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Abstract

The objective of the thesis entitled “Symmetry Analysis of Some Fractional

Order Partial Differential Equations”, is to study the applications of Lie group

theory to the nonlinear fractional order partial differential equations (FPDEs) or

their systems which represent some of the important physical phenomena. Our

primary objective in this thesis is to identify the symmetries of FPDEs in order to

obtain exact solutions, which are useful in studying the integrability and physical

behaviour of the equations.

During the past few decades fractional calculus has grown predominantly in

pure mathematics as well as in scientific applications, due to the fact that many

processes in physics and engineering can be modeled more accurately by fractional

derivatives or fractional integrals than the traditional integer order derivatives or

integrals. In many applications, it is presumed that the future state of a system

is independent of the past state and determined entirely on the present. But now

it has been recognised that this assumption leads to first approximation of the

true situations. Therefore, for a better approximation one has to consider also the

past history of the system. This can be achieved by using the fractional order dif-

ferential operator which is not local in nature, i.e., the derivative depends on the

whole history of the function. The exact solutions of these fractional differential

equations play a central role in the theories of these physical phenomena and have

become more and more sought after during last few decades. Lie group method is

one of the mathematical techniques which is applicable to all types of differential

equations to furnish a variety of exact solutions in a systematic manner. The in-

vestigations carried out in this thesis are confined to the applications of Lie group

methods to the five nonlinear FPDEs viz. space-time fractional Burgers-Poisson

(FBP) equation, time fractional potential Burgers' equation, variable coefficient

space-time fractional potential Burgers' (FPB) equation, time fractional Gardner

and space-time fractional coupled KdV equation.

Chapter 2 deals with the study of following fractional order Burgers-Poisson

xv



equation(FBP equation)

u
(α)
t − (u(2β)

x )αt + u(β)
x + uu(β)

x − 3(u(β)
x u(2β)

x + uu(3β)
x ) = 0,

where x ∈ (0,∞), t > 0, 0 < α, β < 1.

On carrying over the Lie group method to FBP equation, the groups of transfor-

mations admitted by the equation under consideration have been derived. Con-

sequently, by using the symmetries involving arbitrary parameter, the FBP equa-

tion has been reduced to ODE which is again studied for group invariant solutions.

Chapter 3 is devoted to the study of following time fractional Potential Burg-

ers' equation:

u
(α)
t = Auxx +B(ux)

2, x ∈ (0,∞), t > 0, 0 < α < 1,

where A and B are real constant parameters.

The time fractional Potential Burgers' equation is reduced to an ordinary differ-

ential equation of fractional order corresponding to the Erdélyi-Kober fractional

derivative by using Lie classical symmetries. Further, an analytic solution is fur-

nished by means of the Invariant Subspace Method.

In Chapter 4, a study has been made on the following space-time fractional Poten-

tial Burgers' equation for invariance under continuous group of transformations

via Lie classical approach:

u
(α)
t = f(t)u(2β)

x + g(t)(u(β)
x )

2
, x ∈ (0,∞), t > 0, 0 < α, β < 1,

where f(t) and g(t) are arbitrary functions of t.

For the FPB equation, six-dimensional symmetries have been obtained and using

the subalgebras of Lie algebras, it is shown that there are various group theoretic

reductions of this equation depending on certain choices of infinitesimal genera-

tors. The reduced ODEs are investigated for group invariant solutions of FPB

equation. The solutions obtained are new and involve arbitrary functions f(t)

and g(t).

xvi



In Chapter 5, we study the classical symmetries of time fractional Gardner equa-

tion of the form:

u
(α)
t = Auux +Bu2ux + uxxx, x ∈ (0,∞), t > 0, 0 < α < 1,

where A and B are real constant parameters. Some new solutions of time frac-

tional Gardner equation have been reported.

Chapter 6 is devoted to the space-time fractional coupled KdV equation with

time dependent coefficients

u
(α)
t + f(t)uu(β)

x + g(t)vv(β)
x + h(t)u(3β)

x = 0,

v
(α)
t + δ(t)uv(β)

x + k(t)v(3β)
x = 0,

where x ∈ (0,∞), t > 0, 0 < α, β < 1.
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Chapter 1

Introduction

1.1 Background and Motivation

The study of differential equations has been playing a central role in the devel-

opment of mathematics and its applications in almost every branch of science

and engineering for nearly five centuries. Most of the problems posed by na-

ture are characteristically nonlinear and are often represented by a single or a

system of partial order differential equations. Since then the integer order par-

tial differential equations have been a powerful tool in order to model and study

the dynamics of many physical processes of the applied sciences. But nature

often presents complex dynamics, which cannot be explained by means of or-

dinary models and from the experimental observations and reality, it has been

revealed that there exists a lot of complex systems in nature which have anoma-

lous dynamics such as the transport of chemical contaminants, the dynamics of

viscoelastic materials as polymers, network traffic, financial markets and many

more. In most of the above mentioned cases, their dynamics cannot be charac-

terized by classical derivative models. During the last four decades the fractional

derivatives have been proved to be valuable tools in the modelling of such physical

phenomena. Whilst extensive studies have been made for the integer derivative

models, on the other hand it remains much harder to understand fractional or-
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der models because of their inherent complexity and the lack of their simple

superposed solutions. The field of fractional differential equations (FDEs) is very

wide-ranging and needs to be explored in great detail due to the fact that several

complex physical phenomena can be effectively represented by these equations.

It is clear that the attempts to understand the nonlinear world using fractional

models will dominate a large part of mathematical research in the years to come.

The general theory and basic results for fractional differential equations have

by now been thoroughly explored and are available in the form of a number of

books [81, 89, 77]. The study of fractional differential equations ranges from the

theoretical aspects of existence and uniqueness of solutions to the analytic and

numerical methods for finding solutions. The construction of particular exact

solutions of fractional differential equations is not an easy task and it remains a

relevant problem. This is the reason why several methods to solve nonlinear frac-

tional differential equations were recently developed in the literature, including

Adomian decomposition method, fractional sub equation method, first integral

method, homotopy perturbation method, Lie group theory method and so on (see

for example [86, 20, 91, 101, 74, 79, 99, 13]). Most recently, according to invariance

principles, the invariant subspace method established by V.A. Galaktionov and

S.R. Svirshchevski [34] to study partial differential equations was generalised by

R.K. Gazizov and A.A. Kasatkin [41] to construct some exact solutions for time

fractional differential equations. The fractional versions of the well-known equa-

tions of applied mathematics, such as the growth equation, diffusion equation,

transport equation, Bloch equation, Schrödinger equation, etc., have produced

many interesting solutions along with observable consequences. When compared

with variety of methods available to solve a system of integer order partial dif-

ferential equations, the tools for analysis of fractional order partial differential

equations (FPDEs) are limited to some very special categories. In a sense frac-

tional order systems must be treated in toto and in their full complexity, and so

it is not surprising that there exists no general method for solving them.

The study of exact solutions of fractional differential equations has not only

provided information about the phenomena but has, in fact, helped in making
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more precise some of the concepts and theories developed in last few decades.

These solutions provide more information about the phenomena in various as-

pects and often with several important physical parameters, prove useful to dis-

cuss and examine the sensitivity of physical phenomena they describe. The exact

solutions are also supportive in designing and testing of numerical algorithms.

Exact solutions for fractional order differential equations are rare, and the meth-

ods, which can generate families of them, are not only increasingly popular, but

more and more sought. Lie group method is one of the mathematical techniques

which is applicable to all types of differential equations to furnish a variety of

exact solutions in a systematic manner [58, 84]. A number of excellent texts and

survey articles have concentrated on the discussions of symmetry analysis for in-

teger order differential equations. On the contrary, symmetry analysis studies of

FDEs are pretty new. Up to now, in literature, solely (1+1) dimensional evolu-

tion type equations have been studied. Some of these studies have been made

employing the modified Riemann-Liouville operator where explicit and exact so-

lutions are obtained. In other studies utilizing the Riemann-Liouville operator,

FPDEs are reduced to FDEs with Erdélyi-Kober fractional differential operator.

Some of the properties of the fractional derivatives are very different from the

classical ones; therefore, there exists a huge motivation to dig into area of finding

the symmetries of some fractional differential equations.

In 2007, Gazizov generalised the method of Lie groups to investigate the

continuous transformation groups of fractional differential equations and pro-

posed some prolongation formulae [38]. Further in 2010, Wu [103] introduced

a fractional Lie group method for anomalous diffusion equations and evaluated

some non–differentiable solutions based on modified Riemann–Liouville deriva-

tive [62, 63, 64].

The work carried out in this thesis is dedicated to the applications of group

theoretic techniques based on the theory of continuous group of point transforma-

tions also known as Lie groups acting on the space of independent and dependent

variables of the system. The method was introduced originally by Sophus Lie [72].
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Lie established that the order of an ordinary differential equation can be reduced

by one if it is invariant under a one parameter symmetry group and for a partial

differential equation the invariance under a continuous group of transformations

leads directly to superposition of solutions in terms of transformations [73]. Fur-

ther, Ovsiannikov [85], Bluman & Cole [13] and Olver [84] extended the theory

of Lie groups to wide range of problems.

The prime objective and motivation behind the proposed study is to demon-

strate the importance and efficacy of symmetry group methods in solving frac-

tional systems. In brief, a symmetry group of a single or a system of partial

differential equation of fractional order is a continuous group of transformations

acting on the space of independent and dependent variables which leaves the

equation(s) invariant. This group can be determined algorithmically and then

the solutions of fractional order partial differential equation(s) can be found by

solving a reduced system of ordinary differential equations of fractional order.

The theory and applications of Lie groups may be obtained in excellent text such

as those of Bluman and Cole [9], Olver [82], Ovsianikov[85] and Ibragimov [58].

1.2 Methodology

The Lie group method of differential equations was originally established and

applied by Sophus Lie [72, 73] during the period 1872-1899. Regardless of its

important features, the Lie’s approach to differential equations faded in to ob-

scurity and the entire subject lay dormant for almost half a century. It was in

the fifties of last century, when the work of G. Birkhoff [8] and I. Sedov [92] on

dimensional analysis gave relevant attention to the unexploited applications of

Lie groups to the differential equations and then, it was successfully applied to

wide range of problems through the pioneering efforts of Ovsiannikov [85] and his

co-workers in the late 1950s. By the late 1960s and early 1970s, the whole field

was active again and new applications of group theory were being developed by

a number of researchers including Bluman and Cole [9, 13], Bluman and Anco

4



[11], Bluman and Kumei [10], Cantwell [19], Stephani [94], Hydon [57], Olver

and his co-workers [82, 83, 84], Ibragimov [58, 59], Ibragimov and Kovalev [60],

Bhutani et al. [14, 15, 16], Grundy [46], Hill et al. [52, 53, 54, 55], Clarkson and

Mansfield [23, 24], Gagnon and Winternitz [32]. Lie group method of differen-

tial equations provides an essential framework to examine in a systematic way a

wide range of topics such as the integration by quadrature of ordinary differen-

tial equations, homogeneous and separable equations, methods of undetermined

coefficients, reduction of order, the determination of invariant solutions of ini-

tial and boundary value problems, derivation of conservation laws, construction

of links between different differential equations that turn out to be equivalent.

Lie has established that the invariance of an ODE underone-parameter group of

transformations, provides some special solutions called invariant solutions with-

out knowledge of the general solution of the ODE. For an exhaustive review of

Lie’s work on this aspect, we refer to the works of Lie and Engel [73], Cohen

[25], Goursat [45], Dickson [27], Ince [61] and Heremann and Heremann [51]. The

key idea of Lie’s theory of symmetry analysis of differential equations relies on

the invariance of the latter under a transformation of independent and depen-

dent variables. This transformation forms a local group of point transformations

establishing a diffeomorphism on the space of independent and dependent vari-

ables, mapping solutions of the equations to other solutions. Any transformation

of the independent and dependent variables in turn induces a transformation of

the derivatives. Lie showed that the problem of finding the group of point trans-

formations leaving invariant a differential equation (ordinary or partial), i.e., a

point symmetry of a differential equation (DE), reduced to solving related linear

systems of determining equations for its infinitesimal generators. He also showed

that a point symmetry of a DE leads, in the case of an ordinary differential

equation, to reducing the order of the DE and in the case of a partial differen-

tial equation, to finding special solutions called invariant (similarity) solutions of

the DE. In this direction, some other important and significant contributions are

from Gandarias and Bruzon [36, 37], Rosati and Nucci [88], Bihlo and Popvych

[6, 7], Anco and Dennis [1]. General theories of infinite-dimensional Lie groups
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and algebras [65], arising in relativity, field theory, fluid mechanics, solitons, and

geometry, remain knotty. Higher order or generalized symmetries, in which the

infinitesimal generators also depend upon derivative coordinates, first proposed

by Noether [80] have been used to classify integrable (soliton) systems. Recursion

operators are used to generate such higher order symmetries, and, via Noether’s

theorem, higher order conservation laws [84]. Among various generalizations of

Lie’s classical theory there are the following techniques:

1. Nonclassical method [9]

2. General method of differential constraints [87, 82]

3. Introduction of approximate symmetries [60, 3]

4. Generalized symmetries [84]

5. Equivalence transformations [75]

6. Nonlocal symmetries [10, 71, 84]

In recent years, Lie’s classical theory has gained much interest of many re-

searchers in the field of fractional differential equations (FDEs). The prime mo-

tivation in carrying out this study has been to demonstrate the importance and

efficacy of the Lie group method over various other methods available in lit-

erature. Some specific physical sytems, governed by nonlinear fractional order

partial differential equations have been considered to accomplish the task. The

description of the various systems studied and forming the subject of investiga-

tion for different chapters is made in brief in section (1.8). The problems studied

are dealt with in two phases - in the first, the symmetries of the sytem under

investigation are derived using the Lie group method and then in the second

phase, after successful deduction of the reduced systems of ODEs, the efforts are

confined to furnish the exact solutions. In some problems, we have also inves-

tigated some other exact solutions using the invariant subspace method. After

giving a brief survey of the available literature relevant to the work put up in

chapters, we reproduce in the following sections, certain characterstic features

of the techniques utilized, general notions essential for understanding and carry

over of the Lie group method and Invariant subspace method to furnish exact

solutions of FPDEs.
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1.3 Lie Group Method to Construct Solutions

of FPDEs

In the thesis, we deal with the method of group invariant solutions, based on the

theory of continuous group of point transformations also known as Lie groups

acting on the space of independent and dependent variables of the system. The

method was introduced originally by Sophus Lie [72, 73]. Lie established that the

order of an ordinary differential equation can be reduced by one if it is invariant

under a one parameter symmetry group and for a partial differential equation

the invariance under a continuous group of transformations leads directly to su-

perposition of solutions in terms of transformations. In the following sections,

we will firstly introduce the relevant concepts of the Lie group of transforma-

tions and then we will provide an algorithmic description of the techniques which

are applied in the later chapters to derive the symmetry group of the systems

under consideration. The method of invariant subspace, which is of interest in

the present work for obtaining some other exact solutions, is also presented in a

concise manner emphasizing the application procedure. For details on Lie group

method, various theorems, their proofs and other concepts, we refer our reader

to Olver [84], Bluman and Cole [13]. Also the corresponding details on the frac-

tional differential equations and the invariant subspace method can be found in

[81, 86, 89, 34, 38, 90]. We first present some fundamentals of Lie group theory

(refer to sections (1.3.1) to (1.5)).

1.3.1 Lie Group of Transformations

Definition 1.3.1 Let x = (x1, x2, ..., xn) lie in a region D ⊂ Rn. Consider a one

parameter family of transformations

x̃ = X(x; ε), (1.3.1)

7



defined for each x in D and parameter ε ∈ G ⊂ R, with φ(ε, δ) defining a law of

composition of parameters ε and δ in G, such that

1. For each ε in G, the transformations are bijective on D.

2. G with the law of composition φ forms a group.

3. For each x in D, x̃ = x when ε = ε0 corresponds to the identity element of

G, i.e.,

X(x; ε0) = x.

4. If x̃ = X(x; ε), ˜̃x = X(x̃; δ), then

˜̃x = X(x;φ(ε, δ)).

Such family of transformations is called a one-parameter group of transforma-

tions.

Definition 1.3.2 A one-parameter group of transformations (1.3.1) defines a

one-parameter Lie group of transformations if, in addition to satisfying axioms

(1)–(4) of definition 1.3.1., the followings hold:

1. ε is a continuous parameter, i.e., G, is an interval in R. Without loss of

generality, ε = 0 corresponds to the identity element ε0.

2. X is infinitely differentiable function of x in D and an analytic function of

ε in G.

3. φ(ε, δ)) is an analytic function of ε and δ in G.

8



1.3.1.1 Infinitesimal Form of a Lie Group

Expanding x̃ = X(x; ε) about ε = 0, we get

x̃ = X(x; ε) = X(x; 0) + ε
∂X

∂ε
|ε=0 +

1

2
ε2
∂2X

∂ε2
|ε=0 + ...

= x + ε
∂X

∂ε
|ε=0 + o(ε2).

The transformation x̃ = x + ξ̄(x)ε defines the infinitesimal transformation of

Lie group of transformations (1.3.1) and the components of ξ̄(x) are called the

infinitesimals, where

ξ̄(x) =
∂X

∂ε
|ε=0.

1.3.1.2 Infinitesimal Generators

The linear differential operator

V = ξ̄(x).∇ = ξi(x)
∂

∂xi

with summation over a repeated index, is called the infinitesimal generator of the

Lie group of transformations (1.3.1). Here, ∇ is the gradient operator

∇ =

(
∂

∂x1

,
∂

∂x2

, ...,
∂

∂xn

)
.

1.3.1.3 Invariant Functions

An infinitely differentiable function F (x) is called an invariant of the Lie group

of transformations (1.3.1) if and only if, for any group transformation (1.3.1),

F (x̃) = F (x).

Theorem 1.3.1 F (x) is invariant under a Lie group of transformations (1.3.1)

if and only if, V F (x) = 0. ( For proof and more details see [84]).

9



1.4 Point Transformations and Prolongations

We will be concerned with the determination of one-parameter Lie group of point

transformations admitted by a given system S of fractional differential equations.

A one-parameter (ε) Lie group of transformations is a group of transformations

of the form

x̃ = X(x,u; ε) (1.4.1)

ũ = U(x,u; ε), (1.4.2)

acting on the space of n+m variables

x = (x1, x2, ..., xn)

u = (u1, u2, ..., um),

where x represents n independent variables and u denotes m dependent variables.

