
i

HARDWARE ACCELERATION OF
MACHINE LEARNING USING FPGA

Project report submitted in partial fulfillment of the requirement

for the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION
ENGINEERING

By

Rakshit Sharma (181015)
Raghav Sharma (181028)

UNDER THE GUIDANCE OF

Mr. Anuj Kumar Maurya

JAYPEE UNIVERSITY OF INFORMATION

TECHNOLOGY, WAKNAGHAT
May 2022

ii

iii

TABLE OF CONTENTS

CAPTION PAGE NO.

DECLERATION vii
ACKNOWLEDGEMENT ix

LIST OF ACRONYMS AND ABBREVIATION xi
LIST OF SYMBOLS xii
LIST OF FIGURES xiii
LIST OF TABLES xv

ABSTRACT xvi

CHAPTER-1 : INTRODUCTION 1

1. Introduction 1

CHAPTER-2 : IMAGE PROCESSING 2

2.1 What is an image 2

2.1.1 Types of images 2

2.2 Image Identification 2

2.2.1 Image classification 3

2.2.2 Object Detection 4

2.2.3 Image Segmentation 5

2.3 Image Processing Algorithm 6

2.3.1 MobileNet 6

2.3.2 SSD 6

2.4 Some other image processing algorithm 8

2.4.1 Morphological Image Processing 9

2.4.2 Gaussian Image Processing 9

2.4.3 Fourier Transform in Image Processing 10

2.5 Image Processing using Neural networks 10

2.5.1 Generative Adversarial Networks 11

2.5.2 Convolutional Neural Network 12

CHAPTER-3 : HARDWARE 14

3.1 What is FPGA? 14

3.2 Xilinx Kria kv-260 15

3.2.1 Overview 15

3.2.2 Specification 16

3.3 Kria kv-26 SoM 17

3.4 Kria kv-260 overall block diagram 18

3.5 Implementation 1 19

iv

3.5.1 Vehicle Detection 19
 3.5.2 YOLO and CNN 19
 3.5.3 Python Packages 19
 3.5.4 OpenCV 19

CHAPTER-4 : IMPLEMENTATION 20

4.1 Output Methodology 20

4.1.1 Hardware testing Methodology 20

4.1.2 Global Chip Shortage 20

4.1.3 Google Colab 20

4.2 Model Training and Description 21

4.3 Type 1 : CPU interfaces 21

4.3.1 Type 1 : CPU interfaces Rendering 21

4.3.2 Jupyter Notebook Implementation 21

4.3.3 Power Draw – HW monitor + CPU-Z 22

4.4 Type 2 : GPU Interface 23

4.4.1 Type 2 : GPU Interface Rendering 23

4.5 Type 3 : FPGA (Kria kv 260) Interface 24

4.5.1 Type 3 : FPGA Interface rendering 24

4.5.2 Petalinux 24

4.5.3 Balena Etcher 25

4.5.4 Tera term 26

4.5.5 Xmutil Package group 26

4.5.6 Pixabay 27

4.5.7 Ubuntu LTS 27

4.5.8 ffmpeg 27

4.5.9 H264/H265 encoding 28

4.5.10 WinSCP 28

4.5.11 Docker 29

4.5.12 Viti AI 30

4.5.13 Jupyter Installation 31

4.5.14 Platform Stats 33

4.6 Sample selection and Categories 33

4.6.1 Category 1 output 34

4.6.2 Category 2 output 34

4.6.3 Category 3 output 35

4.7 Sample Output 35

4.7.1 Category 1 Sample outputs 35

4.7.2 Category 2 Sample outputs 37

4.7.3 Category 3 Sample outputs 39

4.8 Output Chart and Calculation 41

4.8.1 Output Table 42

v

4.8.2 Output Graph 43

4.9 Conclusion 44

APPENDIX A 45
 A.1 Software Code 45

REFERENCES 50

PLAGIARISM REPORT 51

vi

vii

DECLERATION

We hereby declare that the work reported in the B.Tech Project Report entitled “Hardware

Acceleration of Machine Learning Using FPGA” submitted at Jaypee University of

Information Technology, Waknaghat, India is an authentic record of our work carried out

under the supervision of Mr. Anuj Kumar Maurya. We have not submitted this work elsewhere

for any other degree or diploma.

Rakshit Sharma

Raghav Sharma

181015 181028

This is to certify that the above statement made by the candidates is correct to the best of

my knowledge .

Mr. Anuj Kumar Maurya

Date:

Head of the Department/Project Coordinator

viii

ix

ACKNOWLEDGEMENT

We would like to express our deepest appreciation to Mr. Anuj Kumar Maurya for helping us

throughout the project and without whom this project would have been a very difficult task. We

are highly indebted to him for his guidance and constant supervision as well as for providing

motivation & his support for this project. He consistently guided us towards the completion of this

project. I would also like to express my gratitude towards my parents, members of JUIT and

respected HOD sir Dr. Rajiv Kumar for their kind co-operation and encouragement which helped

me us completing this project. My thanks and appreciations also go to our colleagues who have

helped me out with their abilities and academic support in developing the project. We would like

to thank Xilinx for providing us with the Kria KV 260 FPGA board which has been the main

testing equipment in this project under Xilinx Adaptive Computing Challenge 2021 as well as

Xilinx Engineering Team which helped us better understand the capabilities of the FPGA

hardware as well as implement our algorithms in the Kria KV 260 board for this Project. Without

such help this project would not have been possible and we are truly grateful for Xilinx for

providing us with this opportunity.

x

LIST OF ACRONYMS AND ABBREVATIONS

CCTV: Closed Circuit Television

YOLO: You Only Look Once

RGB: Red Green Blue

CNN: Convolutional neural network

FC: Fully Connected

GAN: generative adversarial network

PPM: Portable Pixel Map

JPEG: Joint Photographic Expert Group

GIF: Graphics Interchange Format

TIFF: Tag Image File Format

PNG: Portable Network Graphics

FPGA: Field-programmable gate array

SSD: Single Shot Detector

CPU: Central Processing Unit

GPU: Graphics Processing Unit

SOM: System on Module

SOC: System on Chip

CLB: Configurable Logic Block

PLD: Programmable Logic Devices

MUX: Multiplexer

IAS: Imager Access System

USB: Universal Serial Bus

I/O: Input Output

DPU: Deep Learning Processing Unit

BGR: Blue Green Red

HSV: Hue Saturation Value

SLI: Scalable Link Interface

TDP: Thermal Design Power

FPS: Framerates per Second

CUDA: Compute Unified Device Architecture

xi

HW: Hardware

JTAG: Joint Tag Action Group

EDA: Electronic Design Automation

IP Core: Intellectual Property Core

BSP: Board Support Package

COM: Communication

AVC: Advanced Video Coding

API: Application Programming Interface

IP: Internet Protocol

VCC: Common Collector Voltage

ADAS: Advance Driver Assistance System

FSD: Full Self Driving

ML: Machine Learning

EDP: Energy Delay Product

xii

LIST OF SYMBOLS
Gx : Kernal

Gy : Kernal

∑ : summation

* : Multiplication

xiii

LIST OF FIGURES

FIGURE
NO.

TITLE OF FIGURE

PAGE
NO

2.1

Image representation 2

2.2.1a

Image Classification. Dog in a picture 3

2.2.1b Image Classification problem. Dog and cat in a picture 3

2..2.2

Object Detection. Dog in a picture 4

2.2.3a

Image Segmentation Sample 5

2.2.3b Image Segmentation result 5

2.4.1a

Morphological Image Processing 9

2.4.2

Gaussian Image Processing 10

2.5 Neural Networks 11

2.6 Convolutional Neural Network 13

3.1 FPGA Basic Logic Element 14

3.2.1a Kria KV260 Board Diagram 15

3.2.1b Actual Kria KV260 board Connected to PC

15

3.2.2 Kria KV260 Hardware Specification 16

3.3 Kria KV260 SOM (system on module) 17

3.4 Kria KV260 overall blockdiagram 18

4.3.2 SSD code being implemented in CPU using Jupyter notebook 21

4.3.3a Performance cap of CPU using CPU-z and Windows Task Manager 22

4.3.3b Power Draw of CPU during Jupyter python 3 execution using HW bot Monitor 23

