
 

 

ANALYSIS AND CLASSIFICATION OF EEG 
SIGNALS FOR DETECTION OF EPILEPTIC 

SEIZURES 

 
A THESIS SUBMITTED IN FULFILLMENT OF THE 

REQUIREMENTS  
FOR THE DEGREE OF  

 

DOCTOR OF PHILOSOPHY 
IN 

ELECTRONICS AND COMMUNICATION ENGINEERING                                                                       
By 
 

MEENAKSHI SOOD  
Enrollment No: 116004 

 
 

 
 
 

 
Department of Electronics and Communication Engineering 

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY 
WAKNAGHAT, SOLAN (H.P.) - INDIA 

OCTOBER - 2015 
 



 

ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 
@ 

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT 
OCTOBER, 2015  

ALL RIGHTS RESERVED 
 

 

 



 

iii 
 

DECLARATION BY THE SCHOLAR 

 

 

I hereby declare that the work reported in the Ph.D. thesis entitled “Analysis and 

Classification of EEG Signals for Detection of Epileptic Seizures” submitted at 

Jaypee University of Information Technology, Waknaghat, Solan, India, is an 

authentic record of my work carried out under the supervision of Dr. Sunil.V. 

Bhooshan. I have not submitted this work partially or fully anywhere else for any other 

degree or diploma. 

 

 

 

 

 

 

 

 

 

Meenakshi Sood 
 
Department of Electronics and Communication Engineering  
Jaypee University of Information Technology, Waknaghat, India- 173234 
October 2015 



Scanned by CamScanner



MEENAKSHI SOOD, JUIT, 2015 v 
 

ACKNOWLEDGEMENT 
 
 
"Gratitude can transform common days into thanksgivings, turn routine jobs into joy, 

and change ordinary opportunities into blessings".  

Completion of this research would not have been possible without the help of many 

people, to whom I am very grateful.  

 

I would like to express my sincere gratitude and appreciation to my supervisor, 

Professor Sunil V. Bhooshan, for his continuous inspiration, support, guidance, 

encouragement, constructive criticism and individual feedback throughout the course of 

my PhD study. In him I found that the best are not only efficient, effective and result 

driven, but at the “core they are persons with the best qualities as human beings”.  I 

feel very grateful and blessed to have worked under his supervision. I would not 

imagine carrying out this research without his constant support and help.  

This feat was possible only because of the unconditional support provided by Dr. Vinay 

Kumar, Thapar University Patiala for serving as excellent advisors, always making 

himself available and providing invaluable painstaking efforts towards my research 

work. I express my deepest sense of gratitude and sincere thanks to Dr. Pradeep Naik 

for his enthusiastic guidance and constructive comments which aided a lot in fulfilling 

the objectives of this research work. Dr. Shalini Batra, my childhood friend from 

Thapar University was kind enough to undertake the editing work and provide me good 

support system whenever required. 

I gratefully acknowledge Jaypee University of Information Technology, Waknaghat,  for 

offering me the opportunity to perform this research successfully, for providing 

necessary facilities and support, without which, this work would not have been possible. 

I am also thankful to faculty especially my friend and colleague Dr. Jitendra Virmani 

and staff of Electronics and Communication department for their support. 



MEENAKSHI SOOD, JUIT, 2015 vi 
 

I also have to thank the members of my PhD DPMC committee, for their helpful advice 

and suggestions in general. I am grateful to the reviewers whose constructive 

suggestions and invaluable advice improved the quality of publications derived from 

this work. I would also like to thank all of my friends who supported me in writing, and 

incented me to strive towards my goal. 

I express my heartfelt reverence to my parents who encouraged and helped me at every 

stage of my personal and academic life, and longed to see this achievement come true. I 

wish to express my appreciation to my loving brother Vikas Batra  for enduring love 

and faith during my research work. Last and most importantly, I wish to thank my 

husband, Dr. Sanjay Sood (IFS) who stands beside me and encourages me constantly 

for every step of my work.  

I shall remain indebted throughout my life to my son Rittwik Sood and daughter 

Khushbu Sood for bearing my tantrums, for sharing the time which was their due and 

giving me happiness, joy and enduring love. I would like to dedicate this thesis to my 

lovely and sincere children. 

 

Finally, I humbly bow my head with utmost gratitude before the God Almighty who 

always showed me the path to follow and without whose endless benevolence and 

blessings this tedious task could not have been accomplished. 

 

      

 

    

 

        MEENAKSHI SOOD 

 

 

 



MEENAKSHI SOOD, JUIT, 2015  vii 
 

                     TABLE OF CONTENTS 

 

Contents Page No. 
Declaration by the Scholar iii 

Certificate iv 

Acknowledgement v 

Table of Contents vii 

List of Acronyms xi 

List of Figures xiii 

List of Tables xviii 

Abstract xxi 

 

Chapter 1 

Introduction 
1.1 Overview of Epilepsy                                                                                                         1 

1.2 Human brain  2 

 1.2.1  Nervous system 2 

 1.2.2 Cerebral Cortex 3 

 1.2.3   Physiology of Cerebral Potentials 3 

1.3 Electroencephalogram (EEG) signals 4 

 1.3.1 Acquisition of EEG Signals 4 

 1.3.2 Details of the dataset 7 

 1.3.3  8 

1.4 EEG as a tool for epilepsy                                                                                    11 

1.5 Motivation 13 

1.6 Classification algorithms for EEG signals 14 

 1.6.1 Nearest neighbor classifier 15 

 1.6.2 Naive Bayes classifier 15 

 1.6.3 Artificial neural network classifier 16 

  1.6.3.1 Multilayer feed forward network 19 

  1.6.3.2 Back-propagation networks 20 

  



MEENAKSHI SOOD, JUIT, 2015  viii 
 

Contents Page No. 
  1.6.3.3 Radial Basis Function NN classifier(RBFNN) 20 

 1.6.4 Probabilistic Neural Network Classifier(PNN) 22 

 1.6.5 Support Vector Machine (SVM) 23 

 1.6.6 K-Means Algorithm 26 

1.7 Classification metrics of the classifiers 27 

 1.7.1 Confusion matrix 27 

 1.7.2 ROC curve 28 

 1.7.3 K-fold cross-validation 29 

1.8 Objectives  29 

1.9 Organization of Thesis                                                                                                       30 

 

Chapter 2 

Review of state–of-the-art 

2.1 Epileptic seizures                                                                                                           32 

2.2 Literature review of artifacts 33 

 2.2.1 Artifact Recognition and Elimination 34 

2.3 Features extraction and selection 36 

2.4 EEG analysis and classification 38 

 2.4.1 Automated detection of epileptic seizures using Soft 
Computing Techniques 

39 

 2.4.2 Automated detection of epileptic seizures using non 
linear analysis techniques 

41 

 

Chapter 3 

Characterization of EEG signals by various attributes 
3.1 Introduction                                                                                                                 44 

3.2 Preprocessing of the signal 45 

3.3 Attributes representing eeg signals 46 

 3.3.1  Extracted Features 46 

 3.3.2 Features extracted from the dataset 50 

 3.3.3  Characterization of EEG signals in terms of box plots 54 

3.4 Statistical analysis of SFV 56 

3.5 K means clustering 59 



MEENAKSHI SOOD, JUIT, 2015  ix 
 

Contents Page No. 
3.6 Conclusion                                                                                                          61 
 
Chapter 4 

Design and development of prediction model to detect seizure 
activity 
4.1 Introduction                                                                                                                         63 
4.2 Proposed CAD system design 64 
 4.2.1 Experimental Workflow 64 
 4.2.2  Experiment 1                                                                                      66 
  4.2.2.1 Design of System Architecture 66 
  4.2.2.2 Results and discussion 71 
 4.2.3  Experiment 2                                                                                      72 
  4.2.3.1 Methodology 72 
  4.2.3.2 Results and Discussions 73 
 4.2.4  Experiment 3 78 
  4.2.4.1 Methodology 78 
  4.2.4.2 Discussions 82 
 4.2.5  Experiment 4 83 
   4.2.5.1 Methodology 83 

  4.2.5.2 Results and Discussion 85 

4.3 Conclusion 88 
 

Chapter 5 

Design of Ensemble CAD system for classification of seizure activity 
5.1 Introduction                                                                                                                 90 

5.2 Proposed methodology 91 

 5.2.1 Experimental Workflow 93 

 5.2.2 Experiment 1 93 

  5.2.2.1 Entropy 93 

  5.2.2.2 Hurst Exponent (HE) 94 

  5.2.2.3 Hjorth Parameters 96 

 5.2.3 Statistical Analysis of Non linear feature set 100 
 

  



MEENAKSHI SOOD, JUIT, 2015  x 
 

Contents Page No. 

 5.2.4 Classification using non linear parameters 103 

 5.2.5 Experiment 2. 103 

5.3 Results and discussion                                                                                                                           105 

   5.3.1                                                                         Classification analysis 105 

 5.3.2. Comparative performance analysis 107 

 5.3.3 Receiver Operating Characteristic (ROC) curve 111 

5.4 Conclusion 112 
 

Chapter 6 

Design of a Module based CAD system (MCAD) 

6.1 Introduction                                                                                                                           114 

6.2 Proposed methodology 115 

 6.2.1 Work flow 117 

6.3 Design of various MCAD systems                                                                                                                119 

 6.3.1 Performance analysis of CAD system with module size 
of 16 (M16RSFV) 

119 

 6.3.2 Performance analysis of MCAD system with module 
size of 8(M8CAD) 

121 

 6.3.3 Classification results of CAD system with module size 
of 4 (M4CAD) 

123 

 6.3.4 Classification results of CAD system with module size 
of 2 (M2CAD) 

125 

 6.3.5 Classification results of CAD system with module size 
of 1 (M1CAD) 

126 

6.4 Results and discussions 128 

 6.4.1 Two class classification problem 128 

 6.4.2 Three class classification problem 130 

6.5 Conclusions 132 
 

Chapter 7 

Conclusion and Future work 

7.1 Conclusion                                                                                              133 

7.2 Future work 136 

Publications 137 

References  139 



MEENAKSHI SOOD, JUIT, 2015  xi 
 

 



MEENAKSHI SOOD, JUIT, 2015 xi 
 

LIST OF ACRONYMS 

 

ACRONYMS FULL FORM 
ACT Activity 

CAD system Computer Aided Diagnostic system 

CA Classification Accuracy 

CM Confusion Matrix 

COMPX Complexity 

CSFV Combined Signal Feature Vector 

ECAD Ensemble Computer Aided Diagnostic 

EEG Electroencephalogram 

FL Feature length 

HCAD Hierarchical Computer Aided Diagnostic 

HE Hurst Exponent 

HJP Hjorth Parameter 

INT-ICT (F) Inter-ictal 

ICT        (S) Ictal 

ICA Individual Classification Accuracy 

IMA Individual Misclassification Accuracy 

KNN K- Nearest Neighbor 

MCAD Module Computer Aided Diagnostic 

MLPNN Multi layer Perceptron Neural Network 

MOB Mobility 

NOR    (Z) Normal 

NLFV Non Linear Feature Vector 

OCA Overall Classification Accuracy 

PNN Probabilistic Neural Network 

RBFNN Radial Basis Function Neural Network 

ROC Receiver Operating Characteristics 



MEENAKSHI SOOD, JUIT, 2015 xii 
 

ACRONYMS FULL FORM 

 

RSFV 

 

Reduced Signal Feature Vector 

Sen Sensitivity 

SFV Signal Feature Vector 

Spec Specificity 

SVM Support Vector Machine 

SBS Sequential Backward Search 

SFS Sequential Forward Search 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MEENAKSHI SOOD, JUIT, 2015 xiii 
 

LIST OF FIGURES 

Figure 
No. TITLE Page 

No. 
 

Figure 1.1 Equivalent circuit of biopotential source and electrode-tissue 
interface from electrode. Biopotential source acts as a current 
source and tissue resistance is shown as Rt, Cet and Ret 
electrode-tissue equivalent elements. 

5 

Figure 1.2 Conventional 10-20 EEG electrode positions for the placement 
of 21 electrodes. 6 

Figure 1.3 EEG signals of a patient in various stages (a) ictal state (b) 
normal state (c) inter-ictal state with total of 4096 samples. 
Amplitude of the signals is in μV. 

8 

Figure 1.4 Single–sided amplitude spectrum of different frequency band of 
a signal. 10 

Figure 1.5 Amplitude content of various frequencies present in an EEG 
signal. 10 

Figure 1.6 (a)Power spectrum with reference to frequency, (b) FFT of 
EEG signals of normal and epileptic patient. 11 

Figure 1.7 EEG signal depicting the normal signal, beginning of the 
seizure and EEG signal during seizure. 12 

Figure 1.8 Neuron model of Neural network for one node output. 17 

Figure 1.9 Model of RBF neural network. 21 

Figure 1.10 PNN Model with four layers for classification of signals. 22 

Figure 1.11 SVM classifier with maximized margin with defined hyper 
plane. 25 

 

 

 
 



MEENAKSHI SOOD, JUIT, 2015 xiv 
 

Figure 
No. 

