
E-commerce Web API Testing and Automation

Minor project report submitted in partial fulfillment of
the requirement for the degree of Bachelor of

Technology in
Computer Science and Engineering

By
Jaspreet Singh 181477
Avirukh Dahiya 181462

UNDER THE GREAT SUPERVISION OF

Dr. Amit Kumar

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology, Waknaghat,
173234, Himachal Pradesh, INDIA

TABLE OF CONTENT

Title Page No.

NOTATION USE-CASE DIAGRAM 7 SEQUENCE DIAGRAM 7

TRAINING TAKEN AT INDUSTRY OBJECTIVE AND SCOPE OF TRAINING 11 DURATION AND
SCHEDULE OF TRAINING 11 SOFTWARE TRAINING WORK UNDERTAKEN 11
CONCLUSION AND FEEDBACK 11

1. INTRODUCTION PROJECT DETAILS 12 PURPOSE 12 SCOPE 12 OBJECTIVE 12

2. Context Diagram 3. SCOPE STATEMENT 14 4. Use Cases 15

5. SYSTEM DESIGN FEASIBILITY STUDY 19 Technical Feasibility: 19 Time Schedule Feasibility:
19 Operational Feasibility: 19 Implementation Feasibility: 19 PROJECT PLANNING 19 Project

Development Approach & Justification: 19 Iterative Waterfall: 20 Justification: 20 Milestones and
Deliverables 21 Roles and Responsibilities 21 Group Dependencies: 21

ProjectScheduling22 STUDYOFCURRENTSYSTEM23 USERCHARACTERISTICS23
HARDWAREANDSOFTWAREREQUIREMENTS23

HardwareRequirements: 23 SoftwareRequirements: 23 SYSTEMARCHITECTUREDESIGN24
ClassDiagram: 24 SequenceDiagram: 25 User/Customer/Client: 33 DeploymentDiagram: 39

DATABASEDESIGN40 TableandRelationship: 40 DataDictionary: 41 IMPLEMENTATION
ENVIRONMENT 43 MODULES SPECIFICATION 43 CODING STANDARDS 43 EXAMPLE

CODING 43 Development Tool (Intellij) : 46 Java : 47 Example Code: 47 Spring Boot : 47
Postgresql : 48 Version Control (Git/GitHub) : 49

6Implementation

7Tools, Technologies, APIs and Libraries45

8TESTING UnitTesting: 52 SubSystemTesting: 53 SystemTesting:

53 TESTINGMETHODS: 54 BlackBoxTesting: 54 WhiteBoxTesting: 54 DesignofTestCases:

55 TESTCASES: 55 ADMIN: 60 LoginFails 60AddNewProduct: 61 Viewall Products:

62 ViewProductby Id: 63 ViewCategories: 63 DeleteProductby its ID: 64 DeleteProductwith
Invalidproduct_id: 65 Logout: 65 Register: 66 RegisterFailed: 66 UserviewProducts: 68
Addtocart: 68 Addtocartwith invalidproduct’s id: 69 ViewCart69 Removeproductfromcart: 70
UserLogout: 71 AccesswithoutLogin71

9LIMITATIONANDFUTUREENHANCEMENT72 LIMITATION72 FUTUREENHANCEMENT72

10CONCLUSIONANDDISCUSSION73 CONCLUSION73 DISCUSSION73
SelfAnalysisoftheProject: 73 SummaryofProject: 73

DECLARATION

We hereby declare that this project has been done by me under the supervision
of Dr. Amit Kumar of the Jaypee University of Information Technology. We also
declare that neither this project nor any part of this project has been submitted
elsewhere for the award of any degree or diploma.

Supervised by:

Dr. Amit Kumar
Associate Professor
Department of Computer Science & Engineering and Information Technology
Jaypee University of Information Technology

Submitted by:

Jaspreet Singh
181477
Avirukh Dahiya
181462
Computer Science & Engineering Department
Jaypee University of Information Technology

CERTIFICATE

This is to certify that the work which is being presented in the project
report titled “Ecommerce Web API Testing and Automation ” in
partial fulfillment of the requirements for the award of the degree of
B.Tech in Computer Science And Engineering and submitted to the
Department of Computer Science And Engineering, Jaypee University
of Information Technology, Waknaghat is an authentic record of work
carried out by Jaspreet Singh(181477),Avirukh Dahiya(181462)
during the period from January 2022 to May 2022 under the
supervision of Dr. Amit Kumar, Department of Computer Science and
Engineering, Jaypee University of Information Technology,
Waknaghat.

The above statement made is correct to the best of our knowledge.

Dr. Amit Kumar
Assistant Professor(SG)
Computer Science & Engineering and Information
Technology Jaypee University of Information Technology,
Waknaghat

ACKNOWLEDGEMENT

Firstly, We express our heartiest thanks and gratefulness to Almighty
God for His divine blessing that makes it possible to complete the
project work successfully.