4.4.1a Running GPU hardware acceleration in Google Colab 24

4.4.1b GPU Inference being run on Google Colab 24

4.4.1c Nvidia smi function to analyzed power draw on Nvidia GPU

25

4.5.2a Petalinux BSP for creating the Petalinux project 26

4.5.2b Final .wic Petalinux project file created 26

4.5.4a COM port setting for Kria 27

4.5.4b Setting SOM password for the default Petalinux user 27

4.5.4c COM port setting for Kria KV 260. 28

4.5.5a Different packagegroups compatible with kria SOM

28

4.5.5b Accelerator being loaded in the Kria SOM using Tera Term

28

xiv

4.5.5c Accelerator output after being loaded with face Recognition algorithm

28

4.5.8a ffmpeg command for converting .mp4 file to .h264 file 29

4.5.8b mp4 frames being converted to .h264 frames using ffmpeg

29

4.5.10 WinSCP transferring files between Petalinux and windows system

30

4.5.11a Installing docker in Ubuntu system 31

4.5.11b Verifying the docker installation 31

4.5.12a Cloning Vitis AI from Xilinx official github Vitis AI link

32

4.5.12b Installing of Vitis AI image and running demo samples by Xilinx

32

4.5.12c Vitis AI Runtime directory structure from Xilinx official github page

32

4.5.13a Authenticating the Kria SOM to Jupyter notebook in Tera Term 33

4.5.13b Jupyter notebook being implemented in Google chrome 34

4.5.14 Xilinx xmutil tool for system power draw and other statistics in Tera Term 34

4.7.1a 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 1 37

4.7.1b 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 2 37

4.7.1c 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 3 38

4.7.1d 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 4 38

4.7.2a 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 5 39

4.7.2b 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 6 39

4.7.2c 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 7 40

4.7.2d 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 8 40

4.7.3a 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 9 41

4.7.3b 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 10 41

4.7.3c 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 11 42

4.7.3d 4 Grid screen comparison of CPU vs GPU vs FPGA for sample 12 42

4.8.2a Bar graph plot for relative comparison of CPU vs GPU vs FPGA 45

4.8.2b Line graph plot for relative comparison of CPU vs GPU vs FPGA 45

xv

LIST OF TABLES

TABLE

NO.

TITLE OF TABLE

PAGE NO

4.8.1a

Raw hardware performance of category wise
distributed all 12 video samples. Fps represents
frames per second of the rendered video.

43

4.8.1b

Hardware Performance Relative to GPU
Inference of category wise distributed all 12
samples.

44

xvi

ABSTRACT

This project deals with the comparison of different hardware inference method for machine learning

including CPU, GPU as well as FPGA implementation. We are particularly interested in

performance difference between GPU and FPGA as both are expected to perform better in

parallelized tasks.

For testing different hardware acceleration methods we used 12 samples which are categorised into

3 different categories depending upon the complexity of the real world scenario. The Machine

Learning algorithm used for the benchmarking of different hardware is SSD or Single Shot

Detector. It was observed in this project that as the complexity of the task increases this report

concludes that the performance difference between FPGA accelerated hardware inference and GPU

accelerated hardware inference increases with FPGA leading the GPU and CPU inference. This

suggests that for more complex vision Kernels FPGA implementation outperforms GPU inference

performance. If we look at the efficiency of the system lowest power consumption was observed in

Kria KV260 FPGA compared to the GPU tested in this project report. Suggesting that for embedded

applications FPGA accelerated inference is much more practical compared to GPU accelerated

inference. This Project report also looks at the Energy Delay product (EDP) which takes into

account the relative performance as well as efficiency matrix to arrive at a more useful

differentiating parameter for hardware efficacy. The FPGA ends up performing best in this

parameter.

In this Project the FPGA ended up outperforming GPU hardware inference by about 10 times on

average while having better Energy efficiency thus making it ideal for real world Machine Learning

Implementation. In the end the Project Report concludes that for Hardware acceleration of Machine

Learning Models in practical real world scenarios FPGA accelerated hardware inference is the most

ideal solution compared to the solutions tested in this project report.

1

CHAPTER 1
INTRODUCTION

Deep learning networks can now classify images better than humans, demonstrating how effective
this technology is, when we observe and interact with the world, however, we do considerably
more than merely identify pictures. Within our area of vision, we also locate and categories each
piece. These are far more difficult activities that machines are currently unable to complete as
effectively as humans. Deep learning has surpassed more traditional computer vision algorithms in
the literature as the preferred method for image identification problems. Convolution neural
networks excel at picture classification in the subject of computer vision, which entails
categorizing images given a list of classes and having the network discover the strongest class
present in the image. For these object detection techniques there are various algorithms available
out of which the most popoular ones are YOLO(You only look once) and SSD-MobileNet which
uses Single shot multibox detector technique in order to classify the images into thier respective
category. Deep learning algorithms that are for image classifications that are the most famous one
are AlexNet, GoogleNet, MobileNet , VGGNet. Out of these algorithms the one that we have used
for our classification is MobileNet because Mobile Net is the lightest and the fastest one out of
these and after the introduction of the SSD with MobileNet it has become even more faster and
efficient .

Now Coming to the implementation these algorithms can be implemented on a CPU, GPU or
FPGA .So now what we will be doing is to compare some of the factors that will decide which of
the following would perform better under certain circumstances and will be able to provide us
with the faster, efficient and accurate results for our object detection.

Now when talking about the implementation on FPGA the board that we have used for the object
detections results is Xilinx Kria Kv-260 which is kv-26 SoM equipped which can provide us with
competitive and even better performance than the others and also the main factor for using this is
that it provides us great performance at lower power supply and higher Frames per Second when
put under the test and further we will see the real world images where object are getting detected
correctly and also show results of the sample video taken for object detection.

2

CHAPTER 2

IMAGE PROCESSING

Image - processing entails altering an image using a variety of ways till we achieve our aim.

The final output might be a picture or a related feature of that image. This information can be

utilised for further investigation and decision-making.

2.1 What is an image ?

A 2D function F(x,y) can be used to represent a picture, where x and y are spatial coordinates. The

intensity of a picture at a specific value of x,y equals the amplitude of F at that position. A digital

picture is one in which the x,y, and amplitude values are all finite. It's a collection of pixels

organised into columns and rows. Pixels are picture components that store information about

colour and intensity. A picture can also be represented in 3D, using the spatial coordinates x, y,

and z. Pixels are grouped in a matrix format. An RGB picture is what this is called.

Fig 2.1: Image representation

2.1.1 Types of images:

1) RGB picture: The Red, Green, and Blue channels are three levels of a two-dimensional image.

2) Grayscale graphics have only one channel and are made up of shades of black and white.

2.2 Image Identification
Now image identification can be further be divided into 3 categories which are image classification

, object detection and image segmentation.

3

2.2.1 Image Classification

it is based upon the salient features in which the image is classified into which category it belongs

to , in this the entire image is classified as one object and further on comparison gives the result as

the classified image .

Fig 2.2.1a: Image Classification. Dog in a picture

In this we can see that an entire image is being classified as dog and there is no box which is

basically highlighting our object because here our entire image is the object .

Now the deep learning algorithm that is being used here for image classification is the MobileNet

and the dataset that we have used for image classification is ImageNet which are 1000 classes. So

what is being done is that an entire image is taken and based upon the most salient features the

image is compared and based upon the most features matched in our ImageNet dataset the result

is declared just like we saw here in the image that the entire image is being classified as the Dog.

So here we come across a problem that is what if there is a image something like (Shown below)

Fig 2.2.1b: Image Classification problem. Dog and cat in a picture

Here in this image we can see that there are two animals one is a cat and the other one is a dog.

So if we use image classification it won’t give us a appropriate output because dog and cat both

are the salient feature of this image that’s where object detection comes into play.

4

2.2.2 Object detection

So object detection is also based upon the salient features, in object detection it specifies the

location of multiple objects in the image.

Object detection is the combination of:

 Classification

 Localization

Here in object detection we will be using single shot multi box detector. So what single shot

multibox detector does is that it divides the image that is to be used for object detection into small

patches and then based upon the combination of these patches based upon the most salient

features it joins those patches and then ask the classifier to classify the image and based upon the

comparison with the dataset the objects are detected .Taking an example of a mage below.

Fig 2.2.2: Object Detection. Dog in a picture

Now here in this image we can see that in our image the dog is being identified as an object and has

been marked with a rectangular box around it . As we know that object detection is combination of

two classification and localization, So the algorithm that we have used here is the combination of

both which we have taken the MobileNet algorithm from the classification and for localization we

will be using SSD basically for the object detection we will be using SSD-MobileNetv3 which is

the latest version . There are other algorithms as well like YOLO (You Only Look Once) which is

also a very famous algorithm for object detection but the Most light weight and faster algorithm is

SSD-MobileNet .

So in this image what’s happening is that the image is being divided into small patches and then

combining these patches and based upon the most salient features our object s getting detected .the

dataset that we have used here is the Coco which has 80 classes.

5

2.2.3 Image Segmentation

 Image Segmentation is also based upon the salient features, Here foreground and background is

segmented . In image segmentation rather than to classify the object here each pixel is classified to

be part of some object .

Fig 2.2.3a: Image Segmentation Sample

So this is a normal image in which we can see a street where there are people, cars , trees so after

image segmentation we will get a result (shown below)

Fig 2.2.3b: Image Segmentation result

In this image we can see that each pixel is being considered as an object as we can see that people

are being shown with red, cars with blue, trees with green so each pixel is getting classified.