TITLE Page
No. 

 

Figure 3.1 

 

 
Exemplary Extracted features (a) Skew of the signals  
(b) Kurotosis of the signals (c) Energy of the signals of subjects 
in various stages (i) ictal state (ii) normal state and (iii) inter-
ictal state. 

51 

Figure 3.2 Exemplary Extracted features (a) standard deviation of the 
signals (b) Maximum value of the signals of subjects in various 
stages. 

52 

Figure 3.3 (a) Box plot of mean function for three different classes. 54 

 (b) Box plot of entropy function for three different classes. 55 

   (c) Box plot of standard deviation function for three different 
classes. 55 

Figure 3.4 Prediction importance of extracted features by calculating VIF 
for the feature set. 58 

Figure3.5 (a) The distribution of ictal and normal classes around feature F12 60 

(b)The distribution of ictal and normal classes around feature F7 60 

(c) The distribution of classes around feature F13 61 

Figure 4.1 Proposed CAD system design using statistical features for two-
class and three-class seizure classification. 65 

Figure 4.2 Performance accuracies of proposed model in terms of training, 
testing and validating accuracies; with varying   number of 
neurons in hidden layer. 

67 

Figure 4.3 Performance analysis with reference to classification efficiency 
of NN with varying number of feature length. 68 

Figure 4.4 Architecture of the proposed neural network for design of CAD 
system for seizure classification with thirteen nodes in the input 
layer, six neurons in the hidden layer and three neurons in the 
output layer. 

70 



MEENAKSHI SOOD, JUIT, 2015 xv 
 

   

Figure 
No. 

TITLE Page 
No. 

 

Figure 4.5 

 

Work Flow for comparison of two machine learning methods 
for three class classification problem. 

72 

Figure 4.6 Comparative performance analysis for two machine learning 
methods for three class classification of seizure activity. 74 

Figure 4.7 Performance Analysis of MLPNN and RBF in terms of 
sensitivity with same network topology and varying feature 
index. 

75 

Figure 4.8 Classification Efficiency Analysis of MLPNN and RBF  

(a) Two features with same number of hidden nodes  (FL:2)   
(b) Four features with same number of hidden nodes   (FL:4) 

75 

  (c) Six features with same number of hidden nodes (FL: 6).  

  (d) Ten features with same number of hidden nodes (FL: 10). 
76 

Figure 4.9 Classification Efficiency (in %) for MLPNN and RBF for the 
final network topology. 76 

Figure 4.10 Comparative performance analysis for the classification of 
normal and epileptic subject with various soft computing 
paradigms. 

83 

Figure 4.11 (a) Proposed HCAD system for classification of seizure using 
EEG signals.  84 

(b)Two stage hierarchical classification module for 
classification of Ictal, Inter-ictal and normal classes. 84 

Figure. 5.1 Proposed Methodology for design of ECAD system for seizure 
classification using EEG signals. 92 

Figure 5.2 Computation of Hurst Exponent of EEG signals. 95 

Figure 5.3 Value of Hurst Exponent for different classes for number of 
patients . 96 



MEENAKSHI SOOD, JUIT, 2015 xvi 
 

 
Figure 
No. 

TITLE Page 
No. 

 

Figure 5.4 

 
(a) Comparative graph of Activity for all the three different 
condition of epileptic subjects. 

97 

(b) Comparative graph of Mobility for all the three different 
condition of epileptic subjects 98 

(c)Comparative graph of Complexity for all the three different 
condition of epileptic subjects 98 

Figure 5.5 (a) Comparative graph of all the three Hjorth parameters for 
ictal condition of the subjects. 99 

(b) Comparative graph of all the three Hjorth parameters for 
normal condition of the subjects. 100 

Figure 5.6. (a) Box plots for Complexity attribute for three different datasets. 102 

(b) Box plots for the Mobility attribute for three different   
 datasets.                 102 

Figure 5.7 Performance analysis of different classifiers in terms of 
performance metrics with reduced signal feature vector 
(RSFV). 

107 

Figure 5.8. Performance analysis of different classifiers in terms of 
performance metrics with combined signal feature vector 
(CSFV). 

108 

Figure 5.9  (a) Comparative depiction of classification accuracy with SFV, 
RSFV and CSFV for the design of ECAD system. 109 

 (b) Comparative depiction of classification accuracy with SFV, 
RSFV and CSSFV for the design of PS based CAD system 110 

Figure 5.10. Receiving operating characteristic (ROC) curve for the 
designed CAD system with RSFV. 111 

Figure 5.11 Receiving operating characteristic (ROC) curve for the 
designed ECAD system. 112 



MEENAKSHI SOOD, JUIT, 2015 xvii 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 
No. 

TITLE Page 
No. 

Figure 6.1 Proposed algorithm for design of Module based CAD system. 116 

Figure 6.2 Work flow of the proposed classification strategy. 118 

Figure 6.3 Comparative performance analysis of various classifiers with 
different module sizes. 129 

Figure 6.4 Classification Performance of MLPNN for different epoch size 
for two class classification. 129 

Figure 6.5 (a) Classification accuracies achieved with various module 
sizes with MLPNN classifier. 130 

(b) Classification accuracies achieved with various module 
sizes with RBF classifier. 130 

(c) Classification accuracies achieved with various module sizes 
with SVM classifier. 131 

(d) Classification accuracies achieved with various module 
sizes with KNN classifier. 131 



MEENAKSHI SOOD, JUIT, 2015 xviii 
 

LIST OF TABLES 

Table No. 
 

CAPTION Pg. No. 

Table 1.1 Confusion Matrix for two classes’ classification.  
27 

Table 3.1 
Mean value of normalized SFV with variation of 
variance for normal, interictal and ictal signals. 

 
53 

Table 3.2 
Summary of ANOVA analysis for linear features in 
terms of  F value for every extracted attribute. 

 
57 

Table 3.3 
Value of Chi- square from Kruskal Wallis Test with 
significance value < 0.05 for all features. 

 
59 

Table 4.1 
Description of experiments carried out for design of 
CAD system for seizure classification. 

 
64 

Table 4.2 
Classification summary for the CAD system with 
varying number of features. 

 
69 

Table 4.3 
Classification summary for three class classification 
using proposed architecture. 

 
71 

Table 4.4 
Confusion Matrix for the selected prediction model 
for three class classification using designed  network 
architecture. 

 
72 

Table 4.5 
Classification Summary for prediction model with 
RBFNN providing highest accuracy. 

 
77 

Table 4.6 
Confusion Matrix for RBF network with proposed 
topology. 

 
77 

Table 4.7 
Classification performance with SFV using SVM 
classifier for two-class seizure classification. 

 
79 

Table 4.8 
Classification performance with SFV using Naive 
Bayes classifier for two-class seizure classification. 

 
80 

Table 4.9 
Classification performance with SFV using RBF 
classifier for two-class seizure classification. 

 
80 



MEENAKSHI SOOD, JUIT, 2015 xix 
 

Table No. TITLE Page 
No. 

Table 4.10 
Classification performance with SFV using KNN 
classifier for two-class seizure classification. 

 
81 

Table 4.112 
Classification performance with SFV using MLPNN 
classifier for two-class seizure classification.  

 
82 

Table 4.12 
Confusion matrix and classification accuracy using 
kNN classifier for HCAD system. 

 
85 

Table 4.13 
Confusion matrix and classification accuracy using 
PNN classifier for HCAD system.  

 
86 

Table 4.3 
Confusion matrix and classification accuracy using 
SVM classifier for HCAD system. 

 
87 

Table 4.15 
Confusion matrix and classification accuracy using 
MLPNN classifier for HCAD system. 

 
87 

Table 5.1 
Description of experiments carried out for design of 
ECAD system for seizure classification. 

 
93 

Table 5.2 Hjorth parameters representation.  97 

Table 5.3 
ANOVA analysis of non linear feature set in terms of 
F ratio and p value. 

 
100 

Table 5.4 Mean values for all non linear features.  
101 

Table 5.5 
Classification accuracy of normal and ictal signals 
using NLFV with MLPNN, KNN and SVM 
classifiers. 

 
103 

Table 5.6 
Classification accuracy  of normal and ictal signals 
using  RSFV  with MLPNN, KNN and SVM 
classifiers. 

 
106 

Table 5.7 
Classification accuracy  of normal and ictal signals 
using  CSFV  with MLPNN, KNN and SVM 
classifier. 

 
106 

Table 5.8 
Confusion Matrix for designed ECAD system for 
complete dataset 

 
109 



MEENAKSHI SOOD, JUIT, 2015 xx 
 

Table No. TITLE Page 
No. 

Table 6.1 Performance of MCAD system of module size of 16, 
with four classifiers for two classes 

 
120 

Table 6.2 
 Performance of MCAD system for three classes with 
module size of 16, epoch size of 256 samples. 

 
121 

Table 6.3 
Performance of MCAD system of module size of 8, 
with four classifiers for two classes 

 
122 

Table 6.4 
Classification performance of MCAD system for 
three classes with module size of 8and epoch size of 
512 samples. 

 
123 

Table 6.5 
Performance of MCAD system of module size of 4, 
with four classifiers for two classes. 

 
124 

Table 6.6 
Classification performance of MCAD system for 
three classes with module size of 4and epoch size of 
1024 samples. 

 
125 

Table 6.7 
 Performance of MCAD system of module size of 2, 
with four classifiers for two classes 

 
126 

Table 6.8 
Classification performance of MCAD system for 
three classes with module size of 2and epoch size of 
2048 samples 

 
127 

Table 6.9 
 Performance of MCAD system of module size of 1, 
with four classifiers for two classes. 

 
128 

Table 7.1  Proposed CAD  Systems with their performance  
134 

 

 

 

 

 



MEENAKSHI SOOD, JUIT, 2015  xxi 
 

ABSTRACT 

 

Epilepsy is a persistent, constantly recurring neurological brain disorder characterized 

by abnormal electrical activity in the brain. Epilepsy is not only a disorder, but rather 

acts as a syndrome with divergent symptoms involving spasmodic abnormal electrical 

activities in the brain. Clinical data relevant to such abnormalities is complex, context-

dependent, and multi-dimensional, and such data generates an amalgamation of 

computing research challenges. Electroencephalogram (EEG) is one of the most 

clinically and a scientifically utilized signal recorded from human brain and is powerful 

source of providing valuable insight of the brain dynamics. Accurate and careful 

analyses of these signals play a prominent role in diagnosis of brain diseases and many 

cognitive processes. 

EEG technique has excellent temporal resolution, noninvasiveness, usability, and low 

set-up costs while capturing brain signals, which makes it popular in this arena of 

research. The electroencephalogram recordings of epileptic subjects are visually 

inspected and analyzed by trained neurologists or radiologists for clinical diagnosis of 

epileptic seizures and possible treatment plans. However, due to the complex, time-

consuming, high-dimensional nature of the EEG event recordings, visual inspections of 

EEG signals often result in errors. Therefore, there is a need to develop automatic 

systems for classifying the recorded EEG signals.  

The driving force behind this thesis is development of automated computer aided 

classification crucial for restricting subjectivity in the diagnosis of epileptic signals. It 

should be stressed out that automatic algorithms do not intend to be used instead of an 

expert, but as a decision support tool as a second opinion. The scope of this work is to 

detail the variety of Computer Aided Diagnostic (CAD) techniques developed for 

epilepsy detection using EEG signals. The proposed systems concentrate on detecting 

epilepsy by classifying only the normal and ictal stages (two-class problem), and other  

CAD systems are designed  to classify  three stages, namely, normal, interictal, and ictal 

(three-class problem).  
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Nonlinear and non-stationary nature of the EEG signals further increase the 

complexities related to their manual interpretation. This research work encompasses the 

inclusion of different informative parameters, with focus on nonlinear features and non 

stationary nature of EEG signals. The greatest effort is focused on data representation 

stage, on the potential of extracted feature set, designing, implementing and deciding an 

appropriate combination machine learning methods in order to enhance the 

differentiation and identification of epileptic states. The motivation behind this thesis is 

examination of morphology and topography of waveforms during certain 

neurophysiologic phenomena. The aim is analysis of hidden dynamic of the EEG time 

series, extracting more information about pathological vs. normal status of the EEG 

signals. 

The designed automated systems transform the qualitative diagnostic criteria into a 

more objective quantitative feature classification problem. High sensitivity ensures 

accurate classification of the signals and high specificity results in no false positive 

classification. The false positive classifications yield unacceptable effects on the quality 

of life of the subjects. With this consideration, 100% sensitivity and 100% specificity 

with 0% misclassification rate was achieved with the attributes found within the search 

space along with the selected classifiers. The proposed method of epileptic signals 

classification can be very useful in predicting the action or the intention of action 

performed on the basis of EEG which leads to more development in human computer 

interaction. 