A Lie group of point transformations (1.4.1–1.4.2) admitted by S maps any so-

lution u = θ(x) of S onto a one-parameter family of solutions u = φ(x; ε) of S.

Let ∂u denotes the set on nm coordinates corresponding to all first order partial

derivatives of u with respect to x:

∂u =

(
∂u1

∂x1

,
∂u1

∂x2

, ...,
∂u1

∂xn
,
∂u2

∂x1

,
∂u2

∂x2

, ...,
∂u2

∂xn
, ...,

∂um

∂x1

,
∂um

∂x2

, ...,
∂um

∂xn

)
. (1.4.3)

In general, for k ≥ 1, let ∂ku denote the set of coordinates

uµi1,i2,...,ik =
∂kuµ

∂xi1∂xi2 ...∂xik
,

with µ = 1, 2, ...,m and ij = 1, 2, ..., n for j = 1, 2, ..., k corresponding to all

kth-order partial derivatives of u with respect to x.

It turns out that the natural transformation of partial derivatives of the

dependent variables leads successively to extensions (prolongations) of a one-

parameter Lie group of transformations (1.4.1–1.4.2) acting on (x,u)-space to

one-parameter Lie groups of transformations acting on (x,u, ∂u)-space, (x,u, ∂u, ∂2u)-

space,..., (x,u, ∂u, ∂2u, ...∂ku)-space for any k > 2 . [For a given system S of

10



differential equations, k would be the order of the highest order derivative appear-

ing in S ]. Then the infinitesimal transformations of (1.4.1–1.4.2) is naturally ex-

tended successively to infinitesimal transformations acting on (x,u, ∂u, ∂2u, ...∂lu)-

space, l = 1, 2, ..., k.

1.4.1 Extended Infinitesimal Transformations

In the study of system of PDEs, the situation of m dependent variables u =

(u1, u2, ..., um) and n independent variables x = (x1, x2, ..., xn), u = u(x), with

m ≥ 2 , arises. This leads to consideration of extended transformations from

(x,u)-space to (x,u, ∂u, ∂2u, ...∂ku)-space where ∂ku denotes the components of

all kth-order partial derivatives of u with respect to x . Consider the kth-extended

transformation over the (x,u, ∂u, ∂2u, ...∂ku)-space

x̃i = xi + ξi(x,u)ε+ o(ε2) (1.4.4)

ũµ = uµ + ηµ(x,u)ε+ o(ε2), (1.4.5)

ũµi = uµi + η
(1)µ
i (x,u, ∂u)ε+ o(ε2), (1.4.6)

...

ũµi1i2...ik = uµi1i2...ik + η
(k)µ
i1i2...ik

(x,u, ∂u, ∂2u, ..., ∂ku)ε+ o(ε2), (1.4.7)

with the extended infinitesimals as

η
(1)µ
i = Diη

µ − (Diξj)u
µ
j

η
(k)µ
i1i2...ik

= Dikη
(k−1)µ
i1i2...ik−1

− (Dikξj)u
µ
i1,i2,...,ik−1,ik

,

where il = 1, 2, ..., n for l = 1, 2, ..., k with k ≥ 2 and Di is total derivative

operator defined as

Di =
∂

∂xi
+ uµi

∂

∂uµ
+ uµij

∂

∂uµj
+ uµii1i2

∂

∂uµi1i2
+ ... + uµii1i2...in

∂

∂uµi1i2...in
+ ...,

11



with summation over repeated index.

Here, the kth-extended infinitesimal generator is given by

V (k) = ξi(x,u)
∂

∂xi
+ ηµ(x,u)

∂

∂uµ
+ η

(1)µ
i (x,u, ∂u)

∂

∂uµi
+

η
(2)µ
i1i2

(x,u, ∂u, ∂2u)
∂

∂uµi1i2
+ ...+η

(k)µ
i1i2...ik

(x,u, ∂u, ∂2u, ..., ∂ku)
∂

∂uµi1i2...ik
, k ≥ 1.

1.4.1.1 The Invariance Condition for a System of PDEs

Lie symmetry of a differential equation is a one parameter point transformation

which leaves the differential equation invariant. Consider a system of N PDEs

with n independent variables x = (x1, x2, ..., xn) and m dependent variables u =

(u1, u2, ..., um), given by

F µ(x,u, ∂u, ∂2u, ..., ∂ku) = 0, µ = 1, 2, ..., N. (1.4.8)

Definition 1.4.1 A one-parameter Lie group of point transformations (1.4.4)–

(1.4.5) leaves the system of PDEs (1.4.8) invariant iff its kth extension, defined by

(1.4.4)–(1.4.7), leaves invariant the N surfaces in (x,u, ∂u, ∂2u, ..., ∂ku)-space,

defined by (1.4.8).

Theorem 1.4.1 (Infinitesimal Criterion for the Invariance of a System of PDEs).

Let

V = ξi(x,u)
∂

∂xi
+ ηµ(x,u)

∂

∂uµ
. (1.4.9)

be the infinitesimal generator of the Lie group of point transformations (1.4.4)–

(1.4.5). Let

V (k) = ξi(x,u)
∂

∂xi
+ ηµ(x,u)

∂

∂uµ
+ η

(1)µ
i (x,u, ∂u)

∂

∂uµi
+

η
(2)µ
i1i2

(x,u, ∂u, ∂2u)
∂

∂uµi1i2
+ ...+ η

(k)µ
i1i2...ik

(x,u, ∂u, ∂2u, ..., ∂ku)
∂

∂uµi1i2...ik
, (1.4.10)

be the kth-extended infinitesimal generator of (1.4.9), with the extended infinites-

imals as

η
(1)µ
i = Diη

µ − (Diξj)u
µ
j

12



η
(k)µ
i1i2...ik

= Dikη
(k−1)µ
i1i2...ik−1

− (Dikξj)u
µ
i1,i2,...,ik−1,ik

,

where il = 1, 2, ..., n for l = 1, 2, ..., k with k ≥ 2 and Di is total derivative

operator defined as

Di =
∂

∂xi
+ uµi

∂

∂uµ
+ uµij

∂

∂uµj
+ uµii1i2

∂

∂uµi1i2
+ ... + uµii1i2...in

∂

∂uµi1i2...in
+ ...,

with summation over repeated index. Then the one-parameter Lie group of point

transformations (1.4.4)–(1.4.5) is admitted by the system of PDEs (1.4.8) if and

only if

V (k)F µ(x,u, ∂u, ∂2u, ..., ∂ku) = 0, µ = 1, 2, ..., N. (1.4.11)

when F µ(x,u, ∂u, ∂2u, ..., ∂ku) = 0.

1.4.1.2 Symmetry Determining Equations

Consider a system of PDEs (1.4.8) with each of its PDEs given in a solved form

u
νµ
i1i2...ik

= fµ(x,u, ∂u, ∂2u, ..., ∂ku) (1.4.12)

In terms of some specific lµ th-order partial derivative of uνµ for some νµ =

1, 2, ...,m, where fµ(x,u, ∂u, ∂2u, ..., ∂ku) does not depend explicitly on any of

the components uνσi1i2...ik , σ = 1, 2, ..., N , for each µ = 1, 2, ..., N . From theorem

1.4.1., we see that the system of PDEs (1.4.8) admits the point symmetry (1.4.9)

with the kth extension given by (1.4.10), if and only if

η
(lµ)νµ
i1i2...ilµ

= ξj
∂fµ

∂xj
+ην

∂fµ

∂uν
+η

(1)ν
j

∂fµ

∂uνj
+η

(2)ν
j1j2

∂fµ

∂uνj1j2
+...+η

(k)ν
j1j2...jk

∂fµ

∂uνj1j2...jk
, (1.4.13)

with

uνσi1i2...ikσ = fσ(x,u, ∂u, ∂2u, ..., ∂ku), σ = 1, 2, ..., N. (1.4.14)

It is easy to see that η
(p)ν
j1j2...jp

is a polynomial in the components of ∂u, ∂2u, ..., ∂pu,

with coefficients that are linear homogeneous in the components of ξ̄(x,u), η̄(x,u)

and their derivatives to order p. Thus ξ̄ and η̄ appear linearly in (1.4.13). As

is the situation for a given scalar PDE, the system of symmetry determining

equations (1.4.13-14) leads to a system of linear homogeneous PDEs for ξ and η.

13



First we eliminate the components uνσi1i2...ikσ and their differential consequences

from (1.4.13) by substitution from (1.4.14) and the differential consequences of

(1.4.14), σ = 1, 2, ..., N . Consequently, the components of x, u and the remaining

components of ∂u, ∂2u, ..., ∂ku that appear in the resulting system of symmetry

determining equations (1.4.13) are themselves independent variables, i.e., they

take on arbitrary values. Since the resulting expression for (1.4.13) holds for

any values of these independent variables, one obtains a system of linear homo-

geneous PDEs for ξ and η that constitutes a set of determining equations for

the infinitesimal generators V admitted by the given system of PDEs (1.4.8). In

particular, if each fσ(x,u, ∂u, ∂2u, ..., ∂ku), σ = 1, 2, ..., N , is a polynomial in

the components of ∂u, ∂2u, ..., ∂ku , then the system of symmetry determining

equations (1.4.13) yields polynomial equations in the independent components

of ∂u, ∂2u, ..., ∂ku Consequently, the coefficients of these polynomial equations

must vanish separately. This yields the set of linear determining equations for

ξ̄ and η̄. Typically, the numbers of determining equations are far greater than

n+m, so that the set of determining equations is very overdetermined.

1.4.1.3 Group Invariant Solutions

Consider a system of PDEs (1.4.8) which admits a one-parameter Lie group of

point transformations (1.4.4)–(1.4.5) with the infinitesimal generator (1.4.9). We

assume that ξ̄(x,u) 6= 0.

Definition 1.4.2 A solution u = θ(x), with components uν = θν(x), ν =

1, 2, ...,m, of the system of PDEs (1.4.8) is called a group invariant solution

if and only if the surface u = θ(x) remains invariant under the transformations

(1.4.4)–(1.4.5), i.e.,

ξi(x, θ(x))
∂θ(x)

∂xi
= ην(x, θ(x)), ν = 1, 2, ...,m. (1.4.15)

Equation (1.4.15) is the invariant surface condition for the invariant solutions of

the system of PDEs (1.4.8) resulting from its invariance under the point symmetry

14



(1.4.4)–(1.4.5). As is the situation for the scalar PDE, invariant solutions can be

determined by the following procedure:

1.4.1.4 Invariant Form Method

Here we first solve the invariant surface conditions (1.4.15) by explicitly solving

the corresponding characteristics equations for u = θ(x) given by

dx1

ξ1(x,u)
=

dx2

ξ2(x,u)
= ... =

dxn
ξn(x,u)

=
du1

η1(x,u)
=

du2

η2(x,u)
= ... =

dum

ηm(x,u)
.

(1.4.16)

If y1(x,u), . . . , yn−1(x,u), h1(x,u), ..., hm(x,u), are n + m − 1 functionally

independent constants of integration that arise from solving the characteristic

equations (1.4.16) with the non-zero Jacobian, i.e., ∂(h1,h2,...,hm)
∂(u1,u2,...,um)

6= 0, then the

general solution u = θ(x) of the invariant surface condition equations (1.4.15) is

given implicitly by the invariant form

uν(x,u) = Φν(y1(x,u), y2(x,u), ..., yn−1(x,u)), (1.4.17)

where Φν is an arbitrary differentiable function of its arguments, for ν = 1, 2, ...,m.

Note that y1(x,u), . . . , yn−1(x,u), h1(x,u), ..., hm(x,u), are n+m−1 function-

ally independent invariants of the one-parameter Lie group of point transforma-

tions with the infinitesimal generator V given by (1.4.9), and hence are n+m−1

canonical coordinates for the one parameter Lie group of point transformations

with the infinitesimal generator V given by (1.4.9). Let un(x,u) be the (n+m)th

canonical coordinate satisfying V yn = 1. If the PDE system (1.4.8) is transformed

by the corresponding invertible point transformation into a PDE system with in-

dependent variables (y1, y2, ..., yn) and dependent variables (h1, h2, ..., hm), then

the transformed PDE system has the translation point symmetry given by

ỹi = yi, i = 1, 2, ..., n− 1,

ỹn = yn + ε,

h̃ν = hν , ν = 1, 2, ...,m.
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Thus the variable yn does not appear explicitly in the transformed PDE sys-

tem and hence the transformed PDE system has particular solutions of the form

(1.4.17) that in turn define, implicitly, specific functions u = θ(x) which are

invariant solutions of the PDE system (1.4.8), i.e., the PDE system (1.4.8) has

invariant solutions implicitly given by the invariant form (1.4.17). In particular,

these invariant solutions are found by solving a reduced system of DEs with n− 1

independent variables y1, y2, ..., yn−1 and m dependent variables h1, h2, ..., hm.

The variables y1, y2, ..., yn−1 are commonly called similarity variables. The re-

duced system of DEs is found by substituting the invariant form (1.4.17) into the

given PDE system (1.4.8). It is assumed that this substitution does not lead to

a DE system with a singular equation. Note that if ∂ξi
∂uµ
≡ 0, as is commonly

the case, then yi = yi(x), i = 1, 2, ..., n− 1. In the case when(1.4.8) has two

independent variables, i.e., n = 2, the reduced system of DEs is an ODE system

with independent variable y1.

1.4.1.5 Lie Algebra

For the Lie group of transformations with infinitesimal generators V1, V2, the

commutator (Lie bracket) of V1, V2 is first order operator defined by

[V1, V2] = V1V2 − V2V1 (1.4.18)

Definition 1.4.3 A Lie algebra is a vector space L over R or C with a bilinear

bracket operation (the commutator) satisfying the following properties:

1. Bilinearity:

[aV1 + bV2, V3] = a[V1, V3] + b[V2, V3] (1.4.19)

[V1, aV2 + bV3] = a[V1, V2] + b[V1, V3] (1.4.20)

2. Skew-Symmetry:

[V1, V2] = −[V2, V1] (1.4.21)
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3. Jacobi Identity:

[V1, [V2, V3]] + [V3, [V1, V2]] + [V2, [V3, V1]] = 0. (1.4.22)

The commutator of two vector fields again is a vector field. Moreover, if Vi and Vj

are two infinitesimal generators of a symmetry transformation, the commutator

of both generators will again be a generator of a symmetry group [54, 109]. As a

consequence, the set of all infinitesimal generators is closed under commutation of

vector fields, thus possessing more structure than just that of vector space. This

additional closure property endows the space of infinitesimal generators with an

additional algebraic structure, the so called Lie algebra. Hence, having found

some of the infinitesimal generators Vi of an r-parameter Lie group it may be

possible to find new generators by computing the commutators of the known ones.

A common way to visualise the structure of a Lie algebra is the commutator table

[84]. Let V1, V2, ..., Vr be a basis of r-dimensional Lie algebra, then its commutator

table has (i, j)-th entry [Vi, Vj]. Because the commutator is antisymmetric it

suffices to compute just the part above the diagonal, as [Vi, Vj] = −[Vj, Vi]. The

commutator table therefore reads:

Table 1.1: Commutator Table

V1 V2 ... Vr

V1 0 [V1, V2] ... [V1, Vr]

V2 -[V1, V2] 0 ... [V2, Vr]

... ... ... ... ...

Vr -[V1, Vr] -[V2, Vr] ... 0
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1.5 Classical Lie Group Method: An Algorith-

mic Overview

The classical method essentially consists of finding symmetry reduction of PDEs

with the help of determining equations obtained under the condition of invariance

of the system of PDEs. More specifically, when a given system of PDES (1.4.8)is

subjected to invariance under one-parameter Lie group of transformations (1.4.4)–

(1.4.5), one arrives at an over determined linear system of equations for the group

infinitesimals. These infinitesimals of the transformations help us obtain the

reduction of the system. The stepwise procedure is as follows:

Consider a system of N PDEs with n independent variables x = (x1, x2, ..., xn)

and m dependent variables u = (u1, u2, ..., um), given by

F µ(x,u, ∂u, ∂2u, ..., ∂ku) = 0, µ = 1, 2, ..., N. (1.5.1)

1. Let the one-parameter Lie group of point transformations (1.4.4)–(1.4.5)

leaves the system (1.5.1) invariant

2. Apply the extended infinitesimal operator V (k) given by (1.4.10) to each

equation of the system (1.5.1) and require that

V (k)F µ(x,u, ∂u, ∂2u, ..., ∂ku)|F ν=0 = 0, µ, ν = 1, 2, ..., N. (1.5.2)

The meaning of the condition (1.5.2) is that V (k) vanishes on the solution

set of the original system (1.5.1). Precisely, this condition assures that u(x)

is solution of (1.5.1) whenever ũ(x̃) is one.

3. Following the procedure as given in section (1.4.1.2), a system of linear

PDEs for ξ and η that constitutes a set of determining equations for the

infinitesimal generator V admitted by the system of PDEs (1.5.1) is ob-

tained.

4. The solution of determining equations will lead to the explicit forms of ξ

and η.
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5. Construct the corresponding characteristic equations (1.4.16) and obtain u

in terms of n− 1 new independent variables.

6. Rewrite the system (1.5.1) in these new coordinates to get the reduced form

of the system.

1.6 Invariant Subspace Method

One of the recently developed techniques to construct an exact solution of non-

linear PDEs is the invariant subspace method and its applicability has been illus-

trated by many researchers, e.g. [33, 34, 76, 95, 96, 97]. This method has been

extended to nonlinear FDEs [41, 48] and its applicability illustrated through the

time fractional Burgers type equations. However the applicability of this method

to FDEs has not been widely demonstrated. The invariant subspace method was

introduced by Galaktionov [33] in order to discover exact solutions of nonlin-

ear partial differential equations. The method was further applied by Gazizov

[41] and Sahadevan [90] to some nonlinear fractional order differential equations.

Here, we give a brief description of the method.

Let us consider the fractional evolution equation

u
(α)
t = F [u], (1.6.1)

where u = u(x, t) is a real scalar function of two independent variables x, t and

F [u] is a nonlinear differential operator of order k,

F [u] = F (x, u1, u2, ..., uk). (1.6.2)

Here, F (.) is a given sufficiently smooth function of its arguments and ui = ∂iu
∂xi

,

i ≥ 0.

