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ABSTRACT 

In today’s era, mobile devices are getting popular with a variety of applications (apps) to 

make our life easier. Several mobile Operating Systems (OS) are available in the market 

including iOS, Android, BlackBerry and Windows Phone. Android is a widely used mobile 

OS with a market share of more than 85%. It is based on Linux kernel specifically built for 

touchscreen devices such as tablets and smartphones etc.  In the current era, there is an 

increase in the usage of smartphones for a variety of purposes like banking, social media, 

education etc. The growing popularity of Android apps has lured attackers to create malicious 

apps which pose several threats such as financial loss, information leakage etc. These 

malicious apps are becoming more sophisticated and using new ways to target mobile 

devices. These have the ability to evade detection and mitigation techniques that have already 

been developed. The traditional security systems like intrusion detection/prevention systems 

and Anti-Virus (AV) software rely on signature-based methods and thus are not able to 

identify new generation malware. Thus, there is a need to design techniques for better 

malware identification and classification. Furthermore, in a real-world scenario, the number 

of samples varies substantially among various malware families. Thus, it is important to build 

malware classification models which can take care of imbalanced classes. Additionally, there 

is a lack of adequate research on analyzing the threat or risk posed by Android apps. The main 

aim of this research is to address these problems and provide effective solutions. 

Machine Learning (ML) techniques have been used to identify malware based on attributes 

mined using static and dynamic malware analysis. Through experiments, it is observed that 

both types of malware analysis have their pros and cons. The unknown malware use advanced 

obfuscation techniques to hide its presence, and it can detect the sandbox environment in 

which it is running. Thus, the single approach either static or dynamic is unable to identify 

and classify unknown malware. An integrated approach (an amalgamation of static and 

dynamic attributes) has been proposed in this work which can effectively analyze, detect and 

classify the malware. The two datasets i.e. Android malware detection and family 

classification are created using a comprehensive set of attributes acquired after performing 

static and dynamic analysis of malware. These datasets have been made public on GitHub and 

kaggle in order to assist anti-malware tool developers and researchers in developing new 

methodologies and tools for identifying and classifying malware. Six ML classifiers are used 
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to identify and classify Android malware using the attributes mined from static and dynamic 

malware analysis. The results demonstrate that the integrated approach improves the detection 

and classification accuracy of malware when compared with the approaches considering static 

or dynamic attributes alone.  

The main problem with the existing malware detection systems is that they have a high False 

Negative (FN) and False Positive (FP) rate. An approach named as MalDetect has been 

proposed for enhancing the detection results of malware. The approach fuses the base 

classifiers on the basis of proposed ranking schemes defined on their error rate. These 

schemes are then used to generate a variety of combinations, with the best one being chosen 

to construct the final model. The proposed approach is tested on two datasets i.e. Drebin 

(benchmark) and AndroMD (self-created). The findings suggest that the proposed approach is 

more effective than conventional base classifiers and ensemble learning techniques. 

In a real-world scenario, the number of samples varies substantially among various malware 

families which results in poor classification. For addressing this issue, a cost-sensitive 

learning (CSForest) approach has been proposed.  The results of the proposed approach are 

compared with CSTree, Random Forest (RF) and C4.5 to identify its effectiveness in 

categorizing malicious app families. The findings suggest that the proposed approach is 

effective in determining the families of malicious apps. 

Industries providing anti-malware solutions compute the risk associated with a piece of 

malware using the approaches involving human intervention along with a large number of 

resources. With the increase in the volume of malware, it is impossible to allocate a 

significant number of resources for analyzing the threat or risk posed by an Android app. To 

address this issue, a rule-based model has been designed. The proposed model assigns the risk 

levels (No, Low, Medium and High) to Android app features. The static features (permissions 

and Application Programming Interface (API) calls) in the data are examined statistically to 

come up with a hypothesis for identifying their risk factor. In order to test the hypothesis, 

Analysis of Variance (ANOVA) method is used. The results indicate that the mean values of 

different risk factors differ significantly. Afterward, a weight is assigned to the features under 

each category to compute the threat score of a particular app. This threat score can help the 

user to understand how risky it is to install an app on a mobile device. Moreover, the 
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computed threat score can assist in providing early warnings about a malicious app so that 

instant attention could be paid to with respect to assigning resources for deeper investigation. 

The present research provides evidence based knowledge about emerging Android malware 

and is capable of generating actionable information in the form of threat intelligence. 
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CHAPTER 1 

INTRODUCTION 

 

Android is found to be the most well-known platform all over the world [1]. Andy Rubin is 

known as the “Father of Android” for his work on the “Camera” project, which the Symbian 

OS couldn't handle. In August 2005, Andy Rubin turned over ownership of Android to 

Google. Android OS relies on the Linux kernel. It is an open-source software and built for 

touchscreen devices such as tablets and smartphones etc. The first Android device named 

HTC Dream was released in 2008 [2]. According to the International Data Corporation (IDC) 

report, the worldwide smartphone market has achieved a shipment of 1.39 billion in 2019 [3].  

1.1 BACKGROUND OF ANDROID 

1.1.1 Architecture  

The Android OS architecture consists of five main parts i.e. Linux kernel, Hardware 

Abstraction Layer (HAL), Libraries (including Android runtime), Application framework, 

Application [4] as demonstrated in Figure 1.1. 

 

Figure 1.1: Architecture of Android [4] 
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A detailed explanation is given as follows: 

 Linux kernel- During runtime, it manages all available drivers such as memory 

drivers, display and camera drivers, audio and Bluetooth drivers. 

 HAL- It offers a standard interface that reveals hardware functionalities of the device 

to the higher-level app framework. The HAL comprises several library modules such 

as Bluetooth, audio, camera etc. When API makes a call to use hardware devices, the 

Android device loads the module for that hardware component. 

 Libraries- Android system services and components are constructed from the native 

code that needs native libraries. The platform Android offers an application 

framework to reveal the capabilities of some of these libraries to apps. For example, 

Secure Socket Library (SSL) for Internet security and OpenGL ES used to generate 

2D and 3D computer graphics. 

 Android Runtime- The java classes are first converted to DEX Bytecode and then 

with the help of Dalvik Virtual Machine (DVM) and Android Runtime (ART), DEX 

Bytecode is converted to the machine level language. DVM has some limitations like 

low garbage collection etc. So to overcome these limitations, DVM was replaced by 

ART. From the Android 5.0 version onwards, ART was used as runtime. Some of the 

essential features of ART are as follows: 

 Optimized garbage collection 

 Uses Ahead-of-time (AOT) method and compiles the complete code at the 

time of installation. 

 Application framework- It offers a variety of Android.* packages that serve as high-

level building blocks for apps. On the mobile device, majority of the components in 

this layer are implemented as apps that operate in the background. 

 Applications- It is the topmost layer of Android architecture. It consists of those apps 

which are already built into the device itself. Examples of the apps are contacts, 

camera, browser etc. 

 

1.1.2 Components of an Android Application 

Activities, Content Providers, Broadcast Receiver and Services are the four main components 

of an Android app [4]. Figure 1.2 shows the components of an Android app. These 
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components are bound by the manifest file that holds the detail of each component. The 

description of the components is given as follows: 

 

Figure 1.2: Components of Android apps [4] 

 Activities- The user interface is directly linked by an activity. It is the visual 

representation of an Android app. 

 Services- This component performs background tasks, triggering the notification, 

update your activities and data source. When the app is not active, it still performs 

some tasks. 

 Content Providers- It can assist an app in managing access to data stored by it and by 

other users, as well as providing a way for data to be shared with other apps. They 

encapsulate data and give mechanisms for defining data protection. 

 Broadcast Receiver- It is also called intent listeners. It allows your app to listen to the 

intents that meet the criteria prescribed by us. It carries out an action in reply to a 

message from other apps. 

 

1.1.3 Features of Android 

Lots of users use Android mobile devices because it offers an open platform facility and 

provides various functionalities [4]. Some of the features of Android are listed as follows: 

 Storage 

 Messaging: MMS, GCM (Goggle Cloud Messaging), SMS, C2DM (Cloud to Device 

Messaging) 

 Multitouch 
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 Screen capture 

 Connectivity: Bluetooth, GSM/EDGE, WIFI, GPS, LTE etc. 

 Video calling 

 Multilanguage Support 

 

1.1.4 Versions of Android 

The Android development was started in 2003, and was purchased in 2005 by Google [5]. 

The first version of Android 1.0 was released in October 2008 [3]. Table 1.1 shows the 

versions of Android with their names, API, release date. 

Table 1.1: Android versions with their names, API and release date [6] 

Version of Android Names API Release Date  

1.0 No name 1 23-09-2008 

1.1 2 09-02-2009 

1.5 Cupcake 3 27-04-2009 

1.6 Donut 4 15-09-2009 

2.0 – 2.1 Éclair 5 – 7 26-10-2009 

2.2 – 2.2.3 Froyo 8 20-05-2010 

2.3 – 2.3.7 Gingerbread 9 – 10 06-12-2010 

3.0 – 3.2.6 Honeycomb 11 – 13 22-02-2011 

4.0 – 4.0.4 Ice Cream 

Sandwich 

14 – 15 18-10-2011 

4.1 – 4.3.1 Jelly Bean 16 – 18 09-07-2012 

4.4 – 4.4.4 KitKat 19 – 20 31-10-2013 

5.0 – 5.1.1 Lollipop 21 – 22 12-11-2014 

6.0 – 6.0.1 Marshmallow 23 05-10-2015 

7.0 – 7.1.2 Nougat 24-25 22-08-2016 

8.0 – 8.1 Oreo 26 – 27 21-08-2017 

9.0 Pie 28 06-08-2018 

10.0 Android 10 29 03-09-2019 

11.0 Android 11  TBD 
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1.1.5 Android Applications 

The structure of the Android app is described in this section. Android apps are packed in the 

Android Package (.apk) file format. A program in Android is compiled and its entire 

components are packed in a single file. This file is known as .apk which is saved into a zip 

file format. To open .apk file, it first needs to be unzipped or decompile [7]. The structure of 

the Android app is shown in Figure 1.3. This zipped file consists of the following folders and 

files as discussed below: 

 Assets- It contains the media file which could be obtained by the Assets Manager. 

 Lib- It comprises compiled code with respect to the software layer of a processor. 

 Armeabi- It contains the compiled code for processors i.e. Advanced RISC 

Machine (ARM) 

 Armeabi-v7a- It consists of the compiled code for processors i.e. armv7 and 

above. 

 X86- It contains compiled code for processors i.e. X86. 

 MIPS- It contains the compiled code for processors i.e. Microprocessor 

without Interlocked Pipelined Stages (MIPS). 

 Res- It contains resources like icons, sting files, images, fonts etc. 

 META-INF- This directory consists of the following such files: 

 CERT.RSA- It holds the app certificate. 

 CERT.SF- It holds the list of resources and the app security certificate. 

 MANIFEST.MF- It contains significant information about the app. 

 Resources.arsc- It consists of pre-compiled resources. 

 Android Manifest.xml- It characterizes the app functionalities and also contains 

meta-information about the app. 

 Classes.dex- It holds the class name, package name, API calls or methods and class 

path. 
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Figure 1.3: Architecture of apk [7] 

1.2 EVOLUTION OF ANDROID MALWARE 

The term malware refers to a distinct form of intrusive software or app. Some of the examples 

of malware are worms, ransomware, spyware, adware and trojan horses etc. It is also known 

as malicious software or malicious app. It is created to perform malicious activities such as 

stealing personal data, gaining access to the devices, making changes in the devices etc. A 

wide variety of malware has been identified till date. After 2009, there is a hazardous growth 

in mobile malware. This is because new technologies have opened new opportunities for 

beneficial exploitations [8, 9]. The first Trojans i.e. FakePlayer and DroidSMS were detected 

in the year 2010 [10]. Figure 1.4 shows the development of Android malware from 2010 to 

2021. Table 1.2 shows the timeline of Android malware with its short description. 
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Figure 1.4: Android malware evolution 

Table 1.2: Android malware with their short description 

Released 

Year 

Name of Android 

Malware 

Short Description 

 

 

 

 

2010 

FakeInst It is a kind of trojan that tries to send the SMS message to a preset 

number. 

SMS Replicator It acts as a snoop that secretly sends the message to any phone number 

chosen by the user. 

Geinimi It is a trojan that unlocks the backdoor and forwards the information to 

a specific URL from the mobile phone. 

GPSSMSSpy It pays attention to SMS premised commands to record and forward the 

user's current location. 

TapSnake It is a type of malware that sends the victim's location to a web service. 

 

 

 

 

 

2011 

FakeNetflix This malware is designed to target Netflix users. It captured the 

personal data and is posted to a server. 

DroidKungFu2 Once installed on the mobile phone, it reads the entire data and writes it 

in a file and then posted it to the server.  

GoldDream It is a trojan that examines the incoming and outgoing calls and gathers 

the information related to all messages and saved them in 

zjphonecall.txt file name. 

GamblerSMS It acts as spyware and examines every call (incoming and outgoing) and 

records all calls and SMS messages. 

HippoSMS It is a trojan that removes the incoming messages and forwards the SMS 
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to premium numbers. 

 

 

 

 

 

2012 

DrSheep It hijacks the accounts of social networking sites like Instagram, 

Facebook, LinkedIn via wifi connection. 

Bmaster Once installed on the device, it collects sensitive information from the 

devices like DeviceID, GPS data, IMEI number etc. 

Adswo It displays unwanted advertisements as notifications and monitors 

privacy-invasive. 

SMSZombie This malware infects the devices and sends the SMS message to a 

preset number. 

LuckyCat It can collect data on a mobile device and download and upload the files 

as guided by the C&C server.  

 

 

 

 

2013 

BadNews The main aim of this malware is to send bogus messages to a server and 

permits the user to install apps. 

Qadars It is a banking malware that prohibits the user from accessing their bank 

accounts. It is also known as SPY-ABN. 

Obad It is a kind of multifunctional trojan that is liable for forwarding SMS to 

the premium rate numbers. 

GGSmart Its main function is to gather significant information and sends it to a 

remote server, send the SMS messages to a premium rate number. It 

also contains access to read, delete and write privileges on the device. 

Defender It is a kind of ransomware. Once it gets installed on the device, it infects 

the system and displays the messages demanding a fee to be paid to 

regain access. 

 

 

2014 

Torec It is a malware that uses .onion domain as its command and control 

(C&C) server.  

DroidPack It is a trojan that collects the login credentials information from the user 

device. 

DriveGenie This malware is automatically downloaded on the mobile device 

without the user allowance. It gathers and sends the information of the 

victims to a server. 

 

 

 

 

2015 

Saiva It is a trojan that has abilities to terminate processes, delete files and 

capture the input of the keyboard from the victim device. 

SaveMe/Social Path This malware steals information such as SMS message, call logs etc and 

then upload the information to a server. 

Asacub It is a banking trojan. It is developed to steal money from banking apps. 

It steals all SMS messages from the user’s device and uploads them to 

the server. 

 AndroRat It can take a photo, steal browsing history. 
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2016 Cepsohord It is a trojan horse that deletes information files and downloads other 

harmful malware like ransomware. 

CallJam This malware comprises a premium dialer to make fraud calls and can 

display ads. 

 

 

2017 

Chamois It downloads other apps on the victim’s device that send fraud SMS. 

Anubis This malware steals photos, contacts, SMS messages etc. It can also 

take a screenshot and record audio. 

AdDown It is adware that stealthily installs apps in the device without the user’s 

permission. Its main aim is to collect data, display ads etc. 

 

 

 

2018 

BianLian It is a trojan that can send, read and receive messages. It also records 

the screen, locks the screen. 

Triout This malware can record the calls, steal call logs and messages etc. It 

uploads the recorded call to the server. 

KevDroid It is a RAT (Remote Access Trojan). It steals data like emails, calls logs 

and SMS etc. It also gathers information about the location of the 

device. 

 

 

2019 

Agent Smith It hacks the apps and enforced them to show more ads to earn profit. 

XHelper This malware offers a backdoor to the assailant. The assailants then 

steal, install other apps on the victim’s device. 

Fleeceware This malware comes with an unseen, unreasonable subscription fee. 

BlackRock It can steal passwords and important information from the device. 

 

    2020 

CovidLock It is a ransomware that infect the users device by ensuring them to give 

information about COVID-19 

Joker It steals money from victims by inadvertently enrolling them in 

premium memberships. 

 

2021 

FlyTrap It is a trojan that hacks facebook account of the users and collects 

information from the users device 

System Update Once it is installed on the mobile device, it steals videos, photos and 

location of the users. 

Pegasus It is a spyware, once installed, it accesses all data including emails, 

whatsapp conversations and SMS. 

 

The increasing demand for smartphones attracted many organizations to build various apps 

such as gaming, education, business, entertainment, banking, lifestyles, etc. The increasing 

use of Android apps has lured attackers to build malicious apps that pose several threats such 

as financial loss, information leakage etc. 
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1.3 MALWARE DETECTION METHODS 

Malware detection methods can be broadly classified into two categories. These are as 

follows: 

1.3.1 Signature based Method 

It is the most popular technique used by all antiviruses. This method compares the app's 

signature to an already existing signature in the database. The limitation of this approach is 

that it cannot detect new (unknown) malware (also known as zero-day malware). To 

overwhelm the drawback of this approach, researchers start making use of ML approaches 

using static and dynamic malware analysis [11-13]. 

1.3.2 Machine Learning based Method 

ML techniques have been used to detect malware based on attributes mined using static and 

dynamic malware analysis. This method makes use of features mined after performing static 

and dynamic malware analysis. The mined attributes are used to train the model for making 

predictions [12, 14, 15]. 

1.4  ANDROID MALWARE ANALYSIS 

It is the process of investigating the apps to identify their functionalities and attacking 

techniques being used by malware creators [16]. It is carried out by using two approaches i.e. 

static malware analysis [17-20] and dynamic malware analysis [21-23]. 

1.4.1 Static Malware Analysis 

It analyses the sample of malware without executing or running the code. It uses decompiling 

methods to decompile the app package and extract the features for the detection of malware. 

However, this approach has its constraints such as it is unable to examine the obfuscation 

code and morphed malware but it is faster in identifying malware [24, 25]. To overwhelm the 

constraints of the static approach, a dynamic approach is used. It can keep tracking the 

behavior or characteristic of the app and accurately identify the unknown malware [26-28].    
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1.4.2 Dynamic Malware Analysis 

It examines the characteristics or behavior of an app while it is running in the sandbox (virtual 

environment). It is more effective as it keeps on tracking the behavior of the apps at the time 

of execution. The major constraints of this method are that it takes a long time because each 

app must run for at least one minute in the sandbox. Furthermore, if a malware is able to 

detect itself being executed in the virtual environment, it may become dead so that its 

behavior could not be monitored. Moreover, it could not explore all execution paths [29, 30]. 

From the above approaches, it is found that the static analysis is not that effective in detecting 

malicious contents. It omits code obfuscation and morphed malware but it is faster in 

identifying malware. While considering the dynamic approach, it is more effective than the 

static approach as it keeps the track of the behavior of apps at the time of execution. But still, 

some apps remain undetectable at the execution time. From here, it is concluded that a single 

approach is not capable of detecting malware more precisely. Thus to enhance the accuracy, 

the hybrid approach is being used which is the integration of both approaches. Table 1.3 

illustrates the comparison between all three approaches. 

Table 1.3: Comparison of malware analysis approaches 

Features\Analysis 

Approach 

Static Dynamic Hybrid 

Time required Low High High 

Resource 

consumption 

Less More  More 

Effectiveness Less effective  More effective than 

static 

More effective than both 

approaches 

Merits Low cost, takes less 

time, extracts features 

easily 

Capable of 

identifying 

unknown malware 

Give more accurate 

results 

Demerits Unable to examine 

obfuscated code 

It takes more time 

and resources 

High cost 
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1.5 TECHNIQUES AND TOOLS FOR ANALYSING ANDROID 

MALWARE  

There exist a variety of techniques and tools for the analysis of malware. Gandotra et al. [26] 

have conducted a review based on several techniques and tools used for malware analysis. 

They incorporated a comparison of several tools and techniques for analysing malware. This 

section explains the numerous techniques and tools which are utilized for the execution of 

static and dynamic malware analysis as demonstrated in Figure 1.5. 

 

Figure 1.5: Techniques and tools for analysing Android malware 

1.5.1 Techniques and Tools for Static Malware Analysis 

For static malware analysis, various techniques and tools are used. The most common are 

discussed as follows. 

 Permissions- The security system in Android primarily relies on permissions. To 

access the user’s personal information (such as SMS and contacts) and specific 

features (such as Internet and camera) the mobile apps must request permissions. 

These are used to restrict or allow an app access to confined resources and API's. 

According to the features, the system might provoke the customer to accept the 

request or sometimes it might provide permission automatically. These permissions 

are present in the AndroidManifest.xml file. The Android OS defines various 
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permissions which are stated as static string members in the manifest file [31-34]. 

Table 1.4 demonstrates the few examples of permissions with their description 

Table 1.4: Few examples of permissions with their description 

Permission Name Description 

READ_CONTACTS It permits an app to read the contact of the user's data. 

READ_SMS It permits an app to read the SMS of the user's data. 

MODIFY_PHONE_STATE It permits an app to modify the data of the phone. 

WRITE_SMS It permits an app to write SMS messages. 

 

These permissions are further categorized into four sub-categories that are described as 

follows: 

 Normal permissions 

 Dangerous permissions 

 Signature permissions 

 Special permissions 

Normal permissions- A low hazard permission, which permits apps to access API calls (e.g. 

ACCESS_WIFI_STATE, CHANGE_WIFI_STATE) causing no harm to the Android users. 

The Android system directly assigns these kinds of permissions without any involvement of 

users. 

Dangerous permissions- A high hazard permission that permits apps to access injurious API 

calls (e.g. CALL_LOG, READ_CONTACTS) causing harm such as stealing confidential 

information. These permissions are clearly displayed to the user before an app is installed. 

The user must select whether he/she accept or decline the permissions.  

Signature permissions-These permissions are provided by the system itself while installing 

the app. The system provides it only when the app is signed by the same certificate as the app 

defining the permission e.g. BIND_INCALL_SERVICE. 

Special permissions- These permissions do not behave like hazardous and normal 

permissions e.g. SYSTEM_ALERT_WINDOW, WRITE_SETTINGS etc. 
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 API calls- To interact with the devices, API calls are required. These include 

packages, methods and classes to support the developer to create apps. The java 

programming language is used to build Android apps, and the java compiler turns the 

source code into bytecode. It uses DVM after decompiling java bytecode to get the 

information of methods, packages and classes [34, 35]. For e.g. Telephony manager of 

OS to fetch user ID and a subscriber ID. Some of the API calls are there in Android 

apps are: getBinder, KeySpec, getBinder, Ljava.net.URLDecoder, android.os.Binder, 

Ljava.lang.Class.getMethods, ServiceConnection, onserviceConnected, 

Ljavax.crypto.spec.SecretKeySpec. 