 



1 

 

                                                                                   CHAPTER 1  

    INTRODUCTION                                                                                             

 

1.1 OVERVIEW OF EPILEPSY 

Epilepsy is a persistent, constantly recurring neurological brain disorder characterized 

by abnormal electrical activity in the brain. It affects about 1% of world population, out 

of which 85% is prevalent in the developing countries [1]. Epileptic seizure is the 

manifestation of neurological disorder that causes excessive and hyper synchronous 

firing of large number of neurons in the brain. During seizure, occurrence of strange 

sensations, convulsions and loss of consciousness are noticed. The seizures are sudden, 

brief and recurrent causing strange sensations, change in emotions, convulsions and loss 

of consciousness [2]. Simultaneous activity of a group of nerve cells in the cerebral 

cortex leads to bursts of sudden and excessive electrical energy leading to epileptic 

seizures. According to the International League Against Epilepsy (ILAE-1981), seizures 

are classified into two categories (1) Generalized seizures, (2) Partial (or focal) seizures 

[3]. Generalized seizures start in both hemispheres of the brain simultaneously and are 

associated with a variety of motor symptoms characterized by generalized spike-and-

slow wave discharges. While, partial seizures originate in a localized region and cause 

relatively mild cognitive and brief sensory symptoms.  

Diagnosis of epilepsy is critical as it has overlapping symptomatology with other 

neurological disorders; moreover, mechanism and cause responsible for epilepsy and 

seizure progression is not very clear [4]. Despite of intensive research into the causes 

and medical treatment of epilepsy, we still have little idea of many of the underlying 

cellular and network properties that can give rise to naturally-occurring seizures. This 

difficulty stems from both the uniqueness of the disorder in each patient and our still-

poor understanding of the human brain. Nonetheless, the detection of the disorder and 
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recognition of the affected brain area is essential for the clinical diagnosis and treatment 

of epileptic patients.  

There are many ways to diagnose epilepsy such as electroencephalography (EEG), 

Magneto encephalography (MEG), Magnetic Resonance Imaging (MRI), positron 

emission tomography (PET) etc. Among these methods, EEG is the most useful for 

diagnosis and identification of epilepsy treatment. EEG has speed, high time 

resolution, and non-invasive advantages; hence, it is the inexpensive and widespread 

diagnostic epilepsy method [5]. 

Usually, the diagnosis of epileptic seizures involves the analysis based on combination 

of the medical history of the patient and interpretation by an expert neurologist through 

EEG recordings [6]. Nevertheless, with the emergence of new signal processing 

techniques, an increased improvement in the analysis of the EEG for prediction of 

epileptic seizures has been reported. These enhanced algorithms can detect abnormal 

disorder and malfunctioning of the brain not only during the seizure but also can detect 

the onset of seizure up to a certain extent. An automatic seizure detection system is 

used in the diagnosis of epilepsy, which act as a second opinion tool apart from visual 

inspection of EEG by the physician [7]. 

 

1.2 HUMAN BRAIN  

In this section a brief description of brain and functionality of its anatomical structures 

is presented. This part also covers the mechanism of generation of local current flows 

and electrical activities that can be recorded on the scalp as EEG signals. 

1.2.1 Nervous system 

The nervous system is a system comprising a network of neurons that collects, 

communicates, and processes information. Central Nervous System (CNS) and 

Peripheral Nervous System (PNS) are two parts of CNS [8]. CNS comprises brain and 
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spinal cord, and PNS comprises sensory neurons and interconnected nerves cells. 

Sensory inputs from PNS processed by the CNS are sent to the organs of the body. The 

information processing from all mental processes and response initiation is integrated in 

the CNS and produces ideas, emotions, and other mental processes. Neurons are 

interconnected to form complex networks that communicate information to and from 

the brain. These neurons receive impulses from nerves and transfer signals to other 

nerves individually or collectively [9]. 

1.2.2 Cerebral cortex 

The outermost layer of the cerebrum is known as cerebral cortex and it plays an 

important role in memory, consciousness, thought and awareness. The increase in the 

neuronal area is due to convoluted cerebral cortex surface by ridges and valleys. The 

cortex is divided into two left and right symmetrical hemispheres, which are separated 

by central sculcus. Each cerebral hemisphere is divided into lobes: the frontal lobe, 

temporal lobe, occipital lobe and the parietal lobe. Each lobe has specific function 

attached to it; as occipital lobe is involved with vision, frontal lobe deals with decision-

making, problem solving, and planning. Similarly, the other two lobes are responsible 

for reception, comprehension and processing of sensory information from the body; and 

with memory, emotion, hearing, and language [10]. 

1.2.3 Physiology of Cerebral Potentials 

The electrophysiological properties of the nervous system are the origin of cerebral 

potentials. These electrical potentials are transmitted by one nerve and cause the 

production of action potentials in another nerve. The differences of electrical potentials 

are caused by summed postsynaptic graded potentials and create electrical dipoles 

between body of neuron and apical dendrites. Electrical charges move within the central 

nervous system consisting mostly of Na+, K+, Ca++, and Cl- ions, resulting in electrical 

signals. These ions are pumped in neuron membranes in the direction governed by 

membrane and a potential of 60-70 mV can be recorded under the membrane of the cell 

body [10]. EEG records the electric potential from the exposed surface of scalp and 
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measures the current flow in the cerebral cortex. The EEG can be measured directly 

from the cortical surface and also by using depth probes. 

1.3 ELECTROENCEPHALOGRAM (EEG) SIGNALS 

EEG results due to an activation of 10000–100000 neurons simultaneously and can be 

recorded as a potential difference (voltage) between two electrodes placed on the scalp. 

The measurement of the potential requires approximately 5 cm2 area of activation on 

the cortex beneath each electrode. EEG has capability to reflect all the activities of the 

brain, so it has been proved to be a very powerful tool in the field of clinical 

neurophysiology [11]. Electroencephalography is an effective non-invasive tool for (i) 

understanding the dynamic complex behavior of the brain, (ii) monitoring its different 

physiological states, and (iii) diagnosis of neurological disorders [11]. 

1.3.1 Acquisition of EEG Signals 

As EEG signals are non-invasive electrical brain signal, they are captured with the help 

of electrodes placed on the scalp (sometimes in form of a cap).  Electrodes are cup-

shaped and are placed at specific locations of the scalp. The skin never touches the 

electrode material directly in these electrodes. EEG gel or paste acts as an interface 

material between the electrode and the skin. The electrodes provide enough volume to 

contain an electrolyte and capture the electrical signal [12]. The electrode-skin interface 

impedance depends on the interface layer, area of electrode’s surface, and temperature 

of the electrolyte. Figure 1.1 shows the electrical equivalent of the combination of skin, 

electrolyte and electrode. The electrode-tissue interface is resistive and consists of 

capacitive elements. The ions are accumulated as parallel plates because of the 

interaction between metallic electrode and electrolyte. The ion-electron exchange 

occurs between the electrode and the electrolyte that results in voltage given by the 

Nernst Equation (1.1) [13], simply: 
 

0.05916 logo
e

Q
n

         (1.1) 
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Where ε is half cell potential measured in V, ne  is the  transported electron (mol 

number) and Q gives rate of ions. 

 

 
 

Figure 1.1. Equivalent circuit of biopotential source and electrode-tissue interface from electrode. 
Biopotential source acts as a current source and tissue resistance is shown as Rt, Cet and Ret electrode-
tissue equivalent elements. 
 

A biopotential source is a current source that causes current flow in the extracellular 

fluid through the tissue.  To record an accurate signal, the contact impedance between 

the electrode surface and the scalp should be between 1kΩ to 10kΩ. If contact 

impedance is less than 1kΩ, a possible short between electrodes is indicated, and if 

impedance is greater than 10kΩ, it can cause distorting artifacts. So the resultant signal 

developed at the terminals is collected by the electrode and passed on to the electronic 

circuitry. An EEG machine is a recording device connected by wires to electrodes 

pasted at key points on the patient’s head [14]. The widely used method to describe the 

location of scalp electrodes is "10-20" system. This is an International Standard of 

naming and positioning of the electrodes on the cerebral cortex for measuring brain 

activity [15]. The "10" and "20" refer to the distances between adjacent electrode that 

are either 10% or 20% of the total front-back or right-left distance of the skull. Each  

electrode location has a letter to identify the lobe (F:frontal,T:temporal, 

P:parietal,O:occipital) and a number to identify the hemisphere location; left 
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hemisphere (odd numbers 1,3,5,7) and for right hemisphere (even numbers 2,4,6,8) 

respectively as depicted in Figure 1.2. 

The electronic circuitry of EEG systems comprises amplifiers and filters. They are 

equipped to store the large data, and to convert analog EEG signal to digital by high 

sampling rate and large number of quantization levels. 

 

 
 

 

 

Figure 1.2.   Conventional 10-20 EEG electrode positions for the placement of 21 electrodes   

As the bandwidth for EEG signal is 50 Hz, at least sampling frequency of 100 samples / 

sec is required for sampling the EEG signal satisfying Nyquist criterion. After 

digitization, the voluminous data obtained is recorded in the connected memory units. 
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1.3.2 Details of the dataset 

EEG data set used in this paper consists of EEG recordings taken from Department of 

Epileptology, University of Bonn, Germany described in [16].  EEGs from five patients 

for three different conditions were selected, containing 100 single-channel EEG signals 

of 23.6 seconds duration. Signals were recorded extra-cranially and intra-cranially with 

128-channel amplifier system using an average common reference. The signals are 

digitized using 12-bit resolution and sampled at a rate of 173.61 Hz. Band-pass filter 

with 0.53–40 Hz (12 dB/octave) cutoff were used. The total number of EEG signals is 

300 (100 ictal signals, 100 normal signals and 100 interictal signals). All selected EEG 

signal segments are cut out from continuous EEG recordings after visual inspection for 

artifacts due to eye movements. Segments of 4396 samples were first cut out of the 

recordings, as discontinuities between the end and beginning of a time series are known 

to cause spurious frequency components. The final segment was chosen so as the slopes 

at the end and beginning of the time series had the same sign. The amplitude difference 

of the last and first data points was within the range giving final segments of N = 4096 

samples. The data set comprises three different sets (F, Z, and S) with different 

conditions, the signals of set Z represent normal condition, and set F signals represent 

interictal condition and signals in set S exhibit ictal activity. Set Z was collected from 

five healthy subjects with eyes closed. Sets F and S were created from EEG records of 

the pre-surgical diagnosis of five epileptic patients. Signals in Set F were recorded in 

seizure-free intervals from the hippocampal formation within the epileptogenic zone. 

Set S contains the EEG records of epileptic patients during seizure activity. One of the 

signals with amplitude in micro volts (µV) from each respective category is depicted in 

Figure 1.3. Visualizing the figure, it can be seen that the amplitude of the signals during 

seizure is quite high as compared to signals in F state. Two categories of abnormal 

activity can be observed in an EEG signal: ictal (during an epileptic seizure) and inter-

ictal (between seizures). The amplitude of EEG signals of a normal condition subject is 

the lowest as compared to rest of the signals. The amplitude of the signals represented 

in Figure 1.3 is in micro-volts. 
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Figure 1.3.  EEG signals of a patient in various stages (a) ictal state (b) normal state (c) inter-ictal 
state with total of 4096 samples. Amplitude of the signals is in μV. 

 

1.3.3 Morphology of EEG Signals 

The recorded electrical activity is characterized in terms of specific descriptors and 

measurements as 

1. Frequency or wavelength 

2. Voltage 

3. Waveform 

4. Regulation 

5. Occurrence in the (random, serial, continuous) form 

6. Reactivity (eye opening, mental calculation, sensory stimulation, movement, 

affective state). 

7. Interhemispheric coherence (homologous areas). 

An important element of the recording of EEG signals is responses of the various 

components of the EEG to certain neurophysiologic changes.  
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Signal pattern is essential for identification of the brain activity and clearly differentiate 

one activity with similar characteristics from another. The brain waves when 

characterized by their frequency bands are divided into five bands depending upon 

frequency ranges: alpha (α), beta (β), theta (θ), delta (δ), and gamma (γ)[17]. 

Brief description about the different waves is given below: 

 Delta waves have the signals that lie within the range of 0.5-4 Hz and are 

indicative of cerebral damage or brain disease. These waves have large 

amplitude and appear during deep sleep. These waves are not observed in 

awake, normal adult.  

 Theta waves are the signals of the brain having frequency range of 4-7.5 Hz. 

Theta waves develop in unconscious mind and are also associated with deep 

meditation. This rhythm occurs during drowsiness and in certain stages of sleep.  

 Alpha waves occur as a sinusoidal shaped signal with frequency range of 8 to 13 

Hz in adults. These signals are predominant in the adults who are awake but not 

being engaged in intense mental activity. However, sometimes alpha wave may 

manifest itself as sharp waves.  

 Beta waves consist of a fast rhythm with low amplitude within the range of 14-

26 Hz. They are mainly associated with an activated cortex and observed during 

mental activities. 

 Gamma waves (sometimes called the fast beta waves) are frequencies above 30 

Hz and up to 45 Hz related to a state of active information processing of the 

cortex. 

