model: 23

Result: 25

Tool used: 30

CONCLUSION AND FUTURE SCOPE 31

Conclusion 31

Future Scope 32

REFERENCES 33

1

 INTRODUCTION

The interaction of machines and humans in the modern world has resulted in the

development of new computer-based ideas such as the science of discovery,

tracking, and, more broadly, identification of human behavior. The site's growth

is motivated by the site's numerous and prospective uses in domains such as

medical, surveillance, information rooms, and video detection and search. These

advancements simplify machine behavior, enhancing human-machine

interaction. Future computer vision systems are predicted to be able to discern

between diverse movements, allowing them to identify and analyze human

movements without being vector spatial structural indicators. In order to achieve

this goal, we developed an algorithm based on silhouette vector spatial to detect

continuous human activity in this project.

Human action Researchers have paid close attention to recognition. Essentially,

research on vision-based techniques has been spurred by interest in gait analysis,

gesture analysis, and task perception. Model-based techniques frequently adhere

to Johansson's postulate that human perception of activity is influenced by

structural information. Rods, cardboard models, volumetric models, and hybrid

models that track both edges and regions are used to execute structural approaches

to identification. Hidden Markov modelling (HMM) and multidimensional

indexing are two further ways based on active recognition modelling. All model-

based techniques, however, face the difficulty of comparing model parameters of

varying complexity with human imagery.

Non-model-based systems recognize human activity through unstructured means

using gross-form motion capabilities. One expression of such motions is the

periodicity of human movements, which is frequently employed as a recognition

criterion. Polana et al. use periodicity and spatiotemporal magnitude patterns of

movement to recognize motions like walking and running.

Deep learning has recently evolved as a learning family of models aimed at

creating a high-quality data summit model. In deep learning, a multi-layered in-

depth architecture is created for autonomous feature design.

2

Each level of Deep Structure, in particular, introduces an indirect change to the

effect of the preceding level, therefore data in deep learning models is represented

as a sequence of characteristics from low to high level. Convolutional neural

networks, deep belief networks, and autoencoders are among the most well-

known deep learning models. Deep reading patterns can be investigated with or

without supervision, depending on how the information on the label is used.

Although computer diagnostics, natural language processing, and speech

recognition all benefit deep learning models, they have never been properly

exploited in the HAR area.

In this paper, we address the HAR problem by improving one deep learning

model in particular - convolutional neural networks (CNN). CNN's major feature

includes a number of processing units (for example, convolution, pooling,

sigmoid / hyperbolic tangent squashing, rectifier, and normalizing). A large

number of processing units can produce an accurate representation of the signal's

local strength. Then, deep architecture enables the placement of multiple layers

of these processing units on the stack, allowing this in-depth learning model to

exhibit the intelligence of the symbols on various sizes. As a result, CNN's

features are work-dependent rather than manual.

As stated in the next sections, we have integrated the notion of image processing

for feature extraction and CNN into the HAR app. The input size is determined

by the number of frames, frame height, and frame breadth, and is mapped

correspondingly in the convolution network. We developed a new CNN model,

which was trained on low resolution Weizmann datasets and tested on the same

data set. The results suggest that the proposed technique is a highly competitive

HAR algorithm. We are also looking on the effectiveness of CNN.

3

 LITERATURE REVIEW

1. A survey of video datasets for human action and activity recognition

Enrique J. Carmona, Jose M. Chaquet, and Antonio Fernández-Caballero

The authors referred to the top Pictorial-based occurrence and movement

recognition or detection in this work, which has many applications such as

searching video, computer-human interface, or in personal computer's

community for visual surveillance. The authors of this work discussed human

movement detection utilising varied and numerous datasets. The datasets

employed in the system for recognition match with the same input file.

The research work presented by the authors in this paper is a comprehensive

description of most of the datasets that are public in nature and are used for

detecting human behaviour such as movement and activity based on visual or

video, which has indeed allowed researchers to select the most suitable dataset in

order to benchmark their algorithms, and the authors attempted to implement that

work in this paper. The authors discussed human activity or movement and

communicative-based recognition systems that aim to identify the activities and

aims of more than one or one agent many observations in series with each of the

agents who are of any given environment. The authors also noted how people are

becoming more interested in using applications such as visual surveillance, video

search, and human-computer interaction, and how this type of system or approach

is utilised for behaviour recognition. According to the authors, detecting human

movement or activity is the final step in a series of previously obtained tasks such

as picture or visual capture, or segmentation of that, tracking of that, recognising

that, and classifying that. The authors highlighted several studies that are roughly

linked to human activity and action detection and are available, such as human

motion or activity capture. There are numerous human action and activity

detection datasets available. Authors testified on a total of 66 records when this

survey was conducted. All of those records were taken between 2001 and 2012,

but it was later discovered that roughly 80% of them were taken after 2005, with

only 20% taken between 2001 and 2005.

Later on, roughly an initial cataloguing was done which was gone to the area of

various saved actions and its collections like 28 datasets which belonged that class

which was currently there were all described and mentioned during this review

4

or report where a heterogeneous human based actions and movements related

dedicated groups were there from which Authors referred. The authors referred

to around 22 recordings, all of which were dedicated specifically to a specific

motion or action. Authors referred to various different kinds and types of styles

related to background and whether it was being used of and controlled, many

different types of human interactions such as dangerous or any social or any

diversity of different kinds of actors involved or different kind of ground related

realities or truths, and many more from previous records.

According to the authors, further classifications were presented that took into

account behaviors such as professional amateur or common person, the number

of views (mono or Multiview), and whether or not the camera was moving. Older

datasets with simple hand annotations delivered the authors' specified ground

truth, whereas the most recent datasets provided the highest quality ground truth.

The authors cited the widespread use of popular XML-based description

languages such as Viper and CVML, which sped up the annotation process and

allowed for a more detailed description of what happened in each frame, as well

as BEHAVE, CAVIAR, and ETISEO, all of which are mentioned by the authors

of the Virat dataset. Viewers, for example, have a variety of constantly updated

activity records. The extension of MOCAP databases is another relevant topic

that the authors of this paper could research. These are particularly appealing for

action detection since they provide parametric data that can be used to build a

thorough 3D model. The authors emphasised that new datasets encompassing a

wide range of records have been developed in recent years, such as the 9 new

datasets created between 2010 and 2012, which are among the datasets mentioned

in the article as part of the authors' research effort. The authors also mentioned

excellent outreach as well as more targeted and engaged action packages.

 According to the authors, this study, conducted as part of the research, conceals

the lack of a detailed description of crucial public datasets for video-based nudity

recognition and tries to aid researchers in selecting the best appropriate dataset

for benchmarking algorithms.