 Intents- Intents are present in Manifest.xml. It is an abstract description of an action 

to be carried out [36, 37]. It infers the app’s intentions such as picking a contact. Some 

of the examples of intents are SET_WALLPAPER, SCREEN_OFF, 

ACTION_SHUTDOWN, CALL_BUTTON, PACKAGE_CHANGED, 

NEW_OUTGOING_CALL. 

 Command strings- It is considered one of the most significant attributes for the 

recognition of malware [38]. These command strings are present in lib, res, assets 

folder. Some of the examples of command strings are /system/app, chown, mount, 

remount, /system/bin and chmod.  

Various tools are used for static malware analysis to decompile the app package and to mine 

the attributes from the apk. Tools that are used for static malware analysis are shown in Table 

1.5. 
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Table 1.5: Static malware analysis tools 

Static Tools Short Description 

Apk tool [39]
 

It permits decoding an app to smali code and also it is 

a reverse engineering tool. 

Dex2jar[40, 41] It converts the .dex file into the .jar file. 

String [26] It finds an executable for the string. 

Androguard [42, 43]
 

It is used for disassembling apps. 

JAD [44] It decompiles the .class file into the .jar file. 

DED [45]
 

It is used for decompiling an app. 

AXMLPrinter2 [46] It is the library for decompiling manifest files. 

Baksmali [47, 48] Dex to smali translator 

 

1.5.2 Techniques and Tools for Dynamic Malware Analysis 

For dynamic malware analysis, various techniques and tools are used. The most common are 

discussed as follows. 

 Cryptographic operation- These operations are accepted by malware to encrypt root 

exploits, target premium sms numbers, malicious payload etc. The features which are 

used to differentiate many cryptographic behaviors are represented as <action> 

<algorithm>.  The <action> represents operations like decryption, generation and 

encryption whereas <algorithm> represents several cryptographic algorithms [49, 50]. 

 Dynamic permission- It is one of the significant dynamic attributes to examine the 

behavior of apps. These permissions are executed at the runtime environment [49, 50]. 

 Information leaks- Personal and confidential data has gained lots of attention [49, 

50]. Android malware performs malicious activities such as stealing SMS content, 

important information associated with banking and social networking, contact 

information etc. The collected information is used for keeping track of users and 

making profits. These are defined as <source>_<sink>. The <source> represents 

operations that gained confidential data and the <sink> represents operations that 

leaked confidential data. 
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 System calls- It is a useful feature for mobile device intrusion detection. Android apps 

use the kernel's services via system calls [49-51]. The kernel provides apps with useful 

services such as operations-related processes, device security and power management 

etc. To alter the execution of other apps, this virus commonly uses sigprocmask, 

ptrace and getuid.  

Various tools are used for dynamic malware analysis to examine the characteristics or 

behavior of an app while it is running in the sandbox (virtual environment). Tools that are 

used for dynamic malware analysis are shown in Table 1.6. 

Table 1.6: Dynamic malware analysis tools 

Dynamic Tools Short Description 

Cuckoo Sandbox [52]
 

It is a tool that monitors dangerous files on Android, 

window and Linux. 

DroidBox [53] It permits the execution of apps and gives information 

associated with the behavior of the app. 

AppPlayground [54] The dynamic analysis of the app is attempted to be 

automated with this tool. 

TaintDroid [55] It makes use of taint analysis to trace the data during 

the program execution. 

 

The rapid increase in Android malware needs effective approaches or techniques to better 

detect malicious apps. Zhou and Jiang [56] demonstrated that Android malware is increasing 

continuously and the existing solutions are becoming ineffective. The traditional security 

analysis is based on the analysis of security incidents, but it fails to give protection at a proper 

time. As a result, users remain unsafe for a longer duration. For these problems, ML is the 

best solution. It automatically examines the data, assists in the early identification of threats 

and offers decisions on time. Most of the work based on mobile security using ML provides 

better results in detecting malware. 
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1.6 MACHINE LEARNING 

“ML provides computers the capability to learn without being explicitly programmed [57]”. It 

becomes a common field of research in recent years and has been applied to a variety of 

fields. Some of the examples of these fields are medical data processing [58], classification of 

false news [59] and voice analysis or recognition [60]. Researchers start making use of ML 

techniques using static and dynamic malware analysis. Malware analysis is performed in 

order to extract attributes and then these attributes are used to train the model for predictions.  

1.6.1 Types of Machine Learning 

ML is classified into three types: unsupervised learning, supervised learning and 

reinforcement learning. Figure 1.6 shows the various categories of ML.  

 

Figure 1.6: Various categories of ML 

Supervised learning- It is also called “learn with examples”. Prior knowledge of the 

predicted attribute (i.e. class attribute) is required for this learning. This learning is divided 

into two categories i.e. classification and regression [57]. 
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 Classification- It is the process of distinguishing the instances into different groups. 

The output attribute consists of categorical values. 

 Binary classification- It classifies the instances of a given set into two groups 

for e.g. “malware” or “benign”. 

 Multiclass classification- It classifies the instances of a given set into two or 

more groups for e.g. “family classification of malware”. 

 Regression- The output attribute consists of real values for e.g. “weights” and 

“heights”. 

Some of the examples of supervised learning are RF, Neural Network (NN), Decision Tree 

(DT) and Support Vector Machine (SVM) etc [61, 62]. 

Unsupervised learning- It is also called “learn without examples”. No prior knowledge of 

the predicted attribute is required for this learning. This learning is divided into two categories 

i.e. Association and clustering [57]. 

 Association- It is a market-based analysis problem. It frames the association rule 

      between a set of items. For example, if someone buys item A, what is the 

probability that B also goes with it. One of the examples of association rule mining is 

the Apriori algorithm. 

 Clustering- It is defined as the process of arranging data points into groups whose 

members are identical in some way. Some of the examples of clustering are 

hierarchical, K-means, partitioning clustering etc. 

Reinforcement learning- It is a type of dynamic programming that trains the model using a 

system of punishment and rewards. It is used to define the best decision which permits the 

agent to solve a problem while maximizing a reward. Some of the examples of reinforcement 

learning are Q-learning and R-learning [57]. 

1.7 ANDROID MALWARE DATASETS 

This section focuses on the importance of the datasets as well as the datasets available for the 

detection of malware. In classification or prediction, the dataset plays an important role while 

conducting any experiment. The dataset contains data that allows the model to have a high 

level of understanding. Only relevant information in the input dataset can be used to provide 
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better training to the model, resulting in an optimal output. As a result, a dataset is crucial in 

the building and testing of the proposed methods. 

For the identification and classification of malware, many researchers have proposed various 

approaches/methods and assessed these on data. According to the existing research, there are 

not enough datasets related to Android malware. As a result, it is necessary to create a dataset 

and make it publicly accessible so that researchers may compare their new techniques to 

previous ones. 

Researchers collect the Android samples from the repositories that provide benign and 

malicious samples including Contagio Mini-Dump, Google Play Store, virusshare, EMBER, 

Apkpure and Apkmirror as shown in Table 1.7. 

 Contagio Mini-Dump- It is the repository from where the users can upload or 

download the samples. It comprises 28,760 samples out of which 16,800 are benign 

samples and 11,960 are malicious ones. 

 Virusshare- It is one of the most well-known websites that comprise 3,48,25,574 

samples of both windows and Android malware.  

 Google Play Store is one of the most renowned official app stores comprising 3.48 

million benign apps. 

 EMBER- It comprises of 1million records and carries malware and benign apps. 

 Apkpure- It is a website from where the users can download benign samples. 

 Apkmirror- It is a website from where the users can download benign samples. 
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Table 1.7: Sources of Android samples 

Database Published 

year 

Total samples Available at 

Contagio Mini-Dump 2011 28,760 http://contagiominidump.blogspot.com/  

Virusshare 2013 3,48,25,574 https://virusshare.com/  

Google Play store 2012 3.48 million https://play.google.com/store  

Microsoft malware 

classification challenge 

2015 20,000 https://arxiv.org/abs/1802.10135  

EMBER 2018 1.1million https://arxiv.org/abs/1804.04637  

Apkpure     2014       --- https://apkpure.com/  

Apkmirror      ---       --- https://www.apkmirror.com/  

--- Not specified 

There are only few datasets that are publically available for comparing the techniques or 

methods with earlier ones. These are MalGenome, Drebin, CICAndMal2017 and AAGM as 

shown in Table 1.8. 

 MalGenome- It comprises 3,799 observations out of which 2,539 are benign 

observations and 1,260 are malicious observations. Further, these malicious 

observations are classified into 49 malicious families. It has 215 attributes in all, 

grouped into four categories: permissions, command strings, intents and API calls. 

 Drebin- It comprises 15,036 numbers of observations out of which 9,476 are benign 

observations and 5,560 are malicious observations. Further, these malicious 

observations are classified into 179 malicious families. It has 215 attributes in all, 

grouped into four categories: permissions, command strings, intents and API calls. 

 CICAndMal2017- It comprises a total of 10,854 numbers of observations out of 

which 6,500 are benign and 4,354 are malicious observations. Further, these malicious 

observations are classified into 42 malicious families 

 AAGM- It comprises a total of 1,900 observations out of which 1,500 are benign and 

400 malicious observations. Further, these malicious observations are classified into 

12 malicious families. 

 

 

 

http://contagiominidump.blogspot.com/
https://virusshare.com/
https://play.google.com/store
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1804.04637
https://apkpure.com/
https://www.apkmirror.com/
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Table 1.8: Publically available Android benchmark datasets  

Database Published 

year 

Malware Benign Malware 

families 

Attributes Total 

instances 

Available at 

MalGenome 2012 1,260 2,539 49 215 3,799 https://figshare.c

om/articles/datas

et/Android_mal

ware_dataset_for

_machine_learni

ng_1/5854590/1 

Drebin 2014 5,560 9,476 179 215 15,036 https://figshare.c

om/articles/datas

et/Android_mal

ware_dataset_for

_machine_learni

ng_2/5854653 

CICAndMa

l2017 

2017 4,354 6,500 42 --- 10,854 https://www.unb.

ca/cic/datasets/in

dex.html 

AAGM 2017 400 1,500 12 --- 1,900 https://www.unb.

ca/cic/datasets/an

droid-

adware.html 

--- Not specified 

1.8 PERFORMANCE PARAMETERS 

The proposed approaches are examined based on different assessment parameters. These are 

discussed as follows: 

Confusion matrix- It is a table that is frequently used to explain the performance of the 

classifier or classification model on the test data. Table 1.9 shows the confusion matrix for the 

binary classification problem. 

 

 

 

 

 

https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-adware.html
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Table 1.9: Confusion matrix for binary classification problem 

 Predicted 

Malware Benign 

 

Actual 

Malware TP (True positive) FN (False Negative) 

Benign FP (False positive) TN (True Negative) 

 

TP- Number of examples correctly predicted as the malware class. 

TN- Number of examples correctly predicted as the benign class. 

FP- Number of examples incorrectly predicted as malware class. 

FN- Number of examples incorrectly predicted as benign class. 

 Accuracy (%) - It is the ratio of correctly classified apps to the total number of apps. 

It is calculated as shown in Equation 1.1. 

                                                  
     

           
                                          (1.1) 

 Sensitivity (Sens) - It is also called TP rate or recall. It is the rate of correctly detected 

malicious apps to the number of malicious apps. It is calculated as given in Equation 

1.2. 

                                                     
  

     
                                                            (1.2) 

 Positive Predicted Value (PPV) - Precision is another name PPV. It is the ratio of 

correctly detected malicious apps to the total number of apps that are detected as 

malicious apps. It is calculated as given in Equation 1.3. 

                                                                   
  

     
                                                          (1.3) 

 F-measure - It is the harmonic mean of both recall and precision. It is computed as 

given in Equation 1.4. 

                                                           
                    

                
                                    (1.4) 

 False Positive Rate (FPR) – It is the rate of incorrectly predicted benign 

observations. It is computed as given in Equation 1.5. 
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                                                 (1.5) 

 Matthews Correlation Coefficient (MCC) - It calculates the quality of binary 

classification problems. The value of MCC lies in between – 1 to +1. If the value of 

MCC is +1 then it means perfect prediction and if -1 then it means inverse prediction. 

It is computed as given in Equation 1.6.  

                                                      
           

√                            
                             (1.6) 

1.9 MOTIVATION 

In the modern era, smartphones are becoming more prevalent in our daily lives. A Lot of 

users relies on smartphones for a variety of purposes including banking, shopping, gaming, 

entertaining etc. There is a variety of Operating Systems in the market including iOS, 

Android, BlackBerry and Windows Phone etc. Android is the most popular among these. It 

has 85% of market share with more than 3.04 million apps [63]. Till December 2019, the 

population of mobile users was 1 billion but throughout the pandemic covid-19 the population 

of mobile users is upto 7 billion [64]. The exponential growth in mobile technologies has 

made users to use smart devices to take advantage of various services. The increase of 

Android apps plays a significant role in the development of the forthcoming economy and 

mobile Internet. The increasing use of Android apps has lured the attention of the attackers. 

Recently, various threats (such as system damage, information leakage, financial loss) have 

been arisen due to explosive growth in mobile technologies. The report of MacAfee shows 

that the growth of Android malware is increased by approximately 121 million in the year 

2020 [65]. The increase in the number of Android malware has become complex in manually 

handling the malware samples. To elude this problem, there is a need to develop an automated 

and effective technique to better detect malware. The traditional approaches for detecting 

malware are based on the Signature-based method and fails in detecting new malware.  

Earlier, the malware was written or designed for simple purposes. Therefore, it was simpler to 

identify. This type of malware is known as conventional malware. The advanced malware 

being created by attackers has the ability to get executed in kernel mode and is harder to 

identify. This type of malware is known as new generation malware. Table 1.10 demonstrates 

the comparison of conventional malware and new generation malware.  
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Table 1.10: Comparison of conventional malware and new generation malware 

Parameter Traditional New Generation 

Level of implementation Simple Coded Hard Coded 

Type of attack General Targeted 

Targeted devices Computers Many different devices 

Challenge Easy Difficult 

Use of hiding technique None Yes 

Permanency Temporal  Persistent 

Spreading through .exe extension Uses different extensions 

 

The upcoming malware (new malware) is sophisticated and complex in nature. As a result, 

the traditional methods are incapable to detect complicated and sophisticated malware quickly 

and accurately. Therefore, there is a need to design techniques for better identification and 

classification of malware. 

1.10 RESEARCH OBJECTIVES 

The research objectives are framed as follows: 

1. To propose a model by taking into account an integrated set of static and dynamic 

attributes for detection and classification of unknown malware. 

2. To propose an approach based on the fusion of ML algorithms using ranking schemes 

for improving detection of Android malware. 

3. To design and develop an approach for imbalanced classification of malware. 

4. To design a rule based model for identifying the risk level of Android app features. 

 

1.11 ORGANIZATION OF THESIS 

The research work comprises seven chapters. Chapter 1 demonstrates the importance of 

Android OS, its architecture, different versions, its evolution and methods for examining 

Android malware. Different tools and techniques for analysing Android malware, details of 

Android malware datasets and all evaluation parameters used for validation are discussed in 

this chapter. 
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Chapter 2 discusses the detailed literature survey of the state-of-the-art methods used for 

Android malware detection, Classification and Threat measurement. This chapter also 

presents the inferences drawn from the literature review. 

Chapter 3 presents an integrated approach that can effectively analyze, detect and classify the 

malware. The dataset is created using static and dynamic malware analysis for both binary 

(named as Dataset-1) and multiclass classification (named as Dataset-2) dataset and made it 

publically accessible on kaggle and GitHub. Various ML algorithms are trained using static, 

dynamic and integrated attributes. The results demonstrate that the integrated approach 

performs better as compared to single approaches. 

Chapter 4 presents an approach (MalDetect) for enhancing the detection results of Android 

apps. It is designed using the fusion of traditional ML algorithms on the basis of proposed 

ranking schemes. The ranking schemes are then used to generate various combination 

schemes, from which the best combination is chosen to construct the final model. The results 

indicate that MalDetect is more effective than ensemble learning techniques and traditional 

classifiers.      

Chapter 5 presents an approach (CSForest) for the imbalanced family categorization of 

malware. The proposed technique results are compared with C4.5, CSTree and RF to see how 

good it is at categorizing malicious apps families. The findings suggest that the proposed 

approach is effective in determining malicious app families. 

Chapter 6 describes a rule-based model to assign the risk levels (No, Low, Medium and 

High) to Android app features. The static features (permissions and API calls) in the data are 

examined statistically to come up with a hypothesis for identifying their risk factor. In order 

to test the hypothesis, ANOVA has been used. The results indicate that the mean values of 

different risk factors differ significantly. Afterward, a weight is assigned to the features under 

each category to compute the threat score of a particular app. 

Chapter 7 presents the contributions of the research work carried out and concludes the 

study. It also highlights the scope of future work related to Android malware detection, 

classification and threat assessment. 
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CHAPTER 2 

LITERATURE REVIEW 

 

As discussed in chapter 1, the increasing demand for Android phones attracted many 

organizations to build various apps such as gaming, education, business, entertainment, 

banking, lifestyles etc. The increasing use of Android apps also lured attackers to build 

malicious apps that pose several threats such as financial loss, information leakage etc. 

Nowadays, cybercriminals are creating more innovative, complex, advanced and new 

varieties of malware due to which the detection, classification and threat assessment of 

malware is turning out to be a real-life challenge. In this chapter, a primary focus is given to 

all state-of-the-art approaches for identification, classification and threat assessment of 

Android malware.  

2.1 RELATED RESEARCH WORK  

The literature review conducted in context to malware detection, classification and threat 

assessment can be divided into two parts: Signature based and ML based methods. 

2.1.1 Signature-based Method 

Lots of research has been conducted in the area of detection, classification and threat 

measurement of Android malware. In the mid-1990s, signature-based approach for malware 

detection was developed. This approach extracts the malicious file patterns by matching the 

signatures of malicious apps present in the database. This technique is very efficient and 

reliable for identifying the known malware [67-76]. Figure 2.1 shows the traditional 

signature-based approach for malware identification. The work related to the signature-based 

approach for detection, classification and threat assessment of Android malware is described 

as follows: 
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Figure 2.1: Process of signature-based approach for identification of Android malware 

Venugopal and Hu [77] have proposed a mobile malware identification approach that needs 

less memory to scan the mobile devices. Furthermore, the authors compared their proposed 

technique with the renowned Clam-AV scanner. The findings illustrated that their approach 

takes 50% less memory than Clam-AV and provides a fast scanning rate. Faruki et al. [78] 

have introduced a method (AndroSimilar) that creates a signature by mining statistically 

unlikely attributes to identify malware apps. This method is very effective against repacking 

and code obfuscation mostly used to avoid AV signatures and to disseminate hidden variants 

of familiar malware. It is a mechanism that discovers areas of statistical similarity with 

familiar malware to identify those unknown samples. The results suggested that the 

AndroSimilar approach is very efficient and robust in comparison to fuzzy hashing 

approaches. 

Zheng et al. [79] have presented a technique i.e. DroidAnalytics which is based on a 

signature-based approach that automatically collects, examines and analyses the mobile 

malware. The experimental findings demonstrated that DroidAnalytics is much more effective 

in examining the malware mutations and repacking and also it is a very efficient tool. 

Ngamwitroj and Limthanmaphon [80] have introduced a signature-based Android malware 

identification approach using broadcast-receiver data and permission from the manifest file. 

The evaluation findings showed that the accuracy acquired by the approach to detect malware 

app was 86.56%. 
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Feng et al. [81] have suggested a novel approach (Apposcopy) to determine malware. The 

signature matching technique of Apposcopy uses an Inter-Component Call (ICC) Graph and 

integration of static taint analysis to effectively determine apps that have properties like 

control and data flow. The findings indicated that it is very efficient and reliable approach for 

determining malware families. Tchakounte et al. [82] have proposed a system named as 

LimonDroid, a desktop security tool that contains various schemes. The proposed approach 

was tested on 300 benign and 341 malware apps on a database of 62 YARA malicious 

families patterns, 12,925 fuzzy hashed malware signatures and VirusTotal engine. The results 

demonstrated that the suggested approach is more effective for users and provides detection 

accuracy of 97.82%.  

The major constraint of this technique is that it is incapable of detecting new malware (Zero-

day). To overwhelm this constraint, the researchers used ML algorithms to develop several 

detection techniques (such as static and dynamic analysis). This method makes use of 

attributes mined after performing static and dynamic analysis of malware. The extracted 

attributes are used to train the model for making predictions. 

2.1.2 Machine Learning Method 

This method makes use of attributes mined after performing static or dynamic analysis of 

malware. The extracted features are used to train the ML models for making predictions 

pertaining to Android apps. The research work related to ML methods for malware detection, 

classification and threat assessment using static and dynamic features are described as 

follows:  

2.1.2.1 Using Static Features 

It is considered as one of the methods for the identification and classification of malware. It 

examines the sample of malware without executing or running the code. It uses decompiling 

methods to decompile the app package and mine the attributes for the detection of malware 

[83-114]. The following research work related to static malware analysis is addressed as 

follows: 

Li et al. [115] have presented an approach (named Significant Permission Identification 

(SigPID) that uses permissions as features to determine malware. They mined the permission 
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data to determine the important permissions that can efficiently characterize the apps as 

malicious or benign. The authors compared their results with the existing state of the art 

approaches. The results showed that SigPID is more efficient in detecting malware and the 

accuracy obtained by unknown malware was 91.4%. Zhu et al. [116] have proposed a 

technique (named as DroidDet) to mine APIs, permissions, permission rate and examine 

system events as a key feature. They applied ensemble rotation forest to develop a model for 

figuring out whether an app is infected with malware. The experimental outcomes suggested 

that the proposed technique obtained high accuracy i.e. 88.26% as compared to other existing 

approaches. 

Kim et al. [117] have presented a framework to determine malware. The authors extract 

several types of features and these are refined using similarity-based or existence based 

feature extraction approach. Moreover, the authors also proposed a multimodal Deep 

Learning (DL) model to determine the app. The accuracy of the proposed model is compared 

with other deep neural network techniques. Feizollah et al. [118] have examined the 

efficiency of Android intents and permissions as a characterizing feature for determining the 

malware apps. The experiment was conducted using 7,406 apps out of which 1,846 apps are 

benign and 5,560 are malicious apps. The results indicated that the integration of both 

attributes results in a high identification rate i.e. 95.5% in comparison to individual features. 

