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ABSTRACT 
 

This project deals with the comparison of different hardware inference method for machine learning 

including CPU, GPU as well as FPGA implementation. We are particularly interested in 

performance difference between GPU and FPGA as both are expected to perform better in 

parallelized tasks.  

For testing different hardware acceleration methods we used 12 samples which are categorised into 

3 different categories depending upon the complexity of the real world scenario. The Machine 

Learning algorithm used for the benchmarking of different hardware is SSD or Single Shot 

Detector. It was observed in this project that as the complexity of the task increases this report 

concludes that the performance difference between FPGA accelerated hardware inference and GPU 

accelerated hardware inference increases with FPGA leading the GPU and CPU inference. This 

suggests that for more complex vision Kernels FPGA implementation outperforms GPU inference 

performance. If we look at the efficiency of the system lowest power consumption was observed in 

Kria KV260 FPGA compared to the GPU tested in this project report. Suggesting that for embedded 

applications FPGA accelerated inference is much more practical compared to GPU accelerated 

inference. This Project report also looks at the Energy Delay product (EDP) which takes into 

account the relative performance as well as efficiency matrix to arrive at a more useful 

differentiating parameter for hardware efficacy. The FPGA ends up performing best in this 

parameter.  

In this Project the FPGA ended up outperforming GPU hardware inference by about 10 times on 

average while having better Energy efficiency thus making it ideal for real world Machine Learning 

Implementation. In the end the Project Report concludes that for Hardware acceleration of Machine 

Learning Models in practical real world scenarios FPGA accelerated hardware inference is the most 

ideal solution compared to the solutions tested in this project report. 

 

 



1 
 

CHAPTER 1 
INTRODUCTION 

 
Deep learning networks can now classify images better than humans, demonstrating how effective 
this technology is, when we observe and interact with the world, however, we do considerably 
more than merely identify pictures. Within our area of vision, we also locate and categories each 
piece. These are far more difficult activities that machines are currently unable to complete as 
effectively as humans. Deep learning has surpassed more traditional computer vision algorithms in 
the literature as the preferred method for image identification problems. Convolution neural 
networks excel at picture classification in the subject of computer vision, which entails 
categorizing images given a list of classes and having the network discover the strongest class 
present in the image. For these object detection techniques there are various algorithms available 
out of which the most popoular ones are YOLO(You only look once ) and SSD-MobileNet which 
uses Single shot multibox detector technique in order to classify the images into thier respective 
category. Deep learning algorithms that are for image classifications that are the most famous one 
are AlexNet, GoogleNet, MobileNet , VGGNet. Out of these algorithms the one that we have used 
for our classification is MobileNet because Mobile Net is the lightest and the fastest one out of 
these and after the introduction of the SSD with MobileNet it has become even more faster and 
efficient .  

 

Now Coming to the implementation these algorithms can be implemented on a CPU, GPU or 
FPGA .So now what we will be doing is to compare some of the factors that will decide which of 
the following would perform better under certain circumstances and will be able to provide us 
with the faster, efficient and accurate results for our object detection.  

 

Now when talking about the implementation on FPGA the board that we have used for the object 
detections results is Xilinx Kria Kv-260 which is kv-26 SoM equipped which can provide us with 
competitive and even better performance than the others and also the main factor for using this is 
that it provides us great performance at lower power supply and higher Frames per Second when 
put under the test and further we will see the real world images where object are getting detected 
correctly and also show results of the sample video taken for object detection. 
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CHAPTER 2 

IMAGE PROCESSING 

 
Image - processing entails altering an image using a variety of ways till we achieve our aim. 

The final output might be a picture or a related feature of that image. This information can be 

utilised for further investigation and decision-making. 

2.1 What is an image ? 

A 2D function F(x,y) can be used to represent a picture, where x and y are spatial coordinates. The 

intensity of a picture at a specific value of x,y equals the amplitude of F at that position. A digital 

picture is one in which the x,y, and amplitude values are all finite. It's a collection of pixels 

organised into columns and rows. Pixels are picture components that store information about 

colour and intensity. A picture can also be represented in 3D, using the spatial coordinates x, y, 

and z. Pixels are grouped in a matrix format. An RGB picture is what this is called. 

 
Fig 2.1: Image representation 

 

2.1.1 Types of images: 

1) RGB picture: The Red, Green, and Blue channels are three levels of a two-dimensional image. 

2) Grayscale graphics have only one channel and are made up of shades of black and white. 

 

2.2 Image Identification 
Now image identification can be further be divided into 3 categories which are image classification 

, object detection and image segmentation. 
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2.2.1  Image Classification 

it is based upon the salient features in which the image is classified into which category it belongs 

to , in this the entire image is classified as one object and further on comparison gives the result as 

the classified image . 

                                                     

 

Fig 2.2.1a:  Image Classification. Dog in a picture 
 

In this we can see that an entire image is being classified as dog and there is no box which is 

basically highlighting our object because here our entire image is the object .  

Now the deep learning algorithm that is being used here for image classification is the MobileNet 

and the dataset that we have used for image classification is ImageNet which are 1000 classes. So 

what is being done is that an entire image is taken and based upon the most salient features the 

image is compared and based upon the most features matched in our ImageNet dataset the result 

is declared just like we saw here in the image that the entire image is being classified as the Dog. 

 

So here we come across a problem that is what if there is a image something like ( Shown below ) 

 

Fig 2.2.1b:  Image Classification problem. Dog and cat in a picture 
 

Here in this image we can see that there are two animals one is a cat and the other one is a dog. 

So if we use image classification it won’t give us a appropriate output because dog and cat both 

are the salient feature of this image that’s where object detection comes into play. 
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2.2.2 Object detection 

So object detection is also based upon the salient features, in object detection it specifies the 

location of multiple objects in the image. 

Object detection is the combination of: 

 Classification 

 Localization 

Here in object detection we will be using single shot multi box detector. So what single shot 

multibox detector does is that it divides the image that is to be used for object detection into small 

patches and then based upon the combination of these patches based upon the most salient 

features it joins those patches and then ask the classifier to classify the image and based upon the 

comparison with the dataset the objects are detected .Taking an example of a mage below. 

 

Fig 2.2.2:  Object Detection. Dog in a picture 
 

Now here in this image we can see that in our image the dog is being identified as an object and has 

been marked with a rectangular box around it . As we know that object detection is combination of 

two classification and localization, So the algorithm that we have used here is the combination of 

both which we have taken the MobileNet algorithm from the classification and for localization we 

will be using SSD basically for the object detection we will be using SSD-MobileNetv3 which is 

the latest version . There are other algorithms as well like YOLO ( You Only Look Once ) which is 

also a very famous algorithm for object detection but the Most light weight and faster algorithm is 

SSD-MobileNet . 

 

So in this image what’s happening is that the image is being divided into small patches and then 

combining these patches and based upon the most salient features our object s getting detected .the 

dataset that we have used here is the Coco which has 80 classes. 
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2.2.3 Image Segmentation 

 Image Segmentation is also based upon the salient features, Here foreground and background is 

segmented . In image segmentation rather than to classify the object here each pixel is classified to 

be part of some object . 

 

 

 

 

 

 

Fig 2.2.3a:  Image Segmentation Sample 
 

So this is a normal image in which we can see a street where there are people, cars , trees so after 

image segmentation we will get a result (shown below) 

 

 

 

 

 

 

Fig 2.2.3b:  Image Segmentation result 
 

In this image we can see that each pixel is being considered as an object as we can see that people 

are being shown with red, cars with blue, trees with green so each pixel is getting classified.  