The dataset for image segmentation is CitySpace.

6

2.3 Image Processing Algorithms

2.3.1 MobileNet

MobileNet is a Convolutional neural network built for mobile and embedded vision. They are based

on a simplified architecture that builds lightweight deep neural networks with low latency for

mobile and embedded devices using depth wise separable convolutions.

The use of automated search algorithms and network design can be used to improve the overall state

of the art of classification. We may release two new MobileNet models as a result of this process:

MobileNetV3-Large and MobileNetV3-Small are two versions of MobileNetV3 that are designed

for large and low resource use cases, respectively. After that, these models are tweaked and applied

to tasks like object detection and semantic segmentation.

MobileNetV3 Large and Small models are being developed to power on-device computer vision

with the next generation of high-accuracy, effective neural network models. The new networks

increase the state of the art by demonstrating how to develop effective models by combining

automated search with innovative design advances.

2.3.2 SSD (Single Shot MultiBox Detector)

Deep learning networks can now classify images better than humans, demonstrating how powerful

this technology is. When we observe and interact with the world, however, we do far more than just

classify images. Within our field of view, we also localise and classify each piece. These are far

more difficult activities that machines are currently unable to complete as effectively as humans.

Multibox - The bounding box regression technique of SSD is inspired by Szegedy’s work on

MultiBox, a method for fast class-agnostic bounding box coordinate proposals. Interestingly, in the

work done on MultiBox an Inception-style Convolutional network is used. The 1x1 convolutions

that you see below help in dimensionality reduction since the number of dimensions will go down

(but “width” and “height” will remain the same).

7

The loss function in MultiBox also included two important components that made their way onto

SSD:

1) Confidence Loss: this metric indicates how confident the network is in the calculated bounding

box's objectless. This loss is calculated using categorical cross-entropy.

2) Location Loss: this metric indicates how far the network's predicted bounding boxes differ from

the training set's ground truth bounding boxes. Here, L2-Norm is employed.

SSD is a deep neural network-based approach for recognising objects in pictures. Per feature map

location. The main working of SSD is that it firstly converts the output into discrete chunks which

are represented in terms of building bounding boxes. It includes various aspect ratio and different

scales.

Firstly for each and every default box a probable score is calculated. This score is then adjusted to

fit the object shape with a box. In addition to that to be better compatible with different sizes the

network looks at different resolutions of feature maps and then outputs probable values. SSD ids the

a very simple algorithm that worked on proposed objects. The way it achieves this is that it first

eliminates proposed object development and the next step which is subsequent pixel resampling or

even feature resampling is eliminated while encapsulating all in a single straightforward network.

As a result SSD is much simpler and required less computational power integration very well with

other systems.

For Training the SSD only an input image is required along with an additional truth box for each

subject. After then a variety of different aspect ratio is passed as test cases to examine rare cases of

original boxes using Convolutional theorems. After this step these original boxes are then compared

against round truth to give us the probability of shape of the object as well as its class along with the

confidence probability for each class. For example, the two original boxes which includes a cat and

a one with a dog are being output as positive implying truth while the other s are output as false im-

plying negatives or false.

Multi-scale feature maps for detection - Detection using multi-scale feature maps At the end of

the truncated base network, we add Convolutional feature layers. These layers shrink in size over

8

time, allowing detections to be predicted at several scales. Each feature layer has a different

Convolutional model for predicting detections.

Convolutional predictors for detection - Using a collection of Convolutional filters, each new

feature layer may generate a defined set of detection predictions. On top of the SSD network design,

they are indicated. For predicting the Basic detection we use a scenario of a tiny 3 by 3 Kernel

which outputs a relative score for the predicted probability of the shape offset as well as category

compared to original box case. The layer used for this task is of size m by n having p number of

channels. The kernel than produces a value at every m by n region in the area it is being used. The

output value of the bounding box offset are compared to a standard

Default boxes and aspect ratios – For considering the feature of the map cell by default a

bounding box is put at the front of the Neural Network. Using convolution each feature of the map

is attached to the tile while keeping the corresponding relationship the same as before. The

probability of each offset in proportion to the original box shape is calculated with the per class

score that puts this probability of class presence in the bounding box. Thus for class c offset values

are calculated in proportional to the original box shape out of k for every box shape as well as for

each and every position.

2.4 Some other image processing algorithms

2.4.1 Morphological image processing

Because noise may damage binary regions formed by simple thresholding, morphological image

processing aims to eradicate faults from binary images. It also helps with image smoothing by

employing opening and closing procedures.

To broaden morphological processes, grayscale images can be employed. It's made up of non-

linear techniques that deal with an image's feature structure. It is governed by the numerical values

of pixels rather than the order in which they are placed. This approach analyses a picture by com-

paring the suitable neighborhood pixels to a small template called as a structuring element, which

can be placed in a variety of locations in the image. A small 0 and 1 value matrix serves as a struc-

tural element.

The two basic morphological image processing processes are dilation and erosion:

1) The dilation process in a photograph adds pixels to the limits of the item.

9

2) During the erosion process, pixels from the object's edges are eliminated.

The amount of pixels to be removed is directly proportional to the size original picture of the

structuring element. A structuring element is a 0/1 matrix that can be any form or size. It is placed

in all possible locations throughout the image and compared to the pixels in the immediate vicini-

ty. The square structural element 'A' fits within the item we want to choose, 'B' intersects it, and 'C'

is on the outside.

Fig 2.4.1a: Morphological Image Processing

The square structuring element ‘A’ fits in the object we want to select, the ‘B’ intersects the object

and ‘C’ is out of the object.

2.4.2 Gaussian Image Processing

Gaussian blur, also known as Gaussian smoothing, is the result of blurring a photograph with a

Gaussian function. It's a method for obfuscating details and minimizing visual noise.

It's a method for obfuscating details and minimizing visual noise. Looking at a picture via a trans-

parent screen provides the same visual effect as blurring it. It's sometimes used in computer vision

as a deep learning data augmentation strategy or for image improvement at various scales.

To take use of the Gaussian blur's separable property, divide the operation into two stages. The First

pass of this algorithm works to basically blur the 1 dimensional image kernel in both the vertical as

well as the horizontal axes. For the 2nd pass the same one Dimensional Kernel Blur outs the remain-

ing Axes.

10

Fig 2.4.2: Gaussian Image Processing

Some of the edges are a little less detailed than others. The pixels closest to the centre are given
more weight by the filter than those further away. Low-pass filters, such as Gaussian filters, atten-
uate high frequencies. It's a frequent technique for edge detecting.

2.4.3 Fourier Transform in image processing

The Fourier Transform is primarily utilized to divide the image into its sine component and cosine

component. . It may be used for picture reconstruction, compression, and filtering, among other

things. We'll consider the discrete Fourier transform because we're talking about pictures. Consid-

er a sinusoid, which is made up of three components:

1) Magnitude – related to contrast

2) Spatial frequency – related to brightness

3) Phase – related to color information

2.5 Image processing using Neural Networks

Neural Networks are multi level structure that is made up of data points which are called nodes or

the neurons of the neural structure. These neurons are what do the basic processing in the NN.

They perform somewhat similarly to human brain that’s why the analogy. The main methodology

tis that the input data which is fed to the NN is processed upon and the Pattern in it is detected

though weights and biases and the result is given in terms of activations in the output layer

A basic neural network has three layers:

i. Input layer(at front of NN)

ii. Hidden layer(at middle of NN)

11

iii. Output layer(at the end of NN)

Fig 2.5: Neural Networks

We input the data in the input layers of the CNN. The output layer gives us with the probability of

the result and the middle layer does the calculations of the weights and biases of the Neural Net-

work. A neural network should have at least one hidden layer.

The neural network's basic operation is as follows:

1) Consider the following example: each pixel is provided as input to each neuron in the first lay-

er, and neurons in one layer are connected to neurons in the next layer through channels.

2) Weight is a numerical number applied to each of these channels.

3) The inputs are multiplied by the weights, and the resulting weighted sum is supplied to the hid-

den layers.

4) The output from the hidden layers is routed through an activation function, which determines

whether or not a certain neuron is active.

5) Data is sent to the next buried levels by the stimulated neurons. Data is transmitted through the

network in this manner, which is known as Forward Propagation.

6) The neuron with the greatest value predicts the output in the output layer. The probability val-

ues are the outputs.

7) To determine the error, the anticipated output is compared to the actual output. Backpropaga-

tion refers to the process of transferring information back over a network.

12

8) Weights are modified based on this information. This forward and backward propagation cycle

is repeated on several inputs until the network accurately predicts the output in the majority of sit-

uations.

9) The neural network's training procedure is now complete. In some circumstances, the time re-

quired to train the neural network may be excessive.