Wang et al. [119] has thoroughly investigated the permission risk in Android apps. They 

examine the risk of an individual and group of permissions. They then applied three distinct 

feature ranking algorithms such as T-test, mutual information and correlation coefficient to 

rank the permissions according to the risk factor. To determine the subsets of risky 

permissions they used Principal Component Analysis (PCA) as well as sequential forward 

selection. In the end, for the detection of malicious apps they compared their technique with 

conventional techniques such as RF, DT and SVM. The findings demonstrated that the 

detection accuracy attained by the proposed approach was 94.62% with a 0.6% FP rate. 

Alazab [120] has introduced a system for classifying Android apps using a real dataset 

premised on static analysis. The authors examined two attribute selection methods i.e. 

ANOVA and Chi-Square in combination with ten ML classifiers. They then evaluated the 

detection accuracy of each classifier to determine the best one for detecting malware using 

distinct attribute sets. It was found that Chi-Square had higher detection accuracy than 
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ANOVA. The proposed system achieved 98.1% detection accuracy and took 1.22 seconds to 

classify. 

Arora et al. [121] have introduced PermPair, a novel detection model that builds and 

compares graphs for normal and malware by mining permission pairs from an application's 

manifest file. The authors when compared their proposed approach to other similar 

approaches and anti-malware apps, the outcomes revealed that the proposed approach is 

effective in identifying malware with an accuracy of 95.44%. Agrawal and Trivedi [122] have 

analyzed different malware identification techniques with different ML classifiers. The 

findings suggested that RF performed better than other ML classifiers.  

Sahin et al. [123] have designed ML based system to distinguish malware from goodware 

apps. The proposed system aimed to eliminate unnecessary attributes by using linear 

regression based features selection method. The author employed seven ML classifiers such 

as Multilayer Perceptron (MLP), Sequential Minimal Optimization (SMO), Naive Bayes 

(NB), RF, C4.5, Logistic Regression (LR) and K-Nearest Neighbors (KNN) to identify 

malware. The findings demonstrated that the F-measure acquired by the proposed method was 

0.961. Further, the authors claimed that this system is effective for detecting real time apps. 

Bai et al. [124] have suggested a system that could detect malware as well as classify it into 

families. The authors used permissions and opcode sequences as features that are acquired 

from Manifest.xml and classes.dex file. A fast correlation based filter algorithm was used for 

dimensionality reduction. The authors employed CatBoost classifier for classification 

purpose. The findings indicated that the accuracies achieved by both binary and family 

classification was 0.974 and 0.9738 respectively.  

Yuan et al. [125] have proposed an algorithm for both identification and family classification 

of malware. The authors proposed Time Frequency-Inverse Document Frequency (TF-IDF) 

algorithm based on static permissions. This algorithm is used to compute the permission value 

of every permission and sensitivity value of apk of the app. After that, the authors used 

various classification algorithms such as Random Tree, NB, K-NN, C4.5, RF and Bayesian 

Network. The proposed approach was evaluated on 9,419 malware apps and 6,070 benign 

apps. The results demonstrated that the accuracy achieved in the case of malware detection 

was 99.5% whereas the accuracy achieved in the case of family classification was 99.6%. 

Sangal and Verna [126] have introduced an approach based on attributes to identify malware. 
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The authors worked on the ClclnvesAndMal2019 dataset and used intent and permissions as a 

feature set for detection. They used principal component analysis as a features selection 

technique. The well-known ML classifiers are employed to identify malware. The findings 

suggested that RF performed better with an accuracy of 96.05%.  

Yerima et al. [127] have investigated an approach that was premised on parallel ML 

classifiers to detect malware. The authors first carried out the experiments with individual 

base classifiers such as Simple Logistic (SL), RIDOR, Partial Decision Tree (PART), NB and 

DT. Then, they carried out the experiments by combining different classifiers based on 

average of probabilities, maximum probabilities, majority voting and product of probabilities. 

The experimental consequences demonstrated that the product of probabilities performs better 

for identifying malware. Coronado-De-Alba et al. [128] have presented a meta-ensemble 

approach premised on static malware analysis to detect Android malware. Moreover, they 

introduced a comparative analysis of different Ensemble Learning methods to identify the 

best combination of classifiers premised on the evaluation of classification results. 

Yerima and Sezer [129] have presented an approach named as DroidFusion. The fusion of 

classifiers was premised on different ranking combination schemes. They presented the 

experimental outcomes on four different datasets to show the effectiveness of the proposed 

model. The authors then compared the usefulness of the DroidFusion with the stacking 

ensemble method. The findings suggested that the DroidFusion was much more effective than 

the stacking technique to identify malware. Idrees et al. [130] have introduced a Plndroid that 

was premised on intents and permissions for the detection of Android apps. It makes use of a 

combination of intents and permissions with the ensemble approach for correctly classifying 

malware. The experiment was carried out on 1,745 apps to detect malware. The proposed 

framework provided 99.8% detection accuracy and also showed the effectiveness of the 

proposed framework. 

Milosevic et al. [131] have introduced two approaches premised on permissions and code 

analysis using a bag-of-words demonstration model with ML The author employed C4.5, 

Random tree, SVM, JRip, RF and linear regression ML classifiers. The experimental findings 

suggested that the F-score acquired by both approaches were 89% and 95.1% for the 

permission based and source code based models. Wang et al. [132] have introduced an 

efficient and effective approach to managing the market to identify benign and malicious 
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apps. The authors mined 11 different types of static attributes to describe the behaviors of the 

apps. They applied an ensemble of classifiers such as K-NN, Classification and Regression 

Tree (CART), NB, RF and SVM to identify the malicious apps. The proposed approach was 

tested on a dataset that contain 8,701 malicious apps and 1,07,327 benign apps. The outcomes 

illustrated that their model obtained better accuracy i.e. 99.39% for detecting malicious apps 

and obtained the accuracy of 82.93% in classifying benign apps. 

Wang et al. [133] have proposed a novel method (i.e. Mlifdect) that used parallel ML and 

fusion techniques to better detect Android malware. The authors mined eight distinct types of 

static features. Then, they build a parallel ML identification model for spreading up the 

classification process. Furthermore, they investigated the probability analysis premised on 

Dempster-Shafer theory based fusion methods which obtained better detection results. The 

findings suggested that the Milfdect is much more capable of acquiring a higher detection rate 

than other solutions for detecting malware. Dehkordy and Rasoolzadegan [134] have applied 

Synthetic Minority Oversampling Technique (SMOTE), undersampling technique and their 

combination to balance the data. Then, the authors applied Iterative Dichotomiser3 (ID3), 

SVM and K-NN were used to identify Android malware. The findings indicated that the 

performance of K-NN with SMOTE was better than other classifiers. The accuracy obtained 

by K-NN with SMOTE was 99.49%. 

Shrivastava and Kumar [135] suggested a framework named as SensDroid that assessed the 

performance of Android permissions and intents as a distinguishing trait to spot malware apps 

through sensitive analysis methods. The outcomes illustrated that the proposed approach was 

effective in distinguishing the clean and the infected apps. The accuracy acquired by the 

proposed framework was 98.65%. Wang et al. [136] have suggested a framework named as 

DroidRisk for quantitative security risk evaluation of Android apps based on permissions. The 

authors evaluated their framework on 27,274 benign and 1,260 malicious apps. The findings 

illustrated that the proposed approach is more reliable in providing the risk signal.  

For malware detection, Onwuzurike et al. [137] developed MAMADROID, a static malware 

analysis system. Malware detection relies on static features like API calls and call graphs. The 

results were tested on 3.5 million malicious and 8.5 million benign apps. The proposed 

method yielded an F-measure of 0.99. Ye et al. [138] have introduced a method that 

calculates the risk of an app. The authors created and deployed a fuzzy logic system to 
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calculate the total risk. They suggested a risk classification-based method for malware 

detection based on the quantitative estimation model. The experiments showed that the RF 

algorithm achieved high accuracy i.e. 93.2% with a low FP rate.  

Xu et al. [139] have presented a new technique i.e. Fuzzy-SMOTE which was based on 

SMOTE and fuzzy set theory. The results showed that Fuzzy-SMOTE achieved the highest 

accuracy when compared to Borderline-SMOTE. Table 2.1 shows the comparative study of 

detection, classification and threat measurement of malware using static features. 

Table 2.1: Comparative study for detection, classification and threat measurement of Android malware using 

static features 

Authors Features Data Source Technique 

used 

Results 

 Malicious Benign 

Li et al. [115] Permissions Google Play 

and Anzhi 

store 

5,494 3,10,926 Proposed 

SigPID and 

compared 

with Random 

Committee, 

Rotation 

Forest, 

Functional 

Tree (FT), 

PART, RF, 

SVM 

SigPID is 

more 

efficient by 

identifying 

93.63% of 

malware and 

91.4% of 

new 

malware. 

Zhu et al. 

[116] 

API calls 

and 

Permissions 

Official app 

store and 

virusshare 

1,065 1,065 Ensemble 

Rotation 

Forest  

Accuracy 

obtained by 

proposed 

approach 

was 88.26% 

Kim et al. 

[117] 

String, 

Permission, 

Shared 

library 

function 

opcode, API 

calls and 

Method 

VirusShare, 

Google Play 

Store and 

Malgenome 

Project 

13,075 19,747 Multimodal 

Neural 

Network 

Accuracy 

acquired by 

proposed 

approach 

was 98%. 
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opcode 

Feizollah et al. 

[118] 

Permissions 

and Intents 

Google Play 

store and 

Drebin 

5,560 1,846 Perform 

analysis of 

features 

Combination 

of attributes 

results in 

better 

detection i.e. 

95.5%. 

Wang et al. 

[119]  

Permissions Google Play 

store and 

Mal-com 1 

and Mal-com 

2 from 

antivirus 

companies 

29,216 3,15,794 Mutual 

Information, 

correlation 

coefficient 

and t-test in 

combination 

with SVM, 

DT and RF 

The 

detection rate 

of proposed 

approach 

was 94.62% 

with a 0.6% 

FP rate. 

Alazab [120] API calls Play store, 

Androzoo, 

Contagion 

mobile, 

Malshare 

17,915 19,000 Chi-square 

and ANOVA 

in 

combination 

with ten ML 

algorithm 

The 

detection rate 

of proposed 

approach 

was 98.1%. 

Arora et al. 

[121] 

Permissions Genome, 

Koodous, 

Drebin and 

Google Play 

Store 

6,208 5,993 PermPair to 

detect 

Android 

malware 

The 

detection rate 

of proposed 

approach 

was 95.44%. 

Sahin et al. 

[123] 

Permissions APKPure, 

Android 

malware 

dataset 

1,000 1,000 Linear 

regression 

with seven 

different ML 

algorithms 

F-measure 

obtained by 

the proposed 

method was 

0.961. 

Bai et al. [124] Dalvik 

opcode 

sequences 

and 

Permissions  

Third-party 

markets and 

open source 

dataset 

 

--- 

 

--- 

Fast Android 

Malware 

Detector 

(FAMD) with 

CatBoost 

Accuracy 

achieved by 

both binary 

and family 

classification 

dataset was 

0.974 and 
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0.9738 

respectively 

Coronado-de-

Alba et al. 

[128] 

Permissions, 

hardware 

components 

and intents 

Drebin 

project, 

Third party 

stores and 

Google play 

store 

1,531 1,531 Random 

Committee 

and  RF and 

Meta-

ensembling 

RF in Random 

Committee 

Accuracy 

obtained by 

the proposed 

model was 

97.56%. 

Yerima and 

Sezer [129] 

API calls, 

command 

strings, 

intents and 

permissions 

Drebin, 

MCAFEE-

350, 

Malgenome,   

and 

MCAFEE-

100 

D1: 5,560 

D2: 13,805 

D3: 1,260 

D4: 13,805 

 

D1: 9,476 

D2: 22,378 

D3: 2,539 

D4: 22,378 

 

Random Tree, 

REPTree,  RF, 

AdaBoost and 

J48 and uses 

multiranking 

algorithm 

 

The 

proposed 

approach 

was far much 

effective in 

combining 

different 

classifiers 

Wang et al. 

[133] 

Permissions, 

intents, 

hardware 

Features and 

API calls 

Anzhi 8,701 1,07,327 SVM, RF NB, 

CART and 

KNN and uses 

majority 

voting 

 

Accuracy 

achieved by 

proposed 

approach 

was 95.39%. 

 

Idrees et al. 

[130] 

Permissions 

and intents 

Google 

Playstore , 

Genome 

Contagio 

dump, 

VirusShare, 

Virus Total 

and 

MalShare  

1,300 445 

 

MLP, DT and 

Decision 

Table and uses 

Product of 

probabilities,  

Average of 

probabilities 

and majority 

vote 

Accuracy 

obtained by 

the proposed 

approach 

was 99.8%. 

Milosevic et 

al. [131] 

Permissions M0Droid 200 200 SVM, C4.5,  

JRip, LR, 

Random Tree, 

RF and DT 

and uses 

majority vote 

Accuracy 

obtained by 

the best 

fusion model 

was 95.6%. 
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Shrivastava 

and Kumar  

[135] 

Permissions 

and intents 

 

Google Play 

Store and 

Drebin 

 

5,680 

 

2,973 

 

SensDroid to 

detect the apps 

based on the 

risk of 

features 

 

Accuracy 

obtained by 

SensDroid 

was 98.65%. 

 

Dehkordy and 

Rasoolzadegan 

[134] 

 

Intents, 

permissions, 

Hardware 

component 

and API 

calls 

 

Third party 

apps, Drebin 

and AMD 

dataset 

 

2,723 

 

6,500 

 

K-NN with a 

combination 

of SMOTE+ 

random 

undersampling 

 

K-NN with a 

combination 

of SMOTE+ 

random 

undersampli-

ng 

Provides 

better 

detection 

accuracy 

with 98.69%. 

Wang et al. 

[136] 

Permissions Google Play 

store and 

Genome 

Project 

1,260 

 

27,274 

 

DroidRisk for 

quantitative 

security risk 

evaluation  

DroidRisk 

produced a 

reliable risk 

signal. 

Xu et al. [139] 

 

Permissions 

 

Google play 

store and 

DroidDream 

 

D1: 560 

D2: 343 

D3: 199 

D4: 120 

D5: 100 

D6: 80 

D7: 54 

D8: 44 

D9: 268 

D10: 396 

D1: 1,017 

D2: 1,017 

D3: 1,017 

D4: 1,017 

D5: 1,017 

D6: 1,017 

D7: 1,017 

D8: 1,017 

D9: 500 

D10: 1,528 

Fuzzy-

SMOTE 

 

Fuzzy–

SMOTE 

achieves 

higher 

accuracy. 

--- Not specified 

This method has some limitations that it is ineffective to examine the code obfuscation and 

morphed malware [140, 141] though it is quicker in determining malware. To overwhelm the 

hindrances of the static method, the dynamic method is used. It can track the characteristic of 

the app and precisely determine the unknown malware.  
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2.1.2.2 Using Dynamic Features  

It examines the characteristics or behavior of an app while it is running in the virtual 

environment. It is more effective as it keeps on tracking the behavior of the apps at the time of 

execution [142-160]. Some research works related to dynamic malware analysis are the 

following: 

Feng et al. [50] have proposed an efficient dynamic framework named as EnDroid to 

determine highly accurate malware based upon dynamic behavior features. They employed a 

feature selection technique to eradicate irrelevant and noisy features and extract important 

features. Furthermore, EnDroid employed a stacking ensemble method to characterize the 

malicious app from benign apps. The experimental outcomes demonstrated that stacking 

obtained better performance rate and provided a promising solution for the detection of 

malware. Mahindru and Sangal [154] have presented a framework named as ML-Droid that 

identified the malware from mobile devices. This framework used dynamic analysis to 

identify mobile malware. Furthermore, various ML methods are employed using dynamic 

features to aid in the construction of a model. The experiment was carried out on a total of 

5,00,000 Android apps. The results indicated that the accuracy attained by the proposed was 

98.8%.  

Cai et al. [161] have proposed a dynamic classification approach (named as DroidCat) to 

enhance the existing technique. The authors used a distinct set of dynamic features in 

accordance with ICC intents and method calls. Furthermore, the results illustrated that the 

DroidCat obtained high accuracy i.e. 97% in comparison to the state of the art methods to 

detect or distinguish malicious apps. Das et al. [162] have proposed a hardware architecture 

called GuardOL to carry out online malware detection. They built a multilayer perceptron in 

Field Programmable Gate Arrays (FPGA) to train classifiers using these dynamic features. 

The findings illustrated that the approach used less power consumption and provided a faster 

detection rate. 

Enck et al. [55] have addressed an approach named as TaintDroid, an effective dynamic taint 

analysis system that continuously tracks sensitive data from different sources. The findings 

intimated that TaintDroid offered valuable input for mobile users and safety service firms 

seeking to determine the misbehaving apps. Chen et al. [163] have presented an architecture 
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that utilizes model based semi-supervised classification technique based on dynamic API 

calls. Authors compared their methods with well-known classifiers like SVM, Linear 

Discriminant Analysis (LDA) and K-NN. The finding suggested that the proposed 

architecture obtained 98% detection accuracy which is higher than the other approaches.  

Zheng et al. [164] have designed a system (“DroidTrace”) based on dynamic analysis which 

permits analysts to carry out a systematic study of dynamic payloads with malware apps. It 

carried out forward implementation to trigger diverse dynamic loading performance. The 

authors showed their experiment on 50,000 benign apps and 294 malicious apps with ten 

families.  Afonso et al. [165] have presented a framework to dynamically detect whether an 

app is malware or benign. The proposed framework was evaluated on 7,520 apps out of which 

3,780 apps were used for training and the rest 3,740 apps were used for testing. The detection 

accuracy of the proposed framework was 96.66%.  

Mahindru and Singh [166] have suggested a detection system based on dynamic permissions. 

The authors applied different ML classification algorithms such as RF, k-star, J48, SL and NB 

to detect malicious apps. The experimental results suggested that among all classification 

algorithms SL performed better. For dealing with imbalanced malware datasets, Oak et al. 

[167] employed a paradigm called Bidirectional Representations for Transformers (BERT). 

There are 1,80,000 apps in their dataset, with two-thirds of them being malicious. In spite of 

an extremely unbalanced dataset, BERT was able to detect malicious code with acceptable 

accuracy. The BERT model had an F1-score of 0.919.  

Pang et al. [168] have suggested a novel method i.e. AWGSENN to address the problem of 

imbalanced classes. This method uses the Gaussian distribution probability density function to 

generate new instances. The results demonstrated that the proposed technique is effective than 

other resampling techniques. Table 2.2 illustrates the comparative study for detection and 

classification and threat measurement of malware using dynamic features. 

 

 

 



39 

 

Table 2.2: Comparative study for detection, classification and threat measurement of Android malware using 

dynamic features 

Authors Features Data Source Technique 

used 

Results 

 Malicious Benign 

Feng et al. 

[50] 

System calls, 

Cryptographic 

operation and  

Network 

Operation  

 

Google Play 

Store,  

AndroZoo and 

Drebin 

D1:5,213 

D2:5,000 

D1:8,806  

D2:5,000 

Stacking 

ensemble 

technique 

Accuracy  

and F-

measure 

obtained by 

stacking 

ensemble 

technique 

was 

96.49% and  

95.21% 

respectively 

Mahindru 

and 

Sangal 

[154] 

Permissions 

and API calls 

Google Play 

Store, Virus 

Total, hiapk, 

AndroMalShare 

slidme 

 

--- 

 

--- 

ML-Droid to 

identify 

malware from 

the device 

Accuracy 

acquired by 

the proposed 

framework 

was  98.8 % 

Cai et al. 

[161] 

ICC Intents 

and Method 

calls  

Google Play 

Store and 

MalGenome  

D1:3,450 

D2:3,190 

D3:9,084 

D4:1,254 

D1:5,346 

D2:6,545 

D3:5,035 

D4:439 

DroidCat a 

dynamic 

classification 

technique  

Accuracy 

obtained by 

DroidCat was 

97% 

Das et al. 

[162] 

System calls VX Heaven and  

Virusshare 

472 371 Build 

Multilayer 

Perceptron in 

FPGA 

Provides high 

accuracy for 

detecting 

new 

malware. 

Chen et 

al. [163] 

Dynamic API 

calls 

Google Play 

and VirusTotal  

31,777 24,217 Model Based 

Semi 

Supervised 

(MBSS) 

classification 

technique 

Accuracy 

acquired by 

proposed 

approach was 

98%. 

Afonso et 

al. [165] 

system call 

traces and API 

function calls 

Malgenome 

Project, 

VirusShare and 

4,552 2,968 Proposed a 

technique for 

dynamically 

Accuracy 

acquired by 

proposed 
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AndroidPIT 

market 

identifying 

malware 

approach was 

96.66%.  

Oak et al. 

[167] 

 

Permissions 

and sequence 

of dynamic 

activities 

 

Palo Alto 

Networks 

 

1,20,780 

 

60,390 

 

BERT in 

order to deal 

with 

imbalanced 

dataset 

 

F-score 

attained by 

BERT based 

model was 

0.919. 

Pang et al. 

[168] 

Network 

traffic 

 

VirusShare and 

360zhushou 

 

3,136 

 

753 

 

Proposed 

AWGSENN 

a resampling 

method for 

imbalance 

class problem 

 

AWGSENN 

shows 

remarkable 

performance 

over the other 

seven 

resampling 

methods. 

--- Not specified 

The major constraint of this method is that it could not explore all execution paths. 

Sometimes, malware can detect that it is being carried out in the virtual environment then it 

will not show its characteristics. Due to executing stalling and obfuscation, Gandotra et al. 

[26] have concluded that individual static or dynamic methods are not suited for correctly 

classifying the malware. The researchers have therefore begun to use a hybrid approach to 

overcome this challenge.  

2.1.2.3 Using Hybrid Features 

It is an amalgamation of static and dynamic approaches. It takes advantage of the static and 

dynamic approaches [169-174]. 

Alzaylaee et al. [175] have proposed a DL approach (named as DL-Droid) using hybrid 

features to detect malicious apps. The experiment was conducted over 30,000 apps on real 

devices. The experimental outcomes showed that detection accuracy obtained by integrating 

both static and dynamic features is 99.6%, which is 1.8% higher than the accuracy obtained 

by the dynamic approach. Yuan et al. [176] have presented an online method i.e. 

DroidDetector based DL to detect whether an app is benign or malicious. The authors 

compared their proposed method with state of the art methods. The findings suggested that 
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their method is more effective in characterizing malware in comparison to other methods. The 

detection accuracy obtained by the proposed method was 96.76%. 

Tong and Yan [177] have introduced an integrated approach for the identification of mobile 

malware by considering both dynamic and static analysis. The author constructed the pattern 

of both malicious and benign sets by matching the pattern of both malware and benign app 

with one another. The findings of test set results suggested that their approach attained a 

better identification rate than other approaches. Martin et al. [49] have introduced 

OmniDroid, a massive dataset in which features are mined using dynamic and static methods. 