Let f1(x), ..., fn(x), N ∈ N be n linearly independent functions which form an

n-dimensional linear space

Wn = 〈f1(x), ..., fn(x)〉 =
n∑
i=1

aifi(x), ai ∈ R (1.6.3)

that is, Wn is the linear span of f1(x), ..., fn(x) over R.
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Definition 1.6.1 The n-dimensional linear space Wn = 〈f1(x), ..., fn(x)〉 is called

invariant under the operator F [u], iff F [u] ∈ Wn for any u ∈ Wn.

Suppose that Wn is an invariant subspace with respect to a given differential F .

Then there exist n functions φ1, ..., φn such that

F [
n∑
i=1

cifi(x)] =
n∑
i=1

φi(c1, ..., cn)fi(x), (1.6.4)

where c1, ..., cn are arbitrary constants and {φn} are the expansion coefficients

of F [u] ∈ Wn in the basis {fi}. It follows that an exact solution of fractional

evolution equation (1.6.1) can be obtained as

u(x, t) =
n∑
i=1

ai(t)fi(x), (1.6.5)

where the coefficient functions a1(t), a2(t), ..., an(t) satisfy a system of fractional

ODEs

ai(t)
(α)
t = φi(a1(t), a2(t), ..., an(t)), i = 1, 2, ..., n. (1.6.6)

Note that an invariant subspace Wn is the space of solutions of some linear

ordinary differential equation

L(y) = y(n) + a1(x)y(n−1), ..., an(x)y = 0 (1.6.7)

for which the functions fi(x), i = 1, 2, ..., n, form a fundamental system of solu-

tions. Then the invariance condition of Wn takes the form

L(F [y])|L(y)=0 = 0. (1.6.8)

This condition leads to an over determined system for the coefficients of (1.6.7)

and provides the description of all invariant spaces of given order n, [[76], [95],

[96]]. The following theorem establishes the upper bound on the dimension of an

invariant space.

Theorem 1.6.1 If a linear space Wn is an invariant under a nonlinear differ-

ential operator F [y] = F (x, y, y′, ..., y(k)) of the order k, then n ≤ 2k + 1.

For further details the reader is referred to [90].
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1.7 Some Concepts from Fractional Calculus

It is worth to mention that there is no unique definition to define the fractional

derivative. In the literature, different definitions for the fractional derivative

such as the Caputo, the Riesz, the Grunwald-Letnikov and the Riemann- Liou-

ville can be seen. The most popular ones are the Riemann-Liouville and the

Caputo derivatives. Each fractional derivative presents some advantages and dis-

advantages [77, 86, 91]. The Riemann-Liouville derivative of a constant is not

zero while Caputos derivative of a constant is zero but demands higher condi-

tions of regularity for differentiability: to compute the fractional derivative of

a function in the Caputo sense, we must first calculate its derivative. Caputo

derivatives are defined only for differentiable functions while functions that have

no first order derivative might have fractional derivatives of all orders less than

one in the Riemann-Liouville sense. Recently, Guy Jumarie [62, 64] proposed a

simple alternative definition to the Riemann-Liouville derivative. His modified

Riemann-Liouville derivative has the advantages of both the standard Riemann-

Liouville and Caputo fractional derivatives: it is defined for arbitrary continuous

(non-differentiable) functions and the fractional derivative of a constant is equal

to zero. The work carried out in this thesis is based on some basic elements

of fractional calculus, with special emphasis on the Riemann-Liouville type and

modified Riemann-Liouville type derivatives [62]. We use Lie symmetries with

the prolongation formula given by Gazizov et al. [38].

1.7.1 Fractional Riemann-Liouville Integral

The fractional Riemann-Liouville integral of a continuous (but not necessar-

ily differentiable) real valued function f(x) with respect to (dx)α is defined as

[62, 63, 77]
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0I
α
x f(x) =

1

Γ(α)

x∫
0

(x− t)α−1f(t) dt =
1

Γ(1 + α)

x∫
0

f(t) (dt)α , 0 < α ≤ 1.

(1.7.1)

The fractional integral with respect to (dt)α was introduced by Jumarie [64], in

order to study the fractional derivative of non-differentiable functions in modified

Riemann-Liouville sense. Here, we are fully in Leibniz framework, that is to say

(dx)α denote finite increment in fractional sense. As a result, we shall be able to

duplicate, in a straightforward manner, most of the known standard formulae by

merely making the substitution (dx)α → dx.

1.7.2 Fractional Riemann-Liouville Derivative

The fractional Riemann-Liouville derivative of f(x) is defined as [77]

0D
α
x f(x) =


dnf
dxn

, α = n ∈ N
1

Γ(n−α)
dn

dxn

x∫
0

(x− t)n−α−1f(t) dt , n− 1 < α < n, n ∈ N.

(1.7.2)

1.7.3 Modified Riemann-Liouville Derivative

Through the fractional Riemann-Liouville integral, Jumarie [62] proposed the

modified Riemann-Liouville derivative of f(x) as

0D
α
x f(x) =

1

Γ(n− α)

dn

dxn

x∫
0

(x− t)n−α−1(f(t)− f(0)) dt , n−1 < α < n, n ∈ N

(1.7.3)

22



1.7.4 Some Properties of Modified Riemann-Liouville Deriva-

tive

Here, some properties of modified Riemann-Liouville derivative are given which

have been used in this work

(i) df(x) = 0Dαx f(x)(dx)α

Γ(1+α)
, α > 0

(ii) 0D
α
t (u(t)v(t)) = (0D

α
t u(t))v(t) + u(t)(0D

α
t v(t)), 0 < α < 1

(iii) 0D
α
t f(x(t)) = df

dx
(0D

α
t x(t)), 0 < α < 1, given df

dx
exists.

(iv) 0D
α
xx

β = Γ(1+β)
Γ(1+β−α)

xβ−α, 0 < α < 1, x > 0 and β > −1.

(v)
∫

(dx)β = xβ, 0 < β ≤ 1.

(vi) Γ(1 + β)dx = dβx.

The above formulae and details thereof along with the scope of applications and

limitations can be found in [62, 64].

1.7.5 Characteristic Method for Fractional order Differ-

ential Equations

It is well known that the method of characteristics is a very effective technique in

solving partial differential equations. It applies to first-order equations, but gen-

erally this method is valid for any hyperbolic partial differential equation. With

the modified Riemann-Liouville derivative, Jumarie [63] applied the Lagrange

characteristic method to a class of fractional order partial differential equations,

in which the time-fractional order equals to the space-fractional order. After that

a more generalized fractional method of characteristics is presented by Wu [103].

Wu extended the method of characteristics for first order linear partial differential

equations to a linear fractional differential equation of the form

a(x, t)
∂βu(x, t)

∂xβ
+ b(x, t)

∂αu(x, t)

∂tα
= c(x, t), (1.7.4)
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where 0 < α, β < 1.

By expanding u(x, t) as the fractional Jumarie- Taylors series of multivariate

function [64], one obtains

du =
∂βu(x, t)

Γ(1 + β)∂xβ
(dxβ) +

∂αu(x, t)

Γ(1 + α)∂tα
(dt)α, (1.7.5)

with 0 < α, β < 1. The generalised characteristic curves of equation (1.7.4) are

du

ds
= c(x, t) (1.7.6)

(dxβ)

Γ(1 + β)ds
= a(x, t) (1.7.7)

(dt)α

Γ(1 + α)ds
= b(x, t), (1.7.8)

where s is a parameter.

1.8 Problems to be Considered

Keeping in view the rich treasure and wide applicability of fractional differential

equations in almost every field, we have in this thesis carried out the application

of Lie group analysis for obtaining exact solutions to nonlinear fractional order

partial differential equation and their systems also. In short, this thesis is devoted

to applications of continuous symmetry groups to following physically important

systems of fractional differential equations:

1. The space-time fractional Burgers–Poisson equation

2. The time fractional Potential Burgers' equation

3. The space-time fractional Potential Burgers' equation with variable coeffi-

cients

4. The time fractional Gardner equation
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5. The fractional coupled KdV equation with variable coefficients

Chapter 2 deals with the study of following fractional order Burgers-Poisson

equation(FBP equation)

u
(α)
t − (u(2β)

x )αt + u(β)
x + uu(β)

x − (3u(β)
x u(2β)

x + uu(3β)
x ) = 0, (1.8.1)

where x ∈ (0,∞), t > 0, 0 < α, β < 1.

On carrying over the Lie group method to FBP equation, the groups of trans-

formations admitted by the equation under consideration have been derived.

Consequently, by using the symmetries involving arbitrary parameter, the FBP

equation has been reduced to ODE which is further studied for group invariant

solutions.

Chapter 3 is devoted to the study of following time fractional Potential Burg-

ers' equation:

u
(α)
t = Auxx +B(ux)

2, x ∈ (0,∞), t > 0, 0 < α < 1, (1.8.2)

where A and B are real constant parameters.

The time fractional Potential Burgers' equation is reduced to an ordinary differ-

ential equation of fractional order corresponding to the Erdélyi-Kober fractional

derivative by using Lie classical symmetries. Further, an analytic solution is fur-

nished by means of the Invariant Subspace Method.

In Chapter 4, a study has been made on the following space-time fractional Po-

tential Burgers' (FPB) equation for invariance under continuous group of trans-

formations via Lie classical approach:

u
(α)
t = f(t)u(2β)

x + g(t)(u(β)
x )

2
, x ∈ (0,∞), t > 0, 0 < α, β < 1, (1.8.3)

where f(t) and g(t) are arbitrary functions of t.

For the FPB equation, six-dimensional symmetries have been obtained and using
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the subalgebras of Lie algebras, it is shown that there are various group theoretic

reductions of this equation depending on certain choices of infinitesimal genera-

tors. The reduced ODEs are investigated for group invariant solutions of FPB

equation. The solutions obtained are new and involve arbitrary functions f(t)

and g(t).

In Chapter 5, we study the classical symmetries of time fractional Gardner equa-

tion of the form:

u
(α)
t = Auux +Bu2ux + uxxx, x ∈ (0,∞), t > 0, 0 < α < 1, (1.8.4)

where A and B are real constant parameters. Certain new solutions of time frac-

tional Gardner equation have been reported.

Chapter 6 is devoted to the space-time fractional coupled KdV equation with

time dependent coefficients

u
(α)
t + f(t)uu(β)

x + g(t)vv(β)
x + h(t)u(3β)

x = 0, (1.8.5)

v
(α)
t + δ(t)uv(β)

x + k(t)v(3β)
x = 0, (1.8.6)

where x ∈ (0,∞), t > 0, 0 < α, β < 1.

Particular cases corresponding to certain specific values of the coefficients involved

and those spatial forms for which the equation can be reduced to ODEs are

presented.
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Chapter 2

Group Invariant Solutions of

Fractional Order Burgers-Poisson

Equation

2.1 Introduction

In 2004, Fellnerand and Schmeiser detected that the Burgers-Poisson (BP) system

ut + uux = φx, φxx = φ+ u, (2.1.1)

where φ and u depend on (t, x) ∈ R, describes the unidirectional propagation of

long waves in dispersive media. The BP system (2.1.1) can be easily replaced by

the single BP equation

ut − uxxt + ux + uux = 3uxuxx + uuxxx. (2.1.2)

Due to weaker dispersive effects for unidirectional water waves the BP equation

turned out to be a better model equation compared to the Korteweg-de Vries

(KdV) equation. Because of this property the BP equation has great importance

in the field of mathematical physics and continuum mechanics. The authors

in [30], presented few interesting behaviour patterns that BP equation exhibits,
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such as wave breaking in finite time, local existence results for smooth solutions

and global existence result for weak entropy solutions. The Lie symmetries and

group invariant solutions of equation (2.1.2) are reported in [98]. The numerical

solutions of the BP equation have been worked out by Hizel and Kucukarslan [56]

using the variational iteration method. To provide the phase velocity that arises

in linear water wave theory, the BP equation is presented as an approximate

model equation for water waves [67]. The large time behaviour of solutions to

BP equation is presented by some authors in [31]. In recent times fractional

differential equations have caught a remarkable attention of many researchers

due to its extensive applications in many fields. Fractional versions of the well

known equations of applied mathematics, such as the growth equation, diffusion

equation, transport equation, Bloch equation, Schrödinger equation, etc., have

produced many interesting solutions along with observable consequences. The

application of Lie symmetries is one of the most effective techniques in solving

nonlinear partial differential equations (PDEs). Only few researchers have applied

the Lie group method on fractional differential equations. In 2010, the fractional

Lie group method and the fractional characteristic method are proposed by Wu

to solve anomalous diffusion equations [103, 104].

In this chapter, we present the application of classical Lie group method

(section 1.5) to a fractional order Burgers-Poisson equation (FBP equation)

u
(α)
t − (u(2β)

x )αt + u(β)
x + uu(β)

x − (3u(β)
x u(2β)

x + uu(3β)
x ) = 0, (2.1.3)

where x ∈ (0,∞), t > 0, 0 < α, β < 1. Equation (2.1.3) is obtained by replacing

the first-order time and space derivatives by the fractional derivatives of order α

and β in the classical Burgers-Poisson equation. The chapter has been organised

as follows. The infinitesimals of the group of transformations which leaves the

FBP equation invariant are obtained in section 2.2. Section 2.3 is entirely de-

voted to the determination of the reduced forms of ordinary differential equations

(ODEs) and their exact solutions. Finally, the conclusion is given in Section 2.4
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2.2 Symmetry Analysis of FBP Equation

In order to apply the Lie classical method to the FBP equation (2.1.3), we con-

sider the Lie symmetries of the form

x̃β

Γ(1 + β)
=

xβ

Γ(1 + β)
+ εξ(x, t, u) + o(ε2) (2.2.1)

t̃α

Γ(1 + α)
=

tα

Γ(1 + α)
+ ετ(x, t, u) + o(ε2) (2.2.2)

ũ = u+ εη(x, t, u) + o(ε2), (2.2.3)

where ε is the group parameter and ξ, τ and η are the infinitesimals of the trans-

formations for the independent and dependent variables, respectively. It is there-

fore, necessary that this transformation leaves the set of solutions of equation

(2.1.3) invariant. This yields an overdetermined linear system of equations for

the infinitesimals ξ(x, t, u), τ(x, t, u) and η(x, t, u).

The associated Lie algebra of infinitesimal symmetries and its fractional third

order prolongation is the set of vector fields of the form

V = ξ(x, t, u)
∂β

∂xβ
+ τ(x, t, u)

∂α

∂tα
+ η(x, t, u)

∂

∂u
. (2.2.4)

pr(3)V = ξ(x, t, u)
∂β

∂xβ
+ τ(x, t, u)

∂α

∂tα
+ η(x, t, u)

∂

∂u
+ ηt

∂

∂u
(α)
t

+ ηx
∂

∂u
(β)
x

+

ηxx
∂

∂u
(2β)
x

+ ηxxt
∂

∂(u
(α)
t )

(2β)
x

+ ηxxx
∂

∂u
(3β)
x

(2.2.5)

Now for the invariance of equation (2.1.3) under equations (2.2.1)-(2.2.3), we

must have

pr(3)V ([∆u])|[∆u]=0 = 0, (2.2.6)

where [∆u] = u
(α)
t − (u

(2β)
x )αt + u

(β)
x + uu

(β)
x − (3u

(β)
x u

(2β)
x + uu

(3β)
x ),

or, equivalently

(η(u(β)
x −u(3β)

x ) +ηx(1 +u−3u(2β)
x ) +ηt−3u(β)

x ηxx−uηxxx−ηxxt)|([∆u])=0 = 0,

(2.2.7)
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where ηt, ηx, ηxx, ηxxx and ηxxt are extended (prolonged) infinitesimals given by

the expressions

η
(1)
i = Diη − (Diξj)uj

η
(k)
i1i2...ik

= Dikη
(k−1)
i1i2...ik−1

− (Dikξj)ui1,i2,...,ik−1,j,

where il = 1, 2 for l = 1, 2 with k ≥ 2 and Di is total derivative operator defined

as

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ uii1i2

∂

∂ui1i2
+ ... + uii1i2...in

∂

∂ui1i2...in
+ ...,

with summation over repeated index.

Using the generalised fractional prolongation vector fields in equation (2.2.7)

and equating the coefficient of various derivative terms to zero, we get the sim-

plified set of determining equations as follows (for details, refer to Appendix-2A)

τu = ξ(β)
x = ξ

(α)
t − η = 0 (2.2.8)

τ (β)
x = ηβx − η3β

x = 0 (2.2.9)

ξu = ξ(2β)
x − 2(ηu)

(β)
x = 0 (2.2.10)

ηuu = 0 (2.2.11)

ηu + τ
(α)
t = ξ(β)

x (2.2.12)

τ
(α)
t = ξ(β)

x (2.2.13)

ξ(2β)
x − (ηu)

(β)
x = 0 (2.2.14)

2(ξ(β)
x )

(α)

t − (ηu)
(α)
t − 3η(β)

x = 0 (2.2.15)

ξ(3β)
x − 2(ηu)

(2β)
x − η(2β)

x + ξ(β)
x + τ

(α)
t = 0 (2.2.16)

η
(α)
t + η(β)

x − (η(2β)
x )

α

t = 0 (2.2.17)

Equations (2.2.8)–(2.2.17) enable us to derive the infinitesimals ξ(x, t, u), τ(x, t, u)

and η(x, t, u) as follows:

ξ = c
tα

Γ(1 + α)
+ b, (2.2.18)

τ = a, (2.2.19)
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η = c, (2.2.20)

where a, b, c are arbitrary constants.