2.5.1 Generative Adversarial Networks

GAN is basically made out of two the models out of which one is the Generator and the other one is

the Discriminator. As the term Discriminator Suggests that it will discriminate the false or incor-

rectly identified image whereas here the generator prepares to obtain real look alike images now

coming back to the discriminator it will discriminate whether the image is correct or incorrect

this generally happens due to the lack of availability to view the original image due to this it might

not be able to provide us with the correct result in the starting that why generator turns out to be

slow in the start but unlike generator discriminator here can view the original pictures even though

this sounds pretty clear but the correct and incorrect images are mixed together so it is difficult for

the discriminator to discriminate or evaluate the pictures.

As we are working on the generator we need various types of different outputs that why feed it with

some external noise or disturbance so that it will be able to create different type of instances and not

end up with the same thing here the discriminators comes into play as the discriminator helps it to

improve the outcomes. After specific amount of time Due to external noise there will be more com-

plicated outcomes which will end up making the job of discriminator hard even the end-user will be

satisfied with the outcome as discriminator gets to know about the pattern that a generator will be

following as the amount of data increases the outcome improves.

That’s why these are fantastic for creating and manipulating images. Face Aging, Photo Blending,

Super Resolution, Photo Inpainting, and Clothing Translation are some of the uses of GANs.

2.5.2 Convolutional Neural Network

1. ConvNets, or Convolutional neural networks, are made up of three layers:

2. Convolutional Layer (CONV): This is the primary component of CNN, and it is in charge of

executing convolution operations.

13

3. The Kernel/Filter is the component in this layer that performs the convolution process (ma-

trix). The Kernel will give out horizontal and vertical modifications which are directly

linked to stride rate.

4. Pooling Layer (POOL): is in charge of dimensionality reduction. The aim here is to decrease

the computing requirement for this data processing. If we look at the types there are two

types of pooling present ; the First type is Maximum pooling and the second type is mini-

mum pooling. The highest valued area filled by the image Kernel is given by max pooling.

Whereas the average of area of image filled by the kernel gives average pooling.

5. Completely Connected Layer (FC): The fully linked layer (FC) works alongside the serial-

ized input suggesting that each input node is connected to each and every one of neuron.

These layers are present in the end of this CNN structure.

6. CNN is mostly used to extract features from images using its layers. For classifying images

using this CNN approach we determine each layer between 0 &1. 0 giving minimum proba-

bility and 1 giving maximum probability for activation

Fig 2.6: Convolutional Neural Network

14

CHAPTER 3

HARDWARE

3.1 What is FPGA ?

FPGA or Field Programmable gate array is an advance version of PLD devices, In FPGA it comes

with logic blocks that has gate arrays, so these gate arrays are divided into small units of gate

arrays which are called CLB or Configurable Logic Blocks. There can be 100 gates in a unit or

CLB but there will be several of these units with 100 gates each, so in total there will be 10000 or

100000 or can be even more amount of gates these 100000 gates will be grouped into smaller

groups which will contain 50 or 100 gates these groups or units are CLB’s. So the each CLB will

have specific function to perform. Now all the CLB’s are gate equivalent that does not mean that

all the components inside that CLB will be a gate a typically CLB will consist of a MUX, Flip

Flops, register and few gates so that a small a design can be made out of all these .Each CLB will

have some standard feature but different configurability of MUX, gates, Flip Flops. So, our main

job is to break the circuit or design that is to be implemented into mall groups and configure those

groups into the CLB’s and then does the interconnection efficiently.

Fig 3.1: FPGA Basic Logic Element

15

3.2 Xilinx kria kv-260
3.2.1 Overview
The Xilinx KriaTM KV260 Vision AI Starter Kit is a ready-to-use platform for developing vision
applications without the need for extensive hardware design skills. A non-production version of the
production K26 SOM is installed in the KV260. This SOM, along with a fan heat sink, is attached
to a vision-optimized evaluation carrier card, which has multi-camera capability via ON
Semiconductor Imager Access System (IAS) and Raspberry Pi interfaces.

Fig 3.2.1a: Kria KV260 Board Diagram

Fig 3.2.1b: Actual Kria KV260 board Connected to PC

16

Features

 Multi-Camera Support: Up to 8 interfaces

 Raspberry Pi MIPI sensor interface

 USB camera support
 HDMI, DisplayPort Outputs

Flexible Connectivity

 1Gb Ethernet
 USB 3.0 / 2.0

3.2.2 Specification

Fig 3.2.2: Kria KV260 Hardware Specification

17

3.3 kria kv-26 SoM

The Kria K26 SOM is a vision AI and video analytics SOM designed to meet current and future

industry demands. The Kria SOM combines an adaptable SOC based on the Zynq UltraScale+TM

MPSoC architecture with all of the core components required to support the SoOC in a package

small enough to fit in the palm of your hand (such as memory and power).

It's easy to customise production deployments. The Kria SOM is paired with a simple end-user-

designed carrier card that includes connectivity and other components unique to that user's end

system.

Fig 3.3: Kria KV260 SOM (system on module)

Unlike GPUs, where the data flow is fixed, Xilinx hardware offers flexibility to uniquely

reconfigure the data path to achieve maximum throughput and lower latencies. Also, the

programmable data path reduces the need for batching, which is a major drawback in GPUs and

becomes a trade-off between lower latencies or higher throughput. The Kria SOM’s flexible

architecture has shown great potential in sparse networks, which is one of the hot trends in current

ML applications. Another important feature—and one that makes Kria SOMs even more flexible

is the any-to-any I/O connection. This enables the K26 SOM to connect to any device, network, or

storage device without the need for a host CPU.

Intelligent applications require privacy, low power, security, and cheap cost in addition to sub-

millisecond latency. The Kria K26 SOM, which is based on the Zynq MPSoC architecture, offers

18

best-in-class performance/watt and lower total cost of ownership, making it an attractive contender

for edge devices. Because Kria SOMs are hardware adjustable, the K26's solutions are scalable

and future-proof.

3.4 kria kv -260 overall block diagram

Fig 3.4: Kria KV260 overall blockdiagram

The performance was then compared on the K26 SOM with two DPU configurations, namely

B3136 and 4096 DPU, on a couple of the industry's leading models such as Tiny Yolo V3, SSD

Mobilenet V1, ResNet50, and so on. The results were compared to benchmarking data available on

Nvidia's website. The K26 SOM outperformed both the Jetson Nano and Jetson TX2 devices, ac-

cording to the findings. Not only did the Kria SOM outperform the Jetson Nano in terms of

throughput by more than 4X, but it also outperformed the Jetson TX2 in terms of performance/watt

by more than 2X.

19

3.5 Vehicle Detection

We will create a module that will be responsible for detecting the number of cars in the image that

has been provided as input. It will offer the number of vehicles in each vehicle class, such as car,

bike, bus, truck, and rickshaw, as an output.

3.5.1 YOLO and CNN

YOLO is popular because it has a high level of accuracy and can run in real-time. To create

predictions, the method "only looks once" at the picture in the sense that it only takes one forward

propagation pass through the neural network. It then returns detected objects together with

bounding boxes after non-max suppression (which ensures that the object detection algorithm only

identifies each object once). A single CNN is going to guess where several bounding boxes are

and determine it with a number with YOLO. We'll use Google Colab for vehicle detection.

3.5.2 Python Packages

A package is the collection of modules, where a module refers to design and implementation of

specific functionality to be implemented in a program.

3.5.3 OpenCV

It stands for Open Source Computer Vision Library. This collection contains over 2000 well

optimized algorithms for computer vision and machine learning. Opencv may be used in image

processing in a variety of ways, some of which are given below:

1) Converting photos from one colour space to another, such as BGR to HSV, BGR to

grey, and so on.

2) Performing image thresholding, such as basic thresholding, adaptive thresholding,

and so on.

3) Applying custom filters to photos and blurring images are examples of image

smoothing.

4) Using photographs to perform morphological processes

5) Then Image pyramids are constructed.

6) Using the GrabCut method to extract foreground from photos.

7) Watershed algorithm is used to segment images.

20

CHAPTER 4
IMPLEMENTATION

4.1 Output Methodology
A total of 12 samples of different scenarios were tested involving varying complexity with CPU
inference against GPU accelerated inference as well as FPGA accelerated inference. The results
are plotted in a table and Graph are drawn to better analyze the results.