5

The authors compared all data sets on a variety of practical aspects, such as B.

actual terrain data, scene shapes, the number of activities and actors, and

references to earlier work that used these datasets.

Using the prior article, we discovered many forms of public records available for

HAR in various categories:

i)Heterogeneous Action: Activities such as leaping, walking, sprinting, and

waving are examples of heterogeneous action.

ii) Specific Action: abandoned goods, everyday activities, crowd behaviour, fall

detection, pace, pose, and gestures are examples of specific actions.

iii) Other: This category covers motion capture (MOCAP), infrared imaging, and

thermal imaging.

After finding a number of different behaviours from the above categories, we

chose the Weizmann activities dataset from 2005. We chose a collection from the

Heterogenous Action category and worked on the Weizmann Actions Data set,

which was recorded in 2005.

6

2.

Actions as Space-Time Shapes

Ronen Basri, Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and

Lena Gorelick

The authors of this work discuss human movement in video sequences, which can

be seen as silhouettes of a shifting torso and sticking out limbs in process

articulated motion. The human actions were described as third-dimensional

shapes induced by silhouettes within the space-time container, according to the

authors. The authors of this study used a new technique for reading 2D shapes

and generalized it to deal with volumetric space-time movement shapes.

Authors used houses of the response to the Poisson equation to extract space-time

functions as well as neighborhood space-time saliency, movement dynamics,

form shape, and orientation in their suggested study. These functions are

beneficial for movement reputation, detection, and clustering, according to the

authors. The authors' technique in this Research study is quick, in which video

alignment was no longer necessary and was no longer significant in many

scenarios where the historical past is known. Furthermore, the Authors

demonstrated the durability of their approach in the face of partial occlusions,

non-inflexible deformations, large scale and viewpoint changes, severe

abnormalities within the overall performance of a movement, and the occasional

first-rate video. Human movement detection is an important component in a

variety of computer vision applications, including video surveillance, human-

computer interaction, video indexing and browsing, recognition of gestures,

sports evaluation, and dance choreography, according to the authors. The authors

of this work represented movements as space-time forms and demonstrated that

one of the pictures included a plethora of information about the movement done

by the authors.

The quality of the recovered functions was proven, according to the authors, by

the completion of the extremely simple classification scheme applied, such as

nearest friends’ classification and Euclidian distance. The authors also claimed

that in many cases, the information contained in a single space-time dice was

7

adequate to make a reliable classification, which was confirmed in the first

classification experiment. According to the authors, trustworthy overall

performance in real-life applications can be achieved by integrating data from the

entire input sequence, including all of its space-time cubes, as demonstrated by

the robustness studies. The Authors' proposed method has various advantages,

including the elimination of the need for video alignment. Second, it was

extremely linear within the form's range of space-time components. On a Pentium

4, 3.0 GHz, the typical processing time for a 1107050 pre-segmented movie, such

as correcting the Poisson equation and extracting functions in MATLAB, was

less than 30 seconds, according to the authors. Third, it could deal with low-

quality video data, which would cause problems for other techniques that are

predominantly focused on depth functions, such as gradients.

The authors also emphasized that when we focus on the most effective space-time

form, we often overlook the form's deep truths. This paper technique may be

combined with depth-based completely functions in the future to further improve

overall performance. It was also possible to expand the number of space-time

functions retrieved using the Poisson equation in this proposed technique in order

to meet more difficult tasks and human gait reputation. Finally, the proposed

technique can be implemented with little or no modification to current 3-D shape

illustration and matching.

We downloaded data from this research that comprises of 90 low-resolution video

sequences of nine different persons executing ten different everyday motions

such as walking, running, skipping, jumping-jack, jumping-forwards, waving,

and so on. The data is 180 × 144 pixels at 50 frames per second.

8

3. Extraction of Features from Video File Using Different Image Algebraic

Point Operations.

Nachamai M, Pranti Dutta

The authors of this research stated that in the realm of human-computer

interaction (HCI), facial point analysis and birth are the most crucial steps that

can lead to a stable and effective bracket system such as facial expression

identification and emotion bracket. Authors have given an approach or technique

to the problem of automatic facial point birth from various films employing

multiple image algebraic operations in this work. Those operations dealt with

pixel intensity values as a group via a fine concept used in image analysis and

metamorphoses. The authors proposed 11 operations in this paper, which include

point deduction or subtraction, point addition, point addition, point division, edge

detecting, average neighboring filtering, image stretching, log implementation,

exponential operation, inverse filtering, and image thresholding, which were

implemented and tested on images that were uprooted from three different tone-

recorded videos, dubbed video1, video2, and video3. Those videos came in three

different formats: avi, mp4, and wmv.

Grayscale and RGB data were used to test this project. The Authors analyzed

three parameters to determine the success of each operation: processing time,

frames per second (FPS), and sharpness of edges of point and points founded on

image slants. The perpetration in this paper was done by the authors in MATLAB

R2017a. The authors stated that the trade between man and machine is a truly

ironic field in image processing with a vast horizon of investigation. The authors

also stated that HCI is becoming more prevalent in fields such as pattern

recognition, object discovery, face discovery, face recognition, emotion

discovery through face and speech, target recognition, remote seeing, optic

character recognition (OCR),3d business based on shape, nonstop fairly

shadowing of business, and so on. Authors mentioned that Those fields were

complicated due to factors like one to numerous mappings, intricate calculation

and recognition problem. Picture processing has numerous steps with approaches

to split these challenges down, according to the authors, including image

acquisition, pre-processing, point birth, segmentation, representation/

description, recognition, and interpretation.

9

The authors of this research propose to investigate the performance of three

different image algebraic point operations on three different films in order to

improve the point birth approach. According to the authors, all procedures

performed better in grayscale than RGB when measured in frames per second.

Still, according to the authors, point addition was the fastest at 23.558 FPS, while

average neighborhood filtering was the slowest at 3.155 FPS.

The authors discovered that in terms of processing time, grayscale outperformed

RGB in all of those procedures. The authors discovered that point addition took

the least amount of time to process (205.35 s) while average neighborhood

filtering took the most time (s). The frames kept in edge discovery procedure had

the highest sharpness 7.905 of any operation, whereas image thresholding had the

smallest sharpness 0.021 in grayscale, according to the authors. Because the

created law did not support RGB picture frames in MATLAB, the authors

discovered that each procedure in RGB had three different sharpness values,

except for edge finding and image thresholding.