The dataset for image segmentation is CitySpace. 
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2.3 Image Processing Algorithms 

2.3.1 MobileNet 

MobileNet is a Convolutional neural network built for mobile and embedded vision. They are based 

on a simplified architecture that builds lightweight deep neural networks with low latency for 

mobile and embedded devices using depth wise separable convolutions. 

 

The use of automated search algorithms and network design can be used to improve the overall state 

of the art of classification. We may release two new MobileNet models as a result of this process: 

MobileNetV3-Large and MobileNetV3-Small are two versions of MobileNetV3 that are designed 

for large and low resource use cases, respectively. After that, these models are tweaked and applied 

to tasks like object detection and semantic segmentation. 

 

MobileNetV3 Large and Small models are being developed to power on-device computer vision 

with the next generation of high-accuracy, effective neural network models. The new networks 

increase the state of the art by demonstrating how to develop effective models by combining 

automated search with innovative design advances. 

 

2.3.2 SSD (Single Shot MultiBox Detector ) 

Deep learning networks can now classify images better than humans, demonstrating how powerful 

this technology is. When we observe and interact with the world, however, we do far more than just 

classify images. Within our field of view, we also localise and classify each piece. These are far 

more difficult activities that machines are currently unable to complete as effectively as humans.  

 

Multibox - The bounding box regression technique of SSD is inspired by Szegedy’s work on 

MultiBox, a method for fast class-agnostic bounding box coordinate proposals. Interestingly, in the 

work done on MultiBox an Inception-style Convolutional network is used. The 1x1 convolutions 

that you see below help in dimensionality reduction since the number of dimensions will go down 

(but “width” and “height” will remain the same). 
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The loss function in MultiBox also included two important components that made their way onto 

SSD: 

1) Confidence Loss: this metric indicates how confident the network is in the calculated bounding 

box's objectless. This loss is calculated using categorical cross-entropy. 

2) Location Loss: this metric indicates how far the network's predicted bounding boxes differ from 

the training set's ground truth bounding boxes. Here, L2-Norm is employed. 

SSD is a deep neural network-based approach for recognising objects in pictures. Per feature map 

location. The main working of SSD is that it firstly converts the output into discrete chunks which 

are represented in terms of building bounding boxes. It includes various aspect ratio and different 

scales. 

Firstly for each and every default box a probable score is calculated. This score is then adjusted to 

fit the object shape with a box. In addition to that to be better compatible with different sizes the 

network looks at different resolutions of feature maps and then outputs probable values. SSD ids the 

a very simple algorithm that worked on proposed objects. The way it achieves this is that it first 

eliminates proposed object development and the next step which is subsequent pixel resampling or 

even feature resampling is eliminated while encapsulating all in a single straightforward network. 

As a result SSD is much simpler and required less computational power integration very well with 

other systems. 

For Training the SSD only an input image is required along with an additional truth box for each 

subject. After then a variety of different aspect ratio is passed as test cases to examine rare cases of 

original boxes using Convolutional theorems. After this step these original boxes are then compared 

against round truth to give us the probability of shape of the object as well as its class along with the 

confidence probability for each class. For example, the two original boxes which includes a cat and 

a one with a dog are being output as positive implying truth while the other s are output as false im-

plying negatives or false. 

 

Multi-scale feature maps for detection - Detection using multi-scale feature maps At the end of 

the truncated base network, we add Convolutional feature layers. These layers shrink in size over 
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time, allowing detections to be predicted at several scales. Each feature layer has a different 

Convolutional model for predicting detections. 

 

Convolutional predictors for detection - Using a collection of Convolutional filters, each new 

feature layer may generate a defined set of detection predictions. On top of the SSD network design, 

they are indicated. For predicting the Basic detection we use a scenario of a tiny 3 by 3 Kernel 

which outputs a relative score for the predicted probability of the shape offset as well as category 

compared to original box case. The layer used for this task is of size m by n having p number of 

channels. The kernel than produces a value at every m by n region in the area it is being used. The 

output value of the bounding box offset are compared to a standard 

 

Default boxes and aspect ratios – For considering the feature of the map cell by default a 

bounding box is put at the front of the Neural Network. Using convolution each feature of the map 

is attached to the tile while keeping the corresponding relationship the same as before. The 

probability of each offset in proportion to the original box shape is calculated with the per class 

score that puts this probability of class presence in the bounding box. Thus for class c offset values 

are calculated in proportional to the original box shape out of k for every box shape as well as for 

each and every position. 

  

2.4 Some other image processing algorithms 

2.4.1 Morphological image processing 

Because noise may damage binary regions formed by simple thresholding, morphological image 

processing aims to eradicate faults from binary images. It also helps with image smoothing by 

employing opening and closing procedures. 

To broaden morphological processes, grayscale images can be employed. It's made up of non-

linear techniques that deal with an image's feature structure. It is governed by the numerical values 

of pixels rather than the order in which they are placed. This approach analyses a picture by com-

paring the suitable neighborhood pixels to a small template called as a structuring element, which 

can be placed in a variety of locations in the image. A small 0 and 1 value matrix serves as a struc-

tural element. 

The two basic morphological image processing processes are dilation and erosion:  

1) The dilation process in a photograph adds pixels to the limits of the item.  
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2) During the erosion process, pixels from the object's edges are eliminated. 

The amount of pixels to be removed is directly proportional to the size original picture of the 

structuring element. A structuring element is a 0/1 matrix that can be any form or size. It is placed 

in all possible locations throughout the image and compared to the pixels in the immediate vicini-

ty. The square structural element 'A' fits within the item we want to choose, 'B' intersects it, and 'C' 

is on the outside. 

 
Fig 2.4.1a: Morphological Image Processing 

 

The square structuring element ‘A’ fits in the object we want to select, the ‘B’ intersects the object 

and ‘C’ is out of the object. 

 

2.4.2 Gaussian Image Processing 

Gaussian blur, also known as Gaussian smoothing, is the result of blurring a photograph with a 

Gaussian function. It's a method for obfuscating details and minimizing visual noise. 

It's a method for obfuscating details and minimizing visual noise. Looking at a picture via a trans-

parent screen provides the same visual effect as blurring it. It's sometimes used in computer vision 

as a deep learning data augmentation strategy or for image improvement at various scales.  

To take use of the Gaussian blur's separable property, divide the operation into two stages. The First 

pass of this algorithm works to basically blur the 1 dimensional image kernel in both the vertical as 

well as the horizontal axes. For the 2nd pass the same one Dimensional Kernel Blur outs the remain-

ing Axes. 
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Fig 2.4.2: Gaussian Image Processing 
 

Some of the edges are a little less detailed than others. The pixels closest to the centre are given 
more weight by the filter than those further away. Low-pass filters, such as Gaussian filters, atten-
uate high frequencies. It's a frequent technique for edge detecting. 
 

2.4.3 Fourier Transform in image processing 

The Fourier Transform is primarily utilized to divide the image into its sine component and cosine 

component. . It may be used for picture reconstruction, compression, and filtering, among other 

things. We'll consider the discrete Fourier transform because we're talking about pictures. Consid-

er a sinusoid, which is made up of three components: 

1) Magnitude – related to contrast  

2) Spatial frequency – related to brightness 

3) Phase – related to color information 

 

2.5 Image processing using Neural Networks 

Neural Networks are multi level structure that is made up of data points which are called nodes or 

the neurons of the neural structure. These neurons are what do the basic processing in the NN. 