The authors introduced this to assist researchers and AV creators in building a new technique 

for identifying mobile malware. They proposed a detection method based upon both dynamic 

and static features using a combination of classifiers. The experimental findings showed the 

potential usability and feasibility of their framework.   

Blasing et al. [178] have introduced an Android Application Sandbox (AASandbox) which 

make use of both static and dynamic approach to automatically identify the malicious file. 

Authors deployed both detection techniques and sandbox in the cloud for providing a fast 

detection rate. Further, the proposed method is much more effective in detecting mobile 

malware. Fu et al. [179] have presented an approach to detect mobile malware through static 

and dynamic attributes. The authors build and train Long Short Term Memory (LSTM) based 

model and then used a generative adversarial network to create augmented instances that 

mimic the behavior of newly emerged malware. The experimental results indicated that the 

classification accuracy attained by the proposed approach was 99.94% and the accuracy 

achieved by samples of newly emerged malware was 86.5%.  

Qaisar and Li [180] have presented a multimodal analysis of malicious apps. The authors 

exploited dynamic, static and visual features of apps to detect the malware apps using 

information fusion. Their approach used semi-supervised technique to detect and classify 

malware. The findings suggested that their approach obtained 95% accuracy which was better 

than other traditional approaches. Kabakus and Dogru [181] have proposed a hybrid malware 

analysis technique named mad4a. This technique takes advantage of both dynamic and static 

methods. The importance of this approach is to reveal the unknown behavior of Android 

malware.  
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Abawajy and Kelarev [182] have introduced a system named as Iterative Classifier Fusion 

System (ICFS). The authors carried out the empirical study to identify the best option to be 

applied to ICFS and then compared the effectiveness of the proposed technique with existing  

ML classifiers. The consequences demonstrated that ICFS provided better results using a 

combination of NB, MLP, Lib SVM with polynomial kernel and applied Iterative Feature 

Selection (IFS) premised on wrapper subset with Particle Swarm Optimization (PSO). Gupta 

and Rani [183] have presented two approaches premised on ensemble learning and big data to 

enhance malware detection accuracy. The first approach is premised on the weighted voting 

scheme of ensemble learning, and the next approach selects an optimum set of ML classifiers 

for stacking purposes. The proposed technique was conducted using Apache Spark and the 

performance is evaluated and tested on a large dataset containing 1,98,350 files out of which 

98,150 benign and 1,00,200 malware apps. The findings illustrated the effectiveness and 

better generalization of the proposed technique in identifying malware.  

Sharma and Gupta [184] proposed the RNPDroid technique for risk mitigation using 

permissions. The proposed technique was evaluated on the M0Droid dataset which consists of 

400 Android apps. The authors applied ANOVA test to check whether the null hypothesis 

was accepted or rejected. The experimental results demonstrated that the computed value of F 

i.e. 517.3 was significantly greater than the tabulated value of F is 2.61 at level of significance 

5%. Table 2.3 illustrates the comparative study for detection and classification and threat 

measurement of malware using integrated features. 

Table 2.3: Comparative study for detection, classification and threat measurement of Android malware using 

integrated features 

Authors Features Data Source Technique 

used 

Results 

 Malicious Benign 

Alzaylaee 

et al. 

[175] 

Permissions, 

application 

attributes and 

actions/events 

Intel Security 

(McAfee 

Labs). 

11,505 19,620 DL-Droid for 

Android 

malware 

detection 

Detection 

accuracy of 

proposed 

technique was 

99.6%. 

Yuan et 

al. [176] 

Permissions and 

sensitive API 

Google Play 

Store, 

Genome 

1,760 20,000 Droid- 

Detector for 

Android 

Detection 

accuracy 

achieved by 
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Project and 

Contagio 

Community 

malware 

detection 

Droid- 

Detector was 

99.6%. 

Tong and 

Yan [177] 

System calls 

related to  

network and file 

access 

Malgenome  

 

D1: 147 

D2: 195 

D3: 195 

D4: 195 

 

D1: 126 

D2: 187 

D3: 195 

D4: 195 

 

Proposed a 

hybrid 

approach for 

malware 

detection 

Proposed 

approach 

showed the 

feasibility and 

potential 

usability for 

malware 

detection 

Martin et 

al. [49] 

Permissions, 

services, system 

calls, receivers, 

activities, 

Opcodes, 

FlowDroid and 

API calls 

AndroZoo 

and Koodous 

 

21,018 

 

11,973 

 

AndroPyTool 

that 

automatically 

perform static 

and dynamic 

analysis of 

Android apps 

Fusion of 

features 

performed 

well 

Fu et al. 

[179] 

Permissions, 

receivers action 

and system call 

Apkpure, 

Android wake 

lock research 

project and 

Virusshare 

3,090 3,090 LSTM based 

model for 

detection of 

malware 

Accuracy 

obtained by 

the proposed 

model was 

99.94% 

Kabakus 

and Dogru 

[181] 

Permissions and 

network traffic 

Play store, 

Drebin, 

ASHISHB 

malware, 

Genome 

project and 

Contagio 

Mobile 

2,999 2,809 Mad4a for 

analysing the 

characteristic 

of malware 

This approach 

was more 

effective in 

detecting 

unknown 

characteristic 

of malware 

Sharma 

and Gupta 

[184] 

 

Permissions 

 

m0droid 

dataset 

 

200 200 RNPDroid to 

detect the apps 

based on the 

risk factor of 

features  

Accuracy 

obtained by 

RNPDroid 

was 97.48%. 
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From here, it is concluded that a single approach is not capable of detecting malware more 

precisely. Thus to enhance the accuracy, the hybrid approach is being used which is the 

integration of both approaches. Through a comprehensive literature review, we are able to 

discover research gaps for this work.  

2.2 INFERENCES DRAWN FROM LITERATURE REVIEW 

The review of the literature shows that a significant research has been carried out in context to 

Android malware. However, there are many areas which are unexplored and need immediate 

attention. Following inferences are drawn from the elaborative literature review. 

1. Most of the existing research relies on either static or dynamic malware features for 

building ML models to detect and classify malware [11, 12, 115, 118].  

2. As there is a huge difference between the rate of infection and actual detection of 

malware, there is a scope of improvement in designing the methods for their better 

detection and classification [6, 11, 12].  

3. In a real-world scenario, the number of samples differs greatly among various 

malware families. Thus, there is a need to build malware classification models which 

can take care of imbalanced classes [113, 115, 119]. 

4. There is a lack of adequate research on analyzing the threat or risk posed by Android 

apps [11, 12, 135]. 

5. With the increasing use of mobile apps, the volume and variety of mobile malware 

have increased significantly which requires the development of algorithms for 

malware detection and classification using big data tools [6, 11, 12]. 

 

Based on these inferences, the research objectives are framed as discussed in chapter 1. 

 

2.3 SUMMARY 

This chapter discusses the literature review conducted in context to malware detection, 

classification and threat assessment. The inferences are drawn from the elaborative literature 

review. Based on the inferences, the research objectives are framed. In the next chapters, the 

effective techniques are built to deal with these problems. 
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CHAPTER 3 

PROPOSED INTEGRATED APPROACH FOR DETECTION 

AND CLASSIFICATION OF UNKNOWN MALWARE 

 

As discussed in the previous chapters, the traditional defenses like AV and Intrusion 

Detection System (IDS)/Intrusion Prevention System (IPS) rely on signature-based methods 

and are therefore unable to identify zero-day malware. In order to address this problem, static 

and dynamic malware analysis is being used along with ML algorithms for malware 

detection. Single approach either static or dynamic is not able to accurately detect and classify 

the malicious apps because of obfuscation and execution-stalling techniques being used by 

attackers. 

This chapter proposes an integrated set of static and dynamic attributes that can effectively 

analyze, detect and classify unknown malware. The detection refers to binary classification 

which comprises of two categories i.e. “benign” and “malware”. The multi-class classification 

is referred to as the family classification. Here, a malware family for Android refers to a 

collection of malware programs that exhibit similar characteristics and share a common set of 

source codes. 

3.1 PROPOSED METHODOLOGY 

The workflow of the proposed model used for the detection and classification of unknown 

malware is discussed in this section. This process comprises three phases: (1) data gathering, 

(2) data preparation and (3) identification and classification of families. Data is gathered from 

various sources like apkmirror [185], apkpure [186] and virusshare [187] in the initial step. 

The duplicate apps are removed using the Message-Digest (MD5) hash algorithm in the 

second phase, and then these apps are scanned with Avira AV [188] tool. After that, the static 

and dynamic analysis approaches are used to mine the attributes from Android apps. A self-

developed python script is used to extract static features, which makes use of various 

automated tools like strings [26], Baksmali Disassembler [47, 48] and AXMLPrinter2 [46]. 

The attributes such as intents, API calls, command strings and permissions are mined through 
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a static approach. CuckooDroid [52] is used to extract dynamic features. Features including 

dynamic permissions, information leakage cryptographic operation and system calls are 

mined through dynamic malware analysis. In order to remove the redundant and irrelevant 

attributes, an Information Gain (IG) feature ranking algorithm [189] is used. Several ML 

classifiers like K-NN, DT, PART, SVM, RF and NB are applied to detect and classify the 

apps. Figure 3.1 illustrates the workflow of the proposed approach used for the identification 

and classification of unknown malware. The detail description of different steps is given 

below. 

 

 

Figure 3.1: Workflow of the methodology used for detection and classification of unknown malware 

3.1.1 Data Collection  

Data gathering is the first step in the proposed methodology. Android apps are gathered from 

various sources including apkmirror, virusshare, and apkpure. The benign apps are gathered 

from apkpure and apkmirror. The malware apps are gathered from virusshare after registering 
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on virusshare website and receiving permission from the administrator. A total of 4,400 

Android apps are gathered from the different sources. 

3.1.2 Data Preparation 

This subsection describes the several steps used for preparing the data. It comprises 

eliminating duplicate apps, labelling, feature extraction and feature selection. 

3.1.2.1 Eliminating Duplicate Applications 

To remove the duplicate apps, the MD5 hash algorithm is applied. After eliminating the 

duplicates, we are left with 3,547 Android apps. 

3.1.2.2 Labelling 

Avira AV is used to label the Android apps which are left after removing the duplicates. After 

labelling, it is found that there are 1,747 malware and 1,800 benign apps. 13 distinct malware 

families are identified in 1,747 malicious apps. The name of the families along with the 

corresponding number of apps is shown in Figure 3.2. 

 

Figure 3.2: Android malware families 
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3.1.2.3 Feature Extraction 

With the use of static and dynamic malware analysis, different attributes are mined. Four 

different categories of static attributes including intents, API calls, command strings and 

permissions are mined through static malware analysis. A self-developed python script is used 

to extract static features, which makes use of various automated tools like strings, Baksmali 

Disassembler and AXMLPrinter2. Four different categories of dynamic features including 

dynamic permissions, information leakage, cryptographic operation and system calls are 

mined through dynamic malware analysis using CuckooDroid (a tool for analysis of Android 

malware). The description associated with feature extraction through static and dynamic 

analysis is discussed as follows. 

 Static malware analysis- It analyses the sample of malware without executing or 

running the code. A variety of disassembling techniques are employed to decompile 

the app's source code. Using Baksmali Disassembler, AXMLPrinter2, and string tools, 

a python script is constructed to mine static attributes. Features such as permissions, 

command strings, API calls and intents are mined using these tools. The procedure of 

mining static features is demonstrated in Figure 3.3.  Firstly, the .apk file is unzipped 

or unpacked. The .apk file comprises of Android Manifest file, res, assets, classes.dex 

file and lib folder (as discussed in chapter 1). Using these files/folders, four different 

categories of static features are mined through various tools. AndroidManifest.xml file 

comprises information about permissions, classes.dex file comprises information 

about API calls and the rest all comprises information about command strings.  
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Figure 3.3: Process of mining static attributes 

 Dynamic malware analysis- It is carried out while the code is being executed in the 

runtime environment. CuckooDroid is used to gather runtime behavior information of 

particular app. It is a continuation of the cuckoo sandbox, software for examining and 

executing the apps. CuckooDroid is responsible for handling Android emulator and 

generate report at the end of the analysis. The infrastructure of Cuckoo comprises the 

host machine (i.e. management software) and the guest machine (virtual machine that 

performs analysis). The main function of the host is to run the core sandbox 

components that control the entire analysis process, while the guest machine is the 

isolated environment where malware samples are executed. The guest comprises 

Linux virtual machine running Android emulator, which is supervised by the 

machinery module. Emulator for Android is primarily responsible for executing apps 

and returning data to CuckooDroid. A timeout of 180 seconds is set for each Android 

malicious file, meaning an Android sample has a maximum of 180 seconds to be 

examined before it expires. When the analysis of each sample is completed, the results 

are saved in Java Script Object Notation (JSON) format. In this process, the guest is to 

be rooted Android Virtual Device (AVD) with Xposed framework [190] and with its 

modules i.e. Droidmon and Emulator Anti-Detection. The python agent and the 

analyzer code operate on the guest machine using Python 2.7. When an APK file is 

received, the python agent's job is to perform an analysis on it. When the python 
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analyzer runs an app, it returns screenshots and any dropped files to the host. After the 

procedure is completed, the log reports are collected and stored in JSON format. 

Reports of various apps are parsed and saved in CSV format in the database using 

Python scripts. Then these files are used to detect and classify malware. The procedure 

of mining dynamic features is demonstrated in Figure 3.4. Features including dynamic 

permissions, information leakage cryptographic operation and system calls are mined 

through dynamic malware analysis. Table 3.1 shows the description of the extracted 

features. 

 

 

 

Figure 3.4: General framework of CuckooDroid for extracting dynamic features 
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Table 3.1: Description of mined attributes 

Methods Features Tools Used Examples Number of 

attributes 

Total 

attributes 

  

  

  

  

  

  Static 

  

 Permissions 

  

 AXMLPrinter2 

READ_PHONE_STATE, 

RECEIVE_SMS, 

ACCESS_WIFI_STATE, 

READ_SMS, 

ACCESS_FINE_LOCATION 

 

277 

 

 

 

 

 

352 

Command Strings  String  Chown, chmod, remount, mount 6 

  

    Intents 

  

AXMLPrinter2 

ACTION_SHUTDOWN, 

SET_WALLPAPER, 

CALL_BUTTON, 

PACKAGE_CHANGED, 

NEW_OUTGOING_CALL 

 

22 

 API calls   Baksmali  

Disassembler 

PackageInstaller, GetCallingUid, 

Runtime.exec,  getBinder, 

TelephonyManager.getCallState 

 

47 

  

  

 

 

Dynamic 

Information leaks 

CuckooDroid 

IMEI_Network, 

PHONE_NUMBER_File, IMEI_File 

 

123 

 

 

 

323 

 Dynamic 

Permissions 

ACCESS TO PASSWORDS FOR 

GOOGLE ACCOUNTS, WRITE 

CONTACT DATA, READ 

CONTACT DATA, AUDIO FILE 

ACCESS 

 

71 

 System calls PTRACE, RECVMSG, GETPID, 

SIGPROCMASK, SENDMSG, 

WRITE, SENDTO 

50 

Cryptographic 

operations 

encryption_AES, keyalgo_AES, 

Decryption_AES 

79 
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3.1.2.4 Feature Selection 

Variable selection is also known as Feature selection. It is carried out to reduce the 

dimensionality of data and helps in selecting the appropriate features. Irrelevant features lead 

to a decrease in the quality of the model. Moreover, it increases time and space complexity 

[191]. Choosing the appropriate attributes will help in minimizing the time and space 

complexity. It also helps in improving classification accuracy. IG feature ranking algorithm is 

employed to choose the appropriate attributes to better detect and classify malware. 

IG computes the information a feature provides about the class. Entropy is used by IG to 

determine how homogeneous a sample is. The entropy      of the dataset with k classes is 

computed as shown in Equation 3.1. 

      ∑        
 
                                                 (3.1) 

Here    represents the probability of class i in dataset Z. Afterwards, the dataset is then 

divided on the various attributes X. Equation 3.2 calculates the entropy of a dataset in relation 

to the variable X.  

        ∑                                                          (3.2) 

c denotes the possible values of the attributes X. IG is attained by a variable is calculated as 

given in Equation 3.3. More the IG of a specific attribute, more significant the attribute is. 

                                                                  (3.3) 

The IG technique allocates weight and rank to every feature. The attributes having a weight of 

0 are ignored in this study. As a result, 110 and 47 static attributes are selected from detection 

dataset (named as Dataset-1) and multi-class classification dataset (named as Dataset-2) 

respectively. Figure 3.5 and Figure 3.6 demonstrate the top 20 attributes selected for binary 

and family classification of malware respectively. 

Out of 323 dynamic attributes, 99 and 35 are selected from Dataset-1 and Dataset-2 

respectively. Figure 3.7 and Figure 3.8 demonstrate the top 20 attributes selected for binary 

and family classification of malware respectively. 
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Figure 3.5: Top 20 static attributes of detection dataset (Dataset-1)    

 

Figure 3.6: Top 20 static attributes of multi-class classification dataset (Dataset-2) 
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Figure 3.7: Top 20 dynamic attributes of detection dataset (Dataset-1) 

 

Figure 3.8: Top 20 dynamic attributes of multi-class classification dataset (Dataset-2)       

Table 3.2 demonstrates the summary of both the datasets (i.e. Dataset-1 and 2) before and 

after selection of features. 
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Table 3.2: Detail description of datasets (Where # represents number of) 

Datasets #Malware 

apps 

#Benign 

apps 

#Attributes extracted #Attributes selected 

 
Static  Dynamic Static  Dynamic 

Detection 

(Dataset-1) 

1747 1800      352 323 110 99 

Multi-class 

Classification    

(Dataset-2) 

1747 (with 

13 families) 

 ----- 352 323 47 35 

 

Both static and dynamic malware analysis datasets are made available on GitHub (Link: 

https://github.com/Meghna-Dhalaria/Android-malware-dataset) and Kaggle (Link: 

https://www.kaggle.com/meghnadhalaria/android-malware-detection-and-classification). The 

process for preparing these two datasets is depicted in Figure 3.9. 

https://github.com/Meghna-Dhalaria/Android-malware-dataset
https://www.kaggle.com/meghnadhalaria/android-malware-detection-and-classification
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Figure 3.9: Steps of data preparation 

3.1.3 Detection and Family Classification  

The third phase is to detect and classify Android malware. Several ML classifiers like DT, 

RF, NB, SVM, PART and K-NN are applied for the identification and classification of 

malware. The classifiers are trained using 5-fold cross-validation. This technique divides the 

dataset into five equal portions, out of which four portions are used for training and one 

portion is used for testing at every run. The description of ML classifiers is given below: 

 K-NN- It is sometimes called a lazy learner [192]. It identifies the class label of a new 

observation on the basis of the similarity measure. This algorithm computes the 
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distance between each row of training data and test data with the aid of Euclidean 

distance (as shown in Equation 3.4). After that, the distance values are then sorted in 

ascending order. It then selects the top k rows from the sorted list. At the end, it 

allocates a class to the new data based on the most often class of these rows. 

       √∑         
 
                                              (3.4) 

 

Here   and   represents the two points in Euclidean n-space,    and    are the 

Euclidean vectors and n represents the n-space. 

 DT- It is considered as the fundamental ML algorithm which is used for both 

regression and classification tasks. It has a tree like structure. It consists of an internal 

node (also known as non-leaf node), root node and the leaf node (also known as 

terminal node). The root node is the topmost node of the tree. The internal node and 

the leaf node show a test on the variable. The leaf or terminal nodes show the label 

class [193]. The purpose of using DT is to develop a training model that can be used to 

predict the class label by learning basic decision rules on the basis of previous data 

(training data). It uses a variety of algorithms (i.e. ID3, C4.5 and CART) to split a 

node into two or more sub-nodes. In this study, C4.5 algorithm is used. 

 RF- It is based on the idea of ensemble learning, which is a method of integrating 

several classifiers to solve a complicated problem and to increase the model's 

performance. This combines several DT on different subsets of a dataset and takes the 

average to increase the predictive accuracy of the given dataset. Figure 3.10 depicts a 

graphical representation of the RF. On a large dataset, it is a highly effective and 

efficient approach [194]. 
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Figure 3.10: General framework of RF algorithm [194] 

 

 SVM- It uses the decision surface to solve a 1-n class classification problem. The 

support vectors that are the nearest and equidistant points to this plane make up this 

decision surface [195]. Figure 3.11 depicts a graphical representation of the SVM. 

 

 

Figure 3.11: General framework of SVM algorithm [195] 

 

The distance of a point         from decision boundary is referred to as functional 

margin as calculated in Equation 3.5. 

        
                                                       (3.5) 
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Here    is a hyperplane parameter normal to the decision boundary's surface,   is a 

constant and the point    is mapped onto a higher-dimensional space. If the point is far 

away from the surface, then it means there is the higher confidence in classifying the 

point. As a result, a higher functional margin indicates greater confidence in the 

predicted class of that point. 

 NB- Bayes theorem (as calculated in Equation 3.6) is used to build the NB classifier, 

which is built on strong independent assumptions. It calculates the chances of a given 

occurrence in a dataset belonging to a particular class. It considers that the presence of 

an attribute in a class is independent of the occurrence of any other characteristic, i.e. 

all attributes contribute independently in computing the likelihood of data 

categorization. This model is suitable for very big datasets and is simple to construct 

[196]. 

 (
 

 
)  

 (
 

 
)        

    
                                                  (3.6) 

 

Here  (
 

 
) represents the probability of X occurring given evidence Y has already 

occurred,  (
 

 
) symbolizes the probability of Y occurring given evidence X has 

already occurred,      is the probability of X occurring and      is the probability of 

Y occurring. 

 PART- It is also known as a partial decision tree. The divide and conquer principle is 

used in this algorithm. It creates a decision list, which is a collection of rules. Each 

new instance is compared to every rule, and the class of the first matching rule is 

assigned to it [197]. 

 

3.2 EXPERIMENTAL RESULTS  

This section summarises the experimental outcomes on the basis of static, dynamic, and 

integrated attributes. Six ML algorithms are employed and executed on python 3.7 on an Intel 

Core i5 64-bit processor with 8GB of memory. The experiments are carried out using a 5-fold 

cross validation technique. The ML algorithms used here are evaluated on different evaluation 

parameters like Sens, Accuracy, MCC, FPR, AUC, PPV and F-measure. 
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3.2.1 Results of Classification Using Static Features 

Six ML techniques are employed for the identification and classification of malware using 

static features. These algorithms are implemented using Sklearn library [198]. 