4.Automatic Motion Tracking of Human in a Surveillance Video

Murtaza A. Khan, Mohammad A. AlGhamdi, and Sultan H. ALMotiri

The authors present a method for monitoring a person's movement in a sequence

of video frames in this article. The method presented by the authors can be used

to follow a walking or running individual on surveillance video captured by a

single fixed camera. The method in this technique started with removing noise

from the acquired images, then segmenting them using frame difference and

binary conversion techniques, and then tracking the subject horizontally and

vertically using a bounding box based on the occurrence of high intensity values.

The findings of the simulation revealed that the technology may be utilized for

real-time tracking of persons in films with a frame rate of 25/30 frames per

second, according to the authors. The proposed system by the authors served as

part of the Internet of Things (IoT) and communicated the recorded video to the

control center for processing in the context of a smart city, according to the

authors. Motion tracking, according to the authors, is the act of detecting and

tracking a moving object in a series of video frames.

10

The authors also mentioned that human motion tracking in video was a hot topic

in machine vision research. Surveillance, human-computer interaction, and

virtual reality were among the applications. The authors of this research proposed

a simple method for tracking persons in films automatically. Filtering,

segmentation, and monitoring are the three primary aspects of the procedure

described in this study. The filter phase, which used an average filter to eliminate

noise from images, was the first of the three phases. The Authors assumed that

high intensities contributed to motion, so the segmentation phase calculated frame

differences and then converted the frame difference images into two-level like

black and white images to separate high and low intensity values, and the tracking

phase drew the bounding box around the human-like moving object. The Authors

had scanned the row and column of each two-layer image in the trace to determine

the bounding box's height and breadth, respectively. The Authors' proposed

method can be used for real-time monitoring and has applications in security and

surveillance.

5. A Novel Approach for Human Silhouette Extraction from Video Data

Debotosh Bhattacharjee, Amlan Raychaudhuri, Satyabrata Maity, Amlan

Chakrabarti, and Amlan Raychaudhuri

The authors proposed a method for efficiently extracting human silhouettes from

video sequences in this research. Background removal, edge detection, area

filling, and noise removal were all proposed in this study as ways to estimate an

image's silhouette using morphological processes. The Authors' proposed

approach for silhouette extraction, which included backdrop removal and edge

recognition, was the first of its type.

The authors used their proposed technique on a Weizmann-like standard dataset

and then compared the results to the most recent related research work in this

model. In this study, the authors discovered that statistical measurements like as

precision, recall, and F-measure clearly demonstrated the superiority of their

strategy and so validated its uniqueness. The authors stated that the extraction of

human silhouettes from video was an essential step toward shape-based analysis

for many person-based video applications.

The authors also mentioned several video applications, such as CCTV cameras

11

for indoor surveillance, geriatric monitoring, and office floor surveillance, where

the camera is fixed in a specific position, and background information extraction

is a crucial step. Our suggested method rapidly removes the backdrop to

accurately extract human silhouettes as foreground objects. The authors

developed an approach for generating an efficient human silhouette from video

sequences in this research.

The authors stated that precise human silhouette synthesis from a video sequence

was extremely valuable in a variety of application fields such as gait recognition,

human activity recognition, human detection and tracking from movies, and so

on. The method suggested by the authors in this study can also be used to obtain

silhouettes for other moving objects such as animals, cars, and so on, which will

be valuable for object recognition and classification problems. According to the

authors, their proposed method produced great results for such video sequences.

However, the shortcoming of this system was that the camera had to remain

stationary during the movie sequence. The research could be expanded to create

an effective human silhouette extraction process that works when a human's body

color or garment color is very near to the background color.

This paper describes an efficient method for extracting the human silhouette from

a video clip. To measure picture silhouette, this paper approach covers

background removal, edge detection, circuit filling, and noise removal utilizing

morphological processes. For the first time, a method for removing the silhouette

that combines the removal of the background and the acquisition of the edge is

presented in this study. We proposed strategies in the standard Weizmann

database and compared the outcomes to the most recent related academic work.

Comparisons using mathematical measurements such as accuracy, memory, and

F-measure clearly demonstrate the superiority of this approach.

12

6. Video-Based Human Activity Recognition for Elderly Using

Convolutional Neural Network

Ponniamma M., Vijayaprabakaran K., Sathiyamurthy K.

The authors of this research discussed a typical healthcare application for the

elderly to track everyday activities and provide assistance. The authors stated that

the system's automatic image processing and classification was difficult in

comparison to human vision. The authors also mentioned some difficult

challenges for activity recognition from surveillance video, such as the

complexity of scene analysis in observations with irregular lighting and low-

quality frames. The Authors' solution in this article uses machine learning

algorithms to improve activity detection accuracy.

The system has a Convolutional Neural Network (CNN), a machine learning

method used for picture classification, according to the authors. The system

presented by the authors in this work intends to recognize and support the human

activities of the elderly by exploiting entrance surveillance footage. The authors

mentioned the RGB image in the dataset that was utilized for training, which

required greater processing power to classify. They also mentioned that by

employing the CNN network for image classification, they acquired an accuracy

of 79.94 in the experimental section, indicating that their model achieves good

accuracy for image classification when compared to other pre-trained models.

They claimed that the Human Activity Recognition (HAR) technology is growing

popular in the intelligent healthcare setting as artificial intelligence grows.

However, according to them, the major purpose of activity detection is to identify

human actions from a series of studies of human actions and their ambient state.

Artificial intelligence has made significant advances in identifying diseases,

evaluating medical imaging, and prescribing medications to patients, among other

things. They discussed several machine learning algorithms offered in this study

to gain deeper insight into the sensor data produced by the numerous devices that

monitor persons in a smart health environment. This research addressed the issue

of video-based human activity detection in the intelligent health environment for

the elderly. They introduced a deep convolutional neural network in this paper

to extract features from successive video frames. These frames were first

processed with pre-processing procedures. To improve routing, the deep

convolutional network's poor training in the middle layers incorporates shortcuts

between network levels utilizing three alternative methodologies. A Deep

Convolutional Neural Network with hopping connections from the initial layer to

13

all layers outperforms the other proposed models among these three upgraded

deeper models.

The experimental findings revealed that the suggested model outperformed other

traditional models such as ResNet, VGG, and AlexNet. They employed 2D

representations of video frames to represent people's actions in this work, and the

spatial features of the information were only used for recognition.

The study could be expanded further by incorporating temporal aspects and

experimenting with different kinds of representation as input.

7.