Figure 1.4 represents the signal’s frequency distribution in accordance to various bands 

of frequency content present in the signal. The figure represents the frequency content 

present in the signal for one patient that clearly indicates the varying frequency bands 

present in EEG signal. Frequency spectrum of signals is representing signals in Delta 

band, Theta band, and Alpha band and Beta band. Figure 1.5 shows the quantity of 

changes in frequency distribution in all samples. It clearly details the amplitude of 

components of frequency bands present in the signals. 
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                 Figure 1.4. Single–sided amplitude spectrum of different frequency band of a signal 

 
Figure 1.5. Amplitude content of various frequencies present in an EEG signal. 
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(a) 

 
(b) 

Figure 1.6. (a)  Power spectrum with reference to frequency, (b) FFT of EEG signals of normal and 
epileptic patient. 
 

 
Figure 1.6 (a) depicts the power spectrum by applying FFT to the autocorrelation 

sequence and (b) represents the power content of a normal and an epileptic patient EEG 

signal with reference to frequency content in the signals.  

 
1.4 EEG AS A TOOL FOR EPILEPSY 

Epilepsy is a disease of the brain caused by spontaneous, intermittent and abnormal 

electric burst activity in the brain [18]. EEG is one of the main diagnostic tests for 

epilepsy and an effective clinical tool for monitoring, diagnosing and prognosis of 

neurological disorders. The onset of a clinical seizure is characterized by sudden 

changes in the morphology of EEG, but some abnormality in EEG patterns may occur 

due to different conditions. Epileptic seizures become apparent as characteristic in EEG 

recordings, their detection can, thus, be used to diagnose, monitor ongoing seizure, and 

to differentiate epileptic seizures from other paroxysmal, seizure-like symptoms as 

shown in Figure 1.7. Compared with other measurement methods, EEG is a clean and 

safe technique for monitoring the brain activity and neurobiological disorders as it 

provides a visual display of the recorded waveform. 
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Figure 1.7. EEG signal depicting the beginning of the seizure and during seizure. 

Researchers have observed that it may be difficult to identify the components that show 

momentary changes in the EEG signal in pathological situations such as epileptic 

seizures [19]. It is not always easy to understand and detect the changes in brain 

rhythms and waveforms from the scalp EEGs, even with trained eyes. Because of small 

amplitudes, minute variations, differentiation between foreground and background EEG 

becomes very subjective and totally depend on the abnormalities. It has also been 

observed that it is difficult to identify the epilepsy attacks of some patients and the 

patient has to be monitored asleep and awake. Moreover, the onset of the seizures 

cannot be predicted in a short interval of time, so a continuous recording of the EEG is 

required to detect epilepsy. However, the traditional detection or prediction methods 

including visual and manual scanning of EEG are voluminous, very tedious, time 

consuming and may be inaccurate and has not yet reached the reliability point to allow 

clinical translation. The EEG records interpreted by specialists with different types of 

training may create inconsistent recording of information obtained through the viewing. 

Hence, it is imperative to analyze the EEG signals using a consistent and appropriate 

processing method in order to obtain correct diagnoses for the treatment of epilepsy.  
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Usually, the diagnosis of epileptic seizures involves the analysis based on combination 

of the medical history of the patient and interpretation by an expert neurologist through 

EEG recordings [20]. Nevertheless, with the emergence of new signal processing 

techniques, an increased improvement in the analysis of the EEG for prediction of 

epileptic seizures has been reported. These enhanced algorithms can detect abnormal 

disorder and malfunctioning of the brain not only during the seizure but also can detect 

the onset of seizure.  Traditionally, the algorithms for detection of epileptiform activity 

have been classified as to be either mimetic, linear predictive or template based [21]. 

However, recent algorithms combine multiple approaches and cannot be classified to 

these categories anymore. 

The automatic detection of epileptic characteristics is arguably the most studied 

research topic of clinical quantitative EEG. As EEG recordings in any form   allows 

computer aided signal processing techniques to characterize them, and unsatisfactory 

reliability of the presented methods for clinical use, this topic has been under constant 

interest. Nevertheless, constantly increasing computation power of computing systems, 

utilization of more complex algorithms is enhancing the research interest for the 

detection of epileptic seizures. 

 

1.5 MOTIVATION 

Human life is precious and living a good quality life is human right. Epileptic seizures 

have important public health implications. It is one of the most physically and 

emotionally destructive neurological disorders affecting population of all ages. Any 

possibility of alerting a patient and/or his attending staff to an impending epileptic 

seizure, or anticipating the onset of seizures will have obvious clinical importance. 
 
 In the recent years, with the advance signal processing techniques and invasion of this 

expertise into the field of neurology, considerable effort is invested in detecting and 

forecasting epileptic patterns. The detection of abnormality should be achieved at an 

early stage, so that proper and timely action may be taken to avert the impending 
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seizure. An automated analysis and a reliable universal forecaster of seizures can be 

proving to be very efficient in prognosis of epilepsy. Moreover, by automating the 

detection of these types of neurological abnormalities, the burden of work on the 

neurologist can be significantly reduced, response time to the illness can be effectively 

improved, and suitable medical treatment can be administered within proper time. Also, 

an automatic seizure detection system if used in the diagnosis of epilepsy, can act as a 

second opinion tool apart from visual inspection of EEG by the physician. 

Therefore the development of accurate computer aided diagnostic system for 

classification of brain disorders is strongly desired. There is a significant interest in the 

research community for development of reliable EEG-based automated tools. With the 

advancement of new signal processing techniques and mathematical algorithms in EEG 

analysis, supporting methods in medical decision and diagnosis can be developed to 

avoid tedious analysis of voluminous records and obtain clarity about the brain 

pathology. This thesis, therefore, investigates and develops a number of promising 

automatic computer aided diagnostic system for use in these automatic neurological 

event detection systems. This doctoral thesis, in particular, tries to narrow the gap that 

exists between present methodology of EEG signal analysis and practical 

implementation for the benefit of medical fraternity and common man. Main focus lies 

on developing a system to transform the subjective qualitative diagnostic criteria into a 

more objective quantitative prognosis criterion and to analyze hidden dynamics of the 

EEG time series for extracting more information about pathological versus normal 

status of the EEG signals. 

 

1.6 CLASSIFICATION ALGORITHMS FOR EEG SIGNALS 

Classification is one of the main aspects for analysis of EEG signal processing. A 

proposal for a new classifier for use with our datasets is beyond the scope of this thesis, 

so standard classifiers have been used to verify the preceding steps and compare them 

with each other to achieve maximum efficiency and accurate results. There are many 

different classification methods, but the main focus is primarily on approaches that have 
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low computational requirements, e.g., nearest neighbor, multi layer perceptron neural 

networks, probabilistic neural networks, support vector machines, radial basis function, 

Bayes’ classifiers. 

1.6.1 Nearest neighbor classifier 

K-nearest neighbor (K-NN) is a simple and robust classifier and performs efficiently 

with low-dimensional feature vectors [22]. It works by comparing testing data with 

training data.  An identical data in the test and training set is assigned to the same class 

defined by training data. If the test data is different, a distance measure (e.g., Euclidean 

distance) is used to determine similarity. Similarity is measured by considering number 

of closest point. In this algorithm, instead of considering one neighboring point,  

K-nearest neighbour approach is applied that takes K points in the training set that are 

closest to the test point. The test data is assigned the dominant class among its k nearest 

neighbors within the training set. The default value of K is 1, and the default 

neighborhood object similarity setting is the Euclidean distance, as given by eqn. (1.2) 
                                                                                                                                   

(1.2) 
 

K-nearest neighbour classifiers classifies the information based on local information. It 

draws decision boundaries across the whole space by considering a few local points. 

The nearness is determined by the measurement of distance between or among 

matching records. The measurement of distance is also very useful while articulating a 

confidence of the prediction. It is computationally very efficient at training time, since 

training simply consists of storing the training set. Testing involves measuring the 

distance between the test point and every training point, the algorithm works much 

slower for large data sets.  

1.6.2 Naive Bayes classifier 

The Naive Bayes classier is simple, computationally efficient, and is often used as a 

reference classier. It is based on probability theory and asymptotically fastest learning 

     22 2
1 1 1 1( , ) ....i l i l i l ip lpd x x x x x x x x     
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algorithm [23].  It provides an efficient flexible way for dealing with large number of 

classes. Mathematically, Naive Bayes is a conditional probability model: If x is an 

instance, represented by a vector 1 2,( , ..... )nx x x x where n represent some features, 

to be classified in any of class C, then instance probabilities are assigned for each 

of k possible outcomes or classes 

 1 2( / , ..... )k np c x x x  

Using Bayes theorem, Bayesian classifiers says        

 

( / ) ( )
( / )

( )
j j

j

p x c p c
p c x

p x


       (1.3) 
     

where 
probability of instance being in class   ( / ) jj d cp c x    

probability of generating instance  given class ( / ) jj d cp x c       

probability of instance  occurring( ) dp x             

probability of occurrence of class ( ) jj cp c           
 

Bayes classifier assigns a class label ky C  for some k by:     

  1

arg max ( ) ( / )
n

k k i k
i

y p c p x c


 
     (1.4) 

     

Naïve Bayes has limitation of oversensitivity to redundant and irrelevant data or 

features. If two or more attributes are highly correlated, the final decision of 

classification can be misleading as correlated attributes receive too much weight. This 

may lead to a decline in accuracy of prediction if large number of correlated features is 

present in the dataset. 

1.6.3 Artificial neural network classifier 

Artificial Neural Networks (ANN) is a mathematical model inspired by the functional 

and morphological aspect of biological structure of neurons. It is an adaptive system 
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that changes its behavior based on information provided to the network during the 

learning phase. The popularity of ANN as a classifier is attributed to their ability (i) to 

be used to generate discriminative likelihood-like scores; (ii) to be easily implemented 

in hardware and embedded platform for its simple structure; (iii) to approximate 

functions and similarity based generalization property; (iv) to map complex class 

distributed features easily [24]. NNs imitate the structure of biological neural network 

with neurons as processing elements.  Each node representing a neuron, receives 

unknown samples as inputs, processes these inputs by applying threshold functions at 

every layer and finally generates a single output. The number of layers and neurons, the 

respective synaptic weights and learning algorithms can be varied in accordance to 

desired design perspective [25]. Neural network is trained by making it learn, by 

providing number of inputs through an iterative process of adjustments applied to 

synaptic weights and thresholds. The neuron model depicted in Figure 1.8 is defined by 

three basic elements:  

 

 
Figure 1.8. Neuron model of Neural network for one node output. 

1. Input layer with one or more inputs which accept a signal xj at the input of 

synapse j. It is further connected to neuron k after it is multiplied by the synaptic 

weight wkj. If the associated synapse is excitatory, the weight wkj is positive, and 

if it is inhibitory the weight will be taken as .negative.  
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2. An adder for summing the input signals, weighted by the respective weights of 

the neuron. 

3. An activation function or threshold function for limiting the amplitude of the 

output of a neuron. The model of a neuron also includes an externally applied 

bias wk0 = bk that has the effect of lowering or increasing the net input of the 

activation function. 

 

Steps involving NNs process: 

 

Initialization 

Determine network topology for to determine nodes in all layers. 

Set initial weights for all the connections, w 

Set value of η, learning rate parameters  

 Iterative loop 

While exit condition is false, DO: 

Input a given vector x 

For each k, compute the response yk(n) produced by input set applied to the first layer 

of the network in which neuron k is embedded. 

0
,

( )

n

k kj j k k k
j

k k

u w x v u b

y v


  





       (1.5)
     
Calculate the error signal at the output node 

( ) ( ) ( )k k ke n y n d n          (1.6) 
 
 

where ( )kd n denote desired response for neuron k at time n, and yk(n) denotes the  value 

of the actual response (output) of this neuron. The input vector and desired response 

constitute a pair presented to the network at time n. At any time, for any input signal, 

actual response of neuron k is different from the desired response which is represented 

as ( )ke n .  
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Minimize and optimize the cost function  

The ultimate purpose of this algorithm is to minimize a cost function. The instantaneous 

value of the mean square- error is the cost function and is given by eqn (1.7)                                                                                             

 

2

1

1( ) ( )
2

n

k
j

J n e n


 
                      (1.7) 

The network is optimized by minimizing ( )J n with respect to the error signal obtained, 

which in turn depends on synaptic weights of the network. The synaptic weight 

adjustment is given by 

( ) ( ) ( )kj k jw n e n x n            (1.8) 

in accordance to the error-correction learning rule (or delta rule). 

Update weights to all nodes depending upon the learning process. 