Table 3.3: Comparison of ML techniques using static attributes for detection dataset (Dataset-1) 

ML 

model 

Sens FPR PPV F-measure AUC MCC Accuracy (%) 

DT 0.950 0.050 0.950 0.950 0.970 0.901 95.03 

SVM 0.943 0.057 0.943 0.943 0.943 0.887 94.33 

RF 0.965 0.035 0.965 0.965 0.990 0.933 96.50 

NB 0.874 0.124 0.878 0.874 0.948 0.752 87.42 

K-NN 0.957 0.042 0.958 0.957 0.989 0.915 95.74 

PART 0.950 0.050 0.950 0.950 0.975 0.900 94.98 

 

Table 3.3 indicates the results of ML algorithms using static attributes for detection dataset. It 

is observed that RF provides the best detection accuracy of 96.50% followed by K-NN which 

provides a detection accuracy of 95.74%. 

          

(a)                                                                         (b) 

Figure 3.12: Comparative analysis of various classifiers using static approach based on (a) MCC (b) Accuracy 

for detection dataset (Dataset-1) 

Figure 3.12 compares the MCC and accuracy of several classifiers for detection dataset. It 

shows that RF obtains better results than other classifiers. The MCC and accuracy attained by 

RF are 0.933 and 96.50% respectively. 
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Table 3.4: Comparison of ML techniques based on static attributes for multi-class classification dataset 

(Dataset-2) 

ML model Sens FPR PPV F-measure AUC Accuracy (%) 

DT 0.848 0.023 0.852 0.847 0.949 84.77 

SVM 0.859 0.023 0.863 0.857 0.962 85.86 

RF 0.867 0.024 0.870 0.866 0.982 86.72 

NB 0.751 0.032 0.792 0.756 0.967 75.10 

K-NN 0.845 0.024 0.847 0.843 0.966 84.48 

PART 0.840 0.024 0.842 0.839 0.947 84.02 

 

Table 3.4 indicates the results of ML algorithms based on static attributes for multi-class 

classification dataset. It is observed that RF provides the best classification accuracy of 

86.72% followed by DT and SVM which provide classification accuracy of 84.77% and 

85.86% respectively. The Sens, F-measure and PPV acquired by RF are 0.867, 0.866 and 

0.870 respectively which is higher than other ML classifiers. 

 

Figure 3.13: Comparative analysis of various classifiers using static approach based on accuracy for multi-class 

classification dataset (Dataset-2) 

Figure 3.13 compares the accuracy of different ML classifiers for multi-class classification 

dataset. The accuracy attained by RF for Dataset-2 is 86.72% which is smaller than the 

accuracy attained by RF for Dataset-1. 
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3.2.2 Results of Classification Using Dynamic Features 

Six ML techniques are employed for the identification and classification of malware using 

dynamic features. 

Table 3.5: Comparison of ML techniques based on dynamic attributes for detection dataset (Dataset-1) 

ML model Sens FPR PPV F-measure AUC MCC Accuracy (%) 

DT 0.953 0.048 0.953 0.953 0.973 0.905 95.26 

SVM 0.965 0.035 0.965 0.965 0.965 0.931 96.53 

RF 0.970 0.030 0.970 0.970 0.996 0.940 97.01 

NB 0.942 0.057 0.943 0.942 0.989 0.885 94.19 

K-NN 0.961 0.039 0.961 0.961 0.990 0.922 96.08 

PART 0.959 0.041 0.959 0.959 0.970 0.918 95.88 

 

Table 3.5 indicates the results of ML algorithms using dynamic attributes for detection 

dataset. It is observed that RF provides the best detection accuracy of 97.01% followed by 

SVM which provides a detection accuracy of 96.53%. 

   

(a)                                                                      (b) 

Figure 3.14: Comparative analysis of various classifiers using dynamic approach based on (a) MCC (b) 

Accuracy for detection dataset (Dataset-1) 

Figure 3.14 compares the MCC and accuracy of several classifiers for detection dataset. It 

shows that RF obtains better results than other classifiers. The MCC and accuracy attained by 

RF are 0.933 and 96.50% respectively. The MCC and accuracy attained by RF are 0.940 and 

97.01% respectively. 
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Table 3.6: Comparison of ML techniques based on dynamic attributes for multi-class classification dataset 

(Dataset-2) 

ML model Sens FPR PPV F-measure AUC Accuracy (%) 

DT 0.843 0.026 0.843 0.841 0.947 84.25 

SVM 0.864 0.021 0.871 0.866 0.985 86.85 

RF 0.886 0.018 0.888 0.885 0.991 88.60 

NB 0.800 0.029 0.805 0.795 0.951 79.96 

K-NN 0.839 0.025 0.842 0.837 0.967 83.91 

PART 0.841 0.026 0.838 0.836 0.950 84.08 

 

Table 3.6 indicates the results of ML algorithms based on dynamic attributes for multi-class 

classification dataset. It is observed that RF provides the best classification accuracy of 

88.60% followed by SVM which provides classification accuracy of 86.85%. The Sens, F-

measure and PPV acquired by RF are 0.886, 0.885 and 0.888 respectively which is higher 

than other ML classifiers. 

 

Figure 3.15: Comparative analysis of various classifiers using dynamic approach based on accuracy for multi-

class classification dataset (Dataset-2) 

Figure 3.15 compares the accuracy of different ML classifiers for multi-class classification 

dataset. The accuracy attained by RF for Dataset-2 is 88.60% which is smaller than the 

accuracy acquired by RF for Dataset-1. 
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3.2.3 Results of Classification Using Integrated Features 

Individual approach either dynamic or static is insufficient for better classifying Android 

malware due to execution stalling and obfuscation techniques being used by malware authors. 

The hybrid approach is used to overwhelm this problem. In this approach, both static and 

dynamic features are integrated. Six ML techniques are employed for the identification and 

classification of malware using integrated features. 

Table 3.7: Comparison of ML techniques based on integrated attributes for detection dataset (Dataset-1) 

ML model Sens FPR PPV F-measure AUC MCC Accuracy (%) 

DT 0.970 0.030 0.970 0.970 0.980 0.941 97.03 

SVM 0.983 0.017 0.983 0.983 0.983 0.966 98.30 

RF 0.985 0.015 0.985 0.985 0.999 0.971 98.53 

NB 0.956 0.043 0.957 0.956 0.993 0.913 95.60 

K-NN 0.982 0.018 0.982 0.982 0.994 0.963 98.16 

PART 0.971 0.029 0.971 0.971 0.983 0.942 97.09 

 

Table 3.7 indicates the results of ML algorithms using integrated attributes for detection 

dataset. It is observed that RF provides the best detection accuracy of 98.53% followed by K-

NN and SVM with the detection accuracy of 98.16% and 98.30% respectively. 

Table 3.8: Comparison of ML techniques based on integrated attributes for multi-class classification dataset 

(Dataset-2) 

ML model Sens FPR PPV F-measure AUC Accuracy (%) 

DT 0.846 0.024 0.851 0.845 0.949 84.60 

SVM 0.870 0.020 0.875 0.871 0.987 87.06 

RF 0.901 0.016 0.902 0.901 0.995 90.10 

NB 0.783 0.027 0.814 0.784 0.970 78.30 

K-NN 0.854 0.022 0.857 0.854 0.966 85.40 

PART 0.833 0.024 0.837 0.833 0.946 83.34 

 

Table 3.8 indicates the results of ML algorithms based on integrated attributes for multi-class 

classification dataset. It is observed that RF provides the best classification accuracy of 

90.10% followed by SVM which provides classification accuracy of 87.06%. The Sens, F-
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measure and PPV acquired by RF are 0.901, 0.901 and 0.902 respectively which is higher 

than other ML classifiers. 

   

(a)                                                                       (b) 

 Figure 3.16: Comparison of ML classifiers for all three approaches based on (a) MCC (b) Accuracy for 

detection dataset (Dataset-1) 

Figure 3.16 illustrates the MCC and accuracy comparison of six classifiers for detection 

dataset using static, dynamic and integrated features. It shows that there is an improvement in 

the MCC and accuracy for all the classifiers when both static and dynamic attributes are 

combined. It indicates that using both types of attributes aids in the better identification of 

malware. 

 

Figure 3.17: Comparison of ML classifiers for all three approaches based on accuracy for multi-class 

classification dataset (Dataset-2) 
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Figure 3.17 illustrates the accuracy comparison of six classifiers for multi-class classification 

dataset using static, dynamic and integrated features. It shows that the integrated approach 

performs better as compared to static and dynamic approach for all the classifiers except NB. 

The accuracy attained by multi-class classification dataset is smaller than detection dataset it 

might be due to imbalanced classes.  

Table 3.9: Comparison results of static, dynamic and integrated approach 

Dataset Approach ML model Sens FPR PPV MCC F-

measure 

Accuracy 

(%) 

 

Detection 

(Dataset-1) 

Static  

RF 

0.965 0.035 0.965 0.933 0.965 96.50 

Dynamic 0.970 0.030 0.970 0.940 0.970 97.01 

Integrated 0.985 0.015 0.985 0.971 0.985 98.53 

 

Multi-class 

Classification 

(Dataset-2) 

Static  

RF 

 

0.867 0.024 0.870 -- 0.866 86.72 

Dynamic 0.886 0.018 0.888 -- 0.885 88.60 

Integrated 0.901 0.016 0.902 -- 0.901 90.10 

*MCC -- not applicable to datasets with multiple classes 

Table 3.9 shows the comparison of all three approaches for the best classifier i.e. RF for both 

the datasets. The results show that the integrated approach performs better for malware 

identification and classification for both the datasets. The accuracy obtained by RF is 98.53% 

and 90.10% for detection and multi-class classification dataset respectively.  

3.3 DISCUSSIONS 

The proposed approach makes use of integrated set of features which are obtained after 

combining static and dynamic features. A total of 352 static and 323 dynamic attributes are 

mined from Android samples. To get rid of noisy and unnecessary attributes, the IG feature 

selection method is used. Through this technique, 110 static and 99 dynamic attributes are 

selected for Dataset-1 and 47 static attributes and 35 dynamic attributes are selected for 

Dataset-2. To detect and identify Android malware, various classifiers are used. The results 

demonstrate that the integrated approach performs well as compared to when static and 

dynamic attributes are examined alone. In the case of static attributes, RF gives better 
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detection and classification accuracy i.e. 96.5% and 86.72% for detection and multi-class 

classification dataset respectively. In the case of dynamic attributes, RF gives better detection 

and classification accuracy i.e. 97.01% and 88.6% for both datasets. RF offers the maximum 

detection and classification accuracy in the integrated approach for both datasets its value is 

98.53% and 90.1% for detection and multi-class classification dataset respectively. From the 

experimental results, it is found that the classification results in case of static, dynamic and 

integrated features are not so good as compared to detection results. It might be due to the 

imbalanced classes in the classification dataset.   

3.4 SUMMARY 

This chapter presented an integrated approach for identification and classification of Android 

malware. The two datasets (i.e. Dataset-1 and Dataset-2) are created for detection and multi-

class classification of malware. These datasets have been made public on kaggle and GitHub 

in order to aid anti-malware tool developers and researchers in improving or developing new 

methodologies and tools for identifying and classifying malware. These datasets can be used 

as benchmark datasets by various researchers to validate their proposed techniques. Various 

classifiers are used to detect and classify malware based static, dynamic and integrated 

approaches. The results demonstrated that the integrated approach performs better than 

individual approaches as it overcomes the constraints of both static and dynamic malware 

analysis. Chapter 4 and chapter 5 present the proposed techniques to improve the Android 

malware detection and classification results respectively.  
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CHAPTER 4 

PROPOSED APPROACH FOR IMPROVING DETECTION OF 

ANDROID MALWARE 

 

As discussed in chapter 3, malware developers create new malware to threaten the security of 

the system and privacy of users. The security of mobile devices has motivated researchers in 

employing ML techniques to improve the detection of Android malware as the conventional 

approaches are not effective in recognizing unknown malware. ML-based approaches are 

increasingly being used to detect malware on Android devices. The main problem with the 

existing malware detection systems is that they have a high FP and FN rate. Thus, there is a 

need to design methods for better identification and classification of malware. This chapter 

presents an approach named as MalDetect for enhancing the detection results of Android 

malware. The approach fuses the base classifiers on the basis of proposed ranking schemes 

defined on their error rate. These schemes are then used to generate a variety of combinations, 

with the best one being chosen to construct the final model. The proposed approach is 

evaluated on two datasets i.e. Drebin (benchmark) and AndroMD (self-created).  

4.1 PROPOSED METHODOLOGY  

The proposed classifier fusion approach for the identification of Android malware is 

described in this section. Its architecture consists of 2-layers. It is developed in such a way 

that it can be employed to both ensemble and traditional classifiers. In layer-1, after acquiring 

both the datasets, six base classifiers are trained using 5-fold cross-validation technique to 

find the error rates. In layer-2, it uses various ranking schemes defined based on the predictive 

error rate of base classifiers. The ranking schemes are then used to derive various combination 

schemes out of which the best combination is selected to build the final model. The 

architecture of MalDetect is shown in Figure 4.1. 
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Figure 4.1: Proposed approach for improving the detection of malware 

4.1.1 Data Acquisition 

Two benchmark datasets i.e. Drebin [87] and AndroMD used in this work are acquired from 

figshare and Kaggle respectively. Drebin dataset consists of only static features whereas 

AndroMD dataset consists of both static and dynamic features. Drebin dataset contains 15,036 

instances out of which 9,476 are benign and 5,560 are malware. It contains 215 static features. 

AndroMD dataset contains 3,547 instances out of which 1,800 are benign and 1,747 are 

malware (as discussed in chapter 3). It contains 352 static and 323 dynamic features. Table 

4.1 describes the summary of both datasets. 
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Table 4.1: Summary of datasets used (where # represents the number of) 

 

 

4.1.2 Data Splitting 

Both datasets are randomly divided into two parts i.e. training and testing. 90% of the data is 

used for training purposes, while 10% is used for testing purposes. 

4.1.3 Classification Algorithms 

The six different base classifiers are used in this study such as NB, Random Tree, PART, J48, 

AdaBoost and Voted perceptron. The description of these classifiers are as follows: 

 NB- It is a type of ML technique that is used to solve classification problems [196]. It 

is based on the Bayes theorem as discussed in chapter 3.  

 Voted Perceptron- Frank Rosenblatt's perceptron algorithm is used to construct the 

voted perceptron. This algorithm takes advantage of data that can be linearly separated 

by a wide margin. This method is easier to implement and is more effective in terms 

of computation time [199]. 

 AdaBoost- Adaptive Boosting, also known as AdaBoost, is a well-known boosting 

technique. Its main purpose is to create strong classifiers by combining several weak 

classifiers [200]. The pseudocode for AdaBoost algorithm is shown in Algorithm 4.1. 

This algorithm takes a training set (     ),…,(     ) where each               

belongs to some domain P and each label               belongs to Q = {-1,1}. A 

distribution of weights    is set over the training sample at each iteration j, and a weak 

classifier is created on the training set according to   . The algorithm begins by 

assigning all weights to the same value, but at each round, the weights of misclassified 

instances are increased, forcing the weak learner to focus on the most difficult cases to 

categorize. After a set number of iterations, the procedure ends. In proportion to their 

accuracy, all of the weak classifiers contribute to the prediction of new unlabelled 

cases. 

 

Dataset #Instances #Malware #Benign #Attributes 

Drebin 15,036 5,560 9,476 215 

AndroMD 3,547 1,747 1,800 675 
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Algorithm 4.1: Pseudocode for AdaBoost algorithm 

 Given: (     ),…,(     )     ,      ={-1,1} 

01: Initialize         
 

 
 

02: for j =1 to J: 

03: Train weak classifier using distribution    

04: Get weak hypothesis             with error     ∑              
   ) 

05: Choose     
 

 
    

     

  
  

06: Update: 

         
     

  
  {     if instance   is classified correctly,     if instance   is  not classified 

correctly 

where    is a normalization factor (∑     
 
       

 Output: Final hypothesis:           ∑   
 
          

  

 PART- The divide and conquer principle is used in this algorithm [197]. It is 

discussed in chapter 3. 

 J48-The J48 algorithm is also called as C4.5 algorithm [193]. It is discussed in chapter 

3. 

 Random Tree- It works like a decision tree (as discussed in chapter 3) with the 

exception that it chooses random attributes for each split [201]. 

 

4.1.4 5-Fold Cross Validation 

5-fold cross validation is used in the training phase, that splits the training data into five 

subsets and the hold-out approach is repeated five times. One subset is used for testing every 

time, and the rest four subsets are used for training purposes.  

Using 5-fold cross-validation method, the classifier's error rate and performance prediction 

probabilities for both classes are calculated. Then, based on the classifier error rate the ranks 

are assigned to the classifiers. The ranks are allocated on the basis of proposed ranking 

algorithms that are discussed in the subsequent sub-section. 

4.1.5 Proposed Ranking Schemes 

Four ranking methods are proposed for allocating rank to the base classifiers. These are 

discussed as follows: 
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1. Average Error (AE) Based Ranking Method: In this method, the ranks are allocated 

to the base classifiers based on average error prediction of both the classes. It assigns a 

higher rank to those classifiers which have smaller average error rate as shown in 

Algorithm 4.2. Let            be the c base classifiers being used to classify the 

instances into benign and malware class. If      
and      

 represent the error rates of 

malware and benign class for a classifier    respectively, the average error rate    
of 

each classifier is computed as 

 

                                
  

     
         

   

      
                                               (4.1) 

 

Here    and    denote the number of benign instances and malware instances 

respectively. Let       
    

      
   be the set of average error predictions for all 

the classifiers, then the rank  ̅, defined in Equation 4.2, is assigned using 

             function on the basis of average error prediction for both the classes. It 

assigns a higher rank to those classifiers which has smallest average error rate. 

     ̅                                                                      (4.2) 

 

Algorithm 4.2: Algorithm of AE Based Ranking Method 

 

 

 

 

 

2. Ranked Aggregate of Per Class Error (RAPCE) Method: In this method, firstly the 

ranks are allocated to each classifier on the basis of class error rate and then the final 

ranks are computed by adding the per class ranking as shown in Algorithm 4.3. Let 

      
    

      
  and       

    
      

  are the set of error rates of all 

Input: Number of Base classifiers (c), number of malware instances (zm),  number of benign 

instances (zb), error rate of malware (     
  and error rate of benign       

  

Output: AE based Rank ( ̅)  

01: for i=1:c 

02:         
  

     
         

   

      
                    #    

 is the average error rate of i
th

 classifier 

03: end for 

04:  ̅                                             # Here,       
    

      
   

05: Return ( ̅) 
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base classifiers for malware and benign class respectively. The rank to each classifier 

is allocated individually based on the class error rate using              function (i.e. 

smaller the value of    
 or    

, higher is the rank) as represented in Equations 4.3 and 

4.4. 

                                                                                                                    (4.3) 

                                                                                                                      (4.4) 

 

The aggregate of per class rank    
 of each classifier is computed using Equation 4.5. 

 

                 
                                                              (4.5) 

 

 

Let       
    

      
  be the set of values of aggregate rank for all base classifiers. 

The final rank is allocated to each classifiers using            function on the basis 

of aggregating the per class rank as represented in Equation 4.6. It assigns a higher 

rank to those classifiers which have higher aggregated rank. 

 

                                                                ̅                                                             (4.6) 

 

Algorithm 4.3: Algorithm of RAPCE based ranking method 

 

Input:  Number of Base classifiers (c), error rates of all base classifiers for malware (M) and benign 

(B). 

Output: RAPCE based Rank ( ̅) 

01: for i=1:c 

02:                                

03:                                

04: end for 

05: for i=1:c 

06:         
                                        #    

 is the aggregate per class rank of i
th

 classifier 

07: end for 

08:   ̅                                                             # Here,       
    

      
   

09: Return ( ̅) 



74 

 

3. Class Error Differential (CED) Method: In this method, the ranks are allocated to 

each base classifier based on the average error rate and the absolute difference 

between the class errors as shown in Algorithm 4.4. Let    
 is the ratio of average 

error rate (   
) and the error difference of both classes (      

      
 ) for each 

classifiers.    
 is computed as 

                                
  

   

      
      

  
                                                  (4.7) 

 

If       
    

      
   is the set of class error differentials for all the classifiers, then 

the rank is assigned using              function. It assigns a higher rank to those 

classifiers which have smallest class error differential value.  

   ̅                                                               (4.8) 

 

Algorithm 4.4: Algorithm of CED based ranking method 

 

4. Ranked Aggregate Average and Class Error Differential (RAACED) Method: In 

this method, the final ranks of the base classifiers are computed on the basis of values 

obtained after aggregating the ranks obtained from average error rate and class error 

differential methods as shown in Algorithm 4.5. The ranked aggregate average and 

class error differential    
 of each classifier is computed by using Equation 4.9. 

 

   
                                                           (4.9) 

Input:  Number of Base classifiers (c), average error rate (   
), error rate of malware (     

  and error 

rate of benign       
) 

Output: CED based Rank ( ̅) 

01: for i=1:c 

02:         
  

   

      
      

  
   #    

 is the ratio of average error rate and the error difference of both classes 

of i
th

 classifier    

03: end for 

04:   ̅                                # Here,       
    

      
                                          

05: Return ( ̅) 
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If       
    

      
  is the set of values obtained after aggregating the ranks 

obtained using average error rate and class error differential methods, then the final 

rank is allocated using             function as shown in Equation 4.10. It assigns 

highest rank to those classifiers which have higher aggregated rank. 

 

 ̅                                                                         (4.10) 

 

Algorithm 4.5: Algorithm of RAACED based ranking method 

 

 

 

 

 

 

 

4.1.6 Classifier Fusion using Proposed Ranking Algorithms 

The proposed ranking algorithms are used to fuse the classifiers by considering their pairwise 

combinations. All the training instances are re-classified by using the output prediction of 

classifiers and the pairwise combination of the proposed ranking algorithms. Every ranking 

scheme draws a set of D ranks that is employed with output prediction of classifier for each 

instance during the process of reclassification. Let the set of four ranking scheme is denoted 

by R = {R1, R2, R3, R4}. The pairwise combinations of element of R results in six possibilities 

i.e. Φ = { R1 R2, R1 R3, R1 R4, R2 R3, R2 R4, R3 R4}. 

To identify the performance of every pairwise combination, assume 

                         as the ranks acquired from the first ranking in the pair and 

                         as the ranks acquired from the second ranking in the pair. If 

   is the output prediction of each instance using base classifier, then the class prediction 

          
of every instance z is calculated as shown in Equation 4.11. 