They perform somewhat similarly to human brain that’s why the analogy. The main methodology 

tis that the input data which is fed to the NN is processed upon and the Pattern in it is detected 

though weights and biases and the result is given in terms of activations in the output layer 

A basic neural network has three layers: 

i. Input layer(at front of NN) 

ii. Hidden layer(at middle of NN) 
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iii. Output layer(at the end of NN) 

 

 
Fig 2.5: Neural Networks 

 

We input the data in the input layers of the CNN. The output layer gives us with the probability of 

the result and the middle layer does the calculations of the weights and biases of the Neural Net-

work. A neural network should have at least one hidden layer. 

 

The neural network's basic operation is as follows: 

1) Consider the following example: each pixel is provided as input to each neuron in the first lay-

er, and neurons in one layer are connected to neurons in the next layer through channels.  

2) Weight is a numerical number applied to each of these channels. 

3) The inputs are multiplied by the weights, and the resulting weighted sum is supplied to the hid-

den layers. 

4) The output from the hidden layers is routed through an activation function, which determines 

whether or not a certain neuron is active. 

5) Data is sent to the next buried levels by the stimulated neurons. Data is transmitted through the 

network in this manner, which is known as Forward Propagation.  

6) The neuron with the greatest value predicts the output in the output layer. The probability val-

ues are the outputs. 

7) To determine the error, the anticipated output is compared to the actual output. Backpropaga-

tion refers to the process of transferring information back over a network. 
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8) Weights are modified based on this information. This forward and backward propagation cycle 

is repeated on several inputs until the network accurately predicts the output in the majority of sit-

uations. 

9) The neural network's training procedure is now complete. In some circumstances, the time re-

quired to train the neural network may be excessive. 

 

2.5.1 Generative Adversarial Networks 

GAN is basically made out of two the models out of which one is the Generator and the other one is 

the Discriminator. As the term Discriminator Suggests that it will discriminate the false or incor-

rectly identified image whereas here the generator prepares to obtain real look alike images now 

coming back to the discriminator it will discriminate whether the image is correct or incorrect  

 

this generally happens due to the lack of availability to view the original image due to this it might 

not be able to provide us with the correct result in the starting that why generator turns out to be 

slow in the start but unlike generator discriminator here can view the original pictures even though 

this sounds pretty clear but the correct and incorrect images are mixed together so it is difficult for 

the discriminator to discriminate or evaluate the pictures. 

 

As we are working on the generator we need various types of different outputs that why feed it with 

some external noise or disturbance so that it will be able to create different type of instances and not 

end up with the same thing here the discriminators comes into play as the discriminator helps it to 

improve the outcomes. After specific amount of time Due to external noise there will be more com-

plicated outcomes which will end up making the job of discriminator hard even the end-user will be 

satisfied with the outcome as discriminator gets to know about the pattern that a generator will be 

following as the amount of data increases the outcome improves. 

That’s why these are fantastic for creating and manipulating images. Face Aging, Photo Blending, 

Super Resolution, Photo Inpainting, and Clothing Translation are some of the uses of GANs. 

 

2.5.2 Convolutional Neural Network 

1. ConvNets, or Convolutional neural networks, are made up of three layers: 

2. Convolutional Layer (CONV): This is the primary component of CNN, and it is in charge of 

executing convolution operations. 
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3. The Kernel/Filter is the component in this layer that performs the convolution process (ma-

trix). The Kernel will give out horizontal and vertical modifications which are directly 

linked to stride rate. 

4. Pooling Layer (POOL): is in charge of dimensionality reduction. The aim here is to decrease 

the computing requirement for this data processing. If we look at the types there are two 

types of pooling present ; the First type is Maximum pooling and the second type is mini-

mum pooling. The highest valued area filled by the image Kernel is given by max pooling. 

Whereas the average of area of image filled by the kernel gives average pooling. 

5. Completely Connected Layer (FC): The fully linked layer (FC) works alongside the serial-

ized input suggesting that each input node is connected to each and every one of neuron. 

These layers are present in the end of this CNN structure. 

6. CNN is mostly used to extract features from images using its layers. For classifying images 

using this CNN approach we determine each layer between 0 &1. 0 giving minimum proba-

bility and 1 giving maximum probability for activation 

 
Fig 2.6: Convolutional Neural Network 
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CHAPTER 3 

HARDWARE 
 

3.1 What is FPGA ? 
 

FPGA or Field Programmable gate array is an advance version of PLD devices, In FPGA it comes 

with logic blocks that has gate arrays, so these gate arrays are divided into small units of gate 

arrays which are called CLB or Configurable Logic Blocks. There can be 100 gates in a unit or 

CLB but there will be several of these units with 100 gates each, so in total there will be 10000 or 

100000 or can be even more amount of gates these 100000 gates will be grouped into smaller 

groups which will contain 50 or 100 gates these groups or units are CLB’s. So the each CLB will 

have specific function to perform. Now all the CLB’s are gate equivalent that does not mean that 

all the components inside that CLB will be a gate a typically CLB will consist of a MUX, Flip 

Flops, register and few gates so that a small a design can be made out of all these .Each CLB will 

have some standard feature but different configurability of MUX, gates, Flip Flops. So, our main 

job is to break the circuit or design that is to be implemented into mall groups and configure those 

groups into the CLB’s and then does the interconnection efficiently. 

 

Fig 3.1:  FPGA Basic Logic Element 

 
 
 



15 
 

3.2 Xilinx kria kv-260 
3.2.1  Overview 
The Xilinx KriaTM KV260 Vision AI Starter Kit is a ready-to-use platform for developing vision 
applications without the need for extensive hardware design skills. A non-production version of the 
production K26 SOM is installed in the KV260. This SOM, along with a fan heat sink, is attached 
to a vision-optimized evaluation carrier card, which has multi-camera capability via ON 
Semiconductor Imager Access System (IAS) and Raspberry Pi interfaces. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.2.1a: Kria KV260 Board Diagram 
 

 
Fig 3.2.1b: Actual Kria KV260 board Connected to PC 
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Features 

 Multi-Camera Support: Up to 8 interfaces 

 Raspberry Pi MIPI sensor interface 

 USB camera support  
 HDMI, DisplayPort Outputs 

 
Flexible Connectivity 

 1Gb Ethernet  
 USB 3.0 / 2.0 

 
3.2.2 Specification 

 
 

Fig 3.2.2: Kria KV260 Hardware Specification 
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3.3 kria kv-26 SoM 

The Kria K26 SOM is a vision AI and video analytics SOM designed to meet current and future 

industry demands. The Kria SOM combines an adaptable SOC based on the Zynq UltraScale+TM 

MPSoC architecture with all of the core components required to support the SoOC in a package 

small enough to fit in the palm of your hand (such as memory and power). 

 

It's easy to customise production deployments. The Kria SOM is paired with a simple end-user-

designed carrier card that includes connectivity and other components unique to that user's end 

system. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.3: Kria KV260 SOM (system on module) 

 
Unlike GPUs, where the data flow is fixed, Xilinx hardware offers flexibility to uniquely 

reconfigure the data path to achieve maximum throughput and lower latencies. Also, the 

programmable data path reduces the need for batching, which is a major drawback in GPUs and 

becomes a trade-off between lower latencies or higher throughput. The Kria SOM’s flexible 

architecture has shown great potential in sparse networks, which is one of the hot trends in current 

ML applications. Another important feature—and one that makes Kria SOMs even more flexible 

is the any-to-any I/O connection. This enables the K26 SOM to connect to any device, network, or 

storage device without the need for a host CPU.  