Hence, the point symmetries under which the equation (2.1.3) is invariant can be

spanned by the following three linearly independent infinitesimal generators:

V1 =
∂α

∂tα
(2.2.21)

V2 =
∂β

∂xβ
(2.2.22)

V3 =
tα

Γ(1 + α)

∂β

∂xβ
+

∂

∂u
. (2.2.23)

Using these generators one can reduce the equation (2.1.3) to an ODE after get-

ting the similarity variable by solving the characteristic equations (1.4.16) corre-

spondig to each infinitesimal generator as given in section (1.4.1.4). In general

one may obtain the reduced ODE from any linear combination of generators Vj,

j = 1, 2, 3. Further, it may be noted that for α = β = 1 , the infinitesimals

reported for the integer order model can be recovered [98]. With the help of

equation (1.4.18) the commutator table for the vector fields in the Lie algebra

can be constructed as follows: Lie group of local point transformations generated

Table 2.1: Commutator Table

V1 V2 V3

V1 0 0 V2

V2 0 0 0

V3 −V2 0 0

by the vector field Vi, i = 1, 2, 3 and V , where V = rV1 +V3 is obtained by solving

the system of ordinary differential equations

(dx̃)β

Γ(1 + β)dε
= ξ(x̃, t̃, ũ) (2.2.24)

(dt̃)
α

Γ(1 + α)dε
= τ(x̃, t̃, ũ) (2.2.25)
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dũ

dε
= η(x̃, t̃, ũ), (2.2.26)

with the initial conditions

x̃|ε=0 = x (2.2.27)

t̃|ε=0 = t (2.2.28)

ũ|ε=0 = u (2.2.29)

On solving the above equations, we get the following one parameter groups

g1 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→
(

xβ

Γ(1 + β)
,

tα

Γ(1 + α)
+ ε, u

)

g2 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→
(

xβ

Γ(1 + β)
+ ε,

tα

Γ(1 + α)
, u

)
g3 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→
(

xβ

Γ(1 + β)
+ ε

tα

Γ(1 + α)
,

tα

Γ(1 + α)
, u+ ε

)
g :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→
(

xβ

Γ(1 + β)
+ ε

tα

Γ(1 + α)
,

tα

Γ(1 + α)
+ rε, u+ ε

)

2.3 Reduced Forms and Exact Solutions

In this section, we investigate some similarity transformations which reduce the

FBP equation (2.1.3) to ordinary differential equation, further we obtain some

exact solutions to the FBP equation (2.1.3) corresponding to the following in-

finitesimal generators

(i) V1

(ii) V2

(iii) V3

(iv) rV1 + V3,

where r is an arbitrary nonzero constant parameter.

Theorem 2.3.1 Under the invariants X(x, t) = tα

Γ(1+α)
and φ(X) = xβ

Γ(1+β)
−

tα

Γ(1+α)
u the FBP equation (2.1.3) reduces to an ordinary differential equation
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φ(X)φ′′′(X) + 3φ′(X)φ′′(X) − φ(X)φ′(X) − φ(X) = 0, which has the general

solution in implicit form as
∫ 2

√
3|φ|√

3φ4+8φ3+12c1φ2−6c2
dφ = X + c3, where c1, c2 and

c3 are arbitrary constants.

Proof: Consider the infinitesimal generator V1, given by

V1 =
∂α

∂tα
.

We find the resulting invariant solution by reducing equation (2.1.3) to a linear

ordinary differential equation using differential invariants. The fractional char-

acteristic equations for V1 are

(dx)β

Γ(1+β)

0
=

(dt)α

Γ(1+α)

1
=
du

0
. (2.3.1)

From the fractional characteristic equations we obtain two functionally indepen-

dent invariants as

X(x, t) =
xβ

Γ(1 + β)
, and φ(X) = u(x, t) (2.3.2)

Now the solution of the fractional characteristic equations will be of the form

u(x, t) = φ(X), therefore,

u(x, t) = φ(
xβ

Γ(1 + β)
). (2.3.3)

Substituting this value of u(x, t) in equation (2.1.3), we get the reduced third

order nonlinear ordinary differential equation

φ(X)φ′′′(X) + 3φ′(X)φ′′(X)− φ(X)φ′(X)− φ(X) = 0. (2.3.4)

The general solution of the equation (2.3.4) in implicit form is obtained as∫
2
√

3|φ|√
3φ4 + 8φ3 + 12c1φ2 − 6c2

dφ = X + c3, (2.3.5)

where c1, c2 and c3 are arbitrary constants. This gives

u(x, t) = φ(X), (2.3.6)
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where X and φ(X) are given by equations (2.3.2) and (2.3.5). In particular,

taking c1 = 1, c2 = 0 a solution of FBP equation (2.1.3) is given by

u(x, t) =
2

3
[
√

5 sinh(
xβ

2Γ(1 + β)
)− 2]. (2.3.7)

Theorem 2.3.2 The similarity transformations u(x, t) = 1
r
[ tα

Γ(1+α)
− ζ(θ)] along

with the similarity variable θ(x, t) = r xβ

Γ(1+β)
− t2α

Γ(1+2α)
reduces the FBP equation

(2.1.3) to nonlinear ordinary differential equation

3r2ζ ′(θ)ζ ′′(θ) + r2ζ(θ)ζ ′′′(θ)− ζ(θ)ζ ′(θ) + rζ ′(θ)− 1 = 0.

Proof: On taking the infinitesimal generator

V4 = rV1 + V3 = r
∂α

∂tα
+

tα

Γ(1 + α)

∂β

∂xβ
+

∂

∂u
, (2.3.8)

we obtain the invariants

θ(x, t) = r
xβ

Γ(1 + β)
− t2α

Γ(1 + 2α)
, and ζ(θ) =

tα

Γ(1 + α)
−ru(x, t) (2.3.9)

and the reduced form of equation (2.1.3) as

3r2ζ ′(θ)ζ ′′(θ) + r2ζ(θ)ζ ′′′(θ)− ζ(θ)ζ ′(θ) + rζ ′(θ)− 1 = 0. (2.3.10)

It can be easily seen that the differential equation (2.3.10) is invariant under the

translation group

θ∗ = θ + ε, ζ∗ = ζ. (2.3.11)

Hence, equation (2.3.10) can be reduced to the following second order differential

equation

3r2φ2(ζ)φ′(ζ) + r2ζ(φ2(ζ)φ′′(ζ))− ζφ(ζ) + rφ(ζ)− 1 = 0. (2.3.12)

Further attempts in search of invariant one-parameter Lie groups of transforma-

tion for equation (2.3.10) do not yield any nontrivial group.

Theorem 2.3.3 Under the group of point transformations X(x, t) = tα

Γ(1+α)
and

φ(X) = xβ

Γ(1+β)
− tα

Γ(1+α)
u the FBP equation (2.1.3) reduces to an ordinary differ-

ential equation φ′(X) = 1, which has the general solution as u(x, t) = Γ(1+α)
Γ(1+β)

xβ

tα
−

K Γ(1+α)
tα
− 1, where K is an arbitrary constant.
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Proof: In this case, we study the infinitesimal generator

V3 =
tα

Γ(1 + α)

∂β

∂xβ
+

∂

∂u
. (2.3.13)

The following invariants can be derived easily

X(x, t) =
tα

Γ(1 + α)
, φ(X) =

xβ

Γ(1 + β)
− tα

Γ(1 + α)
u, (2.3.14)

and the reduced form of equation (2.1.3) is

φ′(X) = 1. (2.3.15)

This yields the solution

u(x, t) =
Γ(1 + α)

Γ(1 + β)

xβ

tα
−KΓ(1 + α)

tα
− 1. (2.3.16)

Theorem 2.3.4 Under the transformations X(x, t) = tα

Γ(1+α)
and φ(X) = u(x, t)

the FBP equation (2.1.3) reduces to an ordinary differential equation of first order

φ′(X) = 0, which gives constant solution u(x, t) = k.

Proof: In this case we obtain an invariant solution of equation (2.1.3) by using

the infinitesimal generator

V2 =
∂β

∂xβ
. (2.3.17)

Here, the fractional characteristic equations give the invariants

X(x, t) =
tα

Γ(1 + α)
, φ(X) = u(x, t). (2.3.18)

This gives

u(x, t) = φ(
tα

Γ(1 + α)
). (2.3.19)

Using the new form of u(x, t) in equation (2.1.3), it reduces to an ordinary dif-

ferential equation of first order

φ′(X) = 0. (2.3.20)

which leads to the constant solution

u(x, t) = k. (2.3.21)
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2.4 Discussion

The Lie symmetry analysis is the most effective and important analytic approach

to obtain exact solutions for nonlinear differential equations of integer order.

This chapter shows the effectiveness of the method in solving fractional order

differential equations. In particular, the fractional Lie group method has been

effectively applied on a nonlinear fractional Burgers-Poisson equation. For vari-

ous infinitesimal generators the Burgers-Poisson equation has been reduced into

some ordinary differential equations by using the method of differential invari-

ants. Further, utilising the one-dimensional Lie symmetry generators admitted

by the FBP equation (2.1.3) some group invariant solutions of FBP equation

(2.1.3) have also been provided. The method can be applied on various other

nonlinear fractional order partial differential equations.

36



Appendix–2A

The extended infinitesimals ηt, ηx, ηxx, ηxxx and ηxxt can be easily obtained

as

ηt = η
(α)
t + u

(α)
t ηu − (ξ

(α)
t + u

(α)
t ξu)u

(β)
x − (τ

(α)
t + u

(α)
t τu)u

(α)
t ,

ηx = η(β)
x + u(β)

x ηu − (ξ(β)
x + u(β)

x ξu)u
(β)
x + (τ (β)

x + u(β)
x τu)u

(α)
t ,

ηxx = η(2β)
x + u(β)

x (ηu)
(β)
x − (ξ(2β)

x + u(β)
x (ξu)

(β)
x )u(β)

x + (τ (2β)
x + u(β)

x (τu)
(β)
x )u

(α)
t −

2(τ (β)
x + u(β)

x τu)(u
(β)
x )

(α)
t + u(2β)

x (ηu − u(β)
x ξu − u(α)

t τu)− 2(ξ(β)
x + u(β)

x ξu)u
(2β)
x +

[(ηu)
(β)
x + u(β)

x ηuu − ((ξu)
(β)
x + u(β)

x ξuu)u
(β)
x − ((τu)

(β)
x + u(β)

x τuu)u
(α)
t ]u(β)

x ,

ηxxx = η(3β)
x + (3(ηu)

(2β)
x − ξ(3β)

x )u(β)
x − τ (3β)

x u
(α)
t − 3(τu)

(2β)
x u

(α)
t u(β)

x +

(3(ηuu)
(β)
x − (ξu)

(2β)
x )(u(β)

x )
2 − 3(τuu)

(β)
x u

(α)
t (u(β)

x )
2

+ ((ηuuu)− 3(ξuu)
(β)
x )(u(β)

x )
3−

τuuuu
(α)
t (u(β)

x )
3 − ξuuu(u(β)

x )
4 − 3τxx(u

(β)
x )

(α)
t + (3(ηu)

(β)
x − ξ(2β)

x )u(2β)
x +

3((ηuu)−3(ξu)
(β)
x )u(β)

x u(2β)
x −3(τu)

(β)
x u

(α)
t u(2β)

x −6(τu)
(β)
x u(β)

x (u(β)
x )

(α)
t −6ξuuu

(2β)
x (u(β)

x )
2−

3τuu(u
(β)
x )

2
(u(β)

x )
(α)
t −3τuuu

(2β)
x u(β)

x u
(α)
t −3ξu(u

(2β)
x )

2−3τuu
(2β)
x (u(β)

x )
(α)
t −3τx(u

(2β)
x )

(α)
t +

(ηu − 3ξ(β)
x )(u(3β)

x )− 4ξu(u
(3β)
x )u(β)

x − τu(u(3β)
x )u

(α)
t − 3τu(u

(β)
x )(u(2β)

x )
(α)
t

ηxxt = (η(2β)
x )

(α)

t + ((ηu)
(2β)
x − (τ (2β)
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t )u
(α)
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x )

(α)

t )u(β)
x +
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t )u(β)
x u
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x u(β)
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t (u(β)
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3

+ ((ηuuu)− 2(ξuu)
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t )(u(β)

x )
2
u

(α)
t −

τuuu(u
(α)
t )

2
(u(β)
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2 − ξuuu(u(β)

x )
3
u

(α)
t + ((ηu)

(α)
t − 2((ξ)(β)

x )
(α)
t )u(2β)

x +

(2(ηu)
(β)
x − ξ(2β)

x − 2(τ (β)
x )

(α)

t )(u(β)
x )

(α)
t − τ (2β)

x )u
(2α)
t − 4(τu)

(β)
x (u(β)

x )
(α)
t u

(α)
t −

2(τu)
(β)
x u

(2α)
t u(β)

x − 3(ξu)
(α)
t u(2β)

x u(β)
x − (τu)

(2β)
x (u

(α)
t )
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Using the expressions for ηt, ηx, ηxx, ηxxx and ηxxt in equation (2.2.7), we eventu-

ally arrive at the following:

η(u(β)
x −u(3β)

x )+(1+u−3u(2β)
x )(η(β)

x +u(β)
x ηu−(ξ(β)

x +u(β)
x ξu)u

(β)
x +(τ (β)

x +u(β)
x τu)u

(α)
t )+

η
(α)
t + u

(α)
t ηu − (ξ

(α)
t + u

(α)
t ξu)u

(β)
x − (τ

(α)
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(α)
t τu)u

(α)
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x + u(β)
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x ξuu)u
(β)
x − ((τu)

(β)
x + u(β)

x τuu)u
(α)
t ]u(β)

x )−

u(η(3β)
x + (3(ηu)

(2β)
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|([∆u])=0 = 0 (2A-1)

On equating the coefficients of different differentials equal to zero, we obtained a

set of determining equations as (2.2.8)–(2.2.17)
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Chapter 3

Symmetry Analysis of Time

Fractional Potential

Burgers' Equation

3.1 Introduction

In 2007, Gazizov investigated the continuous point transformation groups of some

fractional differential equations and proposed some prolongation formulae, where

the author assumed the existence of both, the fractional derivative as well as

the integer order derivative. In this chapter by means of Lie group method we

consider the following time fractional potential Burgers' equation of the form

u
(α)
t = Auxx +B(ux)

2, x ∈ (0,∞), t > 0, 0 < α < 1, (3.1.1)

where A and B are real constant parameters.

Lie point symmetries of time fractional potential Burgers' equation are pre-

sented. Using these symmetries the time fractional potential Burgers' equation

(3.1.1) has been transformed into an ordinary differential equation of fractional

order corresponding to the Erdélyi-Kober fractional derivative [69]. Further, an

analytic solution is furnished by means of the Invariant Subspace Method.
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In the next section, we deduce the Lie symmetries of the equation (3.1.1). Section

3.3 is devoted in finding some group invariant solutions on solving the reduced

forms of ODEs associated with some basic fields of sub algebras. Some other

exact solutions have been investigated in section 3.4 using Invariant Subspace

method. Finally, in the last section we make some concluding remarks.

3.2 Lie Symmetries

Herein, we investigate the symmetries of time fractional Potential Burgers' equation

(3.1.1). We assume that eqn. (3.1.1) admits the Lie symmetries of the form

x̃ = x+ εξ(x, t, u) + o(ε2) (3.2.1)

t̃ = t+ ετ(x, t, u) + o(ε2) (3.2.2)

ũ = u+ εη(x, t, u) + o(ε2), (3.2.3)

where ε is the group parameter and ξ, τ and η are the infinitesimals of the trans-

formations for the independent and dependent variables, respectively. In other

words if u is solution of equation (3.1.1), then ũ is also a solution.

The associated Lie algebra of infinitesimal symmetries of equation (3.1.1) is then

the vector field of the form

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (3.2.4)

The fractional second order prolongation of (3.1.1) is

pr(2)V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
+ ηt

∂

∂ut
+ ηx

∂

∂ux
+

η0
α

∂

∂u
(α)
t

+ ηtt
∂

∂utt
+ ηxx

∂

∂uxx
. (3.2.5)

Invoking the invariance criterion as explained in chapter 1, the following relation

from the coefficients of the first order of ε is deduced:

(η0
α − 2Buxη

x − Aηxx)|([∆u])=0 = 0, (3.2.6)
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where ηx, η0
α and ηxx are extended infinitesimals acting on enlarged space corre-

sponding to ux, u
α
t and uxx. The method for determining the symmetry group

of equation (3.1.1) mainly consists of finding the infinitesimals ξ, τ and η, which

are functions of x, t and u. The general solution of equation (3.2.6) provides

the infinitesimal elements ξ, τ and η for which the equation (3.1.1) possesses Lie

symmetry. Using the expressions for ηx, η0
α and ηxx (for these expressions re-

fer to Appendix-3A) in equation (3.2.6) and equating the coefficients of different

differentials equal to zero, we obtained a set of determining equations as follows:

τu = 0 (3.2.7)

τx = 0 (3.2.8)

ξu = 0 (3.2.9)(
α

n

)
∂nt η −

(
α

n+ 1

)
Dn+1
t (τ) = 0, n = 1, 2, 3, ... (3.2.10)

2ξx − ατu = 0 (3.2.11)

2Bξx −Bατu −Bτu = 0 (3.2.12)

Dn
t (ξ) = 0, n = 1, 2, 3, ... (3.2.13)

On solving the above equations (3.2.7-3.2.13), we obtain the infinitesimals as

ξ = c1x+ c2 (3.2.14)

τ =
2c1t

α
(3.2.15)

η = c3 (3.2.16)

where c1,c2,c3 are arbitrary parameters. The point symmetry generators admitted

by the equation (3.1.1) are given by

V1 = x
∂

∂x
+

2t

α

∂

∂t
(3.2.17)

V2 =
∂

∂x
(3.2.18)

V3 =
∂

∂u
(3.2.19)
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Hence, the infinitesimal operator (3.2.4) becomes V = (c1x+c2) ∂
∂x

+ 2c1t
α

∂
∂t

+c3
∂
∂u

.