Input:  Number of Base classifiers (c), AE based Rank ( ̅), CED based Rank ( ̅) 

Output:  RAACED based Rank ( ̅) 

01: for i=1:c 

02:         
  ̅    ̅                         #    

 is the aggregate rank of i
th

 classifiers                                             

03: end for 

04:  ̅                                  # Here,        
    

      
   

05: Return ( ̅) 
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{
 
 

 
                  

∑      ∑     
 
   

 
   

∑   
 
    ∑   

 
   

    

                                                       
                              

                       
        

                                (4.11)                                 

Here, 1 and 0 represent the malware and benign class respectively.       represent the 

pairwise ranking combination of all four ranking schemes.  

The detection rate of malicious class (      
       ) is calculated as given in Equation 4.12. 

      
        

∑                              
    

 
                                    (4.12) 

Here      represents the class label of each instance. The detection rate of benign class 

(      
      

) is calculated as shown in Equation 4.13. 

      
      

 
∑                                  

    

 
                                   (4.13) 

Then calculate the average detection rate for the pairwise ranking scheme using Equation 

4.14.  

        
           

                   
      

 
                                                 (4.14) 

Similarly, the value of average precision is computed. After computing the average pairwise 

combination detection rate of proposed ranking schemes on training data, the best fusion 

model is selected and evaluated on test data set.   

4.2 EXPERIMENTAL RESULTS  

This section presents the results of two datasets to evaluate the performance of the proposed 

approach. To implement and test the proposed approach, an open-source software called 

Waikato Environment for Knowledge Analysis (WEKA) [44] is used. Both datasets are 

divided into two parts, one for training and the other for testing. The ratio of training and the 

testing portion is 90 % and 10% respectively. 5-fold cross-validation is used to build a fusion 

model using the training data. Afterward, it is evaluated on test data. 
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4.2.1 Experimental Results for Drebin Dataset 

Six base classifiers i.e. voted perceptron, J48, Adaboost, NB, PART and Random tree using 

5-fold cross-validation method for the training data. Table 4.2 demonstrates the classification 

results. 

Table 4.2: Results of base classifiers on the basis of different parameters on Drebin training data  

Classifiers FNR FPR Recallm Precisionm Recallb Precisionb W-FM 

NB 0.059 0.229 0.941 0.707 0.771 0.957 0.8489 

Voted perceptron 0.046 0.017 0.954 0.971 0.983 0.973 0.9723 

Adaboost 0.098 0.063 0.902 0.894 0.937 0.942 0.9242 

PART 0.027 0.012 0.973 0.979 0.988 0.984 0.9823 

J48 0.043 0.019 0.957 0.967 0.981 0.975 0.9721 

Random tree 0.042 0.027 0.958 0.953 0.973 0.975 0.9672 

 

Table 4.2 shows that PART outperforms other base classifiers. It provides a precision of 

0.979 and 0.984 and a recall of 0.973 and 0.988 for malware and benign class respectively. 

The comparison of ML classifiers based on False Positive Rate (FPR) and False Negative 

Rate (FNR) is shown in Figure 4.2. The value of both FPR and FNR are minimum for PART 

i.e. 0.012 and 0.027 respectively. NB provides the maximum value of FPR i.e. 0.229 and 

Adaboost provides the maximum value of FNR i.e. 0.098. Figure 4.3 shows the comparison 

of ML classifiers on the basis of W-FM. The value of W-FM is maximum for PART i.e. 

0.9823 and minimum for NB i.e. 0.8489. 

 

Figure 4.2: Comparison of ML classifiers on the basis of FPR and FNR on Drebin training data  
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Figure 4.3: Comparison of ML classifiers on the basis of W-FM on Drebin training data  

In order to compute the rank for each classifier, the proposed ranking algorithms are 

employed on the classification results obtained for the training data. The computations are 

done using FPR (error rate in detecting benign apps) and FNR (error rate in detecting 

malicious apps). Table 4.3 shows the class error rate and the ranks computed using proposed 

ranking algorithms i.e. AE, RAPCE, CED and RAACED for each classifier. 

Table 4.3: Rank of base classifiers using proposed ranking algorithms on Drebin training data 

(Lower Rank=1 and Highest Rank=6) 

Classifiers FNR  FPR  RAPCE AE RAACED CED 

NB 0.059 0.229 1 1 3 6 

Voted perceptron 0.046 0.017 3 5 6 5 

Adaboost 0.098 0.063 1 2 1 1 

PART 0.027 0.012 6 6 5 3 

J48 0.043 0.019 3 4 4 4 

Random tree 0.042 0.027 3 3 2 1 

 

From Table 4.3, it is found that PART gets the highest rank for AE and RAPCE ranking 

methods. After applying Equation 4.11 to the instances in the training data and then compute 

the pairwise combination values using Equations 4.12-4.14. The results of fusion on training 

data are shown in Table 4.4. 
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Table 4.4: Fusion results on Drebin training data  

Combination Recallm Precisionm Recallb Precisionb W-FM 

AE+RAPCE 0.979 0.982 0.987 0.985 0.9840 

AE+CED 0.973 0.971 0.979 0.980 0.9767 

AE+RAACED 0.973 0.979 0.984 0.981 0.9801 

RAPCE+CED 0.972 0.969 0.979 0.978 0.9751 

RAPCE+RAACED 0.973 0.980 0.984 0.980 0.9800 

CED+RAACED 0.972 0.967 0.974 0.977 0.9733 

 

The results of Table 4.4 demonstrate the performance improvement in layer-2 combination 

schemes. The best combination is found to be AE+RAPCE on the training data. It provides a 

precision of 0.982 and 0.985 and a recall of 0.979 and 0.987 for malware and benign class 

respectively. The W-FM of AE+RAPCE combination is 0.9840. 

 

Figure 4.4: Comparison of fusion of ranking algorithms based on W-FM on Drebin training data  

Figure 4.4 illustrates the comparison of combinations of ranking algorithms based on W-FM. 

It shows that the combination of AE+RAPCE performs better than other combinations of 

ranking algorithms. The W-FM acquired by AE+RAPCE is 0.9840. 

From the training data results, it is observed that the combination of AE+RAPCE performs 

best on training data. This model is further used to evaluate the performance on the test data. 
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Table 4.5 demonstrates the comparison of the proposed technique with the conventional 

combination techniques and the ML classifiers on the test data. 

Table 4.5: Comparison of proposed technique with ML classifiers and conventional combination techniques on 

Drebin test data  

Classifiers Recallm Precisionm Recallb Precisionb W-FM 

NB 0.941 0.730 0.796 0.958 0.8615 

Voted perceptron 0.955 0.962 0.978 0.974 0.9695 

Adaboost 0.885 0.893 0.938 0.933 0.9183 

PART 0.962 0.978 0.987 0.978 0.9779 

J48 0.960 0.966 0.980 0.977 0.9728 

Random tree 0.959 0.960 0.977 0.976 0.9702 

Majority voting 0.966 0.978 0.987 0.980 0.9792 

Average probabilities 0.966 0.978 0.987 0.980 0.9792 

Maximum probabilities 0.986 0.934 0.959 0.991 0.9695 

Multischeme 0.955 0.948 0.969 0.974 0.9641 

Proposed approach 0.987 0.975 0.985 0.992 0.9857 

 

From Table 4.5, it is concluded that the proposed approach performs best among all base 

classifiers and the conventional combination techniques (such as majority voting, average 

probabilities, multischeme and maximum probabilities). 

 

Figure 4.5: Comparison of various techniques on the basis of W-FM on Drebin test data 
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Figure 4.5 demonstrates the comparison analysis of different techniques based on W-FM. The 

findings suggest that the proposed approach is more superior than other traditional methods. It 

obtains the highest value of W-FM i.e. 0.9857 followed by majority voting and average 

probabilities which achieve a W-FM value of 0.9792. 

4.2.2 Experimental Results for AndroMD Dataset 

The proposed approach is also evaluated on AndroMD dataset using 5-fold cross-validation 

method for the training data. The classification results are shown in Table 4.6. 

Table 4.6: Results of base classifiers on the basis of different parameters on AndroMD training data 

Classifiers FNR FPR Recallm Precisionm Recallb Precisionb W-FM 

NB 0.029 0.063 0.971 0.937 0.937 0.971 0.9540 

Voted perceptron 0.022 0.028 0.978 0.971 0.972 0.978 0.9748 

Adaboost 0.036 0.059 0.964 0.940 0.941 0.965 0.9525 

PART 0.025 0.028 0.975 0.971 0.972 0.976 0.9735 

J48 0.025 0.030 0.975 0.970 0.970 0.976 0.9728 

Random tree 0.092 0.089 0.908 0.908 0.911 0.911 0.9095 

 

From Table 4.6, the results demonstrate that voted perceptron performs better than other base 

classifiers. It provides a precision of 0.971 and 0.978 and a recall of 0.978 and 0.972 for 

malware and benign class respectively. 

Figure 4.6 shows the comparison of ML classifiers on the basis of FPR and FNR. The value 

of both FPR and FNR is minimum for voted perceptron i.e. 0.028 and 0.022 respectively. 

Random tree provides the maximum value of FPR and FNR i.e. 0.089 and 0.092 respectively. 

Figure 4.7 shows the comparison of ML classifiers based on W-FM. The value of W-FM is 

maximum for voted perceptron i.e. 0.9748 and minimum for Random tree i.e. 0.9095. 



82 

 

 

Figure 4.6: Comparison of ML classifiers based on FPR and FNR on AndroMD training data 

  

 

Figure 4.7: Comparison of ML classifiers on the basis of W-FM on AndroMD training data 

In order to compute the rank for each classifier, the proposed ranking algorithms are applied 

on the classification results obtained for the training data. Table 4.7 shows the class error rate 

and the ranks computed using proposed ranking algorithms i.e. AE, RAPCE, CED and 

RAACED for each classifier. 
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Table 4.7: Rank of base classifiers using proposed ranking algorithms on AndroMD training data 

(Lower Rank=1 and Highest Rank=6) 

Classifiers FNR FPR RAPCE AE RAACED CED 

NB 0.029 0.063 2 3 5 6 

Voted perceptron 0.022 0.028 6 6 6 4 

Adaboost 0.036 0.059 2 2 2 5 

PART 0.025 0.028 5 5 2 2 

J48 0.025 0.030 4 4 2 3 

Random tree 0.092 0.089 1 1 1 1 

 

From Table 4.7, it is found that voted perceptron gets the highest rank for AE, RAPCE and 

RAACED ranking methods. After applying Equation 4.11 to the instances in the training data 

and then compute the pairwise combination values using Equations 4.12-4.14. The results of 

fusion training data are demonstrated in Table 4.8. 

Table 4.8: Fusion results on AndroMD training data  

Combination Recallm Precisionm Recallb Precisionb W-FM 

AE+RAPCE 0.987 0.985 0.990 0.991 0.9888 

AE+CED 0.984 0.982 0.987 0.988 0.9858 

AE+RAACED 0.986 0.980 0.988 0.991 0.9871 

RAPCE+CED 0.984 0.982 0.987 0.988 0.9858 

RAPCE+RAACED 0.986 0.981 0.988 0.991 0.9873 

CED+RAACED 0.982 0.978 0.985 0.988 0.9841 

 

The results of Table 4.8 demonstrate the performance improvement in the layer-2 

combination schemes. The best combination is found to be AE+RAPCE on the training data. 

It provides a precision of 0.985 and 0.991 and recall of 0.987 and 0.990 for malware and 

benign class respectively. The W-FM of AE+RAPCE combination is 0.9888. 
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Figure 4.8: Comparison of fusion of ranking algorithms based on W-FM on AndroMD training data  

Figure 4.8 shows the comparison of combinations of ranking algorithms based on W-FM. It 

shows that the combination of AE+RAPCE performs better than other combinations of 

ranking algorithms. The W-FM acquired by AE+RAPCE is 0.9888. 

From the training data results, it is observed that the combination of AE+RAPCE performs 

best on training data. This model is further used to evaluate the performance of the test data. 

Table 4.9 shows the comparison of fusion approach with the conventional combination 

techniques and the ML classifiers on the test data. 

Table 4.9: Comparison of proposed technique with ML classifiers and conventional combination techniques on 

AndroMD test data  

Classifiers Recallm Precisionm Recallb Precisionb W-FM 

NB 0.903 0.919 0.922 0.907 0.9128 

Voted perceptron 0.971 0.955 0.956 0.972 0.9635 

Adaboost 0.960 0.960 0.961 0.961 0.9605 

PART 0.931 0.982 0.983 0.937 0.9583 

J48 0.949 0.988 0.989 0.952 0.9695 

Random tree 0.903 0.913 0.917 0.907 0.9100 

Majority voting 0.966 0.971 0.972 0.967 0.9690 

Average probabilities 0.966 0.971 0.972 0.967 0.9690 

Maximum probabilities 0.994 0.906 0.900 0.994 0.9485 

Multischeme 0.891 0.923 0.928 0.898 0.9100 

Proposed approach 0.966 0.992 0.990 0.967 0.9790 
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From Table 4.9, it is concluded that the proposed approach performs best among all base 

classifiers and the conventional combination techniques (such as majority voting, average 

probabilities, multischeme and maximum probabilities). 

 

Figure 4.9: Comparison of various techniques on the basis of W-FM on AndroMD test data  

Figure 4.9 demonstrates the comparison of different techniques based on W-FM. The results 

suggest that the proposed approach is more superior to other conventional techniques. It 

obtains the highest W-FM i.e. 0.9790 followed by majority voting and average probabilities 

which achieve a W-FM value of 0.9690. 

4.2.3 Comparison of Fusion Approach with Stacking Ensemble Method 

Stacking ensemble method [202] combines various classifiers via meta-classifiers. It is one of 

the most common methods for classifiers fusion and employed to various ML algorithms. So 

we are comparing our proposed approach with the stacked ensemble method. In our proposed 

approach various ranking algorithms are used to combine the results of ML classifiers. In the 

stacking ensemble method, the base classifiers are combined with meta logistic regression to 

detect Android malware. Figure 4.10 demonstrates the general framework of the stacking 

ensemble learning technique. Table 4.10 shows the comparison results of the proposed 

approach with the stacking ensemble method on both the dataset. 
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Figure 4.10: Framework of the stacking ensemble learning method 

Table 4.10: Comparison of the proposed technique with stacking ensemble method  

Datasets Method Precisionm Recallm Precisionb Recallb W-FM 

Drebin 

dataset 

Stacking 0.978 0.971 0.983 0.987 0.9811 

Proposed 

approach 

0.975 0.987 0.992 0.985 0.9857 

AndroMD 

dataset 

Stacking 0.988 0.966 0.967 0.989 0.9775 

Proposed 

approach 

0.992 0.966 0.967 0.990 0.9790 

 

 

Figure 4.11: Comparison of proposed technique with stacking ensemble technique on Drebin test data  
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Figure 4.11 shows the comparison of the proposed technique with stacking ensemble 

technique on Drebin dataset based on W-FM. It is found that the proposed fusion approach 

performs better than the stacking ensemble learning technique. The W-FM obtained by the 

proposed approach and stacking approach is 0.9857 and 0.9811 respectively. 

 

Figure 4.12: Comparison of proposed technique with stacking ensemble technique on AndroMD test data  

Figure 4.12 shows the comparison of the proposed technique with stacking ensemble 

technique on AndroMD dataset based on W-FM. It is found that the fusion approach performs 

better than the stacking ensemble learning technique. The W-FM obtained by the proposed 

approach and stacking approach is 0.9790 and 0.9775 respectively. 

4.3 DISCUSSIONS 

The proposed approach (MalDetect) makes use of four different ranking schemes which are 

proposed to assign ranks to the base classifiers using training data. The ranking schemes are 

then used to derive various combinations out of which the best one is selected to build the 

final model. The findings suggest that MalDetect is more effective than traditional classifiers 

and ensemble learning techniques. In addition, the comparison of the proposed approach with 

the stacking ensemble learning technique is also demonstrated. The W-FM obtained from the 

stacking ensemble technique for both datasets i.e. Drebin and AndroMD dataset is 0.9811 and 

0.9775 respectively whereas the W-FM obtained from MalDetect is 0.9857 and 0.9790 

respectively.  



88 

 

4.4 SUMMARY 

This chapter presented the proposed fusion approach “MalDetect” for detecting Android 

malware. It fuses the ML algorithms on the basis of proposed ranking schemes for improving 

the detection of Android malware. The proposed fusion method is tested on a benchmark 

dataset and self-created dataset. It is compared with the existing techniques to infer its 

outperformance. This approach is suitable only for binary classification problems for 

detecting malware. Thus, an approach is designed and presented in chapter 5 for multi-class 

classification of Android malware.  
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CHAPTER 5 

PROPOSED APPROACH FOR IMBALANCED FAMILY 

CLASSIFICATION OF MALWARE 

 

In a real-world scenario, the number of samples differs greatly among various malware 

families which makes classification processing more challenging and has a significant impact 

on the performance of classifiers. Malware detection, fault detection, fraud detection are some 

of the examples which are inherently imbalanced [203-205]. The distribution of classes in a 

dataset is important for constructing effective models. The distribution of classes is almost 

equal in most circumstances, however this is unattainable in all real-life problems. An 

imbalance classification problem occurs when one of the classes has a large number of 

observations (majority class) relative to the other classes, which have a small number of 

observations (minority class) [206]. The categorization becomes more difficult when a dataset 

contains imbalanced classes [207]. Thus, there is a need to build malware classification 

models which can take care of imbalanced classes. 

In inductive learning and ML, classification is a critical task [208-210]. Models are trained 

using a group of training cases that have been labelled with their respective classes [211-213]. 

Predictive accuracy is used to evaluate the quality and effectiveness of ML approaches, but it 

is insufficient when the data is excessively skewed. Rather, evaluation metrics like recall, F-

measure and precision are used. Many methods like data level, Cost-Sensitive (CS) learning 

and algorithm level are there to address this problem [134]. This chapter proposes a cost-

sensitive learning (CSForest) approach for the imbalanced family categorization of malware. 

5.1 PROPOSED METHODOLOGY 

This section presents the proposed method (CSForest) for the imbalanced family 

categorization of malware. The data samples are first obtained from virusshare [187]. To 

eliminate duplicate samples, these samples are given hash values using the MD5 hash 

algorithm and examined with the Avira AV software [188] to discover the names of their 

families. After that, distinct attributes are mined using dynamic and static malware analysis. A 
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feature reduction technique is used to pick appropriate features, after feature extraction. The 

resulting dataset is fed into CSForest, which predicts the malicious app families. Figure 5.1 

shows the workflow of the methodology used for imbalanced classification of malware. 

 

Figure 5.1: Workflow of the methodology used for imbalanced classification of malware 

 

5.1.1 Data Collection and Data Pre-processing 

Data collection and Data pre-processing steps are discussed in chapter 3 under subsection 3.1. 

In this work, a total of 1,747 apps containing 13 malware families are considered for 

classifying the families of malware. 
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5.1.2 Cost-Sensitive Forest 

CS algorithms are employed to minimize the classification cost because if an app is dangerous 

yet appears to be goodware then their consequences can be severe. The expected 

Classification Cost Reduction (CCR) is used by the CS learning method [214]. The approach 

initially calculates the total expected cost of the complete dataset using Equation 5.1 before 

constructing a tree. 

  
       

     
                                                              (5.1) 

   and    are the labelling cost of the negative and positive examples. These are calculated as 

shown in Equations 5.2 and 5.3. 

                                                                (5.2) 

                                                                (5.3) 

         is the product of the cost and number of FN predictions and          is the 

product of the cost and number of TN predictions.         is the product of the cost and 

number of FP predictions.           is the product of the cost and number of TP 

predictions.   

The algorithm then computes the ability of every variable to decrease the classification costs. 

The feature with the maximum CCR is considered as a root node of the tree.  

Consider    the i
th

 attribute and       (where F is the set of variables used in    (dataset)). 

If    is a numerical attribute, the optimal splitting point of    is used to divide    into two 

subsets.    is partitioned into m subsets if    is a categorical attribute with m distinct values. 

The expected cost of each variable is computed as shown in Equation 5.4. 

   
   ∑

  
 
   

 

  
 
   

 
 
                                                           (5.4) 

Here   
 
        

 
 represent the labelling cost of observations within     subset as positive and 

negative respectively. The CCR of an attribute is determined by      
   

  where   
  is the 

total test cost for all instances on   . CSTree iterates over all possible splitting attributes 
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        and chooses the one that results in the greatest expected cost reduction. The 

splitting attribute must satisfy      
   

   , otherwise no splitting will take place. 

CSForest uses CS pruning [193]. It permits the tree to reach its full potential before being 

pruned. A modified version of SysFor [215] is used in the CSForest method. It computes 

CCR as opposed to gain ratio as a splitting criterion. Firstly, it calculates the CCR ability of 

each attribute        where F refers to the set of variables in    . After calculating the CCR 

ability of each attribute, it then selects the good set of attributes      on the basis of variables 

whose CCR ability falls inside the goodness threshold    set by the user. 

The splitting point    and the root variable    are used by CSForest to divide the dataset into 

various subgroups. The feature with the best CCR value is chosen as the test attribute for 

continuing dividing each sub-dataset. This procedure will be repeated until no further CCR is 

possible. Finally, CSForest forms the tree comprised of logic rules. Every tree utilizes the 

pruning confidence factor c and the minimal records    in a leaf. As long as       and 

     where T specifies the total number of trees, the tree    with the attribute    at the root 

node is added to the collection of trees Y. If the number of trees formed is less than the 

number of trees set by the user (i.e.      ), CSForest builds more trees by utilizing the 

identical approach in Level 1 of the trees built so far, similar to SysFor. 

CSForest employs the CSVoting method to classify the new instance   . Assume that Y 

contains n trees and that    falls into n leaves                . For each leaf   , 

CSVoting calculates the labelling cost of examples that belong to    as 

Android/AdLoad.A.Gen (  )   
 

 
 and the labelling cost of examples that belong to Adware/ 

ANDR.AdMogo.FAN.Gen (        

 
 and so forth. It then computes the total 

Android/AdLoad.A.Gen classification cost for all n leaves as    
 ∑    

  
    and for 

ANDR.AdMogo.FAN.Gen     
 ∑    

  
    and so on. Finally,    is classified as 

Android/AdLoad.A.Gen if    
    

, otherwise ANDR.AdMogo.FAN.Gen. CSForest 

algorithm is described in Algorithm 5.1. 
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Algorithm 5.1:  Algorithm for Cost-Sensitive Forest 

Input: 

 

Dataset (   , Trees defined by the users (T), pruning confidence factor    , goodness threshold 

(  , minimum number of records in a leaf (    

Output: Set of trees (Y), prediction 

01: Calculate the CCR of each attribute. 

02: Sort the attributes according to CCR values in descending order. 

03: Find a set of good attributes      based on goodness threshold ( )  

04: Pick the best attributes one by one to build number of trees (at level-0) 

05:     If the number of trees formed from good set of the attribute is less than userdefined number of 

trees then it generates more trees using alternative good attributes (at level 1) of the trees.  

