
ANDROID MALWARE DETECTION,

CLASSIFICATION AND THREAT ASSESSMENT

USING COMPUTATIONAL TECHNIQUES

Thesis submitted in fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

By

MEGHNA DHALARIA

Department of Computer Science & Engineering and Information Technology

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

Waknaghat, Solan-173234, Himachal Pradesh, INDIA

October, 2021

@ Copyright JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY (Established under H.P.

Legislative Assembly Act No. 14 of 2002 and Approved by UGC under section 2(f))

WAKHNAGHAT, SOLAN, H.P. (INDIA)

October, 2021

ALL RIGHTS RESERVED

TABLE OF CONTENTS

CONTENT Page

Number

DECLARATION BY THE SCHOLAR i

SUPERVISOR’S CERTIFICATE ii

ACKNOWLEDGEMENT iii

ABSTRACT iv-vi

LIST OF ACRONYMS AND ABBREVIATIONS vii-ix

LIST OF FIGURES x-xii

LIST OF TABLES xiii-xv

CHAPTER 1

INTRODUCTION 1-25

1.1 BACKGROUND OF ANDROID 1-6

1.1.1 ARCHITECTURE 1-2

1.1.2 COMPONENTS OF AN ANDROID APPLICATION 2-3

1.1.3 FEATURES OF ANDROID 3-4

1.1.4 VERSIONS OF ANDROID 4

1.1.5 ANDROID APPLICATIONS 5-6

1.2 EVOLUTION OF ANDROID MALWARE 6-9

1.3 MALWARE DETECTION METHODS 10

1.3.1 SIGNATURE BASED METHOD 10

1.3.2 MACHINE LEARNING BASED METHOD 10

1.4 ANDROID MALWARE ANALYSIS 10-11

1.4.1 STATIC MALWARE ANALYSIS 10

1.4.2 DYNAMIC MALWARE ANALYSIS 11

1.5 TECHNIQUES AND TOOLS FOR ANALYSING ANDROID

MALWARE

12-16

1.5.1 TECHNIQUES AND TOOLS FOR STATIC

MALWARE ANALYSIS

12-15

1.5.2 TECHNIQUES AND TOOLS FOR DYNAMIC

MALWARE ANALYSIS

15-16

1.6 MACHINE LEARNING 17-18

1.6.1 TYPES OF MACHINE LEARNING 17-18

1.7 ANDROID MALWARE DATASETS 18-21

1.8 PERFORMANCE PARAMETERS 21-23

1.9 MOTIVATION 23-24

1.10 RESEARCH OBJECTIVES 24

1.11 ORGANIZATION OF THESIS 24-25

CHAPTER 2

LITERATURE REVIEW 26-44

2.1 RELATED RESEARCH WORK 26-44

2.1.1 SIGNATURE BASED METHOD 26-28

2.1.2 MACHINE LEARNING METHOD 28-44

2.1.2.1 USING STATIC FEATURES 28-36

2.1.2.2 USING DYNAMIC FEATURES 37-40

2.1.2.3 USING HYBRID FEATURES 40-44

2.2 INFERENCES DRAWN FROM LITERATURE REVIEW 44

2.3 SUMMARY 44

CHAPTER 3

PROPOSED INTEGRATED APPROACH FOR

DETECTION AND CLASSIFICATION OF UNKNOWN

MALWARE

45-67

3.1 PROPOSED METHODOLOGY 45-59

3.1.1 DATA COLLECTION 46-47

3.1.2 DATA PREPARATION 47-56

3.1.2.1 ELIMINATING DUPLICATE APPLICATIONS 47

3.1.2.2 LABELLING 47

3.1.2.3 FEATURE EXTRACTION 48-51

3.1.2.4 FEATURE SELECTION 52-56

3.1.3 DETECTION AND FAMILY CLASSIFICATION 56-59

3.2 EXPERIMENTAL RESULTS 59-66

3.2.1 RESULTS OF CLASSIFICATION USING STATIC

FEATURES

60-61

3.2.2 RESULTS OF CLASSIFICATION USING DYNAMIC

FEATURES

62-63

3.2.3 RESULTS OF CLASSIFICATION USING

INTEGRATED FEATURES

64-66

3.3 DISCUSSIONS 66-67

3.4 SUMMARY 67

CHAPTER 4

PROPOSED APPROACH FOR IMPROVING

DETECTION OF ANDROID MALWARE

68-88

4.1 PROPOSED METHODOLOGY 68-76

4.1.1 DATA ACQUISITION 69-70

4.1.2 DATA SPLITTING 70

4.1.3 CLASSIFICATION ALGORITHMS 70-71

4.1.4 5-FOLD CROSS VALIDATION 71

4.1.5 PROPOSED RANKING SCHEMES 71-75

4.1.6 CLASSIFIER FUSION USING PROPOSED RANKING

ALGORITHMS

75-76

4.2 EXPERIMENTAL RESULTS 76-87

4.2.1 EXPERIMENTAL RESULTS FOR DREBIN

DATASET

77-81

4.2.2 EXPERIMENTAL RESULTS FOR ANDROMD

DATASET

81-85

4.2.3 COMPARISON OF FUSION APPROACH WITH

STACKING ENSEMBLE METHOD

85-87

4.3 DISCUSSIONS 87

4.4 SUMMARY 88

CHAPTER 5

PROPOSED APPROACH FOR IMBALANCED FAMILY

CLASSIFICATION OF MALWARE

89-96

5.1 PROPOSED METHODOLOGY 89-93

5.1.1 DATA COLLECTION AND DATA PRE-PROCESSING 90

5.1.2 COST SENSITIVE FOREST 91-93

5.2 EXPERIMENTAL RESULTS 93-95

5.3 DISCUSSIONS 95

5.4 SUMMARY 95-96

CHAPTER 6

PROPOSED MODEL FOR IDENTIFYING THE LEVEL

OF ANDROID APPLICATION FEATURES

97-113

6.1 PROPOSED METHODOLOGY 98-110

6.1.1 DATA COLLECTION AND FEATURE EXTRACTION 99

6.1.2 DATA ANALYSIS BASED ON PERMISSIONS AND

API CALLS

100

6.1.3 HYPOTHESIS FORMULATION AND RISK

IDENTIFICATION

100-107

6.1.4 STATISTICAL TEST USING ANOVA 107-108

6.1.5 SCORING SYSTEM 108-110

6.2 RESULTS OF ANOVA 110-112

6.3 DISCUSSIONS 112

6.4 SUMMARY 113

CHAPTER 7

CONCLUSION AND FUTURE WORK 114-116

7.1 MAJOR RESEARCH CONTRIBUTIONS 114-115

7.2 SCOPE FOR FUTURE WORK 115-116

REFERENCES 117-135

APPENDICES 136-144

LIST OF PUBLICATIONS 145-146

i

DECLARATION BY THE SCHOLAR

I hereby declare that the work reported in the Ph.D. thesis entitled “Android Malware

Detection, Classification and Threat Assessment using Computational

Techniques” submitted at Jaypee University of Information Technology,

Waknaghat, India, is an authentic record of my work carried out under the supervision of

Dr. Ekta Gandotra. I have not submitted this work elsewhere for any other degree or

diploma. I am fully responsible for the contents of my Ph.D. thesis.

Meghna Dhalaria

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat, India

Date:

ii

SUPERVISOR’S CERTIFICATE

This is to certify that the work in the thesis entitled “Android Malware Detection,

Classification and Threat Assessment using Computational Techniques”

submitted by Meghna Dhalaria at Jaypee University of Information

Technology, Waknaghat, India, is a bonafide record of her original work carried out

under my supervision. This work has not been submitted elsewhere for any other degree or

diploma.

Dr. Ekta Gandotra

Assistant Professor (Senior Grade)

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat, India

Date:

iii

ACKNOWLEDGEMENT

With the providential grace of “Almighty God”, the expedition of my Ph.D. came to an end

and my heart is overflowing with appreciation towards each and every person who has lend a

hand in the form of support, believe and efforts to accomplish this journey.

It is an immense pleasure to express my profound gratitude towards my supervisor Dr. Ekta

Gandotra, Assistant Professor, Department of Computer Science & Engineering and

Information Technology who graciously gave me the opportunity to work under her guidance.

I am thankful for her patience, continuous support, optimistic approach, never-ending

deliberations, time to time guidance and liberty throughout this course. Their valuable

motivation, help, suggestion, affirmative vision, magnificent supervision and enormous

confidence in my abilities made me face tough circumstances during the progress of the

research work. It is a great honour to work under her supervision.

I would like to express my gratitude to our Honorable Vice Chancellor Prof. (Dr.) Rajendra

Kumar Sharma and Dean (Academics and Research) Prof. (Dr.) Ashok Kumar Gupta and

Head Department of CSE/IT Prof. (Dr.) Vivek Kumar Sehgal to promote the research and

facilitate resources in the institution. I would also like to thank my doctoral committee

members Dr. Pradeep Kumar Gupta, Dr. Ravindara Bhatt and Dr. Harsh Sohal for their

valuable feedback and critical reviews during presentations and time to time help.

I am also grateful for the support received from JUIT, Waknaghat. In particular, I thank, Mr.

Ravi Raina and all staff members at the Department of Computer Science and Engineering

and Information Technology, JUIT, Waknaghat who has been extremely helpful at numerous

occasions. I thank my fellow Ph.D. friends for their consistent help and valuable discussion.

Last but not the least, I would like to thank my parents for supporting me spiritually

throughout my life.

Meghna Dhalaria

iv

ABSTRACT

In today’s era, mobile devices are getting popular with a variety of applications (apps) to

make our life easier. Several mobile Operating Systems (OS) are available in the market

including iOS, Android, BlackBerry and Windows Phone. Android is a widely used mobile

OS with a market share of more than 85%. It is based on Linux kernel specifically built for

touchscreen devices such as tablets and smartphones etc. In the current era, there is an

increase in the usage of smartphones for a variety of purposes like banking, social media,

education etc. The growing popularity of Android apps has lured attackers to create malicious

apps which pose several threats such as financial loss, information leakage etc. These

malicious apps are becoming more sophisticated and using new ways to target mobile

devices. These have the ability to evade detection and mitigation techniques that have already

been developed. The traditional security systems like intrusion detection/prevention systems

and Anti-Virus (AV) software rely on signature-based methods and thus are not able to

identify new generation malware. Thus, there is a need to design techniques for better

malware identification and classification. Furthermore, in a real-world scenario, the number

of samples varies substantially among various malware families. Thus, it is important to build

malware classification models which can take care of imbalanced classes. Additionally, there

is a lack of adequate research on analyzing the threat or risk posed by Android apps. The main

aim of this research is to address these problems and provide effective solutions.

Machine Learning (ML) techniques have been used to identify malware based on attributes

mined using static and dynamic malware analysis. Through experiments, it is observed that

both types of malware analysis have their pros and cons. The unknown malware use advanced

obfuscation techniques to hide its presence, and it can detect the sandbox environment in

which it is running. Thus, the single approach either static or dynamic is unable to identify

and classify unknown malware. An integrated approach (an amalgamation of static and

dynamic attributes) has been proposed in this work which can effectively analyze, detect and

classify the malware. The two datasets i.e. Android malware detection and family

classification are created using a comprehensive set of attributes acquired after performing

static and dynamic analysis of malware. These datasets have been made public on GitHub and

kaggle in order to assist anti-malware tool developers and researchers in developing new

methodologies and tools for identifying and classifying malware. Six ML classifiers are used

v

to identify and classify Android malware using the attributes mined from static and dynamic

malware analysis. The results demonstrate that the integrated approach improves the detection

and classification accuracy of malware when compared with the approaches considering static

or dynamic attributes alone.

The main problem with the existing malware detection systems is that they have a high False

Negative (FN) and False Positive (FP) rate. An approach named as MalDetect has been

proposed for enhancing the detection results of malware. The approach fuses the base

classifiers on the basis of proposed ranking schemes defined on their error rate. These

schemes are then used to generate a variety of combinations, with the best one being chosen

to construct the final model. The proposed approach is tested on two datasets i.e. Drebin

(benchmark) and AndroMD (self-created). The findings suggest that the proposed approach is

more effective than conventional base classifiers and ensemble learning techniques.

In a real-world scenario, the number of samples varies substantially among various malware

families which results in poor classification. For addressing this issue, a cost-sensitive

learning (CSForest) approach has been proposed. The results of the proposed approach are

compared with CSTree, Random Forest (RF) and C4.5 to identify its effectiveness in

categorizing malicious app families. The findings suggest that the proposed approach is

effective in determining the families of malicious apps.

Industries providing anti-malware solutions compute the risk associated with a piece of

malware using the approaches involving human intervention along with a large number of

resources. With the increase in the volume of malware, it is impossible to allocate a

significant number of resources for analyzing the threat or risk posed by an Android app. To

address this issue, a rule-based model has been designed. The proposed model assigns the risk

levels (No, Low, Medium and High) to Android app features. The static features (permissions

and Application Programming Interface (API) calls) in the data are examined statistically to

come up with a hypothesis for identifying their risk factor. In order to test the hypothesis,

Analysis of Variance (ANOVA) method is used. The results indicate that the mean values of

different risk factors differ significantly. Afterward, a weight is assigned to the features under

each category to compute the threat score of a particular app. This threat score can help the

user to understand how risky it is to install an app on a mobile device. Moreover, the

vi

computed threat score can assist in providing early warnings about a malicious app so that

instant attention could be paid to with respect to assigning resources for deeper investigation.

The present research provides evidence based knowledge about emerging Android malware

and is capable of generating actionable information in the form of threat intelligence.

vii

LIST OF ACRONYMS & ABBREVIATIONS

AASandbox Android Application Sandbox

AE Average Error

ANOVA Analysis of Variance

AOT Ahead-Of-Time

Apps Applications

API Application Programming Interface

.apk Android Package

ARM Advanced RISC Machine

ART Android Runtime

AUC Area Under Curve

AVD Android Virtual Device

AV Antivirus

BERT Bidirectional Representations for Transformers

CART Classification and Regression Tree

CCR Classification Cost Reduction

CED Class Error Differential

CS Cost-Sensitive

C2DM Cloud to Device Messaging

DL Deep Learning

DT Decision Tree

DVM Dalvik Virtual Machine

FAMD Fast Android Malware Detector

FN False Negative

FNR False Negative Rate

FPGA Field Programmable Gate Arrays

FP False Positive

FPR False Positive Rate

FT Functional Tree

GCM Goggle Cloud Messaging

viii

HAL Hardware Abstraction Layer

ICC Inter-Component Call

ICFS Iterative Classifier Fusion System

IDC International Data Corporation

IDS Intrusion Detection System

ID3 Iterative Dichotomiser3

IFS Iterative Feature Selection

IG Information Gain

IPS Intrusion Prevention System

JSON Java Script Object Notation

K-NN K-Nearest Neighbors

LDA Linear Discriminant Analysis

LR Logistic Regression

LSTM Long Short Term Memory

MBSS Model Based Semi Supervised

MCC Matthews Correlation Coefficient

MD5 Message-Digest

MIPS Microprocessor without Interlocked Pipelined Stages

ML Machine Learning

MLP Multilayer Perceptron

NB Naive Bayes

NN Neural Network

OS Operating Systems

PART Partial Decision Tree

PCA Principal Component Analysis

PPV Positive Predicted Value

PSO Particle Swarm Optimization

RAACED Ranked Aggregate Average and Class Error Differential

RAPCE Ranked Aggregate of Per Class Error

RF Random Forest

Sens Sensitivity

SigPID Significant Permission Identification

ix

SL Simple Logistic

SMO Sequential Minimal Optimization

SMOTE Synthetic Minority Oversampling Technique

SSL Secure Socket Library

SVM Support Vector Machine

TF-IDF Time Frequency-Inverse Document Frequency

TN True Negative

TP True Positive

WEKA Waikato Environment for Knowledge Analysis

W-FM Weighted F-measure

x

LIST OF FIGURES

Figure

Number

Caption Page

Number

1.1 Architecture of Android 1

1.2 Components of Android apps 3

1.3 Architecture of apk 6

1.4 Android malware evolution 7

1.5 Techniques and tools for analysing Android malware 12

1.6 Various categories of ML 17

2.1 Process of signature-based approach for identification of Android

malware

27

3.1 Workflow of the methodology used for detection and

classification of unknown malware

46

3.2 Android malicious families 47

3.3 Process of mining static attributes 49

3.4 General framework of CuckooDroid for extracting dynamic

features

50

3.5 Top 20 static attributes of detection dataset (Dataset-1) 53

3.6 Top 20 static attributes of multi-class classification dataset

(Dataset-2)

53

3.7 Top 20 dynamic attributes of detection dataset (Dataset-1) 54

3.8 Top 20 dynamic attributes of multi-class classification dataset

(Dataset-2)

54

3.9 Steps of data preparation 56

3.10 General framework of RF algorithm 58

3.11 General framework of SVM algorithm 58

xi

3.12 Comparative analysis of various classifiers using static approach

based on (a) MCC (b) Accuracy for detection dataset (Dataset-1)

60

3.13 Comparative analysis of various classifiers using static approach

based on accuracy for multi-class classification dataset (Dataset-

2)

61

3.14 Comparative analysis of various classifiers using dynamic

approach based on (a) MCC (b) Accuracy for detection dataset

(Dataset-1)

62

3.15 Comparative analysis of various classifiers using dynamic

approach based on accuracy for multi-class classification dataset

(Dataset-2)

63

3.16 Comparison of ML classifiers for all three approaches based on

(a) MCC (b) Accuracy for detection dataset (Dataset-1)

65

3.17 Comparison of ML classifiers for all three approaches based on

accuracy for multi-class classification dataset (Dataset-2)

65

4.1 Proposed approach for improving the detection of malware 69

4.2 Comparison of ML classifiers on the basis of FPR and FNR on

Drebin training data

77

4.3 Comparison of ML classifiers on the basis of W-FM on Drebin

training data

78

4.4 Comparison of fusion of ranking algorithms based on W-FM on

Drebin training data

79

4.5 Comparison of various techniques on the basis of W-FM on

Drebin test data

80

4.6 Comparison of ML classifiers based on FPR and FNR on

AndroMD training data

82

4.7 Comparison of ML classifiers on the basis of W-FM on

AndroMD training data

82

4.8 Comparison of fusion of ranking algorithms based on W-FM on

AndroMD training data

84

4.9 Comparison of various techniques on the basis of W-FM on

AndroMD test data

85

xii

4.10 Framework of the stacking ensemble learning method 86

4.11 Comparison of proposed technique with stacking ensemble

technique on Drebin test data

86

4.12 Comparison of proposed approach with stacking ensemble

technique on AndroMD test data

87

5.1 Workflow of the methodology used for imbalanced classification

of malware

90

5.2 Comparison of various classification algorithms on the basis of

F-measure

95

6.1 Process of targeting mobile device using permissions 97

6.2 Workflow of the methodology used for identification of risk

factor of Android app features

99

6.3 Flowchart for identifying risk factor of features 102

6.4 High risk permissions in Android apps 103

6.5 High risk API calls in Android apps 103

6.6 Medium risk permissions in Android apps 104

6.7 Medium risk API calls in Android apps 104

6.8 Low risk permissions in Android apps 105

6.9 Low risk API calls in Android apps 106

6.10 No risk permissions in Android apps 106

6.11 No risk API calls in Android apps 107

6.12 Threat score of all apps 110

6.13 Visualization of four risk factors in an app based on API calls 111

6.14 Visualization of four risk factors in an app based on permissions 112

xiii

LIST OF TABLES

Table

Number

Caption Page

Number

1.1 Android versions with their names, API and release date 4

1.2 Android malware with their short description 7-9

1.3 Comparison of malware analysis approaches 11

1.4 Few examples of permissions with their description 13

1.5 Static malware analysis tools 15

1.6 Dynamic malware analysis tools 16

1.7 Sources of Android samples 20

1.8 Publically available Android benchmark datasets 21

1.9 Confusion matrix for binary classification problem 22

1.10 Comparison of conventional malware and new generation

malware

24

2.1 Comparative study for detection, classification and threat

measurement of Android malware using static features

33-36

2.2 Comparative study for detection, classification and threat

measurement of Android malware using dynamic features

39-40

2.3 Comparative study for detection, classification and threat

measurement of Android malware using integrated features

42-43

3.1 Description of mined attributes 51

3.2 Detail description of datasets (Where # represents number of) 55

3.3 Comparison of ML techniques using static attributes for

detection dataset (Dataset-1)

60

3.4 Comparison of ML techniques based on static attributes for

multi-class classification dataset (Dataset-2)

61

xiv

3.5 Comparison of ML techniques based on dynamic attributes for

detection dataset (Dataset-1)

62

3.6 Comparison of ML techniques based on dynamic attributes for

multi-class classification dataset (Dataset-2)

63

3.7 Comparison of ML techniques based on integrated attributes for

detection dataset (Dataset-1)

64

3.8 Comparison of ML techniques based on integrated attributes for

multi-class classification dataset (Dataset-2)

64

3.9 Comparison results of static, dynamic and integrated approach 66

4.1 Summary of datasets used (where # represents the number of) 70

4.2 Results of base classifiers on the basis of different parameters

on Drebin training data

77

4.3 Rank of base classifiers using proposed ranking algorithms on

Drebin training data

78

4.4 Fusion results on Drebin training data 79

4.5 Comparison of proposed technique with ML classifiers and

conventional combination techniques on Drebin test data

80

4.6 Results of base classifiers on the basis of different parameters

on AndroMD training data

81

4.7 Rank of base classifiers using proposed ranking algorithms on

AndroMD training data

83

4.8 Fusion results on AndroMD training data 83

4.9 Comparison of proposed technique with ML classifiers and

conventional combination techniques on AndroMD test data

84

4.10 Comparison of the proposed technique with stacking ensemble

method

86

5.1 Results of malware family classification results of cost-

sensitive and cost insensitive classification algorithms

94

6.1 ANOVA source 107

6.2 Number of attributes belonging to different risk categories and 109

xv

assigned weights

6.3 ANOVA: single factor (summary) 110

6.4 ANOVA statistical comparison 111

1

CHAPTER 1

INTRODUCTION

Android is found to be the most well-known platform all over the world [1]. Andy Rubin is

known as the “Father of Android” for his work on the “Camera” project, which the Symbian

OS couldn't handle. In August 2005, Andy Rubin turned over ownership of Android to

Google. Android OS relies on the Linux kernel. It is an open-source software and built for

touchscreen devices such as tablets and smartphones etc. The first Android device named

HTC Dream was released in 2008 [2]. According to the International Data Corporation (IDC)

report, the worldwide smartphone market has achieved a shipment of 1.39 billion in 2019 [3].

1.1 BACKGROUND OF ANDROID

1.1.1 Architecture

The Android OS architecture consists of five main parts i.e. Linux kernel, Hardware

Abstraction Layer (HAL), Libraries (including Android runtime), Application framework,

Application [4] as demonstrated in Figure 1.1.

Figure 1.1: Architecture of Android [4]

2

A detailed explanation is given as follows:

 Linux kernel- During runtime, it manages all available drivers such as memory

drivers, display and camera drivers, audio and Bluetooth drivers.

 HAL- It offers a standard interface that reveals hardware functionalities of the device

to the higher-level app framework. The HAL comprises several library modules such

as Bluetooth, audio, camera etc. When API makes a call to use hardware devices, the

Android device loads the module for that hardware component.

 Libraries- Android system services and components are constructed from the native

code that needs native libraries. The platform Android offers an application

framework to reveal the capabilities of some of these libraries to apps. For example,

Secure Socket Library (SSL) for Internet security and OpenGL ES used to generate

2D and 3D computer graphics.

 Android Runtime- The java classes are first converted to DEX Bytecode and then

with the help of Dalvik Virtual Machine (DVM) and Android Runtime (ART), DEX

Bytecode is converted to the machine level language. DVM has some limitations like

low garbage collection etc. So to overcome these limitations, DVM was replaced by

ART. From the Android 5.0 version onwards, ART was used as runtime. Some of the

essential features of ART are as follows:

 Optimized garbage collection

 Uses Ahead-of-time (AOT) method and compiles the complete code at the

time of installation.

 Application framework- It offers a variety of Android.* packages that serve as high-

level building blocks for apps. On the mobile device, majority of the components in

this layer are implemented as apps that operate in the background.

 Applications- It is the topmost layer of Android architecture. It consists of those apps

which are already built into the device itself. Examples of the apps are contacts,

camera, browser etc.

1.1.2 Components of an Android Application

Activities, Content Providers, Broadcast Receiver and Services are the four main components

of an Android app [4]. Figure 1.2 shows the components of an Android app. These

3

components are bound by the manifest file that holds the detail of each component. The

description of the components is given as follows:

Figure 1.2: Components of Android apps [4]

 Activities- The user interface is directly linked by an activity. It is the visual

representation of an Android app.

 Services- This component performs background tasks, triggering the notification,

update your activities and data source. When the app is not active, it still performs

some tasks.

 Content Providers- It can assist an app in managing access to data stored by it and by

other users, as well as providing a way for data to be shared with other apps. They

encapsulate data and give mechanisms for defining data protection.

 Broadcast Receiver- It is also called intent listeners. It allows your app to listen to the

intents that meet the criteria prescribed by us. It carries out an action in reply to a

message from other apps.

1.1.3 Features of Android

Lots of users use Android mobile devices because it offers an open platform facility and

provides various functionalities [4]. Some of the features of Android are listed as follows:

 Storage

 Messaging: MMS, GCM (Goggle Cloud Messaging), SMS, C2DM (Cloud to Device

Messaging)

 Multitouch

4

 Screen capture

 Connectivity: Bluetooth, GSM/EDGE, WIFI, GPS, LTE etc.

 Video calling

 Multilanguage Support

1.1.4 Versions of Android

The Android development was started in 2003, and was purchased in 2005 by Google [5].

The first version of Android 1.0 was released in October 2008 [3]. Table 1.1 shows the

versions of Android with their names, API, release date.

Table 1.1: Android versions with their names, API and release date [6]

Version of Android Names API Release Date

1.0 No name 1 23-09-2008

1.1 2 09-02-2009

1.5 Cupcake 3 27-04-2009

1.6 Donut 4 15-09-2009

2.0 – 2.1 Éclair 5 – 7 26-10-2009

2.2 – 2.2.3 Froyo 8 20-05-2010

2.3 – 2.3.7 Gingerbread 9 – 10 06-12-2010

3.0 – 3.2.6 Honeycomb 11 – 13 22-02-2011

4.0 – 4.0.4 Ice Cream

Sandwich

14 – 15 18-10-2011

4.1 – 4.3.1 Jelly Bean 16 – 18 09-07-2012

4.4 – 4.4.4 KitKat 19 – 20 31-10-2013

5.0 – 5.1.1 Lollipop 21 – 22 12-11-2014

6.0 – 6.0.1 Marshmallow 23 05-10-2015

7.0 – 7.1.2 Nougat 24-25 22-08-2016

8.0 – 8.1 Oreo 26 – 27 21-08-2017

9.0 Pie 28 06-08-2018

10.0 Android 10 29 03-09-2019

11.0 Android 11 TBD

5

1.1.5 Android Applications

The structure of the Android app is described in this section. Android apps are packed in the

Android Package (.apk) file format. A program in Android is compiled and its entire

components are packed in a single file. This file is known as .apk which is saved into a zip

file format. To open .apk file, it first needs to be unzipped or decompile [7]. The structure of

the Android app is shown in Figure 1.3. This zipped file consists of the following folders and

files as discussed below:

 Assets- It contains the media file which could be obtained by the Assets Manager.

 Lib- It comprises compiled code with respect to the software layer of a processor.

 Armeabi- It contains the compiled code for processors i.e. Advanced RISC

Machine (ARM)

 Armeabi-v7a- It consists of the compiled code for processors i.e. armv7 and

above.

 X86- It contains compiled code for processors i.e. X86.

 MIPS- It contains the compiled code for processors i.e. Microprocessor

without Interlocked Pipelined Stages (MIPS).

 Res- It contains resources like icons, sting files, images, fonts etc.

 META-INF- This directory consists of the following such files:

 CERT.RSA- It holds the app certificate.

 CERT.SF- It holds the list of resources and the app security certificate.

 MANIFEST.MF- It contains significant information about the app.

 Resources.arsc- It consists of pre-compiled resources.

 Android Manifest.xml- It characterizes the app functionalities and also contains

meta-information about the app.

 Classes.dex- It holds the class name, package name, API calls or methods and class

path.

6

Figure 1.3: Architecture of apk [7]

1.2 EVOLUTION OF ANDROID MALWARE

The term malware refers to a distinct form of intrusive software or app. Some of the examples

of malware are worms, ransomware, spyware, adware and trojan horses etc. It is also known

as malicious software or malicious app. It is created to perform malicious activities such as

stealing personal data, gaining access to the devices, making changes in the devices etc. A

wide variety of malware has been identified till date. After 2009, there is a hazardous growth

in mobile malware. This is because new technologies have opened new opportunities for

beneficial exploitations [8, 9]. The first Trojans i.e. FakePlayer and DroidSMS were detected

in the year 2010 [10]. Figure 1.4 shows the development of Android malware from 2010 to

2021. Table 1.2 shows the timeline of Android malware with its short description.

7

Figure 1.4: Android malware evolution

Table 1.2: Android malware with their short description

Released

Year

Name of Android

Malware

Short Description

2010

FakeInst It is a kind of trojan that tries to send the SMS message to a preset

number.

SMS Replicator It acts as a snoop that secretly sends the message to any phone number

chosen by the user.