Further, these infinitesimal generators (3.2.17-3.2.19) can be used to determine a

three parameters fractional Lie group of point transformations acting on (x, t, u)-

space which is fewer than those for the standard Burgers' equation [84]. It can

be verified easily that the set {V1, V2, V3} forms a three dimensional Lie algebra

under the Lie bracket [X, Y ] = XY − Y X and its commutator table is as given

below:

Table 3.1: Commutator Table

V1 V2 V3

V1 0 -V2 0

V2 V2 0 0

V3 0 0 0

Further, from the commutator table it can be seen that V3 forms a solvable

subalgebra. Also V3 is the centre of the three dimensional Lie algebra as it

commutes with every element of the Lie algebra. The group transformation

generated by the infinitesimal generators Vi, i = 1, 2, 3 is obtained by solving the

system of ordinary differential equations

dx̃

dε
= ξ(x̃, t̃, ũ) (3.2.20)

dt̃

dε
= τ(x̃, t̃, ũ) (3.2.21)

dũ

dε
= η(x̃, t̃, ũ) (3.2.22)

with the initial conditions

x̃|ε=0 = x (3.2.23)

t̃|ε=0 = t (3.2.24)

ũ|ε=0 = u. (3.2.25)
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Exponentiating the infinitesimal symmetries of equation (3.1.1), we get the one

parameter groups gi(ε) generated by Vi, i = 1, 2, 3

g1 : (x, t, u)→ (eεx, e
2
α t, u) (3.2.26)

g2 : (x, t, u)→ (x+ ε, t, u) (3.2.27)

g3 : (x, t, u)→ (x, t, u+ ε) (3.2.28)

Now, since gi is a symmetry, if u = f(x, t) is a solution of equation (3.1.1) the

following ui are also solutions of eqn. (3.1.1)

u1 = f(eεx, e
2
α t) (3.2.29)

u2 = f(x+ ε, t) (3.2.30)

u3 = f(x, t)− ε (3.2.31)

3.3 Reduction to ODE

Herein, the time fractional potential Burgers' equation (3.1.1) has been reduced

into an ODE with the Erdélyi-Kober fractional differential operator. For the

infinitesimal generator V1 the characteristic equations are

dx

x
=
αdt

2t
=
du

0
, (3.3.1)

which give the invariants as u(x, t) = f(z), z = xt
−α
2 . Corresponding to these

invariants equation (3.1.1) can be reduced into an ODE of fractional order. The

result has been summarized in the following theorem :

Theorem 3.3.1 The similarity transformation u(x, t) = f(z) along with the

similarity variable z = xt
−α
2 reduces the time fractional potential Burgers' equation

(3.1.1) to the ordinary differential equation of fractional order of the form

(P 1−α,α
2
α

f)(z) = A
d2f

dz2
+B(

df

dz
)2 (3.3.2)
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with the Erdélyi-Kober fractional differential operator [69]

(P τ,α
δ f)(z) =

m−1∏
j=0

(τ + j − 1

δ
z
d

dz
)(Kτ+α,m−α

δ f)(z), z > 0, δ > 0, α > 0, (3.3.3)

m =

 [α] + 1, α 6∈ N

α, α ∈ N.
, where

(Kτ,α
δ f) (z) =


1

Γ(α)

∞∫
0

(ν − 1)α−1ν−(τ+α)f(zν
1
δ ) dν , α > 0;

f(z), α = 0

(3.3.4)

is the Erdélyi-Kober fractional integral operator.

Proof: Let n − 1 < α < n, n = 1, 2, 3, ... then the Riemann-Liouville

fractional derivative for the similarity transformation u(x, t) = f(z) with the

similarity variable z = xt
−α
2 becomes

∂αu
∂tα

= ∂n

∂tn
[ 1
Γ(n−α)

t∫
0

(t− s)n−α−1f(xs
−α
2 ) ds].

Let ν = t
s
. Then the above equation can be written as

∂αu
∂tα

= ∂n

∂tn
[tn−α 1

Γ(n−α)

∞∫
1

(ν − 1)n−α−1ν−(n−α+1)f(zν
α
2 ) dν].

Following the definition of the Erdélyi-Kober fractional integral operator given

in equation (3.3.4), we have

∂αu

∂tα
=

∂n

∂tn
[tn−α(K1,n−α

2
α

f)(z)]. (3.3.5)

In order to simplify the right hand side of equation (3.3.5), consider the relation

z = xt
−α
2 , f ∈ C1(0,∞),

t
∂

∂t
f(z) = tx(−α

2
)t−

α
2
−1f ′(z)

= −α
2
z
d

dz
f(z)

and thus, we get

∂n

∂tn
[tn−α(K1,n−α

2
α

f)(z)] =
∂n−1

∂tn−1
[
∂

∂t
(tn−α(K1,n−α

2
α

f)(z))]

=
∂n−1

∂tn−1
[tn−α−1(n− α− α

2
z
d

dz
(K1,n−α

2
α

f)(z))].
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Repeating the similar procedure for n− 1 times, we have

∂n

∂tn
[tn−α(K1,n−α

2
α

f)(z)] = t−α
n−1∏
j=0

(1− α + j − α

2
z
d

dz
)(K1,n−α

2
α

f)(z). (3.3.6)

Now using the definition of Erdélyi-Kober fractional differential operator given

in equation (3.3.3), the above equation can be written as

∂n

∂tn
[tn−α(K1,n−α

2
α

f)(z)] = t−α(P 1−α,α
2
α

f)(z). (3.3.7)

Thus, an expression for the time fractional derivative is

∂αu

∂tα
= t−α(P 1−α,α

2
α

f)(z). (3.3.8)

Continuing further we find that the time fractional potential Burgers' equation

(3.1.1) reduces to an ordinary differential equation of fractional order

(P 1−α,α
2
α

f)(z) = A
d2f

dz2
+B(

df

dz
)2. (3.3.9)

As the order 0 < α < 1 of the reduced equation is arbitrary, there is no

existing method to solve the above differential equation of fractional order in

general. However, for some special cases, such as the initial value problems and

the linear equations, the solutions can be furnished by the power series method

with Mittag-Leffler function and Wright and the generalised Wright functions

[18]. In particular, when B = 0, two independent solutions of equation (3.1.1)

can be drived as W (−xt−
α
2√
A

;−α
2
, 1) and W (xt

−α
2√
A

;−α
2
, 1), where W (z;λ, µ) is the

Wright function [102] given by W (z;λ, µ) =
∞∑
i=0

zi

i!Γ(λi+µ)
. Consequently, the group

invariant solution of equation (3.1.1) when B = 0 has the form

u(x, t) = K1W (−xt
−α

2

√
A

;−α
2
, 1) +K2W (

xt−
α
2

√
A

;−α
2
, 1), (3.3.10)

where K1 and K2 are arbitrary parameters.
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3.4 Some Exact Solutions of Time Fractional

Potential Burgers' Equation by the Invari-

ant Subspace Method.

The invariant subspace method (as defined in section 1.6) has been utilized in

order to discover exact solutions of equation (3.1.1).

For equation (3.1.1),

F [u] = Auxx +Bux
2. (3.4.1)

We have the space W3 = 〈1, x, x2〉 as invariant under F [u], since

F [C1 + C2x+ C3x
2] = 2C3A+B(C2 + 2C3x)2

= b1 + b2x+ b3x
2 ∈ W3

where b1,b2 and b3 are arbitrary constants given by

2C3A+BC2
2 = b1

4BC2C3 = b2, and

4BC2
3 = b3.

This allows us to consider an exact solution of equation (3.1.1) as

u(x, t) = a1(t) + a2(t)x+ a3(t)x2. (3.4.2)

Substituting the value of u(x, t) from equation (3.4.2) into the equation (3.1.1)

and equating the coefficients of xj, j = 0, 1, 2, we get the following system of

fractional differential equations

dαa3(t)

dtα
= 4B(a3(t))2, (3.4.3)

dαa2(t)

dtα
= 4Ba2(t)a3(t) (3.4.4)

and
dαa1(t)

dtα
= 2Aa3(t) +B(a2(t))2. (3.4.5)
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Equations (3.4.3-3.4.5) can be readily solved to yield

− 1

a3(t)
=

2

Γ(1 + α)

∫
Bdtα + s1, (3.4.6)

log a2(t) =
4

Γ(1 + α)

∫
a3(t)Bdtα + s2 (3.4.7)

and

a1(t) =
1

Γ(1 + α)
[

∫
(2a3(t)A+ (a2(t))2B)dtα + s3], (3.4.8)

where s1,s2 and s3 are arbitrary constants.

Using equation (3.4.2) and equations (3.4.6-3.4.8) one can easily obtain an exact

solution of equation (3.1.1).

3.5 Discussion

The application of Lie symmetry method has been performed on a time fractional

potential Burgers' equation (3.1.1) and the Lie point symmetries has been drived.

The Lie symmetry analysis shows that the underlying symmetry algebra of the

equation (3.1.1) is three dimensional unlike the six dimensional Lie algebra for

standard potential Burgers' equation. The reduction of dimension in the symme-

try algebra is due to the fact that the time fractional equation is not invariant

under time translation symmetry. It is appropriate to mention here that the frac-

tional order significantly affects the properties of the equation. The main reason

is that the fractional order 0 < α < 1 is an arbitrary parameter in the studied

fractional model. Using the Lie point symmetries, It has been shown that the

equation can be transformed into an ODE of fractional order with Erdélyi-Kober

fractional derivative. At last, some exact solutions to the time fractional poten-

tial Burgers' equation (3.1.1) are furnished by means of the fractional invariant

subspace method.
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Appendix–3A

The generalised fractional prolongation vector fields, ηx, η0
α and ηxx are given

by

ηx = ηx + uxηu − (ξx + uxξu)ux + (τx + uxτu)ut

η0
α = ηαt + (ηu − α(τt + utτu))u

α
t − u(ηu)

α
t −

∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux)+

∞∑
n=1

[

(
α

n

)
∂nt ηu −

(
α

n+ 1

)
Dn+1
t (τ)]Dα−n

t (u) + µ,

where µ =
∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1
k!

tn−α

Γ(n−α+1)
(−u)r ∂

m

∂tm
(uk−r) ∂

n−m+kη
∂tn−m∂uk

, and

ηxx = ηxx + uxηux − (ξxx + uxξux)ux + (τxx + uxτux)ut − 2(τx + uxτu)uxt+

[ηxu + uxηuu − (ξxu + uxξuu)ux − (τxu + uxτuu)ut]ux+

uxx(ηu − uxξu − utτu)− 2(ξx + uxξu)uxx

Using the expressions for ηx, η0
α and ηxx in equation (3.2.6), we eventually arrive

at the following:

ηαt + (ηu − α(τt + utτu))Auxx +B(ux)
2 − u(ηu)

α
t −

∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux)+

∞∑
n=1

[

(
α

n

)
∂nt ηu −

(
α

n+ 1

)
Dn+1
t (τ)]Dα−n

t (u) + µ−

2Bux(ηx + uxηu − (ξx + uxξu)ux + (τx + uxτu)ut)−

A(ηxx + uxηux − (ξxx + uxξux)ux + (τxx + uxτux)ut − 2(τx + uxτu)uxt)+

A[ηxu + uxηuu − (ξxu + uxξuu)ux − (τxu + uxτuu)ut]ux+

Auxx(ηu − uxξu − utτu)− 2(ξx + uxξu)uxx = 0. (3A-1)

On equating the coefficients of different differentials equal to zero, we obtained a

set of determining equations as (3.2.7)–(3.2.13)



Chapter 4

Similarity Reduction and Exact

Solutions of a Variable

Coefficient Space-Time Fractional

Potential Burgers' Equation

4.1 Introduction

As mentioned in chapter 1, herein, a space-time fractional potential Burgers'

(FPB) equation with variable coefficients

u
(α)
t = f(t)u(2β)

x + g(t)(u(β)
x )

2
, x ∈ (0,∞), t > 0, 0 < α, β < 1, (4.1.1)

where u
(α)
t , u

(β)
x are the modified Riemann-Liouville derivatives with respect to

time and space variables respectively and the coefficients f(t) and g(t) are arbi-

trary smooth functions of variable t only, is examined for various exact solutions.

The equation (4.1.1) is connected to the fractional Burgers' equation by the well-

known Hopf-Cole transformation and is a generalisation of the time-fractional

Burgers' equation with constant coefficients examined by Wu [104].

The chapter has been organized as follows. In Section 4.2, the symmetries
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for the FPB equation (4.1.1) are obtained. In Section 4.3, we analyze the reduced

systems and find some invariant solutions of equation (4.1.1). Section 4.4 contains

application of invariant subspace method on FPB equation (4.1.1). The final

section contains the conclusion.

4.2 Symmetry Classification of FPB Equation

Herein, we investigate the symmetries of FPB equation (4.1.1). A fractional Lie

symmetry of equation (4.1.1) is a continuous group of point transformations of

independent and dependent variables which leaves the equation (4.1.1) invariant.

Let us assume that equation (4.1.1) admits the Lie symmetries of the form

x̃β

Γ(1 + β)
=

xβ

Γ(1 + β)
+ εξ(x, t, u) + o(ε2) (4.2.1)

t̃α

Γ(1 + α)
=

tα

Γ(1 + α)
+ ετ(x, t, u) + o(ε2) (4.2.2)

ũ = u+ εη(x, t, u) + o(ε2) (4.2.3)

where ε is the group parameter and ξ, τ and η are the infinitesimals of the trans-

formations for the independent and dependent variables, respectively. A group

invariant solution of FPB equation (4.1.1) is a solution which can be mapped

into another solution of equation (4.1.1) under the point transformations (4.2.1)–

(4.2.3). The associated Lie algebra of infinitesimal symmetries of equation (4.1.1)

is then the fractional vector field of the form

V = ξ(x, t, u)
∂β

∂xβ
+ τ(x, t, u)

∂α

∂tα
+ η(x, t, u)

∂

∂u
. (4.2.4)

The fractional second order prolongation of (4.2.4) is given by

pr(2)V = ξ(x, t, u)
∂β

∂xβ
+ τ(x, t, u)

∂α

∂tα
+ η(x, t, u)

∂

∂u
+ ηt

∂

∂u
(α)
t

+ ηx
∂

∂u
(β)
x

+

ηtt
∂

∂u
(2α)
t

+ ηxt
∂

∂(u
(α)
t )

(β)
x

+ ηxx
∂

∂u
(2β)
x

(4.2.5)
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Now for the invariance of equation (4.1.1) under equations (4.2.1–4.2.3), we

must have

pr(2)V ([∆u])|([∆u])=0 = 0, (4.2.6)

where [∆u] = u
(α)
t − f(t)u

(2β)
x − g(t)(u

(β)
x )

2
or equivalently, if

(ηt − f(t)ηxx − 2g(t)u(β)
x ηx − τf (α)

t u(2β)
x − τg(α)

t (u(β)
x )2)|([∆u])=0 = 0. (4.2.7)

The generalised fractional prolongation vector fields ηx, ηt and ηxx are given by

ηx = η(β)
x + u(β)

x ηu − (ξ(β)
x + u(β)

x ξu)u
(β)
x + (τ (β)

x + u(β)
x τu)u

(α)
t

ηt = η
(α)
t + u

(α)
t ηu − (ξ

(α)
t + u

(α)
t ξu)u

(β)
x − (τ

(α)
t + u

(α)
t τu)u

(α)
t

and

ηxx = η(2β)
x + u(β)

x (ηu)
(β)
x − (ξ(2β)

x + u(β)
x (ξu)

(β)
x )u(β)

x + (τ (2β)
x + u(β)

x (τu)
(β)
x )u

(α)
t −

2(τ (β)
x + u(β)

x τu)(u
(β)
x )

(α)
t + u(2β)

x (ηu − u(β)
x ξu − u(α)

t τu)− 2(ξ(β)
x + u(β)

x ξu)u
(2β)
x +

[(ηu)
(β)
x + u(β)

x ηuu − ((ξu)
(β)
x + u(β)

x ξuu)u
(β)
x − ((τu)

(β)
x + u(β)

x τuu)u
(α)
t ]u(β)

x

Using the above generalised fractional prolongation vector fields in equation

(4.2.7) and equating the coefficient of various derivative terms to zero, we get the

following simplified set of determining equations (for details, refer to Appendix-

4A)

τu = 0 (4.2.8)

τ (β)
x = 0 (4.2.9)

ξu = 0 (4.2.10)

2g(t)ξ(β)
x − g(t)τ

(α)
t − τg(α)

t − g(t)ηu − f(t)ηuu = 0 (4.2.11)

2f(t)ξ(β)
x − f(t)τ

(α)
t − τf (α)

t = 0 (4.2.12)

f(t)0D
2β
x ξ − 0D

α
t ξ − 2g(t)0D

β
xη − 2f(t)0D

β
xηu = 0 (4.2.13)

η
(α)
t − f(t)η(2β)

x = 0 (4.2.14)
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On solving equation (4.2.14) by using fractional Lie group method, a particular

solution is obtained as

η = a1
xβ

Γ(1 + β)
+ a2F

(α)
t (t) + a2

x2β

Γ(1 + 2β)
+ a3

where F
(2α)
t = f

(α)
t and a1, a2, a3 are arbitrary constants. After substituting

this value of η in the determining equations (4.2.11–4.2.12), we get the following

infinitesimals

ξ = −2a1G(t)− 2a2G(t)
xβ

Γ(1 + β)
+ a4

xβ

Γ(1 + β)
+ a5, (4.2.15)

τ =
1

F
(2α)
t (t)

− [4a2H(t)+2a4F
(α)
t (t) + a6], (4.2.16)

η = a1
xβ

Γ(1 + β)
+ a2F

(α)
t (t) + a2

x2β

Γ(1 + 2β)
+ a3, (4.2.17)

where G
(α)
t (t) = g(t), H

(α)
t (t) = F

(2α)
t (t)G(t), and a1, a2, ..., a6 are six arbitrary

constants. Using equations (4.2.15–4.2.17) in equation (4.2.11) we also get g(t) =

kf(t), where k is an arbitrary constant. Further for f(t) = g(t) = 1 and β = 1

the infinitesimals can be reduced to those reported by Wu (2011), by setting the

coefficients a1 = −c5, a2 = −2c6, a3 = c3, a4 = c4, a5 = c1, a6 = c2.