If wkj(n) is the value of the synaptic weight at time n, an adjustment Δwkj(n) is applied to 

the synaptic weight wkj(n), yielding the updated value as 

( 1) ( ) ( )kj kj kjw n w n w n               (1.9) 
Exit if the condition is true  

no change in the weights or error is minimum 

Different ANN models are discussed in the following section 

1.6.3.1 Multilayer feed forward network 

The most commonly used representative of ANNs is the multilayer perceptron 

(MLPNN) [26]. MLP can solve complex classification tasks, but is sensitive to 

overtraining, especially with noisy and nonstationary data as EEGs. The input signals 

(input vector) applied to the input-layer of the network is connected to the neurons in 

the second layer (i.e. the first hidden layer). The output of the second layer acts as an 

inputs to the third layer, and so on for the rest of the network till output layer is 

accessed. The signals achieved from the neurons in the output layer represent the 

overall response of the network to the activation pattern supplied by the source nodes in 

the input layer.  
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1.6.3.2 Back-propagation networks 

 The back-propagation algorithm is based on delta rule and gradient descent. It includes 

forward and backward passes; in the forward pass, the information applied to the input 

moves in the forward direction after computations at each layer. In backward pass, error 

computed between the resulting output and target value is passed in backward direction 

for weight updation to achieve minimum error for desired response. The change in 

weight is given by  ( ) ( ) ( )kj j iw n n y n   where  ( )j n   is the local gradient at each 

neuron. The value of local gradient differs depending upon whether the neuron is in 

hidden layer or outer layer  

neuron in output layer    '( ) ( ) ( ( )j j jn e n v n                         (1.10) 

neuron in  hidden layer '( ) ( ( )) ( ) ( )j j k kj
k

n v n n w n        (1.11) 

The significant improvement in performance can be observed by using either Newton’s 

method, conjugate gradient, or the Levenberg–Marquardt (LM) optimization technique 

[27].  

1.6.3.3 Radial Basis Function NN classifier 

Radial Basis Function (RBFNN) networks feed-forward supervised training algorithm 

configured in three layer [28]. The input layer comprises of nodes, number is equal to 

the dimension n of the input vector x. The hidden layer comprising nonlinear units are 

connected directly to all of the nodes in the input layer as shown in Figure 1.9. Gaussian 

function (the width corresponding to the variance, σi having peak at zero distance) is 

taken as the basis functions as activation function and the least squares (LS) criterion is 

used as objective function. RBF network adjusts iteratively parameters of each node by 

minimizing the LS criterion. 



                                                                                                Introduction  

MEENAKSHI SOOD, JUIT, 2015  21 

 

 
 

Figure 1.9. Model of RBF neural network 
 

Steps involving RBFNNs process: 

The radial distance di, between the input vector x and the center of the basis function ci 

is computed for each unit i in the hidden layer as   i id x c    

The output hi of each hidden unit i is computed by applying basis function to this 

distance         ( , )i i ih G d   

The hidden unit transforms the input space nonlinearily, and the output space transform 

hidden unit the in linear fashion. The jth output at the output neuron is computed as 

0
1

( )
L

j j ij j
i

y f u w w h


       j= 1,2,….M                 (1.12) 

Summarizing, the mathematical model can be expressed as: 

0
1

( ) ( )
L

j j ij i
i

y f u w w G x c


                 (1.13) 
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 
          (1.14) 
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where yi is the output value , input feature vector is  xi, w0 is a constant bias term, xj and 

dj are the centers and widths for jth hidden neuron in the network, respectively. L is the   

total number of hidden neurons in the network and wj are the weight coefficients of 

connections between hidden neurons and the output neuron. In comparison with other 

multilayer feed forward neural networks, RBFNNs have simple topological structure, 

locally tuned neurons, and ability to have a fast learning algorithm. 

1.6.4 Probabilistic Neural Network Classifier 

The Probabilistic Neural Network (PNN) is an extension of NN that is capable of 

approximating the Bayes classifier and convergence to Bayes-optimal decision surface. 

It estimates the similar probability density function for each class based on the training 

samples [29] 

 

 

 

Figure 1.10 PNN Model with four layers for classification of signals. 



                                                                                                Introduction  

MEENAKSHI SOOD, JUIT, 2015  23 

 

As shown in Figure 1.10, PNN consists of four layers, each layer performing a 

particular function; as input layer accepts the input pattern or feature vector, pattern 

layer consists of the vectors of the training set, summation layer deal with winner takes 

all approach and output layer represents each of the possible classes. As shown in figure 

the input layer is fully interconnected with pattern layer, and output layer classifies the 

data from the information obtained by Summation layer.   

The input feature vector receives all inputs, class nodes are connected to the example 

hidden nodes, so the example vector activations determines the class of the input feature 

vector. Mathematically, if E is the example vector, and F is the input feature vector, 

sum of the products of the example vector and the input vector are calculated for each 

class given by     i ih E F  

The class output activations for each node are then defined by eqn (1.15): 

2
1

1

ihN

i
j

e
c

N


 

 
 




        (1.15) 

Where, for ith input feature vector, N is the total number of example vectors for a class, 

hi is the hidden-node activation, and σ is a smoothing factor which is chosen through 

experimentation and determines the performance and generalization of the classifier. 

The advantage of PNN is fast classification, better generalization as no training is 

required. It is more adaptable and dynamic as it is easy to add new examples by adding 

the new hidden node even in the context of noisy data. 

1.6.5 Support Vector Machine (SVM)  

The fundamental concept of SVM is to transform a set of feature vectors into a higher 

dimensional space.  An optimal hyper-plane is searched in the space that can maximize 

the margin between classes. In comparison to linear discriminate functions, conversion 

to higher dimensional space result in simplification of complex classification problems 

[30]. 
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Let a training feature vector xj ∈ Rd with associated labels yj ∈ {1,−1} belong to 

linearly separable classes, where hyper plane H0 is the decision surface to classify a 

pattern as depicted in Figure 1.11. The problem of classifying a test vector xk as 

belonging to one of two classes can be written as: 

( ) .k kf x w x b                        (1.16) 

where w ∈ RN. The equation f (x) = 0 gives H0, region of vectors x.  If Ha and H−a are 

two hyper planes parallel to H0, defined by f (x) = a, and f (x) = - a, then the distance 

separating these two hyper planes is given by   d =2/|| w || 

The distance d (margin), is maximized so as to obtain a classifier boundary that does not 

over fit to the training data xj. To be correctly classified, the training vectors should lie 

outside the margin or on the margin boundary and must satisfy:  

. 1kw x b  , for yj = +1,                   (1.17a)          

. 1kw x b    for yj = −1.                  (1.17b)          

   This can be written more concisely as:       

 
( . ) 1j ky w x b j  

       (1.18) 
As real-world biomedical data are often not linearly separable, with considerable 

overlap between classes, the decision boundary can be softened by introducing a slack 

positive variable ξi for each training vector. The conditions that the training vectors 

must satisfy, defined in eqn (1.17) and (1.18) can now be modified to include ξi such 

that:  

  ( . ) 1 , 0i i iw x b       for yj = +1,  

( . ) 1 , 0i i iw x b      , for yj = −1.        (1.19) 

The introduction of ξi is problematic in that the constraints in eqn (1.19) will be met for 

all i if ξi is suitably large, thus giving eqn (1.20) 

( . ) 1 , 0i i i iy w x b              (1.20) 
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Figure 1.11. SVM classifier with maximized margin with defined hyper plane 

 

To avoid trivial solutions, a regularization constant C is introduced into the objective 

function which now becomes:  

Minimize 

1

1
2

m
T

i
i

w w C 


 
                    (1.21) 

Subject to 

( . ) 1i iy w x b   
The regularization parameter C thus controls the degree of penalization introduced by 

ξi, such that increasing C permits fewer training errors at the expense of reduced 

generalization. The convex optimization problem outlined by eqn (1.21) is solved with 

Lagrangian multipliers αj. Only training patterns lying on the margin surface or within 

the margin have non-zero αj; these are the support vectors. The classification process 
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thus consists of assigning one of the two classes to a given input vector xk of dimension 

N, such that: 

( ) T
i i kf x y x x b          (1.22a) 

i iw y x    
T

k kb y w x    for any xk such that  αk = 0             (1.22b)

  

The linear classifier relies on dot product between vectors ( , ) T
i j i jK x x x x   

If every data point is mapped into high-dimensional space via this transformation  

Φ:  x → φ(x), then the dot product becomes: ( , ) ( ) ( )T
i j i jK x x x x    

where K is a kernel function. A kernel function is any function that corresponds to an 

inner product in some expanded feature space [31]. The different kernels used in 

literature are  

Linear: ( , ) T
i j i jK x x x x , Polynomial of power  p: ( , ) (1 )T p

i j i jK x x x x    

Gaussian (radial-basis function network): 
2

2( , ) exp i j
i j

x x
K x x


 

   
 

 
 and  

 Sigmoid: 1( , ) tanh( )T
i j o i iK x x x x    

In this research work, RBF kernel is used as the kernel function because most of the 

biomedical researchers consider this function an ideal one. In SVM, classification 

calculation times are small and it is easy to implement in a real-time system. They are 

also less prone to over fitting and obtain good generalization performance without 

feature space dimensionality reduction. 

1.6.6 K-Means Algorithm (KMA):   

KMA is one of the simplest unsupervised learning algorithms to solve clustering 

problems. The k-means algorithm is applicable for grouping data points into K clusters 

according to the distance measure. The input parameter of this algorithm is the number 

of clusters K. If this number is unknown, we can perform the k-means algorithm several 

times for different numbers of clusters and we can then choose the best one.  



                                                                                                Introduction  

MEENAKSHI SOOD, JUIT, 2015  27 

 

The algorithm of KMA is summarized as follows [32]: 

Step 1: Choose K initial cluster centers z1, z2,z3…..zk randomly from the n points  

{X1,X2,X3….Xk }. 

Step 2: Assign point Xi, i= 1,2,3….n to the cluster Cj,  j ε {1, 2,…, K} 

If 1, 2..... ,i j i pX z X z p k j p         

 Step 3: Compute new cluster centers as follows 

1 , 1,2.....
j Ci

new
i j

x
Z X i k

n


          (1.23) 

where ni is the number of elements belonging to the cluster Ci. 

 Step 4: If , 1, 2.....new
i iZ z i k    ‖, terminate.      (1.24) 

Otherwise continue from step 2. 

An indisputable advantage of k-means is that it can be used for very large datasets. 

 

1.7 CLASSIFICATION METRICS OF THE CLASSIFIERS 
 
The performance of classifier is assessed by five different statistical measurements, 

Sensitivity (Sen), Specificity (Spec), Confusion Matrix (CM), Classification Accuracy 

(CA) and Receiving Operating Characteristic (ROC) curve. The definition of 

sensitivity, specificity and accuracy [33] and the brief description of the confusion 

matrix and ROC curve [34] are given in the following section: 

1.7.1 Confusion matrix 

 

Table1.1 : Confusion Matrix for two classes classification 

 POSITIVE(Seizure) NEGATIVE(Normal) 

POSITIVE  True Positive False Negative 

NEGATIVE  False Positive True Negative 
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Confusion matrix is tabular description of classification of cases in the test dataset. In 

confusion matrix, the columns denote the actual cases and the rows denote the predicted 

class.  Both the sensitivity and specificity measure classification accuracy against the 

ground truth diagnosis and are defined by Sensitivity is an assessment of the two upper 

quadrants while specificity is represented in the lower two quadrants. They are both 

bounced between 0 and 100%, and higher values indicated better accuracy. 

a) Sensitivity: the ratio of number of true positive (TP) decisions divided by the 

number of actual positive cases.  

          TruePositiveSensitivity
TruePositive FalseNegative




            

b) Specificity: the ratio of the number of true negative (TN) decisions divided by the 

number of actual negative cases. 

TrueNegativeSpecificity
TrueNegative FalsePositive




             

c) Classifications accuracy: the ratio of the number of correct decisions divided by the 

total number of applied cases. 

 TrueNegative TruePositiveAccuracy
All


              

1.7.2 ROC curve 

ROC curve is graphical representation of classification of test cases. It represents all the 

cases, actual and predicted on the plots with sensitivity (true positive rate) represented 

on the Y-axis and (1-specificity) (false positive rate) on X-axis. Area under the ROC 

curve is preferred to evaluate the performance of a classifier and its value lies between 0 

and 1. When area of the ROC curve is 1, the classifier has a perfect discriminating 

ability, and if value is 0.5, classifier cannot discriminate between two classes. The AUC 
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value has the advantage that it works just as well for discrimination problems with 

different class priors.  

1.7.3 K-fold cross-validation is one way to improve the holdout method. The 

complete data set is divided into ' k ' mutually exclusive subsets of an equal size. Each 

time ' k-1’ subsets are used as training subset and  one subset is used as testing set with 

sample of every class in each subset. Every data point appears in a test set exactly once 

and appears in a training set (k-1) times. All the datasets are used for training and 

testing by continuously shifting them in different k subsets. The average error across all 

k trials is computed to yield a single measure of the stability of the respective model, 

i.e., the validity of the model for predicting new observations. The disadvantage of this 

method is the necessity of rerunning the training algorithm from scratch k times, which 

means it takes k times as much computation for the evaluation. The advantage of this 

method is the ability to independently select the size of each test and number of trials. 

 
1.8 OBJECTIVES  

 

The motivation behind this thesis is the examination of morphology and topography of 

waveforms obtained in EEG during certain neurophysiologic phenomena. We intend to 

use power of EEG as a source for detection, diagnosis, treatment and prognosis of 

several neurological abnormalities. Following the need and being motivated by these 

factors, following objectives were framed for our research work. 

 
I. To employ quantification and statistical analysis techniques to differentiate and 

select the significant and contributing features of the EEG signals.  