Geinimi It is a trojan that unlocks the backdoor and forwards the information to

a specific URL from the mobile phone.

GPSSMSSpy It pays attention to SMS premised commands to record and forward the

user's current location.

TapSnake It is a type of malware that sends the victim's location to a web service.

2011

FakeNetflix This malware is designed to target Netflix users. It captured the

personal data and is posted to a server.

DroidKungFu2 Once installed on the mobile phone, it reads the entire data and writes it

in a file and then posted it to the server.

GoldDream It is a trojan that examines the incoming and outgoing calls and gathers

the information related to all messages and saved them in

zjphonecall.txt file name.

GamblerSMS It acts as spyware and examines every call (incoming and outgoing) and

records all calls and SMS messages.

HippoSMS It is a trojan that removes the incoming messages and forwards the SMS

8

to premium numbers.

2012

DrSheep It hijacks the accounts of social networking sites like Instagram,

Facebook, LinkedIn via wifi connection.

Bmaster Once installed on the device, it collects sensitive information from the

devices like DeviceID, GPS data, IMEI number etc.

Adswo It displays unwanted advertisements as notifications and monitors

privacy-invasive.

SMSZombie This malware infects the devices and sends the SMS message to a

preset number.

LuckyCat It can collect data on a mobile device and download and upload the files

as guided by the C&C server.

2013

BadNews The main aim of this malware is to send bogus messages to a server and

permits the user to install apps.

Qadars It is a banking malware that prohibits the user from accessing their bank

accounts. It is also known as SPY-ABN.

Obad It is a kind of multifunctional trojan that is liable for forwarding SMS to

the premium rate numbers.

GGSmart Its main function is to gather significant information and sends it to a

remote server, send the SMS messages to a premium rate number. It

also contains access to read, delete and write privileges on the device.

Defender It is a kind of ransomware. Once it gets installed on the device, it infects

the system and displays the messages demanding a fee to be paid to

regain access.

2014

Torec It is a malware that uses .onion domain as its command and control

(C&C) server.

DroidPack It is a trojan that collects the login credentials information from the user

device.

DriveGenie This malware is automatically downloaded on the mobile device

without the user allowance. It gathers and sends the information of the

victims to a server.

2015

Saiva It is a trojan that has abilities to terminate processes, delete files and

capture the input of the keyboard from the victim device.

SaveMe/Social Path This malware steals information such as SMS message, call logs etc and

then upload the information to a server.

Asacub It is a banking trojan. It is developed to steal money from banking apps.

It steals all SMS messages from the user’s device and uploads them to

the server.

 AndroRat It can take a photo, steal browsing history.

9

2016 Cepsohord It is a trojan horse that deletes information files and downloads other

harmful malware like ransomware.

CallJam This malware comprises a premium dialer to make fraud calls and can

display ads.

2017

Chamois It downloads other apps on the victim’s device that send fraud SMS.

Anubis This malware steals photos, contacts, SMS messages etc. It can also

take a screenshot and record audio.

AdDown It is adware that stealthily installs apps in the device without the user’s

permission. Its main aim is to collect data, display ads etc.

2018

BianLian It is a trojan that can send, read and receive messages. It also records

the screen, locks the screen.

Triout This malware can record the calls, steal call logs and messages etc. It

uploads the recorded call to the server.

KevDroid It is a RAT (Remote Access Trojan). It steals data like emails, calls logs

and SMS etc. It also gathers information about the location of the

device.

2019

Agent Smith It hacks the apps and enforced them to show more ads to earn profit.

XHelper This malware offers a backdoor to the assailant. The assailants then

steal, install other apps on the victim’s device.

Fleeceware This malware comes with an unseen, unreasonable subscription fee.

BlackRock It can steal passwords and important information from the device.

 2020

CovidLock It is a ransomware that infect the users device by ensuring them to give

information about COVID-19

Joker It steals money from victims by inadvertently enrolling them in

premium memberships.

2021

FlyTrap It is a trojan that hacks facebook account of the users and collects

information from the users device

System Update Once it is installed on the mobile device, it steals videos, photos and

location of the users.

Pegasus It is a spyware, once installed, it accesses all data including emails,

whatsapp conversations and SMS.

The increasing demand for smartphones attracted many organizations to build various apps

such as gaming, education, business, entertainment, banking, lifestyles, etc. The increasing

use of Android apps has lured attackers to build malicious apps that pose several threats such

as financial loss, information leakage etc.

10

1.3 MALWARE DETECTION METHODS

Malware detection methods can be broadly classified into two categories. These are as

follows:

1.3.1 Signature based Method

It is the most popular technique used by all antiviruses. This method compares the app's

signature to an already existing signature in the database. The limitation of this approach is

that it cannot detect new (unknown) malware (also known as zero-day malware). To

overwhelm the drawback of this approach, researchers start making use of ML approaches

using static and dynamic malware analysis [11-13].

1.3.2 Machine Learning based Method

ML techniques have been used to detect malware based on attributes mined using static and

dynamic malware analysis. This method makes use of features mined after performing static

and dynamic malware analysis. The mined attributes are used to train the model for making

predictions [12, 14, 15].

1.4 ANDROID MALWARE ANALYSIS

It is the process of investigating the apps to identify their functionalities and attacking

techniques being used by malware creators [16]. It is carried out by using two approaches i.e.

static malware analysis [17-20] and dynamic malware analysis [21-23].

1.4.1 Static Malware Analysis

It analyses the sample of malware without executing or running the code. It uses decompiling

methods to decompile the app package and extract the features for the detection of malware.

However, this approach has its constraints such as it is unable to examine the obfuscation

code and morphed malware but it is faster in identifying malware [24, 25]. To overwhelm the

constraints of the static approach, a dynamic approach is used. It can keep tracking the

behavior or characteristic of the app and accurately identify the unknown malware [26-28].

11

1.4.2 Dynamic Malware Analysis

It examines the characteristics or behavior of an app while it is running in the sandbox (virtual

environment). It is more effective as it keeps on tracking the behavior of the apps at the time

of execution. The major constraints of this method are that it takes a long time because each

app must run for at least one minute in the sandbox. Furthermore, if a malware is able to

detect itself being executed in the virtual environment, it may become dead so that its

behavior could not be monitored. Moreover, it could not explore all execution paths [29, 30].

From the above approaches, it is found that the static analysis is not that effective in detecting

malicious contents. It omits code obfuscation and morphed malware but it is faster in

identifying malware. While considering the dynamic approach, it is more effective than the

static approach as it keeps the track of the behavior of apps at the time of execution. But still,

some apps remain undetectable at the execution time. From here, it is concluded that a single

approach is not capable of detecting malware more precisely. Thus to enhance the accuracy,

the hybrid approach is being used which is the integration of both approaches. Table 1.3

illustrates the comparison between all three approaches.

Table 1.3: Comparison of malware analysis approaches

Features\Analysis

Approach

Static Dynamic Hybrid

Time required Low High High

Resource

consumption

Less More More

Effectiveness Less effective More effective than

static

More effective than both

approaches

Merits Low cost, takes less

time, extracts features

easily

Capable of

identifying

unknown malware

Give more accurate

results

Demerits Unable to examine

obfuscated code

It takes more time

and resources

High cost

12

1.5 TECHNIQUES AND TOOLS FOR ANALYSING ANDROID

MALWARE

There exist a variety of techniques and tools for the analysis of malware. Gandotra et al. [26]

have conducted a review based on several techniques and tools used for malware analysis.

They incorporated a comparison of several tools and techniques for analysing malware. This

section explains the numerous techniques and tools which are utilized for the execution of

static and dynamic malware analysis as demonstrated in Figure 1.5.

Figure 1.5: Techniques and tools for analysing Android malware

1.5.1 Techniques and Tools for Static Malware Analysis

For static malware analysis, various techniques and tools are used. The most common are

discussed as follows.

 Permissions- The security system in Android primarily relies on permissions. To

access the user’s personal information (such as SMS and contacts) and specific

features (such as Internet and camera) the mobile apps must request permissions.

These are used to restrict or allow an app access to confined resources and API's.

According to the features, the system might provoke the customer to accept the

request or sometimes it might provide permission automatically. These permissions

are present in the AndroidManifest.xml file. The Android OS defines various

13

permissions which are stated as static string members in the manifest file [31-34].

Table 1.4 demonstrates the few examples of permissions with their description

Table 1.4: Few examples of permissions with their description

Permission Name Description

READ_CONTACTS It permits an app to read the contact of the user's data.

READ_SMS It permits an app to read the SMS of the user's data.

MODIFY_PHONE_STATE It permits an app to modify the data of the phone.

WRITE_SMS It permits an app to write SMS messages.

These permissions are further categorized into four sub-categories that are described as

follows:

 Normal permissions

 Dangerous permissions

 Signature permissions

 Special permissions

Normal permissions- A low hazard permission, which permits apps to access API calls (e.g.

ACCESS_WIFI_STATE, CHANGE_WIFI_STATE) causing no harm to the Android users.

The Android system directly assigns these kinds of permissions without any involvement of

users.

Dangerous permissions- A high hazard permission that permits apps to access injurious API

calls (e.g. CALL_LOG, READ_CONTACTS) causing harm such as stealing confidential

information. These permissions are clearly displayed to the user before an app is installed.

The user must select whether he/she accept or decline the permissions.

Signature permissions-These permissions are provided by the system itself while installing

the app. The system provides it only when the app is signed by the same certificate as the app

defining the permission e.g. BIND_INCALL_SERVICE.

Special permissions- These permissions do not behave like hazardous and normal

permissions e.g. SYSTEM_ALERT_WINDOW, WRITE_SETTINGS etc.

14

 API calls- To interact with the devices, API calls are required. These include

packages, methods and classes to support the developer to create apps. The java

programming language is used to build Android apps, and the java compiler turns the

source code into bytecode. It uses DVM after decompiling java bytecode to get the

information of methods, packages and classes [34, 35]. For e.g. Telephony manager of

OS to fetch user ID and a subscriber ID. Some of the API calls are there in Android

apps are: getBinder, KeySpec, getBinder, Ljava.net.URLDecoder, android.os.Binder,

Ljava.lang.Class.getMethods, ServiceConnection, onserviceConnected,

Ljavax.crypto.spec.SecretKeySpec.

 Intents- Intents are present in Manifest.xml. It is an abstract description of an action

to be carried out [36, 37]. It infers the app’s intentions such as picking a contact. Some

of the examples of intents are SET_WALLPAPER, SCREEN_OFF,

ACTION_SHUTDOWN, CALL_BUTTON, PACKAGE_CHANGED,

NEW_OUTGOING_CALL.

 Command strings- It is considered one of the most significant attributes for the

recognition of malware [38]. These command strings are present in lib, res, assets

folder. Some of the examples of command strings are /system/app, chown, mount,

remount, /system/bin and chmod.

Various tools are used for static malware analysis to decompile the app package and to mine

the attributes from the apk. Tools that are used for static malware analysis are shown in Table

1.5.

15

Table 1.5: Static malware analysis tools

Static Tools Short Description

Apk tool [39]

It permits decoding an app to smali code and also it is

a reverse engineering tool.

Dex2jar[40, 41] It converts the .dex file into the .jar file.

String [26] It finds an executable for the string.

Androguard [42, 43]

It is used for disassembling apps.

JAD [44] It decompiles the .class file into the .jar file.

DED [45]

It is used for decompiling an app.

AXMLPrinter2 [46] It is the library for decompiling manifest files.

Baksmali [47, 48] Dex to smali translator

1.5.2 Techniques and Tools for Dynamic Malware Analysis

For dynamic malware analysis, various techniques and tools are used. The most common are

discussed as follows.

 Cryptographic operation- These operations are accepted by malware to encrypt root

exploits, target premium sms numbers, malicious payload etc. The features which are

used to differentiate many cryptographic behaviors are represented as <action>

<algorithm>. The <action> represents operations like decryption, generation and

encryption whereas <algorithm> represents several cryptographic algorithms [49, 50].

 Dynamic permission- It is one of the significant dynamic attributes to examine the

behavior of apps. These permissions are executed at the runtime environment [49, 50].

 Information leaks- Personal and confidential data has gained lots of attention [49,

50]. Android malware performs malicious activities such as stealing SMS content,

important information associated with banking and social networking, contact

information etc. The collected information is used for keeping track of users and

making profits. These are defined as <source>_<sink>. The <source> represents

operations that gained confidential data and the <sink> represents operations that

leaked confidential data.

16

 System calls- It is a useful feature for mobile device intrusion detection. Android apps

use the kernel's services via system calls [49-51]. The kernel provides apps with useful

services such as operations-related processes, device security and power management

etc. To alter the execution of other apps, this virus commonly uses sigprocmask,

ptrace and getuid.

Various tools are used for dynamic malware analysis to examine the characteristics or

behavior of an app while it is running in the sandbox (virtual environment). Tools that are

used for dynamic malware analysis are shown in Table 1.6.

Table 1.6: Dynamic malware analysis tools

Dynamic Tools Short Description

Cuckoo Sandbox [52]

It is a tool that monitors dangerous files on Android,

window and Linux.

DroidBox [53] It permits the execution of apps and gives information

associated with the behavior of the app.

AppPlayground [54] The dynamic analysis of the app is attempted to be

automated with this tool.

TaintDroid [55] It makes use of taint analysis to trace the data during

the program execution.

The rapid increase in Android malware needs effective approaches or techniques to better

detect malicious apps. Zhou and Jiang [56] demonstrated that Android malware is increasing

continuously and the existing solutions are becoming ineffective. The traditional security

analysis is based on the analysis of security incidents, but it fails to give protection at a proper

time. As a result, users remain unsafe for a longer duration. For these problems, ML is the

best solution. It automatically examines the data, assists in the early identification of threats

and offers decisions on time. Most of the work based on mobile security using ML provides

better results in detecting malware.

17

1.6 MACHINE LEARNING

“ML provides computers the capability to learn without being explicitly programmed [57]”. It

becomes a common field of research in recent years and has been applied to a variety of

fields. Some of the examples of these fields are medical data processing [58], classification of

false news [59] and voice analysis or recognition [60]. Researchers start making use of ML

techniques using static and dynamic malware analysis. Malware analysis is performed in

order to extract attributes and then these attributes are used to train the model for predictions.

1.6.1 Types of Machine Learning

ML is classified into three types: unsupervised learning, supervised learning and

reinforcement learning. Figure 1.6 shows the various categories of ML.

Figure 1.6: Various categories of ML

Supervised learning- It is also called “learn with examples”. Prior knowledge of the

predicted attribute (i.e. class attribute) is required for this learning. This learning is divided

into two categories i.e. classification and regression [57].

18

 Classification- It is the process of distinguishing the instances into different groups.

The output attribute consists of categorical values.

 Binary classification- It classifies the instances of a given set into two groups

for e.g. “malware” or “benign”.

 Multiclass classification- It classifies the instances of a given set into two or

more groups for e.g. “family classification of malware”.

 Regression- The output attribute consists of real values for e.g. “weights” and

“heights”.

Some of the examples of supervised learning are RF, Neural Network (NN), Decision Tree

(DT) and Support Vector Machine (SVM) etc [61, 62].

Unsupervised learning- It is also called “learn without examples”. No prior knowledge of

the predicted attribute is required for this learning. This learning is divided into two categories

i.e. Association and clustering [57].

 Association- It is a market-based analysis problem. It frames the association rule

 between a set of items. For example, if someone buys item A, what is the

probability that B also goes with it. One of the examples of association rule mining is

the Apriori algorithm.

 Clustering- It is defined as the process of arranging data points into groups whose

members are identical in some way. Some of the examples of clustering are

hierarchical, K-means, partitioning clustering etc.

Reinforcement learning- It is a type of dynamic programming that trains the model using a

system of punishment and rewards. It is used to define the best decision which permits the

agent to solve a problem while maximizing a reward. Some of the examples of reinforcement

learning are Q-learning and R-learning [57].

1.7 ANDROID MALWARE DATASETS

This section focuses on the importance of the datasets as well as the datasets available for the

detection of malware. In classification or prediction, the dataset plays an important role while

conducting any experiment. The dataset contains data that allows the model to have a high

level of understanding. Only relevant information in the input dataset can be used to provide

19

better training to the model, resulting in an optimal output. As a result, a dataset is crucial in

the building and testing of the proposed methods.

For the identification and classification of malware, many researchers have proposed various

approaches/methods and assessed these on data. According to the existing research, there are

not enough datasets related to Android malware. As a result, it is necessary to create a dataset

and make it publicly accessible so that researchers may compare their new techniques to

previous ones.

Researchers collect the Android samples from the repositories that provide benign and

malicious samples including Contagio Mini-Dump, Google Play Store, virusshare, EMBER,

Apkpure and Apkmirror as shown in Table 1.7.

 Contagio Mini-Dump- It is the repository from where the users can upload or

download the samples. It comprises 28,760 samples out of which 16,800 are benign

samples and 11,960 are malicious ones.

 Virusshare- It is one of the most well-known websites that comprise 3,48,25,574

samples of both windows and Android malware.

 Google Play Store is one of the most renowned official app stores comprising 3.48

million benign apps.

 EMBER- It comprises of 1million records and carries malware and benign apps.

 Apkpure- It is a website from where the users can download benign samples.

 Apkmirror- It is a website from where the users can download benign samples.

20

Table 1.7: Sources of Android samples

Database Published

year

Total samples Available at

Contagio Mini-Dump 2011 28,760 http://contagiominidump.blogspot.com/

Virusshare 2013 3,48,25,574 https://virusshare.com/

Google Play store 2012 3.48 million https://play.google.com/store

Microsoft malware

classification challenge

2015 20,000 https://arxiv.org/abs/1802.10135

EMBER 2018 1.1million https://arxiv.org/abs/1804.04637

Apkpure 2014 --- https://apkpure.com/

Apkmirror --- --- https://www.apkmirror.com/

--- Not specified

There are only few datasets that are publically available for comparing the techniques or

methods with earlier ones. These are MalGenome, Drebin, CICAndMal2017 and AAGM as

shown in Table 1.8.

 MalGenome- It comprises 3,799 observations out of which 2,539 are benign

observations and 1,260 are malicious observations. Further, these malicious

observations are classified into 49 malicious families. It has 215 attributes in all,

grouped into four categories: permissions, command strings, intents and API calls.

 Drebin- It comprises 15,036 numbers of observations out of which 9,476 are benign

observations and 5,560 are malicious observations. Further, these malicious

observations are classified into 179 malicious families. It has 215 attributes in all,

grouped into four categories: permissions, command strings, intents and API calls.

 CICAndMal2017- It comprises a total of 10,854 numbers of observations out of

which 6,500 are benign and 4,354 are malicious observations. Further, these malicious

observations are classified into 42 malicious families

 AAGM- It comprises a total of 1,900 observations out of which 1,500 are benign and

400 malicious observations. Further, these malicious observations are classified into

12 malicious families.

http://contagiominidump.blogspot.com/
https://virusshare.com/
https://play.google.com/store
https://arxiv.org/abs/1802.10135
https://arxiv.org/abs/1804.04637
https://apkpure.com/
https://www.apkmirror.com/

21

Table 1.8: Publically available Android benchmark datasets

Database Published

year

Malware Benign Malware

families

Attributes Total

instances

Available at

MalGenome 2012 1,260 2,539 49 215 3,799 https://figshare.c

om/articles/datas

et/Android_mal

ware_dataset_for

_machine_learni

ng_1/5854590/1

Drebin 2014 5,560 9,476 179 215 15,036 https://figshare.c

om/articles/datas

et/Android_mal

ware_dataset_for

_machine_learni

ng_2/5854653

CICAndMa

l2017

2017 4,354 6,500 42 --- 10,854 https://www.unb.

ca/cic/datasets/in

dex.html

AAGM 2017 400 1,500 12 --- 1,900 https://www.unb.

ca/cic/datasets/an

droid-

adware.html

--- Not specified

1.8 PERFORMANCE PARAMETERS

The proposed approaches are examined based on different assessment parameters. These are

discussed as follows:

Confusion matrix- It is a table that is frequently used to explain the performance of the

classifier or classification model on the test data. Table 1.9 shows the confusion matrix for the

binary classification problem.

https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_1/5854590/1
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/dataset/Android_malware_dataset_for_machine_learning_2/5854653
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/index.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-adware.html
https://www.unb.ca/cic/datasets/android-adware.html

22

Table 1.9: Confusion matrix for binary classification problem

 Predicted

Malware Benign

Actual

Malware TP (True positive) FN (False Negative)

Benign FP (False positive) TN (True Negative)

TP- Number of examples correctly predicted as the malware class.

TN- Number of examples correctly predicted as the benign class.

FP- Number of examples incorrectly predicted as malware class.

FN- Number of examples incorrectly predicted as benign class.

 Accuracy (%) - It is the ratio of correctly classified apps to the total number of apps.

It is calculated as shown in Equation 1.1.

 (1.1)

 Sensitivity (Sens) - It is also called TP rate or recall. It is the rate of correctly detected

malicious apps to the number of malicious apps. It is calculated as given in Equation

1.2.

 (1.2)

 Positive Predicted Value (PPV) - Precision is another name PPV. It is the ratio of

correctly detected malicious apps to the total number of apps that are detected as

malicious apps. It is calculated as given in Equation 1.3.

 (1.3)

 F-measure - It is the harmonic mean of both recall and precision. It is computed as

given in Equation 1.4.

 (1.4)

 False Positive Rate (FPR) – It is the rate of incorrectly predicted benign

observations. It is computed as given in Equation 1.5.

23

 (1.5)

 Matthews Correlation Coefficient (MCC) - It calculates the quality of binary

classification problems. The value of MCC lies in between – 1 to +1. If the value of

MCC is +1 then it means perfect prediction and if -1 then it means inverse prediction.

It is computed as given in Equation 1.6.

√
 (1.6)

1.9 MOTIVATION

In the modern era, smartphones are becoming more prevalent in our daily lives. A Lot of

users relies on smartphones for a variety of purposes including banking, shopping, gaming,

entertaining etc. There is a variety of Operating Systems in the market including iOS,

Android, BlackBerry and Windows Phone etc. Android is the most popular among these. It

has 85% of market share with more than 3.04 million apps [63]. Till December 2019, the

population of mobile users was 1 billion but throughout the pandemic covid-19 the population

of mobile users is upto 7 billion [64]. The exponential growth in mobile technologies has

made users to use smart devices to take advantage of various services. The increase of

Android apps plays a significant role in the development of the forthcoming economy and

mobile Internet. The increasing use of Android apps has lured the attention of the attackers.

Recently, various threats (such as system damage, information leakage, financial loss) have

been arisen due to explosive growth in mobile technologies. The report of MacAfee shows

that the growth of Android malware is increased by approximately 121 million in the year

2020 [65]. The increase in the number of Android malware has become complex in manually

handling the malware samples. To elude this problem, there is a need to develop an automated

and effective technique to better detect malware. The traditional approaches for detecting

malware are based on the Signature-based method and fails in detecting new malware.

Earlier, the malware was written or designed for simple purposes. Therefore, it was simpler to

identify. This type of malware is known as conventional malware. The advanced malware

being created by attackers has the ability to get executed in kernel mode and is harder to

identify. This type of malware is known as new generation malware. Table 1.10 demonstrates

the comparison of conventional malware and new generation malware.

24

Table 1.10: Comparison of conventional malware and new generation malware

Parameter Traditional New Generation

Level of implementation Simple Coded Hard Coded

Type of attack General Targeted

Targeted devices Computers Many different devices

Challenge Easy Difficult

Use of hiding technique None Yes

Permanency Temporal Persistent

Spreading through .exe extension Uses different extensions

The upcoming malware (new malware) is sophisticated and complex in nature. As a result,

the traditional methods are incapable to detect complicated and sophisticated malware quickly

and accurately. Therefore, there is a need to design techniques for better identification and

classification of malware.

1.10 RESEARCH OBJECTIVES

The research objectives are framed as follows:

1. To propose a model by taking into account an integrated set of static and dynamic

attributes for detection and classification of unknown malware.

2. To propose an approach based on the fusion of ML algorithms using ranking schemes

for improving detection of Android malware.

3. To design and develop an approach for imbalanced classification of malware.

4. To design a rule based model for identifying the risk level of Android app features.

1.11 ORGANIZATION OF THESIS

The research work comprises seven chapters. Chapter 1 demonstrates the importance of

Android OS, its architecture, different versions, its evolution and methods for examining

Android malware. Different tools and techniques for analysing Android malware, details of

Android malware datasets and all evaluation parameters used for validation are discussed in

this chapter.

25

Chapter 2 discusses the detailed literature survey of the state-of-the-art methods used for

Android malware detection, Classification and Threat measurement. This chapter also

presents the inferences drawn from the literature review.

Chapter 3 presents an integrated approach that can effectively analyze, detect and classify the

malware. The dataset is created using static and dynamic malware analysis for both binary

(named as Dataset-1) and multiclass classification (named as Dataset-2) dataset and made it

publically accessible on kaggle and GitHub. Various ML algorithms are trained using static,

dynamic and integrated attributes. The results demonstrate that the integrated approach

performs better as compared to single approaches.

Chapter 4 presents an approach (MalDetect) for enhancing the detection results of Android

apps. It is designed using the fusion of traditional ML algorithms on the basis of proposed

ranking schemes. The ranking schemes are then used to generate various combination

schemes, from which the best combination is chosen to construct the final model. The results

indicate that MalDetect is more effective than ensemble learning techniques and traditional

classifiers.

Chapter 5 presents an approach (CSForest) for the imbalanced family categorization of

malware. The proposed technique results are compared with C4.5, CSTree and RF to see how

good it is at categorizing malicious apps families. The findings suggest that the proposed

approach is effective in determining malicious app families.

Chapter 6 describes a rule-based model to assign the risk levels (No, Low, Medium and

High) to Android app features. The static features (permissions and API calls) in the data are

examined statistically to come up with a hypothesis for identifying their risk factor. In order

to test the hypothesis, ANOVA has been used. The results indicate that the mean values of

different risk factors differ significantly. Afterward, a weight is assigned to the features under

each category to compute the threat score of a particular app.

Chapter 7 presents the contributions of the research work carried out and concludes the

study. It also highlights the scope of future work related to Android malware detection,

classification and threat assessment.

26

CHAPTER 2

LITERATURE REVIEW

As discussed in chapter 1, the increasing demand for Android phones attracted many

organizations to build various apps such as gaming, education, business, entertainment,

banking, lifestyles etc. The increasing use of Android apps also lured attackers to build

malicious apps that pose several threats such as financial loss, information leakage etc.

Nowadays, cybercriminals are creating more innovative, complex, advanced and new

varieties of malware due to which the detection, classification and threat assessment of

malware is turning out to be a real-life challenge. In this chapter, a primary focus is given to

all state-of-the-art approaches for identification, classification and threat assessment of

Android malware.

2.1 RELATED RESEARCH WORK

The literature review conducted in context to malware detection, classification and threat

assessment can be divided into two parts: Signature based and ML based methods.

2.1.1 Signature-based Method

Lots of research has been conducted in the area of detection, classification and threat

measurement of Android malware. In the mid-1990s, signature-based approach for malware

detection was developed. This approach extracts the malicious file patterns by matching the

signatures of malicious apps present in the database. This technique is very efficient and

reliable for identifying the known malware [67-76]. Figure 2.1 shows the traditional

signature-based approach for malware identification. The work related to the signature-based

approach for detection, classification and threat assessment of Android malware is described

as follows:

27

Figure 2.1: Process of signature-based approach for identification of Android malware

Venugopal and Hu [77] have proposed a mobile malware identification approach that needs

less memory to scan the mobile devices. Furthermore, the authors compared their proposed

technique with the renowned Clam-AV scanner. The findings illustrated that their approach

takes 50% less memory than Clam-AV and provides a fast scanning rate. Faruki et al. [78]

have introduced a method (AndroSimilar) that creates a signature by mining statistically

unlikely attributes to identify malware apps. This method is very effective against repacking

and code obfuscation mostly used to avoid AV signatures and to disseminate hidden variants

of familiar malware. It is a mechanism that discovers areas of statistical similarity with

familiar malware to identify those unknown samples. The results suggested that the

AndroSimilar approach is very efficient and robust in comparison to fuzzy hashing

approaches.

Zheng et al. [79] have presented a technique i.e. DroidAnalytics which is based on a

signature-based approach that automatically collects, examines and analyses the mobile

malware. The experimental findings demonstrated that DroidAnalytics is much more effective

in examining the malware mutations and repacking and also it is a very efficient tool.

Ngamwitroj and Limthanmaphon [80] have introduced a signature-based Android malware

identification approach using broadcast-receiver data and permission from the manifest file.

The evaluation findings showed that the accuracy acquired by the approach to detect malware

app was 86.56%.

28

Feng et al. [81] have suggested a novel approach (Apposcopy) to determine malware. The

signature matching technique of Apposcopy uses an Inter-Component Call (ICC) Graph and

integration of static taint analysis to effectively determine apps that have properties like

control and data flow. The findings indicated that it is very efficient and reliable approach for

determining malware families. Tchakounte et al. [82] have proposed a system named as

LimonDroid, a desktop security tool that contains various schemes. The proposed approach

was tested on 300 benign and 341 malware apps on a database of 62 YARA malicious

families patterns, 12,925 fuzzy hashed malware signatures and VirusTotal engine. The results

demonstrated that the suggested approach is more effective for users and provides detection

accuracy of 97.82%.