 

Intelligent applications require privacy, low power, security, and cheap cost in addition to sub-

millisecond latency. The Kria K26 SOM, which is based on the Zynq MPSoC architecture, offers 
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best-in-class performance/watt and lower total cost of ownership, making it an attractive contender 

for edge devices. Because Kria SOMs are hardware adjustable, the K26's solutions are scalable 

and future-proof. 

 
3.4 kria kv -260 overall block diagram 

 

 
Fig 3.4: Kria KV260 overall blockdiagram 

 

 

The performance was then compared on the K26 SOM with two DPU configurations, namely 

B3136 and 4096 DPU, on a couple of the industry's leading models such as Tiny Yolo V3, SSD 

Mobilenet V1, ResNet50, and so on. The results were compared to benchmarking data available on 

Nvidia's website. The K26 SOM outperformed both the Jetson Nano and Jetson TX2 devices, ac-

cording to the findings. Not only did the Kria SOM outperform the Jetson Nano in terms of 

throughput by more than 4X, but it also outperformed the Jetson TX2 in terms of performance/watt 

by more than 2X. 
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3.5 Vehicle Detection 

We will create a module that will be responsible for detecting the number of cars in the image that 

has been provided as input. It will offer the number of vehicles in each vehicle class, such as car, 

bike, bus, truck, and rickshaw, as an output.  

3.5.1 YOLO and CNN 

YOLO is popular because it has a high level of accuracy and can run in real-time. To create 

predictions, the method "only looks once" at the picture in the sense that it only takes one forward 

propagation pass through the neural network. It then returns detected objects together with 

bounding boxes after non-max suppression (which ensures that the object detection algorithm only 

identifies each object once). A single CNN is going to guess where several bounding boxes are 

and determine it with a number with YOLO. We'll use Google Colab for vehicle detection.  

 

3.5.2 Python Packages 

A package is the collection of modules, where a module refers to design and implementation of 

specific functionality to be implemented in a program. 

3.5.3 OpenCV 

It stands for Open Source Computer Vision Library. This collection contains over 2000 well 

optimized algorithms for computer vision and machine learning. Opencv may be used in image 

processing in a variety of ways, some of which are given below: 

1) Converting photos from one colour space to another, such as BGR to HSV, BGR to 

grey, and so on.  

2) Performing image thresholding, such as basic thresholding, adaptive thresholding, 

and so on.  

3) Applying custom filters to photos and blurring images are examples of image 

smoothing.  

4) Using photographs to perform morphological processes  

5) Then Image pyramids are constructed.  

6) Using the GrabCut method to extract foreground from photos.  

7) Watershed algorithm is used to segment images. 
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CHAPTER 4 
IMPLEMENTATION  

 
4.1 Output Methodology 
A total of 12 samples of different scenarios were tested involving varying complexity with CPU 
inference against GPU accelerated inference as well as FPGA accelerated inference. The results 
are plotted in a table and Graph are drawn to better analyze the results. 
  
4.1.1 Hardware testing methodology 

 Tested SSD against CPU vs GPU vs FPGA hardware inference for 12 video samples. 
 Calculate relative Performance from fps average of CPU vs GPU vs FPGA 
 Relative performance plotted in Graph 

 
4.1.2 Global chip shortage 
The Semiconductor shortage and high demand caused GPU prices to increase several fold to the 
point that even several years old GPU end up being more expensive now than the time they were 
launched (several years ago). Also Global Tread of cyptocurrency mining is launching of several 
thousand crypto startups is future deteriorating the solution as cryptocurrency mining is primarily 
done in GPU and the algorithms being run on them are very heavy on power draw causing not on 
high power consumption put future stressing the electricity grid which is also a big challenge for 
climate change. There is also a question on cryptocurrency need because in the end we us mostly 
use fossil fuels for electricity generation and basically cryptocurrency mining is just the guess 
(requires computational power) of random computer generated blocks in a competitive block 
chain. The main goal of cryptocurrency was decentralization of money from banks and 
government thought the same can be achieved by other methods such as proof of stake method 
rather than proof of work method. The Algorithm of such crypto currencies is such that of each 
block to be mined it has to be guessed by the system. The average guess time it takes to currently 
predict a Crypto key of the current block in the block chain is inversely proportional to 
computational power. And since all the nodes or Computers are also predicting the Cryptographic 
key for the same block, the more computational power you have the more is the probability to 
correctly mine the block in the block chain. So people/organizations involved in cryptographic 
mining end us having Several High end GPUs in SLI all mining the same block in the block chain. 
Since there is a Crypto boom many of these organizations end us being very large financially and 
end up creating large Crypto farms with several thousand high ends GPU to increase their chances 
of mining the block much faster than other nodes. These farms take us energy equivalent to Entire 
towns and smaller cities raising the question on environmental effects of crptocurrency mining. 
Also most famous crypto currencies such as bitcoin and ethereum currently run on proof of work 
system it is slates to change for ethereum soon. As ethereum plans to implement proof of stake 
instead of proof of work by the end of 2022 hopefully will relive the already stressed GPU market. 
As a result we used google colab for GPU Hardware acceleration for Machine Learning 
algorithms for free. 
 
4.1.3 Google Colab  
For Output Implementation of Hardware acceleration of Machine Learning of FPGA we tested the 
Kria KV 260 against traditional CPU rendering and GPU accelerated Inference. For This Purpose 
12 samples were taken and Tested across each hardware for frames per second (fps) performance. 
The Samples have been carefully selected to represent the real world scenario which is described 
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in more detail in section 4.6. 
The three hardware solutions were performed on following hardware: 

1. For CPU Inference the system was tested on Intel core i3 3240 a dual core quad thread 
processor with max TDP of 55 Watts clocking at 3.3 GHz which was the fastest CPU 
available to us. 

2. For GPU Inference due to lack of GPU with us and a global chip shortage causing inflated 
GPU prices as a result of Covid pandemic we looked at cloud solutions for GPU inference.  

3. As a result for GPU testing and the lack of a CUDA capable GPU (For running GPU 
acceleration on Nvidia GPUs) we used cloud solution Goggle Colab. 

4. For FPGA we are using the Xilinx Kria KV 260 SOM board which we won under Xilinx 
Adaptive computing challenge 2021. 

 
4.2 Model Training and Description 
For Model Training we are using a Pre-trained Model since the Project only deals with inference 
performance. The model Used is SSD with Pre calculated Weights and Biases in inference graphs 
that are imported into the Jupyter notebook.  
 
4.3 Type 1 – CPU Inference 
For CPU analysis the SSD code is being implemented in the Jupyter notebook. The code is being 
run on Intel i3 – 3240 Processor for Inference 
 
4.3.1 Type 1 – CPU Inference Rendering  
Usage of available CPU machine  
Implementation in Jupiter notebook 
 
Requirements 

 Open CV version 4.9.2 ; doesn’t run in 4.5.5 (need to upgrade) 
 Python 3.6 ;doesn’t run in latest python version due to compatibility issue in open cv 
 For additional system GPU acceleration need Nvidia CUDA though need a CUDA capable 

Nvidia GPU (not available to us)   
 
4.3.2 Jupyter Notebook Implementation 
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Fig 4.3.2: SSD code being implemented in CPU using Jupyter notebook 

 
4.3.3 Power Draw – HW monitor + CPU-Z  
Power Draw can be analyzed using HW Monitor software which is an open source utility that 
provides very accurate Temperature monitoring of CPU for performance analysis and clock speed 
evaluation we are using Windows Task Manager and CPU z software. 
 