We are grateful and wish our profound indebtedness to Supervisor
Dr. Amit Kumar, Associate Professor, Department of CSE Jaypee
University of Information Technology, Wakhnaghat. Deep Knowledge
& keen interest of our supervisor in the field of Deep Learning
carrying out this project. His endless patience, scholarly guidance,
continual encouragement, constant and energetic supervision,
constructive criticism, valuable advice, reading many inferior drafts,
and correcting them at all stages have made it possible to complete
this project.

We would like to express my heartiest gratitude to Dr. Amit Kumar,
Department of CSE, for his kind help to finish our project.

We would also generously welcome each one of those individuals
who have helped us straightforwardly or in a roundabout way in
making this project a win. In this unique situation, We might want to
thank the various staff individuals, both educating and
non-instructing, which have developed their convenient help and
facilitated my undertaking.

Finally, We must acknowledge with due respect the constant
support and patience of our parents.

Avirukh Dahiya
Jaspreet Singh

NOTATION

1) USE-CASE DIAGRAM

Actor: Someone interacts with use case

2) CLASS DIAGRAM

Use Case: System function

Communication Link: Indicating that the
actor andthe use case can communicate

with one another.

Include: The stereotype "<<include>>"
identifies the relationship as an include
relationship.

Simple Association: A structurallink
between two peer classes.

Composition: Objects of Class2 liveand
die with Class1.

Dependency: Class1 depends on
Class2.

3) SEQUENCE DIAGRAM
Actor: represent roles played
by human users, external
hardware, or other subjects.

Lifeline: A lifeline represents
an individual participant in the
Interaction.

Activations: A thin rectangle
on a lifeline) represents the

period during which an
element is performing an

operation.

Call Message: Call message is
a kind of message that

represents an invocation of
operation of target lifeline.

Return Message: Return
message is a kind of message

that represents the pass of
information back to the caller

of a corresponded former
message.

4) DEPLOYMENT DIAGRAM
Nodes: 3-D box represents a
node,either software or
hardware.
Association: Indicates
interaction between
nodes.

TRAINING TAKEN AT INDUSTRY

OBJECTIVE AND SCOPE OF TRAINING

● The key objective of the training was to take an experience of how industry works.
● I learned various training tools and concepts in Java.
● I learned how to write clean code with the appropriate docs which works in the industry.

DURATION AND SCHEDULE OF TRAINING

The duration of training for tools and concepts of Java was 15-16 weeks.
The training started from 7th February 2022.

SOFTWARE TRAINING WORK UNDERTAKEN
Tools Training : Git, GitHub, Intellij, Docker, PostgreSQL
Concept Training : OOP, DBMS, Java, Spring Boot

CONCLUSION AND FEEDBACK

● The training of tools and concepts was very interesting and helpful in respect to industry. ● I
learned how to write the clean and tidy code with appropriate unit test cases as well as the best
practices for making a Rest API/Service. I learned how to write docs for the code written so it
can be readable.
● I also learned the version control tools like Git and its commands, also learned GitHub and

was used to it.

1. INTRODUCTION

1.1 PROJECT DETAILS
Project provides an API for the E-commerce Site which has functionality for viewing
products, adding a product to their cart. API has functionality of registration & login
for Admin as well as Customers. API provides functionality of Admin side where he
can add/update/delete the products.

1.2 PURPOSE
This Web API serves the purpose of fetching as well as adding data to the Database
from UI or any API testing platform.

1.3 SCOPE

Currently this Web API has some sort of Security mechanism of Login but it can be
more secured. And also fields used by the big E-commerce platforms are missing in
Web API.

1.4 OBJECTIVE

This Web API allows Customer/Client to Login, view products,

add/remove the products to/from the cart.

For Admin, Web API has Login, view products, view categories,

add/update/delete a product/category and view users in Site.

2. Context Diagram

Context diagram

3. SCOPE STATEMENT

The Ecommerce Web API is an API which easily creates/updates/delete products as well as
User Authentication for safety.

In everyday life there are many difficulties we are facing. In this difficulties one of the
difficulty is to manage store/ecommerce site as well as in this hectic life schedule we don’t have
time to go for getting the products from the shops.

In my Web API, I have created a backend of the E-commerce site which has Admin – who
can manage the site, who can manage the products & users & Users – who can view products as
well as add them to the cart. Now this Web API may work with any sort of UI without any prior
knowledge of building/structuring of the API.

Apart from this Web API has UI friendly responses which can be easily utilized at the time of
creation of the UI as well as it is also user friendly for users when used the API for testing in the
postman. Also Web API is secure with basic sort of Authentication.

Currently this Web API has some sort of Security mechanism of Login but it can be more
secure. And also fields used by the big E-commerce platforms are missing in Web API.

4. Use cases

1) Customer/User/Client:

R1: Login:

a) Description : User will have to register for login and see the products and use

add to cart functionality
b) Pre condition : The user coming for first time after login
c) Input : Email, Password
d) Processing : Confirms password and email given by user.
e) Output : User can access the above functionality.

R2: Register:

a) Description : User have to register with required details.
b) Input : Email, username, password.
c) Processing : Creates new user and add to database.
d) Output : Success if created.

R3: View Products:

R3.1: View all Products

a) Description : If user login so he/she can view all the products present in
database.

b) Pre condition : The user must be login.
c) Processing : Gets all product present in database.
d) Output : List of products.