The major constraint of this technique is that it is incapable of detecting new malware (Zero-

day). To overwhelm this constraint, the researchers used ML algorithms to develop several

detection techniques (such as static and dynamic analysis). This method makes use of

attributes mined after performing static and dynamic analysis of malware. The extracted

attributes are used to train the model for making predictions.

2.1.2 Machine Learning Method

This method makes use of attributes mined after performing static or dynamic analysis of

malware. The extracted features are used to train the ML models for making predictions

pertaining to Android apps. The research work related to ML methods for malware detection,

classification and threat assessment using static and dynamic features are described as

follows:

2.1.2.1 Using Static Features

It is considered as one of the methods for the identification and classification of malware. It

examines the sample of malware without executing or running the code. It uses decompiling

methods to decompile the app package and mine the attributes for the detection of malware

[83-114]. The following research work related to static malware analysis is addressed as

follows:

Li et al. [115] have presented an approach (named Significant Permission Identification

(SigPID) that uses permissions as features to determine malware. They mined the permission

29

data to determine the important permissions that can efficiently characterize the apps as

malicious or benign. The authors compared their results with the existing state of the art

approaches. The results showed that SigPID is more efficient in detecting malware and the

accuracy obtained by unknown malware was 91.4%. Zhu et al. [116] have proposed a

technique (named as DroidDet) to mine APIs, permissions, permission rate and examine

system events as a key feature. They applied ensemble rotation forest to develop a model for

figuring out whether an app is infected with malware. The experimental outcomes suggested

that the proposed technique obtained high accuracy i.e. 88.26% as compared to other existing

approaches.

Kim et al. [117] have presented a framework to determine malware. The authors extract

several types of features and these are refined using similarity-based or existence based

feature extraction approach. Moreover, the authors also proposed a multimodal Deep

Learning (DL) model to determine the app. The accuracy of the proposed model is compared

with other deep neural network techniques. Feizollah et al. [118] have examined the

efficiency of Android intents and permissions as a characterizing feature for determining the

malware apps. The experiment was conducted using 7,406 apps out of which 1,846 apps are

benign and 5,560 are malicious apps. The results indicated that the integration of both

attributes results in a high identification rate i.e. 95.5% in comparison to individual features.

Wang et al. [119] has thoroughly investigated the permission risk in Android apps. They

examine the risk of an individual and group of permissions. They then applied three distinct

feature ranking algorithms such as T-test, mutual information and correlation coefficient to

rank the permissions according to the risk factor. To determine the subsets of risky

permissions they used Principal Component Analysis (PCA) as well as sequential forward

selection. In the end, for the detection of malicious apps they compared their technique with

conventional techniques such as RF, DT and SVM. The findings demonstrated that the

detection accuracy attained by the proposed approach was 94.62% with a 0.6% FP rate.

Alazab [120] has introduced a system for classifying Android apps using a real dataset

premised on static analysis. The authors examined two attribute selection methods i.e.

ANOVA and Chi-Square in combination with ten ML classifiers. They then evaluated the

detection accuracy of each classifier to determine the best one for detecting malware using

distinct attribute sets. It was found that Chi-Square had higher detection accuracy than

30

ANOVA. The proposed system achieved 98.1% detection accuracy and took 1.22 seconds to

classify.

Arora et al. [121] have introduced PermPair, a novel detection model that builds and

compares graphs for normal and malware by mining permission pairs from an application's

manifest file. The authors when compared their proposed approach to other similar

approaches and anti-malware apps, the outcomes revealed that the proposed approach is

effective in identifying malware with an accuracy of 95.44%. Agrawal and Trivedi [122] have

analyzed different malware identification techniques with different ML classifiers. The

findings suggested that RF performed better than other ML classifiers.

Sahin et al. [123] have designed ML based system to distinguish malware from goodware

apps. The proposed system aimed to eliminate unnecessary attributes by using linear

regression based features selection method. The author employed seven ML classifiers such

as Multilayer Perceptron (MLP), Sequential Minimal Optimization (SMO), Naive Bayes

(NB), RF, C4.5, Logistic Regression (LR) and K-Nearest Neighbors (KNN) to identify

malware. The findings demonstrated that the F-measure acquired by the proposed method was

0.961. Further, the authors claimed that this system is effective for detecting real time apps.

Bai et al. [124] have suggested a system that could detect malware as well as classify it into

families. The authors used permissions and opcode sequences as features that are acquired

from Manifest.xml and classes.dex file. A fast correlation based filter algorithm was used for

dimensionality reduction. The authors employed CatBoost classifier for classification

purpose. The findings indicated that the accuracies achieved by both binary and family

classification was 0.974 and 0.9738 respectively.

Yuan et al. [125] have proposed an algorithm for both identification and family classification

of malware. The authors proposed Time Frequency-Inverse Document Frequency (TF-IDF)

algorithm based on static permissions. This algorithm is used to compute the permission value

of every permission and sensitivity value of apk of the app. After that, the authors used

various classification algorithms such as Random Tree, NB, K-NN, C4.5, RF and Bayesian

Network. The proposed approach was evaluated on 9,419 malware apps and 6,070 benign

apps. The results demonstrated that the accuracy achieved in the case of malware detection

was 99.5% whereas the accuracy achieved in the case of family classification was 99.6%.

Sangal and Verna [126] have introduced an approach based on attributes to identify malware.

31

The authors worked on the ClclnvesAndMal2019 dataset and used intent and permissions as a

feature set for detection. They used principal component analysis as a features selection

technique. The well-known ML classifiers are employed to identify malware. The findings

suggested that RF performed better with an accuracy of 96.05%.

Yerima et al. [127] have investigated an approach that was premised on parallel ML

classifiers to detect malware. The authors first carried out the experiments with individual

base classifiers such as Simple Logistic (SL), RIDOR, Partial Decision Tree (PART), NB and

DT. Then, they carried out the experiments by combining different classifiers based on

average of probabilities, maximum probabilities, majority voting and product of probabilities.

The experimental consequences demonstrated that the product of probabilities performs better

for identifying malware. Coronado-De-Alba et al. [128] have presented a meta-ensemble

approach premised on static malware analysis to detect Android malware. Moreover, they

introduced a comparative analysis of different Ensemble Learning methods to identify the

best combination of classifiers premised on the evaluation of classification results.

Yerima and Sezer [129] have presented an approach named as DroidFusion. The fusion of

classifiers was premised on different ranking combination schemes. They presented the

experimental outcomes on four different datasets to show the effectiveness of the proposed

model. The authors then compared the usefulness of the DroidFusion with the stacking

ensemble method. The findings suggested that the DroidFusion was much more effective than

the stacking technique to identify malware. Idrees et al. [130] have introduced a Plndroid that

was premised on intents and permissions for the detection of Android apps. It makes use of a

combination of intents and permissions with the ensemble approach for correctly classifying

malware. The experiment was carried out on 1,745 apps to detect malware. The proposed

framework provided 99.8% detection accuracy and also showed the effectiveness of the

proposed framework.

Milosevic et al. [131] have introduced two approaches premised on permissions and code

analysis using a bag-of-words demonstration model with ML The author employed C4.5,

Random tree, SVM, JRip, RF and linear regression ML classifiers. The experimental findings

suggested that the F-score acquired by both approaches were 89% and 95.1% for the

permission based and source code based models. Wang et al. [132] have introduced an

efficient and effective approach to managing the market to identify benign and malicious

32

apps. The authors mined 11 different types of static attributes to describe the behaviors of the

apps. They applied an ensemble of classifiers such as K-NN, Classification and Regression

Tree (CART), NB, RF and SVM to identify the malicious apps. The proposed approach was

tested on a dataset that contain 8,701 malicious apps and 1,07,327 benign apps. The outcomes

illustrated that their model obtained better accuracy i.e. 99.39% for detecting malicious apps

and obtained the accuracy of 82.93% in classifying benign apps.

Wang et al. [133] have proposed a novel method (i.e. Mlifdect) that used parallel ML and

fusion techniques to better detect Android malware. The authors mined eight distinct types of

static features. Then, they build a parallel ML identification model for spreading up the

classification process. Furthermore, they investigated the probability analysis premised on

Dempster-Shafer theory based fusion methods which obtained better detection results. The

findings suggested that the Milfdect is much more capable of acquiring a higher detection rate

than other solutions for detecting malware. Dehkordy and Rasoolzadegan [134] have applied

Synthetic Minority Oversampling Technique (SMOTE), undersampling technique and their

combination to balance the data. Then, the authors applied Iterative Dichotomiser3 (ID3),

SVM and K-NN were used to identify Android malware. The findings indicated that the

performance of K-NN with SMOTE was better than other classifiers. The accuracy obtained

by K-NN with SMOTE was 99.49%.

Shrivastava and Kumar [135] suggested a framework named as SensDroid that assessed the

performance of Android permissions and intents as a distinguishing trait to spot malware apps

through sensitive analysis methods. The outcomes illustrated that the proposed approach was

effective in distinguishing the clean and the infected apps. The accuracy acquired by the

proposed framework was 98.65%. Wang et al. [136] have suggested a framework named as

DroidRisk for quantitative security risk evaluation of Android apps based on permissions. The

authors evaluated their framework on 27,274 benign and 1,260 malicious apps. The findings

illustrated that the proposed approach is more reliable in providing the risk signal.

For malware detection, Onwuzurike et al. [137] developed MAMADROID, a static malware

analysis system. Malware detection relies on static features like API calls and call graphs. The

results were tested on 3.5 million malicious and 8.5 million benign apps. The proposed

method yielded an F-measure of 0.99. Ye et al. [138] have introduced a method that

calculates the risk of an app. The authors created and deployed a fuzzy logic system to

33

calculate the total risk. They suggested a risk classification-based method for malware

detection based on the quantitative estimation model. The experiments showed that the RF

algorithm achieved high accuracy i.e. 93.2% with a low FP rate.

Xu et al. [139] have presented a new technique i.e. Fuzzy-SMOTE which was based on

SMOTE and fuzzy set theory. The results showed that Fuzzy-SMOTE achieved the highest

accuracy when compared to Borderline-SMOTE. Table 2.1 shows the comparative study of

detection, classification and threat measurement of malware using static features.

Table 2.1: Comparative study for detection, classification and threat measurement of Android malware using

static features

Authors Features Data Source Technique

used

Results

 Malicious Benign

Li et al. [115] Permissions Google Play

and Anzhi

store

5,494 3,10,926 Proposed

SigPID and

compared

with Random

Committee,

Rotation

Forest,

Functional

Tree (FT),

PART, RF,

SVM

SigPID is

more

efficient by

identifying

93.63% of

malware and

91.4% of

new

malware.

Zhu et al.

[116]

API calls

and

Permissions

Official app

store and

virusshare

1,065 1,065 Ensemble

Rotation

Forest

Accuracy

obtained by

proposed

approach

was 88.26%

Kim et al.

[117]

String,

Permission,

Shared

library

function

opcode, API

calls and

Method

VirusShare,

Google Play

Store and

Malgenome

Project

13,075 19,747 Multimodal

Neural

Network

Accuracy

acquired by

proposed

approach

was 98%.

34

opcode

Feizollah et al.

[118]

Permissions

and Intents

Google Play

store and

Drebin

5,560 1,846 Perform

analysis of

features

Combination

of attributes

results in

better

detection i.e.

95.5%.

Wang et al.

[119]

Permissions Google Play

store and

Mal-com 1

and Mal-com

2 from

antivirus

companies

29,216 3,15,794 Mutual

Information,

correlation

coefficient

and t-test in

combination

with SVM,

DT and RF

The

detection rate

of proposed

approach

was 94.62%

with a 0.6%

FP rate.

Alazab [120] API calls Play store,

Androzoo,

Contagion

mobile,

Malshare

17,915 19,000 Chi-square

and ANOVA

in

combination

with ten ML

algorithm

The

detection rate

of proposed

approach

was 98.1%.

Arora et al.

[121]

Permissions Genome,

Koodous,

Drebin and

Google Play

Store

6,208 5,993 PermPair to

detect

Android

malware

The

detection rate

of proposed

approach

was 95.44%.

Sahin et al.

[123]

Permissions APKPure,

Android

malware

dataset

1,000 1,000 Linear

regression

with seven

different ML

algorithms

F-measure

obtained by

the proposed

method was

0.961.

Bai et al. [124] Dalvik

opcode

sequences

and

Permissions

Third-party

markets and

open source

dataset

Fast Android

Malware

Detector

(FAMD) with

CatBoost

Accuracy

achieved by

both binary

and family

classification

dataset was

0.974 and

35

0.9738

respectively

Coronado-de-

Alba et al.

[128]

Permissions,

hardware

components

and intents

Drebin

project,

Third party

stores and

Google play

store

1,531 1,531 Random

Committee

and RF and

Meta-

ensembling

RF in Random

Committee

Accuracy

obtained by

the proposed

model was

97.56%.

Yerima and

Sezer [129]

API calls,

command

strings,

intents and

permissions

Drebin,

MCAFEE-

350,

Malgenome,

and

MCAFEE-

100

D1: 5,560

D2: 13,805

D3: 1,260

D4: 13,805

D1: 9,476

D2: 22,378

D3: 2,539

D4: 22,378

Random Tree,

REPTree, RF,

AdaBoost and

J48 and uses

multiranking

algorithm

The

proposed

approach

was far much

effective in

combining

different

classifiers

Wang et al.

[133]

Permissions,

intents,

hardware

Features and

API calls

Anzhi 8,701 1,07,327 SVM, RF NB,

CART and

KNN and uses

majority

voting

Accuracy

achieved by

proposed

approach

was 95.39%.

Idrees et al.

[130]

Permissions

and intents

Google

Playstore ,

Genome

Contagio

dump,

VirusShare,

Virus Total

and

MalShare

1,300 445

MLP, DT and

Decision

Table and uses

Product of

probabilities,

Average of

probabilities

and majority

vote

Accuracy

obtained by

the proposed

approach

was 99.8%.

Milosevic et

al. [131]

Permissions M0Droid 200 200 SVM, C4.5,

JRip, LR,

Random Tree,

RF and DT

and uses

majority vote

Accuracy

obtained by

the best

fusion model

was 95.6%.

36

Shrivastava

and Kumar

[135]

Permissions

and intents

Google Play

Store and

Drebin

5,680

2,973

SensDroid to

detect the apps

based on the

risk of

features

Accuracy

obtained by

SensDroid

was 98.65%.

Dehkordy and

Rasoolzadegan

[134]

Intents,

permissions,

Hardware

component

and API

calls

Third party

apps, Drebin

and AMD

dataset

2,723

6,500

K-NN with a

combination

of SMOTE+

random

undersampling

K-NN with a

combination

of SMOTE+

random

undersampli-

ng

Provides

better

detection

accuracy

with 98.69%.

Wang et al.

[136]

Permissions Google Play

store and

Genome

Project

1,260

27,274

DroidRisk for

quantitative

security risk

evaluation

DroidRisk

produced a

reliable risk

signal.

Xu et al. [139]

Permissions

Google play

store and

DroidDream

D1: 560

D2: 343

D3: 199

D4: 120

D5: 100

D6: 80

D7: 54

D8: 44

D9: 268

D10: 396

D1: 1,017

D2: 1,017

D3: 1,017

D4: 1,017

D5: 1,017

D6: 1,017

D7: 1,017

D8: 1,017

D9: 500

D10: 1,528

Fuzzy-

SMOTE

Fuzzy–

SMOTE

achieves

higher

accuracy.

--- Not specified

This method has some limitations that it is ineffective to examine the code obfuscation and

morphed malware [140, 141] though it is quicker in determining malware. To overwhelm the

hindrances of the static method, the dynamic method is used. It can track the characteristic of

the app and precisely determine the unknown malware.

37

2.1.2.2 Using Dynamic Features

It examines the characteristics or behavior of an app while it is running in the virtual

environment. It is more effective as it keeps on tracking the behavior of the apps at the time of

execution [142-160]. Some research works related to dynamic malware analysis are the

following:

Feng et al. [50] have proposed an efficient dynamic framework named as EnDroid to

determine highly accurate malware based upon dynamic behavior features. They employed a

feature selection technique to eradicate irrelevant and noisy features and extract important

features. Furthermore, EnDroid employed a stacking ensemble method to characterize the

malicious app from benign apps. The experimental outcomes demonstrated that stacking

obtained better performance rate and provided a promising solution for the detection of

malware. Mahindru and Sangal [154] have presented a framework named as ML-Droid that

identified the malware from mobile devices. This framework used dynamic analysis to

identify mobile malware. Furthermore, various ML methods are employed using dynamic

features to aid in the construction of a model. The experiment was carried out on a total of

5,00,000 Android apps. The results indicated that the accuracy attained by the proposed was

98.8%.

Cai et al. [161] have proposed a dynamic classification approach (named as DroidCat) to

enhance the existing technique. The authors used a distinct set of dynamic features in

accordance with ICC intents and method calls. Furthermore, the results illustrated that the

DroidCat obtained high accuracy i.e. 97% in comparison to the state of the art methods to

detect or distinguish malicious apps. Das et al. [162] have proposed a hardware architecture

called GuardOL to carry out online malware detection. They built a multilayer perceptron in

Field Programmable Gate Arrays (FPGA) to train classifiers using these dynamic features.

The findings illustrated that the approach used less power consumption and provided a faster

detection rate.

Enck et al. [55] have addressed an approach named as TaintDroid, an effective dynamic taint

analysis system that continuously tracks sensitive data from different sources. The findings

intimated that TaintDroid offered valuable input for mobile users and safety service firms

seeking to determine the misbehaving apps. Chen et al. [163] have presented an architecture

38

that utilizes model based semi-supervised classification technique based on dynamic API

calls. Authors compared their methods with well-known classifiers like SVM, Linear

Discriminant Analysis (LDA) and K-NN. The finding suggested that the proposed

architecture obtained 98% detection accuracy which is higher than the other approaches.

Zheng et al. [164] have designed a system (“DroidTrace”) based on dynamic analysis which

permits analysts to carry out a systematic study of dynamic payloads with malware apps. It

carried out forward implementation to trigger diverse dynamic loading performance. The

authors showed their experiment on 50,000 benign apps and 294 malicious apps with ten

families. Afonso et al. [165] have presented a framework to dynamically detect whether an

app is malware or benign. The proposed framework was evaluated on 7,520 apps out of which

3,780 apps were used for training and the rest 3,740 apps were used for testing. The detection

accuracy of the proposed framework was 96.66%.

Mahindru and Singh [166] have suggested a detection system based on dynamic permissions.

The authors applied different ML classification algorithms such as RF, k-star, J48, SL and NB

to detect malicious apps. The experimental results suggested that among all classification

algorithms SL performed better. For dealing with imbalanced malware datasets, Oak et al.

[167] employed a paradigm called Bidirectional Representations for Transformers (BERT).

There are 1,80,000 apps in their dataset, with two-thirds of them being malicious. In spite of

an extremely unbalanced dataset, BERT was able to detect malicious code with acceptable

accuracy. The BERT model had an F1-score of 0.919.

Pang et al. [168] have suggested a novel method i.e. AWGSENN to address the problem of

imbalanced classes. This method uses the Gaussian distribution probability density function to

generate new instances. The results demonstrated that the proposed technique is effective than

other resampling techniques. Table 2.2 illustrates the comparative study for detection and

classification and threat measurement of malware using dynamic features.

39

Table 2.2: Comparative study for detection, classification and threat measurement of Android malware using

dynamic features

Authors Features Data Source Technique

used

Results

 Malicious Benign

Feng et al.

[50]

System calls,

Cryptographic

operation and

Network

Operation

Google Play

Store,

AndroZoo and

Drebin

D1:5,213

D2:5,000

D1:8,806

D2:5,000

Stacking

ensemble

technique

Accuracy

and F-

measure

obtained by

stacking

ensemble

technique

was

96.49% and

95.21%

respectively

Mahindru

and

Sangal

[154]

Permissions

and API calls

Google Play

Store, Virus

Total, hiapk,

AndroMalShare

slidme

ML-Droid to

identify

malware from

the device

Accuracy

acquired by

the proposed

framework

was 98.8 %

Cai et al.

[161]

ICC Intents

and Method

calls

Google Play

Store and

MalGenome

D1:3,450

D2:3,190

D3:9,084

D4:1,254

D1:5,346

D2:6,545

D3:5,035

D4:439

DroidCat a

dynamic

classification

technique

Accuracy

obtained by

DroidCat was

97%

Das et al.

[162]

System calls VX Heaven and

Virusshare

472 371 Build

Multilayer

Perceptron in

FPGA

Provides high

accuracy for

detecting

new

malware.

Chen et

al. [163]

Dynamic API

calls

Google Play

and VirusTotal

31,777 24,217 Model Based

Semi

Supervised

(MBSS)

classification

technique

Accuracy

acquired by

proposed

approach was

98%.

Afonso et

al. [165]

system call

traces and API

function calls

Malgenome

Project,

VirusShare and

4,552 2,968 Proposed a

technique for

dynamically

Accuracy

acquired by

proposed

40

AndroidPIT

market

identifying

malware

approach was

96.66%.

Oak et al.

[167]

Permissions

and sequence

of dynamic

activities

Palo Alto

Networks

1,20,780

60,390

BERT in

order to deal

with

imbalanced

dataset

F-score

attained by

BERT based

model was

0.919.

Pang et al.

[168]

Network

traffic

VirusShare and

360zhushou

3,136

753

Proposed

AWGSENN

a resampling

method for

imbalance

class problem

AWGSENN

shows

remarkable

performance

over the other

seven

resampling

methods.

--- Not specified

The major constraint of this method is that it could not explore all execution paths.

Sometimes, malware can detect that it is being carried out in the virtual environment then it

will not show its characteristics. Due to executing stalling and obfuscation, Gandotra et al.

[26] have concluded that individual static or dynamic methods are not suited for correctly

classifying the malware. The researchers have therefore begun to use a hybrid approach to

overcome this challenge.

2.1.2.3 Using Hybrid Features

It is an amalgamation of static and dynamic approaches. It takes advantage of the static and

dynamic approaches [169-174].

Alzaylaee et al. [175] have proposed a DL approach (named as DL-Droid) using hybrid

features to detect malicious apps. The experiment was conducted over 30,000 apps on real

devices. The experimental outcomes showed that detection accuracy obtained by integrating

both static and dynamic features is 99.6%, which is 1.8% higher than the accuracy obtained

by the dynamic approach. Yuan et al. [176] have presented an online method i.e.

DroidDetector based DL to detect whether an app is benign or malicious. The authors

compared their proposed method with state of the art methods. The findings suggested that

41

their method is more effective in characterizing malware in comparison to other methods. The

detection accuracy obtained by the proposed method was 96.76%.

Tong and Yan [177] have introduced an integrated approach for the identification of mobile

malware by considering both dynamic and static analysis. The author constructed the pattern

of both malicious and benign sets by matching the pattern of both malware and benign app

with one another. The findings of test set results suggested that their approach attained a

better identification rate than other approaches. Martin et al. [49] have introduced

OmniDroid, a massive dataset in which features are mined using dynamic and static methods.

The authors introduced this to assist researchers and AV creators in building a new technique

for identifying mobile malware. They proposed a detection method based upon both dynamic

and static features using a combination of classifiers. The experimental findings showed the

potential usability and feasibility of their framework.

Blasing et al. [178] have introduced an Android Application Sandbox (AASandbox) which

make use of both static and dynamic approach to automatically identify the malicious file.

Authors deployed both detection techniques and sandbox in the cloud for providing a fast

detection rate. Further, the proposed method is much more effective in detecting mobile

malware. Fu et al. [179] have presented an approach to detect mobile malware through static

and dynamic attributes. The authors build and train Long Short Term Memory (LSTM) based

model and then used a generative adversarial network to create augmented instances that

mimic the behavior of newly emerged malware. The experimental results indicated that the

classification accuracy attained by the proposed approach was 99.94% and the accuracy

achieved by samples of newly emerged malware was 86.5%.

Qaisar and Li [180] have presented a multimodal analysis of malicious apps. The authors

exploited dynamic, static and visual features of apps to detect the malware apps using

information fusion. Their approach used semi-supervised technique to detect and classify

malware. The findings suggested that their approach obtained 95% accuracy which was better

than other traditional approaches. Kabakus and Dogru [181] have proposed a hybrid malware

analysis technique named mad4a. This technique takes advantage of both dynamic and static

methods. The importance of this approach is to reveal the unknown behavior of Android

malware.

42

Abawajy and Kelarev [182] have introduced a system named as Iterative Classifier Fusion

System (ICFS). The authors carried out the empirical study to identify the best option to be

applied to ICFS and then compared the effectiveness of the proposed technique with existing

ML classifiers. The consequences demonstrated that ICFS provided better results using a

combination of NB, MLP, Lib SVM with polynomial kernel and applied Iterative Feature

Selection (IFS) premised on wrapper subset with Particle Swarm Optimization (PSO). Gupta

and Rani [183] have presented two approaches premised on ensemble learning and big data to

enhance malware detection accuracy. The first approach is premised on the weighted voting

scheme of ensemble learning, and the next approach selects an optimum set of ML classifiers

for stacking purposes. The proposed technique was conducted using Apache Spark and the

performance is evaluated and tested on a large dataset containing 1,98,350 files out of which

98,150 benign and 1,00,200 malware apps. The findings illustrated the effectiveness and

better generalization of the proposed technique in identifying malware.

Sharma and Gupta [184] proposed the RNPDroid technique for risk mitigation using

permissions. The proposed technique was evaluated on the M0Droid dataset which consists of

400 Android apps. The authors applied ANOVA test to check whether the null hypothesis

was accepted or rejected. The experimental results demonstrated that the computed value of F

i.e. 517.3 was significantly greater than the tabulated value of F is 2.61 at level of significance

5%. Table 2.3 illustrates the comparative study for detection and classification and threat

measurement of malware using integrated features.

Table 2.3: Comparative study for detection, classification and threat measurement of Android malware using

integrated features

Authors Features Data Source Technique

used

Results

 Malicious Benign

Alzaylaee

et al.

[175]

Permissions,

application

attributes and

actions/events

Intel Security

(McAfee

Labs).

11,505 19,620 DL-Droid for

Android

malware

detection

Detection

accuracy of

proposed

technique was

99.6%.

Yuan et

al. [176]

Permissions and

sensitive API

Google Play

Store,

Genome

1,760 20,000 Droid-

Detector for

Android

Detection

accuracy

achieved by

43

Project and

Contagio

Community

malware

detection

Droid-

Detector was

99.6%.

Tong and

Yan [177]

System calls

related to

network and file

access

Malgenome

D1: 147

D2: 195

D3: 195

D4: 195

D1: 126

D2: 187

D3: 195

D4: 195

Proposed a

hybrid

approach for

malware

detection

Proposed

approach

showed the

feasibility and

potential

usability for

malware

detection

Martin et

al. [49]

Permissions,

services, system

calls, receivers,

activities,

Opcodes,

FlowDroid and

API calls

AndroZoo

and Koodous

21,018

11,973

AndroPyTool

that

automatically

perform static

and dynamic

analysis of

Android apps

Fusion of

features

performed

well

Fu et al.

[179]

Permissions,

receivers action

and system call

Apkpure,

Android wake

lock research

project and

Virusshare

3,090 3,090 LSTM based

model for

detection of

malware

Accuracy

obtained by

the proposed

model was

99.94%

Kabakus

and Dogru

[181]

Permissions and

network traffic

Play store,

Drebin,

ASHISHB

malware,

Genome

project and

Contagio

Mobile

2,999 2,809 Mad4a for

analysing the

characteristic

of malware

This approach

was more

effective in

detecting

unknown

characteristic

of malware

Sharma

and Gupta

[184]

Permissions

m0droid

dataset

200 200 RNPDroid to

detect the apps

based on the

risk factor of

features

Accuracy

obtained by

RNPDroid

was 97.48%.

44

From here, it is concluded that a single approach is not capable of detecting malware more

precisely. Thus to enhance the accuracy, the hybrid approach is being used which is the

integration of both approaches. Through a comprehensive literature review, we are able to

discover research gaps for this work.

2.2 INFERENCES DRAWN FROM LITERATURE REVIEW

The review of the literature shows that a significant research has been carried out in context to

Android malware. However, there are many areas which are unexplored and need immediate

attention. Following inferences are drawn from the elaborative literature review.

1. Most of the existing research relies on either static or dynamic malware features for

building ML models to detect and classify malware [11, 12, 115, 118].

2. As there is a huge difference between the rate of infection and actual detection of

malware, there is a scope of improvement in designing the methods for their better

detection and classification [6, 11, 12].

3. In a real-world scenario, the number of samples differs greatly among various

malware families. Thus, there is a need to build malware classification models which

can take care of imbalanced classes [113, 115, 119].

4. There is a lack of adequate research on analyzing the threat or risk posed by Android

apps [11, 12, 135].

5. With the increasing use of mobile apps, the volume and variety of mobile malware

have increased significantly which requires the development of algorithms for

malware detection and classification using big data tools [6, 11, 12].

Based on these inferences, the research objectives are framed as discussed in chapter 1.

2.3 SUMMARY

This chapter discusses the literature review conducted in context to malware detection,

classification and threat assessment. The inferences are drawn from the elaborative literature

review. Based on the inferences, the research objectives are framed. In the next chapters, the

effective techniques are built to deal with these problems.

45

CHAPTER 3

PROPOSED INTEGRATED APPROACH FOR DETECTION

AND CLASSIFICATION OF UNKNOWN MALWARE

As discussed in the previous chapters, the traditional defenses like AV and Intrusion

Detection System (IDS)/Intrusion Prevention System (IPS) rely on signature-based methods

and are therefore unable to identify zero-day malware. In order to address this problem, static

and dynamic malware analysis is being used along with ML algorithms for malware

detection. Single approach either static or dynamic is not able to accurately detect and classify

the malicious apps because of obfuscation and execution-stalling techniques being used by

attackers.