06: Return the set of trees (Y) 

07: Employ CSVoting to classify the new instance. 

 

5.2 EXPERIMENTAL RESULTS 

The performance of the proposed method for the imbalanced categorization of malware is 

evaluated in this section. The method is run on an i5 processor with a 64-bit OS and 8 GB 

RAM, and it uses Python 3.7. The entire dataset is partitioned into five equal sections and 

tested using a 5-fold cross-validation approach. Four portions are used for training and one 

part is used for testing throughout each run. Sens, FPR, F-measure and precision are all used 

to judge the algorithm's performance. These performance metrics are based on four prospects 

i.e. FN, TN, FP and TP. Here, FN is the most important because if an app is dangerous yet 

appears to be goodware then consequences can be severe. Thus, a cost matrix is designed in 

which the weights are assigned based on hyperparameter tuning. The outcomes of cost-

sensitive classifiers (CSForest and CSTree) are compared with those of cost-insensitive 

classifiers (RF and C4.5) using static, dynamic and hybrid features. The parameters values 

employed in CSForest are c = 0.25,       τ = 0.2,   = 0.3, T = 30 with   
   set to be 0 [214]. 
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Table 5.1: Results of malware family classification of cost-sensitive and cost insensitive classification 

algorithms 

Approach Evaluation 

Parameters 

Sens Precision FPR F-measure 

 

Static 

RF 0.867 0.870 0.024 0.866 

C4.5 0.848 0.852 0.023 0.847 

CSTree 0.852 0.858 0.023 0.851 

CSForest 0.890 0.893 0.016 0.890 

 

Dynamic 

RF 0.886 0.888 0.018 0.885 

C4.5 0.843 0.843 0.026 0.841 

CSTree 0.839 0.837 0.026 0.835 

CSForest 0.905 0.911 0.013 0.907 

 

Hybrid 

RF 0.901 0.902 0.016 0.901 

C4.5 0.846 0.851 0.024 0.845 

CSTree 0.852 0.859 0.023 0.851 

CSForest 0.919 0.922 0.011 0.919 

 

Table 5.1 illustrates the family classification results of RF, CSTree, C4.5 and CSForest on the 

basis of various assessment parameters for all three approaches (i.e. static, dynamic and 

hybrid). It demonstrates that CSTree performs better than C4.5 and CSForest performs better 

than RF to classify malicious apps. Furthermore, it demonstrates that CSForest outperforms 

the other methods in all three approaches. Among these approaches, the hybrid approach 

outperforms the static and dynamic approaches. The Sens, F-measure and precision attained 

by CSForest in case of hybrid approach are 0.919, 0.919 and 0.922 respectively.  
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Figure 5.2: Comparison of various classification algorithms on the basis of F-measure  

Figure 5.2 shows the comparison of various classification algorithms on the basis of f-

measure for all three approaches. It shows that for both cost insensitive and sensitive 

classifiers, the integrated set of attributes (hybrid approach) offers the optimum f-measure. 

Furthermore, it demonstrates that the CSForest approach performs better in case of all three 

approaches as compared to other existing classifiers. The f-measure attained by CSForest in 

case of a hybrid set of features is 0.919 followed by RF which obtains 0.901 f-measure. 

5.3 DISCUSSIONS 

The proposed CSForest method is used to take care of imbalanced classes of Android 

malware. The experimental results are compared with RF, CSTree and C4.5 to determine the 

effectiveness of the proposed approach using static, dynamic and hybrid features. The results 

show that for both cost insensitive and sensitive classifiers, the integrated set of attributes 

(hybrid approach) provides the optimum f-measure. Furthermore, CSForest outperforms the 

other algorithms in all three approaches (static, dynamic and hybrid). The f-measure attained 

by CSForest in case of a hybrid set of features is 0.919 followed by RF which obtains 0.901 f-

measure.  

5.4 SUMMARY 

This chapter presented CSForest technique to cope with the imbalanced classes of Android 

malware apps. This method is applied on the self-created dataset and the results are compared 
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with CSTree, RF and C4.5 to identify the effectiveness of the proposed approach using static, 

dynamic and hybrid features. The results demonstrate that when hybrid set of features is 

considered, CSForest performs best for family classification of Android malware. The risk 

posed by malware necessitates the development of dependable and precise methods for 

assessing the risk in Android apps. This challenge is addressed by designing a rule-based 

model for identifying the risk of Android app features which is presented in Chapter 6. 
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CHAPTER 6 

PROPOSED MODEL FOR IDENTIFYING THE LEVEL OF 

ANDROID APPLICATION FEATURES 

 

Malware developers generate new malware on regular basis which poses several threats to the 

system’s security and the privacy of users. People don’t have much awareness and knowledge 

to determine whether the app is harmful or not. Typically, while downloading an app from the 

Android app store, customers overlook or fail to read the terms and conditions. Unfortunately, 

attackers take advantage of this tendency and attack mobile systems. In this case, a user 

downloads an app from a third-party store which requires certain permissions to be granted 

before it can be installed on the mobile device. Because of the unawareness about hazardous 

permissions, the user grants all rights and installs the app. This situation exemplifies the 

mobile device’s susceptibility (shown in Figure 6.1). 

 

Figure 6.1: Process of targeting mobile device using permissions 
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The risk posed by Android malware necessitates the development of dependable and precise 

methods for assessing the risk in Android apps [216]. The goal of risk management is to 

anticipate potential problems before they actually happen and cause the damage. [217, 218]. 

Industries providing anti-malware solutions, compute the risk associated with a piece of 

malware using the approaches involving human intervention along with a large number of 

resources [219, 220]. With the increase in the volume of malware, it is impossible to allocate 

a significant number of resources for analyzing the threat or risk posed by an Android app. To 

address this issue, this chapter presents a rule-based model to identify the risk level of 

Android app features. The proposed model assigns the risk levels (No, Low, Medium and 

High) to Android app features. The static features (permissions and API calls) in the data are 

examined statistically to come up with a hypothesis for identifying their risk factor. In order 

to test the hypothesis, ANOVA method is used. Afterward, a weight is assigned to the 

features under each category to compute the threat score of a particular app. 

6.1 PROPOSED METHODOLOGY 

The workflow of the proposed approach for the quantitative threat assessment of an Android 

app is discussed in this section. The Android samples are gathered from various sources 

including apkmirror [185], apkpure [186] and virusshare [187]. All the apps are labelled as 

benign or malignant based on their scanning results. The static malware analysis is performed 

to extract static permissions and API calls. The dataset created in this step is analyzed 

statistically to frame a set of rules (hypothesis) to identify the risk factor of permissions and 

API calls. These risk factors are then used to compute the threat score of Android apps. Figure 

6.2 depicts the workflow of the methodology used for the identification of risk factor of 

Android app features. The detail description of different steps is given below. 
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Figure 6.2: Workflow of the methodology used for identification of risk factor of Android app features 

6.1.1 Data Collection and Feature Extraction 

Data collection and Labelling as well as feature extraction steps are discussed in chapter 3 

under subsection 3.1. In this work, static API calls and permissions are considered for 

identifying the risk factor of Android app features. A total of 47 API calls and 277 

permissions are mined from these apps.  
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6.1.2 Data Analysis based on Android Permissions and API calls 

In this step, the created dataset is analyzed based on static permissions and API calls. Based 

on the analysis, these permissions and API calls are grouped in three categories i.e. API calls 

and permissions that are found only in malicious apps, only in benign apps and common in 

both malware and benign apps. Out of 277 permissions, 22 are found only in malicious apps, 

61 are found only in benign apps and 82 are common in both malware and benign apps. In 

case of API calls out of 47, 6 are found only in malicious apps, 10 are found only in benign 

apps and 31 are common in both malware and benign apps. The detailed analysis of the 

dataset is given as follows. 

 API calls and permissions found in benign apps- The entire dataset is analysed to 

filter those API calls and permissions which are present only in benign apps. A total of 

10 API calls and 61 permissions are found only in benign apps. Table A.1 and Table 

A.2 (presented in Appendix A) show the names of these API calls and permissions 

respectively. 

 API calls and permissions common in both benign and malware apps- The entire 

dataset is analysed to filter those API calls and permissions which are common in both 

malware and benign apps. A total of 31 API calls and 82 permissions are found in 

both malware and benign apps. Table A.3 and Table A.4 (presented in Appendix A) 

show the names of these API calls and permissions respectively. 

 API calls and permissions found in malware apps- The entire dataset is analysed to 

filter those API calls and permissions which are present only in malicious apps. A 

total of 6 API calls and 22 permissions are found only in malware apps. Table A.5 and 

Table A.6 (presented in Appendix A) show the names of these API calls and 

permissions respectively. 

 

6.1.3 Hypothesis Formulation and Risk Identification 

After filtering out the permissions and API calls into three categories, we frame a set of rules 

(hypothesis) to identify the risk factor of each feature (as shown in Figure 6.3). API calls and 

permissions found exclusively in malicious apps (during the data analysis step) are classified 

as high risk, while API calls and permissions found only in benign apps are classified as no 

risk. Algorithm 6.1 shows the steps for the identification of the risk factor of each API call 
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and permission. Z is a set of benign (      and malicious (      apps. Assume there are a 

total of   apps containing   benign and   malicious apps.                             

and                            is the set of benign and malware apps respectively. A is 

a set of all features. 

Algorithm 6.1: Algorithm for identification of the risk factor of each permission and API call 

Input: Z = {                                                A: set of all features   

            . 

Output: Risk factor of API calls and permissions. 

 # Apply reverse engineering to all Android apps       (to extract API calls and permissions) 

01: for j =1to n do 

02:        reverse engineering (            

03: end for 

 # Identify the risk factor of API calls and permissions 

 # Check    in      and in      

04: for i=1 to k 

05: if (   is present in      and not present in     ) 

06:        then high risk 

07:      else if (   is present in both      and     ) 

08:            if (   in      >=   in     ) 

09:                  then Medium Risk   

10:               else if (   in      <    in     ) 

11:                   then Low Risk 

12:            end if 

13:      else if (   is not present in      and present in     ) 

14:                then No Risk  

15:      else  

16:            Invalid feature 

17: end if 

18: end for 
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Figure 6.3: Flowchart for identifying risk factor of features 

Figure 6.3 shows the flowchart for identifying risk factors of app features. Z represents a set 

of benign (      and malicious (      apps and A represents a set of all features. 

 High Risk Factor- This category includes permissions and API calls that are only 

seen in malware apps and not in benign apps. Figure 6.4 illustrates the percentage of 

high risk permissions in Android apps. It shows that in Android apps, the percentage 
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of ACCESS_LOCATION_EXTRA_COMMANDS permission is greater (i.e. 

11.22%). Figure 6.5 illustrates the graphical representation of percentage of high risk 

API calls in Android apps. It shows that the percentage of Runtime.exec API call in 

benign apps is the greater i.e. 26.39%. Table B.1 and Table B.2 (presented in 

Appendix B) demonstrate the percentage of high risk API calls and permissions 

respectively in Android apps.  

 

Figure 6.4: High risk permissions in Android apps 

 

Figure 6.5: High risk API calls in Android apps 

 Medium Risk Factor- This category includes API calls and permissions that are 

common in benign and malware apps. If the percentage of API calls and permissions 

in malware apps is greater than or equal to benign apps then it is considered in a 

medium risk category. Figure 6.6 shows a graphical representation of the percentage 

of few medium risk permissions in Android apps. It shows that percentage of 
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INTERNET permission is higher in both benign and malicious apps i.e. 82.17% and 

95.94% respectively. Figure 6.7 shows a graphical representation of the percentage of 

medium risk API calls in Android apps. It shows that in both benign and malware 

apps, the percentage of android.os.IBinder API call is greater i.e. 0.85% and 0.92% 

respectively. Table B.3 and Table B.4 (presented in Appendix B) demonstrate the 

percentage of medium risk API calls and permissions respectively in Android apps.  

 

 
 

Figure 6.6: Medium risk permissions in Android apps 

 

 

Figure 6.7: Medium risk API calls in Android apps  

 Low Risk Factor- This category includes API calls and permissions that are common 

in benign and malware apps. If the percentage of API calls and permissions in 
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malware apps is less than benign apps then it is considered in a low risk. Figure 6.8 

shows a graphical representation of the percentage of few low risk permissions in 

Android apps. It shows that percentage of ACCESS_NETWORK_STATE permission 

is higher in both malicious and benign apps i.e. 65.66% and 76.33% respectively. 

Figure 6.9 illustrates the graphical representation of percentage of low risk API calls 

in Android apps. It shows that in both malware and benign apps, the percentage of 

onBind API call is greater i.e. 0.64% and 0.72% respectively. Table B.5 and Table B.6 

(presented in Appendix B) demonstrate the percentage of low risk API calls and 

permissions respectively in Android apps.  

 

 
Figure 6.8: Low risk permissions in Android apps 
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Figure 6.9: Low risk API calls in Android apps 

 

 No Risk Factor- This category includes permissions and API calls that are only seen 

in benign apps and not in malware apps. Figure 6.10 illustrates the graphical 

representation of percentage of few no risk permissions in Android apps. It shows that 

in Android apps, the percentage of BIND_JOB_SERVICE permission is greater i.e. 

45.39%. Figure 6.11 illustrates the graphical representation of percentage of no risk 

API calls in Android apps. It shows that the percentage of getBinder API call in 

benign apps is greater i.e. 0.31%. Table B.7 and Table B.8 (presented in Appendix B) 

demonstrate the percentage of no risk API calls and permissions respectively in 

Android apps.  

 

Figure 6.10: No risk permissions in Android apps 
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Figure 6.11: No risk API calls in Android apps 

 

6.1.4 Statistical test using ANOVA 

After identifying the risk factor (i.e. No, Low, Medium and High risk) of each feature, the 

statistical analysis test is perform to examine whether these risk factor varies from one 

another and mined the explicit decision rule. The ANOVA statistical test is used. It is a 

statistical technique which is used to check whether the experimental or survey results are 

significant and it also helps to find out whether the null hypothesis is accepted or rejected. 

ANOVA technique evaluates the difference in a scale level and dependent variable by a 

nominal-level variable having more than two categories. The z and t-test permits the nominal 

level variable to have only two categories. So to overcome the constraints of both the tests, 

ANOVA test came into existence. One-way ANOVA is used which relates to the number of 

independent variable rather than categories in each variable. It has one independent variable 

[221]. Table 6.1 shows the variability within the groups and between the groups. 

Table 6.1: ANOVA source 

Source of Variation Sum of Squares (SS) Degree of  freedom (df) Mean Square (MS) 

Between Samples 

    ∑    ̅   ̅   

        
   

   
 

Within Samples 

    ∑∑     ̅  
  

        
   

   
 

Total     ∑∑     ̅       
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Here N represents the total number of observations, X represents the individual observation,  ̅ 

represents the overall sample mean,  ̅  denotes the sample mean of the i
th

 group and K 

denotes the number of independent comparison groups. 

SS stands for Sum of Squares in the source (of variability) column. SST measures the 

variation of the data around the  ̅, SSB measures variation of the group means around the  ̅ 

and SSE measures the variation of each observation around its  ̅ . 

The next column degree of freedom (df) is the number of independent variables that a 

statistical analysis can estimate. The last column mean square is an estimate of population 

variance, and it is calculated by dividing the total squares by the number of degrees of 

freedom. 

F statistic is the ratio of variability between and within the groups. The value of F statistic is 

computed as shown in Equation 6.1. 

  
          

         
                                                      (6.1) 

6.1.5 Scoring System 

Based on the set of rules, API calls and permissions are categorized into four risk categories. 

With the help of experts, a weight is assigned to the features (API call and permission) that 

fall into distinct categories after filtration. All features (permissions and API calls) in the high 

risk category have a weight of 3. This category includes 28 features, including 22 permissions 

and 6 API calls. A weight of 2 is assigned to API calls and permissions in the medium risk 

category. This category includes a total of 39 features out of which 31 permissions and 8 API 

calls. The features (permissions and API calls) in the low risk category have a weight of 1. 

This category includes 74 features, including 51 permissions and 23 API calls. A weight of 0 

is assigned to API calls and permissions in the no risk category. This category includes a total 

of 71 features out of which 61 permissions and 10 API calls. Table 6.2 shows the number of 

attributes belonging to different risk categories. 
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Table 6.2: Number of attributes belonging to different risk categories and assigned weights 

Risk Category Explanation Number of attributes Weight 

Assigned API calls Permissions 

High Feature that can only be seen in 

malware apps 

6 22 3 

 

Medium 

Feature that is present in both 

benign and malware apps but 

the percentage of feature in 

malware apps is more than or 

equal to benign apps 

8 31 2 

 

Low 

Feature that is present in both 

benign and malware apps but 

the percentage of feature in 

malware apps is less than 

benign apps. 

23 51 1 

No Feature that can only be seen in 

benign apps 

10 61 0 

 

After assigning weight to each permission and API call falling under different risk categories, 

total threat score of an app (T) is calculated using Equation 6.2. 

  ∑   

 

                                                                    

Where     represents the i
th

 feature and    is the corresponding weight with respect to that 

feature. If a feature is available in an app, its value is 1 otherwise it is 0. The impact of an app 

on the victim device is represented by its threat score. 

After calculating the overall threat score for all apps, the value is normalized on a scale of 1 to 

10 using min-max normalization as given in Equation 6.3. 

            
        

            
                                              (6.3) 

Here,   stands for the
 
input value,      and       stand for the maximum and minimum value 

in the data respectively. 
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Figure 6.12 depicts the threat score of all apps on a scale of one to ten. It reveals that there are 

431 apps in our dataset with a threat score of less than 2 and 100 apps with a threat value of 

more than 7. It shows that the higher the threat score, the higher the app's risk. This threat 

score assessment can also be used to deliver early alerts about a specific Android malware 

sample, allowing for immediate attention and resource allocation for a more thorough 

investigation. 

 

Figure 6.12: Threat score of all apps 

6.2 RESULTS OF ANOVA 

This section summarises the results of the ANOVA technique and shows the visualization of 

distinct risk factors using API calls and permissions. ANOVA is used to compare distinct risk 

factors (i.e. no, low, medium, and high risk). Because our analysis consisted of four factors so 

the ANOVA test is used in this study. The null hypothesis asserts that the mean values of 

various risk factors do not differ significantly. 

Table 6.3: ANOVA: single factor (summary) 

Groups Count Sum Average Variance 

High Risk 3547 10125.074 2.855 28.777 

Medium Risk 3547 74714.339 21.064 82.475 

Low Risk 3547 83312.400 23.488 197.543 

No Risk 3547 6163.025 1.738 9.339 
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Table 6.4: ANOVA statistical comparison 

Source of Variation SS Df MS F P-value Fcrit 

Between Groups 1428608 3 476202.683 5987.439 0 2.606 

Within Groups 1128105 14184 79.534 

   Total 2556713 14187 

     

The ANOVA single factor summary is shown in Table 6.3. It calculates the sum, count, 

variance and average of each group. Table 6.4 shows a statistical comparison of several risk 

factors using the ANOVA test. Table 6.4 shows that at the 5% level of significance, the 

computed value (F) i.e. 5987.439 is greater than the tabulated value (Fcrit) i.e. 2.606. The null 

hypothesis is thus rejected in this case. As a result, we can conclude that the mean values of 

various risk factors are significantly different. Figures 6.13 and 6.14 illustrate the percentage 

of high, medium, low and no risk API calls and permissions respectively in an app. 

 

Figure 6.13: Visualization of four risk factors in an app based on API calls 
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Figure 6.14: Visualization of four risk factors in an app based on permissions 

Figures 6.13 and 6.14 depict all four risk factors in an app based on API calls and permissions 

respectively. The findings show that the majority of apps fall into the low risk category when 

it comes to API calls, and the majority of apps fall into the medium and low risk categories 

when it comes to permissions. 

6.3 DISCUSSIONS 

The proposed approach makes use of permissions and API calls for determining the risk 

factor of Android app features. There are a total of 3,547 instances in the dataset, with 277 

permissions and 47 API calls as features. While analysing the data, it is found that out of 277 

permissions, 22 permissions are found in only malicious apps, 61 are found in only benign 

apps and 82 are common in both malware and benign apps. Out of 47, 6 of the API calls are 

found only in malicious apps, 10 are found only in benign apps and 31 are common in both 

benign and malicious apps. The data analysis results are used to frame a hypothesis for the 

identification of risk factor in each feature present in an app. ANOVA technique is used to 

test the hypothesis. The results demonstrate that the computed value of F is 5987.439, which 

is significantly greater than the tabulated value Fcrit i.e. 2.606 at 5% level of significance. A 

weight is assigned to all permissions and API calls on the basis of the risk category to which 

they belong. Finally, a threat score is computed for each app. The computed threat score can 

assist in providing early warnings about a malicious app so that instant attention could be paid 

with respect of assigning resources for deeper investigation. 
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6.4 SUMMARY 

This chapter introduced a rule based model for determining the risk factor of Android app 

features using permissions and API calls. First and foremost, a dataset is developed based on 

static malware analysis and was made publicly available on kaggle. It is then analyzed to 

frame the hypothesis for the identification of risk factor of each feature. ANOVA technique is 

used to test the hypothesis. The results indicate that the mean values of different risk factors 

differ significantly. Afterward, a weight is assigned to the features under each category to 

compute the threat score of a particular app. This threat score can help the user to understand 

how risky it is to install an app on a mobile device. In the next chapter, conclusion of the 

entire work is presented. The future research areas for malware detection and classification 

are also mentioned. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

This chapter concludes research work regarding Android malware detection, classification, 

and threat assessment using computational techniques. The major research contributions and 

future research directions are discussed as follows. 

7.1 MAJOR RESEARCH CONTRIBUTIONS 

The following are the major contributions of this research work. 

 The two datasets (Android malware detection and family classification) are created 

using a comprehensive set of attributes acquired after performing static and dynamic 

malware analysis. These datasets have been made public on kaggle and GitHub. The 

goal behind creating these datasets is to aid researchers and anti-malware tool 

developers in improving and developing new methodologies and tools for identifying 

and classifying malware. These datasets can be used as benchmark datasets by various 

researchers to validate their proposed techniques. 

 An approach, making use of integrated set of static and dynamic features is proposed. 

It has the ability to effectively analyze, detect and classify unknown malware. 

Individual approach either dynamic or static is insufficient due to obfuscation and 

execution stalling techniques being used by malware authors. The findings 

demonstrate that the proposed integrated approach performs better as compared to the 

approaches which use only static or dynamic features. 