Human Activity Recognition Based on Silhouette Directionality

Meghna Singh, IEEE Student Member, Anup Basu, IEEE Senior Member,

and Mrinal Kr. Mandal, IEEE Senior Member

The authors discussed current advancements in computer vision and pattern

recognition that have fueled several programmers targeted at intelligently

recognizing human activities in this research. The authors present an algorithm

for detecting non-contact human activity in this study. The authors extracted

motion information and generated silhouettes (foreground) from the input films

using an adaptive background-foreground separation technique. The authors then

constructed feature vectors based on the directionality of the silhouette contours

(direction vectors) and used the discrete data distribution of the directional

vectors in a vector space for clustering and recognition. They also used human

motion's dynamic nature to smooth judgments over time and eliminate activity

detection errors. Their method is monocular, tolerant of mild view alterations,

and applicable to most activities' front and side perspectives. The authors cite

trials using short and lengthy video sequences that show strong detection under

diverse viewing angles, zoom depths, backdrops, and frame speeds.

They also noted that the dynamic interactions between machines and humans

have resulted in the establishment of a new discipline of computer vision that

includes the science of identifying, tracking, and generally recognizing human

behavior. The authors went on to say that computer vision research is

continuously seeking to catch up to human vision research. They also highlighted

that researchers' efforts to establish a universal approach for detecting human

activity continue to face problems. They presented a novel non-model-based

14

silhouette direction technique for identifying human activity under the premise of

limited occlusion in this work. In contrast to most recent work, which deals with

template matching of preset static activity poses, the algorithm they proposed

captured the static and dynamic like transitional aspects of human activity.

The authors' solution is storage efficient since each action is saved and indexed

as an eight-dimensional vector. Furthermore, because they are only concerned

with the silhouette's contour, they eliminate the computational overhead of

computing the motion for each body part or template match.

The algorithm suggested in this research is translation-independent and can

manage changes in viewing angle, scale, backdrop, and clothing. It can also

manage limited occlusion. However, the scientists also stated that for people with

considerably different body shapes, the algorithm must be taught with a

completely separate training set and is no longer compatible with the previous

training data.

The experimental findings of this suggested model demonstrated good detection

rates with rare misclassifications caused primarily by poor foreground-

background separation characteristics. When considering eight activities without

temporal smoothing, the CRRs achieved in their studies ranged from 85 percent

to 99 percent. A performance evaluation for noisy data, which could come from

the loss of pixels in the foreground, was also given. CRR increases with frame

rate, and when temporal smoothing is used, 100 percent detection is attained. The

algorithm's promise is indicated by its ease of implementation. The authors'

proposed method can be used to track numerous identities and detect actions of

persons in nursing homes or special care facilities.

15

ALGORITHMS

We extracted video frames and converted them to grayscale frames. After

subtracting the backdrop frame from the current frame, a new image is formed.

The foreground is extracted from the subtracted image using a threshold value

equal to the standard deviation of the subtracted image.

Formula Used:

RGB to Grayscale:

I(g)=0.299 ∙ R + 0.587 ∙ G + 0.114 ∙ B

Subtracted Frame:

𝐼 = (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑓𝑟𝑎𝑚𝑒 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

16

Foreground Detection:

 𝐼1 (𝑥, 𝑦) = 1, 𝑖𝑓 |𝐼(𝑥, 𝑦)| > 𝜎 𝑒𝑙𝑠𝑒 0

 𝜎 is standard deviation

 N is the population size.

 x(i) = each individual value from the population

 = the population average

17

Boundary Edge Detection:

For edge detection, we used canny edge detection. As a result, we have a new

image that we can refer to as I2.

Canny Edge Detection: This is a technique for extracting useful structural data

from various visual items and drastically reducing the amount of data to be

processed. It has been extensively tested in a variety of computer vision

frameworks. Canny discovered that the requirements for facet detection utility

on varied computer vision structures and very similar domains.

Merging of Two image:

𝐼3 (𝑥, 𝑦) = 1, 𝑖𝑓 𝐼1(𝑥, 𝑦) == 1 𝑜𝑟 𝐼2(𝑥, 𝑦) == 1 𝑒𝑙𝑠𝑒 0

18

Morphological Operation:

After integrating two separate bits of information to get the final silhouette image,

morphological processes are employed to lessen the effect of undesired noise.

Some human silhouette pixels may be identified as background pixels, while

others may be considered as foreground pixels. By performing morphological

manipulations on the image I3, these misclassifications can be decreased. Fill the

bounded sections with foreground color that is surrounded by an edge boundary

in the first phase. This step is required if certain foreground pixels within the

foreground boundary are regarded as background pixels. The resulting image may

have some noise outside of the silhouette zone. The morphological erode

procedure is then used to remove noises from outside the human silhouette.

After employing all of the aforementioned procedures, we obtained a new image

that may be regarded as a new frame.

Erosion: This operator requires two inputs. The first is an image to be degraded,

and the second is a set of coordinate points known as kernels. Kernel calculates

the exact effect of erosion on the provided image.

On binary images, erosion can be represented mathematically as follows:

I Assume X is the set of Euclidean coordinates for input images and K is the

kernel element coordinate.

ii) Assume K(x) reflects K's translation such that x can be the origin.

iii) The set of all points x such that K(x) is a subset of X is the erosion of X by

K.

19

As indicated in the picture, the kernel is a 3 × 3 square matrix with the center as

the origin.

1 1 1

1 1 1

1 1 1

The coordinates are as follows: =

{(-1, -1), (0, -1), (1, -1),

 (-1,0), (0,0), (1,0),

 (-1,1), (0,1), (1,1)}

To calculate the erosion on the binary input image by the aforementioned kernel

element, we must consider each foreground pixel in the given image turn by

turn. We superimposed the kernel on top of the given image for each foreground

pixel, so that the kernel's origin is at the given pixel coordinates.

20

Machine learning Model

Construction of Model:

For the data we have, a simple convolutional model is built. The model

comprises layers that alternate between convolutional and pooling. The

advantages of having such a model are that it may be used to encode the content

of an image into a vector with less height and breadth but more depth. This

means that the convolutional layers will be used to make the input deeper (raise

the depth of the picture, resulting in a stack of numerous feature maps), whilst

the pooling layers will be used to minimize the spatial dimensions of the input.

We must configure the following parameters for each convolution layer:

Filters: This is the feature that is utilized as the convolution output layer.

kernel size: This is the size of any window that will be convolved with all of the

input data axes to produce a single feature map.

strides: The number of pixels by which our convolution window should be

displaced.

padding: It determines what happens at the edges.

activation: The activation function should be employed at that layer; in this

case, we are using RELU activation.

Pooling is a pooling process that computes the maximum value for a feature

map's patches and utilizes it to produce a down sampled (pooled) feature map.

pool size: The window's size.

strides: The number of pixels the pooling window should shift by.

padding: To control what happens around the edges.