This chapter proposes an integrated set of static and dynamic attributes that can effectively

analyze, detect and classify unknown malware. The detection refers to binary classification

which comprises of two categories i.e. “benign” and “malware”. The multi-class classification

is referred to as the family classification. Here, a malware family for Android refers to a

collection of malware programs that exhibit similar characteristics and share a common set of

source codes.

3.1 PROPOSED METHODOLOGY

The workflow of the proposed model used for the detection and classification of unknown

malware is discussed in this section. This process comprises three phases: (1) data gathering,

(2) data preparation and (3) identification and classification of families. Data is gathered from

various sources like apkmirror [185], apkpure [186] and virusshare [187] in the initial step.

The duplicate apps are removed using the Message-Digest (MD5) hash algorithm in the

second phase, and then these apps are scanned with Avira AV [188] tool. After that, the static

and dynamic analysis approaches are used to mine the attributes from Android apps. A self-

developed python script is used to extract static features, which makes use of various

automated tools like strings [26], Baksmali Disassembler [47, 48] and AXMLPrinter2 [46].

The attributes such as intents, API calls, command strings and permissions are mined through

46

a static approach. CuckooDroid [52] is used to extract dynamic features. Features including

dynamic permissions, information leakage cryptographic operation and system calls are

mined through dynamic malware analysis. In order to remove the redundant and irrelevant

attributes, an Information Gain (IG) feature ranking algorithm [189] is used. Several ML

classifiers like K-NN, DT, PART, SVM, RF and NB are applied to detect and classify the

apps. Figure 3.1 illustrates the workflow of the proposed approach used for the identification

and classification of unknown malware. The detail description of different steps is given

below.

Figure 3.1: Workflow of the methodology used for detection and classification of unknown malware

3.1.1 Data Collection

Data gathering is the first step in the proposed methodology. Android apps are gathered from

various sources including apkmirror, virusshare, and apkpure. The benign apps are gathered

from apkpure and apkmirror. The malware apps are gathered from virusshare after registering

47

on virusshare website and receiving permission from the administrator. A total of 4,400

Android apps are gathered from the different sources.

3.1.2 Data Preparation

This subsection describes the several steps used for preparing the data. It comprises

eliminating duplicate apps, labelling, feature extraction and feature selection.

3.1.2.1 Eliminating Duplicate Applications

To remove the duplicate apps, the MD5 hash algorithm is applied. After eliminating the

duplicates, we are left with 3,547 Android apps.

3.1.2.2 Labelling

Avira AV is used to label the Android apps which are left after removing the duplicates. After

labelling, it is found that there are 1,747 malware and 1,800 benign apps. 13 distinct malware

families are identified in 1,747 malicious apps. The name of the families along with the

corresponding number of apps is shown in Figure 3.2.

Figure 3.2: Android malware families

48

3.1.2.3 Feature Extraction

With the use of static and dynamic malware analysis, different attributes are mined. Four

different categories of static attributes including intents, API calls, command strings and

permissions are mined through static malware analysis. A self-developed python script is used

to extract static features, which makes use of various automated tools like strings, Baksmali

Disassembler and AXMLPrinter2. Four different categories of dynamic features including

dynamic permissions, information leakage, cryptographic operation and system calls are

mined through dynamic malware analysis using CuckooDroid (a tool for analysis of Android

malware). The description associated with feature extraction through static and dynamic

analysis is discussed as follows.

 Static malware analysis- It analyses the sample of malware without executing or

running the code. A variety of disassembling techniques are employed to decompile

the app's source code. Using Baksmali Disassembler, AXMLPrinter2, and string tools,

a python script is constructed to mine static attributes. Features such as permissions,

command strings, API calls and intents are mined using these tools. The procedure of

mining static features is demonstrated in Figure 3.3. Firstly, the .apk file is unzipped

or unpacked. The .apk file comprises of Android Manifest file, res, assets, classes.dex

file and lib folder (as discussed in chapter 1). Using these files/folders, four different

categories of static features are mined through various tools. AndroidManifest.xml file

comprises information about permissions, classes.dex file comprises information

about API calls and the rest all comprises information about command strings.

49

Figure 3.3: Process of mining static attributes

 Dynamic malware analysis- It is carried out while the code is being executed in the

runtime environment. CuckooDroid is used to gather runtime behavior information of

particular app. It is a continuation of the cuckoo sandbox, software for examining and

executing the apps. CuckooDroid is responsible for handling Android emulator and

generate report at the end of the analysis. The infrastructure of Cuckoo comprises the

host machine (i.e. management software) and the guest machine (virtual machine that

performs analysis). The main function of the host is to run the core sandbox

components that control the entire analysis process, while the guest machine is the

isolated environment where malware samples are executed. The guest comprises

Linux virtual machine running Android emulator, which is supervised by the

machinery module. Emulator for Android is primarily responsible for executing apps

and returning data to CuckooDroid. A timeout of 180 seconds is set for each Android

malicious file, meaning an Android sample has a maximum of 180 seconds to be

examined before it expires. When the analysis of each sample is completed, the results

are saved in Java Script Object Notation (JSON) format. In this process, the guest is to

be rooted Android Virtual Device (AVD) with Xposed framework [190] and with its

modules i.e. Droidmon and Emulator Anti-Detection. The python agent and the

analyzer code operate on the guest machine using Python 2.7. When an APK file is

received, the python agent's job is to perform an analysis on it. When the python

50

analyzer runs an app, it returns screenshots and any dropped files to the host. After the

procedure is completed, the log reports are collected and stored in JSON format.

Reports of various apps are parsed and saved in CSV format in the database using

Python scripts. Then these files are used to detect and classify malware. The procedure

of mining dynamic features is demonstrated in Figure 3.4. Features including dynamic

permissions, information leakage cryptographic operation and system calls are mined

through dynamic malware analysis. Table 3.1 shows the description of the extracted

features.

Figure 3.4: General framework of CuckooDroid for extracting dynamic features

51

Table 3.1: Description of mined attributes

Methods Features Tools Used Examples Number of

attributes

Total

attributes

 Static

 Permissions

 AXMLPrinter2

READ_PHONE_STATE,

RECEIVE_SMS,

ACCESS_WIFI_STATE,

READ_SMS,

ACCESS_FINE_LOCATION

277

352

Command Strings String Chown, chmod, remount, mount 6

 Intents

AXMLPrinter2

ACTION_SHUTDOWN,

SET_WALLPAPER,

CALL_BUTTON,

PACKAGE_CHANGED,

NEW_OUTGOING_CALL

22

 API calls Baksmali

Disassembler

PackageInstaller, GetCallingUid,

Runtime.exec, getBinder,

TelephonyManager.getCallState

47

Dynamic

Information leaks

CuckooDroid

IMEI_Network,

PHONE_NUMBER_File, IMEI_File

123

323

 Dynamic

Permissions

ACCESS TO PASSWORDS FOR

GOOGLE ACCOUNTS, WRITE

CONTACT DATA, READ

CONTACT DATA, AUDIO FILE

ACCESS

71

 System calls PTRACE, RECVMSG, GETPID,

SIGPROCMASK, SENDMSG,

WRITE, SENDTO

50

Cryptographic

operations

encryption_AES, keyalgo_AES,

Decryption_AES

79

52

3.1.2.4 Feature Selection

Variable selection is also known as Feature selection. It is carried out to reduce the

dimensionality of data and helps in selecting the appropriate features. Irrelevant features lead

to a decrease in the quality of the model. Moreover, it increases time and space complexity

[191]. Choosing the appropriate attributes will help in minimizing the time and space

complexity. It also helps in improving classification accuracy. IG feature ranking algorithm is

employed to choose the appropriate attributes to better detect and classify malware.

IG computes the information a feature provides about the class. Entropy is used by IG to

determine how homogeneous a sample is. The entropy of the dataset with k classes is

computed as shown in Equation 3.1.

 ∑

 (3.1)

Here represents the probability of class i in dataset Z. Afterwards, the dataset is then

divided on the various attributes X. Equation 3.2 calculates the entropy of a dataset in relation

to the variable X.

 ∑ (3.2)

c denotes the possible values of the attributes X. IG is attained by a variable is calculated as

given in Equation 3.3. More the IG of a specific attribute, more significant the attribute is.

 (3.3)

The IG technique allocates weight and rank to every feature. The attributes having a weight of

0 are ignored in this study. As a result, 110 and 47 static attributes are selected from detection

dataset (named as Dataset-1) and multi-class classification dataset (named as Dataset-2)

respectively. Figure 3.5 and Figure 3.6 demonstrate the top 20 attributes selected for binary

and family classification of malware respectively.

Out of 323 dynamic attributes, 99 and 35 are selected from Dataset-1 and Dataset-2

respectively. Figure 3.7 and Figure 3.8 demonstrate the top 20 attributes selected for binary

and family classification of malware respectively.

53

Figure 3.5: Top 20 static attributes of detection dataset (Dataset-1)

Figure 3.6: Top 20 static attributes of multi-class classification dataset (Dataset-2)

54

Figure 3.7: Top 20 dynamic attributes of detection dataset (Dataset-1)

Figure 3.8: Top 20 dynamic attributes of multi-class classification dataset (Dataset-2)

Table 3.2 demonstrates the summary of both the datasets (i.e. Dataset-1 and 2) before and

after selection of features.

55

Table 3.2: Detail description of datasets (Where # represents number of)

Datasets #Malware

apps

#Benign

apps

#Attributes extracted #Attributes selected

Static Dynamic Static Dynamic

Detection

(Dataset-1)

1747 1800 352 323 110 99

Multi-class

Classification

(Dataset-2)

1747 (with

13 families)

 ----- 352 323 47 35

Both static and dynamic malware analysis datasets are made available on GitHub (Link:

https://github.com/Meghna-Dhalaria/Android-malware-dataset) and Kaggle (Link:

https://www.kaggle.com/meghnadhalaria/android-malware-detection-and-classification). The

process for preparing these two datasets is depicted in Figure 3.9.

https://github.com/Meghna-Dhalaria/Android-malware-dataset
https://www.kaggle.com/meghnadhalaria/android-malware-detection-and-classification

56

Figure 3.9: Steps of data preparation

3.1.3 Detection and Family Classification

The third phase is to detect and classify Android malware. Several ML classifiers like DT,

RF, NB, SVM, PART and K-NN are applied for the identification and classification of

malware. The classifiers are trained using 5-fold cross-validation. This technique divides the

dataset into five equal portions, out of which four portions are used for training and one

portion is used for testing at every run. The description of ML classifiers is given below:

 K-NN- It is sometimes called a lazy learner [192]. It identifies the class label of a new

observation on the basis of the similarity measure. This algorithm computes the

57

distance between each row of training data and test data with the aid of Euclidean

distance (as shown in Equation 3.4). After that, the distance values are then sorted in

ascending order. It then selects the top k rows from the sorted list. At the end, it

allocates a class to the new data based on the most often class of these rows.

 √∑

 (3.4)

Here and represents the two points in Euclidean n-space, and are the

Euclidean vectors and n represents the n-space.

 DT- It is considered as the fundamental ML algorithm which is used for both

regression and classification tasks. It has a tree like structure. It consists of an internal

node (also known as non-leaf node), root node and the leaf node (also known as

terminal node). The root node is the topmost node of the tree. The internal node and

the leaf node show a test on the variable. The leaf or terminal nodes show the label

class [193]. The purpose of using DT is to develop a training model that can be used to

predict the class label by learning basic decision rules on the basis of previous data

(training data). It uses a variety of algorithms (i.e. ID3, C4.5 and CART) to split a

node into two or more sub-nodes. In this study, C4.5 algorithm is used.

 RF- It is based on the idea of ensemble learning, which is a method of integrating

several classifiers to solve a complicated problem and to increase the model's

performance. This combines several DT on different subsets of a dataset and takes the

average to increase the predictive accuracy of the given dataset. Figure 3.10 depicts a

graphical representation of the RF. On a large dataset, it is a highly effective and

efficient approach [194].

58

Figure 3.10: General framework of RF algorithm [194]

 SVM- It uses the decision surface to solve a 1-n class classification problem. The

support vectors that are the nearest and equidistant points to this plane make up this

decision surface [195]. Figure 3.11 depicts a graphical representation of the SVM.

Figure 3.11: General framework of SVM algorithm [195]

The distance of a point from decision boundary is referred to as functional

margin as calculated in Equation 3.5.

 (3.5)

59

Here is a hyperplane parameter normal to the decision boundary's surface, is a

constant and the point is mapped onto a higher-dimensional space. If the point is far

away from the surface, then it means there is the higher confidence in classifying the

point. As a result, a higher functional margin indicates greater confidence in the

predicted class of that point.

 NB- Bayes theorem (as calculated in Equation 3.6) is used to build the NB classifier,

which is built on strong independent assumptions. It calculates the chances of a given

occurrence in a dataset belonging to a particular class. It considers that the presence of

an attribute in a class is independent of the occurrence of any other characteristic, i.e.

all attributes contribute independently in computing the likelihood of data

categorization. This model is suitable for very big datasets and is simple to construct

[196].

 (

)

 (

)

 (3.6)

Here (

) represents the probability of X occurring given evidence Y has already

occurred, (

) symbolizes the probability of Y occurring given evidence X has

already occurred, is the probability of X occurring and is the probability of

Y occurring.

 PART- It is also known as a partial decision tree. The divide and conquer principle is

used in this algorithm. It creates a decision list, which is a collection of rules. Each

new instance is compared to every rule, and the class of the first matching rule is

assigned to it [197].

3.2 EXPERIMENTAL RESULTS

This section summarises the experimental outcomes on the basis of static, dynamic, and

integrated attributes. Six ML algorithms are employed and executed on python 3.7 on an Intel

Core i5 64-bit processor with 8GB of memory. The experiments are carried out using a 5-fold

cross validation technique. The ML algorithms used here are evaluated on different evaluation

parameters like Sens, Accuracy, MCC, FPR, AUC, PPV and F-measure.

60

3.2.1 Results of Classification Using Static Features

Six ML techniques are employed for the identification and classification of malware using

static features. These algorithms are implemented using Sklearn library [198].

Table 3.3: Comparison of ML techniques using static attributes for detection dataset (Dataset-1)

ML

model

Sens FPR PPV F-measure AUC MCC Accuracy (%)

DT 0.950 0.050 0.950 0.950 0.970 0.901 95.03

SVM 0.943 0.057 0.943 0.943 0.943 0.887 94.33

RF 0.965 0.035 0.965 0.965 0.990 0.933 96.50

NB 0.874 0.124 0.878 0.874 0.948 0.752 87.42

K-NN 0.957 0.042 0.958 0.957 0.989 0.915 95.74

PART 0.950 0.050 0.950 0.950 0.975 0.900 94.98

Table 3.3 indicates the results of ML algorithms using static attributes for detection dataset. It

is observed that RF provides the best detection accuracy of 96.50% followed by K-NN which

provides a detection accuracy of 95.74%.

(a) (b)

Figure 3.12: Comparative analysis of various classifiers using static approach based on (a) MCC (b) Accuracy

for detection dataset (Dataset-1)

Figure 3.12 compares the MCC and accuracy of several classifiers for detection dataset. It

shows that RF obtains better results than other classifiers. The MCC and accuracy attained by

RF are 0.933 and 96.50% respectively.

61

Table 3.4: Comparison of ML techniques based on static attributes for multi-class classification dataset

(Dataset-2)

ML model Sens FPR PPV F-measure AUC Accuracy (%)

DT 0.848 0.023 0.852 0.847 0.949 84.77

SVM 0.859 0.023 0.863 0.857 0.962 85.86

RF 0.867 0.024 0.870 0.866 0.982 86.72

NB 0.751 0.032 0.792 0.756 0.967 75.10

K-NN 0.845 0.024 0.847 0.843 0.966 84.48

PART 0.840 0.024 0.842 0.839 0.947 84.02

Table 3.4 indicates the results of ML algorithms based on static attributes for multi-class

classification dataset. It is observed that RF provides the best classification accuracy of

86.72% followed by DT and SVM which provide classification accuracy of 84.77% and

85.86% respectively. The Sens, F-measure and PPV acquired by RF are 0.867, 0.866 and

0.870 respectively which is higher than other ML classifiers.

Figure 3.13: Comparative analysis of various classifiers using static approach based on accuracy for multi-class

classification dataset (Dataset-2)

Figure 3.13 compares the accuracy of different ML classifiers for multi-class classification

dataset. The accuracy attained by RF for Dataset-2 is 86.72% which is smaller than the

accuracy attained by RF for Dataset-1.

62

3.2.2 Results of Classification Using Dynamic Features

Six ML techniques are employed for the identification and classification of malware using

dynamic features.

Table 3.5: Comparison of ML techniques based on dynamic attributes for detection dataset (Dataset-1)

ML model Sens FPR PPV F-measure AUC MCC Accuracy (%)

DT 0.953 0.048 0.953 0.953 0.973 0.905 95.26

SVM 0.965 0.035 0.965 0.965 0.965 0.931 96.53

RF 0.970 0.030 0.970 0.970 0.996 0.940 97.01

NB 0.942 0.057 0.943 0.942 0.989 0.885 94.19

K-NN 0.961 0.039 0.961 0.961 0.990 0.922 96.08

PART 0.959 0.041 0.959 0.959 0.970 0.918 95.88

Table 3.5 indicates the results of ML algorithms using dynamic attributes for detection

dataset. It is observed that RF provides the best detection accuracy of 97.01% followed by

SVM which provides a detection accuracy of 96.53%.

(a) (b)

Figure 3.14: Comparative analysis of various classifiers using dynamic approach based on (a) MCC (b)

Accuracy for detection dataset (Dataset-1)

Figure 3.14 compares the MCC and accuracy of several classifiers for detection dataset. It

shows that RF obtains better results than other classifiers. The MCC and accuracy attained by

RF are 0.933 and 96.50% respectively. The MCC and accuracy attained by RF are 0.940 and

97.01% respectively.

63

Table 3.6: Comparison of ML techniques based on dynamic attributes for multi-class classification dataset

(Dataset-2)

ML model Sens FPR PPV F-measure AUC Accuracy (%)

DT 0.843 0.026 0.843 0.841 0.947 84.25

SVM 0.864 0.021 0.871 0.866 0.985 86.85

RF 0.886 0.018 0.888 0.885 0.991 88.60

NB 0.800 0.029 0.805 0.795 0.951 79.96

K-NN 0.839 0.025 0.842 0.837 0.967 83.91

PART 0.841 0.026 0.838 0.836 0.950 84.08

Table 3.6 indicates the results of ML algorithms based on dynamic attributes for multi-class

classification dataset. It is observed that RF provides the best classification accuracy of

88.60% followed by SVM which provides classification accuracy of 86.85%. The Sens, F-

measure and PPV acquired by RF are 0.886, 0.885 and 0.888 respectively which is higher

than other ML classifiers.

Figure 3.15: Comparative analysis of various classifiers using dynamic approach based on accuracy for multi-

class classification dataset (Dataset-2)

Figure 3.15 compares the accuracy of different ML classifiers for multi-class classification

dataset. The accuracy attained by RF for Dataset-2 is 88.60% which is smaller than the

accuracy acquired by RF for Dataset-1.

64

3.2.3 Results of Classification Using Integrated Features

Individual approach either dynamic or static is insufficient for better classifying Android

malware due to execution stalling and obfuscation techniques being used by malware authors.

The hybrid approach is used to overwhelm this problem. In this approach, both static and

dynamic features are integrated. Six ML techniques are employed for the identification and

classification of malware using integrated features.

Table 3.7: Comparison of ML techniques based on integrated attributes for detection dataset (Dataset-1)

ML model Sens FPR PPV F-measure AUC MCC Accuracy (%)

DT 0.970 0.030 0.970 0.970 0.980 0.941 97.03

SVM 0.983 0.017 0.983 0.983 0.983 0.966 98.30

RF 0.985 0.015 0.985 0.985 0.999 0.971 98.53

NB 0.956 0.043 0.957 0.956 0.993 0.913 95.60

K-NN 0.982 0.018 0.982 0.982 0.994 0.963 98.16

PART 0.971 0.029 0.971 0.971 0.983 0.942 97.09

Table 3.7 indicates the results of ML algorithms using integrated attributes for detection

dataset. It is observed that RF provides the best detection accuracy of 98.53% followed by K-

NN and SVM with the detection accuracy of 98.16% and 98.30% respectively.

Table 3.8: Comparison of ML techniques based on integrated attributes for multi-class classification dataset

(Dataset-2)

ML model Sens FPR PPV F-measure AUC Accuracy (%)

DT 0.846 0.024 0.851 0.845 0.949 84.60

SVM 0.870 0.020 0.875 0.871 0.987 87.06

RF 0.901 0.016 0.902 0.901 0.995 90.10

NB 0.783 0.027 0.814 0.784 0.970 78.30

K-NN 0.854 0.022 0.857 0.854 0.966 85.40

PART 0.833 0.024 0.837 0.833 0.946 83.34

Table 3.8 indicates the results of ML algorithms based on integrated attributes for multi-class

classification dataset. It is observed that RF provides the best classification accuracy of

90.10% followed by SVM which provides classification accuracy of 87.06%. The Sens, F-

65

measure and PPV acquired by RF are 0.901, 0.901 and 0.902 respectively which is higher

than other ML classifiers.

(a) (b)

 Figure 3.16: Comparison of ML classifiers for all three approaches based on (a) MCC (b) Accuracy for

detection dataset (Dataset-1)

Figure 3.16 illustrates the MCC and accuracy comparison of six classifiers for detection

dataset using static, dynamic and integrated features. It shows that there is an improvement in

the MCC and accuracy for all the classifiers when both static and dynamic attributes are

combined. It indicates that using both types of attributes aids in the better identification of

malware.

Figure 3.17: Comparison of ML classifiers for all three approaches based on accuracy for multi-class

classification dataset (Dataset-2)

66

Figure 3.17 illustrates the accuracy comparison of six classifiers for multi-class classification

dataset using static, dynamic and integrated features. It shows that the integrated approach

performs better as compared to static and dynamic approach for all the classifiers except NB.

The accuracy attained by multi-class classification dataset is smaller than detection dataset it

might be due to imbalanced classes.

Table 3.9: Comparison results of static, dynamic and integrated approach

Dataset Approach ML model Sens FPR PPV MCC F-

measure

Accuracy

(%)

Detection

(Dataset-1)

Static

RF

0.965 0.035 0.965 0.933 0.965 96.50

Dynamic 0.970 0.030 0.970 0.940 0.970 97.01

Integrated 0.985 0.015 0.985 0.971 0.985 98.53

Multi-class

Classification

(Dataset-2)

Static

RF

0.867 0.024 0.870 -- 0.866 86.72

Dynamic 0.886 0.018 0.888 -- 0.885 88.60

Integrated 0.901 0.016 0.902 -- 0.901 90.10

*MCC -- not applicable to datasets with multiple classes

Table 3.9 shows the comparison of all three approaches for the best classifier i.e. RF for both

the datasets. The results show that the integrated approach performs better for malware

identification and classification for both the datasets. The accuracy obtained by RF is 98.53%

and 90.10% for detection and multi-class classification dataset respectively.

3.3 DISCUSSIONS

The proposed approach makes use of integrated set of features which are obtained after

combining static and dynamic features. A total of 352 static and 323 dynamic attributes are

mined from Android samples. To get rid of noisy and unnecessary attributes, the IG feature

selection method is used. Through this technique, 110 static and 99 dynamic attributes are

selected for Dataset-1 and 47 static attributes and 35 dynamic attributes are selected for

Dataset-2. To detect and identify Android malware, various classifiers are used. The results

demonstrate that the integrated approach performs well as compared to when static and

dynamic attributes are examined alone. In the case of static attributes, RF gives better

67

detection and classification accuracy i.e. 96.5% and 86.72% for detection and multi-class

classification dataset respectively. In the case of dynamic attributes, RF gives better detection

and classification accuracy i.e. 97.01% and 88.6% for both datasets. RF offers the maximum

detection and classification accuracy in the integrated approach for both datasets its value is

98.53% and 90.1% for detection and multi-class classification dataset respectively. From the

experimental results, it is found that the classification results in case of static, dynamic and

integrated features are not so good as compared to detection results. It might be due to the

imbalanced classes in the classification dataset.

3.4 SUMMARY

This chapter presented an integrated approach for identification and classification of Android

malware. The two datasets (i.e. Dataset-1 and Dataset-2) are created for detection and multi-

class classification of malware. These datasets have been made public on kaggle and GitHub

in order to aid anti-malware tool developers and researchers in improving or developing new

methodologies and tools for identifying and classifying malware. These datasets can be used

as benchmark datasets by various researchers to validate their proposed techniques. Various

classifiers are used to detect and classify malware based static, dynamic and integrated

approaches. The results demonstrated that the integrated approach performs better than

individual approaches as it overcomes the constraints of both static and dynamic malware

analysis. Chapter 4 and chapter 5 present the proposed techniques to improve the Android

malware detection and classification results respectively.

68

CHAPTER 4

PROPOSED APPROACH FOR IMPROVING DETECTION OF

ANDROID MALWARE

As discussed in chapter 3, malware developers create new malware to threaten the security of

the system and privacy of users. The security of mobile devices has motivated researchers in

employing ML techniques to improve the detection of Android malware as the conventional

approaches are not effective in recognizing unknown malware. ML-based approaches are

increasingly being used to detect malware on Android devices. The main problem with the

existing malware detection systems is that they have a high FP and FN rate. Thus, there is a

need to design methods for better identification and classification of malware. This chapter

presents an approach named as MalDetect for enhancing the detection results of Android

malware. The approach fuses the base classifiers on the basis of proposed ranking schemes

defined on their error rate. These schemes are then used to generate a variety of combinations,

with the best one being chosen to construct the final model. The proposed approach is

evaluated on two datasets i.e. Drebin (benchmark) and AndroMD (self-created).

4.1 PROPOSED METHODOLOGY

The proposed classifier fusion approach for the identification of Android malware is

described in this section. Its architecture consists of 2-layers. It is developed in such a way

that it can be employed to both ensemble and traditional classifiers. In layer-1, after acquiring

both the datasets, six base classifiers are trained using 5-fold cross-validation technique to

find the error rates. In layer-2, it uses various ranking schemes defined based on the predictive

error rate of base classifiers. The ranking schemes are then used to derive various combination

schemes out of which the best combination is selected to build the final model. The

architecture of MalDetect is shown in Figure 4.1.

69

Figure 4.1: Proposed approach for improving the detection of malware

4.1.1 Data Acquisition

Two benchmark datasets i.e. Drebin [87] and AndroMD used in this work are acquired from

figshare and Kaggle respectively. Drebin dataset consists of only static features whereas

AndroMD dataset consists of both static and dynamic features. Drebin dataset contains 15,036

instances out of which 9,476 are benign and 5,560 are malware. It contains 215 static features.

AndroMD dataset contains 3,547 instances out of which 1,800 are benign and 1,747 are

malware (as discussed in chapter 3). It contains 352 static and 323 dynamic features. Table

4.1 describes the summary of both datasets.

70

Table 4.1: Summary of datasets used (where # represents the number of)

4.1.2 Data Splitting

Both datasets are randomly divided into two parts i.e. training and testing. 90% of the data is

used for training purposes, while 10% is used for testing purposes.

4.1.3 Classification Algorithms

The six different base classifiers are used in this study such as NB, Random Tree, PART, J48,

AdaBoost and Voted perceptron. The description of these classifiers are as follows:

 NB- It is a type of ML technique that is used to solve classification problems [196]. It

is based on the Bayes theorem as discussed in chapter 3.

 Voted Perceptron- Frank Rosenblatt's perceptron algorithm is used to construct the

voted perceptron. This algorithm takes advantage of data that can be linearly separated

by a wide margin. This method is easier to implement and is more effective in terms

of computation time [199].

 AdaBoost- Adaptive Boosting, also known as AdaBoost, is a well-known boosting

technique. Its main purpose is to create strong classifiers by combining several weak

classifiers [200]. The pseudocode for AdaBoost algorithm is shown in Algorithm 4.1.

This algorithm takes a training set (),…,() where each

belongs to some domain P and each label belongs to Q = {-1,1}. A

distribution of weights is set over the training sample at each iteration j, and a weak

classifier is created on the training set according to . The algorithm begins by

assigning all weights to the same value, but at each round, the weights of misclassified

instances are increased, forcing the weak learner to focus on the most difficult cases to

categorize. After a set number of iterations, the procedure ends. In proportion to their

accuracy, all of the weak classifiers contribute to the prediction of new unlabelled

cases.

Dataset #Instances #Malware #Benign #Attributes

Drebin 15,036 5,560 9,476 215

AndroMD 3,547 1,747 1,800 675

71

Algorithm 4.1: Pseudocode for AdaBoost algorithm

 Given: (),…,() , ={-1,1}

01: Initialize

02: for j =1 to J:

03: Train weak classifier using distribution

04: Get weak hypothesis with error ∑
)

05: Choose

06: Update:

 { if instance is classified correctly, if instance is not classified

correctly

where is a normalization factor (∑

 Output: Final hypothesis: ∑

 PART- The divide and conquer principle is used in this algorithm [197]. It is

discussed in chapter 3.

 J48-The J48 algorithm is also called as C4.5 algorithm [193]. It is discussed in chapter

3.