4.1.1 Hardware testing methodology

 Tested SSD against CPU vs GPU vs FPGA hardware inference for 12 video samples.
 Calculate relative Performance from fps average of CPU vs GPU vs FPGA
 Relative performance plotted in Graph

4.1.2 Global chip shortage
The Semiconductor shortage and high demand caused GPU prices to increase several fold to the
point that even several years old GPU end up being more expensive now than the time they were
launched (several years ago). Also Global Tread of cyptocurrency mining is launching of several
thousand crypto startups is future deteriorating the solution as cryptocurrency mining is primarily
done in GPU and the algorithms being run on them are very heavy on power draw causing not on
high power consumption put future stressing the electricity grid which is also a big challenge for
climate change. There is also a question on cryptocurrency need because in the end we us mostly
use fossil fuels for electricity generation and basically cryptocurrency mining is just the guess
(requires computational power) of random computer generated blocks in a competitive block
chain. The main goal of cryptocurrency was decentralization of money from banks and
government thought the same can be achieved by other methods such as proof of stake method
rather than proof of work method. The Algorithm of such crypto currencies is such that of each
block to be mined it has to be guessed by the system. The average guess time it takes to currently
predict a Crypto key of the current block in the block chain is inversely proportional to
computational power. And since all the nodes or Computers are also predicting the Cryptographic
key for the same block, the more computational power you have the more is the probability to
correctly mine the block in the block chain. So people/organizations involved in cryptographic
mining end us having Several High end GPUs in SLI all mining the same block in the block chain.
Since there is a Crypto boom many of these organizations end us being very large financially and
end up creating large Crypto farms with several thousand high ends GPU to increase their chances
of mining the block much faster than other nodes. These farms take us energy equivalent to Entire
towns and smaller cities raising the question on environmental effects of crptocurrency mining.
Also most famous crypto currencies such as bitcoin and ethereum currently run on proof of work
system it is slates to change for ethereum soon. As ethereum plans to implement proof of stake
instead of proof of work by the end of 2022 hopefully will relive the already stressed GPU market.
As a result we used google colab for GPU Hardware acceleration for Machine Learning
algorithms for free.

4.1.3 Google Colab
For Output Implementation of Hardware acceleration of Machine Learning of FPGA we tested the
Kria KV 260 against traditional CPU rendering and GPU accelerated Inference. For This Purpose
12 samples were taken and Tested across each hardware for frames per second (fps) performance.
The Samples have been carefully selected to represent the real world scenario which is described

21

in more detail in section 4.6.
The three hardware solutions were performed on following hardware:

1. For CPU Inference the system was tested on Intel core i3 3240 a dual core quad thread
processor with max TDP of 55 Watts clocking at 3.3 GHz which was the fastest CPU
available to us.

2. For GPU Inference due to lack of GPU with us and a global chip shortage causing inflated
GPU prices as a result of Covid pandemic we looked at cloud solutions for GPU inference.

3. As a result for GPU testing and the lack of a CUDA capable GPU (For running GPU
acceleration on Nvidia GPUs) we used cloud solution Goggle Colab.

4. For FPGA we are using the Xilinx Kria KV 260 SOM board which we won under Xilinx
Adaptive computing challenge 2021.

4.2 Model Training and Description
For Model Training we are using a Pre-trained Model since the Project only deals with inference
performance. The model Used is SSD with Pre calculated Weights and Biases in inference graphs
that are imported into the Jupyter notebook.

4.3 Type 1 – CPU Inference
For CPU analysis the SSD code is being implemented in the Jupyter notebook. The code is being
run on Intel i3 – 3240 Processor for Inference

4.3.1 Type 1 – CPU Inference Rendering
Usage of available CPU machine
Implementation in Jupiter notebook

Requirements

 Open CV version 4.9.2 ; doesn’t run in 4.5.5 (need to upgrade)
 Python 3.6 ;doesn’t run in latest python version due to compatibility issue in open cv
 For additional system GPU acceleration need Nvidia CUDA though need a CUDA capable

Nvidia GPU (not available to us)

4.3.2 Jupyter Notebook Implementation

22

Fig 4.3.2: SSD code being implemented in CPU using Jupyter notebook

4.3.3 Power Draw – HW monitor + CPU-Z
Power Draw can be analyzed using HW Monitor software which is an open source utility that
provides very accurate Temperature monitoring of CPU for performance analysis and clock speed
evaluation we are using Windows Task Manager and CPU z software.

Fig 4.3.3a: Performance cap of CPU during Jupyter python 3 execution using CPU-z and Windows Task

Manager

23

Fig 4.3.3b: Power Draw of CPU during Jupyter python 3 execution using HW bot Monitor

4.4 Type 2 – GPU Inference
For Testing the Inference of GPU we are using Google Colab GPU runtime

4.4.1 Type 2 GPU Inference Rendering
Implementation in Google Colab itself.
Usage of Google Colab GPU runtime acceleration machine from:
Runtime> change runtime type > hardware acceleration > GPU

Requirements

 Open CV version 4.9.2 ; doesn’t run in 4.5.5 (need to upgrade)
 Avi input only
 Runtime gets recycled after some in free version so need to reupload files again
 Gets disconnected from server after some time if not in active use
 Limit in disk space available and ram assigned

24

Fig 4.4.1a: Running GPU hardware acceleration in Google Colab

Fig 4.4.1b: GPU Inference being run on Google Colab

25

Fig 4.4.1c: Nvidia smi function to analyzed power draw on Nvidia GPU

4.5 Type 3 – FPGA (Kria KV 260) Inference
For Testing the Inference of FPGA we are using Kria KV60 board we use Xilinx Kria KV260
FPGA Board.

4.5.1 Type 3 FPGA Inference Rendering
Usage of Xilinx Kria KV 260 FPGA board
Implementation in Ubuntu/Petalinux
Requirements:

 FPGA board
 Included getting started kit

4.5.2 Petalinux
The PetaLinux Tools package includes everything you'll need to modify, create, and deploy
Embedded Linux solutions on Xilinx processors. The solution, which interacts with the Xilinx
hardware design tools to simplify the creation of Linux systems for Xilinx FPGA Hardware, is
tailored to increase design productivity.
Developers can use these tools to make changes to the boot loader, Linux kernel, or Linux
applications. They may use the bundled complete system simulator (QEMU) or actual hardware
via network or JTAG to add new kernels, device drivers, programmes, libraries, and boot and test
software stacks.

1. Custom BSP Generation Tools - PetaLinux tools allow developers to align the software
platform with the hardware design when new features and devices are added. The
PetaLinux tools will create a bespoke Linux Board Support Package for you, complete
with device drivers for Xilinx embedded processor IP cores, kernel, and boot loader
settings. Software engineers may concentrate on their value-added applications rather than
low-level development duties with this capability.

26

2. Linux Configuration Tools - Tools for customizing the boot loader, Linux kernel, file

system, libraries, and system settings are included in PetaLinux. These setup tools are
completely aware of Xilinx hardware development tools and custom-hardware-specific
data files, allowing device drivers for Xilinx embedded IP cores, for example, to be
automatically produced and deployed based on the device's engineer-specified address.

3. Software Development Tools -PetaLinux utilities include development templates that let

software developers to construct custom device drivers, applications, libraries, and BSP
settings. The PetaLinux tools enable developers to package and share all software
components for easy installation and usage among PetaLinux developers after the product's
software baseline (BSP, device drivers, core apps, etc.) has been built.

Xilinx official guide was followed for Petalinux creation using Xilinx BSP following the user
guide mentioned in reference.

Fig 4.5.2a: Petalinux Board Support Package (BSP) for creating the Petalinux project

Fig 4.5.2b: final .wic Petalinux project file created

4.5.3 Balena Etcher
BalenaEtcher is a free and open-source application for creating live SD cards and USB flash
drives by writing image files such as.iso and.img files, as well as zipped folders, to storage media.
Balena created it, and it's licensed under the Apache License 2.0.
The petalinux project file created in section 4.5.2 is burned in the SD card using Balena Etcher
Tool. The SD card can then be inserted into the Kria SOM board for running the Petalinux project

4.5.4 Tera Term
Tera Term is a free open source terminal emulator program for windows which is capable of
emulating different types of terminals. It supports SS1 and SSH2 serial port connections and is
often used to automate tasks related to remote connections from PC to other hardware. In our case
since the FPGA board relies on serial communication with the SOM the Tera Term provides that
serial port connectivity to communicate directly with this FPGA Fabric.

27

Fig 4.5.4a: COM port setting for Kria KV 260. Note that board has to be found among all the available

serial COM ports.

Fig 4.5.4b: After booting into the Kria SOM setting SOM password for the default Petalinux user

Fig 4.5.4c: COM port setting for Kria KV 260. Note that board will fail to correctly boot without these

settings as the default baud rate is too low for serial communication with Kria SOM

The Default setting of COM port provide gibberish output so they need to be changed to following
settings for effective serial communication between the board and the Kria SOM

 Correct COM port for Krai (need to find that out)
 Speed/baud rate - 115200
 Data - 8 bit
 Parity - none
 Stop bit - 1 bit
 Flow control - none

4.5.5 Xmutil Packagegroup
 Xmutil package group - xmutil is in charge of loading all of the accelerated apps.

28

The tool may be used to check the platform's status, manage accelerated apps, and perform a
variety of other tasks.