Hence, the fractional point symmetry generators admitted by the equation (4.1.1)

are given by

V1 = −2G(t)
∂β

∂xβ
+

xβ

Γ(1 + β)

∂

∂u

V2 = −2G(t)
xβ

Γ(1 + β)

∂β

∂xβ
− 4H(t)

F
(2α)
t (t)

∂α

∂tα
+ [F

(α)
t (t) +

x2β

Γ(1 + 2β)

∂

∂u
]

V3 =
∂

∂u

V4 =
xβ

Γ(1 + β)

∂β

∂xβ
+

2F
(α)
t (t)

F
(2α)
t (t)

∂α

∂tα

V5 =
∂β

∂xβ
,

and

V6 =
1

F
(2α)
t (t)

∂α

∂tα
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These infinitesimal generators can be used to determine a six parameter

fractional Lie group of point transformation acting on (x, t, u)-space. It can be

verified easily that the set {V1, V2, V3, V4, V5, V6} forms a six dimensional Lie alge-

bra under the Lie bracket [X, Y ] = XY − Y X, which reduces to the well-known

generalized Galilea algebra [84] for α = β = 1. The commutator table is as given

below:

Table 4.1: Commutator Table

V1 V2 V3 V4 V5 V6

V1 0 0 0 V1 -V3 2V5

V2 0 0 0 2V2 2V1 4V4-2V3

V3 0 0 0 0 0 0

V4 -V1 -2V2 0 0 -V5 2V6

V5 V3 -2V1 0 V5 0 0

V6 -2V5 2V3-4V4 0 -2V6 0 0

Further, from the commutator table it can be seen that the sets {V3} and

{V1, V2, V3} form solvable subalgebras. Also, V3 is the centre of the six dimen-

sional Lie algebra as it commutes with every element of the Lie algebra. The

group transformation generated by the infinitesimal generators Vi, i = 1, 2, ..., 6

is obtained by solving the system of ordinary differential equations

(dx̃)β

Γ(1 + β)dε
= ξ(x̃, t̃, ũ) (4.2.18)

(dt̃)
α

Γ(1 + α)dε
= τ(x̃, t̃, ũ) (4.2.19)

dũ

dε
= η(x̃, t̃, ũ), (4.2.20)

with the initial conditions

x̃|ε=0 = x (4.2.21)

t̃|ε=0 = t (4.2.22)
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ũ|ε=0 = u (4.2.23)

Exponentiating the infinitesimal symmetries of equation (4.1.1), we get the one

parameter groups gi(ε) generated by Vi, i = 1, 2, ..., 6

g1 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→(

xβ

Γ(1 + β)
− 2εG

Γ(1 + α)
,

tα

Γ(1 + α)
, u+

εxβ

Γ(1 + β)

)
(4.2.24)

g2 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→(

xβ

Γ(1 + β)
e−2εG,

G

(1 + 2εG)
, u+

εF
(α)
t

(1 + 2εG)
+

εx2β

Γ(1 + 2β)
e−

4εG
(1+2εG)

)
(4.2.25)

g3 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→
(

xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u+ ε

)
(4.2.26)

g4 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→
(

eεxβ

Γ(1 + β)
,

e2εtα

Γ(1 + α)
, u

)
(4.2.27)

g5 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→
(

xβ

Γ(1 + β)
+ ε,

tα

Γ(1 + α)
, u

)
(4.2.28)

g6 :

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
, u

)
→
(

xβ

Γ(1 + β)
,

tα

Γ(1 + α)
+ ε, u

)
(4.2.29)

Now, since gi is a symmetry, if u = χ( xβ

Γ(1+β)
, tα

Γ(1+α)
) is a solution of equation

(4.1.1) the following ui are also solutions of equation (4.1.1)

u1 = χ

(
xβ

Γ(1 + β)
− 2εG

Γ(1 + α)
,

tα

Γ(1 + α)

)
− εxβ

Γ(1 + β)
(4.2.30)

u2 = χ

(
xβ

Γ(1 + β)
e−2εG,

G

(1 + 2εG)

)
− εF

(α)
t

(1 + 2εG)
− εx2β

Γ(1 + 2β)
e−

4εG
(1+2εG) (4.2.31)

u3 = χ

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)

)
− ε (4.2.32)

u4 = χ

(
eεxβ

Γ(1 + β)
,

e2εtα

Γ(1 + α)

)
(4.2.33)

u5 = χ

(
xβ

Γ(1 + β)
+ ε,

tα

Γ(1 + α)

)
(4.2.34)

u6 = χ

(
xβ

Γ(1 + β)
,

tα

Γ(1 + α)
+ ε

)
(4.2.35)
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4.3 Some Exact Solutions of the FPB Equation

In this section, we investigate some exact solutions of equation (4.1.1) correspond-

ing to following infinitesimal generators.

(i) V1

(ii) V4

(iii) nV5 +mV3

(iv) rV5 + V6 and

(v) sV3 + V6,

where r, s, m and n are non-zero arbitrary constant parameters.

Theorem 4.3.1 Under the group of transformations T (x, t) = tα

Γ(1+α)
and φ(T ) =

x2β

Γ(1+2β)
+ 2G(t)u(x, t), the FPB equation (4.1.1) reduces to a linear differential

equation of first order φ′(T )−H1(T )φ(T ) = −H2(T ), where H1(T ) =
G

(α)
t (t)

G(t)
and

H2(T ) = F
(2α)
t . Which admits a solution given by

u(x, t) = 1
2G(t)

[e
∫
H1dT

(
k1 −

∫
H2e

−
∫
H1dTdT

)
− x2β

Γ(1+2β)
], where k1 is an arbitrary

constant.

Proof: Consider the infinitesimal generator V1, given by

V1 = −2G(t)
∂β

∂xβ
+

xβ

Γ(1 + β)

∂

∂u
(4.3.1)

We find an invariant solution of equation (4.1.1) by reducing it to a linear ordinary

differential equation (4.3.4) using differential invariants.

The fractional characteristic equations for V1 are

(dx)β

Γ(1+β)

−2G(t)
=

(dt)α

Γ(1+α)

0
=

du
xβ

Γ(1+β)

. (4.3.2)

On solving the above fractional characteristic equations we obtain two function-

ally independent invariants as T = tα

Γ(1+α)
, and ν = x2β

Γ(1+2β)
+ 2G(t)u.

55



Now the solution of the fractional characteristic equations will be of the form

ν = φ(T ), therefore

u =
1

2G(T )

[
φ(T )− x2β

Γ(1 + 2β)

]
. (4.3.3)

Substituting this value of u in equation (4.1.1), we get the reduced linear ordinary

differential equation as

φ′(T )−H1(T )φ(T ) = −H2(T ), (4.3.4)

where T = tα

Γ(1+α)
, H1(T ) =

G
(α)
t (t)

G(t)
and H2(T ) = F

(2α)
t . On solving equation

(4.3.4), we obtain φ(T ) = e
∫
H1dT

(
k1 −

∫
H2e

−
∫
H1dTdT

)
, where k1 is an arbitrary

constant. This gives

u(x, t) =
1

2G(t)

[
e
∫
H1dT

(
k1 −

∫
H2e

−
∫
H1dTdT

)
− x2β

Γ(1 + 2β)

]
(4.3.5)

Theorem 4.3.2 The similarity transformations u(x, t) = ψ(X) along with the

similarity variable X(x, t) = x2β

(Γ(1+β))2F
(α)
t

, reduces the FPB equation (4.1.1) to a

nonlinear ordinary differential equation ψ′′(X)+ g(t)
f(t)

(ψ′(X))2+1
4
ψ′(X)+ 1

2X
ψ′(X) =

0, which leads to the solution

u(x, t) = 1
k

log

{
k2 + 2

√
πk erf

(
xβ

2Γ(1+β)
√
F

(α)
t

)}
+ k3,

where k2 and k3 are arbitrary constants.

Proof: Let us consider the infinitesimal generator

V4 =
xβ

Γ(1 + β)

∂β

∂xβ
+

2F
(α)
t (t)

F
(2α)
t (t)

∂α

∂tα
. (4.3.6)

Here the fractional characteristic equations give the invariantsX(x, t) = x2β

(Γ(1+β))2F
(α)
t

and u(x, t) = ψ(X). On substituting the above invariants in equation (4.1.1), it

becomes a nonlinear ordinary differential equation of second order

ψ′′(X) +
g(t)

f(t)
(ψ′(X))2 +

1

4
ψ′(X) +

1

2X
ψ′(X) = 0, (4.3.7)

which is further solved with the help of maple software to obtain the solution as

u(x, t) =
1

k
log

{
k2 + 2

√
πk erf

(
xβ

2Γ(1 + β)
√
F

(α)

t

)}
+ k3. (4.3.8)
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Theorem 4.3.3 Under the transformations ζ(x, t) = tα

Γ(1+α)
and ϕ(ζ) = xβ

Γ(1+β)
−

n
m
u(x, t), the FPB equation (4.1.1) reduces to an ordinary fractional differential

equation ϕ
(α)
t + m

n
G

(α)
t = 0, with G

(α)
t = g(t). This has the general solution as

u(x, t) = m
n

[
xβ

Γ(1+β)
+ m

n
G(t)− k4

]
, with k4 as an arbitrary constant.

Proof: In this case, we study the infinitesimal generator

V = nV5 +mV3 = n
∂β

∂xβ
+m

∂

∂u
(4.3.9)

The following invariants can be derived easily ζ(x, t) = tα

Γ(1+α)
and ν = xβ

Γ(1+β)
−

n
m
u(x, t) and the reduced form of eqn. (4.1.1) as

ϕ
(α)
t +

m

n
G

(α)
t = 0. (4.3.10)

This easily yields the solution

u(x, t) =
m

n

[
xβ

Γ(1 + β)
+
m

n
G(t)− k4

]
. (4.3.11)

Theorem 4.3.4 Under the transformations µ(x, t) = 1
r

xβ

Γ(1+β)
− F

(α)
t

Γ(1+α)
and ω(µ) =

u(x, t), the the FPB equation (4.1.1) reduces to a nonlinear ordinary differential

equation ω′′(µ) + kω′2(µ) + r2

Γ(1+α)
ω′(µ) = 0, which admits the solution

u(x, t) = 1
k

log

e r2

Γ(1+α)

{
xβ

rΓ(1+β)
− F

(α)
t

Γ(1+α)

}
− ke

c1r
2

Γ(1+α)

−
r2

Γ(1+α)

{
xβ

rΓ(1+β)
− F

(α)
t

Γ(1+α)

}
+ c2,

where c1 and c2 are arbitrary constants.

Proof: Results can be easily derived by solving the fractional characteristic

equations for the infinitesimal generator rV5 + V6.

Theorem 4.3.5 The similarity transformations γ(x, t) = xβ

Γ(1+β)
and ρ(γ) =

−Γ(1+α)
s

u+F
(α)
t , reduce the FPB equation (4.1.1) to a nonlinear ordinary differ-

ential equation ρ′′(γ)− ks
Γ(1+α)

(ρ′(γ))2 + 1 = 0. Which has the general solution as

u(x, t) = s
Γ(1+α)

[
F

(α)
t + 1

k
log
{

cosh
√
k(c3 + xβ

Γ(1+β)
)
}
− c4

]
, where c3 and c4 are

arbitrary constants.
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Proof: The proof is similar to the previous theorems.

4.4 Some Exact Solutions of FPB Equation by

the Invariant Subspace Method

The invariant subspace method is one of the recently developed techniques to

construct an exact solution of nonlinear partial differential equations of evolution

type. In this section, we utilize the method, as described in section 1.6 of chapter

1, to discover some exact solutions of equation (4.1.1).

For equation (4.1.1), F [u] = f(t)u2β
x + g(t)(uβx)

2
. We have the space

W3 = 〈1, xβ

Γ(1+β)
, x2β

Γ(1+2β)
〉 as invariant under F [u], if and only if, for any

u(x, t) = a1(t) + a2(t) xβ

Γ(1+β)
+ a3(t) x2β

Γ(1+2β)
∈ W3, F [u] ∈ W3

or equivalently iff,

a3(t)f(t) + (a2(t))2g(t) = b1

(a3(t))2g(t) = b3, and

a2(t)a3(t)g(t) = b2,

where b1,b2 and b3 are arbitrary constants.

This allows us to consider an exact solution of equation (4.1.1) as

u(x, t) = a1(t) + a2(t)
xβ

Γ(1 + β)
+ a3(t)

x2β

Γ(1 + 2β)
. (4.4.1)

Substituting the value of u(x, t) from equation (4.4.1) into the equation (4.1.1)

and equating the coefficients of the elements of space W3 = 〈1, xβ

Γ(1+β)
, x2β

Γ(1+2β)
〉,

we get the following system of fractional differential equations

dαa3(t)

dtα
= g(t)(a3(t))2 (4.4.2)

dαa2(t)

dtα
= a2(t)a3(t)g(t) (4.4.3)
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and
dαa1(t)

dtα
= f(t)a3(t) + g(t)(a2(t))2. (4.4.4)

Equations (4.4.2–4.4.4) can be readily solved to yield

− 1

a3(t)
=

Γ(1 + 2β)

(Γ(1 + β))2
(0I

α
t g) (4.4.5)

log a2(t) = 2(0I
α
t (a3(t)g)) (4.4.6)

and

a1(t) = 0I
α
t (a3(t)f + (a2(t))2g), (4.4.7)

where the functions f(t) and g(t) are integrable in the sense of Riemann-Liouville

and 0I
α
t g(t) 6= 0.

On solving equations (4.4.5)–(4.4.7), we get

a3(t) =
B

0Iαt g(t)
(4.4.8)

a2(t) = (0I
α
t g(t))2B (4.4.9)

and

a1(t) = 0I
α
t [g(t)(0I

α
t g(t))4B +

Bf(t)

0Iαt g(t)
], (4.4.10)

where B = − (Γ(1+β))2

Γ(1+2β)
.

Using equation (4.4.1) and equations (4.4.8)–(4.4.10) one can easily obtain an

exact solution of equation (4.1.1).

4.5 Discussion

The main purpose of Lie symmetry method is to reduce PDEs to ODEs by

introducing suitable similarity variable and similarity solutions. Here, in this

chapter, It has been shown that the FPB equation possess similarity solutions,

exactly as its counterparts with integer-order derivatives. By using conveniently
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defined similarity variables the FPB equation reduces to ordinary differential

equations which are solved to derive some group invariant solutions. Further, the

invariant subspace method has been utilised to deduce some exact solutions of

the FPB equation. The software like Mathematica and Maple have been utilised

in solving some ordinary differential equations.
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Appendix–4A

The extended infinitesimals ηt, ηx and ηxx can be easily obtained as

ηt = η
(α)
t + u

(α)
t ηu − (ξ

(α)
t + u

(α)
t ξu)u

(β)
x − (τ

(α)
t + u

(α)
t τu)u

(α)
t ,

ηx = η(β)
x + u(β)

x ηu − (ξ(β)
x + u(β)

x ξu)u
(β)
x + (τ (β)

x + u(β)
x τu)u

(α)
t ,

ηxx = η(2β)
x + u(β)

x (ηu)
(β)
x − (ξ(2β)

x + u(β)
x (ξu)

(β)
x )u(β)

x + (τ (2β)
x + u(β)

x (τu)
(β)
x )u

(α)
t −

2(τ (β)
x + u(β)

x τu)(u
(β)
x )

(α)
t + u(2β)

x (ηu − u(β)
x ξu − u(α)

t τu)− 2(ξ(β)
x + u(β)

x ξu)u
(2β)
x +

[(ηu)
(β)
x + u(β)

x ηuu − ((ξu)
(β)
x + u(β)

x ξuu)u
(β)
x − ((τu)

(β)
x + u(β)

x τuu)u
(α)
t ]u(β)

x ,

Using the expressions for ηt, ηx and ηxx in equation (4.2.7), we eventually arrive

at the following:

η(u(β)
x −u(3β)

x )+(1+u−3u(2β)
x )(η(β)

x +u(β)
x ηu−(ξ(β)

x +u(β)
x ξu)u

(β)
x +(τ (β)

x +u(β)
x τu)u

(α)
t )+

η
(α)
t + u

(α)
t ηu − (ξ

(α)
t + u

(α)
t ξu)u

(β)
x − (τ

(α)
t + u

(α)
t τu)u

(α)
t −

3u(β)
x (η(2β)

x + u(β)
x (ηu)

(β)
x − (ξ(2β)

x + u(β)
x (ξu)

(β)
x )u(β)

x + (τ (2β)
x + u(β)

x (τu)
(β)
x )u

(α)
t )−

6u(β)
x ((τ (β)

x + u(β)
x τu)(u

(β)
x )

(α)
t + u(2β)

x (ηu − u(β)
x ξu − u(α)

t τu)− 2(ξ(β)
x + u(β)

x ξu)u
(2β)
x )+

3u(β)
x ([(ηu)

(β)
x + u(β)

x ηuu − ((ξu)
(β)
x + u(β)

x ξuu)u
(β)
x − ((τu)

(β)
x + u(β)

x τuu)u
(α)
t ]u(β)

x )−

u(η(3β)
x + (3(ηu)

(2β)
x − ξ(3β)

x )u(β)
x − τ (3β)

x u
(α)
t − 3(τu)

(2β)
x u

(α)
t u(β)

x )+

u((3(ηuu)
(β)
x − (ξu)

(2β)
x )(u(β)

x )
2 − 3(τuu)

(β)
x u

(α)
t (u(β)

x )
2

+ ((ηuuu)− 3(ξuu)
(β)
x )(u(β)

x )
3
)−

u(τuuuu
(α)
t (u(β)

x )
3 − ξuuu(u(β)

x )
4 − 3τxx(u

(β)
x )

(α)
t + (3(ηu)

(β)
x − ξ(2β)

x )u(2β)
x )+

u(3((ηuu)− 3(ξu)
(β)
x )u(β)

x u(2β)
x − 3(τu)

(β)
x u

(α)
t u(2β)

x − 6(τu)
(β)
x u(β)

x (u(β)
x )

(α)
t − 6ξuuu

(2β)
x (u(β)

x )
2
)−

u(3τuu(u
(β)
x )

2
(u(β)

x )
(α)
t − 3τuuu

(2β)
x u(β)

x u
(α)
t − 3ξu(u

(2β)
x )

2 − 3τuu
(2β)
x (u(β)

x )
(α)
t − 3τx(u

(2β)
x )

(α)
t )+

u((ηu − 3ξ(β)
x )(u(3β)

x )− 4ξu(u
(3β)
x )u(β)

x − τu(u(3β)
x )u

(α)
t − 3τu(u

(β)
x )(u(2β)

x )
(α)
t )−ηxxt|([∆u])=0 = 0

(4A-1)

On equating the coefficients of different differentials equal to zero, we obtained a

set of determining equations as (4.2.8)–(4.2.14)





Chapter 5

Lie Group of Transformations of

Time Fractional Gardner

Equation

5.1 Introduction

During the past few decades the mathematical theory of the nonlinear evolution

equations, such as the Korteweg-de Vries (KdV) equation, modified Korteweg-

de Vries (KdV) equation, Boussinesq equation, Peregrine equation, and other

such models that describe a large variety of physical phenomena has gained a

lot of attention of many researchers [93, 100]. The Korteweg-de Vries equation

(KdV) is a well-known model to describe nonlinear long internal waves in the

ocean. Its coefficients are defined by vertical density and currents stratification.