Data Preparation:

We compiled a library of 90 low-resolution (180 x 144, deinterlaced 50 fps)

video sequences of nine different persons performing 10 normal actions such as

walking, jumping, waving, and so on. We transformed these 90 data points into

183 low-resolution videos when working with data. Each frame of the movie

was processed and decreased by 128 by 128.

21

Model Training: To avoid the problem of model overfitting, we separated the

dataset into two portions for training and testing reasons. 66 percent (120) of the

data set was chosen for model training, while the remaining 34 percent (63) was

chosen for testing. The training dataset was further subdivided into training data

sets and validation data sets. We employed 30 data points for model validation,

while the remaining data points were used for model training.

Comparison

Method Accuracy

Bag of 3D points 74.70%

HOJ3D 79.00%

Actionlet Ensemble 82.22%

Depth Motion Maps 88.73%

HON4D 88.89%

Moving Pose 91.70

SNV 93.09%

CNN+SAE 74.6%

Proposed Model 30.00%

22

Flow Chart of feature extraction:

23

Flow chart of Machine Learning Model:

24

Model Summary:

Model 1:

25

Result:

We may conclude from the graph above that the above model is overfitted as

the value difference between training loss and Validation grows.

To avoid overfitting, we presented another model:

26

Model 2:

Summary

27

Result:

The accuracy of the above model is 30%.

28

Model 3:

Summary:

29

Result:

30

Tool used:

OpenCV: OpenCV is a cross-platform library that can be used to create real-

time neural network models. It focuses on image processing, video recording,

and analysis, with capabilities like face and object detection.

Colab:

Colab is a cloud-based Jupyter notebook environment that is completely free.

Most significantly, it does not require any setup, and the notebooks you create

can be changed concurrently by your team members, much like documents in

Google Docs. Many common machine learning libraries are supported by Colab

and can be quickly loaded into your notebook.

CNN:

CNN is a powerful imaginative, artificial intelligence (AI) system that uses deep

learning to execute productive and descriptive tasks, frequently combining

picture and video identification, as well as programmers to promote and process

natural language.

CNN employs a multi-layer perceptron technology optimized for low

processing requirements. CNN layers include an input layer, an output layer,

and a hidden layer with several dynamic layers, integration layers, completely

integrated layers, and standard layers. The removal of constraints and increased

image processing efficiency resulted in a highly efficient, user-friendly training

system that restricts image processing and natural language processing.

Application:

I This method can be used for video surveillance.

ii) It can be used to monitor patients.

31

CONCLUSION AND FUTURE SCOPE

Conclusion

We proposed a new method for extracting features for human activity recognition

in this study. To examine multichannel time series data, the suggested method

constructs a new deep architecture for the CNN. To capture the distinctive

patterns of the human silhouette at multiple time scales, this deep architecture

primarily employs convolution and pooling techniques. All found noteworthy

patterns are rigorously harmonized across several channels before being mapped

into various kinds of human activities. The following are the primary benefits of

the proposed method:

I feature extraction is done in a task-dependent and non-handcrafted manner;

ii) extracted features have more discriminative strength in terms of human

activity classifications;

iii) Feature extraction and classification are combined in a single model to

improve their mutual performance.

iv) With a small adjustment, we can reduce the feature's noise to a minimum.

We show in the trials that the suggested CNN technique outperforms other

state-of-the-art methods, and we believe that the proposed method can serve as a

competitive tool for feature learning and classification for HAR situations.

32

Future Scope

More and more algorithms: For this problem, only eight machine learning

algorithms were tested; try other line approaches and possibly more indirect and

integral methods.

Tuning the algorithm: We can experiment with different layer combinations,

different types of models, and adjusting the varied form of input with varying

number of epochs or kernel size.

Data scalability: The data has already been scaled to [0,1], possibly per

participant. Investigate whether additional scaling, such as standardization, can

improve performance, particularly on algorithms sensitive to scaling, such as

kNN.

33

REFERENCES

[1] A survey of video datasets for human action and activity recognition

Enrique J. Carmona, Jose M. Chaquet, and Antonio Fernández-Caballero

[2] Actions as Space-Time Shapes

Ronen Basri, Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Lena Gorelick

[3] Extraction of Features from Video File Using Different Image Algebraic Point Operations.

Nachamai M, Pranti Dutta

[4] Automatic Motion Tracking of Human in a Surveillance Video

Murtaza A. Khan, Mohammad A. AlGhamdi, and Sultan H. AL Mutairi

[5] A Novel Approach for Human Silhouette Extraction from Video Data

Debotosh Bhattacharjee, Amlan Raychaudhuri, Satyabrata Maity, Amlan Chakrabarti, and Amlan

Raychaudhuri

[6] Video-Based Human Activity Recognition for Elderly Using Convolutional Neural Network

Ponniamma M., Vijayaprabakaran K., Sathiyamurthy K.

[7] Human Activity Recognition Based on Silhouette Directionality

Meghna Singh, IEEE Student Member, Anup Basu, IEEE Senior Member, and Mrinal Kr. Mandal,

IEEE Senior Member

Anguita, D. [et al.]. A public domain dataset for human activity recognition using smartphones. A:

European Symposium on Artificial Neural Networks, Computational Intelligence and Machine

Learning. "Proceedings of the 21th International European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning". Bruges: 2013, p. 437-442.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public

Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges,

Belgium 24-26 April 2013.

[Bengio, 2009] Yoshua Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn.,

2(1):1–127, January 2009.

[Bulling et al., 2014] Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial on human activity

recognition using body-worn inertial sensors. ACM Computing Surveys., 46(3):33:1–33:33, 2014.

[Cao et al., 2012] Hong Cao, Minh Nhut Nguyen, Clifton Phua, Shonali Krishnaswamy, and Xiao Li

Li. An integrated framework for human activity classific. In ACM International Conference on

Ubiquitous Computing, 2012.

[Deng et al., 2013] Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael

34

Seltzer, Geoff Zweig, Xiaodong He, Jason Williams, Yifan Gong, and Alex Acero. Recent advances in

deep learning for speech research at microsoft. ICASSP, 2013.

[Deng, 2014] Li Deng. A tutorial survey of architectures, algorithms, and applications for deep learning.

APSIPA Transactions on Signal and Information Processing, 2014.

[Donahue et al., 2014] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric

Tzeng, and Trevor Darrell. DeCAF: A deep convolutional activation feature for generic visual

recognition. In ICML, 2014.

[Fukushima, 1980] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–

202, 1980.

[Hinton and Osindero, 2006] Geoffrey E. Hinton and Simon Osindero. A fast learning algorithm for

deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[Huynh and Schiele, 2005] Tam Huynh and Bernt Schiele. ˆ Analyzing features for activity recognition.

In Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative

Context-aware Services: Usages and Technologies, 2005.