II. To employ quantitative analysis to identify and classify abnormality by 

developing a prediction CAD model using highly discriminating features. 

III. Inception of an ensemble computer-aided diagnostic classifier system (ECAD) for 

seizure activity. 

IV. To design a CAD system while selecting the appropriate module (epoch) to 

understand neural underpinnings and quasi stationarity nature of EEG signals. 
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1.9 ORGANIZATION OF THESIS 

Chapter 1 lays the foundation as to how and why EEG signals are clinically significant 

for analysis and classification of epilepsy. The chapter begins with the documenting 

facts about EEG signals, epilepsy and correlation between EEG signals and epilepsy. 

This chapter also includes the basic introduction to the classifiers used for designing 

proposed CAD system and the performance metrics employed throughout the thesis. 

Finally, motivation, outline and objectives of the present research work are outlined. 

Chapter 2 presents a comprehensive literature review of the state of the art of related 

studies carried out so far. We also discuss the state-of-the-art in dynamics of EEG 

signals and their classification. The review has been carried out by dividing the problem 

of automated classification system into different modules. 

The goal of Chapter 3 encompasses the extraction and selection of different features, 

extracted from clinical acquired EEG signals. In this objective, an efficient statistical 

analysis is presented to extract informative parameters set for classification of EEG 

signals that can be further used for deciding and selecting processes to achieve the 

desired objective. The strength of this study is its rigorous feature selection procedure 

which when applied to the prediction model allows a high generalization and accurate 

classification with good interpolation. 

Chapter 4 This Chapter discusses the designing of architecture of different machine 

learning algorithms which are employed for the classification. The purpose of this 

chapter is to elicit classifiable information from human EEG and to identify the 

algorithm that provides the highest classification accuracy of epilepsy. In this objective, 

a novel HCAD system is proposed that focus on modelling the seizure classification by 

a hierarchical framework, a variation of the classifier system. 

In Chapter 5 we have extended the model introduced in Chapter 4 to infuse the 

features, in order to assess the advantage of including non linear features along with 
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high order cumulants. The study focuses on the development of a classifier paradigm 

that consists of ensemble of significant features. Various CAD systems performances 

are evaluated to investigates which classifier is more efficient in classifying the seizures 

Chapter 6 This chapter investigates the possibility designing a CAD system for 

prognosis of epileptic seizure with less computational complexity and higher accuracy. 

In this chapter emphasis is laid on quasi stationary nature of signals by dividing 

complete data set into small segments (epochs) where the stationarity of the signals can 

be checked. 

In Chapter 7 we summarize the conclusions achieved from the work presented in the 

previous chapters and we outline possible future scope of the problem and future 

directions that can be followed for the extension of this work. 



32 
 

         CHAPTER 2 
 

REVIEW OF STATE-OF-THE-ART  
 
 
Clinical neurology is main area of research that deals with diagnosis of epileptic 

patients through EEG, sleeps analysis and may other abnormalities of brain. As the area 

of application of EEG is very wide, there are a large number of publications in which 

authors have dealt with EEG signals, their processing, analysis and applications. The 

review suggests that the current state of-the-art in the field is progressing with many 

groups working in this field. It is impossible to mention all the publications that have 

dealt with processing these biomedical signals, so in the next few pages, only studies 

closely related to the topic of this thesis are presented. An exhaustive review of the 

literature relevant to this thesis is attempted and presented. This review primarily focus 

on artifacts affecting EEG signals, quantitative and qualitative EEG analysis, time and 

frequency domain analysis, and use of soft  computing techniques for signal processing.  

 
2.1. EPILEPTIC SEIZURES 
 

Sudden excessive electrical discharges in the brain cells are the primary cause of 

epileptic seizures that results in malfunctioning of the brain electrophysiological system 

[35]. It is difficult to identify variations and changes in the amplitude or frequency of 

EEG waveform by naked eye observations.  So, researchers opt for this field to study 

the mechanisms behind seizures, design and develop several algorithms and models for 

the identification of changes during seizure activity. Authors in [5] reported that by 

studying seizure intensity, it is possible to detect epileptic seizure and can be employed 

as a clinical tool. Niederhoefer et al. [36] developed algorithms to detect the onset of 

epileptic seizures using raw data information. EEG has capability to reflect all the 

activity of the brain, so it has been found to be a very powerful tool in the field of 

neurology and clinical neurophysiology [37-38]. 

 



                                                                                                                Literature Review 
 

MEENAKSHI SOOD, JUIT, 2015  33 
 

The extraction of information and its analysis from raw EEG signals becomes difficult 

as these signals are contaminated by biologically generated and externally generated 

signals. Since many physiological signals (such as heart beats) are involuntary, some 

artifacts will always be present in EEG signals [39]. The presence of these kinds of 

artifacts makes it difficult to differentiate between original brain waves and noise [6]. 

Recognition and elimination of the artifacts in real – time recordings is a complex task, 

but essential to the development of practical systems. The artifacts compromise 

sensitivity of main signal as they are confounded with statistical contrasts [40]. The 

removal of the artifact becomes essential as the preprocessing step for any type of EEG 

analysis. Lot of research work has been reported to remove these artifacts occurring 

from various sources so as to enhance the clinical usefulness of EEG signal [41-43]. 

2.2. LITERATURE REVIEW OF ARTIFACTS  

The presence of artifacts introduce spikes which can be confused with neurological 

rhythms, making the EEG signals analysis biased and difficult leading to wrong 

conclusions [44]. The various kind of physiological and extra physiological artifacts 

which prominently affect true EEG are Instrumental artifacts: generated by the use of an 

instrument powered from the mains power supply, Analysis artifact: that arise in the 

course of processing the signal and Biological artifacts: signals arising from different 

part of body [45]. The other major physiological artifacts are the signals generated from 

heart, muscles, and eyes, head movement, sweating and breathing [46]. Mains voltage 

artifact may also appear on the EEG via the use of fluorescent lights or other electrical 

equipment in the close vicinity of the EEG machine. 

An issue of concern in analysis of EEG is the detection and elimination of artifacts 

leaving underlying background signals due to brain activity intact[47,48]. Accurately 

evaluating the performance of artifact removal algorithms presents a less 

straightforward challenge than that of evaluating detection algorithms. 
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2.2.1. Artifact Recognition and Elimination 

The different methods available for reducing and removal of artifacts are application of 

spatial filters [49], blind source separation [50], and linear regression models, in time as 

well as frequency domain [51, 52]. In 2003, Durka et al. [53] have used a simple but 

effective technique for discriminating a “good” EEG and artifacts by optimizing the 

threshold limits to mark an epoch as an artifact. The optimized parameters are directly 

related to the signal’s energy distribution, in the frequency or time domain. Authors in 

[54] have used higher order statistical property, kurtosis, and the 4th cumulant of data to 

make a clear distinction between non-artifact and artifact signal, and rejecting the later. 

As the artifacts have overlapping spectra with signal of interest, they have to be 

removed such that the useful information is not lost. Many researchers have introduced 

many novel methods for removal of artifacts.  

Regression methods were introduced by Quilter et al. [55] and subsequently modified 

by Verleger et al. [56]. Gratton et al. [57] proposed a time domain regression method in 

which the scaling factors are computed and averaged separately for each epoch, and 

further modified the technique by providing separate propagation factors for blinks and 

saccades. In 1993, Lins et al. [58] and Lagerlund et al. [59] used PCA-based methods to 

eliminate the artifact components. These components are obtained by decomposing the 

artifacts contaminating EEG signal. Makeig et al. [60] in 1996 used the algorithm of 

Bell and Sejnowski [61] proposed in 1995 to report first application of ICA for EEG 

data analysis.  A modification in ICA proposed in 1997 by Hyvärinen and Oja [62], was 

Fast ICA based on “non-Gaussianity" of underlying components. In 2000, ICA based 

artifact reduction method was proposed by Everson and Roberts [63] for the artifact 

removal. [64] Proposed use of principal component analysis (PCA) to remove eye 

artifacts from EEG. 

In 2002, Nicole and Berg [65] used spatial filtering for artifact correction and focused 

on the pre selection approach for the segments of EEG signals. Another filtering 

technique which does not involve any reference signal and is totally based on statistical 

approach is Wiener filtering [66] and based on probabilistically estimation approach is 
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Bayesian filtering [67]. In 2004, Joyce et al. [68] proposed a method using the second-

order Statistics-based Blind Source Identification (SOBI) algorithm for the removal of 

eye movements. In 2005, Krishnaveni et al. [69] have done an extensive comparison of 

the entire present ICA algorithm like MS-ICA, SHIBBS(Shifted Block Blind 

Separation), Kernel-ICA, JADE and RADICAL(Robust, Accurate, Direct ICA) for 

removal of ocular artifacts from EEG and assessed them in terms of quantitative 

analysis by using a reliable Mutual Information Estimator.  In 2006, Krishnaveni et al. 

[70] using both the concepts of ICA and wavelets for artifact suppression and 

elimination, preserved spectral and coherence of neural activity. Correa et al. in 2007 

[71] used three adaptive filters in cascade to cancel line interference, ECG and EOG 

artifacts present in EEG records. A hybrid soft computing technique, Adaptive Neuro-

Fuzzy Inference System (ANFIS) is proposed by S.Kezi et al. [72] to estimate the 

interference and to separate the artifacts from EEG signal. Dewan et al. [73] have 

performed the separation of ECG artifact by detecting R –peaks using adaptive 

thresholding method.  

 In 2008, Devuyst et al. [74] have based their research on a modification of the ICA 

algorithm using a single-channel EEG and ECG. Their approach gave promising results 

as compared to earlier proposed techniques. In 2009 algorithm proposed by Jones et al. 

[75] involves minimizing the error optimally. The choice of algorithm employed 

determines the efficiency and cost of the filters. In 2010, Gao et al. [76] have used 

Canonical Correlation Analysis (CCA) technique using correlation threshold to remove 

the EMG artifacts automatically, without eliminating the signal of interest.  Arezki et 

al.[77] have used LMS with computational complexity  using step size to control the 

rate of adaption.  Dong et al. [78] used JADE method for removing ocular artifacts for 

both eye blinks and saccades and concluded that it is an effective tool for multichannel 

EEG recordings. In 2011, Babu et al. [79] proposed a method to remove artifacts using 

wavelet transform and adaptive filter (Fast RLS algorithm). This technique not only 

improves the quality of EEG signal but also increases the PSNR (Peak Signal to Noise 

Ratio) value and decreases the elapsed time in comparison to RLS algorithm.    
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In [80] the recording of a noise-contaminated and a noise-free signal is recorded 

concurrently. Quantitative studies about suppression of OA distorting the underlying 

cerebral activity and accurate evaluation on denoising effect of DWICA are covered in 

[81]. In [82] authors have proposed effective method to achieve the muscle artifact 

removal from single-channel EEG, by combining canonical correlation analysis with 

empirical mode decomposition. Authors in [83] conducted the blind source separation 

on the raw EEG recording by the stationary subspace analysis (SSA) algorithm taking 

mean and the covariance matrix into account. In [84], automated artifact elimination 

was achieved by image processing algorithms using linear discriminant analysis (LDA) 

for classification. Once the acquired EEG signals are preprocessed by removing 

artifacts, amplifying and normalizing the signals, further processing is done for 

choosing the classifier.  

The two primary considerations for the design of automated detection system are: 

nature of features selected from the EEG input signal and the analysis techniques 

applied on extracted features. The review in the upcoming sections covers the research 

work conducted in these two primary areas. 

 

2.3. FEATURES EXTRACTION AND SELECTION  

An efficient way to analyze the signals (with volume and complexity) is feature 

selection [85, 86], which results in dimensionality reduction by selecting a subset of 

features from the whole set of inputs. Lot of research work has been carried out to 

measure the goodness of a feature subset in determining an optimal one. Different 

feature selection methods can be broadly categorized into the two models: wrapper 

model [87] and the filter model [88-89]. Both of these models use algorithm to 

determine the goodness of the selected subsets that are independent of any learning 

algorithm. To search optimal set of candidate features for evaluation, search strategies 

such as complete, heuristic, and random search have been studied [90]. High-

dimensional raw EEG data often contains many redundant features that affect the 

computational complexity and processing speed and accuracy of learning algorithms. 
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Individual rank of features is evaluated and irrelevant features or redundant features 

those have similar rankings can be removed [91]. Several methods are reported in the 

literature for extracting quantitative features from EEG signals. Fourier transform is 

used to find spectral parameters that are used for detection and classification of epileptic 

seizure [92]. As proven, the signal being analyzed by Fourier transform is assumed to 

be stationary, but studies have shown that the EEG signal is a non-stationary [93].  

In recent years, attempts have been reported on seizure detection and prediction from 

EEG analysis. The same group further used wavelets and neuro fuzzy system to extract 

the features [94] Features based on time frequency analysis were presented by many 

authors. Tzallas et al. [95] and Srinivasan et al. [96] employed time domain and 

frequency domain features to Elman recurrent neural network for classifying EEG 

signals. In [97] Guerrero-Mosquera, used stochastic analysis approach for feature 

extraction and have used hybrid feature selection technique. H. Ocak, et al [98] 

investigated entropy and approximate entropy for discriminating EEG signals. S Liang 

et al [99] used time frequency analysis and approximate entropy to detect epilepsy using 

linear least square method and linear discriminant analysis.  