A detailed study on the KdV equation with variable coefficients was presented by

Zhang [105] using the exponential function method. There are various situations

in nature where it becomes necessary to consider quadratic nonlinearity. For

example, in a density stratified ocean, where internal gravity waves are observed,

the single nonlinear term does not correctly model the shallow water waves. In

the Coastal Ocean Probe Experiment (COPE) conducted in Oregon Bay in 1995,
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strong nonlinearity was experienced in the internal gravity waves. Therefore, the

problem of creating an adequate theoretical model was deemed necessary. The

shallow water wave engineering experiments led to the construction of a wave

equation with dual-power law nonlinearity. This leads to the study of Gardner

equation [26], which is the simplest model that illustrates this effect. The Gardner

equation is a modified version of the KdV equation and is also known as the

mixed KDV-mKdV equation. It differs from the KdV equation by presence of

an additional term of cubic nonlinearity. The Gardner equation shows up the

internal gravity waves in a density-stratified ocean which is commonly described

by the KdV equations and its versions with small nonlinearity.

In this chapter, we investigated the Lie symmetries of the time fractional

Gardner equation of the form

u
(α)
t = Auux +Bu2ux + uxxx, x ∈ (0,∞), t > 0, 0 < α < 1, (5.1.1)

where A and B are real constant parameters.

The chapter has been organized as follows. In Section 5.2, Lie symmetries of

the time fractional Gardner equation has been investigated. In Section 5.3, the

reduced systems and some invariant solutions of the time fractional Gardner equa-

tion (5.1.1) are presented. Section 5.4 is devoted to the application of invariant

subspace method on time fractional Gardner equation (5.1.1). The final section

contains the conclusion.

5.2 Lie Symmetries of Time Fractional Gardner

Equation

Herein, we investigate the symmetries of time fractional Gardner equation (5.1.1).

A fractional Lie symmetry of equation (5.1.1) is a continuous group of point trans-

formations of independent and dependent variables which leaves the equation

(5.1.1) invariant.
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Let us assume that equation (5.1.1) admits the Lie symmetries of the form

x̃ = x+ εξ(x, t, u) + o(ε2) (5.2.1)

t̃ = t+ ετ(x, t, u) + o(ε2) (5.2.2)

ũ = u+ εη(x, t, u) + o(ε2), (5.2.3)

where ε is the group parameter and ξ, τ and η are the infinitesimals of the trans-

formations for the independent and dependent variables, respectively. A group

invariant solution of time fractional Gardner equation(5.1.1) is a solution which

can be mapped into another solution of equation (5.1.1) under the point trans-

formations (5.2.1–5.2.3). The associated Lie algebra of infinitesimal symmetries

of equation (5.1.1) is then the vector field of the form

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (5.2.4)

The fractional third order prolongation of (5.2.4) is

pr(3)V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
+ ηt

∂

∂ut
+ ηx

∂

∂ux
+

η0
α

∂

∂u
(α)
t

+ ηttt
∂

∂uttt
+ ηxxx

∂

∂uxxx
. (5.2.5)

Invoking the invariance criterion as explained in chapter 1, the following relation

from the coefficients of the first order of ε is deduced:

η0
α − A(ηux + ηxu)−B(2ηuux + ηxu2)− ηxxx|[∆u]=0 = 0, (5.2.6)

where [∆u] = u
(α)
t − Auux − Bu2ux − uxxx and ηx, η0

α and ηxxx are extended

infinitesimals acting on enlarged space corresponding to ux, u
α
t and uxxx. The

general solution of equation (5.2.6) provides the infinitesimal elements ξ, τ and η

for which the equation (5.1.1) possesses Lie symmetry. The generalised fractional

prolongation vector fields, ηx, η0
α and ηxxx are given by

ηx = ηx + uxηu − (ξx + uxξu)ux − (τx + uxτu)ut (5.2.7)
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η0
α = ηαt + (ηu − α(τt + utτu))u

α
t − u(ηu)

α
t −

∞∑
n=1

(
α

n

)
Dn
t (ξ)Dα−n

t (ux)+

∞∑
n=1

[

(
α

n

)
∂nt ηu −

(
α

n+ 1

)
Dn+1
t (τ)]Dα−n

t (u) + µ, (5.2.8)

where µ =
∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1
k!

tn−α

Γ(n−α+1)
(−u)r ∂

m

∂tm
(uk−r) ∂

n−m+kη
∂tn−m∂uk

, and

ηxxx = ηxxx + (3ηuxx − ξxxx)ux − τxxxut − 3τuxxutux+

(3ηuux − ξuxx)(ux)2 − 3τuux)ut(ux)
2 + (ηuuu − 3ξuux)(ux)

3−

τuuuut(ux)
3 − ξuuu(ux)4 − 3τxxuxt + (3ηux − ξxx)uxx+

3(ηuu − 3ξux)uxuxx − 3τuxutuxx − 6τuxuxuxt − 6ξuuuxx(ux)
2−

3τuu(ux)
2uxt − 3τuuuxxuxut − 3ξu(uxx)

2 − 3τuuxxuxt − 3τxuxxt+

(ηu − 3ξx)uxxx − 4ξuuxxxux − τuuxxxut − 3τuuxuxxt (5.2.9)

Using the expressions for ηx, η0
α and ηxx in equation (5.2.6) and equating the

coefficient of various derivative terms to zero, we get the following simplified set

of determining equations

τx = τu = 0 (5.2.10)

ηuu = ηux = 0 (5.2.11)

ξu = 0 (5.2.12)(
α

n

)
∂nt η −

(
α

n+ 1

)
Dn+1
t (τ) = 0, n = 1, 2, 3, ... (5.2.13)

(ηu − ατt)(Au+Bu2)− (A+ 2Bu)η − (Au+Bu2)(ηu − ξx) = 0 (5.2.14)

ηαt − u(ηu)
α
t − (Au+Bu2)ηx − ηxxx = 0 (5.2.15)

Dn
t (ξ) = 0, n = 1, 2, 3, ... (5.2.16)

On solving the set of determining equations (5.2.10)–(5.2.16) obtained from the

invariance condition for time fractional Gardner equation, we arrive at the fol-

lowing two cases (i) A = 0 or (ii) B = 0

Case (i) if A = 0,

In this case the infinitesimals are obtained as

ξ = c1x+ c2 (5.2.17)
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τ =
3c1t

α
(5.2.18)

η = −c1u (5.2.19)

where c1, c2 are arbitrary parameters. The point symmetry generators admitted

by the time fractional Gardner equation are given by

V1 = x
∂

∂x
+

3t

α

∂

∂t
− u ∂

∂u
(5.2.20)

V2 =
∂

∂x
. (5.2.21)

Hence, the infinitesimal operator (5.2.4) becomes V = (c1x+c2) ∂
∂x

+ 3c1t
α

∂
∂t
−c1

∂
∂u

.

Further, these infinitesimal generators (5.2.20-5.2.21) can be used to determine

a two parameters Lie group of point transformations acting on (x, t, u)-space

which is fewer than those for the standard Gardner equation [26]. It can be

verified easily that the set {V1, V2}forms a two dimensional Lie algebra under the

Lie bracket [X, Y ] = XY − Y X and its commutator table is as given below:

Table 5.1: Commutator Table

V1 V2

V1 0 -V2

V2 V2 0

The group transformation generated by the infinitesimal generators Vi, i = 1, 2 is

obtained by solving the system of ordinary differential equations

dx̃

dε
= ξ(x̃, t̃, ũ) (5.2.22)

dt̃

dε
= τ(x̃, t̃, ũ) (5.2.23)

dũ

dε
= η(x̃, t̃, ũ) (5.2.24)

with the initial conditions

x̃|ε=0 = x (5.2.25)

t̃|ε=0 = t (5.2.26)
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ũ|ε=0 = u. (5.2.27)

Exponentiating the infinitesimal symmetries of equation (5.1.1), we get the one

parameter groups gi(ε) generated by Vi, i = 1, 2

g1 : (x, t, u)→ (eεx, e
3
α t, e−εu) (5.2.28)

g2 : (x, t, u)→ (x+ ε, t, u) (5.2.29)

Case (ii) if B = 0

In this case we obtain the infinitesimals as

ξ = c1x+ c2 (5.2.30)

τ =
3c1t

α
(5.2.31)

η = −2c1u (5.2.32)

where c1, c2 are arbitrary parameters.

The point symmetry generators obtained in this case are

V3 = x
∂

∂x
+

3t

α

∂

∂t
− 2u

∂

∂u
, (5.2.33)

V4 =
∂

∂x
. (5.2.34)

The infinitesimal operator (5.2.4) in this case becomes V = (c1x+c2) ∂
∂x

+ 3c1t
α

∂
∂t
−

2c1
∂
∂u

, and the group transformation generated by the infinitesimal generators

Vi, i = 3, 4 are

g3 : (x, t, u)→ (eεx, e
3
α t, e−2εu) (5.2.35)

g4 : (x, t, u)→ (x+ ε, t, u). (5.2.36)

Further, the commutator table for the two dimensional Lie algebra constituted

by {V3, V4} is as given below:
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Table 5.2: Commutator Table

V3 V4

V3 0 -V4

V4 V4 0

5.3 Reduction to ODE

Herein, we reduce the time fractional Gardner equation (5.1.1) to ODE with the

Erdélyi-Kober fractional differential operator.

Case (i) if A = 0

For the infinitesimal generator V1 the characteristic equations are

dx

x
=
αdt

3t
=

du

−u
, (5.3.1)

which give the invariants as u(x, t) = x−1f(z), z = xt
−α
3 . Corresponding to these

invariants we can reduce equation (5.1.1) to an ODE of fractional order. We

summarize the result in the following theorem :

Theorem 5.3.1 The similarity transformation u(x, t) = x−1f(z) along with the

similarity variable z = xt
−α
3 reduces the time fractional Gardner equation to the

ordinary differential equation of fractional order of the form

(P
1− 5

3
α,α

3
α

f)(z) =
d3f

dz3
+Bf 2 df

dz
(5.3.2)

with the Erdélyi-Kober fractional differential operator

(P τ,α
δ f)(z) =

m−1∏
j=0

(τ + j − 1

δ
z
d

dz
)(Kτ+α,m−α

δ f)(z), z > 0, δ > 0, α > 0, (5.3.3)
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m =

 [α] + 1, α 6∈ N

α, α ∈ N.
, where

(Kτ,α
δ f) (z) =


1

Γ(α)

∞∫
0

(ν − 1)α−1ν−(τ+α)f(zν
1
δ ) dν , α > 0;

f(z), α = 0

(5.3.4)

is the Erdélyi-Kober fractional integral operator.

Proof: Let n − 1 < α < n, n = 1, 2, 3, ... then the Riemann-Liouville

fractional derivative for the similarity transformation u(x, t) = f(z) with the

similarity variable z = xt
−α
3 becomes

∂αu
∂tα

= ∂n

∂tn
[ 1
Γ(n−α)

t∫
0

(t− s)n−α−1f(xs
−α
3 ) ds].

Let ν = t
s
. Then the above equation can be written as

∂αu
∂tα

= ∂n

∂tn
[tn−α 1

Γ(n−α)

∞∫
1

(ν − 1)n−α−1ν−(n−α+1)f(zν
α
3 ) dν].

Following the definition of the Erdélyi-Kober fractional integral operator given

in equation (5.3.4), we have

∂αu

∂tα
=

∂n

∂tn
[tn−α(K1,n−α

3
α

f)(z)]. (5.3.5)

In order to simplify the right hand side of equation (5.3.5), we consider the

relation z = xt
−α
3 , f ∈ C1(0,∞),

t
∂

∂t
f(z) = tx(−α

3
)t−

α
3
−1f ′(z)

= −α
3
z
d

dz
f(z)

and thus, we get

∂n

∂tn
[tn−α(K1,n−α

3
α

f)(z)] =
∂n−1

∂tn−1
[
∂

∂t
(tn−α(K1,n−α

3
α

f)(z))]

=
∂n−1

∂tn−1
[tn−α−1(n− α− α

3
z
d

dz
(K1,n−α

2
α

f)(z))].

Repeating the similar procedure for n− 1 times, we have

∂n

∂tn
[tn−α(K1,n−α

3
α

f)(z)] = t−α
n−1∏
j=0

(1− α + j − α

3
z
d

dz
)(K1,n−α

3
α

f)(z). (5.3.6)
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Now using the definition of Erdélyi-Kober fractional differential operator given

in equation (5.3.3), the above equation can be written as

∂n

∂tn
[tn−α(K1,n−α

3
α

f)(z)] = t−α(P
1− 5

3
α,α

3
α

f)(z). (5.3.7)

We obtain an expression for the time fractional derivative

∂αu

∂tα
= t−α(P

1− 5
3
α,α

3
α

f)(z). (5.3.8)

Continuing further we find that the time fractional Gardner equation (5.1.1)

reduces to an ordinary differential equation of fractional order

(P
1− 5

3
α,α

3
α

f)(z) =
d3f

dz3
+Bf 2 df

dz
. (5.3.9)

Due to the arbitrary order 0 < α < 1 the reduced equation (5.3.9) is not

solvable in general. However, for some special cases, such as the initial value

problems and the linear equations, the solutions can be furnished by the power

series method with Mittag-Leffler function and Wright and the generalised Wright

functions. In particular, when B = 0, three independent solutions of equation

(5.1.1) can be derived [18].

Case (ii) if B = 0

For the infinitesimal generator V3 the characteristic equations are

dx

x
=
αdt

3t
=

du

−2u
, (5.3.10)

which give the invariants as u(x, t) = x−2f(z), z = xt
−α
3 . Corresponding to these

invariants the time fractional Gardner equation (5.1.1) is reduced to an ODE of

fractional order. The result has been summarized in the following theorem :

Theorem 5.3.2 The similarity transformation u(x, t) = x−2f(z) along with the

similarity variable z = xt
−α
3 reduces the time fractional Gardner equation to the

ordinary differential equation of fractional order of the form

(P
1− 4

3
α,α

3
α

f)(z) =
d3f

dz3
+ Af

df

dz
(5.3.11)
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with the Erdélyi-Kober fractional differential operator

(P τ,α
δ f)(z) =

m−1∏
j=0

(τ + j− 1

δ
z
d

dz
)(Kτ+α,m−α

δ f)(z), z > 0, δ > 0, α > 0, (5.3.12)

m =

 [α] + 1, α 6∈ N

α, α ∈ N.
, where

(Kτ,α
δ f) (z) =


1

Γ(α)

∞∫
0

(ν − 1)α−1ν−(τ+α)f(zν
1
δ ) dν , α > 0;

f(z), α = 0

(5.3.13)

is the Erdélyi-Kober fractional integral operator.

Proof: The proof is similar to Theorem 5.3.1.

Here again the nonlinear differential equation of fractional order, (5.3.11), is not

solvable, in general. However, when A = 0 one can derive three independent

solutions of it following the procedure given in [18].

5.4 Some Exact Solutions of Time Fractional

Gardner Equation by the Invariant Subspace

Method.

In this section the invariant subspace method (as defined in section 1.6) has been

utilized in order to discover exact solutions of equation (5.1.1) for B = 0.

For equation (5.1.1),

F [u] = Auux + uxxx. (5.4.1)

We have the space W2 = 〈1, x〉 as invariant under F [u], since

F [C1 + C2x] = A(C1 + C2x)C2

= b1 + b2x ∈ W2

where b1 and b2 are arbitrary constants given by
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AC1C2 = b1, and

AC2
2 = b2.

This allows us to consider an exact solution of equation (5.1.1) as

u(x, t) = a1(t) + a2(t)x. (5.4.2)

Substituting the value of u(x, t) from equation (5.4.2) into the equation (5.1.1)

and equating the coefficients of xj, j = 0, 1, we get the following system of

fractional differential equations

dαa2(t)

dtα
= (a2(t))2, (5.4.3)

dαa1(t)

dtα
= Aa1(t)a2(t) (5.4.4)

Eqns. (5.4.3-5.4.4) can be readily solved to yield

− 1

a2(t)
=

A

Γ(1 + α)

∫
dtα + s1, (5.4.5)

log a1(t) =
A

Γ(1 + α)

∫
a2(t)dtα + s2 (5.4.6)

and where s1 and s2 are arbitrary constants.

Using equation (5.4.2) and equations (5.4.5-5.4.6) one can easily obtain an exact

solution of equation (5.1.1).

5.5 Discussion

In this chapter, an attempt has been made to illustrate the application of Lie

symmetry approach to study time fractional Gardner equation. The similarity

reductions and similarity solutions for the time fractional Gardner equation are

presented. Some new analytical solutions are obtained by using the Lie group

method of infinitesimals and some other exact solutions are obtained by the in-

variant subspace method. The Lie symmetry analysis shows that the underlying

symmetry algebra of the time fractional Gardner equation is two dimensional.
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The reduction of dimension in the symmetry algebra is due to the fact that the

time fractional equations is not invariant under time translation symmetry. In

Sec. 3, different similarity reductions are obtained. Using the Lie point sym-

metries, we have shown that the time fractional Gardner equation that is often

very difficult to solve explicitly can be transformed into a nonlinear ODE of frac-

tional order with Erdélyi-Kober fractional derivative which is not solvable as in

the case of α = 1. It would be appropriate to mention here that the fractional

order significantly affects the properties of the equation. The main reason is that

the fractional order 0 < α < 1 is an arbitrary parameter in the studied fractional

model.
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Chapter 6

Group Classification of

Space-Time Fractional Coupled

KdV Equation

6.1 Introduction

The KdV equation was derived by Diederik Johanes Korteweg and Gustav de

Vries as a universal model to describe one-dimensional nonlinear waves in dis-

persive media without dissipation [70]. The existence of dispersion effect causes

the spreading of the waveform, while the nonlinear effect causes the steepening

of the waveform. Due to these two effects, a solitary wave is formed.

In this chapter, a space-time fractional coupled KdV equation with variable

coefficients of the form:

u
(α)
t + f(t)uu(β)

x + g(t)vv(β)
x + h(t)u(3β)

x = 0,

v
(α)
t + δ(t)uv(β)

x + k(t)v(3β)
x = 0, (6.1.1)

where x ∈ (0,∞), t > 0, 0 < α, β < 1, the coefficients f(t), g(t), h(t), δ(t) and
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k(t), are arbitrary smooth functions of variable t only, is examined for various

types of explicit exact solutions. Here, u
(α)
t , v

(α)
t and u

(β)
x , v

(β)
x are the modified

Riemann-Liouville derivatives with respect to time and space variables respec-

tively

The chapter has been organized as follows. Section 6.2 is entirely devoted to show-

ing how the symmetry group method can be used to generate various symmetries

of the fractional coupled KdV system. In Section 6.3, we present the reduced

systems of ordinary differential equations (ODEs) and their exact solutions. The

final section contains the discussion and concluding remarks.