 [Ji et al., 2010] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for

human action recognition. In ICML, 2010.

[Jia et al., 2014] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature

embedding. In ACM MM, 2014.

[Keogh and Kasetty, 2002] Eamonn Keogh and Shruti Kasetty. On the need for time series data mining

benchmarks: A survey and empirical demonstration. In SIGKDD, 2002.

Annexure

35

-*- coding: utf-8 -*-

"""Copy of Major_Project.ipynb

Automatically generated by Colaboratory.

Original file is located at

 https://colab.research.google.com/drive/1pko34l1MA9l-

iG_snoFKa81t2gmjrxem

"""

import cv2

import os

import statistics

import matplotlib.pyplot as plt

from google.colab.patches import cv2_imshow

import numpy as np

from scipy import stats

from itertools import product

import csv

def getdata():

cap=cv2.VideoCapture("/content/drive/MyDrive/datasets/walk/eli_wa

lk.avi")

 v=[]

 frame_width = int(cap.get(3))

 frame_height = int(cap.get(4))

 size = (frame_width, frame_height)

 kernel=np.array([[0,-1,0],[-1,5,-1],[0,-1,0]])

res=cv2.VideoWriter('/content/drive/MyDrive/vieodata/filename1.avi'

36

, cv2.VideoWriter_fourcc(*'XVID'),10, size,0)

 while (cap.isOpened(),):

 ret,frame=cap.read()

 if ret==True:

 frame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

 frame=cv2.filter2D(src=frame,ddepth=-1,kernel=kernel)

 res.write(frame)

 cv2_imshow(frame)

 else:

 break

 cap.release()

 cv2.destroyAllWindows()

 return

getdata()

def getbackgrounddata(file):

cap=cv2.VideoCapture("/content/drive/MyDrive/datasets/background

s/"+file)

 a=0

 while (cap.isOpened()):

 ret,frame=cap.read()

 frame = cv2.medianBlur(frame, 3)

 if ret==True and a==3:

 return frame

 elif ret==True and a!=3:

 a+=1

 else:

 break

 cap.release()

 cv2.destroyAllWindows()

 return

background=getbackgrounddata()

cv2_imshow(background)

background=cv2.cvtColor(background,cv2.COLOR_BGR2GRAY)

cv2_imshow(background)

37

def getdata1(fl,fn,back):

cap=cv2.VideoCapture("/content/drive/MyDrive/datasets/"+fl+"/"+fn)

 v=0

 t=0

 kernel=np.array([[1,1,1],[1,1,1],[1,1,1]])

background=cv2.cvtColor(getbackgrounddata(back),cv2.COLOR_BG

R2GRAY)

 frame_width = int(cap.get(3))

 frame_height = int(cap.get(4))

 size = (frame_width, frame_height)

 res=cv2.VideoWriter('/content/drive/MyDrive/vdata/'+fl+'/'+fn,

cv2.VideoWriter_fourcc(*'XVID'),10, size,0)

 re=cv2.VideoWriter('/content/drive/MyDrive/vdata/'+fl+'/'+'0'+fn,

cv2.VideoWriter_fourcc(*'XVID'),10, size,0)

 while (cap.isOpened(),):

 ret,frame=cap.read()

 if ret==True:

 frame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

 print("After Converting on Gray Scale")

 cv2_imshow(frame)

 fr=frame.copy()

 ed=cv2.Canny(fr,100,200)

 print("After Edge Detection")

 cv2_imshow(ed)

 #std=np.std(frame)

 #print(std)

 #print("After Implementing Noise")

 fr = cv2.medianBlur(fr, 3)

 #std=(np.std(fr))

 #cv2_imshow(fr)

 f=[]

 foreground=[]

 for i in range(len(frame)):

 r=[]

38

 for j in range(len(frame[0])):

 r.append(abs(frame[i][j]-background[i][j]))

 foreground.append(r)

 foreground=np.reshape(foreground,(len(frame),len(frame[0])))

 foreground=foreground.astype("uint8")

 print("After Background Subtraction")

 cv2_imshow(foreground)

 std=np.std(foreground)

 for i in range(len(frame)):

 r=[]

 for j in range(len(frame[0])):

 if foreground[i][j]>0:

 if foreground[i][j]>std:

 r.append(255)

 else:

 r.append(0)

 else:

 r.append(0)

 f.append(r)

 f=np.reshape(f,(len(frame),len(frame[0])))

 f=f.astype("uint8")

 print("After Foreground Detection")

 cv2_imshow(f)

 a=f+ed

 erosion = cv2.erode(a,kernel,iterations=2)

 print("Eroded")

 cv2_imshow(erosion)

 if v < 14:

 res.write(erosion)

 v+=1

 else:

 if v<28:

 re.write(erosion)

 v+=1

 else:

 break

 else:

39

 break

 cap.release()

 cv2.destroyAllWindows()

getdata1("walk","denis_walk.avi","bg_038.avi")

arr = os.listdir("/content/drive/MyDrive/datasets")

print(arr)

print(arr)

arr.remove("IndividualDetails.csv")

arr.remove("Indian States Population and Area.xlsx")

arr.remove("covid_19_india.csv")

arr.remove("classification_masks.mat")

arr.remove("backgrounds")

print(arr)

for i in arr:

 file_arr=os.listdir("/content/drive/MyDrive/datasets/"+i)

 bg=['']

 for j in file_arr:

 if j=="daria_bend.avi" or j=="daria_jack.avi" or

j=="daria_jump.avi" or j=="daria_pjump.avi" or j=="daria_run.avi" or

j=="daria_side.avi" or j=="daria_skip.avi" or j=="daria_walk.avi" or

j=="daria_wave1.avi" or j=="daria_wave2.avi":

 bg[0]="bg_026.avi"

 elif j=="denis_bend.avi" or j=="denis_jack.avi" or

j=="denis_jump.avi" or j=="denis_pjump.avi" or j=="denis_run.avi"

or j=="denis_side.avi" or j=="denis_skip.avi" or j=="denis_walk.avi"

or j=="denis_wave1.avi" or j=="denis_wave2.avi":

 bg[0]="bg_038.avi"

 elif j=="eli_bend.avi" or j=="eli_jack.avi" or j=="eli_jump.avi" or

j=="eli_pjump.avi" or j=="eli_run.avi" or j=="eli_side.avi" or

j=="eli_skip.avi" or j=="eli_walk.avi" or j=="eli_wave1.avi" or

j=="eli_wave2.avi":

 bg[0]="bg_062.avi"