 
Fig 4.3.3a: Performance cap of CPU during Jupyter python 3 execution using CPU-z and Windows Task 

Manager 
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Fig 4.3.3b: Power Draw of CPU during Jupyter python 3 execution using HW bot Monitor 

 
4.4 Type 2 – GPU Inference 
For Testing the Inference of GPU we are using Google Colab GPU runtime 
 
4.4.1 Type 2 GPU Inference Rendering 
Implementation in Google Colab itself. 
Usage of Google Colab GPU runtime acceleration machine from: 
Runtime> change runtime type > hardware acceleration > GPU 
 
Requirements 

 Open CV version 4.9.2 ; doesn’t run in 4.5.5 (need to upgrade) 
 Avi input only  
 Runtime gets recycled after some in free version so need to reupload files again  
 Gets disconnected from server after some time if not in active use 
 Limit in disk space available and ram assigned 
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Fig 4.4.1a: Running GPU hardware acceleration in Google Colab  

 
 

 
Fig 4.4.1b: GPU Inference being run on Google Colab  
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Fig 4.4.1c: Nvidia smi function to analyzed power draw on Nvidia GPU 

 
 
4.5 Type 3 – FPGA (Kria KV 260) Inference 
For Testing the Inference of  FPGA we are using Kria KV60 board we use Xilinx Kria KV260 
FPGA Board. 
 
4.5.1 Type 3 FPGA Inference Rendering 
Usage of Xilinx Kria KV 260 FPGA board  
Implementation in Ubuntu/Petalinux  
Requirements: 

 FPGA board  
 Included getting started kit 

 
4.5.2 Petalinux 
The PetaLinux Tools package includes everything you'll need to modify, create, and deploy 
Embedded Linux solutions on Xilinx processors. The solution, which interacts with the Xilinx 
hardware design tools to simplify the creation of Linux systems for Xilinx FPGA Hardware, is 
tailored to increase design productivity.  
Developers can use these tools to make changes to the boot loader, Linux kernel, or Linux 
applications. They may use the bundled complete system simulator (QEMU) or actual hardware 
via network or JTAG to add new kernels, device drivers, programmes, libraries, and boot and test 
software stacks. 
 

1. Custom BSP Generation Tools - PetaLinux tools allow developers to align the software 
platform with the hardware design when new features and devices are added. The 
PetaLinux tools will create a bespoke Linux Board Support Package for you, complete 
with device drivers for Xilinx embedded processor IP cores, kernel, and boot loader 
settings. Software engineers may concentrate on their value-added applications rather than 
low-level development duties with this capability. 
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2. Linux Configuration Tools - Tools for customizing the boot loader, Linux kernel, file 

system, libraries, and system settings are included in PetaLinux. These setup tools are 
completely aware of Xilinx hardware development tools and custom-hardware-specific 
data files, allowing device drivers for Xilinx embedded IP cores, for example, to be 
automatically produced and deployed based on the device's engineer-specified address. 

 
3. Software Development Tools -PetaLinux utilities include development templates that let 

software developers to construct custom device drivers, applications, libraries, and BSP 
settings. The PetaLinux tools enable developers to package and share all software 
components for easy installation and usage among PetaLinux developers after the product's 
software baseline (BSP, device drivers, core apps, etc.) has been built. 

 
Xilinx official guide was followed for Petalinux creation using Xilinx BSP following the user 
guide mentioned in reference. 

 
Fig 4.5.2a: Petalinux Board Support Package (BSP) for creating the Petalinux project  

 

 
Fig 4.5.2b: final .wic Petalinux project file created 

 
4.5.3 Balena Etcher 
BalenaEtcher is a free and open-source application for creating live SD cards and USB flash 
drives by writing image files such as.iso and.img files, as well as zipped folders, to storage media. 
Balena created it, and it's licensed under the Apache License 2.0. 
The petalinux project file created in section 4.5.2 is burned in the SD card using Balena Etcher 
Tool. The SD card can then be inserted into the Kria SOM board for running the Petalinux project 
 
4.5.4 Tera Term 
Tera Term is a free open source terminal emulator program for windows which is capable of 
emulating different types of terminals. It supports SS1 and SSH2 serial port connections and is 
often used to automate tasks related to remote connections from PC to other hardware. In our case 
since the FPGA board relies on serial communication with the SOM the Tera Term provides that 
serial port connectivity to communicate directly with this FPGA Fabric. 
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Fig 4.5.4a: COM port setting for Kria KV 260. Note that board has to be found among all the available 

serial COM ports. 
 

 
Fig 4.5.4b: After booting into the Kria SOM setting SOM password for the default Petalinux user 

 
 

 
Fig 4.5.4c: COM port setting for Kria KV 260. Note that board will fail to correctly boot without these 

settings as the default baud rate is too low for serial communication with Kria SOM 
 
The Default setting of COM port provide gibberish output so they need to be changed to following 
settings for effective serial communication between the board and the Kria SOM 

 Correct COM port for Krai (need to find that out) 
 Speed/baud rate - 115200 
 Data - 8 bit 
 Parity - none 
 Stop bit - 1 bit 
 Flow control - none 

 
4.5.5 Xmutil Packagegroup 
 Xmutil package group - xmutil is in charge of loading all of the accelerated apps. 
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The tool may be used to check the platform's status, manage accelerated apps, and perform a 
variety of other tasks. 
 

 
Fig 4.5.5a: Different packagegroups compatible with kria SOM 

 

 
Fig 4.5.5b: Accelerator being loaded in the Kria SOM using Tera Term 

 
 
 

 
Fig 4.5.5c: Accelerator output after being loaded with face Recognition algorithm 
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4.5.6 Pixabay 
All the video files were taken from Pixabay which is a commercial license free video hosting 
platform and thus the video samples can be used free of charge for any purpose including 
commercial purposes. 12 Samples were taken from of 1920p by 1080p were taken from Pixabay 
for testing of various hardware in this project.   
 
4.5.7 Ubuntu LTS 
A Ubuntu is a Debian-based Linux distribution that uses largely free and open-source software. 
For Internet of Things devices and robots, Ubuntu is available in three editions: Desktop, Server, 
and Core. All versions can be installed on a single computer or in a virtual machine. Because 
Debian was (and still is) open source, Shuttleworth used it as the foundation for his operating 
system, which he dubbed Ubuntu. 
Ubuntu translates to "humanity toward others" and "I am who I am because of who we all are." 
We have already installed Ubuntu 20.02 LTS in our VM machine which is used in this project. 
 
4.5.8 ffmpeg 
FFmpeg is a free and open-source software project that consists of a collection of libraries and 
tools for dealing with video, audio, and other types of multimedia files and streams. 
The command-line ffmpeg utility, which is used to process video and audio files, lies at the heart 
of this project as we use it to convert mp4 file into .h264 files which are supported by KriaKv 260 
FPGA 

 
Fig 4.5.8a: ffmpeg command for converting .mp4 file to .h264 file 

 
 

 
Fig 4.5.8b: mp4 frames being converted to .h264 frames using ffmpeg 

 
4.5.9 .H264/.H265 video encoding 
Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video 
compression standard based on block-oriented, motion-compensated coding. .h264 is much more 
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powerful algorithm for encoding compared to MPEG-4 aka mp4 Encoding in h.264 is 1.5 to 2 
times more efficient than mp4. Since the h264 has much higher data bitrate compared to the same 
file size mp4 encoded video file, h264 is more computationally expensive. Such encoding methods 
are much more used in cameras and surveillance cameras much more suited for embedded 
applications. Since  
Kria only takes .h264/.h265 input thus in this project .h264 files were used for test Kria Inference 
Performance. 
 