R3.2: View Products under a Category

a) Description: if user login then can view products under a category.
b) Precondition : the user must be login.
c) Input : category name/id.
d) Processing: gets all product under one category.
e) Output : List of products under one

category. R4: Cart Management:

R4.1: Add Product to Cart
a) Description : if user login then can add a product to a cart.
b) Pre condition : the user must be login.
c) Input : product to be inserted in cart.
d) Processing : saves product in cart of that user.
e) Output : product added to

cart R4.2: View Cart

a) Description : Shows products in the cart.

b) Processing : Gets the list of products in the cart.
c) Out Put : Shows products present in user’s cart.

R4.3: Remove Product From Cart

a) Description : if user login then can remove a product from the cart.
b) Pre condition : the user must be login.
c) Input : product to be removed from cart.
d) Processing : deletes product from cart of that user & decreases total price &

quantity if more than one product is added.
e) Output : product removed from cart

2) Admin:

R5: Login:

a) Description : Admin login to get access of admin.
b) Input : Email, password.
c) Processing : Verify email and password in database.
d) Post Condition : Access to admin functionality.

R6: View Users:

a) Description : View Users connected to the site.
b) Processing : Gets list of users present in database.
c) Output : list of users.

R7: Product Management:

R7.1: Add new Product:

a) Description : Adds a new product with details of that products.
b) Input : Product’s id, name, price, category, description, quantity.
c) Processing : saves the new product with the above details

R7.2: View a Product:

a) Description : View a particular product by its id.
b) Input : Product’s Id.
c) Processing : gets the product with the id.
d) Output : Product with the input id.

R7.3: Update Product:

a) Description : Update the product with its id.
b) Input : Product’s details to be updated.

c) Processing : updates the product and saves that to the database.
d) Output : success if saved.

R7.4: Delete Product:

a) Description : Delete the product with its id.
b) Input : Product’s id to be deleted.
c) Processing : removes that product from the database.

R8: Category Management:

R8.1: Add new Category:

a) Description : Adds new Category to the database.
b) Input : Category’s Id, name.
c) Processing : saves the category in database.
d) Output : Success if saved.

R8.2: View All Categories:

a) Description : View list of all the categories in the site. b)
Processing : Gets list of all categories present in database. c)
Output : list of categories. R8.3:

View Products Under categories:

a) Description : can view products under a category.
b) Input : category name/id.
c) Processing : gets all product under one category.
d) Output : List of products under one category.

5. SYSTEM DESIGN

FEASIBILITY STUDY

Technical Feasibility:

● A technical feasibility study evaluates the details of how you intend to build a system or
solution. Technical analysis evaluates technical merits of the system and at the same time
collects additional information about performances, reliability, maintainability and
productivity. We have analyzed feasibility studies of our project in this phase.

● Basically, this study is to ensure that proposed system software is not a loss or burden to the
user. It assesses the practicality of the proposed project. For this study, core knowledge of the
system is required.

Time Schedule Feasibility:

● The Project has simple working and basic requirement can be satisfied with the allotted
time period.

Operational Feasibility:
● The proposed system will increase the operational efficiency of all users. Therefore, the

throughput of the system and reduction of time is as desired.
● This system will ensure and satisfy the requirements identified by the requirement

analysis phase of the system.
● The API will be user-friendly and will work with any frontend system for the same definition

i.e. it will be very useful and easy to operate.

Implementation Feasibility:
● User can directly access API with the Postman or any API testing software or also can create

the frontend and API can be useful for the same.
● Implementation will result in all the important information about all the available

professionals and customers can hire any of them for their personal activities/needs.

PROJECT PLANNING

Project Development Approach & Justification:

● For project improvement, the Iterative cascade model is utilized. It is a specific
execution of a product improvement life cycle that centers around an
underlying, improved on execution, which then, at that point, continuously
acquires intricacy and a more extensive list of capabilities until the last
framework is finished.

Iterative Waterfall:
The Iterative water fall model methodology conquers the issues related with the cascade model
methodology. Assuming that any trouble or issue experience in any stage might require returning to the
past stage and playing out the expected alterations and continues consecutively. This backtracking
permits altering any adjustments or changes expected in the past stage.

This model partitions the cycle into the stages referenced underneath:
1. Feasibility Study
2. Requirement analysis and specification
3. Design
4. Coding and unit testing
5. Integration and system testing
6. Maintenance

Iterative waterfall model
Justification:

After feasibility study the functional requirements are almost clear, but in some cases like
implementing, designing as well as in testing time error can occur. Here we have to decompose the
system into modules. That is why we
decide to use an iterative waterfall model which is most suitable model here i.e. if we find any difficulty
in coding and testing a modification in design can be done easily.

Milestones and Deliverables

– Got Project Definition
– Learned Appropriate Technology/Libraries.
– Complete Requirement Gathering and requirement specifications.
– Start with the Implementation phase.
– Complete with Implementation and test the API as well as trying to add some new/additional
functionalities.
– Complete Documentation of Project.