 elif j=="ido_bend.avi" or j=="ido_jack.avi" or j=="ido_jump.avi" or

j=="ido_pjump.avi" or j=="ido_run.avi" or j=="ido_side.avi" or

40

j=="ido_skip.avi" or j=="ido_walk.avi" or j=="ido_wave1.avi" or

j=="ido_wave2.avi":

 bg[0]="bg_062.avi"

 elif j=="ira_bend.avi" or j=="ira_jack.avi" or j=="ira_jump.avi" or

j=="ira_pjump.avi" or j=="ira_run.avi" or j=="ira_side.avi" or

j=="ira_skip.avi" or j=="ira_walk.avi" or j=="ira_wave1.avi" or

j=="ira_wave2.avi":

 bg[0]="bg_062.avi"

 elif j=="shahar_bend.avi" or j=="shahar_jack.avi" or

j=="shahar_jump.avi" or j=="shahar_pjump.avi" or

j=="shahar_side.avi" or j=="shahar_skip.avi" or j=="shahar_walk.avi"

or j=="shahar_wave1.avi" or j=="shahar_wave2.avi":

 bg[0]="bg_062.avi"

 elif j=="lena_jack.avi":

 bg[0]="lena_bg_jack.avi"

 elif j=="moshe_run.avi":

 bg[0]="moshe_bg_run.avi"

 elif j=="shahar_run.avi":

 bg[0]="shahar_bg_run.avi"

 else:

 bg[0]="bg_038.avi"

 #print(i,j)

 getdata1(i,j,bg[0])

import numpy as np

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.decomposition import PCA

import pandas as pd

from sklearn.preprocessing import StandardScaler

plt.style.use('ggplot')

from sklearn.datasets import load_files

import os

from sklearn.model_selection import train_test_split

41

print(os.getcwd())

raw_data=load_files(os.getcwd()+

r'/drive/MyDrive/vdata',shuffle=True)

target=raw_data['target']

len(raw_data)

files = raw_data['filenames']

train_files, test_files, train_targets, test_targets = train_test_split(files,

target, test_size=60, random_state=196)

len(train_files)

valid_files = train_files[90:]

valid_targets = train_targets[90:]

train_files = train_files[:90]

train_targets = train_targets[:90]

print(raw_data['target_names'])

for label in zip(range(10), raw_data['target_names']):

 print(label)

for pair in zip(train_files[:5], train_targets[:5]):

 print(pair)

pip install sk-video

import numpy as np

from skvideo.io import FFmpegReader, ffprobe

from skvideo.utils import rgb2gray

from PIL import Image

from tqdm import tqdm

from keras.preprocessing import image

def _read_video(path):

42

 cap=FFmpegReader(filename=path)

 list_of_frames=[]

 fps=int(cap.inputfps)

 target_size=(128,128)

 required_fps=fps

 for index,frame in enumerate(cap.nextFrame()):

 capture_frame=True

 if required_fps !=None:

 is_valid=range(required_fps)

 capture_frame=(index % fps) in is_valid

 if capture_frame:

 temp_image=image.array_to_img(frame)

frame=image.img_to_array(temp_image.resize(target_size,Image.AN

TIALIAS)).astype('uint8')

 list_of_frames.append(frame)

 temp_video=np.stack(list_of_frames)

 cap.close()

 temp_video=rgb2gray(temp_video)

 return np.expand_dims(temp_video, axis=0)

def read_videos(paths):

 normalise_pixel=(0,1)

 list_of_videos=[_read_video(path) for path in tqdm(paths)]

 tensor=np.vstack(list_of_videos)

 if len(normalise_pixel)==2 and len(normalise_pixel)== tuple:

 base=normalise_pixel[0]

 r=normalise_pixel[1]-base

 mini=np.min(tensor,axis=(1,2,3),keepdims=True)

 maxi=np.max(tensor,axis=(1,2,3),keepdims=True)

 return ((tensor.astype('float32')-mini)/(maxi-mini))*r+base

 return tensor

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras.utils import to_categorical

43

x_train=read_videos(train_files)

y_train=to_categorical(train_targets,num_classes=10)

print("Shape of Training data: ", x_train.shape)

print("Shape of Training Targets: ", y_train.shape)

Commented out IPython magic to ensure Python compatibility.

import numpy as np

import matplotlib.pyplot as plt

import skvideo.io

%matplotlib inline

The path of a sample video in the training data

sample_files = train_files[:1]

An object of the class 'Videos'

sample = skvideo.io.vread(sample_files[0]);

print('\nShape of the sample data:', sample.shape)

Displaying a frame from the sample video

plt.imshow(sample[10])

x_valid=read_videos(valid_files)

y_valid=to_categorical(valid_targets,num_classes=10)

print("Shape of validation data:",x_valid.shape)

print("Shape of validation Labels:",y_valid.shape)

x_test = read_videos(test_files)

y_test = to_categorical(test_targets, num_classes=10)

print('Shape of testing data:', x_test.shape)

print('Shape of testing labels:', y_test.shape)

y_train.shape[1:]

from sklearn.pipeline import Pipeline

from sklearn.cluster import KMeans

44

from sklearn.linear_model import LinearRegression

from sklearn.linear_model import LogisticRegression

from sklearn import preprocessing

from keras.models import Sequential

from keras.layers import Dense

from sklearn.metrics import f1_score

from sklearn.model_selection import cross_validate

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import accuracy_score

from sklearn.metrics import recall_score

from sklearn.metrics import precision_score

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import cross_val_score

from keras.models import Sequential

from keras.layers import Conv3D, MaxPooling3D,

GlobalAveragePooling3D

from keras.layers.core import Dense, Dropout

from keras.models import Sequential

from keras.layers import Conv3D, MaxPooling3D,

GlobalAveragePooling3D

from keras.layers.core import Dense, Dropout

model = Sequential()

model.add(Conv3D(filters=16, kernel_size=(10, 3, 3), strides=(5, 2, 2),

padding='same', activation='relu',input_shape=(14,128,128,1)))

model.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model.add(Conv3D(filters=64, kernel_size=(5, 3, 3), strides=(3, 1, 1),

padding='same', activation='relu'))

model.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model.add(Conv3D(filters=256, kernel_size=(3, 3, 3), strides=(3, 1, 1),

padding='same', activation='relu'))

45

model.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model.add(GlobalAveragePooling3D())

model.add(Dense(32, activation='relu'))

model.add(Dense(16, activation='relu'))

model.add(Dense(10,activation="softmax"))

model.summary()

from keras.callbacks import ModelCheckpoint

from keras import optimizers

model.compile(loss='categorical_crossentropy', optimizer="adam",

metrics=['accuracy'])

checkpoint = ModelCheckpoint(filepath='Model.weights.best.hdf5',

save_best_only=True, verbose=1)

hist = model.fit(x_train, y_train, batch_size=10, epochs=40,

validation_data=(x_valid, y_valid),verbose=2,callbacks=[checkpoint])

print(hist)

model.load_weights('Model.weights.best.hdf5')