 Random Tree- It works like a decision tree (as discussed in chapter 3) with the

exception that it chooses random attributes for each split [201].

4.1.4 5-Fold Cross Validation

5-fold cross validation is used in the training phase, that splits the training data into five

subsets and the hold-out approach is repeated five times. One subset is used for testing every

time, and the rest four subsets are used for training purposes.

Using 5-fold cross-validation method, the classifier's error rate and performance prediction

probabilities for both classes are calculated. Then, based on the classifier error rate the ranks

are assigned to the classifiers. The ranks are allocated on the basis of proposed ranking

algorithms that are discussed in the subsequent sub-section.

4.1.5 Proposed Ranking Schemes

Four ranking methods are proposed for allocating rank to the base classifiers. These are

discussed as follows:

72

1. Average Error (AE) Based Ranking Method: In this method, the ranks are allocated

to the base classifiers based on average error prediction of both the classes. It assigns a

higher rank to those classifiers which have smaller average error rate as shown in

Algorithm 4.2. Let be the c base classifiers being used to classify the

instances into benign and malware class. If
and

 represent the error rates of

malware and benign class for a classifier respectively, the average error rate
of

each classifier is computed as

 (4.1)

Here and denote the number of benign instances and malware instances

respectively. Let

 be the set of average error predictions for all

the classifiers, then the rank ̅, defined in Equation 4.2, is assigned using

 function on the basis of average error prediction for both the classes. It

assigns a higher rank to those classifiers which has smallest average error rate.

 ̅ (4.2)

Algorithm 4.2: Algorithm of AE Based Ranking Method

2. Ranked Aggregate of Per Class Error (RAPCE) Method: In this method, firstly the

ranks are allocated to each classifier on the basis of class error rate and then the final

ranks are computed by adding the per class ranking as shown in Algorithm 4.3. Let

 and

 are the set of error rates of all

Input: Number of Base classifiers (c), number of malware instances (zm), number of benign

instances (zb), error rate of malware (
 and error rate of benign

Output: AE based Rank (̅)

01: for i=1:c

02:

 #

 is the average error rate of i
th

 classifier

03: end for

04: ̅ # Here,

05: Return (̅)

73

base classifiers for malware and benign class respectively. The rank to each classifier

is allocated individually based on the class error rate using function (i.e.

smaller the value of
 or

, higher is the rank) as represented in Equations 4.3 and

4.4.

 (4.3)

 (4.4)

The aggregate of per class rank
 of each classifier is computed using Equation 4.5.

 (4.5)

Let

 be the set of values of aggregate rank for all base classifiers.

The final rank is allocated to each classifiers using function on the basis

of aggregating the per class rank as represented in Equation 4.6. It assigns a higher

rank to those classifiers which have higher aggregated rank.

 ̅ (4.6)

Algorithm 4.3: Algorithm of RAPCE based ranking method

Input: Number of Base classifiers (c), error rates of all base classifiers for malware (M) and benign

(B).

Output: RAPCE based Rank (̅)

01: for i=1:c

02:

03:

04: end for

05: for i=1:c

06:
 #

 is the aggregate per class rank of i
th

 classifier

07: end for

08: ̅ # Here,

09: Return (̅)

74

3. Class Error Differential (CED) Method: In this method, the ranks are allocated to

each base classifier based on the average error rate and the absolute difference

between the class errors as shown in Algorithm 4.4. Let
 is the ratio of average

error rate (
) and the error difference of both classes (

) for each

classifiers.
 is computed as

 (4.7)

If

 is the set of class error differentials for all the classifiers, then

the rank is assigned using function. It assigns a higher rank to those

classifiers which have smallest class error differential value.

 ̅ (4.8)

Algorithm 4.4: Algorithm of CED based ranking method

4. Ranked Aggregate Average and Class Error Differential (RAACED) Method: In

this method, the final ranks of the base classifiers are computed on the basis of values

obtained after aggregating the ranks obtained from average error rate and class error

differential methods as shown in Algorithm 4.5. The ranked aggregate average and

class error differential
 of each classifier is computed by using Equation 4.9.

 (4.9)

Input: Number of Base classifiers (c), average error rate (
), error rate of malware (

 and error

rate of benign
)

Output: CED based Rank (̅)

01: for i=1:c

02:

 #

 is the ratio of average error rate and the error difference of both classes

of i
th

 classifier

03: end for

04: ̅ # Here,

05: Return (̅)

75

If

 is the set of values obtained after aggregating the ranks

obtained using average error rate and class error differential methods, then the final

rank is allocated using function as shown in Equation 4.10. It assigns

highest rank to those classifiers which have higher aggregated rank.

 ̅ (4.10)

Algorithm 4.5: Algorithm of RAACED based ranking method

4.1.6 Classifier Fusion using Proposed Ranking Algorithms

The proposed ranking algorithms are used to fuse the classifiers by considering their pairwise

combinations. All the training instances are re-classified by using the output prediction of

classifiers and the pairwise combination of the proposed ranking algorithms. Every ranking

scheme draws a set of D ranks that is employed with output prediction of classifier for each

instance during the process of reclassification. Let the set of four ranking scheme is denoted

by R = {R1, R2, R3, R4}. The pairwise combinations of element of R results in six possibilities

i.e. Φ = { R1 R2, R1 R3, R1 R4, R2 R3, R2 R4, R3 R4}.

To identify the performance of every pairwise combination, assume

 as the ranks acquired from the first ranking in the pair and

 as the ranks acquired from the second ranking in the pair. If

 is the output prediction of each instance using base classifier, then the class prediction

of every instance z is calculated as shown in Equation 4.11.

Input: Number of Base classifiers (c), AE based Rank (̅), CED based Rank (̅)

Output: RAACED based Rank (̅)

01: for i=1:c

02:
 ̅ ̅ #

 is the aggregate rank of i
th

 classifiers

03: end for

04: ̅ # Here,

05: Return (̅)

76

{

∑ ∑

∑

 ∑

 (4.11)

Here, 1 and 0 represent the malware and benign class respectively. represent the

pairwise ranking combination of all four ranking schemes.

The detection rate of malicious class (
) is calculated as given in Equation 4.12.

∑

 (4.12)

Here represents the class label of each instance. The detection rate of benign class

(

) is calculated as shown in Equation 4.13.

∑

 (4.13)

Then calculate the average detection rate for the pairwise ranking scheme using Equation

4.14.

 (4.14)

Similarly, the value of average precision is computed. After computing the average pairwise

combination detection rate of proposed ranking schemes on training data, the best fusion

model is selected and evaluated on test data set.

4.2 EXPERIMENTAL RESULTS

This section presents the results of two datasets to evaluate the performance of the proposed

approach. To implement and test the proposed approach, an open-source software called

Waikato Environment for Knowledge Analysis (WEKA) [44] is used. Both datasets are

divided into two parts, one for training and the other for testing. The ratio of training and the

testing portion is 90 % and 10% respectively. 5-fold cross-validation is used to build a fusion

model using the training data. Afterward, it is evaluated on test data.

77

4.2.1 Experimental Results for Drebin Dataset

Six base classifiers i.e. voted perceptron, J48, Adaboost, NB, PART and Random tree using

5-fold cross-validation method for the training data. Table 4.2 demonstrates the classification

results.

Table 4.2: Results of base classifiers on the basis of different parameters on Drebin training data

Classifiers FNR FPR Recallm Precisionm Recallb Precisionb W-FM

NB 0.059 0.229 0.941 0.707 0.771 0.957 0.8489

Voted perceptron 0.046 0.017 0.954 0.971 0.983 0.973 0.9723

Adaboost 0.098 0.063 0.902 0.894 0.937 0.942 0.9242

PART 0.027 0.012 0.973 0.979 0.988 0.984 0.9823

J48 0.043 0.019 0.957 0.967 0.981 0.975 0.9721

Random tree 0.042 0.027 0.958 0.953 0.973 0.975 0.9672

Table 4.2 shows that PART outperforms other base classifiers. It provides a precision of

0.979 and 0.984 and a recall of 0.973 and 0.988 for malware and benign class respectively.

The comparison of ML classifiers based on False Positive Rate (FPR) and False Negative

Rate (FNR) is shown in Figure 4.2. The value of both FPR and FNR are minimum for PART

i.e. 0.012 and 0.027 respectively. NB provides the maximum value of FPR i.e. 0.229 and

Adaboost provides the maximum value of FNR i.e. 0.098. Figure 4.3 shows the comparison

of ML classifiers on the basis of W-FM. The value of W-FM is maximum for PART i.e.

0.9823 and minimum for NB i.e. 0.8489.

Figure 4.2: Comparison of ML classifiers on the basis of FPR and FNR on Drebin training data

78

Figure 4.3: Comparison of ML classifiers on the basis of W-FM on Drebin training data

In order to compute the rank for each classifier, the proposed ranking algorithms are

employed on the classification results obtained for the training data. The computations are

done using FPR (error rate in detecting benign apps) and FNR (error rate in detecting

malicious apps). Table 4.3 shows the class error rate and the ranks computed using proposed

ranking algorithms i.e. AE, RAPCE, CED and RAACED for each classifier.

Table 4.3: Rank of base classifiers using proposed ranking algorithms on Drebin training data

(Lower Rank=1 and Highest Rank=6)

Classifiers FNR FPR RAPCE AE RAACED CED

NB 0.059 0.229 1 1 3 6

Voted perceptron 0.046 0.017 3 5 6 5

Adaboost 0.098 0.063 1 2 1 1

PART 0.027 0.012 6 6 5 3

J48 0.043 0.019 3 4 4 4

Random tree 0.042 0.027 3 3 2 1

From Table 4.3, it is found that PART gets the highest rank for AE and RAPCE ranking

methods. After applying Equation 4.11 to the instances in the training data and then compute

the pairwise combination values using Equations 4.12-4.14. The results of fusion on training

data are shown in Table 4.4.

79

Table 4.4: Fusion results on Drebin training data

Combination Recallm Precisionm Recallb Precisionb W-FM

AE+RAPCE 0.979 0.982 0.987 0.985 0.9840

AE+CED 0.973 0.971 0.979 0.980 0.9767

AE+RAACED 0.973 0.979 0.984 0.981 0.9801

RAPCE+CED 0.972 0.969 0.979 0.978 0.9751

RAPCE+RAACED 0.973 0.980 0.984 0.980 0.9800

CED+RAACED 0.972 0.967 0.974 0.977 0.9733

The results of Table 4.4 demonstrate the performance improvement in layer-2 combination

schemes. The best combination is found to be AE+RAPCE on the training data. It provides a

precision of 0.982 and 0.985 and a recall of 0.979 and 0.987 for malware and benign class

respectively. The W-FM of AE+RAPCE combination is 0.9840.

Figure 4.4: Comparison of fusion of ranking algorithms based on W-FM on Drebin training data

Figure 4.4 illustrates the comparison of combinations of ranking algorithms based on W-FM.

It shows that the combination of AE+RAPCE performs better than other combinations of

ranking algorithms. The W-FM acquired by AE+RAPCE is 0.9840.

From the training data results, it is observed that the combination of AE+RAPCE performs

best on training data. This model is further used to evaluate the performance on the test data.

80

Table 4.5 demonstrates the comparison of the proposed technique with the conventional

combination techniques and the ML classifiers on the test data.

Table 4.5: Comparison of proposed technique with ML classifiers and conventional combination techniques on

Drebin test data

Classifiers Recallm Precisionm Recallb Precisionb W-FM

NB 0.941 0.730 0.796 0.958 0.8615

Voted perceptron 0.955 0.962 0.978 0.974 0.9695

Adaboost 0.885 0.893 0.938 0.933 0.9183

PART 0.962 0.978 0.987 0.978 0.9779

J48 0.960 0.966 0.980 0.977 0.9728

Random tree 0.959 0.960 0.977 0.976 0.9702

Majority voting 0.966 0.978 0.987 0.980 0.9792

Average probabilities 0.966 0.978 0.987 0.980 0.9792

Maximum probabilities 0.986 0.934 0.959 0.991 0.9695

Multischeme 0.955 0.948 0.969 0.974 0.9641

Proposed approach 0.987 0.975 0.985 0.992 0.9857

From Table 4.5, it is concluded that the proposed approach performs best among all base

classifiers and the conventional combination techniques (such as majority voting, average

probabilities, multischeme and maximum probabilities).

Figure 4.5: Comparison of various techniques on the basis of W-FM on Drebin test data

81

Figure 4.5 demonstrates the comparison analysis of different techniques based on W-FM. The

findings suggest that the proposed approach is more superior than other traditional methods. It

obtains the highest value of W-FM i.e. 0.9857 followed by majority voting and average

probabilities which achieve a W-FM value of 0.9792.

4.2.2 Experimental Results for AndroMD Dataset

The proposed approach is also evaluated on AndroMD dataset using 5-fold cross-validation

method for the training data. The classification results are shown in Table 4.6.

Table 4.6: Results of base classifiers on the basis of different parameters on AndroMD training data

Classifiers FNR FPR Recallm Precisionm Recallb Precisionb W-FM

NB 0.029 0.063 0.971 0.937 0.937 0.971 0.9540

Voted perceptron 0.022 0.028 0.978 0.971 0.972 0.978 0.9748

Adaboost 0.036 0.059 0.964 0.940 0.941 0.965 0.9525

PART 0.025 0.028 0.975 0.971 0.972 0.976 0.9735

J48 0.025 0.030 0.975 0.970 0.970 0.976 0.9728

Random tree 0.092 0.089 0.908 0.908 0.911 0.911 0.9095

From Table 4.6, the results demonstrate that voted perceptron performs better than other base

classifiers. It provides a precision of 0.971 and 0.978 and a recall of 0.978 and 0.972 for

malware and benign class respectively.

Figure 4.6 shows the comparison of ML classifiers on the basis of FPR and FNR. The value

of both FPR and FNR is minimum for voted perceptron i.e. 0.028 and 0.022 respectively.

Random tree provides the maximum value of FPR and FNR i.e. 0.089 and 0.092 respectively.

Figure 4.7 shows the comparison of ML classifiers based on W-FM. The value of W-FM is

maximum for voted perceptron i.e. 0.9748 and minimum for Random tree i.e. 0.9095.

82

Figure 4.6: Comparison of ML classifiers based on FPR and FNR on AndroMD training data

Figure 4.7: Comparison of ML classifiers on the basis of W-FM on AndroMD training data

In order to compute the rank for each classifier, the proposed ranking algorithms are applied

on the classification results obtained for the training data. Table 4.7 shows the class error rate

and the ranks computed using proposed ranking algorithms i.e. AE, RAPCE, CED and

RAACED for each classifier.

83

Table 4.7: Rank of base classifiers using proposed ranking algorithms on AndroMD training data

(Lower Rank=1 and Highest Rank=6)

Classifiers FNR FPR RAPCE AE RAACED CED

NB 0.029 0.063 2 3 5 6

Voted perceptron 0.022 0.028 6 6 6 4

Adaboost 0.036 0.059 2 2 2 5

PART 0.025 0.028 5 5 2 2

J48 0.025 0.030 4 4 2 3

Random tree 0.092 0.089 1 1 1 1

From Table 4.7, it is found that voted perceptron gets the highest rank for AE, RAPCE and

RAACED ranking methods. After applying Equation 4.11 to the instances in the training data

and then compute the pairwise combination values using Equations 4.12-4.14. The results of

fusion training data are demonstrated in Table 4.8.

Table 4.8: Fusion results on AndroMD training data

Combination Recallm Precisionm Recallb Precisionb W-FM

AE+RAPCE 0.987 0.985 0.990 0.991 0.9888

AE+CED 0.984 0.982 0.987 0.988 0.9858

AE+RAACED 0.986 0.980 0.988 0.991 0.9871

RAPCE+CED 0.984 0.982 0.987 0.988 0.9858

RAPCE+RAACED 0.986 0.981 0.988 0.991 0.9873

CED+RAACED 0.982 0.978 0.985 0.988 0.9841

The results of Table 4.8 demonstrate the performance improvement in the layer-2

combination schemes. The best combination is found to be AE+RAPCE on the training data.

It provides a precision of 0.985 and 0.991 and recall of 0.987 and 0.990 for malware and

benign class respectively. The W-FM of AE+RAPCE combination is 0.9888.

84

Figure 4.8: Comparison of fusion of ranking algorithms based on W-FM on AndroMD training data

Figure 4.8 shows the comparison of combinations of ranking algorithms based on W-FM. It

shows that the combination of AE+RAPCE performs better than other combinations of

ranking algorithms. The W-FM acquired by AE+RAPCE is 0.9888.

From the training data results, it is observed that the combination of AE+RAPCE performs

best on training data. This model is further used to evaluate the performance of the test data.

Table 4.9 shows the comparison of fusion approach with the conventional combination

techniques and the ML classifiers on the test data.

Table 4.9: Comparison of proposed technique with ML classifiers and conventional combination techniques on

AndroMD test data

Classifiers Recallm Precisionm Recallb Precisionb W-FM

NB 0.903 0.919 0.922 0.907 0.9128

Voted perceptron 0.971 0.955 0.956 0.972 0.9635

Adaboost 0.960 0.960 0.961 0.961 0.9605

PART 0.931 0.982 0.983 0.937 0.9583

J48 0.949 0.988 0.989 0.952 0.9695

Random tree 0.903 0.913 0.917 0.907 0.9100

Majority voting 0.966 0.971 0.972 0.967 0.9690

Average probabilities 0.966 0.971 0.972 0.967 0.9690

Maximum probabilities 0.994 0.906 0.900 0.994 0.9485

Multischeme 0.891 0.923 0.928 0.898 0.9100

Proposed approach 0.966 0.992 0.990 0.967 0.9790

85

From Table 4.9, it is concluded that the proposed approach performs best among all base

classifiers and the conventional combination techniques (such as majority voting, average

probabilities, multischeme and maximum probabilities).

Figure 4.9: Comparison of various techniques on the basis of W-FM on AndroMD test data

Figure 4.9 demonstrates the comparison of different techniques based on W-FM. The results

suggest that the proposed approach is more superior to other conventional techniques. It

obtains the highest W-FM i.e. 0.9790 followed by majority voting and average probabilities

which achieve a W-FM value of 0.9690.

4.2.3 Comparison of Fusion Approach with Stacking Ensemble Method

Stacking ensemble method [202] combines various classifiers via meta-classifiers. It is one of

the most common methods for classifiers fusion and employed to various ML algorithms. So

we are comparing our proposed approach with the stacked ensemble method. In our proposed

approach various ranking algorithms are used to combine the results of ML classifiers. In the

stacking ensemble method, the base classifiers are combined with meta logistic regression to

detect Android malware. Figure 4.10 demonstrates the general framework of the stacking

ensemble learning technique. Table 4.10 shows the comparison results of the proposed

approach with the stacking ensemble method on both the dataset.

86

Figure 4.10: Framework of the stacking ensemble learning method

Table 4.10: Comparison of the proposed technique with stacking ensemble method

Datasets Method Precisionm Recallm Precisionb Recallb W-FM

Drebin

dataset

Stacking 0.978 0.971 0.983 0.987 0.9811

Proposed

approach

0.975 0.987 0.992 0.985 0.9857

AndroMD

dataset

Stacking 0.988 0.966 0.967 0.989 0.9775

Proposed

approach

0.992 0.966 0.967 0.990 0.9790

Figure 4.11: Comparison of proposed technique with stacking ensemble technique on Drebin test data

87

Figure 4.11 shows the comparison of the proposed technique with stacking ensemble

technique on Drebin dataset based on W-FM. It is found that the proposed fusion approach

performs better than the stacking ensemble learning technique. The W-FM obtained by the

proposed approach and stacking approach is 0.9857 and 0.9811 respectively.

Figure 4.12: Comparison of proposed technique with stacking ensemble technique on AndroMD test data

Figure 4.12 shows the comparison of the proposed technique with stacking ensemble

technique on AndroMD dataset based on W-FM. It is found that the fusion approach performs

better than the stacking ensemble learning technique. The W-FM obtained by the proposed

approach and stacking approach is 0.9790 and 0.9775 respectively.

4.3 DISCUSSIONS

The proposed approach (MalDetect) makes use of four different ranking schemes which are

proposed to assign ranks to the base classifiers using training data. The ranking schemes are

then used to derive various combinations out of which the best one is selected to build the

final model. The findings suggest that MalDetect is more effective than traditional classifiers

and ensemble learning techniques. In addition, the comparison of the proposed approach with

the stacking ensemble learning technique is also demonstrated. The W-FM obtained from the

stacking ensemble technique for both datasets i.e. Drebin and AndroMD dataset is 0.9811 and

0.9775 respectively whereas the W-FM obtained from MalDetect is 0.9857 and 0.9790

respectively.

88

4.4 SUMMARY

This chapter presented the proposed fusion approach “MalDetect” for detecting Android

malware. It fuses the ML algorithms on the basis of proposed ranking schemes for improving

the detection of Android malware. The proposed fusion method is tested on a benchmark

dataset and self-created dataset. It is compared with the existing techniques to infer its

outperformance. This approach is suitable only for binary classification problems for

detecting malware. Thus, an approach is designed and presented in chapter 5 for multi-class

classification of Android malware.

89

CHAPTER 5

PROPOSED APPROACH FOR IMBALANCED FAMILY

CLASSIFICATION OF MALWARE

In a real-world scenario, the number of samples differs greatly among various malware

families which makes classification processing more challenging and has a significant impact

on the performance of classifiers. Malware detection, fault detection, fraud detection are some

of the examples which are inherently imbalanced [203-205]. The distribution of classes in a

dataset is important for constructing effective models. The distribution of classes is almost

equal in most circumstances, however this is unattainable in all real-life problems. An

imbalance classification problem occurs when one of the classes has a large number of

observations (majority class) relative to the other classes, which have a small number of

observations (minority class) [206]. The categorization becomes more difficult when a dataset

contains imbalanced classes [207]. Thus, there is a need to build malware classification

models which can take care of imbalanced classes.

In inductive learning and ML, classification is a critical task [208-210]. Models are trained

using a group of training cases that have been labelled with their respective classes [211-213].

Predictive accuracy is used to evaluate the quality and effectiveness of ML approaches, but it

is insufficient when the data is excessively skewed. Rather, evaluation metrics like recall, F-

measure and precision are used. Many methods like data level, Cost-Sensitive (CS) learning

and algorithm level are there to address this problem [134]. This chapter proposes a cost-

sensitive learning (CSForest) approach for the imbalanced family categorization of malware.

5.1 PROPOSED METHODOLOGY

This section presents the proposed method (CSForest) for the imbalanced family

categorization of malware. The data samples are first obtained from virusshare [187]. To

eliminate duplicate samples, these samples are given hash values using the MD5 hash

algorithm and examined with the Avira AV software [188] to discover the names of their

families. After that, distinct attributes are mined using dynamic and static malware analysis. A

90

feature reduction technique is used to pick appropriate features, after feature extraction. The

resulting dataset is fed into CSForest, which predicts the malicious app families. Figure 5.1

shows the workflow of the methodology used for imbalanced classification of malware.

Figure 5.1: Workflow of the methodology used for imbalanced classification of malware

5.1.1 Data Collection and Data Pre-processing

Data collection and Data pre-processing steps are discussed in chapter 3 under subsection 3.1.

In this work, a total of 1,747 apps containing 13 malware families are considered for

classifying the families of malware.

91

5.1.2 Cost-Sensitive Forest

CS algorithms are employed to minimize the classification cost because if an app is dangerous

yet appears to be goodware then their consequences can be severe. The expected

Classification Cost Reduction (CCR) is used by the CS learning method [214]. The approach

initially calculates the total expected cost of the complete dataset using Equation 5.1 before

constructing a tree.

 (5.1)

 and are the labelling cost of the negative and positive examples. These are calculated as

shown in Equations 5.2 and 5.3.

 (5.2)

 (5.3)

 is the product of the cost and number of FN predictions and is the

product of the cost and number of TN predictions. is the product of the cost and

number of FP predictions. is the product of the cost and number of TP

predictions.

The algorithm then computes the ability of every variable to decrease the classification costs.

The feature with the maximum CCR is considered as a root node of the tree.

Consider the i
th

 attribute and (where F is the set of variables used in (dataset)).

If is a numerical attribute, the optimal splitting point of is used to divide into two

subsets. is partitioned into m subsets if is a categorical attribute with m distinct values.

The expected cost of each variable is computed as shown in Equation 5.4.

 ∑

 (5.4)

Here

 represent the labelling cost of observations within subset as positive and

negative respectively. The CCR of an attribute is determined by

 where
 is the

total test cost for all instances on . CSTree iterates over all possible splitting attributes

92

 and chooses the one that results in the greatest expected cost reduction. The

splitting attribute must satisfy

 , otherwise no splitting will take place.

CSForest uses CS pruning [193]. It permits the tree to reach its full potential before being

pruned. A modified version of SysFor [215] is used in the CSForest method. It computes

CCR as opposed to gain ratio as a splitting criterion. Firstly, it calculates the CCR ability of

each attribute where F refers to the set of variables in . After calculating the CCR

ability of each attribute, it then selects the good set of attributes on the basis of variables

whose CCR ability falls inside the goodness threshold set by the user.

The splitting point and the root variable are used by CSForest to divide the dataset into

various subgroups. The feature with the best CCR value is chosen as the test attribute for

continuing dividing each sub-dataset. This procedure will be repeated until no further CCR is

possible. Finally, CSForest forms the tree comprised of logic rules. Every tree utilizes the

pruning confidence factor c and the minimal records in a leaf. As long as and

 where T specifies the total number of trees, the tree with the attribute at the root

node is added to the collection of trees Y. If the number of trees formed is less than the

number of trees set by the user (i.e.), CSForest builds more trees by utilizing the

identical approach in Level 1 of the trees built so far, similar to SysFor.

CSForest employs the CSVoting method to classify the new instance . Assume that Y

contains n trees and that falls into n leaves . For each leaf ,

CSVoting calculates the labelling cost of examples that belong to as

Android/AdLoad.A.Gen ()

 and the labelling cost of examples that belong to Adware/

ANDR.AdMogo.FAN.Gen (

 and so forth. It then computes the total

Android/AdLoad.A.Gen classification cost for all n leaves as
 ∑

 and for

ANDR.AdMogo.FAN.Gen
 ∑

 and so on. Finally, is classified as

Android/AdLoad.A.Gen if

, otherwise ANDR.AdMogo.FAN.Gen. CSForest

algorithm is described in Algorithm 5.1.

93

Algorithm 5.1: Algorithm for Cost-Sensitive Forest

Input:

Dataset (, Trees defined by the users (T), pruning confidence factor , goodness threshold

(, minimum number of records in a leaf (

Output: Set of trees (Y), prediction

01: Calculate the CCR of each attribute.

02: Sort the attributes according to CCR values in descending order.

03: Find a set of good attributes based on goodness threshold ()

04: Pick the best attributes one by one to build number of trees (at level-0)

05: If the number of trees formed from good set of the attribute is less than userdefined number of

trees then it generates more trees using alternative good attributes (at level 1) of the trees.

06: Return the set of trees (Y)

07: Employ CSVoting to classify the new instance.

5.2 EXPERIMENTAL RESULTS

The performance of the proposed method for the imbalanced categorization of malware is

evaluated in this section. The method is run on an i5 processor with a 64-bit OS and 8 GB

RAM, and it uses Python 3.7. The entire dataset is partitioned into five equal sections and

tested using a 5-fold cross-validation approach. Four portions are used for training and one

part is used for testing throughout each run. Sens, FPR, F-measure and precision are all used

to judge the algorithm's performance. These performance metrics are based on four prospects

i.e. FN, TN, FP and TP. Here, FN is the most important because if an app is dangerous yet

appears to be goodware then consequences can be severe. Thus, a cost matrix is designed in

which the weights are assigned based on hyperparameter tuning. The outcomes of cost-

sensitive classifiers (CSForest and CSTree) are compared with those of cost-insensitive

classifiers (RF and C4.5) using static, dynamic and hybrid features. The parameters values

employed in CSForest are c = 0.25, τ = 0.2, = 0.3, T = 30 with
 set to be 0 [214].

94

Table 5.1: Results of malware family classification of cost-sensitive and cost insensitive classification

algorithms

Approach Evaluation

Parameters

Sens Precision FPR F-measure

Static

RF 0.867 0.870 0.024 0.866

C4.5 0.848 0.852 0.023 0.847

CSTree 0.852 0.858 0.023 0.851

CSForest 0.890 0.893 0.016 0.890

Dynamic

RF 0.886 0.888 0.018 0.885

C4.5 0.843 0.843 0.026 0.841

CSTree 0.839 0.837 0.026 0.835

CSForest 0.905 0.911 0.013 0.907

Hybrid

RF 0.901 0.902 0.016 0.901

C4.5 0.846 0.851 0.024 0.845

CSTree 0.852 0.859 0.023 0.851

CSForest 0.919 0.922 0.011 0.919

Table 5.1 illustrates the family classification results of RF, CSTree, C4.5 and CSForest on the

basis of various assessment parameters for all three approaches (i.e. static, dynamic and

hybrid). It demonstrates that CSTree performs better than C4.5 and CSForest performs better

than RF to classify malicious apps. Furthermore, it demonstrates that CSForest outperforms

the other methods in all three approaches. Among these approaches, the hybrid approach

outperforms the static and dynamic approaches. The Sens, F-measure and precision attained

by CSForest in case of hybrid approach are 0.919, 0.919 and 0.922 respectively.

95

Figure 5.2: Comparison of various classification algorithms on the basis of F-measure

Figure 5.2 shows the comparison of various classification algorithms on the basis of f-

measure for all three approaches. It shows that for both cost insensitive and sensitive

classifiers, the integrated set of attributes (hybrid approach) offers the optimum f-measure.