H. Adeli et al. [100] have reported seizure prediction using artificial neural networks 

with wavelet pre-processing whereas Subasi et al. [94] have used neuro-fuzzy system 

for seizure detection. Varun Bajaj [101] has classified the EEG signals using intrinsic 

mode functions generated by empirical mode decomposition using SVM classifiers. In 

[102] effective and flexible preprocessing is done by appropriate selection of the 

position electrode channel, the scope of signal source, and frequency bands. They have 

calculated the maximum Lyapunov exponent and used wavelet packet transform to 

calculate the average energy. A comprehensive survey paper of the feature extraction 

methods in the EEG research that formalizes the relevance of the Electroencephalo-

graphy data analysis in the health applications are covered in [103-104]. 

Researchers in this field have observed that EEG data has significant non linearity 

during seizure activity. Iasemidis and Sackellares [105] used principal Lyapunov 

exponent for predicting seizures after applying nonlinear dynamical techniques methods 
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based. Lehnertz and Elger et al [106] employed nonlinear dynamics to larger datasets, 

greater numbers of patients for seizure prediction. Lyapunov exponents were further 

expanded by Güler & Übeyli in [107] and in [108] computed correlation dimension, 

Lyapunov exponents from depth-EEG signals. EEG signal has the characteristics of 

randomness, non-stationary, nonlinear, diversity, so only one feature can't describe 

complete signal. So, features extraction and selection method has attracted author's 

attention.  

An automated system to detect the nature of the seizures and to classify normal, inter-

ictal, and ictal states are based on the features extracted using the discussed techniques 

are reviewed in the next section. 

 
2.4. EEG ANALYSIS AND CLASSIFICATION 

Earlier, EEG analysis referred to interpreting the EEG waveforms using descriptive 

methods. With the advancement in this field, several changes in the EEG signal are 

analyzed with various methods.  The main EEG analysis methods fall under four broad 

categories: time domain, frequency domain, time–frequency domain, and non linear 

methods. Various different models have been suggested based on these methods, to 

assist neurologists in identifying epileptic activities. Pradhan et al. [109] used two 

layered learning vector quantization networks in order to analyze EEG signals. 

Petrosian et al. [110] applied EEG signals to recurrent neural networks instead of 

applying them to statistical properties in the identification of epileptic seizures. Analysis 

of EEG after artifact extraction and removal has been taken up by A. Saastamoinen et al 

[111] using RBF. 

Classification algorithms that have used features such as standard deviation, median 

arithmetic mean, zero crossing value, wavelet transform, rényi entropy spectral entropy, 

are reported in literature. Time-domain approaches for detection of epileptic seizures in 

EEG signals include approaches such as the linear prediction (LP), fractional linear 

prediction and principal component analysis (PCA) based schemes. An investigation of 

recent studies for EEG analysis is carried out in this section and summarized the 

findings of many automated epilepsy activity classification techniques. 
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2.4.1. Automated detection of epileptic seizures using Soft Computing Techniques  

Automated real-time detection of epileptic seizures has always been a challenge, several 

algorithms have been developed to discriminate the seizure (ictal period) from the 

normal period of the EEG. Neural networks have the ability to capture the dynamics of 

complex system; therefore they are exhaustively used to analyze nonlinear systems. H. 

Adeli et al. [100] have reported seizure prediction using artificial neural networks with 

wavelet pre-processing. Nigam et al [113] used a nonlinear preprocessing filter for the 

automated detection of epileptic signals with Artificial Neural Network. Authors in 

[114] have used nonlinear parameters to characterize the EEG signal and classified EEG 

signals into normal and epileptic using different entropies using an Adaptive Neuro-

Fuzzy Interference System (ANFIS).  Further, Guler et al. [108] used largest lyaponuv 

exponent feature in a feed-forward and Recurrent neural network for classification 

problem. 

Automated detection of seizure using neural network was developed by Tzallas et al. 

[95] by employing time-frequency methods to analyze EEG signals. In another study 

[115], nine parameter mixed-band feature spaces were used with Levenberg–Marquardt 

back propagation neural network. The same group [116] used cosine radial basis 

function neural network classifier based on principal component analysis to detect 

epilepsy. Srinivasan et al. [96], employed time domain and frequency domain features 

to Elman recurrent neural network and probabilistic neural networks [117] for 

classifying EEG signals. Subasi [118] decomposed the EEG signal into time–frequency 

representations using Discrete wavelet transform (DWT) and applied to different 

classifiers, such as artificial neural network, dynamic wavelet network (DWN), 

dynamic fuzzy neural network (DFNN), for epileptic EEG classification. The same 

group in [94] used neuro-fuzzy system for seizure detection to enhance accuracy. 

An automated epileptic system, which applies interictal EEG data to categorize the 

epileptic patients using Probabilistic Neural Network (PNN, was developed by Forrest 

Sheng Bao etal. [119]. In [120] authors used relative wavelet energy based features , 

and after decomposing original EEG signal into several sub-bands calculated ApEn 
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feature to classify the EEGs using three layer MLPNN. Further same group used 

wavelet transform and line length feature [121] with K-Nearest Neighbor (KNN) 

classifier and further bused generic programming [122]. S Liang et al [123] used time 

frequency analysis and approximate entropy to detect epilepsy using linear least square 

method and linear discriminant analysis. Polat and Gunes [124] used FFT based Welch 

method and decision tree classifier  to classify EEG signals, further used PCA for 

dimensionality reduction, and employed AR techniques for feature extraction and C4.5 

decision tree classifier for classification. [125]. 

Majumdar [126] reviews various soft computing approaches of EEG signals which 

emphasize more on pattern recognition techniques. Majumdar concluded that the neural 

network and Bayesian approaches are two popular choices.  Iscan et al. [127] proposed 

to use SVM classifier for classification of EEG signals, combined with time- and 

frequency-feature approach. In other recent studies,  highest classification accuracy was 

achieved by Lima et al. [30]  using combination of wavelet transform and SVM, Wang 

et al. [128] used wavelet packet entropy and KNN classifier, and Orhan et al. [32] used 

DWT and ANN. 
 

Varun Bajaj [101] has classified the EEG signals using SVM classifiers with intrinsic 

mode functions generated by empirical mode decomposition. Team of Acharaya [129] 

used ApEn, SampEn and two phase entropies in a Fuzzy classifier, then employed 

wavelet coefficients and eigen values to extract features from EEG signals [130]. 

Wavelet packet decomposition (WPD) was utilised to obtain wavelet coefficients and 

eigenvalues were determined with the help of principal component analysis algorithm. 

Authors in [131] have utilized Multi-level local patterns (MLP) and employed 

Empirical mode decomposition (EMD) to decompose non-stationary EEG signals into 

intrinsic mode functions (IMFs) and used them further for or classification of seizure 

and seizure-free electroencephalogram (EEG) signals. Same group in [l32] proposed 

method that employed a bank of Gabor filters for processing the EEG signals utilizing 

nearest neighbor. Lately authors in [133] propose usage of wavelet based features 
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and certain statistical features without wavelet decomposition for automatic detection 

of epileptic seizure.  

 

2.4.2. Automated detection of epileptic seizures using non linear analysis techniques 

EEG signal are biological systems that can be represented in an effective way using 

nonlinear techniques. A number of promising quantitative features derived from EEG 

are used for processing by using nonlinear time-series analysis techniques for seizure 

prediction. EEG signals have significant nonlinearity as neurons responsible for 

generation of signals are non linear. [134].  The various nonlinear parameters of EEG 

signals for the detection of epilepsy are Higher order statistics, Largest Lyapunov 

Exponent, Correlation Dimension, Fractal Dimension, Hurst Exponent, Approximate 

Entropy, Sample Entropy, and Recurrence Quantification Analysis. These attributes 

measures help understand EEG dynamics and quantify the degree of complexity and 

underlying chaos in the brain signals. 

Lehnertz and Elger [135] studied about epileptic region using correlation dimension 

techniques, by analyzing the spatial and temporal dynamics. Authors in [16] proposed 

nonlinear dynamical analysis methods for extracting maximum information from EEG 

signals. Iasemidis were the first group to apply nonlinear dynamical techniques, based 

upon the principal Lyapunov exponent (PLE), [136], for predicting epileptic seizures. 

Authors in [137] proposed usage of correlation dimension nonlinear feature extracted 

from EEG recordings for the detection of onset of seizures. Freeman et al. [138] 

proposed EEG models for the domain of neurobiology. An algorithm for calculating 

LLE was proposed by Wolf et al. [139] which was devised by Rosenstein et al. [140]. 

Researchers in [141] characterize the EEG signals using nonlinear parameters like CD, 

LLE, HE, and entropy and the same group used an Adaptive Neuro-Fuzzy Interference 

System for classification of EEG signals into normal and epileptic using different 

entropies. 

Correlation Dimension is a nonlinear parameter used as a useful indicator of pathologies 

and widely used measure of fractal dimension and was proposed by Grassberger and 
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Procassia [142]. Lehnertz and Elger et al. [143-144] have expanded work in nonlinear 

dynamics and seizure prediction to larger data sets, greater numbers of patients, and a 

variety of epilepsy types, utilizing parameters based upon the correlation dimension. In 

[145], chaotic features that include largest Lyapunov exponent (LLE) and correlation 

dimension (CD) obtained from the wavelet subbands of the EEG signals are shown to 

be effective in differentiating the signals of various classes as normal, interictal, and 

ictal waveforms . They found statistically significant differences in the values of these 

measures. Übeyli classified the EEG signals using Lyapunov exponents and currently, 

support vector machines were used for classification using Lyapunov spectra [146].  

Entropy is a measure of the average information contained in the signal segment and is 

a suitable feature to characterize EEGs. ApEn was proposed by Pincus [147] and 

showed that the value of ApEn is more for more complex or irregular data. Diambra et 

al. [148] have shown that the value of the ApEn drops abruptly due to the synchronous 

discharge of large groups of neurons during an epileptic activity. Richman and Randall 

[149] developed the parameter called SampEn that measures the complexity and 

regularity of the time-series data. N. Kannathal et al [141] investigated entropy; sample 

entropy and approximate entropy for discriminating EEG signals. The approximate 

entropy parameters extracted from Fourier transforms of the EEG signals is employed 

for linear and nonlinear classifiers by Liang et al. [150]. Sharma et al [151] have used 

entropy for classification of focal EEG signals and observed that epilepsy resulted in 

reduction of sample entropy and approximate entropy values. 

Authors in [152] using fractal dimension and artificial neural networks carried out two-

way classification. In [153], linear classifier was employed to distinguish normal and 

seizure activities using linear statistical measures obtained from the EEG signals. Hurst 

exponent is another measure of non linearity that is a measure of self similarity, and 

predictability in a time-series [154].  

First and second order statistics are insufficient to evaluate the nonlinear dynamic 

property of the bio-signals. So high order spectral features are widely used in many 

applications for EEG analysis [155]. It is researched that third order cumulant can be 
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used for EEG signals that highlights the nonlinear behavior.  Chua et al. [156]  showed  

that HOS techniques is useful in cases where the signals are corrupted with Gaussian 

noise and Acharya et al.[157] used these parameters for the automated classification and 

detection of epilepsy. A nonlinear method which is simple, adaptive can provide 

variability in the given time series is Empirical Mode Decomposition (EMD). Martis et 

al. [158] used EMD techniques to classify normal, interictal and ictal EEG time series. 

In [159] it is shown that EMD is well suited for analyzing nonstationary and nonlinear 

signals such as an EEG.  Authors [160] reformed their method by proposing a method is 

based on the empirical mode decomposition and the second-order difference plot 

(SODP). Same group [l61] have proposed the empirical mode decomposition (EMD) 

and phase space reconstruction based on the phase space representation (PSR) for 

classification of epileptic seizure and seizure-free EEG signals. The results of these 

studies indicate that nonlinear techniques are better applicable for successful EEG 

analysis and classification of biomedical signals. 

From this review article that some methods used small sample data points to represent a 

large number of data points of EEG recordings. In most of the research work, the 

reported methods did not select the attributes using a suitable technique and did not 

observe statistical significance of the attributes, although the parameters significantly 

affect the classification performance. From the literature, some techniques took more 

time for computation work, some of them were computationally complex and some of 

them had a limited success rate.   
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CHAPTER 3 

CHARACTERIZATION OF EEG SIGNALS BY VARIOUS           
ATTRIBUTES  R 

 

3.1. INTRODUCTION 

The brain signals are generated in all mental states, normal as well as abnormal. EEG 

has capability to reflect all the activity of the brain, so it has been found to be a very 

powerful tool in the field of neurology and clinical neurophysiology [38]. Despite the 

fact that EEG is an important clinical tool for diagnosing, monitoring and managing 

neurological disorders, distinct difficulties associated with EEG analysis and 

interpretation hindered its wide-spread acceptance. Hence, it is imperative to analyze 

the EEG signals using a consistent and appropriate processing method in order to obtain 

correct diagnoses for the treatment of epilepsy. 

