alman

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Test-2 (April, 2016)

Department of Electronics and Communications Engineering

M.Tech. (Fourth Semester)

Course Code:

13M1WEC432

Duration: 1 hour 30 minutes

Course Name: Radar and Sonar signal processing

Maximum Marks: 25

Note: Answer all questions, Specify the assumptions, if made any. Marks are indicated in parenthesis. Carrying the mobile phone during the examinations will be treated as a case of unfair means.

- 1. Derive the expression for the radiation resistance of a very short dipole antenna.
- 2. Obtain the excitation coefficients for the antenna array to have no radiation at all in 45°, 90° and 120°. What happens if the distance between the antenna elements that you assumed is doubled? (4) How do you find the beam width between first nulls?
- 3. What do you mean by image frequency and how do you avoid the image frequency in up conversion and down conversion. (4)
- 4. Draw the block diagram of the Doppler radar and explain in brief about the components used in (4) it.
- 5. A mono-static radar has to operate at 3GHz. This system has to receive a signal from the object at 100Km with the radar cross section of $1m^2$. The effective aperture are of the antenna is $1m^2$ and efficiency is 80%. Find the required power that has to be transmitted to detect the target without any problem. Give the ratio of transmitted power and received power. Specify the assumption.(4)
- Explain the following briefly.

(5)

- Broadside antenna array.
- Electronic beam-steering in radar.
- Radar cross section.
- Noise figure of cascaded systems.
- Polarization of electromagnetic waves.