Fig 4.5.5a: Different packagegroups compatible with kria SOM

Fig 4.5.5b: Accelerator being loaded in the Kria SOM using Tera Term

Fig 4.5.5c: Accelerator output after being loaded with face Recognition algorithm

29

4.5.6 Pixabay
All the video files were taken from Pixabay which is a commercial license free video hosting
platform and thus the video samples can be used free of charge for any purpose including
commercial purposes. 12 Samples were taken from of 1920p by 1080p were taken from Pixabay
for testing of various hardware in this project.

4.5.7 Ubuntu LTS
A Ubuntu is a Debian-based Linux distribution that uses largely free and open-source software.
For Internet of Things devices and robots, Ubuntu is available in three editions: Desktop, Server,
and Core. All versions can be installed on a single computer or in a virtual machine. Because
Debian was (and still is) open source, Shuttleworth used it as the foundation for his operating
system, which he dubbed Ubuntu.
Ubuntu translates to "humanity toward others" and "I am who I am because of who we all are."
We have already installed Ubuntu 20.02 LTS in our VM machine which is used in this project.

4.5.8 ffmpeg
FFmpeg is a free and open-source software project that consists of a collection of libraries and
tools for dealing with video, audio, and other types of multimedia files and streams.
The command-line ffmpeg utility, which is used to process video and audio files, lies at the heart
of this project as we use it to convert mp4 file into .h264 files which are supported by KriaKv 260
FPGA

Fig 4.5.8a: ffmpeg command for converting .mp4 file to .h264 file

Fig 4.5.8b: mp4 frames being converted to .h264 frames using ffmpeg

4.5.9 .H264/.H265 video encoding
Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video
compression standard based on block-oriented, motion-compensated coding. .h264 is much more

30

powerful algorithm for encoding compared to MPEG-4 aka mp4 Encoding in h.264 is 1.5 to 2
times more efficient than mp4. Since the h264 has much higher data bitrate compared to the same
file size mp4 encoded video file, h264 is more computationally expensive. Such encoding methods
are much more used in cameras and surveillance cameras much more suited for embedded
applications. Since
Kria only takes .h264/.h265 input thus in this project .h264 files were used for test Kria Inference
Performance.

4.5.10 WinSCP
AWinSCP is a free and open-source client for Microsoft Windows that supports SSH File Transfer
Protocol, File Transfer Protocol, WebDAV, Amazon S3, and secure copy protocol. Its primary
purpose is to transmit files securely between a local computer and a distant server.
We use WinSCP to transfer files between Kria board and Windows particularly input and output
test files. Follow the following steps in WinSCP for Kria files transfer:
1) Find IP of your Kria board using: ifconfig command in Tera Term
2) This IP is used to connect to the Kria KV 260 for easy file transfer & the password is the
password of the Kria board that was set during initialization.
3) Root file is the output file from the board

Fig 4.5.10: WinSCP transferring files between Petalinux (Kria SOM) and windows system

4.5.11 Docker
Docker is a free and open platform for building, delivering, and operating apps. Docker allows to
decouple apps from infrastructure, allowing to swiftly release software. Since it is a prerequisite
for installation of Vitis AI we first need to install docker into our Ubuntu system by using the
official guide provide by docker given in reference. Use following command for docker
installation:

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin

31

Fig 4.5.11a: Installing docker in Ubuntu system

Fig 4.5.11b: Verifying the docker installation

4.5.12 Viti AI
The Vitis AI development environment is a customized platform for AI inference acceleration.
The Vitis AI development environment includes APIs to prune, quantize, optimize, and compile
pre-trained networks for AI inference, as well as deep learning frameworks like Tensor flow and
Caffe. Official Xilinx github repository can be checked in more detail mentioned in Reference
number . This official Xilinx guide was followed by us to install Vitis AI in Ubuntu LTS 20.04 in
VM Machine. Following the official guide the downloaded dpu image image would be named
xilinx-kv260-dpu-v2021.2-v2.0.0.img and would be around 2.5 GB.

32

Fig 4.5.12a: Cloning Vitis AI from Xilinx official github Vitis AI link

Fig 4.5.12b: Installing of Vitis AI image and running demo samples by Xilinx

Fig 4.5.12c: Vitis AI Runtime directory structure from Xilinx official github page

4.5.13 Jupyter Installation
For running Jupyter file installation we need to run it on chrome based web browser.
Following command gives us the list of already running jupyter servers :

33

Jupyter-server list

Now for authentication of Jupyter server in Tera Term we first need to find the IP address to the
board for this purpose type the following command in Tera Term :

ifconfig

The ip address will be in the format 192.xxx.x.xx. Here our IP address is 192.168.1.40. This IP
address is written in Tera Term using the following command:

python3 /usr/bin/jupyter-lab –nobrowser –notebook- dir=/home/petalinux/notebook –

ip=192.xxx.x.xx &

This will authenticate the Kria SOM with the Jupyter notebook and similarly Jupyter code can be
implemented.

Fig 4.5.13a: Authenticating the Kria SOM to Jupyter notebook in Tera Term

Now, the link can be copied to any chrome based web browser to implement Jupyter notebook for
python code.

34

Fig 4.5.13b: Jupyter notebook being implemented in Google chrome

4.5.14 Platform Stats
For Platform statistics Xilinx Xmutil tools can be utilized by using the following command in
Tera Term under a root user :
`# xmutil platformstats –p
-p gives platform statistics on power draw
-p can be replaced by –a to get all the statistics of the Kria SOM

This platform can be used to check the system power draw, VCC core voltages, package
temperature as well as other useful parameters. These system statistics for power draw from these
tools was used in this project later on.

Fig 4.5.14: Xilinx xmutil tool being implemented for system power draw and other statistics in Tera Term

35

4.6 Sample Selection and categories
A big problem holding Machine Learning algorithms from being implemented in real world
scenarios is the lack of accuracy in real world scenarios in some particularly challenging cases.
Even in the most cutting edge research happening in the field of Machine Learning particularly in
ADAS (Advance Driver Assistance System) cars or FSD (Full Self Driving) cars required a
human to be constantly in driving seat due to the lack of accuracy on such machine learning
algorithms in untrained test cases or in other world unseen scenarios as was evident in several
crashes of Tesla’s self driving cars and Uber autonomous car, which actually caused human lives.
Although a Machine Learning model on average will always be better than Human driver in terms
of accidents and fatalities caused because in general Humans are terrible driver, the ethical issue
involved in case of an accident caused by self driving cars make it necessary for us to make sure
that such machine learning solutions perform much better in unseen scenarios.
Such an approach requires the system to be tested thoroughly against most of unseen scenarios
that can occur in real life. Though it is impossible to train a ML model for all unforeseen
scenarios, a variety of general test cases can be taken to test for most of these unseen scenarios.
Considering such an approach we tested the system across 12 different samples. Each sample is a
bit different than other representing a different real world scene. The samples were further
categorized into 3 categories depending upon the complexity of the scene with each category
having exactly 4 outputs. This will help us analyze the performance of different models in
different magnitude of complexity. These categories are further explained in section 4.6.1. 4.6.2
and 4.6.3. Each category involves certain variation in scene to better utilize the limited time and
resources available to us and to get the most out of these limited test cases. Since the goal of this
project was to analyze hardware acceleration of machine learning on FPGA, a variety of test
scenarios will result in much more accurate representation of its performance in real world
scenarios.

4.6.1 Category 1 output
• Describes a Computationally expensive object detection scenario.

• More than or equal to 12 object detections per Frame.

• Represents someway complex scene such as traffic road. Cases include both high volume
high density scenes.

• Sample 9 to Sample 12 represent such case.

 Category 1 (n>=12)

Sample 1 - Typical traffic junction of a city. It includes large number of pedestrian making this
scene particularly challenging for Machine Learning Models due to large number of classes
involved.
Sample 2 – Scene of an Indian city Junction. This scene represents a typical Indian scenario with
high density high volume traffic with large number of object classes, particularly challenging due to
high complexity. Better performance here will represent a much more suitable platform for machine
learning for places like India.
Sample 3 –Represents a high volume traffic scene such as observed in traffic junctions or toll plaza.
This scenario is particularly challenging due to the sheer volume of object being detected in each
frame.
Sample 4 –Represents high volume high speed traffic. This scenario is particularly complex due to

36

high variability as object classes change rapidly with little frames.

4.6.2 Category 2 output
• Describes a Computationally moderate object detection scenario.

• More than 6 but less than 12 object detections per Frame.

• Represents someway moderate scene such as a normal moderate traffic road. Cases include
either high volume or high density scenes.

• Sample 5 to Sample 8 represent such case.

Category 2 (6<n<12)

Sample 5 - Fast moving, down highway. View from bottom. Represent fast moving object classes
Sample 6 –A 6 lane highway. Represent high volume moderate speed Scenario.
Sample 7 – Indian scenario with large object classes low volume scene.
Sample 8 – Represents a roundabout.