Roles and Responsibilities

Roles and Responsibilities of Group Members

Name Role

Analysis Prototy

pe

Designi

ng

Developme

nt of

system

Testing Documentation

Jaspreet Singh

Avirukh Dahiya

✔ ✔ ✔ ✔ ✔

Group Dependencies:

The dependencies among the tasks include the following:

• Analysis or System Requirement Study (SRS) is independent of all, yet will be
started after completion of feasibility study and project planning.

• Designing of prototypes can be done simultaneously with system analysis.

• Development of the project is preceded by the designing of prototype and
system analysis.

• Testing can be only done once the development of some major functionalities
are completed and are ready to be tested.

• Documentation is independent of all the tasks and can be done as the other
tasks proceed.

Project Scheduling

Project Scheduling

ID Task Duration

1 System Requirements, Analysis & Project Planning 2 Week

2 System Design Layout 3 Week

3 Design 4 Week

4 Coding 4 Week

5 Testing 3 Week

6 Documentation 1 Week

STUDY OF CURRENT SYSTEM

In the current system the Admin has to manually add/update/remove a product from his shop.
The admin will have to put all the products in some categories. And for customers, they have to
go to shop for the shopping and get the product they want.

USER CHARACTERISTICS

User Characteristics

Sr. no. Role Features

1 User/Client Authentication, cart management, product viewing.

2 Admin Authentication, product management,
categories management.

HARDWARE AND SOFTWARE REQUIREMENTS

Hardware Requirements:

• Microsoft® Windows® 7/8/10.
• 2 GB RAM minimum, 8 GB RAM recommended.
• 1280 x 800 minimum screen resolution.

Software Requirements:

● Docker Desktop/CLI
● Java (JDK8 or more)
● Spring Boot
● PostgreSQL
● Git/GitHub
● IDE : Intellij IDE

SYSTEM ARCHITECTURE DESIGN

Class Diagram:

Class Diagram
Sequence Diagram:

1) Admin:

a) Login:

Admin Login
b) View Users:

View User

c) View Categories:

View categories
d) Add a Product:

Add Product
e) View Product:

View Product
f) Update Product:

Update Product
g) Delete Product:

Delete Product
h) Add category:

Add Category
i) Logout:

Admin Logout
2) User/Customer/Client:

a) Register:

User Register
b)Login

Fig5.12UserLogin

c) Get Products:

Get Products
d) Add to Cart:

Add to Cart
e) Remove From Cart:

Remove From Cart
f) Logout:

User Logout
5.1.1 Deployment Diagram:

Deployment Diagram
5.1.3 ER DIagram

5.2 DATABASE DESIGN

5.2.1 Table and Relationship:

Schema Diagram
5.2.2 Data Dictionary:

a) Product

Sr.
No.

Name Data type Not Null Primary Key

1 product_id int No Yes

2 product_name varchar No

3 category_id int No

4 price int No

5 decription varchar Yes

6 category_name varchar No

Product

b) Category:

Sr.
No.

Name Data type Not Null Primary Key

1 category_id Int No Yes

2 category_name Varchar No

Category

c) Users:

Sr.
No.

Name Data type Not Null Primary Key

1

2

user_id

username

Int

Varchar

No Yes

No

3 email Varchar No

4 password Varchar No

5 isLogin Boolean Yes

Users
d) Admin:

Sr.
No.

Name Data type Not Null Primary Key

1 admin_id Int No Yes

2 username Varchar No

3 password Varchar No

4 isLogin Boolean Yes

Admin

e) Cart:

Sr.
No.

Name Data type Not Null Primary Key

1 product_id int No Yes

2 user_id int No Yes

3 total_price int No

4 quantity int No

Cart
6. Implementation

6.1 IMPLEMENTATION ENVIRONMENT

During the total execution I have dealt with Intellij IDEA IDE made by JetBrains for
advancement of Java Web/Console Application. Highlights incorporates investigating, linguistic
structure featuring, astute code finish, pieces, code calculating and inserted Git. Client can
change the topics, symbols and introduce augmentations that add extra usefulness. Assembling
and conveying the Spring Boot Application is done effectively with the assistance of Intellij
IDEA.

6.2 MODULES SPECIFICATION

There are two modules in the code:

1) Admin

Having Admin Side functionalities.

2) Customer

Having User Side functionalities.

6.3 CODING STANDARDS

I used the Restful approach for creating the Web API.
While writing the code I took utmost care to follow the basic coding standards while writing a Java
code like:

❖ Limited use of global variables
❖ Proper exception handling
❖ Proper Indentation/formatting of code.
❖ Proper error responses for errors.
❖ Following proper naming conventions for global/local variables, classes,

exceptions, interfaces.
❖ Adding JavaDocs/comments for better understanding.