 
4.5.10 WinSCP 
AWinSCP is a free and open-source client for Microsoft Windows that supports SSH File Transfer 
Protocol, File Transfer Protocol, WebDAV, Amazon S3, and secure copy protocol. Its primary 
purpose is to transmit files securely between a local computer and a distant server. 
We use WinSCP to transfer files between Kria board and Windows particularly input and output 
test files. Follow the following steps in WinSCP for Kria files transfer:  
1) Find IP of your Kria board using: ifconfig command in Tera Term 
2) This IP is used to connect to the Kria KV 260 for easy file transfer & the password is the 
password of the Kria board that was set during initialization. 
3) Root file is the output file from the board 
 

 
Fig 4.5.10: WinSCP transferring files between Petalinux (Kria SOM) and windows system 

 
4.5.11 Docker 
Docker is a free and open platform for building, delivering, and operating apps. Docker allows to 
decouple apps from infrastructure, allowing to swiftly release software. Since it is a prerequisite 
for installation of Vitis AI we first need to install docker into our Ubuntu system by using the 
official guide provide by docker given in reference. Use following command for docker 
installation: 
 
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin 
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Fig 4.5.11a: Installing docker in Ubuntu system 

 

 
Fig 4.5.11b: Verifying the docker installation 

 
4.5.12 Viti AI 
The Vitis AI development environment is a customized platform for AI inference acceleration. 
The Vitis AI development environment includes APIs to prune, quantize, optimize, and compile 
pre-trained networks for AI inference, as well as deep learning frameworks like Tensor flow and 
Caffe. Official Xilinx github repository can be checked in more detail mentioned in Reference 
number . This official Xilinx guide was followed by us to install Vitis AI in Ubuntu LTS 20.04 in 
VM Machine. Following the official guide the downloaded dpu image image would be named 
xilinx-kv260-dpu-v2021.2-v2.0.0.img and would be around 2.5 GB. 
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Fig 4.5.12a: Cloning Vitis AI from Xilinx official github Vitis AI link 

 

 
Fig 4.5.12b: Installing of Vitis AI image and running demo samples by Xilinx  

 

 
Fig 4.5.12c: Vitis AI Runtime directory structure from Xilinx official github page 

 
4.5.13 Jupyter Installation 
For running Jupyter file installation we need to run it on chrome based web browser. 
Following command gives us the list of already running jupyter servers : 



33 
 

Jupyter-server list  
 
Now for authentication of Jupyter server in Tera Term we first need to find the IP address to the 
board for this purpose type the following command in Tera Term : 
 
ifconfig 
 
The ip address will be in the format 192.xxx.x.xx. Here our IP address is 192.168.1.40. This IP 
address is written in Tera Term using the following command: 
 
python3 /usr/bin/jupyter-lab –nobrowser –notebook- dir=/home/petalinux/notebook –

ip=192.xxx.x.xx & 
 
This will authenticate the Kria SOM with the Jupyter notebook and similarly Jupyter code can be 
implemented. 

 
Fig 4.5.13a: Authenticating the Kria SOM to Jupyter notebook in Tera Term 

 
Now, the link can be copied to any chrome based web browser to implement Jupyter notebook for 
python code. 
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Fig 4.5.13b: Jupyter notebook being implemented in Google chrome 

 
4.5.14 Platform Stats 
For Platform statistics Xilinx Xmutil tools can be utilized by using the following command in 
Tera Term under a root user : 
`# xmutil platformstats –p 
-p gives platform statistics on power draw  
-p can be replaced by –a to get all the statistics of the Kria SOM 
 
This platform can be used to check the system power draw, VCC core voltages, package 
temperature as well as other useful parameters. These system statistics for power draw from these 
tools was used in this project later on. 
  

 
Fig 4.5.14: Xilinx xmutil tool being implemented for system power draw and other statistics in Tera Term 
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4.6 Sample Selection and categories 
A big problem holding Machine Learning algorithms from being implemented in real world 
scenarios is the lack of accuracy in real world scenarios in some particularly challenging cases. 
Even in the most cutting edge research happening in the field of Machine Learning particularly in 
ADAS (Advance Driver Assistance System) cars or FSD (Full Self Driving) cars required a 
human to be constantly in driving seat due to the lack of accuracy on such machine learning 
algorithms in untrained test cases or in other world unseen scenarios as was evident in several 
crashes of Tesla’s self driving cars and Uber autonomous car, which actually caused human lives. 
Although a Machine Learning model on average will always be better than Human driver in terms 
of accidents and fatalities caused because in general Humans are terrible driver, the ethical issue 
involved in case of an accident caused by self driving cars make it necessary for us to make sure 
that such machine learning solutions perform much better in unseen scenarios. 
Such an approach requires the system to be tested thoroughly against most of unseen scenarios 
that can occur in real life. Though it is impossible to train a ML model for all unforeseen 
scenarios, a variety of general test cases can be taken to test for most of these unseen scenarios. 
Considering such an approach we tested the system across 12 different samples. Each sample is a 
bit different than other representing a different real world scene. The samples were further 
categorized into 3 categories depending upon the complexity of the scene with each category 
having exactly 4 outputs. This will help us analyze the performance of different models in 
different magnitude of complexity. These categories are further explained in section 4.6.1. 4.6.2 
and 4.6.3. Each category involves certain variation in scene to better utilize the limited time and 
resources available to us and to get the most out of these limited test cases. Since the goal of this 
project was to analyze hardware acceleration of machine learning on FPGA, a variety of test 
scenarios will result in much more accurate representation of its performance in real world 
scenarios.   
 
4.6.1 Category 1 output  
• Describes a Computationally expensive object detection scenario. 

• More than or equal to 12 object detections per Frame. 

• Represents someway complex scene such as traffic road. Cases include both high volume 
high density scenes. 

• Sample 9 to Sample 12 represent such case. 

 

 Category 1 (n>=12) 

Sample 1 - Typical traffic junction of a city. It includes large number of pedestrian making this 
scene particularly challenging for Machine Learning Models due to large number of classes 
involved. 
Sample 2 – Scene of an Indian city Junction. This scene represents a typical Indian scenario with 
high density high volume traffic with large number of object classes, particularly challenging due to 
high complexity. Better performance here will represent a much more suitable platform for machine 
learning for places like India.   
Sample 3 –Represents a high volume traffic scene such as observed in traffic junctions or toll plaza. 
This scenario is particularly challenging due to the sheer volume of object being detected in each 
frame. 
Sample 4 –Represents high volume high speed traffic. This scenario is particularly complex due to 
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high variability as object classes change rapidly with little frames.  
 
4.6.2 Category 2 output 
• Describes a Computationally moderate object detection scenario. 

• More than 6 but less than 12 object detections per Frame. 

• Represents someway moderate scene such as a normal moderate traffic road. Cases include 
either  high volume or  high density scenes. 

• Sample 5 to Sample 8 represent such case. 

Category 2 (6<n<12) 

Sample 5 - Fast moving, down highway. View from bottom. Represent fast moving object classes 
Sample 6 –A 6 lane highway. Represent high volume moderate speed Scenario. 
Sample 7 – Indian scenario with large object classes low volume scene. 
Sample 8 – Represents a roundabout.  

 
4.6.3 Category 3 output 
• Describes a Computationally inexpensive object detection scenario. 

• Less than or equal to 6 object detections per Frame. 

• Represents someway simple scene such as somewhat empty traffic road. 

• Sample 9 to Sample 12 represent such case. 

Category 3 (n=<6) 

Sample 9 – Low Light (evening/morning) scene. This scene was particularly selected to test low 
light performance of different hardware. 
Sample 10 – Defocus scenario. This scene represents a foggy weather or a camera lens fog or rain. 
Sample 11 – Overwatch. Represents a bridge mounted camera system. View from top. 
Sample 12 -Moving frame (car). Represent a moving camera mounted in a car. Such scenario may 
represent ADAS or FSD system. 
 