 An approach named as MalDetect has been proposed to improve the detection (binary 

classification) of Android malware. The approach fuses the base classifiers on the 

basis of proposed ranking schemes defined on their error rate. The proposed approach 

is evaluated on two datasets i.e. Drebin (benchmark) and AndroMD (self-created). The 

findings suggest that the proposed approach is effective than traditional base 

classifiers and ensemble learning techniques. 
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 A cost-sensitive learning approach is proposed for imbalanced family categorization 

of Android malicious applications. The proposed approach is compared with CSTree, 

RF and C4.5 to identify its effectiveness in categorizing malicious app families. The 

findings show that the proposed approach is effective in identifying the families of 

malicious apps.  

 A rule-based approach is proposed to compute the threat score of real Android apps. 

The data analysis results are used to frame a set of rules for the identification of risk 

factor of the features of Android apps. ANOVA is used to test the hypothesis. 

Afterward, a weight is assigned to the features under each category to compute the 

threat score (on a scale of 1-10) of a particular app. 

 

Using the proposed techniques, a threat intelligence platform for Android systems can be 

developed which can act as an early warning system. The intelligent information generated 

from the system can be shared with security experts and other stakeholders so that they can 

issue the early warnings and advisories about emerging malicious threats and developing 

solutions to minimize the risks posed by changing threat landscape. 

7.2 SCOPE FOR FUTURE WORK 

This section briefly discusses the future directions and improvements in the present research. 

 Due to the increased use of mobile apps, the variety, volume and velocity of malware 

targeting mobile devices has increased. It is necessary for the research community to 

build and develop malware classification methods that make use of big data analytics 

in order to increase prediction accuracy. Furthermore, the steadily streaming data on 

the network motivates researchers to develop unique approaches and principles for 

extracting useful information from raw data using data mining and ML algorithms. 

 To overcome the constraints of signature based method, this research uses ML 

techniques that learn from instances using a set of attributes mined through static and 

dynamic analysis of malware. Only a limited set of attributes is used in the existing 

research. To deal with the growing complexity and sophistication of malicious apps, 

security researchers need to explore more robust set of attributes obtained using both 

static and dynamic analysis of malware. 
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 The more emphasis could be laid on deep learning methods for identification and 

classification of malicious apps. 

 One of the contributions of this work is that it presents a rule based model to identify 

the risk level of Android features. These risk levels are used to compute the threat 

score of Android apps which in turn helps in prioritizing resource assignments for 

conducting a closer manual analysis of suspicious apps and to warn the mobile users 

before installing these apps. This method makes use of only static features. In future, 

more emphasis could be laid on identifying the dynamic features for computing the 

threat score. A fuzzy logic method could also be explored for risk identification of an 

Android app.  

 Sharing of intelligent information obtained is one of the important aspects related to 

the present work. In future, development of platforms for sharing or exchanging 

intelligent information related to cyber threats can be explored. 
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APPENDICES  

APPENDIX A 

Based on the data analysis, the API calls and permissions are divided into three categories i.e. 

API calls and permissions that are found only in the benign app sample, API calls and 

permissions found in both the benign and malicious samples and API calls and permissions 

found only in the malicious app sample. 

                                            Table A.1: API calls found only in benign apps 

API calls only in benign apps 

MessengerService SendMultipartTextMessage 

IRemoteService Runtime.load 

Process.start PathClassLoader 

Context.bindService Ljava.lang.Class.getDeclaredClasses 

ACCOUNT_MANAGER GetBinder 

 

Table A.2: Permissions found only in benign apps 

Permissions only in benign apps 

AUTHENTICATE_ACCOUNTS BIND_APPWIDGET CHANGE_WIMAX_STATE 

NFC SET_PROCESS_LIMIT GET_DETAILED_TASKS 

BIND_REMOTEVIEWS BIND_TEXT_SERVICE 

GET_INTENT_SENDER_IN

TENT 

READ_PROFILE 

INSTALL_LOCATION_PROVID

ER 

GLOBAL_SEARCH_CONTR

OL 

READ_SYNC_STATS 

MOUNT_FORMAT_FILESYSTE

MS 

INTERACT_ACROSS_USE

RS_FULL 

CAPTURE_VIDEO_OUTPUT SET_ACTIVITY_WATCHER MANAGE_DOCUMENTS 

SUBSCRIBED_FEEDS_WRITE BIND_VPN_SERVICE MANAGE_USERS 

CHANGE_WIFI_MULTICAST_

STATE ACCESS_BLUETOOTH_SHARE 

MEDIA_CONTENT_CONTR

OL 

MASTER_CLEAR ACCESS_CACHE_FILESYSTEM MOVE_PACKAGE 

CAPTURE_SECURE_VIDEO_O

UTPUT 

ACCESS_NOTIFICATION_POLI

CY OVERRIDE_WIFI_CONFIG 

WRITE_USER_DICTIONARY BLUETOOTH_PRIVILEGED PACKAGE_USAGE_STATS 

WRITE_PROFILE BIND_DIRECTORY_SEARCH READ_INSTALL_SESSION
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S 

READ_SOCIAL_STREAM BIND_DREAM_SERVICE REAL_GET_TASKS 

READ_USER_DICTIONARY BIND_INCALL_SERVICE 

REQUEST_INSTALL_PACK

AGES 

DUMP BIND_JOB_SERVICE 

SEND_DOWNLOAD_COMP

LETED_INTENTS 

SET_TIME BIND_QUICK_SETTINGS_TILE 

SEND_RESPOND_VIA_ME

SSAGE 

WRITE_SOCIAL_STREAM BIND_SCREENING_SERVICE STATUS_BAR_SERVICE 

WRITE_GSERVICES 

BIND_TELECOM_CONNECTIO

N_SERVICE TETHER_PRIVILEGED 

SET_TIME_ZONE WRITE_MEDIA_STORAGE TRANSMIT_IR 

BIND_ACCESSIBILITY_SERVI

CE  BIND_VOICE_INTERACTION UPDATE_APP_OPS_STATS 

ADD_VOICEMAIL    

 

Table A.3: API calls found in both malware and benign apps 

Common API calls in both malicious and benign apps  

AbortBroadcast Transact 

Ljava.lang.Class.getResource BindService 

TelephonyManager.getSimSerialNumber Ljava.lang.Class.getCanonicalName 

KeySpec OnServiceConnected 

SendDataMessage AttachInterface 

DivideMessage android.os.Binder 

android.os.IBinder Ljava.net.URLDecoder 

TelephonyManager.getLine1Number Ljava.lang.Class.getMethods 

SET_ALARM ServiceConnection 

HttpPost.init Ljava.lang.Class.getField 

ProcessBuilder Landroid.content.Context.registerReceiver 

Ljava.lang.Class.getClasses ClassLoader 

Ljava.lang.Class.forName Landroid.content.Context.unregisterReceiver 

HttpUriRequest FindClass 

TelephonyManager.getSimCountryIso Ljava.lang.Class.getDeclaredField 

OnBind  
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Table A.4: Permissions found in both malware and benign apps 

Common permissions in both malicious and benign apps 

SEND_SMS HARDWARE_TEST READ_CONTACTS 

WRITE_SMS ACCESS_WIFI_STATE BIND_DEVICE_ADMIN 

RECEIVE_SMS ACCESS_SURFACE_FLINGER 

KILL_BACKGROUND_PRO

CESSES 

READ_SYNC_SETTINGS ACCESS_FINE_LOCATION CALL_PRIVILEGED 

BATTERY_STATS CAPTURE_AUDIO_OUTPUT 

SET_PREFERRED_APPLIC

ATIONS 

WRITE_HISTORY_BOOK

MARKS INJECT_EVENTS 

CHANGE_NETWORK_STA

TE 

INSTALL_PACKAGES GET_ACCOUNTS BROADCAST_WAP_PUSH 

READ_HISTORY_BOOK

MARKS USE_CREDENTIALS FLASHLIGHT 

INTERNET MANAGE_ACCOUNTS 

SYSTEM_ALERT_WINDO

W 

DISABLE_KEYGUARD READ_SMS GET_PACKAGE_SIZE 

WRITE_APN_SETTINGS CAMERA READ_FRAME_BUFFER 

RECEIVE_BOOT_COMPL

ETED WRITE_SYNC_SETTINGS 

WRITE_EXTERNAL_STOR

AGE 

RESTART_PACKAGES 

BIND_NOTIFICATION_LISTE

NER_SERVICE BROADCAST_SMS 

UPDATE_DEVICE_STATS MODIFY_AUDIO_SETTINGS 

CHANGE_COMPONENT_E

NABLED_STATE 

ACCOUNT_MANAGER BROADCAST_STICKY WRITE_SETTINGS 

SET_WALLPAPER_HINT

S WAKE_LOCK WRITE_CONTACTS 

SET_WALLPAPER BLUETOOTH 

ACCESS_MOCK_LOCATIO

N 

SET_DEBUG_APP READ_CALENDAR MODIFY_PHONE_STATE 

BIND_WALLPAPER READ_EXTERNAL_STORAGE EXPAND_STATUS_BAR 

READ_PHONE_STATE VIBRATE SET_ORIENTATION 

ACCESS_COARSE_LOCA

TION ACCESS_NETWORK_STATE BLUETOOTH_ADMIN 

RECEIVE_MMS SUBSCRIBED_FEEDS_READ DEVICE_POWER 

CONTROL_LOCATION_U

PDATES WRITE_CALENDAR 

INTERACT_ACROSS_USE

RS 

CALL_PHONE GET_TASKS PERSISTENT_ACTIVITY 
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READ_LOGS GLOBAL_SEARCH 

WRITE_SECURE_SETTING

S 

MOUNT_UNMOUNT_FIL

ESYSTEMS REORDER_TASKS 

ACCESS_DOWNLOAD_MA

NAGER 

CHANGE_CONFIGURATI

ON BIND_INPUT_METHOD ACCESS_WIMAX_STATE 

CHANGE_WIFI_STATE   

 

Table A.5: API calls found only in malicious apps 

API calls only in malware apps 

PackageInstaller DefineClass 

Ljava.lang.Class.getPackage GetCallingUid 

Runtime.exec TelephonyManager.getCallState 

 

Table A.6: Permissions found only in malicious apps 

Permissions only in malware apps 

READ_INPUT_STATE FORCE_STOP_PACKAGES 

SIGNAL_PERSISTENT_PROCESSES SET_ANIMATION_SCALE 

SET_ALWAYS_FINISH FACTORY_TEST 

BROADCAST_PACKAGE_REMOVED BACKUP 

READ_OWNER_DATA READ_CALL_LOG 

WRITE_CALL_LOG STATUS_BAR 

DELETE_PACKAGES DELETE_CACHE_FILES 

CLEAR_APP_CACHE RECEIVE_WAP_PUSH 

CLEAR_APP_USER_DATA PROCESS_OUTGOING_CALLS 

ACCESS_LOCATION_EXTRA_COMMANDS RECORD_AUDIO 

REBOOT INTERNAL_SYSTEM_WINDOW 

 

APPENDIX B 

This section shows the percentage of API calls and permissions present in Android apps 

belonging to different risk categories. 
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Table B.1: High risk API calls 

API call Malware API call Malware 

PackageInstaller 6.70% DefineClass 0.52% 

Ljava.lang.Class.getPackage 15.28% GetCallingUid 5.44% 

Runtime.exec 26.39% TelephonyManager.getCallState 3.55% 

 

Table B.2: High risk permissions 

Permission Malware Permission Malware 

READ_INPUT_STATE 0.06% FORCE_STOP_PACKAGES 3.15% 

SIGNAL_PERSISTENT_PROCESSES 0.06% SET_ANIMATION_SCALE 0.06% 

SET_ALWAYS_FINISH 0.06% FACTORY_TEST 0.34% 

BROADCAST_PACKAGE_REMOVED 3.15% BACKUP 0.40% 

READ_OWNER_DATA 0.57% READ_CALL_LOG 1.09% 

WRITE_CALL_LOG 1.32% STATUS_BAR 1.95% 

DELETE_PACKAGES 4.29% DELETE_CACHE_FILES 2.23% 

CLEAR_APP_CACHE 1.72% RECEIVE_WAP_PUSH 2.92% 

CLEAR_APP_USER_DATA 0.80% PROCESS_OUTGOING_CALLS 4.12% 

ACCESS_LOCATION_EXTRA_COMMANDS 11.22% RECORD_AUDIO 2.40% 

REBOOT 0.52% INTERNAL_SYSTEM_WINDOW 0.06% 

 

Table B.3: Medium risk API calls 

API call Malware Benign API call Malware Benign 

AbortBroadcast 0.20% 0.07% divideMessage 0.06% 0.02% 

Ljava.lang.Class.getResource 0.40% 0.39% android.os.IBinder 0.92% 0.85% 

TelephonyManager.getSimSerialNu

mber 0.18% 0.10% 

TelephonyManager.getLine1

Number 0.42% 0.15% 

SendDataMessage 0.04% 0.01% SET_ALARM 0.03% 0.02% 
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Table B.4: Medium risk permissions 

Permission Malware Benign Permission Malware Benign 

SEND_SMS 54.84% 6.11% BIND_WALLPAPER 4.58% 2.50% 

WRITE_EXTERNAL_STORAGE 68.00% 64.22% 

READ_HISTORY_BOOK

MARKS 17.74% 4.06% 

RECEIVE_SMS 38.29% 7.17% 

ACCESS_COARSE_LOCA

TION 31.94% 27.06% 

ACCESS_WIFI_STATE 43.39% 41.83% RECEIVE_MMS 3.26% 1.44% 

WRITE_SMS 22.15% 4.22% 

CONTROL_LOCATION_U

PDATES 0.63% 0.44% 

WRITE_HISTORY_BOOKMARK

S 16.26% 2.83% CALL_PHONE 13.97% 11.06% 

INSTALL_PACKAGES 14.25% 2.89% READ_LOGS 8.59% 7.94% 

ACCESS_FINE_LOCATION 30.57% 29.94% 

MOUNT_UNMOUNT_FIL

ESYSTEMS 4.41% 2.61% 

INTERNET 95.94% 82.17% 

CHANGE_CONFIGURATI

ON 3.26% 2.33% 

READ_PHONE_STATE 89.01% 49.39% CHANGE_WIFI_STATE 18.20% 15.78% 

WRITE_APN_SETTINGS 9.79% 1.61% DISABLE_KEYGUARD 8.59% 7.78% 

RECEIVE_BOOT_COMPLETED 48.94% 32.67% GET_PACKAGE_SIZE 1.89% 1.67% 

RESTART_PACKAGES 13.91% 4.61% 

CAPTURE_AUDIO_OUTP

UT 0.57% 0.28% 

UPDATE_DEVICE_STATS 2.75% 0.44% HARDWARE_TEST 0.34% 0.22% 

INJECT_EVENTS 0.06% 0.06% READ_SMS 37.32% 6.94% 

SET_WALLPAPER 10.07% 5.61%    

 

Table B.5: Low risk API calls 

API call Benign Malware API call Benign Malware 

Ljava.lang.Class.forName 0.71% 0.47% AttachInterface 0.63% 0.06% 

ProcessBuilder 0.11% 0.07% android.os.Binder 0.70% 0.27% 

ServiceConnection 0.66% 0.08% 

Landroid.content.Context.unregist

erReceiver 0.57% 0.17% 

OnBind 0.72% 0.64% Ljava.lang.Class.getMethods 0.43% 0.14% 

KeySpec 0.58% 0.54% 
Ljava.lang.Class.getCanonicalNa

0.50% 0.05% 
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me 

TelephonyManager.getSimCou

ntryIso 0.22% 0.11% Ljava.lang.Class.getField 0.60% 0.25% 

OnServiceConnected 0.67% 0.24% 

Landroid.content.Context.register

Receiver 0.66% 0.34% 

HttpUriRequest 0.70% 0.58% ClassLoader 0.67% 0.43% 

Ljava.lang.Class.getClasses 0.07% 0.02% Ljava.net.URLDecoder 0.58% 0.12% 

HttpPost.init 0.63% 0.50% FindClass 0.09% 0.02% 

Transact 0.64% 0.06% Ljava.lang.Class.getDeclaredField 0.62% 0.23% 

BindService 0.66% 0.24%    

 

Table B.6: Low risk permissions 

Permission Benign Malware Permission Benign Malware 

GET_ACCOUNTS 43.17% 8.24% WRITE_SECURE_SETTINGS 5.28% 3.84% 

USE_CREDENTIALS 17.00% 0.06% PERSISTENT_ACTIVITY 1.78% 0.29% 

MANAGE_ACCOUNTS 16.44% 0.17% CHANGE_NETWORK_STATE 11.44% 6.47% 

READ_SYNC_SETTINGS 13.00% 0.46% BROADCAST_WAP_PUSH 0.67% 0.11% 

CAMERA 19.00% 4.24% FLASHLIGHT 3.28% 1.55% 

WRITE_SYNC_SETTINGS 12.28% 0.63% SYSTEM_ALERT_WINDOW 8.11% 5.27% 

BIND_NOTIFICATION_LIS

TENER_SERVICE 3.33% 0.06% BIND_DEVICE_ADMIN 2.56% 0.29% 

MODIFY_AUDIO_SETTIN

GS 8.94% 1.26% READ_FRAME_BUFFER 1.00% 0.46% 

BROADCAST_STICKY 8.33% 0.52% 

CHANGE_COMPONENT_ENAB

LED_STATE 1.00% 0.69% 

WAKE_LOCK 53.11% 38.18% BROADCAST_SMS 1.17% 0.40% 

BLUETOOTH 10.22% 4.01% READ_CONTACTS 24.33% 23.58% 

READ_CALENDAR 5.72% 1.14% 

KILL_BACKGROUND_PROCES

SES 5.61% 2.80% 

READ_EXTERNAL_STOR

AGE 11.94% 6.18% WRITE_CONTACTS 12.44% 9.85% 

VIBRATE 40.50% 30.17% ACCESS_MOCK_LOCATION 1.67% 1.03% 
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ACCESS_NETWORK_STA

TE 76.33% 65.66% MODIFY_PHONE_STATE 2.17% 2.00% 

SUBSCRIBED_FEEDS_RE

AD 3.00% 0.17% ACCESS_SURFACE_FLINGER 0.33% 0.06% 

WRITE_CALENDAR 5.06% 1.20% SET_ORIENTATION 0.83% 0.23% 

GET_TASKS 20.11% 13.57% EXPAND_STATUS_BAR 2.50% 1.72% 

GLOBAL_SEARCH 3.11% 1.32% DEVICE_POWER 1.78% 1.37% 

REORDER_TASKS 2.17% 0.06% SET_DEBUG_APP 0.17% 0.06% 

BIND_INPUT_METHOD 1.56% 0.11% 

SET_PREFERRED_APPLICATI

ONS 1.06% 0.80% 

CALL_PRIVILEGED 1.44% 0.06% INTERACT_ACROSS_USERS 0.33% 0.06% 

BATTERY_STATS 3.22% 0.92% 

ACCESS_DOWNLOAD_MANA

GER 0.78% 0.46% 

WRITE_SETTINGS 17.89% 12.36% ACCESS_WIMAX_STATE 0.22% 0.11% 

SET_WALLPAPER_HINTS 1.67% 1.49% ACCOUNT_MANAGER 0.17% 0.06% 

BLUETOOTH_ADMIN 6.11% 3.49%    

 

Table B.7: No risk API calls 

API call Benign API call Benign 

MessengerService 0.01% sendMultipartTextMessage 0.03% 

IRemoteService 0.01% Runtime.load 0.03% 

Process.start 0.01% PathClassLoader 0.04% 

Context.bindService 0.01% Ljava.lang.Class.getDeclaredClasses 0.04% 

ACCOUNT_MANAGER 0.01% GetBinder 0.31% 

 

Table B.8: No risk permissions 

Permission Benign Permission Benign 

AUTHENTICATE_ACCOUNTS 10.28% BIND_DIRECTORY_SEARCH 0.06% 

NFC 6.06% BIND_DREAM_SERVICE 0.22% 

BIND_REMOTEVIEWS 5.89% SUBSCRIBED_FEEDS_WRITE 3.06% 

READ_PROFILE 5.72% BIND_JOB_SERVICE 45.39% 

READ_SYNC_STATS 6.22% BIND_QUICK_SETTINGS_TILE 2.61% 

WRITE_MEDIA_STORAGE 0.94% BIND_SCREENING_SERVICE 0.11% 
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BIND_INCALL_SERVICE 0.22% BIND_TELECOM_CONNECTION_SERVICE 0.06% 

CHANGE_WIFI_MULTICAST_STAT

E 2.22% CAPTURE_SECURE_VIDEO_OUTPUT 0.17% 

MASTER_CLEAR 2.11% BIND_VOICE_INTERACTION 0.06% 

CAPTURE_VIDEO_OUTPUT 0.17% BLUETOOTH_PRIVILEGED 0.06% 

WRITE_USER_DICTIONARY 1.67% CHANGE_WIMAX_STATE 0.22% 

WRITE_PROFILE 1.56% GET_DETAILED_TASKS 0.06% 

READ_SOCIAL_STREAM 1.28% GET_INTENT_SENDER_INTENT 0.06% 

ADD_VOICEMAIL 0.33% GLOBAL_SEARCH_CONTROL 0.06% 

DUMP 1.61% INTERACT_ACROSS_USERS_FULL 1.00% 

SET_TIME 1.28% MANAGE_DOCUMENTS 1.11% 

WRITE_SOCIAL_STREAM 1.11% MANAGE_USERS 0.33% 

WRITE_GSERVICES 0.94% MEDIA_CONTENT_CONTROL 1.06% 

SET_TIME_ZONE 0.56% MOVE_PACKAGE 0.11% 

BIND_ACCESSIBILITY_SERVICE 0.50% OVERRIDE_WIFI_CONFIG 0.06% 

READ_USER_DICTIONARY 1.33% PACKAGE_USAGE_STATS 2.89% 

INSTALL_LOCATION_PROVIDER 0.39% READ_INSTALL_SESSIONS 0.06% 

SET_PROCESS_LIMIT 0.28% REAL_GET_TASKS 0.50% 

BIND_TEXT_SERVICE 0.17% REQUEST_INSTALL_PACKAGES 4.28% 

BIND_APPWIDGET 0.89% 

SEND_DOWNLOAD_COMPLETED_INTEN

TS 0.22% 

MOUNT_FORMAT_FILESYSTEMS 0.56% SEND_RESPOND_VIA_MESSAGE 0.94% 

SET_ACTIVITY_WATCHER 0.33% STATUS_BAR_SERVICE 0.17% 

BIND_VPN_SERVICE 0.17% TETHER_PRIVILEGED 0.06% 

ACCESS_BLUETOOTH_SHARE 0.11% TRANSMIT_IR 0.28% 

ACCESS_CACHE_FILESYSTEM 0.11% UPDATE_APP_OPS_STATS 0.11% 

ACCESS_NOTIFICATION_POLICY 2.17%   
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