6.2 Symmetry Analysis of Space-Time Fractional

Coupled KdV Equation

Lie group method of infitesimal transformations which essentially reduces the

number of independent variables in PDE and reduces the order of ODE has

been used widely in solving equations of mathematical physics. The classical

Lie method for finding symmetry reductions of PDEs is the Lie group method

of infinitesimal transformations and the associated determining equations are an

over determined linear system.

In view of the algorithmic steps listed in section 1.5 of chapter 1, we proceed as

follow.

Let us first assume that equation (6.1.1) admits the Lie symmetries of the

form
x̃β

Γ(1 + β)
=

xβ

Γ(1 + β)
+ εξ(x, t, u, v) + o(ε2) (6.2.1)

t̃α

Γ(1 + α)
=

tα

Γ(1 + α)
+ ετ(x, t, u, v) + o(ε2) (6.2.2)

ũ = u+ εη1(x, t, u, v) + o(ε2) (6.2.3)

ṽ = v + εη2(x, t, u, v) + o(ε2) (6.2.4)
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where ε is the group parameter and ξ, τ and η1, η2 are the infinitesimals of the

transformations for the independent and dependent variables, respectively. A

group invariant solution of fractional coupled KdV equation(6.1.1) is a solution

which can be mapped into another solution of equation (6.1.1) under the point

transformations (6.2.1–6.2.4). The associated Lie algebra of infinitesimal sym-

metries of eqn. (6.1.1) is then the vector field of the form

V = ξ(x, t, u, v)
∂β

∂xβ
+ τ(x, t, u, v)

∂α

∂tα
+η1(x, t, u, v)

∂

∂u
+η2(x, t, u, v)

∂

∂v
. (6.2.5)

The fractional third order prolongation of (6.1.1) is given by

pr(3)V = ξ(x, t, u)
∂β

∂xβ
+ τ(x, t, u)

∂α

∂tα
+ η1(x, t, u)

∂

∂u
+ η1(t) ∂

∂u
(α)
t

+ η1(x) ∂

∂u
(β)
x

+

η1(xx) ∂

∂u
(2β)
x

+η1(xxt) ∂

∂(u
(α)
t )

(2β)
x

+η1(xxx) ∂

∂u
(3β)
x

+η2(x, t, u)
∂

∂v
+η2(t) ∂

∂v
(α)
t

+η2(x) ∂

∂v
(β)
x

+

η2(xx) ∂

∂v
(2β)
x

+ η2(xxt) ∂

∂(v
(α)
t )

(2β)
x

+ η2(xxx) ∂

∂v
(3β)
x

. (6.2.6)

Invoking the invariance as mentioned in step 2 of the method, the following

relations from the coefficients of the first order of ε can be obtained:

where η1(t), η2(t), η1(x), η2(x), η1(xxx) andη2(xxx) are extended (prolonged) in-

finitesimals acting on an enlarged space that include all derivatives of dependent

variables u and v with resepcet to the independent variables x and t. The next

step requires finding the infinitesimals from the invariance conditions, by setting

the coefficients of differentials equal to zero. It leads to a large number of PDEs

in ξ, τ, η1 and η2 that need to be satisfied. Without going into the details of al-

gebraic calculations, the set of determining equations for the group infinitesimals

for the infinitesimals ξ, τ, η1 and η2 obtained, after equating the coefficients of

various derivative terms to zero, is as follows:

τ (β)
x = τu = τv = 0 (6.2.7)

ξu = ξv = ξ(2β)
x = 0 (6.2.8)

(η1
u)

(β)
x = η1

uu = η1
uv = 0 (6.2.9)
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η2
uv = η2

vv = (η2
u)

(β)
x = (η2

v)
(β)
x = 0 (6.2.10)

3h(t)ξ(β)
x − (h(t)τ)

(α)
t = 0 (6.2.11)

f(t)η1 + f(t)u(ξ(β)
x − τ

(α)
t ) + g(t)vη2

u − uτf(t)
(α)
t + ξ

(α)
t = 0 (6.2.12)

g(t)η2 + g(t)vη2
v − g(t)vη1

u − v(g(t)τ)
(α)
t = 0 (6.2.13)

(δ(t)− f(t))uη2
u = 0 (6.2.14)

δ(t)η1 + δ(t)uξ(β)
x + ξ

(α)
t − u(δ(t)τ)

(α)
t − g(t)vη2

u = 0 (6.2.15)

(η2)
(α)
t + k(t)(η2)(3β)

x + δ(t)u(η2)(β)
x = 0 (6.2.16)

The general solution of equations (6.2.7–6.2.16) provides the following infinites-

imal elements ξ, τ, η1, η2; and the admissible forms of various coefficients in the

system (6.1.1):

ξ = k1
xβ

Γ(1 + β)
+ k5, (6.2.17)

τ =
1

H
(α)
t

[3k1H + k4] (6.2.18)

η1 = k2u, (6.2.19)

η2 = k3v, (6.2.20)

where k1, ..., k5 are arbitrary constants and k(t) = h(t) = H
(α)
t , with

(ξf)
(α)
t − (k1 + k2)f = 0, (6.2.21)

(ξg)
(α)
t − (2k3 + k1 − k2)g = 0, (6.2.22)

(ξδ)
(α)
t − (k1 + k2)δ = 0. (6.2.23)

The infinitesimal generators corresponding to Lie algebra of the fractional coupled

KdV equation are given by

V1 =
3H

H
(α)
t

∂α

∂tα
+

xβ

Γ(1 + β)

∂β

∂xβ

V2 = u
∂

∂u

V3 = v
∂

∂v
(6.2.24)
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V4 =
1

H
(α)
t

∂α

∂tα

V5 =
∂β

∂xβ
.

Further the set {V1, V2, V3, V4, V5}forms a five dimensional Lie algebra under the

Lie bracket [X, Y ] = XY − Y X. The commutator table for Lie algebra (6.2.24)

is as follows:

Table 6.1: Commutator Table

V1 V2 V3 V4 V5

V1 0 0 0 −3V4 −V5

V2 0 0 0 0 0

V3 0 0 0 0 0

V4 3V4 0 0 0 0

V5 V5 0 0 0 0

6.3 Some Exact Solutions of the Fractional Cou-

pled KdV Equation

In the following, the similarity variable and the form of similarity solutions has

been investigated. Further, the reduced system of ODEs for the fractional coupled

KdV equation (6.1.1) are obtained and a number of explicit exact solutions to

the system (6.1.1) are investigated. Using the infinitesimal generators (6.2.24)

obtained in the previous section one can obtain a reduction of equations (6.1.1)

to a system of ODEs after getting the similarity variable and the form by solving

the fractional characteristic equations

(dt)α

Γ(1+α)

τ
=

(dx)β

Γ(1+β)

ξ
=
du

η1
=
dv

η2
(6.3.1)
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The reduced systems of ODEs corresponding to the following vector fields are

examined:

(i) V1 + aV2 + bV3

(ii) V2 + cV3 + lV4 + V5,

(iii) V2 +mV3 + nV4,

(iv) V3 + rV4 + V5

(v) V3 + sV4,

where a, b, c, l,m, n, r and s are arbitrary constant parameters. It is worth men-

tioning here that an attempt was made to drive a further system of ODEs of lower

order through Lie group method, however, in almost all the cases, the symmetries

obtained turned out to be the trivial ones. Therefore, we focus on attempting

some particular types of explicit exact solutions for the reduced system of ODEs.

Vector field (i) For the infinitesimal generator

V1 + aV2 + bV3 =
3H

H
(α)
t

∂α

∂tα
+

xβ

Γ(1 + β)

∂β

∂xβ
+ au

∂

∂u
+ bv

∂

∂v
,

the similarity variable and the form of similarity solutions is obtained as follows:

X(x, t) = xβ

Γ(1+β)
H(t)

−1
3 , u(x, t) = φ(X)H(t)

−a
3 and v(x, t) = ψ(X)H(t)

−b
3 ,

and the coefficients are given by the following relations:

f(t) = c1h(t)H(t)
a−2

3

g(t) = c2h(t)H(t)
2b−a−2

3

δ(t) = c3h(t)H(t)
a−2

3 .

This reduces the fractional coupled KdV equation to the following coupled non-

linear equations

φ′′′(X)− c1φ(X)φ′(X) + c2ψ(X)ψ′(X)− ζφ′(X)

3
− aφ(X)

3
= 0 (6.15)

ψ′′′(X) + c3φ(X)ψ′(X)− ζψ′(X)

3
− bψ(X)

3
= 0. (6.16)

To solve the reduced system, we seek a special solution of the form

φ(X) = A0 + A1X + A2X
2 + A3

1

X
+ A4

1

X2
,
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ψ(X) = B0 +B1X +B2X
2 +B3

1

X
+B4

1

X2
,

where Ai, Bi, i = 0, 1, ..., 4 are arbitrary constants.

Substituting these expressions for φ and ψ in the reduced system, we arrive at a

system of algebraic equations, which on solving with the aid of Maple program

provided an exact solution to the coupled equation (6.1.1)

u(x, t) =

x3β

(Γ(1+β))3 − 24H(t)

2c3
x2β

(Γ(1+β))2

√
H(t)

(6.17)

v(x, t) =

x3β

(Γ(1+β))3 − 24H(t)

2c3
x2β

(Γ(1+β))2

√
c3 − c1

2H(t)
(6.18)

Vector field (ii) In this case, the infinitesimal generator

V2 + cV3 + lV4 + V5 = u
∂

∂u
+ cv

∂

∂v
+ l

1

H
(α)
t

∂α

∂tα
+

∂β

∂xβ
,

gives the similarity variable and the form of similarity solution as:

X(x, t) = H(t)
l

, u(x, t) = φ(X)e
−H(t)
l and v(x, t) = ψ(X)e

−cH(t)
l .

Where as, the form of the coefficient functions is given by

f(t) = c4h(t)e
H(t)
l

g(t) = c5h(t)e
(2c−1)H(t)

l

δ(t) = c6h(t)e
H(t)
l ,

and the reduced form of the fractional coupled KdV equation is obtained as

φ′′′(X) + c4φ(X)φ′(X) + c5ψ(X)ψ′(X)− 1

l
φ′(X)− 1

l
φ(X) = 0 (6.3.2)

ψ′′′(X) + c6φ(X)ψ′(X)− 1

l
ψ′(X)− c

l
ψ(X) = 0, e 6= 0. (6.3.3)

By using the same approach utilized in case (i) above to solve the system, it

has the following exact solution

u(x, t) = (
−c5

l
(1 +B0l)−

c5

l(1 + c4c5)
(
H(t)

l
− xβ

Γ(1 + β)
))e(

−H(t)
l

) (6.3.4)
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v(x, t) = (B0 +
1

l(1 + c4c5)
(
H(t)

l
− xβ

Γ(1 + β)
))e

(
H(t)

(1+c4c5)l
)

(6.3.5)

Vector field (iii) Corresponding to the generator

V2 +mV3 + nV4 = u
∂

∂u
+mv

∂

∂v
+

n

H
(α)
t

∂α

∂tα
,

we get the following form of similarity variable and similarity solution

ζ(x, t) = xβ

Γ(1+β)
, u(x, t) = F (ζ)e

−H(t)
n and v(x, t) = G(ζ)e

−mH(t)
n .

The coefficient functions in this case are related by the following relations

f(t) = c7h(t)e
H(t)
n

g(t) = c8h(t)e
(2m−1)H(t)

n

δ(t) = c9h(t)e
H(t)
n ,

and the reduced form of fractional coupled KdV equation is obtained as

P ′′′(X) + c7P (X)P ′(X) + c8Q(X)Q′(X)− P (X)

n
= 0 (6.3.6)

Q′′′(X) + c8P (X)Q′(X)− mG(X)

n
= 0 (6.3.7)

which gives the solution

u(x, t) = (A0 +
m

c9n

xβ

Γ(1 + β)
)e−

H(t)
n (6.3.8)

v(x, t) =

√
m(c9−c7m)

c8

c9mn
(A0 +

m

c9n

xβ

Γ(1 + β)
)e−

mH(t)
n (6.3.9)

Vector field (iv) The infinitesimal generator

V3 + rV4 + V5 = v
∂

∂v
+ r

1

H
(α)
t

∂α

∂tα
+

∂β

∂xβ

introduces the folowing similarity variable and similarity solution

X(x, t) = H(t)
r
− xβ

Γ(1+β)
, u(x, t) = φ(X) and v(x, t) = ψ(X)e

−H(t)
r , r 6= 0,

and the form of the coefficient functions in this case is given by

f(t) = c10h(t)
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g(t) = c11h(t)e
2H(t)
r

δ(t) = c12h(t)

Here, the reduced form of fractional coupled KdV equation is achieved as

φ′′′(X) + c11ψ(X)ψ′(X) + c10φ(X)φ′(X)− 1

r
φ′(X) = 0 (6.3.10)

ψ′′′(X) + c12φ(X)ψ′(X)− 1

r
ψ′(X)− 1

r
ψ(X) = 0, r 6= 0. (6.3.11)

This yields the following solution to the fractional coupled KdV equation (6.1.1)

u(x, t) =
1

2c11

+ 2e(−
H(t)+4 xβ

Γ(1+β)
8

) (6.3.12)

v(x, t) = 2e(
H(t)−4 xβ

Γ(1+β)
8

). (6.3.13)

Vector field (v) The infinitesimal generator

V3 + sV4 = v
∂

∂v
+ s

1

H
(α)
t

∂α

∂tα

introduces the folowing similarity variable and similarity solution

X(x, t) = xβ

Γ(1+β)
, u(x, t) = φ(X) and v(x, t) = ψ(X)e

−H(t)
s , s 6= 0,

and the form of the coefficient functions in this case is given by

f(t) = c13h(t)

g(t) = c14h(t)e
2H(t)
s

δ(t) = c15h(t)

The reduced form of fractional coupled KdV equation under this case is

φ′′′(X) + c14ψ(X)ψ′(X) + c13φ(X)φ′(X) = 0 (6.3.14)

ψ′′′(X) + c15φ(X)ψ′(X)− 1

s
ψ(X) = 0, s 6= 0. (6.3.15)

which gives the solution

u(x, t) = c0 +

xβ

Γ(1+β)

sc15

(6.3.16)

83



v(x, t) = c0 +

xβ

Γ(1+β)

sc15

e(
−H(t)
s

), (6.3.17)

where c0 is an arbitrary constant and c14 = −c13.

Further the one parameter Lie group of point transformations corresponding

to each infinitesimal generator can be used to generate more solutions of the

fractional coupled KdV equation.

6.4 Discussion

Symmetry properties and reductions of a fractional coupled KdV system with

variable coefficients is presented using the method of Lie group of infinitesimal

transformations. The infinitesimals of the group of transformations which leaves

the fractional coupled KdV system invariant and the admissible forms of the

coefficients are obtained. Corresponding to various linear combinations of the

infinitesimal generators, it is shown that the fractional coupled KdV system re-

duces to coupled nonlinear ordinary differential equations in each case, which is

further studied with the aim of deriving certain exact solutions.
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Chapter 7

Conclusions

The importance of the fractional order partial differential equations due to their

recent occurrence in the study of many processes in science and engineering and

also the various limitations posed by the integer order derivative models, have

been the prime reasons for making the study put up in the thesis entitled “Sym-

metry Analysis of Some Fractional Order Partial Differential Equations”. The

study of symmetries and exact solutions of nonlinear partial differential equa-

tions has great theoretical and practical importance. These exact solutions for

nonlinear systems are used as models for physical or numerical investigations

and often replicate qualitatively on the behaviour of more complicated solutions.

More specifically, the thesis deals with nonlinear partial differential equations

of fractional order representing some interesting physical systems which are–the

space-time fractional Burgers-Poisson equation, time fractional potential Burgers'

equation, variable coefficient space-time fractional potential Burgers' equation,

time fractional Gardner and space-time fractional coupled KdV equation, from

the view point of their underlying Lie symmetries of infinitesimal transformations.

The main purpose of Lie symmetry method is to reduce PDEs to ODEs

by introducing suitable similarity variables. Here, similarity analysis has been

successfully performed on various nonlinear fractional order partial differential

equations. To determine the admissible symmetries two methods- one based
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on non-differentiable functions and the other one based on differentiable func-

tions, have been utilized. It has been illustrated that the fractional partial dif-

ferential equations possess similarity solutions, exactly as its counterparts with

integer-order derivatives for the first approach, while in the second approach the

fractional differential equations possess fewer dimensional Lie algebra than the

integer one. In both cases by using conveniently defined similarity variables the

fractional equations reduce to ordinary differential equations which are further

solved for some group invariant solutions. After obtaining the point symmetries

of the system under investigation, the attempt has been to reduce the number of

independent variables of the system and then reduced equations have been fur-

ther studied by several methods including invariant subspace method. It may be

noted that the solutions obtained for various systems in the thesis are completely

new, which have never been reported before. These solutions can further be used

as a supportive tool in designing and testing of numerical algorithms.

In chapters 2, 3 and 5, Lie group method has been applied on equations

with constant coefficients, whereas, in chapters 4 and 6 equations with variable

coefficients have been studied. In case of variable coefficients equations, most of

the solutions involve an arbitrary coefficient function which enables us to control

and discuss the behaviour of solutions as governed by the choice of this arbitrary

function. Also, the Lie group method has been applied on a coupled system of

fractional differential equations.

In short, we can say that work in the thesis is devoted to investigating a range

of applications of continous symmetry groups to physically important systems

of fractional partial differential equations. Finally, it is worth mentioning that

in spite of the focus on the exact solutions, the author found it really difficult

at times to find symmetries for fractional differential equations as symmetries

for integer order differential equations can be obtained by some mathematical

software. Keeping in view this limitation, it will be really interesting if such

software can be developed. It has also been an extremely difficult task to handle

the reduced system of ODEs for extracting the exact solutions. In some cases,
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the solutions obtained are of very specific nature and further application of Lie

group method on the reduced system led only to trivial symmetries. Thus, the

general solution of reduced ODEs, their physical interpretation and the study

of higher order symmetries of fractional order differential equations bring forth

tremendous scope for future work.
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