6.4 EXAMPLE CODING

Add New Product (Admin Side):
1) Controller Code:

@PostMapping("/{adminid}/product")
public ResponseEntity<?> saveProduct(@RequestBody Product product,
@PathVariable("adminid") Integer adminId) { try {

if (adminService.saveProduct(product, adminId) != null) { SuccessResponse
successResponse = new SuccessResponse(200,

"Inserted Product");
return ResponseEntity.ok().body(successResponse);

} else {
ErrorResponse errorResponse = new ErrorResponse(500, "Internal Server

Error");
return ResponseEntity.status(500).body(errorResponse);

}
} catch (UnauthorizedAccessException unauthorizedAccessException) {

unauthorizedAccessException.printStackTrace();
ErrorResponse response = new ErrorResponse(403,

unauthorizedAccessException.getMessage());
return ResponseEntity.status(403).body(response);

} catch (IllegalArgumentException illegalArgumentException) {
illegalArgumentException.printStackTrace();
ErrorResponse response = new ErrorResponse(400,

illegalArgumentException.getMessage());
return ResponseEntity.status(400).body(response);

}

}

2) Service Code:

@Override
public Product saveProduct(Product product) throws
IllegalArgumentException {

if (product.getProductName() == null ||
product.getProductName().isEmpty()) {

throw new IllegalArgumentException("Product Name is Null/Empty");
} else if (product.getPrice() == null || product.getPrice() == 0) {

throw new IllegalArgumentException("Product Price is Null/Empty");
} else if(product.getCategory() == null){

throw new IllegalArgumentException("Category is Null/Empty");
}
return productDao.save(product);

}
3) Model Code:

@Entity
@Data
@AllArgsConstructor
@NoArgsConstructor
@Table(name = "products")
public class Product {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY) private
Integer product_id;

private String productName;

private Integer price;

private String description;

@ManyToOne(targetEntity = Category.class,cascade =
CascadeType.PERSIST)

@JoinColumn(name = "category_id" , referencedColumnName = "category_id")
private Category category;

}

4) Response Code:

@Data
@AllArgsConstructor
public class ProductResponse {

private Product product; private
Integer StatusCode; private String
message;

}
7 Tools, Technologies, APIs and Libraries

Development Tool (Intellij) :

● IntelliJ IDEA is a coordinated improvement climate (IDE) written in Java for
creating PC programming. It is created by JetBrains (previously known as IntelliJ),
and is accessible as an Apache 2 Licensed people group release, and in a restrictive

business version. Both can be utilized for business advancement.

Java :
● Java is an undeniable level, class-based, object-situated programming language that is intended to have

as scarcely any execution conditions as could be expected. It is a broadly useful programming
language expected to allow developers to compose once, run anyplace (WORA),[17] implying that
ordered Java code can run on all stages that help Java without the need to recompile.

Example Code:

class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

Spring Boot :
Spring Boot makes it simple to make independent, creation grade Spring based Applications
that you can "recently run".
Features:-

Make your own Spring apps. Embed Tomcat, Jetty, or Undertow natively (no WAR
files required). To simplify your build settings, provide opinionated'starter'
dependencies.Automatically configure Spring and 3rd party libraries whenever

possible

Provide features that are ready for production, such as metrics, health checks, and
externalised configuration. There is no need for code creation or XML setup.

Example Code :-

Postgresql :

PostgreSQL is a strong, open source object-social data set framework that purposes and broadens the
SQL language joined with many elements that securely store and scale the most muddled information
jobs. The starting points of PostgreSQL date back to 1986 as a component of the
College of California at Berkeley and has over 30 years of dynamic advancement on the center stage.

PostgreSQL

Version Control (Git/GitHub) :

Git is a variant control device (programming) to follow the progressions in the source code. GitHub
is an online cloud administration to have your source code(Git vaults).

Git & GitHub
FLYWAY

Flyway is an open-source apparatus, authorized under Apache License 2.0, that assists you with
carrying out robotized and form based data set movements. It permits you to characterize the
necessary update tasks in a SQL script or as Java code. You can then run the relocation from an order
line client or consequently as a feature of your fabricate interaction or incorporated into your Java
application. The beneficial thing about this cycle is that Flyway recognizes the necessary update
activities and executes them. Thus, you don't have to know which SQL update articulations should be
performed to refresh your ongoing information base. You and your associates simply characterize the
update activities to relocate the information base starting with one form then onto the next.
Furthermore, Flyway identifies the ongoing form and plays out the important update

tasks to get the data set to the most recent variant. To have the option to do that, Flyway utilizes a
metadata table to record the ongoing data set form and every single executed update. Of course, this
table is called SCHEMA_VERSION.

DOCKER

Docker is an open source containerization stage. It empowers designers to

bundle applications into holders — normalized executable parts joining

application source code with the working framework (OS) libraries and

conditions expected to run that code in any climate. Holders work on

conveyance of disseminated applications, and have become progressively

famous as associations shift to cloud-local turn of events and mixture

multicloud conditions. Engineers can make holders without Docker, yet the

stage makes it more straightforward, less complex, and more secure to

assemble, convey and oversee compartments. Docker is basically a tool stash

that empowers designers to fabricate, convey, run, update, and stop holders

utilizing straightforward orders and work-saving robotization through a

solitary API. Highlights of Docker can diminish the size of improvement by

giving a more modest impression of the working framework by means of

holders. With holders, it becomes simpler for groups across various units,

for example, improvement, QA and Operations to work consistently across

applications. You can convey Docker compartments anyplace, on any physical

and virtual machines and, surprisingly, on the cloud. Since Docker holders

are lightweight, they are effectively adaptable. Parts of docker . Docker for

Linux − It permits one to run Docker holders on the Linux OS. Docker Engine

− It is utilized for building Docker pictures and making Docker

compartments. Docker Hub − This is the library which is utilized to have

different Docker pictures. Docker Compose − This is utilized to characterize

applications

utilizing various Docker holders.