Furthermore, it demonstrates that the CSForest approach performs better in case of all three

approaches as compared to other existing classifiers. The f-measure attained by CSForest in

case of a hybrid set of features is 0.919 followed by RF which obtains 0.901 f-measure.

5.3 DISCUSSIONS

The proposed CSForest method is used to take care of imbalanced classes of Android

malware. The experimental results are compared with RF, CSTree and C4.5 to determine the

effectiveness of the proposed approach using static, dynamic and hybrid features. The results

show that for both cost insensitive and sensitive classifiers, the integrated set of attributes

(hybrid approach) provides the optimum f-measure. Furthermore, CSForest outperforms the

other algorithms in all three approaches (static, dynamic and hybrid). The f-measure attained

by CSForest in case of a hybrid set of features is 0.919 followed by RF which obtains 0.901 f-

measure.

5.4 SUMMARY

This chapter presented CSForest technique to cope with the imbalanced classes of Android

malware apps. This method is applied on the self-created dataset and the results are compared

96

with CSTree, RF and C4.5 to identify the effectiveness of the proposed approach using static,

dynamic and hybrid features. The results demonstrate that when hybrid set of features is

considered, CSForest performs best for family classification of Android malware. The risk

posed by malware necessitates the development of dependable and precise methods for

assessing the risk in Android apps. This challenge is addressed by designing a rule-based

model for identifying the risk of Android app features which is presented in Chapter 6.

97

CHAPTER 6

PROPOSED MODEL FOR IDENTIFYING THE LEVEL OF

ANDROID APPLICATION FEATURES

Malware developers generate new malware on regular basis which poses several threats to the

system’s security and the privacy of users. People don’t have much awareness and knowledge

to determine whether the app is harmful or not. Typically, while downloading an app from the

Android app store, customers overlook or fail to read the terms and conditions. Unfortunately,

attackers take advantage of this tendency and attack mobile systems. In this case, a user

downloads an app from a third-party store which requires certain permissions to be granted

before it can be installed on the mobile device. Because of the unawareness about hazardous

permissions, the user grants all rights and installs the app. This situation exemplifies the

mobile device’s susceptibility (shown in Figure 6.1).

Figure 6.1: Process of targeting mobile device using permissions

98

The risk posed by Android malware necessitates the development of dependable and precise

methods for assessing the risk in Android apps [216]. The goal of risk management is to

anticipate potential problems before they actually happen and cause the damage. [217, 218].

Industries providing anti-malware solutions, compute the risk associated with a piece of

malware using the approaches involving human intervention along with a large number of

resources [219, 220]. With the increase in the volume of malware, it is impossible to allocate

a significant number of resources for analyzing the threat or risk posed by an Android app. To

address this issue, this chapter presents a rule-based model to identify the risk level of

Android app features. The proposed model assigns the risk levels (No, Low, Medium and

High) to Android app features. The static features (permissions and API calls) in the data are

examined statistically to come up with a hypothesis for identifying their risk factor. In order

to test the hypothesis, ANOVA method is used. Afterward, a weight is assigned to the

features under each category to compute the threat score of a particular app.

6.1 PROPOSED METHODOLOGY

The workflow of the proposed approach for the quantitative threat assessment of an Android

app is discussed in this section. The Android samples are gathered from various sources

including apkmirror [185], apkpure [186] and virusshare [187]. All the apps are labelled as

benign or malignant based on their scanning results. The static malware analysis is performed

to extract static permissions and API calls. The dataset created in this step is analyzed

statistically to frame a set of rules (hypothesis) to identify the risk factor of permissions and

API calls. These risk factors are then used to compute the threat score of Android apps. Figure

6.2 depicts the workflow of the methodology used for the identification of risk factor of

Android app features. The detail description of different steps is given below.

99

Figure 6.2: Workflow of the methodology used for identification of risk factor of Android app features

6.1.1 Data Collection and Feature Extraction

Data collection and Labelling as well as feature extraction steps are discussed in chapter 3

under subsection 3.1. In this work, static API calls and permissions are considered for

identifying the risk factor of Android app features. A total of 47 API calls and 277

permissions are mined from these apps.

100

6.1.2 Data Analysis based on Android Permissions and API calls

In this step, the created dataset is analyzed based on static permissions and API calls. Based

on the analysis, these permissions and API calls are grouped in three categories i.e. API calls

and permissions that are found only in malicious apps, only in benign apps and common in

both malware and benign apps. Out of 277 permissions, 22 are found only in malicious apps,

61 are found only in benign apps and 82 are common in both malware and benign apps. In

case of API calls out of 47, 6 are found only in malicious apps, 10 are found only in benign

apps and 31 are common in both malware and benign apps. The detailed analysis of the

dataset is given as follows.

 API calls and permissions found in benign apps- The entire dataset is analysed to

filter those API calls and permissions which are present only in benign apps. A total of

10 API calls and 61 permissions are found only in benign apps. Table A.1 and Table

A.2 (presented in Appendix A) show the names of these API calls and permissions

respectively.

 API calls and permissions common in both benign and malware apps- The entire

dataset is analysed to filter those API calls and permissions which are common in both

malware and benign apps. A total of 31 API calls and 82 permissions are found in

both malware and benign apps. Table A.3 and Table A.4 (presented in Appendix A)

show the names of these API calls and permissions respectively.

 API calls and permissions found in malware apps- The entire dataset is analysed to

filter those API calls and permissions which are present only in malicious apps. A

total of 6 API calls and 22 permissions are found only in malware apps. Table A.5 and

Table A.6 (presented in Appendix A) show the names of these API calls and

permissions respectively.

6.1.3 Hypothesis Formulation and Risk Identification

After filtering out the permissions and API calls into three categories, we frame a set of rules

(hypothesis) to identify the risk factor of each feature (as shown in Figure 6.3). API calls and

permissions found exclusively in malicious apps (during the data analysis step) are classified

as high risk, while API calls and permissions found only in benign apps are classified as no

risk. Algorithm 6.1 shows the steps for the identification of the risk factor of each API call

101

and permission. Z is a set of benign (and malicious (apps. Assume there are a

total of apps containing benign and malicious apps.

and is the set of benign and malware apps respectively. A is

a set of all features.

Algorithm 6.1: Algorithm for identification of the risk factor of each permission and API call

Input: Z = { A: set of all features

 .

Output: Risk factor of API calls and permissions.

 # Apply reverse engineering to all Android apps (to extract API calls and permissions)

01: for j =1to n do

02: reverse engineering (

03: end for

 # Identify the risk factor of API calls and permissions

 # Check in and in

04: for i=1 to k

05: if (is present in and not present in)

06: then high risk

07: else if (is present in both and)

08: if (in >= in)

09: then Medium Risk

10: else if (in < in)

11: then Low Risk

12: end if

13: else if (is not present in and present in)

14: then No Risk

15: else

16: Invalid feature

17: end if

18: end for

102

Figure 6.3: Flowchart for identifying risk factor of features

Figure 6.3 shows the flowchart for identifying risk factors of app features. Z represents a set

of benign (and malicious (apps and A represents a set of all features.

 High Risk Factor- This category includes permissions and API calls that are only

seen in malware apps and not in benign apps. Figure 6.4 illustrates the percentage of

high risk permissions in Android apps. It shows that in Android apps, the percentage

103

of ACCESS_LOCATION_EXTRA_COMMANDS permission is greater (i.e.

11.22%). Figure 6.5 illustrates the graphical representation of percentage of high risk

API calls in Android apps. It shows that the percentage of Runtime.exec API call in

benign apps is the greater i.e. 26.39%. Table B.1 and Table B.2 (presented in

Appendix B) demonstrate the percentage of high risk API calls and permissions

respectively in Android apps.

Figure 6.4: High risk permissions in Android apps

Figure 6.5: High risk API calls in Android apps

 Medium Risk Factor- This category includes API calls and permissions that are

common in benign and malware apps. If the percentage of API calls and permissions

in malware apps is greater than or equal to benign apps then it is considered in a

medium risk category. Figure 6.6 shows a graphical representation of the percentage

of few medium risk permissions in Android apps. It shows that percentage of

104

INTERNET permission is higher in both benign and malicious apps i.e. 82.17% and

95.94% respectively. Figure 6.7 shows a graphical representation of the percentage of

medium risk API calls in Android apps. It shows that in both benign and malware

apps, the percentage of android.os.IBinder API call is greater i.e. 0.85% and 0.92%

respectively. Table B.3 and Table B.4 (presented in Appendix B) demonstrate the

percentage of medium risk API calls and permissions respectively in Android apps.

Figure 6.6: Medium risk permissions in Android apps

Figure 6.7: Medium risk API calls in Android apps

 Low Risk Factor- This category includes API calls and permissions that are common

in benign and malware apps. If the percentage of API calls and permissions in

105

malware apps is less than benign apps then it is considered in a low risk. Figure 6.8

shows a graphical representation of the percentage of few low risk permissions in

Android apps. It shows that percentage of ACCESS_NETWORK_STATE permission

is higher in both malicious and benign apps i.e. 65.66% and 76.33% respectively.

Figure 6.9 illustrates the graphical representation of percentage of low risk API calls

in Android apps. It shows that in both malware and benign apps, the percentage of

onBind API call is greater i.e. 0.64% and 0.72% respectively. Table B.5 and Table B.6

(presented in Appendix B) demonstrate the percentage of low risk API calls and

permissions respectively in Android apps.

Figure 6.8: Low risk permissions in Android apps

106

Figure 6.9: Low risk API calls in Android apps

 No Risk Factor- This category includes permissions and API calls that are only seen

in benign apps and not in malware apps. Figure 6.10 illustrates the graphical

representation of percentage of few no risk permissions in Android apps. It shows that

in Android apps, the percentage of BIND_JOB_SERVICE permission is greater i.e.

45.39%. Figure 6.11 illustrates the graphical representation of percentage of no risk

API calls in Android apps. It shows that the percentage of getBinder API call in

benign apps is greater i.e. 0.31%. Table B.7 and Table B.8 (presented in Appendix B)

demonstrate the percentage of no risk API calls and permissions respectively in

Android apps.

Figure 6.10: No risk permissions in Android apps

107

Figure 6.11: No risk API calls in Android apps

6.1.4 Statistical test using ANOVA

After identifying the risk factor (i.e. No, Low, Medium and High risk) of each feature, the

statistical analysis test is perform to examine whether these risk factor varies from one

another and mined the explicit decision rule. The ANOVA statistical test is used. It is a

statistical technique which is used to check whether the experimental or survey results are

significant and it also helps to find out whether the null hypothesis is accepted or rejected.

ANOVA technique evaluates the difference in a scale level and dependent variable by a

nominal-level variable having more than two categories. The z and t-test permits the nominal

level variable to have only two categories. So to overcome the constraints of both the tests,

ANOVA test came into existence. One-way ANOVA is used which relates to the number of

independent variable rather than categories in each variable. It has one independent variable

[221]. Table 6.1 shows the variability within the groups and between the groups.

Table 6.1: ANOVA source

Source of Variation Sum of Squares (SS) Degree of freedom (df) Mean Square (MS)

Between Samples

 ∑ ̅ ̅

Within Samples

 ∑∑ ̅

Total ∑∑ ̅

108

Here N represents the total number of observations, X represents the individual observation, ̅

represents the overall sample mean, ̅ denotes the sample mean of the i
th

 group and K

denotes the number of independent comparison groups.

SS stands for Sum of Squares in the source (of variability) column. SST measures the

variation of the data around the ̅, SSB measures variation of the group means around the ̅

and SSE measures the variation of each observation around its ̅ .

The next column degree of freedom (df) is the number of independent variables that a

statistical analysis can estimate. The last column mean square is an estimate of population

variance, and it is calculated by dividing the total squares by the number of degrees of

freedom.

F statistic is the ratio of variability between and within the groups. The value of F statistic is

computed as shown in Equation 6.1.

 (6.1)

6.1.5 Scoring System

Based on the set of rules, API calls and permissions are categorized into four risk categories.

With the help of experts, a weight is assigned to the features (API call and permission) that

fall into distinct categories after filtration. All features (permissions and API calls) in the high

risk category have a weight of 3. This category includes 28 features, including 22 permissions

and 6 API calls. A weight of 2 is assigned to API calls and permissions in the medium risk

category. This category includes a total of 39 features out of which 31 permissions and 8 API

calls. The features (permissions and API calls) in the low risk category have a weight of 1.

This category includes 74 features, including 51 permissions and 23 API calls. A weight of 0

is assigned to API calls and permissions in the no risk category. This category includes a total

of 71 features out of which 61 permissions and 10 API calls. Table 6.2 shows the number of

attributes belonging to different risk categories.

109

Table 6.2: Number of attributes belonging to different risk categories and assigned weights

Risk Category Explanation Number of attributes Weight

Assigned API calls Permissions

High Feature that can only be seen in

malware apps

6 22 3

Medium

Feature that is present in both

benign and malware apps but

the percentage of feature in

malware apps is more than or

equal to benign apps

8 31 2

Low

Feature that is present in both

benign and malware apps but

the percentage of feature in

malware apps is less than

benign apps.

23 51 1

No Feature that can only be seen in

benign apps

10 61 0

After assigning weight to each permission and API call falling under different risk categories,

total threat score of an app (T) is calculated using Equation 6.2.

 ∑

Where represents the i
th

 feature and is the corresponding weight with respect to that

feature. If a feature is available in an app, its value is 1 otherwise it is 0. The impact of an app

on the victim device is represented by its threat score.

After calculating the overall threat score for all apps, the value is normalized on a scale of 1 to

10 using min-max normalization as given in Equation 6.3.

 (6.3)

Here, stands for the

input value, and stand for the maximum and minimum value

in the data respectively.

110

Figure 6.12 depicts the threat score of all apps on a scale of one to ten. It reveals that there are

431 apps in our dataset with a threat score of less than 2 and 100 apps with a threat value of

more than 7. It shows that the higher the threat score, the higher the app's risk. This threat

score assessment can also be used to deliver early alerts about a specific Android malware

sample, allowing for immediate attention and resource allocation for a more thorough

investigation.

Figure 6.12: Threat score of all apps

6.2 RESULTS OF ANOVA

This section summarises the results of the ANOVA technique and shows the visualization of

distinct risk factors using API calls and permissions. ANOVA is used to compare distinct risk

factors (i.e. no, low, medium, and high risk). Because our analysis consisted of four factors so

the ANOVA test is used in this study. The null hypothesis asserts that the mean values of

various risk factors do not differ significantly.

Table 6.3: ANOVA: single factor (summary)

Groups Count Sum Average Variance

High Risk 3547 10125.074 2.855 28.777

Medium Risk 3547 74714.339 21.064 82.475

Low Risk 3547 83312.400 23.488 197.543

No Risk 3547 6163.025 1.738 9.339

111

Table 6.4: ANOVA statistical comparison

Source of Variation SS Df MS F P-value Fcrit

Between Groups 1428608 3 476202.683 5987.439 0 2.606

Within Groups 1128105 14184 79.534

 Total 2556713 14187

The ANOVA single factor summary is shown in Table 6.3. It calculates the sum, count,

variance and average of each group. Table 6.4 shows a statistical comparison of several risk

factors using the ANOVA test. Table 6.4 shows that at the 5% level of significance, the

computed value (F) i.e. 5987.439 is greater than the tabulated value (Fcrit) i.e. 2.606. The null

hypothesis is thus rejected in this case. As a result, we can conclude that the mean values of

various risk factors are significantly different. Figures 6.13 and 6.14 illustrate the percentage

of high, medium, low and no risk API calls and permissions respectively in an app.

Figure 6.13: Visualization of four risk factors in an app based on API calls

112

Figure 6.14: Visualization of four risk factors in an app based on permissions

Figures 6.13 and 6.14 depict all four risk factors in an app based on API calls and permissions

respectively. The findings show that the majority of apps fall into the low risk category when

it comes to API calls, and the majority of apps fall into the medium and low risk categories

when it comes to permissions.

6.3 DISCUSSIONS

The proposed approach makes use of permissions and API calls for determining the risk

factor of Android app features. There are a total of 3,547 instances in the dataset, with 277

permissions and 47 API calls as features. While analysing the data, it is found that out of 277

permissions, 22 permissions are found in only malicious apps, 61 are found in only benign

apps and 82 are common in both malware and benign apps. Out of 47, 6 of the API calls are

found only in malicious apps, 10 are found only in benign apps and 31 are common in both

benign and malicious apps. The data analysis results are used to frame a hypothesis for the

identification of risk factor in each feature present in an app. ANOVA technique is used to

test the hypothesis. The results demonstrate that the computed value of F is 5987.439, which

is significantly greater than the tabulated value Fcrit i.e. 2.606 at 5% level of significance. A

weight is assigned to all permissions and API calls on the basis of the risk category to which

they belong. Finally, a threat score is computed for each app. The computed threat score can

assist in providing early warnings about a malicious app so that instant attention could be paid

with respect of assigning resources for deeper investigation.

113

6.4 SUMMARY

This chapter introduced a rule based model for determining the risk factor of Android app

features using permissions and API calls. First and foremost, a dataset is developed based on

static malware analysis and was made publicly available on kaggle. It is then analyzed to

frame the hypothesis for the identification of risk factor of each feature. ANOVA technique is

used to test the hypothesis. The results indicate that the mean values of different risk factors

differ significantly. Afterward, a weight is assigned to the features under each category to

compute the threat score of a particular app. This threat score can help the user to understand

how risky it is to install an app on a mobile device. In the next chapter, conclusion of the

entire work is presented. The future research areas for malware detection and classification

are also mentioned.

114

CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter concludes research work regarding Android malware detection, classification,

and threat assessment using computational techniques. The major research contributions and

future research directions are discussed as follows.

7.1 MAJOR RESEARCH CONTRIBUTIONS

The following are the major contributions of this research work.

 The two datasets (Android malware detection and family classification) are created

using a comprehensive set of attributes acquired after performing static and dynamic

malware analysis. These datasets have been made public on kaggle and GitHub. The

goal behind creating these datasets is to aid researchers and anti-malware tool

developers in improving and developing new methodologies and tools for identifying

and classifying malware. These datasets can be used as benchmark datasets by various

researchers to validate their proposed techniques.

 An approach, making use of integrated set of static and dynamic features is proposed.

It has the ability to effectively analyze, detect and classify unknown malware.

Individual approach either dynamic or static is insufficient due to obfuscation and

execution stalling techniques being used by malware authors. The findings

demonstrate that the proposed integrated approach performs better as compared to the

approaches which use only static or dynamic features.

 An approach named as MalDetect has been proposed to improve the detection (binary

classification) of Android malware. The approach fuses the base classifiers on the

basis of proposed ranking schemes defined on their error rate. The proposed approach

is evaluated on two datasets i.e. Drebin (benchmark) and AndroMD (self-created). The

findings suggest that the proposed approach is effective than traditional base

classifiers and ensemble learning techniques.

115

 A cost-sensitive learning approach is proposed for imbalanced family categorization

of Android malicious applications. The proposed approach is compared with CSTree,

RF and C4.5 to identify its effectiveness in categorizing malicious app families. The

findings show that the proposed approach is effective in identifying the families of

malicious apps.

 A rule-based approach is proposed to compute the threat score of real Android apps.

The data analysis results are used to frame a set of rules for the identification of risk

factor of the features of Android apps. ANOVA is used to test the hypothesis.

Afterward, a weight is assigned to the features under each category to compute the

threat score (on a scale of 1-10) of a particular app.

Using the proposed techniques, a threat intelligence platform for Android systems can be

developed which can act as an early warning system. The intelligent information generated

from the system can be shared with security experts and other stakeholders so that they can

issue the early warnings and advisories about emerging malicious threats and developing

solutions to minimize the risks posed by changing threat landscape.

7.2 SCOPE FOR FUTURE WORK

This section briefly discusses the future directions and improvements in the present research.

 Due to the increased use of mobile apps, the variety, volume and velocity of malware

targeting mobile devices has increased. It is necessary for the research community to

build and develop malware classification methods that make use of big data analytics

in order to increase prediction accuracy. Furthermore, the steadily streaming data on

the network motivates researchers to develop unique approaches and principles for

extracting useful information from raw data using data mining and ML algorithms.

 To overcome the constraints of signature based method, this research uses ML

techniques that learn from instances using a set of attributes mined through static and

dynamic analysis of malware. Only a limited set of attributes is used in the existing

research. To deal with the growing complexity and sophistication of malicious apps,

security researchers need to explore more robust set of attributes obtained using both

static and dynamic analysis of malware.

116

 The more emphasis could be laid on deep learning methods for identification and

classification of malicious apps.

 One of the contributions of this work is that it presents a rule based model to identify

the risk level of Android features. These risk levels are used to compute the threat

score of Android apps which in turn helps in prioritizing resource assignments for

conducting a closer manual analysis of suspicious apps and to warn the mobile users

before installing these apps. This method makes use of only static features. In future,

more emphasis could be laid on identifying the dynamic features for computing the

threat score. A fuzzy logic method could also be explored for risk identification of an

Android app.

 Sharing of intelligent information obtained is one of the important aspects related to

the present work. In future, development of platforms for sharing or exchanging

intelligent information related to cyber threats can be explored.

117

REFERENCES

[1] Mobile Operating System Market Share Worldwide (accessed October, 2019)

https://gs.statcounter.com/os-market-share/mobile/worldwide.

[2] M. Wilson, T-mobile g1: Full details of the htc dream android phone, Gizmodo-We come

from the future, 2008.

[3] Smartphone Market Share (accessed December, 2019)

https://www.idc.com/promo/smartphone-market-share/os.

[4] J. DiMarzio, Beginning Android Programming with Android Studio, John Wiley & Sons,

2016.

[5] Google Android (accessed December, 2020) https://www.android.com/.

[6] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The evolution of

android malware and android analysis techniques,” ACM Computing Surveys

(CSUR), vol. 49, no. 4, pp. 1-41, 2017.

[7] Y. S. Yen, and H. M. Sun, “An Android mutation malware detection based on deep

learning using visualization of importance from codes,” Microelectronics Reliability, vol.

93, pp. 109-114, 2019.

[8] McAfee, Threats report, 2013. http://www.mcafee.com/uk/resources/reports/rp-

quarterlythreatq1-2013.pdf.

[9] McAfee, Mobile security report, 2014. http://www.mcafee.com/uk/resources/reports/rp-

mobilesecurityconsumer-trends.pdf.

[10] NJCCIC Android Malware variants (accessed February, 2019)

https://www.cyber.nj.gov/threat-center/threat-profiles/android-malware-variants/.

[11] V. Kouliaridis, K. Barmpatsalou, G. Kambourakis, and S. Chen, “A survey on mobile

malware detection techniques,” IEICE Transactions on Information and Systems, vol.

103, no. 2, pp. 204-211, 2020.

[12] O. A. Aslan and R. Samet, “A comprehensive review on malware detection

approaches,” IEEE Access, vol. 8, pp. 6249-6271, 2020.

[13] D. Gupta and R. Rani, “Big data framework for zero-day malware detection,”

Cybernetics and Systems, vol. 49, no. 2, pp. 103-121, 2018.

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.idc.com/promo/smartphone-market-share/os
https://www.android.com/
http://www.mcafee.com/uk/resources/reports/rp-quarterlythreatq1-2013.pdf
http://www.mcafee.com/uk/resources/reports/rp-quarterlythreatq1-2013.pdf
http://www.mcafee.com/uk/resources/reports/rp-mobilesecurityconsumer-trends.pdf
http://www.mcafee.com/uk/resources/reports/rp-mobilesecurityconsumer-trends.pdf
https://www.cyber.nj.gov/threat-center/threat-profiles/android-malware-variants/

118

[14] J. Senanayake, H. Kalutarage, and M. O. A. Kadri, “Android Mobile Malware

Detection Using Machine Learning: A Systematic Review,” Electronics, vol. 10, no. 13,

p. 1606, 2021.

[15] W. Wang, M. Zhao, Z. Gao, G. Xu, H. Xian, Y. Li, and X. Zhang, “Constructing

features for detecting Android malicious applications: Issues, taxonomy and directions,”

IEEE Access, vol. 7, pp. 67602–67631, 2019.

[16] K. Dunham, S. Hartman, M. Quintans, J. A. Morales, and T. Strazzere, “Android

malware and analysis,” CRC Press, 2014.

[17] S. Alam, S. A. Alharbi, and S. Yildirim, “Mining nested flow of dominant APIs for

detecting android malware,” Computer Networks, vol. 167, 2020.

[18] O. Olukoya, L. Mackenzie, and I. Omoronyia, “Towards using unstructured user input

request for malware detection,” Computers & Security, vol. 93, 2020.

[19] F. Shen, J. D. Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek, “Android malware

detection using complex-flows,” IEEE Transactions on Mobile Computing, vol. 18, no. 6,

pp. 1231–1245, 2019.

[20] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, “Android malware

familial classification and representative sample selection via frequent subgraph

analysis,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 8, pp.

1890–1905, 2018.

[21] X. Xiao, Z. Wang, Q. Li, S. Xia, and Y. Jiang, “Back-propagation neural network on

Markov chains from system call sequences: A new approach for detecting Android

malware with system call sequences,” IET Information Security, vol. 11, no. 1, pp. 8–15,

2017.

[22] W. Zhang, H. Wang, H. He, and P. Liu, “DAMBA: Detecting Android malware by

ORGB analysis,” IEEE Transactions on Reliability, vol. 69, no. 1, pp. 55–69, 2020.

[23] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and

efficient behavior-based Android malware detection and prevention,” IEEE Transactions

on Dependable and Secure Computing, vol. 15, no. 1, pp. 83–97, 2018.

[24] S. Singla, E. Gandotra, D. Bansal, and S. Sofat, “Detecting and classifying morphed

malwares: A survey,” International Journal of Computer Applications, vol. 122, no. 10,

2015.

119

[25] M. Irshad, H. M. A. Khateeb, A. Mansour, M. Ashawa, and M. Hamisu, “Effective

methods to detect metamorphic malware: a systematic review,” International Journal of

Electronic Security and Digital Forensics, vol. 10, no. 2, pp. 138-154, 2018.

[26] E. Gandotra, D. Bansal, and S. Sofat, “Tools & Techniques for Malware Analysis and

Classification,” International Journal of Next-Generation Computing, vol. 7, no. 3, 2016.

[27] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A survey,”

Journal of Information Security, vol. 5, no. 2, p. 56, 2014.

[28] Y. Pan, X. Ge, C. Fang, and Y. Fan, “A systematic literature review of android

malware detection using static analysis,” IEEE Access, vol. 8, pp. 116363-116379, 2020.

[29] E. Gandotra, D. Bansal, and S. Sofat, “Malware intelligence: beyond malware

analysis,” International Journal of Advanced Intelligence Paradigms, vol. 13, no. 1-2 ,

pp. 80-100, 2019.

[30] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,” Software

Quality Journal, vol. 26, no. 3, pp. 891-919, 2018.

[31] F. Tchakounte, “Permission-based malware detection mechanisms on android:

Analysis and perspectives,” Journal of Computer Science, vol. 1, no. 2, 2014.

[32] S. Verma and S. K. Muttoo, “An android malware detection framework-based on

permissions and intents,” Defence Science Journal, vol. 66, no. 6, pp. 618-623, 2016.

[33] F. Shang, Y. Li, X. Deng, and D. He, “Android malware detection method based on

naive Bayes and permission correlation algorithm,” Cluster Computing, vol. 21, no. 1,

pp. 955-966, 2018.

[34] G. Tao Z. Zheng, Z. Guo, and M. R. Lyu, “MalPat: Mining patterns of malicious and

benign Android apps via permission-related APIs,” IEEE Transactions on

Reliability, vol. 67, no. 1, pp. 355-369, 2017.

[35] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluating android anti-

malware against transformation attacks,” IEEE Transactions on Information Forensics

and Security, vol. 9, no. 1, pp. 99-108, 2013.

[36] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. “Mast: Triage for market-scale

mobile malware analysis,” In Proceedings of the sixth ACM conference on Security and

privacy in wireless and mobile networks, pp. 13-24, 2013.

120

[37] J. W. Jang, H. Kang, J. Woo, A. Mohaisen, and H. K. Kim, “Andro-AutoPsy: Anti-

malware system based on similarity matching of malware and malware creator-centric

information,” Digital Investigation, vol. 14, pp. 17-35, 2015.

[38] Y. Zhang, Y. Yuexiang and X. Wang, “A novel android malware detection approach

based on convolutional neural network,” In Proceedings of the 2nd International

Conference on Cryptography, Security and Privacy, pp. 144-149. 2018.

[39] Z. Wang, J. Cai, S. Cheng, and W. Li, “DroidDeepLearner: Identifying Android

malware using deep learning,” in Proc. the 37th Sarnoff Symposium, pp. 160-165, 2018.

[40] K. Allix, T. F. Bissyande, Q. Jérome, J. Klein, and Y. L. Traon, “Empirical assessment

of machine learning-based malware detectors for Android,” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 21, no. 1, pp. 183-211, 2016.

[41] W. Wang, M. Zhao, and J. Wang, “Effective android malware detection with a hybrid

model based on deep autoencoder and convolutional neural network,” Journal of Ambient

Intelligence and Humanized Computing, pp. 1-9, 2018.

[42] N. Xie, X. Wang, W. Wang, and J. Liu, “Fingerprinting android malware families,”

Frontiers of Computer Science, vol. 13, no. 3, 2018.