(loss,accuracy)=model.evaluate(x_test,y_test,batch_size=10,verbose=

0)

print("Accuracy: ",accuracy*100)

plt.figure(figsize=(12, 8))

loss = hist.history['loss'] # Loss on the training data

val_loss = hist.history['val_loss'] # Loss on the validation

data

epochs = range(1, 41)

plt.plot(epochs, loss, 'ro-', label='Training Loss')

plt.plot(epochs, val_loss, 'go-', label = 'Validation Loss')

plt.xlabel('epochs', fontsize=14)

plt.ylabel('loss', fontsize=14)

plt.legend()

46

model2 = Sequential()

model2.add(Conv3D(filters=16, kernel_size=(10, 3, 3), strides=(5, 2,

2), padding='same', activation='relu',input_shape=(29,128,128,1)))

model2.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model2.add(Conv3D(filters=64, kernel_size=(5, 3, 3), strides=(3, 1, 1),

padding='same', activation='relu'))

model2.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model2.add(Conv3D(filters=256, kernel_size=(3, 3, 3), strides=(3, 1,

1), padding='same', activation='relu'))

model2.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model2.add(GlobalAveragePooling3D())

model2.add(Dense(32, activation='relu'))

#model2.add(Dense(16, activation='relu'))

model2.add(Dropout(0.5))

model2.add(Dense(10,activation="softmax"))

model2.summary()

model2.compile(loss='categorical_crossentropy', optimizer="adam",

metrics=['accuracy'])

checkpoint2 = ModelCheckpoint(filepath='Model2.weights.best.hdf5',

save_best_only=True, verbose=1)

hist = model2.fit(x_train, y_train, batch_size=15, epochs=40,

validation_data=(x_valid,

y_valid),verbose=2,callbacks=[checkpoint2])

print(hist)

model2.load_weights('Model2.weights.best.hdf5')

(loss2,accuracy2)=model2.evaluate(x_test,y_test,batch_size=15,verbo

se=0)

print("Accuracy: ",accuracy2*100)

plt.figure(figsize=(12, 8))

47

loss2 = hist.history['loss'] # Loss on the training data

val_loss2 = hist.history['val_loss'] # Loss on the validation

data

epochs = range(1, 26)

plt.plot(epochs, loss2, 'ro-', label='Training Loss')

plt.plot(epochs, val_loss2, 'go-', label = 'Validation Loss')

plt.xlabel('epochs', fontsize=14)

plt.ylabel('loss', fontsize=14)

plt.legend()

model3 = Sequential()

model3.add(Conv3D(filters=16, kernel_size=(10, 3, 3), strides=(5, 2,

2), padding='same', activation='relu',input_shape=(29,128,128,1)))

model3.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model3.add(Conv3D(filters=64, kernel_size=(5, 3, 3), strides=(3, 1, 1),

padding='same', activation='relu'))

model3.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model3.add(Conv3D(filters=256, kernel_size=(3, 3, 3), strides=(3, 1,

1), padding='same', activation='relu'))

model3.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model3.add(GlobalAveragePooling3D())

model3.add(Dense(64, activation='relu'))

model3.add(Dense(32, activation='relu'))

#model3.add(Dense(16, activation='relu'))

model3.add(Dropout(0.5))

model3.add(Dense(10,activation="softmax"))

model3.summary()

model3.compile(loss='categorical_crossentropy', optimizer="adam",

metrics=['accuracy'])

checkpoint2 = ModelCheckpoint(filepath='Model3.weights.best.hdf5',

save_best_only=True, verbose=1)

48

hist = model3.fit(x_train, y_train, batch_size=10, epochs=25,

validation_data=(x_valid,

y_valid),verbose=2,callbacks=[checkpoint2])

print(hist)

model3.load_weights('Model3.weights.best.hdf5')

(loss2,accuracy3)=model3.evaluate(x_test,y_test,batch_size=10,verbo

se=0)

print("Accuracy: ",accuracy3*100)

from google.colab import drive

drive.mount('/content/drive')

import cv2

import os

import matplotlib.pyplot as plt

from google.colab.patches import cv2_imshow

model10 = Sequential()

model10.add(Conv3D(filters=16, kernel_size=(10, 3, 3), strides=(5, 2,

2), padding='same', activation='relu',input_shape=(14,128,128,1)))

model10.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model10.add(Conv3D(filters=32, kernel_size=(5, 3, 3), strides=(3, 2,

1), padding='same', activation='relu'))

model10.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model10.add(Conv3D(filters=64, kernel_size=(5, 3, 3), strides=(3, 1,

1), padding='same', activation='relu'))

model10.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

49

model10.add(Conv3D(filters=256, kernel_size=(3, 3, 3), strides=(3, 1,

1), padding='same', activation='relu'))

model10.add(MaxPooling3D(pool_size=2, strides=(1, 2, 2),

padding='same'))

model10.add(GlobalAveragePooling3D())

model10.add(Dense(32, activation='relu'))

#model2.add(Dense(16, activation='relu'))

model10.add(Dropout(0.5))

model10.add(Dense(10,activation="softmax"))

model10.summary()

model10.compile(loss='categorical_crossentropy', optimizer="adam",

metrics=['accuracy'])

checkpoint2 =

ModelCheckpoint(filepath='Model10.weights.best.hdf5',

save_best_only=True, verbose=1)

hist = model10.fit(x_train, y_train, batch_size=10, epochs=40,

validation_data=(x_valid,

y_valid),verbose=2,callbacks=[checkpoint2])

print(hist)

model10.load_weights('Model10.weights.best.hdf5')

(loss10,accuracy10)=model10.evaluate(x_test,y_test,batch_size=10,v

erbose=0)

print("Accuracy: ",accuracy10*100)

model10.load_weights('Model10.weights.best.hdf5')

(loss10,accuracy10)=model10.evaluate(x_test,y_test,batch_size=15,v

erbose=0)

print("Accuracy: ",accuracy10*100)

plt.figure(figsize=(12, 8))

loss2 = hist.history['loss'] # Loss on the training data

val_loss2 = hist.history['val_loss'] # Loss on the validation

data

epochs = range(1, 41)

50

plt.plot(epochs, loss2, 'ro-', label='Training Loss')

plt.plot(epochs, val_loss2, 'go-', label = 'Validation Loss')

plt.xlabel('epochs', fontsize=14)

plt.ylabel('loss', fontsize=14)

plt.legend()