POSTMAN

Postman is an API client that makes it easy for developers to create, share, test and document
APIs. This is done by allowing users to create and save simple and complex HTTP/s
requests,
as well as read their responses, the result - more efficient and less tedious work. Postman is
very convenient when it comes to executing APIs. Once you’ve entered and saved them, you
can simply use them over and over again, without having to remember the exact endpoint,
headers, API keys, etc.

SWAGGER
Strut is utilized for API documentation. Strut permits you to depict the construction of your APIs
that machines can understand them. The capacity of APIs to portray their own design is the
foundation of all wonder in Swagger. For what reason is it so amazing? All things considered, by
perusing your API's design, we can consequently assemble lovely and intuitive API documentation.
We can likewise naturally create client libraries for your API in numerous dialects and investigate
different potential outcomes like robotized testing. Strut does this by requesting that your API return
a YAML or JSON that contains an itemized depiction of your whole API. This document is basically
an asset posting of your API which sticks to Open API Specification. The particular requests that you
incorporate data like: What are the tasks that your API upholds? What are your API's boundaries and
what does it return? Does your API require some approval? And, surprisingly, fun things like terms,
contact data and permit to utilize the API. You can compose a Swagger spec for your API physically,
or have it created naturally from explanations in your source code.

GRADLE

Gradle is an open source construct mechanization apparatus that depends on the idea of Apache
Maven and Apache Ant. It is fit for building practically any sort of programming. It is intended for the
multi-project fabricate, which can be very huge. It presents a Java and Groovy-based DSL (Domain
Specific Language) rather than XML (Extensible Markup Language) for pronouncing the venture
design. It utilizes a DAG (Directed Acyclic Graph) to characterize the request for executing the errand.
Gradle offers a versatile model that can help the improvement lifecycle from arranging and bundling
code for web and portable applications. It offers help for the structure, testing, and sending
programming on various stages. It has been produced for building mechanization on numerous dialects
and stages, including Java, Scala, Android, C/C ++, and Groovy. Gradle furnishes coordination with a
few improvement instruments and servers, including Eclipse, IntelliJ, Jenkins, and Android Studio.

8 TESTING

Whenever code has been created, programming should be tried to uncover whatever number
mistakes as could reasonably be expected before conveyance to client. You want to plan a
progression of experiments that have a high probability of tracking down blunders. Programming
testing methods give deliberate direction to planning tests that (1) practice the inward rationale of
programming parts, and (2) practice the data sources and results spaces of the program to reveal
mistakes in program capacity, conduct and execution.

Testing Objectives:

• Testing is a course of executing a program determined to track down a blunder.

• A decent experiment is one that has a high likelihood of tracking down an at this point unseen
blunder.

• A fruitful test is one that uncover an at this point unseen mistake.

Testing Strategy

Unit Testing:

Unit testing is a product improvement process in which the littlest testable piece of an application,
called units, are exclusively examined for legitimate activity. Unit testing is frequently
mechanized however it should likewise be possible physically. This testing mode is a part of
Extreme Programming (XP), a down to earth strategy for programming improvement that adopts
a fastidious strategy to building an item through ceaseless testing and update. Unit testing
includes just those attributes that are
fundamental to the presentation of the unit under test. This urges engineer to alter the source code
without prompt worries about what such changes could mean for the working of the units or the
program in general. Once of entire of the units in a program have been viewed as working in the
most productive and blunder free way conceivable, bigger parts of the program can be assessed
through reconciliation testing. I tried each single piece of the whole application. I tried every
single module separately.

Sub System Testing:

In the wake of testing every unit, we continue on toward bigger units called sub framework. In

subsystem testing I tried the entire client side as one framework. On the client side every one
of the modules like dashboard, API, and so on were tried together to check whether there was
any blunder or bug found.

System Testing:

In the wake of testing all the sub-framework, the time has come to test the entire framework.
Framework testing of programming is trying directed on a total, incorporated framework to
assess the framework's consistence with its predefined prerequisites. While testing the entire
framework I found numerous mistakes like the information mining postpones prompting
hardships in inputs. I addressed it by rolling out fitting improvements in the span of
information mining as well as changed its properties. I chipped away at every blunder and
special case that I got while testing and a large portion of them are eliminated or made such
revision that it won't reoccur.

● Recuperation Testing: It is a framework test that powers the product to flop in an assortment of
ways and checks that recuperation is appropriately performed.

● Security Testing: It endeavors to confirm that assurance components incorporate into a
framework will, as a matter of fact, shield it from ill-advised infiltration.

● Execution Testing: It is intended to test the run-time execution of programming inside the setting
of a coordinated framework execution testing happens all through all means in the testing
system.