[43] Y. Liu, L. Zhang, and X. Huang, “Using g features to improve the efficiency of

function call graph based android malware detection,” Wireless Personal

Communications, pp. 2947-2955, 2018.

[44] JAD (accessed February, 2019) http://www.javadecompilers.com/jad.

[45] DED (accessed February, 2019) http://siis.cse.psu.edu/ded/.

[46] Android4me: J2ME port of Google’s Android (2011)

https://code.google.com/p/android4me/downloads/list.

[47] Q. Jerome, K. Allix, R. State, and T. Engel, “Using opcode-sequences to detect

malicious Android applications,” in 2014 IEEE International Conference on

Communications (ICC), pp. 313-320, 2014.

[48] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu, “SAMADroid:

A Novel 3-Level Hybrid Malware Detection Model for Android Operating System,”

IEEE Access, vol. 6, pp. 4321-4339, 2018.

[49] A. Martín, R. L. Cabrera, and D. Camacho, “Android malware detection through

hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the

OmniDroid dataset,” Information Fusion, vol. 52, 2019, pp. 128-142.

http://www.javadecompilers.com/jad
http://siis.cse.psu.edu/ded/
https://code.google.com/p/android4me/downloads/list

121

[50] P. Feng, J. Ma, C.Sun, X. Xu, and Y. Ma, “A Novel Dynamic Android Malware

Detection System With Ensemble Learning,” IEEE Access, vol. 6, 2018, pp. 30996-

31011.

[51] V. Sihag, M. Vardhan, P. Singh, G. Choudhary, and S. Son, “De-LADY: Deep

learning based Android malware detection using Dynamic features,” Journal of Internet

Services and Information Security (JISIS), vol. 11, no. 2, pp. 34-45, 2021.

[52] CuckooDroid. (accessed October, 2019). https://cuckoo-

droid.readthedocs.io/en/latest/installation/.

[53] A. Desnos, and P. Lantz, “Droidbox: An android application sandbox for dynamic

analysis,” Lund Univ. Tech. Rep: Lund, Sweden, 2011.

[54] AppPlayground (accessed February, 2019). https://github.com/keymetrics/app-

playground.

[55] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. G. Chun, L. P. Cox, J. Jung, P.

McDaniel, and A. N. Sheth, “Taintdroid: an information-flow tracking system for

realtime privacy monitoring on smartphones,” ACM Transactions on Computer Systems

(TOCS), vol. 32, no. 2, pp. 1-29, 2014.

[56] Y. Zhou, and X. Jiang, “Dissecting android malware: Characterization and evolution,”

In 2012 IEEE symposium on security and privacy, pp. 95-109, 2012.

[57] Tom Mitchell, Machine Learning, McGraw Hill, 1997.

[58] J. Latif, C. Xiao, S. Tu, S. U. Rehman, A. Imran, and A. Bilal. “Implementation and

use of disease diagnosis systems for electronic medical records based on machine

learning: A complete review,” IEEE Access, vol. 8, pp. 150489-150513, 2020.

[59] S. Hakak, M. Alazab, S. Khan, T. R. Gadekallu, P. K. R. Maddikunta, and W. Z.

Khan, “An ensemble machine learning approach through effective feature extraction to

classify fake news,” Future Generation Computer Systems, vol. 117, pp. 47-58, 2021.

[60] J. Padmanabhan, and M. J. J. Premkumar, “Machine learning in automatic speech

recognition: A survey,” IETE Technical Review, vol. 32, no. 4, pp. 240-251, 2015.

[61] R. Malhotra, “A systematic review of machine learning techniques for software fault

prediction,” Applied Soft Computing, vol. 27, pp. 504-518, 2015.

[62] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection approaches

using data mining techniques,” Human-centric Computing and Information Sciences, vol.

8, pp. 1-22, 2018.

https://cuckoo-droid.readthedocs.io/en/latest/installation/
https://cuckoo-droid.readthedocs.io/en/latest/installation/
https://github.com/keymetrics/app-playground
https://github.com/keymetrics/app-playground

122

[63] Mobile Development (accessed August, 2021)

https://www.mindinventory.com/blog/android-app-development-trends/.

[64] Mobile Applications in Corona Virus Pandemic (accessed December, 2020)

https://scientificwebs.com/importance-of-mobile-applications-in-corona-virus-pandemic/.

[65] McAfee Labs (2020) Threat Predictions Report, McAfee Labs, Santa Clara, CA, USA.

[66] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andromaly: A

behavioral malware detection framework for android devices,” Journal of Intelligent

Information Systems, vol. 38, no. 1, pp. 161-190, 2012.

[67] J. O. Kephart, “Automatic extraction of computer virus signatures,” In Proc. 4th Virus

Bulletin International Conference, Abingdon, England, pp. 178-184, 1994.

[68] Y. Tang, B. Xiao, and X. Lu, “Using a bioinformatics approach to generate accurate

exploit-based signatures for polymorphic worms,” computers & security, vol. 28, no. 8,

pp. 827-842, 2009.

[69] H. R. Borojerdi, and M. Abadi, “MalHunter: Automatic generation of multiple

behavioral signatures for polymorphic malware detection,” In ICCKE 2013, pp. 430-436.

IEEE, 2013.

[70] T. A. Assegie, “An Optimized KNN Model for Signature-Based Malware Detection,”

International Journal of Computer Engineering In Research Trends (IJCERT), pp. 2349-

7084, 2021.

[71] N. K. Sreelaja, “Ant Colony Optimization based Light weight Binary Search for

efficient signature matching to filter Ransomware,” Applied Soft Computing, vol. 111, p.

107635, 2021.

[72] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating signatures

for polymorphic worms,” In 2005 IEEE Symposium on Security and Privacy (S&P'05),

pp. 226-241. IEEE, 2005.

[73] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-based malware

and signature generation using malicious network traces,” In NSDI, vol. 10, p. 14. 2010.

[74] P. Liu, W. Wang, X. Luo, H. Wang, and C. Liu, “NSDroid: efficient multi-

classification of android malware using neighborhood signature in local function call

graphs,” International Journal of Information Security, vol. 20, no. 1, 2021.

https://www.mindinventory.com/blog/android-app-development-trends/
https://scientificwebs.com/importance-of-mobile-applications-in-corona-virus-pandemic/

123

[75] P. Gopalakrishnan, R. S. Narayanan, R. Kamath, and A. Ramani, “Analyzing Diverse

Data Mining Techniques to Detect the Malware based on Signature,” Test Engineering

and Management, vol. 83, pp. 17717-17724, 2020.

[76] J. Jang, H. Kang, J. Woo, A. Mohaisen, and H. K. Kim, “Andro-Dumpsys: Anti-

malware system based on the similarity of malware creator and malware centric

information,” computers & security, vol. 58, pp. 125-138, 2016.

[77] D. Venugopal, and G. Hu, “Efficient signature based malware detection on mobile

devices,” Mobile Information Systems, vol. 4, no. 1, pp. 33-49, 2008.

[78] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, “AndroSimilar: robust

statistical feature signature for Android malware detection,” In Proceedings of the 6th

International Conference on Security of Information and Networks, pp. 152-159. 2013.

[79] M. Zheng, M. Sun, and J. C. Lui, “Droid analytics: a signature based analytic system

to collect, extract, analyze and associate android malware,” In 2013 12th IEEE

International Conference on Trust, Security and Privacy in Computing and

Communications, pp. 163-171. IEEE, 2013.

[80] S. Ngamwitroj, and B. Limthanmaphon, “Adaptive Android malware signature

detection,” In Proceedings of the 2018 International Conference on Communication

Engineering and Technology, pp. 22-25. 2018.

[81] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-based detection of

android malware through static analysis,” In Proceedings of the 22nd ACM SIGSOFT

international symposium on foundations of software engineering, pp. 576-587. 2014.

[82] F. Tchakounte, R. C. N. Ngassi, V. C. Kamla, and K. P. Udagepola, “LimonDroid: A

system coupling three signature-based schemes for profiling Android malware,” Iran

Journal of Computer Science, vol. 4, no. 2, pp. 95-114, 2021.

[83] Z. U. Rehman, S. N. Khan, K. Muhammad, J. W. Lee, Z. Lv, S. W. Baik, P. A. Shah,

K. Awan, and I. Mehmood, “Machine learning-assisted signature and heuristic-based

detection of malwares in Android devices,” Computers and Electrical Engineering, vol.

69, pp. 828-841, 2018.

[84] J. Yu, Q. Huang, and C. Yian, “DroidScreening: a practical framework for real-world

Android malware analysis,” Security and Communication Networks, vol. 9, no. 11, pp.

1435–1449, 2016.

124

[85] T. Ban, T. Takahashi, S. Guo, D. Inoue, and K. Nakao, “Integration of multimodal

features for android malware detection using linear svm,” in Proc. the 11th Asia Joint

Conference on Information Security (AsiaJCIS), pp. 141-146, Aug. 2016.

[86] S. Morales-Ortega, P. J. Escamilla-Ambrosio, A. Rodriguez-Mota, and L. D.

Coronado-De-Alba, “Native malware detection in smartphones with android OS using

static analysis, feature selection and ensemble classifiers,” in Proc. the 11th International

Conference on Malicious and Unwanted Software (MALWARE), pp. 1-8, 2016.

[87] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. E. R. T. Siemens,

“Drebin: Effective and explainable detection of android malware in your pocket,” in

Proc. NDSS, vol. 14, pp. 23-26, 2014.

[88] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-resilient detection

and family identification of android malware,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 26, no. 3, pp. 11, 2018.

[89] A. Firdaus, N. B. Anuar, A. Karim, and M. F. AbRazak, “Discovering optimal

features using static analysis and a genetic search based method for Android malware

detection,” Frontiers of Information Technology and Electronic Engineering, vol. 19, no.

6, pp. 712-736, 2018.

[90] A. Bhattacharya and R. T. Goswami, “A Hybrid Community Based Rough Set Feature

Selection Technique in Android Malware Detection,” Smart Trends in Systems, Security

and Sustainability, pp. 249-258, 2018.

[91] X. Yang, D. Lo, L. Li, X. Xia, T. F. Bissyandé, and J. Klein, “Characterizing

malicious android apps by mining topic-specific data flow signatures,” Information and

Software Technology, vol. 90, pp. 27-39, 2017.

[92] I. Martin, J. A. Hernandez, A. Munoz, and A. Guzman, “Android malware

characterization using metadata and machine learning techniques,” Security and

Communication Networks, 2018.

[93] W. Chen, D. Aspinall, A. D. Gordon, C. Sutton, and I. Muttik, “More semantics more

robust: Improving android malware classifiers,” in Proc. The 9th ACM Conference on

Security and Privacy in Wireless and Mobile Networks, pp. 147-158, 2017.

[94] S. Sen, E. Aydogan, and A. I. Aysan, “Coevolution of mobile malware and anti-

malware,” IEEE Transactions on Information Forensics and Security, pp. 2563-2574,

2018.

125

[95] K. Riad and L. Ke, “Roughdroid: Operative scheme for functional android malware

detection,” Security and Communication Networks, 2018.

[96] P. Palumbo, L. Sayfullina, D. Komashinskiy, E. Eirola, and J. Karhunen, “A

pragmatic android malware detection procedure,” Computers and Security, vol. 70, pp.

689-701, 2017.

[97] Q. Li, B. Sun, M. Chen, and H. Dong, “Detection malicious Android application based

on simple-Dalvik intermediate language,” Neural Computing and Applications, vol. 31,

no. 1, pp. 185-194, 2018.

[98] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated poisoning

attacks and defenses in malware detection systems: An adversarial machine learning

approach,” computers and security, vol. 73, no. 1, pp. 326-344, 2018.

[99] L. Chen, C. S. Gates, L. Si, and N. Li, “A probabilistic discriminative model for

android malware detection with decompiled source code,” IEEE Transactions on

Dependable and Secure Computing, vol. 12, no. 4, pp. 400-412, 2014.

[100] Y. Xu, C. Wu, K. Zheng, X. Wang, X. Niu, and T. Lu, “Computing adaptive feature

weights with PSO to improve android malware detection,” Security and Communication

Networks, 2017.

[101] X. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-Based Malware Detection on

Android,” IEEE Transactions on Information Forensics and Security, vol. 11, pp. 1252-

1264, 2016.

[102] D. Hu, Z. Ma, X. Zhang, P. Li, D. Ye, and B. Ling, “The Concept Drift Problem in

Android Malware Detection and Its Solution,” Security and Communication Networks,

2017.

[103] H. J. Zhu, T. H. Jiang, B. Ma, Z. H. You, W. L. Shi, and L. Cheng, “HEMD: a highly

efficient random forest-based malware detection framework for Android,” Neural

Computing and Applications, vol. 30, no. 11, pp. 3353-3361, 2018.

[104] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic

framework for android malware detection using deep learning,” Digital Investigation,

vol. 24, pp. 48-59, 2018.

[105] H. Zhang, S. Luo, Y. Zhang, and L. Pan, “An efficient Android malware detection

system based on method-level behavioral semantic analysis,” IEEE Access, vol. 7, pp.

69246-69256, 2019.

126

[106] S. Turker and A. B. Can, “AndMFC: Android Malware Family Classification

Framework,” In 2019 IEEE 30th International Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC Workshops), pp. 1-6, 2019.

[107] G. Shrivastava, and P. Kumar, “Android application behavioural analysis for data

leakage,” Expert Systems, 2019.

[108] L. Nguyen-Vu, J. Ahn, and S. Jung, “Android fragmentation in malware detection,”

Computers & Security, vol. 87, p. 101573, 2019.

[109] S. Badhani, and S. K. Muttoo, “CENDroid—A cluster-ensemble classifier for

detecting malicious Android applications,” Computers & Security, vol. 85, pp. 25-40,

2019.

[110] A. Alotaibi, “Identifying Malicious Software Using Deep Residual Long-Short Term

Memory,” IEEE Access, vol. 7, pp. 163128-163137, 2019.

[111] S. Y. Yerima, and S. Khan, “Longitudinal performance analysis of machine learning

based Android malware detectors,” In 2019 International Conference on Cyber Security

and Protection of Digital Services (Cyber Security), pp. 1-8, 2019.

[112] J. McGiff, W. G. Hatcher, J. Nguyen, W. Yu, E. Blasch, and C. Lu, “Towards

multimodal learning for android malware detection,” In 2019 International Conference

on Computing, Networking and Communications (ICNC), pp. 432-436, 2019.

[113] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and M. Conti,

“Similarity-based Android malware detection using Hamming distance of static binary

features,” Future Generation Computer Systems, 105, 230-247, 2020.

[114] F. Mercaldo and A. Santone, “Audio signal processing for Android malware detection

and family identification,” Journal of Computer Virology and Hacking Techniques, vol.

17, no. 2, pp. 139-152, 2021.

[115] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisaan, and Y. Heng, “Significant permission

identification for machine-learning-based android malware detection,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3216-3225, 2018.

[116] H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, and L. Cheng, “DroidDet:

effective and robust detection of android malware using static analysis along with

rotation forest model,” Neurocomputing, vol. 272, pp. 638-646, 2018.

127

[117] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep learning

method for Android malware detection using various features,” IEEE Transactions on

Information Forensics and Security, vol.14, no. 3, pp. 773-788, 2018.

[118] A. Feizollah, N. B. Anuar, R. Salleh, G. S. Tangil, and S. Furnell, “Androdialysis:

Analysis of android intent effectiveness in malware detection,” computers & security,

vol. 65, pp. 121-134, 2017.

[119] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring permission-

induced risk in android applications for malicious application detection,” IEEE

Transactions on Information Forensics and Security, vol. 9, no. 11, pp. 1869-1882, 2014.

[120] M. Alazab, “Automated Malware Detection in Mobile App Stores Based on Robust

Feature Generation,” Electronics, vol. 9, no. 3, p. 435, 2020.

[121] A. Arora, K. P. Sateesh, and C. Mauro, “Permpair: Android malware detection using

permission pairs,” IEEE Transactions on Information Forensics and Security, vol. 15, pp.

1968-1982, 2019.

[122] P. Agrawal, and T. Bhushan, “Machine learning classifiers for Android malware

detection,” In Data Management, Analytics and Innovation, pp. 311-322. Springer, 2021.

[123] D. O. Şahin, O. E. Kural, S. Akleylek, and E. Kılıc, “A novel permission-based

Android malware detection system using feature selection based on linear

regression,” Neural Computing and Applications, pp. 1-16, 2021.

[124] H. Bai, N. Xie, X. Di, and Q. Ye, “Famd: A fast multifeature android malware

detection framework, design, and implementation,” IEEE Access, vol. 8, pp. 194729-

194740, 2020.

[125] H. Yuan, T. Yongchuan, S. Wenjuan, and L. Liu, “A detection method for android

application security based on TF-IDF and machine learning,” Plos one, vol. 15, no. 9,

2020.

[126] A. Sangal, and H. K. Verma, “A static feature selection-based android malware

detection using machine learning techniques,” In 2020 International conference on smart

electronics and communication (ICOSEC), pp. 48-51. IEEE, 2020.

[127] S. Y. Yerima, S. Sezer, and I. Muttik, “Android malware detection using parallel

machine learning classifiers,” In 2014 Eighth international conference on next generation

mobile apps, services and technologies, pp. 37-42. IEEE, 2014.

128

[128] L. D. Coronado-De-Alba, A. Rodríguez-Mota, and P. J. Escamilla-Ambrosio, “Feature

selection and ensemble of classifiers for Android malware detection,” In 2016 8th IEEE

Latin-American Conference on Communications (LATINCOM), pp. 1-6. IEEE, 2016.

[129] S. Y. Yerima, and S. Sezer, “Droidfusion: A novel multilevel classifier fusion

approach for android malware detection,” IEEE transactions on cybernetic, vol. 49, no. 2

2018, pp. 453-466.

[130] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamathavan, “PIndroid: A

novel Android malware detection system using ensemble learning methods,” Computers

& Security, vol. 68, pp. 36-46, 2017.

[131] N. Milosevic, A. Dehghantanha, and K. K. R. Choo, “Machine learning aided Android

malware classification,” Computers & Electrical Engineering, vol. 61, pp. 266-274,

2017.

[132] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting Android malicious apps

and categorizing benign apps with ensemble of classifiers,” Future generation computer

systems, vol. 78, pp. 987-994, 2018.

[133] X. Wang, D. Zhang, X. Su, and W. Li, “Mlifdect: android malware detection based on

parallel machine learning and information fusion,” Security and Communication

Networks, 2017.

[134] D. T. Dehkordy and A. Rasoolzadegan, “A new machine learning-based method for

android malware detection on imbalanced dataset,” Multimedia Tools and Applications,

pp.1-22, 2021.

[135] G. Shrivastava, and P. Kumar, “SensDroid: analysis for malicious activity risk of

Android application,” Multimedia Tools and Applications, vol. 78, no. 24, pp. 35713-

35731, 2019.

[136] Y. Wang, J. Zheng, C. Sun, and S. Mukkamala, “Quantitative security risk assessment

of android permissions and applications,” In IFIP Annual Conference on Data and

Applications Security and Privacy, pp. 226-241. Springer, 2013.

[137] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross, and G.

Stringhini, “Mamadroid: Detecting android malware by building markov chains of

behavioral models (extended version),” ACM Transactions on Privacy and Security

(TOPS), vol. 22, no. 2, pp. 1-34, 2019.

129

[138] Y. Ye, L. Wu, Z. Hong, and K. Huang, “A risk classification based approach for

android malware detection,” KSII Transactions on Internet and Information Systems

(TIIS), vol. 11, no. 2, pp. 959-981, 2017.

[139] Y. Xu, C. Wu, K. Zheng, X. Niu, and Y. Yang, “Fuzzy–synthetic minority

oversampling technique: Oversampling based on fuzzy set theory for Android malware

detection in imbalanced datasets,” International Journal of Distributed Sensor Networks,

vol. 13, no. 4, 2017.

[140] Y. T. Ling, N. F. M. Sani, M. T. Abdullah, and N. A. W. A. Hamid, “Structural

features with nonnegative matrix factorization for metamorphic malware

detection,” Computers & Security, vol. 104, p. 102216, 2021.

[141] S. Alam, R. N. Horspool, I. Traore, and I. Sogukpinar, “A framework for metamorphic

malware analysis and real-time detection,” computers & security, vol. 48, pp. 212-233,

2015.

[142] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: automatic

reconstruction of android malware behaviors,” In Ndss. 2015.

[143] M. Bierma, E. Gustafson, J. Erickson, D. Fritz, and Y. R. Choe, “Andlantis: Large-

scale Android dynamic analysis,” arXiv preprint arXiv:1410.7751, 2014.

[144] M. N. P. Pravin, “Vetdroid: Analysis using permission for vetting undesirable

behaviours in android applications,” International Journal of Innovative and Emerging

Research in Engineering, vol. 2, pp. 31-136, 2015.

[145] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of machine

learning classifiers for mobile malware detection," Soft Computing, vol. 20, no. 1, pp.

343-357, 2016.

[146] S. Dai, T. Wei, and W. Zou, “DroidLogger: Reveal suspicious behavior of Android

applications via instrumentation,” In 2012 7th international conference on computing and

convergence technology (ICCCT), pp. 550-555. IEEE, 2012.

[147] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and Y.

Elovici, “Mobile malware detection through analysis of deviations in application network

behaviour,” Computers & Security, vol. 43, pp. 1-18, 2014.

[148] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic

malware-analysis techniques and tools,” ACM computing surveys (CSUR), vol. 44, no. 2,

pp. 1-42, 2008.

130

[149] P. S. Chen, S. C. Lin, and C. H. Sun, “Simple and effective method for detecting

abnormal internet behaviors of mobile devices,” Information Sciences, vol. 321, pp. 193-

204, 2015.

[150] D. F. Guo, A. F. Sui, Y. J. Shi, J. J. Hu, G. Z. Lin, and T. Guo, “Behavior

Classification based Self-learning Mobile Malware Detection,” Journals of Computers,

vol. 9, no. 4, pp. 851-858, 2014.

[151] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through system call

sequence and argument analysis,” IEEE Transactions on Dependable and Secure

Computing, vol. 7, no. 4, pp. 381-395, 2008.

[152] Z. Salehi, A. Sami, and M. Ghiasi, “MAAR: Robust features to detect malicious

activity based on API calls, their arguments and return values,” Engineering Applications

of Artificial Intelligence, vol. 59, pp. 93-102, 2017.

[153] W. Han, J. Xue, Y. Wang, Z. Liu, and Z. Kong, “MalInsight: A systematic profiling

based malware detection framework,” Journal of Network and Computer Applications

vol. 125, pp. 236-250, 2019.

[154] A. Mahindru and A. L. Sangal, “MLDroid—framework for Android malware

detection using machine learning techniques,” Neural Computing and Applications, vol.

33, no. 10, pp. 5183-5240, 2021.

[155] A. Yan, Z. Chen, H. Zhang, L. Peng, Q. Yan, M. U. Hassan, C. Zhao, and B. Yang,

“Effective detection of mobile malware behavior based on explainable deep neural

network,” Neurocomputing, vol. 453, pp. 482-492, 2021.

[156] Y. Park, S. R. Douglas, and M. Stamp, “Deriving common malware behavior through

graph clustering,” computers & security, vol. 39, pp. 419-430, 2013.

[157] Ahmadi, Mansour, Ashkan Sami, Hossein Rahimi, and Babak Yadegari. “Malware

detection by behavioural sequential patterns,” Computer Fraud & Security, no. 8, pp. 11-

19, 2013.

[158] M. Ghiasi, A. Sami, and Z. Salehi, “DyVSoR: dynamic malware detection based on

extracting patterns from value sets of registers,” The ISC International Journal of

Information Security, vol. 5, no. 1, pp. 71-82, 2013.

[159] C. Ravi, and R. Manoharan, “Malware detection using windows api sequence and

machine learning," International Journal of Computer Applications, vol. 43, no. 17,

pp.12-16, 2012.

131

[160] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware

behavior using machine learning,” Journal of Computer Security, vol. 19, no. 4, pp. 639-

668, 2011.

[161] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective android malware

detection and categorization via app-level profiling,” IEEE Transactions on Information

Forensics and Security, vol.14, no. 6, pp. 1455-1470, 2018.

[162] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based online malware

detection: Towards efficient real-time protection against malware,” IEEE transactions on

information forensics and security, vol. 11, no. 2, pp. 289-302, 2015.

[163] L. Chen, M. Zhang, C. Y. Yang, and R. Sahita, “Semi-supervised classification for

dynamic Android malware detection,” arXiv preprint arXiv:1704.05948, 2017.

[164] M. Zheng, M. Sun, and J. C. S. Lui, “DroidTrace: A ptrace based Android dynamic

analysis system with forward execution capability,” In 2014 international wireless

communications and mobile computing conference (IWCMC), pp. 128-133. IEEE, 2014.

[165] V. M. Afonso, M. F. D. Amorim, A. R. A. Grégio, G. B. Junquera, and P. L. D. Geus,

“Identifying Android malware using dynamically obtained features,” Journal of

Computer Virology and Hacking Techniques, vol. 11, no. 1, pp. 9-17, 2015.

[166] A. Mahindru and P. Singh, “Dynamic permissions based android malware detection

using machine learning techniques,” In Proceedings of the 10th innovations in software

engineering conference, pp. 202-210, 2017.

[167] R. Oak, M. Du, D. Yan, H. Takawale, and I. Amit, “Malware detection on highly

imbalanced data through sequence modelling,” In Proceedings of the 12th ACM

Workshop on artificial intelligence and security, pp. 37-48, 2019.

[168] Y. Pang, L. Peng, Z. Chen, B. Yang, and H. Zhang, “Imbalanced learning based on

adaptive weighting and Gaussian function synthesizing with an application on Android

malware detection,” Information Sciences, vol. 484, pp. 95-112, 2019.

[169] H. Chen, H. F. Leung, B. Han, and J. Su, “Automatic privacy leakage detection for

massive android apps via a novel hybrid approach,” In 2017 IEEE International

Conference on Communications (ICC), pp. 1-7. IEEE, 2017.

[170] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp, and J. Hoffmann, “Mobile-

Sandbox: combining static and dynamic analysis with machine-learning techniques,”

International Journal of Information Security, vol. 14, no. 2, pp. 141-153, 2015.

132

[171] Y. Liu, Y. Zhang, H. Li, and X. Chen, “A hybrid malware detecting scheme for

mobile Android applications,” In 2016 IEEE International Conference on Consumer

Electronics (ICCE), pp. 155-156. IEEE, 2016.

[172] S. Kandukuru and R. M. Sharma, “Android malicious application detection using

permission vector and network traffic analysis,” In 2017 2nd International Conference

for Convergence in Technology (I2CT), pp. 1126-1132. IEEE, 2017.

[173] A. Altaher and O. M. Barukab, “Intelligent hybrid approach for Android malware

detection based on permissions and API calls,” International Journal of Advanced

Computer Science and Applications, vol. 8, no. 6, pp. 60-67, 2017.

[174] F. Afifi, N. B. Anuar, S. Shamshirband, and K. K. R. Choo, “DyHAP: Dynamic

hybrid ANFIS-PSO approach for predicting mobile malware,” PloS one, vol. 11, no. 9,

2016.

[175] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based

android malware detection using real devices,” Computers & Security vol. 89, p. 101663,

2020.Z.

[176] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware characterization and

detection using deep learning,” Tsinghua Science and Technology, vol. 21, no. 1, pp. 114-

123, 2016.

[177] F. Tong and Z. Yan, “A hybrid approach of mobile malware detection in

Android,” Journal of Parallel and Distributed computing, vol.103, pp. 22-31, 2017.

[178] T. Bläsing, L. Batyuk, A. D.Schmidt, S. A. Camtepe, and S. Albayrak, “An android

application sandbox system for suspicious software detection,” In 2010 5th International

Conference on Malicious and Unwanted Software, pp. 55-62. IEEE, 2010.

[179] Z. Fu, Y. Ding, and M. Godfrey, “An LSTM-Based Malware Detection Using

Transfer Learning,” Journal of Cybersecurity, vol. 3, no. 1, p.11, 2021.

[180] Z. H. Qaisar and R. Li, “Multimodal information fusion for android malware detection

using lazy learning,” Multimedia Tools and Applications, pp. 1-15, 2021.

[181] A. T. Kabakus and I. A. Dogru, “An in-depth analysis of Android malware using

hybrid techniques,” Digital Investigation, vol. 24, pp. 25-33, 2018.

[182] J. H. Abawajy and A. Kelarev, “Iterative classifier fusion system for the detection of

Android malware,” IEEE Transactions on Big Data, vol. 5, no. 3, pp. 282-292, 2017.

133

[183] D. Gupta and R. Rani, “Improving malware detection using big data and ensemble

learning,” Computers & Electrical Engineering, vol. 86, p. 106729, 2020.

[184] K. Sharma and B. B. Gupta, “Mitigation and risk factor analysis of android

applications," Computers & Electrical Engineering, vol. 71, pp. 416-430, 2018.

[185] APKMirror (accessed March, 2019). https://www.apkmirror.com/.

[186] Apkpure (accessed March, 2019). https://apkpure.com/.

[187] Virusshare (accessed March, 2019). https://virusshare.com/.

[188] Avira (accessed April, 2019). https://www.avira.com/.

[189] J. Han, J. Pei, and M. Kamber, “Data mining: concepts and techniques,” Elsevier,

2011.

[190] “Xposed module repository.” Xposed Module. (accessed October, 2019)

http://repo.xposed.info/module/de.robv.android.xposed.installer.