4.6.3 Category 3 output
• Describes a Computationally inexpensive object detection scenario.

• Less than or equal to 6 object detections per Frame.

• Represents someway simple scene such as somewhat empty traffic road.

• Sample 9 to Sample 12 represent such case.

Category 3 (n=<6)

Sample 9 – Low Light (evening/morning) scene. This scene was particularly selected to test low
light performance of different hardware.
Sample 10 – Defocus scenario. This scene represents a foggy weather or a camera lens fog or rain.
Sample 11 – Overwatch. Represents a bridge mounted camera system. View from top.
Sample 12 -Moving frame (car). Represent a moving camera mounted in a car. Such scenario may
represent ADAS or FSD system.

4.7 Sample Output

4.7.1 Category 1 sample outputs
Sample 1

37

Fig 4.7.1a : 4 screen Grid of output of different hardware inference of sample 1. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

Sample 2

Fig 4.7.1b : 4 screen Grid of output of different hardware inference of sample 2. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

Sample 3

38

Fig 4.7.1c : 4 screen Grid of output of different hardware inference of sample 3. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

Sample 4

Fig 4.7.1d : 4 screen Grid of output of different hardware inference of sample 4. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

4.7.2 Category 2 samples outputs

Sample 5

39

Fig 4.7.2a : 4 screen Grid of output of different hardware inference of sample 5. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

Sample 6

Fig 4.7.2b : 4 screen Grid of output of different hardware inference of sample 6. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

40

Sample 7

Fig 4.7.2c : 4 screen Grid of output of different hardware inference of sample 7. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

Sample 8

Fig 4.7.2d : 4 screen Grid of output of different hardware inference of sample 8. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

41

4.7.3 Category 3 sample outputs
Sample 9

Fig 4.7.3a : 4 screen Grid of output of different hardware inference of sample 9. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

Sample 10

Fig 4.7.3b : 4 screen Grid of output of different hardware inference of sample 10. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

42

Sample 11

Fig 4.7.3c : 4 screen Grid of output of different hardware inference of sample 11. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

Sample 12

Fig 4.7.3d : 4 screen Grid of output of different hardware inference of sample 12. Top left screen is the

original video. Top right screen is output of CPU inference. Bottom left is output of GPU inference. Bottom

right is the output of FPGA inference.

43

4.8 Output chart and Calculations
4.8.1 Output table
The observed performance of 3 Hardware implementations were marked against all 12 video
sample marking total 36 data points. These samples were further marked against the 3 categories
mentioned in section 4.6.1, 4.6.2 and section 4.6.3 for category 1, category 2 and category 3
respectively. The category represents scene complexity and fps represents frames per second
which implies the number of frames the hardware was able to render each second. All input video
samples are 1920p*1080p. So, each frame has around 2 million pixels which is lot of data to be
processed. For GPU rendering the input files were avi input whereas the FPGA uses .h264 format
(since Kria-KV260 is not compatible with avi/mp4 input) mentioned in 4.5.9 which is raw data
format thus representing larger bitrates to be processed.
The CPU utilized for CPU plot is Intel i3 3240 – a dual core quad thread processor with max TDP
of 55Watts clocked at 3.3 GHz
The GPU utilized in this project is Nvidia Tesla K80 (Cloud Platform- Google colab)
The FPGA utilized is Xilinx Kria KV260 SOM
All 12 video samples were tested against these 3 hardware and the results were plotted in the table

4.8.1a and 4.8.1b.

Table 4.8.1a: Raw hardware performance of category wise distributed all 12 video samples. Fps represents
frames per second of the rendered video.

 Hardware Hardware Acceleration Method

Category Sample Number CPU GPU FPGA (Kria KV260)

Category 1
(n<=6)

Sample 1 0.12 fps 2.53 fps 36.71 fps

Sample 2 0.23 fps 2.59 fps 36.31 fps

Sample 3 0.29 fps 4.20 fps 40.77 fps

Sample 4 0.32 fps 3.07 fps 36.51 fps

Category 2
(6<n<12)

Sample 5 0.31 fps 3.07 fps 36.15 fps

Sample 6 0.31 fps 4.63 fps 36.39 fps

Sample 7 0.20 fps 3.44 fps 38.34 fps

Sample 8 0.48 fps 4.02 fps 36.63 fps

Category 3
(n>=12)

Sample 9 1.03 fps 4.99 fps 37.90 fps

Sample 10 1.18 fps 4.91 fps 36.04 fps

Sample 11 0.75 fps 3.93 fps 37.27 fps

Sample 12 1.39 fps 5.42 fps 36.75 fps

44

Table 4.8.1b: Hardware Performance Relative to GPU Inference of category wise distributed all 12
samples.

 Hardware performance relative to GPU Inference

 Sample

Number

CPU GPU FPGA (Kria KV260)

Category 1

(n<=6)

Sample 1 0.05x 1x 14.51x

Sample 2 0.09x 1x 14.02x

Sample 3 0.07x 1x 9.71x

Sample 4 0.10x 1x 11.78x

Category 2

(6<n<12)

Sample 5 0.07x 1x 7.86x

Sample 6 0.10x 1x 11.62x

Sample 7 0.06x 1x 11.15x

Sample 8 0.12x 1x 9.1x

Category 3

(n>=12)

Sample 9 0.21x 1x 7.6x

Sample 10 0.24x 1x 7.3x

Sample 11 0.19x 1x 9.48x

Sample 12 0.26x 1x 6.78x

4.8.2 Output Graphs
The results from table 4.8.1a and 4.8.1b were plotted in the bar graph in Fig 4.8.2a to get a sense
of relative performance of these 3 hardware inferences on all 12 samples. Further a line plot was
plotted in Fig 4.8.2b to better analyze the performance trend if the three categories are taken into
account as line chart better represents the relative difference in performance of different samples.

45

Fig 4.8.2a : Plot of relative hardware performance compared with each other CPU vs GPU vs FPGA for all

12 video samples. (Bar Graph)

Fig 4.8.2b : Plot of relative hardware performance compared with each other CPU vs GPU vs FPGA for all
12 video samples. (Line Plot)

0.
05

0.
09

0.
07

0.
1

0.
07

0.
1

0.
0

6

0.
1

2

0.
21

0.
24

0.
1

9

0.
261 1 1 1 1 1 1 1 1 1 1 1

14
.5

1

14
.0

2

9.
71

11
.7

8

7.
86

11
.6

2

11
.1

5

9.
1

7.
6

7.
3

9.
48

6.
78

PLOT OF HARDWARE RELATIVE PERFORMANCE

CPU GPU FPGA (KRIA)
0.

05

0.
09

0.
07 0.
1

0.
07 0.
1

0.
06

0.
12

0.
21

0.
24

0.
19

0.
26

1 1 1 1 1 1 1 1 1 1 1 1

14
.5

1

14
.0

2

9.
71

1
1

.7
8

7.
86

11
.6

2

11
.1

5

9.
1

7.
6

7.
3

9.
48

6.
78

PLOT OF RELATIVEHARDWARE PERFORMANCE (LINE
PLOT)

CPU GPU FPGA (KRIA)

46

4.10 Conclusion

1) If we look at relative performance of different hardware inference methods from table 4.8.1b we

can clearly see that on average the FPGA inference performance is 10.1 times faster than GPU

inference. This performance varies from the 6.7 times to 14.5 times in the samples we tested.

2) If we look at category wise difference in performance between GPU inference and CPU

inference we see:

 For category 1 we observe we observe a 12.6 times performance improvement of FPGA

compared to GPU inference

 For category 2 we observe we observe a 9.9 times performance improvement of FPGA

compared to GPU inference

 For category 3 we observe we observe a 7.8 times performance improvement of FPGA

compared to GPU inference

1) Both the Inference ended up being significantly faster than CPU inference as Vision Kernels

Perform very well in parallel computation. GPU perform computations parallel as they have

several thousand cores for easy parallel computation as well as FPGA which by design can be

configured to Perform parallel computation highly efficiently as per the algorithm being

implemented. Since, CPU perform computations serially, they end up performing poorly. So,

clearly there is a need for a hardware accelerated solution for running these computationally

expensive Machine Learning Algorithms for real world scenarios which involve high density

high volume object detections (without lowering input resolution of the camera and losing

valuable frame data in the process). Also, the accuracy of the model is seen to increase in

FPGA hardware acceleration as more computational resources are available for object

localization and object classification.

2) From 2 point as well as from line plot in Fig 4.8.2b, if we look at category wise difference in

performance between different hardware acceleration we can clearly see a tread as we move

towards the right side of graph there is a decrease in the separation of lines between the

hardware implementations. As we know from category segmentation moving right side of the

chart i.e. moving from category 1 towards category 3 there is a decrease in scene complexity

(see section 4.6). This suggests that the FPGA hardware is much more effective in complex

object detection scenarios involving high volume high density objects in each frame. Thus, for

more complex practical scenarios involving large number of objects with high density, this

report concludes that FPGA hardware acceleration performance much better compared to GPU

hardware acceleration for model Machine Learning inference.