Acceptance Testing:

Acknowledgment testing can be associated toward the end client, client, or client to approve the
decision about whether to acknowledge the item. Acknowledgment testing might be proceeded as
a feature of the hand-off process between any two periods of improvement. The acknowledgment
test suite is run again the provided input information or utilizing an acknowledgment test content
to coordinate the analyzer. Then, at that point, the outcomes acquired are contrasted and the
normal outcomes. On the off chance that there is a right counterpart for each case, the test suite is
said to pass.

TESTING METHODS:

The check exercises fall into the class of static testing. During static testing, you have an agenda to
check whether the work you are doing is going according to the set principles of the association.
These guidelines can be for coding, incorporating and arrangement. Surveys, Inspections and
Walkthroughs are static trying philosophy. Dynamic testing includes working with the product
giving information esteems and checking in the event that the result is true to form. These are the
approval exercises. Unit test, reconciliation test, System and acknowledgment tests are not many
of the powerful testing strategies.

Alpha and beta testing: the alpha test is directed at the designer's site by a client. The product is
utilized in a characteristic setting with the engineer "investigating shoulder" of the client and
recording blunders and utilization issues. Alpha test is led in a controlled climate. The beta testing
is led at least one client site toward the end-client of the product. Dissimilar to alpha testing, the
engineer is for the most part not present. In this way, the beta test is a "live" use of the product in a
climate that can't be constrained by the designer.

Black Box Testing:

Otherwise called useful testing. A product testing procedure where by the inward working of the
thing being tried are not known by the analyzer. For instance, in a black box test on programming
plan the analyzer just knows the data sources and what the normal results ought to be and not the
way that the program shows up at those results. The analyzer never examines the programming
code and needn't bother with any further information on the program other than its particular.
The benefits of this kind of testing include:

● The test is unprejudiced as the fashioner and the analyzer are indepAlso known as practical
testing. A product testing procedure where by the interior working of the thing being tried are not
known by the analyzer. For instance, in a black box test on programming plan the analyzer just
knows the data sources and what the normal results ought to be and not the way in which the
program shows up at those results. The analyzer never examines the programming code and
needn't bother with any further information on the program other than its determination.
The benefits of this sort of testing include:

● The test is fair-minded as the originator and the analyzer are autonomous of one another. ● The
analyzer needn't bother with information on a particular programming dialects.

● The test is done according to the perspective of the client, not the creator.

● Experiments can be planned when the particulars are finished.
The burdens of this kind of testing include:
The test can be excess in the event that the computer programmer has proactively run an
experiment.
The experiments are challenging to plan.
Testing each conceivable information stream is ridiculous in light of the fact that it would take an
excessive measure of time: thus many program ways will go untested.
endent of one another.

● The analyzer needn't bother with information on a particular programming dialects.

● The test is done according to the perspective of the client, not the fashioner.

● Experiments can be planned when the determinations are finished.
The burdens of this kind of testing include:
The test can be excess in the event that the programmer has previously run an experiment.

The experiments are challenging to plan.
Testing each conceivable info stream is ridiculous on the grounds that it would take an
unreasonable measure of time: consequently many program ways will go untested.

White Box Testing:

Otherwise called glass box, underlying, clear box and open box testing. A product testing
method by which unequivocal information on the inward operations of the thing being tried are
utilized to choose the test information. Not at all like black box testing, white box
testing utilizes explicit information on programming code to inspect yields. The test is exact
provided that the analyzer knows what the program should do. The individual in question can
than check whether the program wanders from its expected objective.

Design of Test Cases:

A wide range of test design methodologies for software have emerged to reduce the amount of
faults in software. These approaches allow the developer to test in a methodical manner. More
importantly, techniques give a methodology for ensuring the thoroughness of tests and increasing
the possibility of finding software faults.

One of two strategies can be utilized to test a designing item:

1) With information on the item's planned capacity, tests might be embraced to affirm that
each capacity is totally utilitarian while likewise searching for deserts in each capacity.

2) By understanding an item's inner operations, testing might be completed to ensure that "all
stuff network," that is, inside mistreatment is done by details and all interior parts are
fittingly worked out. The experiments for our application are recorded beneath.

TEST CASES:
Test Cases

Sr.
No.