4.7 Sample Output 

4.7.1 Category 1 sample outputs 
Sample 1 
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Fig 4.7.1a : 4 screen Grid of output of different hardware inference of sample 1. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 

 

Sample 2 

 

Fig 4.7.1b : 4 screen Grid of output of different hardware inference of sample 2. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 

Sample 3 
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Fig 4.7.1c : 4 screen Grid of output of different hardware inference of sample 3. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 

 

Sample 4 

 

Fig 4.7.1d : 4 screen Grid of output of different hardware inference of sample 4. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 

4.7.2 Category 2 samples outputs 

Sample 5 



39 
 

 

Fig 4.7.2a : 4 screen Grid of output of different hardware inference of sample 5. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 

 

Sample 6 

 

Fig 4.7.2b : 4 screen Grid of output of different hardware inference of sample 6. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 
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Sample 7 

 
Fig 4.7.2c : 4 screen Grid of output of different hardware inference of sample 7. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 

 

Sample 8 

 

Fig 4.7.2d : 4 screen Grid of output of different hardware inference of sample 8. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 
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4.7.3 Category 3 sample outputs 
Sample 9 

 
Fig 4.7.3a : 4 screen Grid of output of different hardware inference of sample 9. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 

 

Sample 10 

 
Fig 4.7.3b : 4 screen Grid of output of different hardware inference of sample 10. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 
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Sample 11 

 

 

Fig 4.7.3c : 4 screen Grid of output of different hardware inference of sample 11. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 

 

Sample 12 

 
Fig 4.7.3d : 4 screen Grid of output of different hardware inference of sample 12. Top left screen is the 

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom 

right is the output of FPGA inference. 
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4.8 Output chart and Calculations 
4.8.1 Output table 
The observed performance of 3 Hardware implementations were marked against all 12 video 
sample marking total 36 data points. These samples were further marked against the 3 categories 
mentioned in section 4.6.1, 4.6.2 and section 4.6.3 for category 1, category 2 and category 3 
respectively. The category represents scene complexity and fps represents frames per second 
which implies the number of frames the hardware was able to render each second. All input video 
samples are 1920p*1080p. So, each frame has around 2 million pixels which is lot of data to be 
processed. For GPU rendering the input files were avi input whereas the FPGA uses .h264 format 
(since Kria-KV260 is not compatible with avi/mp4 input) mentioned in 4.5.9 which is raw data 
format thus representing larger bitrates to be processed. 
The CPU utilized for CPU plot is Intel i3 3240 – a dual core quad thread processor with max TDP 
of 55Watts clocked at 3.3 GHz 
The GPU utilized in this project is Nvidia Tesla K80 (Cloud Platform- Google colab) 
The FPGA utilized is Xilinx Kria KV260 SOM   
All 12 video samples were tested against these 3 hardware and the results were plotted in the table 

4.8.1a and 4.8.1b. 

 

 

 

Table 4.8.1a: Raw hardware performance of category wise distributed all 12 video samples. Fps represents 
frames per second of the rendered video. 

  Hardware Hardware Acceleration Method 

Category Sample Number CPU GPU FPGA (Kria KV260) 

Category 1  
(n<=6) 

Sample 1 0.12 fps 2.53 fps 36.71 fps 

Sample 2 0.23 fps 2.59 fps 36.31 fps 

Sample 3 0.29 fps 4.20 fps 40.77 fps 

Sample 4 0.32 fps 3.07 fps 36.51 fps 

Category 2 
(6<n<12) 

Sample 5 0.31 fps 3.07 fps 36.15 fps 

Sample 6 0.31 fps 4.63 fps 36.39 fps 

Sample 7 0.20 fps 3.44 fps 38.34 fps 

Sample 8 0.48 fps 4.02 fps 36.63 fps 

Category 3  
(n>=12) 

Sample 9 1.03 fps 4.99 fps 37.90 fps 

Sample 10 1.18 fps 4.91 fps 36.04 fps 

Sample 11 0.75 fps 3.93 fps 37.27 fps 

Sample 12 1.39 fps 5.42 fps 36.75 fps 



44 
 

 

 

Table 4.8.1b: Hardware Performance Relative to GPU Inference of category wise distributed all 12 
samples. 

  Hardware performance relative to GPU Inference 

 Sample 

Number 

CPU GPU FPGA (Kria KV260) 

Category 1  

(n<=6) 

Sample 1 0.05x 1x 14.51x 

Sample 2 0.09x 1x 14.02x 

Sample 3 0.07x 1x 9.71x 

Sample 4 0.10x 1x 11.78x 

Category 2 

(6<n<12) 

Sample 5 0.07x 1x 7.86x 

Sample 6 0.10x 1x 11.62x 

Sample 7 0.06x 1x 11.15x 

Sample 8 0.12x 1x 9.1x 

Category 3  

(n>=12) 

Sample 9 0.21x 1x 7.6x 

Sample 10 0.24x 1x 7.3x 

Sample 11 0.19x 1x 9.48x 

Sample 12 0.26x 1x 6.78x 

 
4.8.2 Output Graphs 
The results from table 4.8.1a and 4.8.1b were plotted in the bar graph in Fig 4.8.2a to get a sense 
of relative performance of these 3 hardware inferences on all 12 samples. Further a line plot was 
plotted in Fig 4.8.2b to better analyze the performance trend if the three categories are taken into 
account as line chart better represents the relative difference in performance of different samples. 
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Fig 4.8.2a : Plot of relative hardware performance compared with each other CPU vs GPU vs FPGA for all 

12 video samples. (Bar Graph) 
 

 

Fig 4.8.2b : Plot of relative hardware performance compared with each other CPU vs GPU vs FPGA for all 
12 video samples. (Line Plot) 
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4.10 Conclusion 

1) If we look at relative performance of different hardware inference methods from table 4.8.1b we 

can clearly see that on average the FPGA inference performance is 10.1 times faster than GPU 

inference. This performance varies from the 6.7 times to 14.5 times in the samples we tested. 

2) If we look at category wise difference in performance between GPU inference and CPU 

inference we see: 

 For category 1 we observe we observe a 12.6 times performance improvement of FPGA 

compared to GPU inference 

 For category 2 we observe we observe a 9.9 times performance improvement of FPGA 

compared to GPU inference 

 For category 3 we observe we observe a 7.8 times performance improvement of FPGA 

compared to GPU inference 

1) Both the Inference ended up being significantly faster than CPU inference as Vision Kernels 

Perform very well in parallel computation. GPU perform computations parallel as they have 

several thousand cores for easy parallel computation as well as FPGA which by design can be 

configured to Perform parallel computation highly efficiently as per the algorithm being 

implemented. Since, CPU perform computations serially, they end up performing poorly. So, 

clearly there is a need for a hardware accelerated solution for running these computationally 

expensive Machine Learning Algorithms for real world scenarios which involve high density 

high volume object detections (without lowering input resolution of the camera and losing 

valuable frame data in the process). Also, the accuracy of the model is seen to increase in 

FPGA hardware acceleration as more computational resources are available for object 

localization and object classification. 