3) From Point 4 and sample 2 & sample 7 both of which include Indian roads involving large

47

variety of classes with large volume object detection with high density object detections in

each frame particularly in sample 2 additionally also having high speed traffic as the original

input video was sped up (particularly challenging test case). Since, sample 7 ended up

observing the largest difference in relative performance in its category it is evident for such

challenging practical scenarios such as India the FPGA accelerated of Machine Learning

algorithms is suited much more than GPU accelerated inference.

4) The Kria KV260 FPGA Works with either .h264/.h265 while GPU works with mp4/avi input.

Since Kria was tested on .h264 files and .h64 files have a much higher bitrates as explained in

section .FPGA is much more suitable for scenarios which might require higher resolution

camera input such as for ADAS (Advanced Driver Assistance System) or FSD (Full Self

Driving) systems. These self driving solutions which are being invested upon in millions by

large AI companies such as Google’s Waymo, Uber’s Aurora and Tesla require high

resolution images fed from HD camera onboard to resolve objects which are far away. Thus,

FPGA is much more suited for such task as it was tested on higher bit rate video input.

5) Although the Inference performance of Machine Learning is much better in FPGA compared

to GPU the actual training of these Machine learning Models has not been tested by us in this

report since we used an already pre-trained machine learning model explained in Section.

Although the reference paper we took for this project (Reference number [2]) suggests that

Model training may end us performing better (in at least some scenarios) in GPU as compared

to FPGA due to availability of high bandwidth large amount of memory, this cannot be

independently verified yet by us as this report only looks at Inference performance. Further

research is needed in this aspect but if GPU indeed ended up performing better a possible

solution may be to train the Machine learning model first on GPU and then for inference

FPGAs can be implemented.

6) Power Draw - Looking at the efficiency of the hardware acceleration solution From section

4.3.3 and section 4.4.2 section 4.5.14 and section we can see a power drown of 19.8 Watts, 34

Watts and 15 Watts for CPU inference, GPU Inference and FPGA inference respectively.

Since the raw performance FPGA is already better than GPU and CPU, The lower power draw

indicates that FPGA is the most efficient among them. Thus, for embedded solutions or

computing in the edge or for implementation in real world such as traffic light management

(embedded FPGA in traffic light etc.) etc. lower power draw of FPGA means that it can be

powered by solar panels for a completed embedded solution father decreasing the hardware

cost in such a project.

7) EDP (Energy Delay Product) - Run-time or energy per frame alone do not provide a complete

48

picture. A hardware platform can be incredibly energy efficient while yet being much too

sluggish to be useful. The Energy Delay Product (EDP) statistic considers the algorithm's

throughput in milliseconds per frame (ms/frame) as well as the energy spent per frame

(mJ/frame). The product of energy/frame and delay time is the EDP. This allows for a fair

comparison when selecting which hardware architecture is best for a given calculation. Lower

EDP indicates that the hardware design is capable of doing specified compute tasks with less

power and in less time.

EDP = energy/Frame * Delay time

[Energy/Frame = Energy consumed (mJ) / Frame rate output

Delay time = (1000/fps achieved) mS

Fps= frames per second]

Since both the parameters are already lower in FPGA compared to GPU. We can without

calculation conclude that EDP is much lower in FPGA compared to GPU. Thus, FPGA

outperforms GPU in this parameter.

8) In final Wrapping of conclusion this report concludes that for hardware acceleration of

Machine Learning Inference FPGA outperform GPU for SSD Models. Additionally, this

performance difference increases with increase in complexity of scenario. Thus, for complex

vision kernels FPGA hardware accelerated inference must be considered compared to other

solutions

49

APPENDIX
Software Code
import cv2

cv2.__version__

import matplotlib.pyplot as plt

cd "C:\Users\My PC\Desktop\Major Project"

config_file = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
frozen_model = 'frozen_inference_graph.pb'

model = cv2.dnn_DetectionModel(frozen_model,config_file)

classLabels=[]
file_name='labels.txt'
with open(file_name,'rt')as fpt:
 classLabels = fpt.read().rstrip('\n').split('\n')

print(classLabels)

print(len(classLabels))n

model.setInputSize(320,320)
model.setInputScale(1.0/127.5)
model.setInputMean((127.5,127.5,127.5))
model.setInputSwapRB(True)

img = cv2.imread('car meet.jpg') ##read an image

plt.imshow(img)

plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

classIndex, confidece, bbox = model.detect(img,confThreshold=0.5)
print(classIndex)

50

font_scale = 3
font = cv2.FONT_HERSHEY_PLAIN
for ClassInd,conf,boxes in zip(classIndex.flatten(),confidence.flatten(), bbox):
 cv2.rectangle(img,boxes,(225,0,0),2)
 cv2.putText(img,classLabels[ClassInd-1],(boxes[0]+10,boxes[1]+40), font,
fontScale=font_scale, color=(0,255,0),thickness=3)
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

Video Demo

import numpy as np

import cv2

import time

cap = cv2.VideoCapture("nycoutavi.avi")

fourcc = cv2.VideoWriter_fourcc(*'XVID')

out = cv2.VideoWriter('outtest17.avi', fourcc, 30.0, (1920, 1080))

font_scale = 2

font = cv2.FONT_HERSHEY_PLAIN

prev_frame_time = 0 # FPS

new_frame_time = 0

while(True):

 ret, frame = cap.read()

 if not ret:

 break

 font = cv2.FONT_HERSHEY_SIMPLEX

 new_frame_time = time.time()

 fps = 1/(new_frame_time-prev_frame_time) # Calculating the fps

 prev_frame_time = new_frame_time

 fps_text= "Framerate: {:.2f} FPS".format(fps)

 ClassIndex, confidence, bbox = model.detect(frame,confThreshold=0.55)

 print(ClassIndex)

51

 if (len(ClassIndex)!=0):

 for ClassInd, conf, boxes in zip(ClassIndex.flatten(), confidence.flatten(), bbox):

 if (ClassInd<=80):

 cv2.rectangle(frame,boxes,(225,0,0),2)

 frame = cv2.resize(frame, (1920, 1080))

 hsv=cv2.putText(frame,classLabels[ClassInd-1],(boxes[0]+10,boxes[1]+40), font,

fontScale=font_scale, color=(0,255,0),thickness=3)

 hsv=cv2.putText(frame, fps_text, (7, 70), font, 2, (0, 0, 255), 2, cv2.LINE_AA)

 hsv = cv2.resize(hsv, (1920, 1080))

 cv2.imshow('frame',frame)

 out.write(hsv)

 cv2.imshow('Original', frame)

 cv2.imshow('frame', hsv)

 if cv2.waitKey(1) & 0xFF == ord('a'):

 break

cap.release()

out.release()

cv2.destroyAllWindows()

52

REFERENCES

[1] TomTom.com, 'Tom Tom World Traffic Index', 2019. [Online]. Available:

https://www.tomtom.com/en_gb/traffic-index/ranking/

[2] Murad Qasaimeh*, Kristof Denolfy, Jack Loy, Kees Vissersy, Joseph Zambreno*, and Phillip

H. Jones*, “Comparing Energy Efficiency of CPU, GPU and FPGA Implementations for Vision

Kernels”, *Iowa State University, IA, USA, yXilinx Research Labs, CA, USA. (Qasaimeh, et al.,

2019)

[3] J. Redmon, ‘Darknet: Open Source Neural Networks in C’, 2016. [Online]. Available:

https://pjreddie.com/darknet/

[4] https://www.xilinx.com/products/som/kria/kv260-vision-starter-kit/kv260-getting-

started/getting-started.html

[5] https://xilinx.github.io/kria-apps-docs/main/build/html/docs/build_petalinux.html

https://docs.xilinx.com/r/2021.1-English/ug1144-petalinux-tools-reference-guide/Revision-

History

[6] https://github.com/Xilinx/Vitis-AI/blob/master/setup/mpsoc/VART/README.md

[7] https://docs.docker.com/engine/install/ubuntu/

[8] https://ffmpeg.org/documentation.html

[9] https://ttssh2.osdn.jp/index.html.en

https://xilinx.github.io/kria-apps-docs/main/build/html/docs/build_petalinux.html
https://docs.xilinx.com/r/2021.1-English/ug1144-petalinux-tools-reference-guide/Revision-History
https://docs.xilinx.com/r/2021.1-English/ug1144-petalinux-tools-reference-guide/Revision-History
https://github.com/Xilinx/Vitis-AI/blob/master/setup/mpsoc/VART/README.md
https://docs.docker.com/engine/install/ubuntu/
https://ffmpeg.org/documentation.html
https://ttssh2.osdn.jp/index.html.en

53