Purpose Input State Expected
Actual

Output
Output

Output
Response
Code

Test
Result

1 User
Login

Userna
me,
passwor

logout 200 Login
As

Success

Pass

d expected
Response

2 User
Login

Invalid
Username
or
Password

logout 400 Error
As

Response
expected

for Login

Pass

3 Admin Login

4 Admin Login
Username,

Password

Invalid
Username or

Password
logout 200
Login Success
Response

logout 400
Error Response
for Login
As
expected

As
expected
Pass Pass

5 User
Register

New
username,
email &

logout 200 Register
As
expected

Success
Response

Pass

password

6 User
Register

Already
used
Userna
me,
email or
Password
is less
than 8
characters

logout 400 Error
As

Response
expected

for
Register

Pass

7 Admin
add
product

Name,
category,
price,
descripti
on ,

product_id

login 200 Product
As

Added
expected

Success
Response

Pass

8 Admin
add
product

Name
null or
empty or
price 0 or
category
empty

login 400 Error
As

Response
expected

for
Product
Addition

Pass

9 Admin
delete
product

Product
id to be
deleted

login 200 Deletion
As

Success
expected

Response

Pass

10 Admin
delete

Product

Invalid
product
id

login 404 Error
As

Response
expected

for
Deletion

Pass

11 Admin
view
all
Users

- login 200 List of
As

Users in
expected

System

Pass

12 User
view all
Products

- login 200 List of
As

Products
expected

in
System

Pass

13 User
add
produc
t
to cart

Product
id to be
added

login 200 Cart
As

Addition
expected

Success
Response

Pass

14 User
add
produc

Invalid
product Id

login 404 Error
As

Response

Pass

t
to cart

expected
for Cart
Addition

15 User
remove
product
from
cart

Product id Login 200 Remove
As

Product
expected

Success
Response

Pass

16 Admin
add
new
Produ
ct

Name,
category,
price,
descripti
on ,

product_id

logout 403 Error
As

Response
expected

for Auth

Pass

17 User
add
produc
t
to cart

Product id logout 403 Error
As

Response
expected

for Auth

Pass

18 User
View
Cart

- login 200 List of
As
expected

products
in Cart

Pass

19 User
View
Cart

- login 404 Empty
As

Cart
expected

Response

Pass

20 Admin
View

Product

Product id login 200 Product
As

Response
expected

related to
ID

Pass

User manual
ADMIN:

Login
Input: username & password

Processing: Authentication Success if Credential correct Output: Login
Success Response

Login Fails

Failed Login
Input: invalid username or password

Processing: Authentication Failed Output: Error
Response for Login Failed.

Add New Product:

Add New Product
Input: product_id, productName, price, description, category_id
Processing: Insert Product Success
Output: Success Response of Insertion

View all Products:

View Products
Processing: Get All Products
Output: List of all products

View Product by Id:

View Product by Id
Input: product_id to be searched
Processing: gets product by its id if correct Id is passed Output:
Success Response with Product with product_id

View Categories:

View Categories
Processing: Gets the categories present
Output: Success Response with list of categories.

Delete Product by its ID:

Delete Product
Input: product_id to be deleted

Processing: deletes product by its id if correct id is passed Output:
Success response of Product Deletion

Product List After Deletion
Delete Product with Invalid product_id:

Delete Product with Invalid Id
Input: Invalid product_id
Processing: checks product is present or not Output:
Error Response for Product Deletion

Logout:

Logout
Processing: Changes isLogin flag to false
Output: Success Response for Logout

USER/CUSTOMER:
Register:

User Register
Input: username, password, email
Processing: registers new user
Output: Success Response with User’s access Id

Register Failed:

Register Failed
Input: invalid password or non-unique username

Processing: check with database for username or checks password is greater than 8 chars
Output: Error Response with correct Error message.

User view Products:

User Views products
Processing: gets all products
Output: Success Response with Product List

Add to cart:

Add to
cart

Input: Product id to be added to cart
Processing: product added to cart Output:
Success Response for addition

Add to cart with invalid product’s id:

Add to cart(invalid Id)
Input: Invalid product id
Processing: checks for product with the same Id
Output: Error Response of Not Found

View Cart

view cart
Processing: gets products list associated with user’s cart Output:

List of Products with total price & quantity
Remove product from cart:

Remove product from cart
Input: product to be removed
Processing: Removes product from cart
Output: Success Response for remove the product

View cart of Product removal
User Logout:

Logout
Processing: Changes isLogin flag to false
Output: Success Response for Logout

Access without Login

Access without Login
LIMITATION AND FUTURE ENHANCEMENT

LIMITATION

1) There are limited numbers of filters for getting the Product.

2) Limited number of errors/exception is handled.

3) Limited number of data is there for API.

4) Authentication in API is not much secure yet.

FUTURE ENHANCEMENT

1) Increase the efficiency of the API.

2) New fields to be added to the API data dictionary.

3) Authentication technique can be enhanced.

4) Functionality like Checkout, manage orders can be added in future.

5) Structuring of API Responses can be enhanced.

CONCLUSION AND DISCUSSION

CONCLUSION

This project has been implemented from what we learned in our internship and training. The
scope of this project is subjective to the type of application to be built. However it was
developed by keeping in mind the goal to keep it as generic as possible.

Also, enhancement which we can do in future is improving speed and accuracy, add more
functionalities, extending & enhancing the current functionalities and add secure Authentication
methods to API.

DISCUSSION

Self Analysis of the Project:

In my opinion, this project serves the goal that I set at the beginning for the project. It provides
functionalities like cart management & authentication to the user and for admin it provides crud
operations on product etc. Besides this functionality, there are numerous other improvements as
well as enhancements to this API. New functionalities can also be added easily to the project.

References
1) Best Practices for Web API: https://docs.microsoft.com/en

us/azure/architecture/best-practices/api-design
2) JavaTpoint : https://www.javatpoint.com/
3) Spring.io: https://spring.io/
4) Stackoverflow: https://stackoverflow.com/
5) TutorialsPoint: https://www.tutorialspoint.com/index.htm