2) From 2 point as well as from line plot in Fig 4.8.2b, if we look at category wise difference in 

performance between different hardware acceleration we can clearly see a tread as we move 

towards the right side of graph there is a decrease in the separation of lines between the 

hardware implementations. As we know from category segmentation moving right side of the 

chart i.e. moving from category 1 towards category 3 there is a decrease in scene complexity 

(see section 4.6). This suggests that the FPGA hardware is much more effective in complex 

object detection scenarios involving high volume high density objects in each frame. Thus, for 

more complex practical scenarios involving large number of objects with high density, this 

report concludes that FPGA hardware acceleration performance much better compared to GPU 

hardware acceleration for model Machine Learning inference. 

3)  From Point 4 and sample 2 & sample 7 both of which include Indian roads involving large 
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variety of classes with large volume object detection with high density object detections in 

each frame particularly in sample 2 additionally also having high speed traffic as the original 

input video was sped up (particularly challenging test case). Since, sample 7 ended up 

observing the largest difference in relative performance in its category it is evident for such 

challenging practical scenarios such as India the FPGA accelerated of Machine Learning 

algorithms is suited much more than GPU accelerated inference. 

4) The Kria KV260 FPGA Works with either .h264/.h265 while GPU works with mp4/avi input. 

Since Kria was tested on .h264 files and .h64 files have a much higher bitrates as explained in 

section .FPGA is much more suitable for scenarios which might require higher resolution 

camera input such as for ADAS (Advanced Driver Assistance System) or FSD (Full Self 

Driving) systems. These self driving solutions which are being invested upon in millions by 

large AI companies such as Google’s Waymo, Uber’s Aurora and Tesla require high 

resolution images fed from HD camera onboard to resolve objects which are far away. Thus, 

FPGA is much more suited for such task as it was tested on higher bit rate video input. 

5)  Although the Inference performance of Machine Learning is much better in FPGA compared 

to GPU the actual training of these Machine learning Models has not been tested by us in this 

report since we used an already pre-trained machine learning model explained in Section. 

Although the reference paper we took for this project (Reference number [2]) suggests that 

Model training may end us performing better (in at least some scenarios) in GPU as compared 

to FPGA due to availability of high bandwidth large amount of memory, this cannot be 

independently verified yet by us as this report only looks at Inference performance. Further 

research is needed in this aspect but if GPU indeed ended up performing better a possible 

solution may be to train the Machine learning model first on GPU and then for inference 

FPGAs can be implemented. 

6) Power Draw - Looking at the efficiency of the hardware acceleration solution From section 

4.3.3 and section 4.4.2 section 4.5.14 and section we can see a power drown of 19.8 Watts, 34 

Watts and 15 Watts for CPU inference, GPU Inference and FPGA inference respectively. 

Since the raw performance FPGA is already better than GPU and CPU, The lower power draw 

indicates that FPGA is the most efficient among them. Thus, for embedded solutions or 

computing in the edge or for implementation in real world such as traffic light management 

(embedded FPGA in traffic light etc.) etc. lower power draw of FPGA means that it can be 

powered by solar panels for a completed embedded solution father decreasing the hardware 

cost in such a project. 

7) EDP (Energy Delay Product) - Run-time or energy per frame alone do not provide a complete 
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picture. A hardware platform can be incredibly energy efficient while yet being much too 

sluggish to be useful. The Energy Delay Product (EDP) statistic considers the algorithm's 

throughput in milliseconds per frame (ms/frame) as well as the energy spent per frame 

(mJ/frame). The product of energy/frame and delay time is the EDP. This allows for a fair 

comparison when selecting which hardware architecture is best for a given calculation. Lower 

EDP indicates that the hardware design is capable of doing specified compute tasks with less 

power and in less time. 

 

EDP = energy/Frame * Delay time 

[Energy/Frame = Energy consumed (mJ) / Frame rate output 

Delay time = (1000/fps achieved)  mS 

Fps= frames per second] 

 

Since both the parameters are already lower in FPGA compared to GPU. We can without 

calculation conclude that EDP is much lower in FPGA compared to GPU. Thus, FPGA 

outperforms GPU in this parameter. 

8) In final Wrapping of conclusion this report concludes that for hardware acceleration of 

Machine Learning Inference FPGA outperform GPU for SSD Models. Additionally, this 

performance difference increases with increase in complexity of scenario. Thus, for complex 

vision kernels FPGA hardware accelerated inference  must be considered compared to other 

solutions 
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APPENDIX 
Software Code 
import cv2 
 
cv2.__version__ 
 
import matplotlib.pyplot as plt 
 
cd "C:\Users\My PC\Desktop\Major Project" 
 
config_file =  'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt' 
frozen_model = 'frozen_inference_graph.pb' 
 
model = cv2.dnn_DetectionModel(frozen_model,config_file) 
 
classLabels=[]  
file_name='labels.txt' 
with open(file_name,'rt')as fpt: 
    classLabels = fpt.read().rstrip('\n').split('\n') 

 
print(classLabels) 
 
print(len(classLabels))n 
 
model.setInputSize(320,320) 
model.setInputScale(1.0/127.5)  
model.setInputMean((127.5,127.5,127.5))  
model.setInputSwapRB(True) 
 
img = cv2.imread('car meet.jpg')  ##read an image 

 
plt.imshow(img) 

 
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) 
 
 
classIndex, confidece, bbox = model.detect(img,confThreshold=0.5) 
print(classIndex) 
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font_scale = 3 
font = cv2.FONT_HERSHEY_PLAIN 
for ClassInd,conf,boxes in zip(classIndex.flatten(),confidence.flatten(), bbox): 
    cv2.rectangle(img,boxes,(225,0,0),2) 
    cv2.putText(img,classLabels[ClassInd-1],(boxes[0]+10,boxes[1]+40), font, 
fontScale=font_scale, color=(0,255,0),thickness=3) 
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) 

 
 

# Video Demo 

import numpy as np 

import cv2 

import time  

cap = cv2.VideoCapture("nycoutavi.avi")   

fourcc = cv2.VideoWriter_fourcc(*'XVID') 

out = cv2.VideoWriter('outtest17.avi', fourcc, 30.0, (1920, 1080)) 

font_scale = 2 

font =  cv2.FONT_HERSHEY_PLAIN 

prev_frame_time = 0  # FPS 

new_frame_time = 0 

while(True): 

    ret, frame = cap.read()  

    if not ret: 

        break 

    font = cv2.FONT_HERSHEY_SIMPLEX 

    new_frame_time = time.time() 

    fps = 1/(new_frame_time-prev_frame_time)      # Calculating the fps 

    prev_frame_time = new_frame_time 

    fps_text= "Framerate: {:.2f} FPS".format(fps) 

    ClassIndex, confidence, bbox = model.detect(frame,confThreshold=0.55) 

    print(ClassIndex) 
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    if (len(ClassIndex)!=0): 

        for ClassInd, conf, boxes in zip(ClassIndex.flatten(), confidence.flatten(), bbox): 

            if (ClassInd<=80): 

                cv2.rectangle(frame,boxes,(225,0,0),2) 

                frame = cv2.resize(frame, (1920, 1080)) 

                hsv=cv2.putText(frame,classLabels[ClassInd-1],(boxes[0]+10,boxes[1]+40), font, 

fontScale=font_scale, color=(0,255,0),thickness=3) 

                hsv=cv2.putText(frame, fps_text, (7, 70), font, 2, (0, 0, 255), 2, cv2.LINE_AA) 

                hsv = cv2.resize(hsv, (1920, 1080)) 

                cv2.imshow('frame',frame) 

    out.write(hsv)  

    cv2.imshow('Original', frame) 

    cv2.imshow('frame', hsv) 

    if cv2.waitKey(1) & 0xFF == ord('a'): 

        break 

cap.release() 

out.release()  

cv2.destroyAllWindows() 
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