[191] B. Chizi and O. Maimon, “Dimension reduction and feature selection,” In Data

mining and knowledge discovery handbook, pp. 83-100. Springer, 2009.

[192] G. Shakhnarovish, T. Darrell, and P. Indyk, “Nearest-neighbor methods in learning

and vision,” In MIT Press, p. 262, 2005.

[193] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo,

CA, 1993.

[194] A. Liaw and M. Wiener, “Classification and regression by randomForest,” R news,

vol. 2, no. 3, pp. 18-22, 2002.

[195] V. Vapnik, E. Levin, and Y. L. Cun, “Measuring the VC-dimension of a learning

machine,” Neural computation, vol. 6, no. 5, pp. 851-876, 1994.

[196] P. Domingos and M. Pazzani, “On the optimality of the simple Bayesian classifier

under zero-one loss,” Machine learning, vol.29, no. 2-3, pp. 103-130, 1997.

[197] F. Eibe, I. H. Witten, “Generating Accurate Rule Sets Without Global Optimization,”

In: Fifteenth International Conference on Machine Learning, pp. 144-151, 1998.

[198] Scikit-Learn Machine Learning in Python. (accessed June, 2019). https://scikit-

learn.org/stable/.

[199] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para.

Cornell Aeronautical Laboratory, 1957.

[200] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm.” In icml,

vol. 96, pp. 148-156, 1996.

https://www.apkmirror.com/
https://apkpure.com/
https://virusshare.com/
https://www.avira.com/
http://repo.xposed.info/module/de.robv.android.xposed.installer
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

134

[201] D. Aldous, “The continuum random tree. I,” The Annals of Probability, pp.1-28, 1991.

[202] K. M. Ting and I. H. Witten, “Issues in stacked generalization,” Journal of artificial

intelligence research, vol.10, pp. 271-289, 1999.

[203] L. I. Kuncheva, A. A. Gonzalez, J. F. D. Pastor, and I. A. D. Gunn, “Instance selection

improves geometric mean accuracy: a study on imbalanced data classification,” Progress

in Artificial Intelligence, vol. 8, no. 2, pp. 215-228, 2019.

[204] J. Liu and E. Zio, “Integration of feature vector selection and support vector machine

for classification of imbalanced data,” Applied Soft Computing, vol.75, pp. 702-711,

2019.

[205] P. Lopez-Garcia, A. D. Masegosa, E. Osaba, E. Onieva, and A. Perallos, “Ensemble

classification for imbalanced data based on feature space partitioning and hybrid

metaheuristics,” Applied Intelligence, vol. 49, no. 8, pp. 2807-2822, 2019.

[206] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on

knowledge and data engineering, vol. 21, no. 9, pp. 1263-1284, 2009.

[207] Y. Sun, A. K. C. Wong, and M. S. Kamel, “Classification of imbalanced data: A

review,” International journal of pattern recognition and artificial intelligence, vol. 23,

no. 04, pp. 687-719, 2009.

[208] N. Hatami, Y. Gavet, and J. Debayle, “Classification of time-series images using deep

convolutional neural networks,” In Tenth international conference on machine vision

(ICMV 2017), vol. 10696, p. 106960Y, International Society for Optics and Photonics,

2018.

[209] V. Kumar, R. Kumar, and A. Sharma, “Maintainability prediction from project metrics

data analysis using artificial neural network: an interdisciplinary study,” Middle-East

Journal of Scientific Research, vol. 19, no. 10, pp. 1412-1420, 2014.

[210] R. Kumar, P. S. Grover, and A. Kumar, “A Fuzzy Logic Approach to Measure

Complexity of Generic Aspect Oriented Systems,” Journal of Object Technology, vol. 9,

no. 3, pp. 59-77, 2010.

[211] K. Rai, M. S. Devi, and A. Guleria, “Decision tree based algorithm for intrusion

detection,” International Journal of Advanced Networking and Applications, vol. 7, no. 4,

p. 2828, 2016.

[212] L. H. M. Sepulvene, I. N. Drummond, B. T. Kuehne, R. M. D. Frinhani, F. Petri, S.

Reiff-Marganiec, and B. G. Batista, “Analysis of machine learning techniques in fault

135

diagnosis of vehicle fleet tracking modules,” In 2019 8th Brazilian Conference on

Intelligent Systems (BRACIS), pp. 759-764. IEEE, 2019.

[213] S. Kumari and V. Bhattacharjee, “An indepth experimentation with classifiers for

prediction of Diabetes,” International Journal of Engineering Sciences & Research

Technology, vol. 10, no. 6, pp. 28-33, 2021.

[214] V. S. Sheng, B. Gu, W. Fang, and J. Wu, “Cost-sensitive learning for defect

escalation,” Knowledge-Based Systems, vol. 66, pp. 146-155, 2014.

[215] R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri, “The imbalanced

training sample problem: Under or over sampling?,” In Joint IAPR international

workshops on statistical techniques in pattern recognition (SPR) and structural and

syntactic pattern recognition (SSPR), pp. 806-814. Springer, 2004.

[216] A. S. Sohal, R. Sandhu, S. K. Sood, and V. Chang, “A cybersecurity framework to

identify malicious edge device in fog computing and cloud-of-things environments,”

Computers & Security, vol. 74, pp. 340-354, 2018.

[217] G. Dini, F. Martinelli, I. Matteucci, M. Petrocchi, A. Saracino, and D. Sgandurra,

“Risk analysis of Android applications: A user-centric solution,” Future Generation

Computer Systems, vol.80, pp. 505-518, 2018.

[218] K. Sharma, M. K. Ghose, D. Kumar, R. P. K. Singh, and V. K. Pandey, “A

comparative study of various security approaches used in wireless sensor networks,”

International journal of advanced science and technology, vol. 17, no. 2, pp. 31-44,

2010.

[219] K. Rai, A. Guleria, and M. Syamala Devi, “Integrated Intrusion Detection Scheme

using Agents,” International Journal of Cyber-Security and Digital Forensics, vol. 9, no.

1, pp. 26-42, 2020.

[220] U. Gupta, S. Gupta, and V. Bhattacharjee, “Intrusion detection system using outlier

analysis,” Advancement of Computer Technology and its Applications, vol. 2, no. 2,

2019.

[221] A. Parchami, M. Nourbakhsh, and M. Mashinchi, “Analysis of variance in uncertain

environments,” Complex & Intelligent Systems, vol. 3, no. 3, pp. 189-196, 2017.

136

APPENDICES

APPENDIX A

Based on the data analysis, the API calls and permissions are divided into three categories i.e.

API calls and permissions that are found only in the benign app sample, API calls and

permissions found in both the benign and malicious samples and API calls and permissions

found only in the malicious app sample.

 Table A.1: API calls found only in benign apps

API calls only in benign apps

MessengerService SendMultipartTextMessage

IRemoteService Runtime.load

Process.start PathClassLoader

Context.bindService Ljava.lang.Class.getDeclaredClasses

ACCOUNT_MANAGER GetBinder

Table A.2: Permissions found only in benign apps

Permissions only in benign apps

AUTHENTICATE_ACCOUNTS BIND_APPWIDGET CHANGE_WIMAX_STATE

NFC SET_PROCESS_LIMIT GET_DETAILED_TASKS

BIND_REMOTEVIEWS BIND_TEXT_SERVICE

GET_INTENT_SENDER_IN

TENT

READ_PROFILE

INSTALL_LOCATION_PROVID

ER

GLOBAL_SEARCH_CONTR

OL

READ_SYNC_STATS

MOUNT_FORMAT_FILESYSTE

MS

INTERACT_ACROSS_USE

RS_FULL

CAPTURE_VIDEO_OUTPUT SET_ACTIVITY_WATCHER MANAGE_DOCUMENTS

SUBSCRIBED_FEEDS_WRITE BIND_VPN_SERVICE MANAGE_USERS

CHANGE_WIFI_MULTICAST_

STATE ACCESS_BLUETOOTH_SHARE

MEDIA_CONTENT_CONTR

OL

MASTER_CLEAR ACCESS_CACHE_FILESYSTEM MOVE_PACKAGE

CAPTURE_SECURE_VIDEO_O

UTPUT

ACCESS_NOTIFICATION_POLI

CY OVERRIDE_WIFI_CONFIG

WRITE_USER_DICTIONARY BLUETOOTH_PRIVILEGED PACKAGE_USAGE_STATS

WRITE_PROFILE BIND_DIRECTORY_SEARCH READ_INSTALL_SESSION

137

S

READ_SOCIAL_STREAM BIND_DREAM_SERVICE REAL_GET_TASKS

READ_USER_DICTIONARY BIND_INCALL_SERVICE

REQUEST_INSTALL_PACK

AGES

DUMP BIND_JOB_SERVICE

SEND_DOWNLOAD_COMP

LETED_INTENTS

SET_TIME BIND_QUICK_SETTINGS_TILE

SEND_RESPOND_VIA_ME

SSAGE

WRITE_SOCIAL_STREAM BIND_SCREENING_SERVICE STATUS_BAR_SERVICE

WRITE_GSERVICES

BIND_TELECOM_CONNECTIO

N_SERVICE TETHER_PRIVILEGED

SET_TIME_ZONE WRITE_MEDIA_STORAGE TRANSMIT_IR

BIND_ACCESSIBILITY_SERVI

CE BIND_VOICE_INTERACTION UPDATE_APP_OPS_STATS

ADD_VOICEMAIL

Table A.3: API calls found in both malware and benign apps

Common API calls in both malicious and benign apps

AbortBroadcast Transact

Ljava.lang.Class.getResource BindService

TelephonyManager.getSimSerialNumber Ljava.lang.Class.getCanonicalName

KeySpec OnServiceConnected

SendDataMessage AttachInterface

DivideMessage android.os.Binder

android.os.IBinder Ljava.net.URLDecoder

TelephonyManager.getLine1Number Ljava.lang.Class.getMethods

SET_ALARM ServiceConnection

HttpPost.init Ljava.lang.Class.getField

ProcessBuilder Landroid.content.Context.registerReceiver

Ljava.lang.Class.getClasses ClassLoader

Ljava.lang.Class.forName Landroid.content.Context.unregisterReceiver

HttpUriRequest FindClass

TelephonyManager.getSimCountryIso Ljava.lang.Class.getDeclaredField

OnBind

138

Table A.4: Permissions found in both malware and benign apps

Common permissions in both malicious and benign apps

SEND_SMS HARDWARE_TEST READ_CONTACTS

WRITE_SMS ACCESS_WIFI_STATE BIND_DEVICE_ADMIN

RECEIVE_SMS ACCESS_SURFACE_FLINGER

KILL_BACKGROUND_PRO

CESSES

READ_SYNC_SETTINGS ACCESS_FINE_LOCATION CALL_PRIVILEGED

BATTERY_STATS CAPTURE_AUDIO_OUTPUT

SET_PREFERRED_APPLIC

ATIONS

WRITE_HISTORY_BOOK

MARKS INJECT_EVENTS

CHANGE_NETWORK_STA

TE

INSTALL_PACKAGES GET_ACCOUNTS BROADCAST_WAP_PUSH

READ_HISTORY_BOOK

MARKS USE_CREDENTIALS FLASHLIGHT

INTERNET MANAGE_ACCOUNTS

SYSTEM_ALERT_WINDO

W

DISABLE_KEYGUARD READ_SMS GET_PACKAGE_SIZE

WRITE_APN_SETTINGS CAMERA READ_FRAME_BUFFER

RECEIVE_BOOT_COMPL

ETED WRITE_SYNC_SETTINGS

WRITE_EXTERNAL_STOR

AGE

RESTART_PACKAGES

BIND_NOTIFICATION_LISTE

NER_SERVICE BROADCAST_SMS

UPDATE_DEVICE_STATS MODIFY_AUDIO_SETTINGS

CHANGE_COMPONENT_E

NABLED_STATE

ACCOUNT_MANAGER BROADCAST_STICKY WRITE_SETTINGS

SET_WALLPAPER_HINT

S WAKE_LOCK WRITE_CONTACTS

SET_WALLPAPER BLUETOOTH

ACCESS_MOCK_LOCATIO

N

SET_DEBUG_APP READ_CALENDAR MODIFY_PHONE_STATE

BIND_WALLPAPER READ_EXTERNAL_STORAGE EXPAND_STATUS_BAR

READ_PHONE_STATE VIBRATE SET_ORIENTATION

ACCESS_COARSE_LOCA

TION ACCESS_NETWORK_STATE BLUETOOTH_ADMIN

RECEIVE_MMS SUBSCRIBED_FEEDS_READ DEVICE_POWER

CONTROL_LOCATION_U

PDATES WRITE_CALENDAR

INTERACT_ACROSS_USE

RS

CALL_PHONE GET_TASKS PERSISTENT_ACTIVITY

139

READ_LOGS GLOBAL_SEARCH

WRITE_SECURE_SETTING

S

MOUNT_UNMOUNT_FIL

ESYSTEMS REORDER_TASKS

ACCESS_DOWNLOAD_MA

NAGER

CHANGE_CONFIGURATI

ON BIND_INPUT_METHOD ACCESS_WIMAX_STATE

CHANGE_WIFI_STATE

Table A.5: API calls found only in malicious apps

API calls only in malware apps

PackageInstaller DefineClass

Ljava.lang.Class.getPackage GetCallingUid

Runtime.exec TelephonyManager.getCallState

Table A.6: Permissions found only in malicious apps

Permissions only in malware apps

READ_INPUT_STATE FORCE_STOP_PACKAGES

SIGNAL_PERSISTENT_PROCESSES SET_ANIMATION_SCALE

SET_ALWAYS_FINISH FACTORY_TEST

BROADCAST_PACKAGE_REMOVED BACKUP

READ_OWNER_DATA READ_CALL_LOG

WRITE_CALL_LOG STATUS_BAR

DELETE_PACKAGES DELETE_CACHE_FILES

CLEAR_APP_CACHE RECEIVE_WAP_PUSH

CLEAR_APP_USER_DATA PROCESS_OUTGOING_CALLS

ACCESS_LOCATION_EXTRA_COMMANDS RECORD_AUDIO

REBOOT INTERNAL_SYSTEM_WINDOW

APPENDIX B

This section shows the percentage of API calls and permissions present in Android apps

belonging to different risk categories.

140

Table B.1: High risk API calls

API call Malware API call Malware

PackageInstaller 6.70% DefineClass 0.52%

Ljava.lang.Class.getPackage 15.28% GetCallingUid 5.44%

Runtime.exec 26.39% TelephonyManager.getCallState 3.55%

Table B.2: High risk permissions

Permission Malware Permission Malware

READ_INPUT_STATE 0.06% FORCE_STOP_PACKAGES 3.15%

SIGNAL_PERSISTENT_PROCESSES 0.06% SET_ANIMATION_SCALE 0.06%

SET_ALWAYS_FINISH 0.06% FACTORY_TEST 0.34%

BROADCAST_PACKAGE_REMOVED 3.15% BACKUP 0.40%

READ_OWNER_DATA 0.57% READ_CALL_LOG 1.09%

WRITE_CALL_LOG 1.32% STATUS_BAR 1.95%

DELETE_PACKAGES 4.29% DELETE_CACHE_FILES 2.23%

CLEAR_APP_CACHE 1.72% RECEIVE_WAP_PUSH 2.92%

CLEAR_APP_USER_DATA 0.80% PROCESS_OUTGOING_CALLS 4.12%

ACCESS_LOCATION_EXTRA_COMMANDS 11.22% RECORD_AUDIO 2.40%

REBOOT 0.52% INTERNAL_SYSTEM_WINDOW 0.06%

Table B.3: Medium risk API calls

API call Malware Benign API call Malware Benign

AbortBroadcast 0.20% 0.07% divideMessage 0.06% 0.02%

Ljava.lang.Class.getResource 0.40% 0.39% android.os.IBinder 0.92% 0.85%

TelephonyManager.getSimSerialNu

mber 0.18% 0.10%

TelephonyManager.getLine1

Number 0.42% 0.15%

SendDataMessage 0.04% 0.01% SET_ALARM 0.03% 0.02%

141

Table B.4: Medium risk permissions

Permission Malware Benign Permission Malware Benign

SEND_SMS 54.84% 6.11% BIND_WALLPAPER 4.58% 2.50%

WRITE_EXTERNAL_STORAGE 68.00% 64.22%

READ_HISTORY_BOOK

MARKS 17.74% 4.06%

RECEIVE_SMS 38.29% 7.17%

ACCESS_COARSE_LOCA

TION 31.94% 27.06%

ACCESS_WIFI_STATE 43.39% 41.83% RECEIVE_MMS 3.26% 1.44%

WRITE_SMS 22.15% 4.22%

CONTROL_LOCATION_U

PDATES 0.63% 0.44%

WRITE_HISTORY_BOOKMARK

S 16.26% 2.83% CALL_PHONE 13.97% 11.06%

INSTALL_PACKAGES 14.25% 2.89% READ_LOGS 8.59% 7.94%

ACCESS_FINE_LOCATION 30.57% 29.94%

MOUNT_UNMOUNT_FIL

ESYSTEMS 4.41% 2.61%

INTERNET 95.94% 82.17%

CHANGE_CONFIGURATI

ON 3.26% 2.33%

READ_PHONE_STATE 89.01% 49.39% CHANGE_WIFI_STATE 18.20% 15.78%

WRITE_APN_SETTINGS 9.79% 1.61% DISABLE_KEYGUARD 8.59% 7.78%

RECEIVE_BOOT_COMPLETED 48.94% 32.67% GET_PACKAGE_SIZE 1.89% 1.67%

RESTART_PACKAGES 13.91% 4.61%

CAPTURE_AUDIO_OUTP

UT 0.57% 0.28%

UPDATE_DEVICE_STATS 2.75% 0.44% HARDWARE_TEST 0.34% 0.22%

INJECT_EVENTS 0.06% 0.06% READ_SMS 37.32% 6.94%

SET_WALLPAPER 10.07% 5.61%

Table B.5: Low risk API calls

API call Benign Malware API call Benign Malware

Ljava.lang.Class.forName 0.71% 0.47% AttachInterface 0.63% 0.06%

ProcessBuilder 0.11% 0.07% android.os.Binder 0.70% 0.27%

ServiceConnection 0.66% 0.08%

Landroid.content.Context.unregist

erReceiver 0.57% 0.17%

OnBind 0.72% 0.64% Ljava.lang.Class.getMethods 0.43% 0.14%

KeySpec 0.58% 0.54%
Ljava.lang.Class.getCanonicalNa

0.50% 0.05%

142

me

TelephonyManager.getSimCou

ntryIso 0.22% 0.11% Ljava.lang.Class.getField 0.60% 0.25%

OnServiceConnected 0.67% 0.24%

Landroid.content.Context.register

Receiver 0.66% 0.34%

HttpUriRequest 0.70% 0.58% ClassLoader 0.67% 0.43%

Ljava.lang.Class.getClasses 0.07% 0.02% Ljava.net.URLDecoder 0.58% 0.12%

HttpPost.init 0.63% 0.50% FindClass 0.09% 0.02%

Transact 0.64% 0.06% Ljava.lang.Class.getDeclaredField 0.62% 0.23%

BindService 0.66% 0.24%

Table B.6: Low risk permissions

Permission Benign Malware Permission Benign Malware

GET_ACCOUNTS 43.17% 8.24% WRITE_SECURE_SETTINGS 5.28% 3.84%

USE_CREDENTIALS 17.00% 0.06% PERSISTENT_ACTIVITY 1.78% 0.29%

MANAGE_ACCOUNTS 16.44% 0.17% CHANGE_NETWORK_STATE 11.44% 6.47%

READ_SYNC_SETTINGS 13.00% 0.46% BROADCAST_WAP_PUSH 0.67% 0.11%

CAMERA 19.00% 4.24% FLASHLIGHT 3.28% 1.55%

WRITE_SYNC_SETTINGS 12.28% 0.63% SYSTEM_ALERT_WINDOW 8.11% 5.27%

BIND_NOTIFICATION_LIS

TENER_SERVICE 3.33% 0.06% BIND_DEVICE_ADMIN 2.56% 0.29%

MODIFY_AUDIO_SETTIN

GS 8.94% 1.26% READ_FRAME_BUFFER 1.00% 0.46%

BROADCAST_STICKY 8.33% 0.52%

CHANGE_COMPONENT_ENAB

LED_STATE 1.00% 0.69%

WAKE_LOCK 53.11% 38.18% BROADCAST_SMS 1.17% 0.40%

BLUETOOTH 10.22% 4.01% READ_CONTACTS 24.33% 23.58%

READ_CALENDAR 5.72% 1.14%

KILL_BACKGROUND_PROCES

SES 5.61% 2.80%

READ_EXTERNAL_STOR

AGE 11.94% 6.18% WRITE_CONTACTS 12.44% 9.85%

VIBRATE 40.50% 30.17% ACCESS_MOCK_LOCATION 1.67% 1.03%

143

ACCESS_NETWORK_STA

TE 76.33% 65.66% MODIFY_PHONE_STATE 2.17% 2.00%

SUBSCRIBED_FEEDS_RE

AD 3.00% 0.17% ACCESS_SURFACE_FLINGER 0.33% 0.06%

WRITE_CALENDAR 5.06% 1.20% SET_ORIENTATION 0.83% 0.23%

GET_TASKS 20.11% 13.57% EXPAND_STATUS_BAR 2.50% 1.72%

GLOBAL_SEARCH 3.11% 1.32% DEVICE_POWER 1.78% 1.37%

REORDER_TASKS 2.17% 0.06% SET_DEBUG_APP 0.17% 0.06%

BIND_INPUT_METHOD 1.56% 0.11%

SET_PREFERRED_APPLICATI

ONS 1.06% 0.80%

CALL_PRIVILEGED 1.44% 0.06% INTERACT_ACROSS_USERS 0.33% 0.06%

BATTERY_STATS 3.22% 0.92%

ACCESS_DOWNLOAD_MANA

GER 0.78% 0.46%

WRITE_SETTINGS 17.89% 12.36% ACCESS_WIMAX_STATE 0.22% 0.11%

SET_WALLPAPER_HINTS 1.67% 1.49% ACCOUNT_MANAGER 0.17% 0.06%

BLUETOOTH_ADMIN 6.11% 3.49%

Table B.7: No risk API calls

API call Benign API call Benign

MessengerService 0.01% sendMultipartTextMessage 0.03%

IRemoteService 0.01% Runtime.load 0.03%

Process.start 0.01% PathClassLoader 0.04%

Context.bindService 0.01% Ljava.lang.Class.getDeclaredClasses 0.04%

ACCOUNT_MANAGER 0.01% GetBinder 0.31%

Table B.8: No risk permissions

Permission Benign Permission Benign

AUTHENTICATE_ACCOUNTS 10.28% BIND_DIRECTORY_SEARCH 0.06%

NFC 6.06% BIND_DREAM_SERVICE 0.22%

BIND_REMOTEVIEWS 5.89% SUBSCRIBED_FEEDS_WRITE 3.06%

READ_PROFILE 5.72% BIND_JOB_SERVICE 45.39%

READ_SYNC_STATS 6.22% BIND_QUICK_SETTINGS_TILE 2.61%

WRITE_MEDIA_STORAGE 0.94% BIND_SCREENING_SERVICE 0.11%

144

BIND_INCALL_SERVICE 0.22% BIND_TELECOM_CONNECTION_SERVICE 0.06%

CHANGE_WIFI_MULTICAST_STAT

E 2.22% CAPTURE_SECURE_VIDEO_OUTPUT 0.17%

MASTER_CLEAR 2.11% BIND_VOICE_INTERACTION 0.06%

CAPTURE_VIDEO_OUTPUT 0.17% BLUETOOTH_PRIVILEGED 0.06%

WRITE_USER_DICTIONARY 1.67% CHANGE_WIMAX_STATE 0.22%

WRITE_PROFILE 1.56% GET_DETAILED_TASKS 0.06%

READ_SOCIAL_STREAM 1.28% GET_INTENT_SENDER_INTENT 0.06%

ADD_VOICEMAIL 0.33% GLOBAL_SEARCH_CONTROL 0.06%

DUMP 1.61% INTERACT_ACROSS_USERS_FULL 1.00%

SET_TIME 1.28% MANAGE_DOCUMENTS 1.11%

WRITE_SOCIAL_STREAM 1.11% MANAGE_USERS 0.33%

WRITE_GSERVICES 0.94% MEDIA_CONTENT_CONTROL 1.06%

SET_TIME_ZONE 0.56% MOVE_PACKAGE 0.11%

BIND_ACCESSIBILITY_SERVICE 0.50% OVERRIDE_WIFI_CONFIG 0.06%

READ_USER_DICTIONARY 1.33% PACKAGE_USAGE_STATS 2.89%

INSTALL_LOCATION_PROVIDER 0.39% READ_INSTALL_SESSIONS 0.06%

SET_PROCESS_LIMIT 0.28% REAL_GET_TASKS 0.50%

BIND_TEXT_SERVICE 0.17% REQUEST_INSTALL_PACKAGES 4.28%

BIND_APPWIDGET 0.89%

SEND_DOWNLOAD_COMPLETED_INTEN

TS 0.22%

MOUNT_FORMAT_FILESYSTEMS 0.56% SEND_RESPOND_VIA_MESSAGE 0.94%

SET_ACTIVITY_WATCHER 0.33% STATUS_BAR_SERVICE 0.17%

BIND_VPN_SERVICE 0.17% TETHER_PRIVILEGED 0.06%

ACCESS_BLUETOOTH_SHARE 0.11% TRANSMIT_IR 0.28%

ACCESS_CACHE_FILESYSTEM 0.11% UPDATE_APP_OPS_STATS 0.11%

ACCESS_NOTIFICATION_POLICY 2.17%

145

LIST OF PUBLICATIONS

Journals

Published

1. M. Dhalaria, and E. Gandotra, “A Hybrid Approach for Android Malware Detection

and Family Classification,” International Journal of Interactive Multimedia and

Artificial Intelligence, vol. 6, no. 6, 2021, pp. 174-188. DOI:

http://dx.doi.org/10.9781/ijimai.2020.09.001 (SCIE Indexed, IF= 3.137)

2. M. Dhalaria, and E. Gandotra, “CSForest: an approach for imbalanced family

classification of android malicious applications,” International Journal of Information

Technology, vol. 13, no. 3, 2021, pp. 1-13. DOI: https://doi.org/10.1007/s41870-021-

00661-7 (SCOPUS Indexed)

3. M. Dhalaria and E. Gandotra, “Android malware detection techniques: a literature

review,” Recent Patents on Engineering, vol. 15, no. 2, 2021, pp. 225-245. DOI:

https://doi.org/10.2174/1872212114999200710143847 (SCOPUS Indexed)

4. M. Dhalaria and E. Gandotra, “Binary and Multi-class Classification of Android

Applications using Static Features,” International Journal of Applied Management

Science. 2021 (Accepted, SCOPUS Indexed)

Communicated

1. M. Dhalaria and E. Gandotra, “MalDetect A Classifier Fusion Approach for Detection

of Android Malware,” Expert Systems with Applications. (SCIE Indexed, IF=6.954)

2. M. Dhalaria and E. Gandotra, “Quantitative Threat Assessment of Android

Applications using Permissions and API Calls,” Multimedia Tools and Applications.

(SCIE Indexed, IF=2.757)

http://dx.doi.org/10.9781/ijimai.2020.09.001
http://dx.doi.org/10.9781/ijimai.2020.09.001
https://doi.org/10.1007/s41870-021-00661-7
https://doi.org/10.1007/s41870-021-00661-7
https://doi.org/10.1007/s41870-021-00661-7
https://doi.org/10.2174/1872212114999200710143847

146

Conferences

Published

1. M. Dhalaria, E. Gandotra, and S. Saha, “Comparative Analysis of Ensemble Methods

for Classification of Android Malicious Applications,” In International Conference on

Advances in Computing and Data Sciences, pp. 370-380. Springer, Singapore, 2019.

DOI: https://doi.org/10.1007/978-981-13-9939-8_33.

2. M. Dhalaria, and E. Gandotra, “A Framework for Detection of Android Malware

using Static Features,” In 2020 IEEE 17th India Council International Conference

(INDICON), pp. 1-7. IEEE, 2020. DOI: 10.1109/INDICON49873.2020.9342511.

3. M. Dhalaria, and E. Gandotra, “Android Malware Detection using Chi-Square Feature

Selection and Ensemble Learning Method,” In 2020 Sixth International Conference on

Parallel, Distributed and Grid Computing (PDGC), pp. 36-41. IEEE, 2020. DOI:

10.1109/PDGC50313.2020.9315818.

4. M. Dhalaria, and E. Gandotra, “Risk Detection of Android Applications using Static

Permissions,” In International Conference on Advances in Data Computing,

Communication and Security (I3CS), pp. 591–600. Springer, 2021. DOI:

https://doi.org/10.1007/978-981-16-8403-6_54.

Book Chapter

Communicated

1. M. Dhalaria, and E. Gandotra, “Analysis of Feature Selection Methods for Detection

of Android Malware,” In Deep Learning Empowered Security in Cyber Physical

Systems.

https://doi.org/10.1007/978-981-13-9939-8_33
https://doi.org/10.1007/978-981-13-9939-8_33
https://doi.org/10.1007/978-981-13-9939-8_33
https://doi.org/10.1109/INDICON49873.2020.9342511
https://doi.org/10.1109/PDGC50313.2020.9315818
https://doi.org/10.1007/978-981-16-8403-6_54
https://doi.org/10.1007/978-981-16-8403-6_54