While EEG records cerebral activity, it also records electrical activities arising from 

sites other than the brain. Since EEG signals are very weak (ranging from 1 to 100µV), 

they can easily be contaminated by other sources. The signals obtained from the scalp 

are highly contaminated with various unwanted signals, known as artifacts, produced 

by events extraneous to the biological event of interest[43]. The non-physiological 

artifacts are mainly due to power supply (220 volts), which exceeds the main signal by a 

factor of 2 × 106 or 126 dB. Interference from the mains power supply is unavoidable in 

EEG recordings, even if captured within specially equipped shielded rooms. Any source 

in the body which has an electrical dipole or generates an electrical field is capable of 

producing physiologic artifacts. These include heart, eyes, muscle, and tongue. 

Sweating can also alter the impedance at the electrodescalp interface and produce an 

artifact. Artifacts, compromise investigation by masking effects of interest by 

masquerading as a neurogenic effect The presence of artifacts introduce spikes which 

can be confused with neurological rhythms, making the EEG signals analysis biased 

and difficult leading to wrong conclusions[58].  
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Recognition and elimination of the artifacts in real – time recordings is a complex task, 

but essential to the development of practical systems. The spurious  60 Hz power supply 

signals are typically removed by a band-stop filter, which attenuates frequencies in this  

specific range to very low levels. EEG amplifiers are equipped with notch filters that 

suppress signals in a narrow band around the mains frequency.  If there is main power 

supply interference still visible in the signal after activating the notch filter; it may be 

due to high electrode impedance. The analysis artifacts can be controlled with advanced 

signal processing techniques, for example, round-off errors due to the quantization of 

signal samples can be made non-effective by setting the large number of discrete 

amplitude levels in the quantizer [162]. The artifacts compromise sensitivity of main 

signal as they are confounded with statistical contrasts. The removal of the artifact 

becomes essential as the preprocessing step for any type of EEG analysis.  

3.2. PREPROCESSING OF THE SIGNAL 

Preprocessing of the acquired signals is primarily a two step formulation:  

i) Artifact Removal: Artifacts are  the unwanted signals components accompanying 

the main brain signals that may bias the analysis of the EEG and may lead to wrong 

conclusions. The detection of artifacts can be made on line (during the recording 

session) or offline (after the recording session has terminated). Different approaches 

for artifact processing are: avoiding the occurrence of artifacts, detectin of artifacts 

and rejection of artifacts after identification [53].  

ii) Normalization : In order to avoid the bias caused by unbalanced feature values, all 

the extracted parameters are to be normalized in the range of [0, 1] by using min–

max normalization procedure [163]. 

value value
norm

value value

Feature –  MinFeature
Max    Min


  

 where Feature norm is the normalized value of the feature, Featurevalue , Maxvalue, and 

Min value represents actual value, maximum and  minimum value of the parameter under 

consideration. 
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3.3. ATTRIBUTES REPRESENTING EEG SIGNALS 

The formulative step in EEG signal analysis and processing is to figure out relevant 

information or “patterns” those should be extracted from the signal. Such information  

permit the abstraction of hidden information in the signal. Features are represented in 

terms of quantitative numerical value calculated from EEG signals that represent the 

brain state. Feature extraction involves finding a set of information  that include hidden 

information embedded in the signals and take into account the dimensionality, noise, 

time information, non-stationarity, set size and so on of the acquired signals. Feature 

extraction maps the original feature space to a new feature space with lower 

dimensions. These extracted features is a novel way of expressing the data, and can be 

continuous, binary, and categorical and may represent attributes or direct measurements 

of the signal. There are various algorithms in literature that are used for the 

identification of features that represent data[86-88]. However, most of the time trial and 

error method is used to determine which algorithms identify the effective features for 

the specified problem. Many features have proved to be unique enough to use in all 

brain related medical applications.  

3.3.1. Extracted and Selected Features 

As revealed in the literature, numerous features are from time domain, frequency 

domain, and nonlinear dynamics. In present research work, a set of features were 

selected which were potentially useful for seizure prediction, and had computational 

requirements reasonable for real-time implementation. The features are extracted and 

selected based on expertise, observations, and our understanding of EEG signal 

characteristics framing Signal Feature Vector (SFV). Extracted features comprises first 

order, second and higher order cumulants of the raw data. The Cumulate Computation 

is achieved using first four order moments given by,  

1 [ ( )]xm E x n  (3.1)  

2 ( ) [ ( ) ( )]xm i E x n x n i   (3.2)  
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where  1 2 3 4, , ,x x x xm m m m   are the first four order moments, E[.] is the expectation operator, 

i,j and k are the time lag parameters. The cumulates can be computed as non-linear 

combinations of moments as 

 
1 1
x xC m  (3.5)  

2 1 ( )x xC m i  (3.6)  

3 1 ( , )x xC m i j  (3.7)  

4 4 2 2 2 2 2( , , ) ( ) ( ) ( ) ( ) ( )x x x x x x xC m i j k m i m j k m k i m k m i j        (3.8)  

Where  x
nC  are the first four order cumulants [18]. 

 
The first and second order statistics such as mean, mode, median standard deviation 

have gained significant importance in the area of biomedical signal processing. For non 

linear signals, first two order statistics are not sufficient to represent the signal, so we 

have gone for higher order cumulates in this research work. Brief discription of the 

features are incorporated in this section. 

 Amplitude  Measure of  magnitude of a signal is  its amplitude; it is measured in terms 

of voltage (µvolts). The maxima and minima of the signals are given by the amplitude 

of the sampled signals, represented by eqn  

 max[ ]( ) nxMaxAmp n                            (3.8a) 

 min[x ]( ) nM in Amp n                      (3.8b) 
 
 

Mean  attempts to describe a set of data by identifying the central position within that 

set of data, it is a measure of central tendency given by eqn  

 1

1( ) ( )
N

i
n

Mean n x n
N 

 
                                                           (3.9) 

 

3 ( , ) [ ( ) ( ) ( )]xm i j E x n x n i x n j    (3.3)  

4 ( , , ) [ ( ) ( ) ( ) ( )]xm i j k E x n x n i x n j x n k     (3.4)   
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Median: It also proveides central tedency of the data, but it  is preferred over the mean 

(or mode) when the data is skewed (i.e., the frequency distribution of the data is 

skewed). It is given by eqn  

 
( )

2
h nMedian n l c
f
    
                                                               (3.10) 

Mode: It is the only measure of centre appropriate for nominal data expressed as  

 

1 0

1 0 22
f fMode L h

f f f
 

                                              (3.11) 

Standard deviation:  It is a statistical feature which indicates the distribution of the data 

with respective to the mean. The mathematical representation is as follows: 

 

2

1 1

1 1
( [ ] [ ])

1

N N

n n

TD x n X n
N N

S
 

 

  where 1≤ n ≤ 4096                                     (3.12) 

 

Signal-to-Noise Ratio (SNR): It is defined as the ratio of signal power to the noise 

power corrupting the signal. An alternative definition of SNR is as the reciprocal of the 

coefficient of variation, i.e., the ratio of mean to standard deviation of a signal or 

measurement.  

                       x = var (eeg); 

            SNR = 20*log10 (1/x)                                         (3.13) 

 

Entropy: It measures the signal complexity and and quantify regularity and order in  

the signal.  It is observed that low entropy value of EEG signals represents less number 

of dominating process and the EEG  signals with high entropy  represent large number 

of dominating processes. 

   
2( ) ( ) log ( )

n N

n
k n

E n x k x k




 
      where 1≤ n ≤ 4096,                                (3.14) 
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Coefficient of variation: The coefficient of variation (Cv) is a normalised measure of 

the variance of a series of data. It is calculated by dividing the standard deviation by the 

mean of the signal and it is defined by  

vc 


                                                         (3.15) 

Skewness is a measure of the asymmetry. If the probability distribution of a real-valued 

random variable around its mean is not symmetrical, the data is said to be skewed. The 

equation for skewness (SK) is given as 

3

3
( )xSK E 


 
  

                                                                                           (3.16) 

Where E is the expectancy, µ is the mean and σ is the standard deviation. 

Positive skewness indicates a distribution extending toward more positive values. 

Negative skewness indicates a distribution with an asymmetric tail extending toward 

more negative values. 

Kurtosis: Coefficients of EEG signal do not follow the normal distribution, and have a 

heavy tail characteristic is justified by the value of kurtosis parameters. Kurtosis (K) is 

the fourth-order central moment of a distribution and is defined by the following 

equation: 
4 2 2( ) ( ) 3 ( )K s E s E s                                                                             (3.17) 

Where s is the signal and E is the statistical expectation function of s. Kurtosis 

characterizes the relative peakedness of a distribution compared with the normal 

distribution.  Positive kurtosis indicates a relatively peaked distribution whereas 

negative kurtosis indicates a relatively flat distribution. 

Energy: It signifies the strength of the EEG signal.  High Energy implies a seizure 

activity. Let x(n) sequence be an input signal, then the instantaneous energy of the 

signal is given by x(n)2. The average energy (EG) of the signal is given by eqn : 
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2

1

1( ) ( )
N

i
n

EG n x n
N 

 
                                                                              (3.18) 

Nonlinear energy(NE)  The NE parameter  is an instantaneous feature, that provides 

one value for each value of original data. The nonlinear energy operator is useful for 

providing an indication as to the spectral content of the signal. For the input signal, in 

its discrete form, the nonlinear energy (NE) operator is represented by  
1

2

2

( ) ( ) ( 1) ( 1)
n

j j j j
i

NE x x i x i x i




   
                                                                     (3.19) 

The various features extracted from the signals are informative and apt to analyze the 

EEG signals. The energy signifies the strength of the signal, entropy quantifies how 

randomly the seizure signals are distributed as compared to non-seizure signals  

whereas variance indicates the distribution of the data with respect to mean [164]. 

Figure 3.1and 3.2 represents some of the features chosen for the study for  three 

different classes of signals. As seen in Figure 3.1(a) seizure state is more skewed as 

compared to the normal state. The kurtosis range levels for all the three classes are 

shown in Fig 3.1(b). The interictal state has the extreme values for kurtosis depicting 

involvement of large number of dominating process. It has been observed that the signal 

having high energy lies in the ictal range, whereas the low energy represents the normal 

signal as depicted in Figure 3.1(c).  

3.3.2. Features extracted from the dataset  

The whole dataset has 300 signals; 100 for each class with 4096 samples in every signal 

as discussed in chapter 3. Thirteen features are extracted from each signal to frame SFV 

for comprising precisely F1:Mean, F2:Median, F3:Mode, F4:Coefficient of variation, 

F5:Minima, F6: Skew, F7: Kurtosis, F8: SNR, F9: Energy, F10:Non linear energy(NE), 

F11:Maxima, F12:Entropy, F13: Standard deviation.  
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                                                                        (a) 

 

                                                                        (b)  

 

                                                                       (c) 

Figure 3.1. Exemplary Extracted features (a) Skew of the signals (b) Kurotosis of the signals (c) Energy 
of the signals of subjects in various stages (i) ictal state (ii) normal state and (iii) inter-ictal state. 
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(a)  

 
(b)  

Figure 3.2. Exemplary Extracted features (a) standard deviation of the signals 
(b) Maximum value of the signals of subjects in various stages. 

(S-ictal, Z-Normal, F- interictal) 
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The variations in the values of the features of EEG signals for normal condintion and 

seizure condintion are claearly visible in the Figure 3.2. The maximum value of 

amplitude is large during seizure activity which is self explanatory, represented in 

Figure 3.2(b). The signals during seizure activity show more dviation as comapred to 

normal and interictal condintions as shown in Figure 3.2(a). These features are 

demonstrative of the variations in the signals for three different condintions. 

Todate, a common set of features has not been found across individuals that gives 

adequate performance[122]. An exhaustive search should be conducted  to identify an 

optimal feature set to achieve optimal solution that yields prediction sufficient for 

clinical application; however, if a suboptimal solution can be obtained from a 

reasonable feature set, an exhaustive search may not be required.  As heterogeneity is a 

problem for  epileptic signals, we believe that it is likely that patient specific features 

will be found to be more useful for seizure prediction over a large subset of patients. 

 
Table 3.1: Mean value of  normalized SFV with variation of variance for normal, interictal and ictal 
signals 
 
Feature 
ID 

Mean±var 
(ictal) 

Mean±var 
(normal) 

Mean±var 
(inter-ictal) 

F1 0.50007±0.0475 0.46151±0.0348 0.5198±0.0392 
F3 0.13562±0.0138 0.48437±0.0255 0.0853±0.0087 
F5 0.57462±0.0939 0.54670±0.0332 0.8295±0.0212 
F6 0.39269±0.0392 0.58710±0.0408 0.4197±0.0247 
F7 0.18853±0.0232 0.30659±0.0300 0.1247±0.0475 
F9 0.58902±0.0767 0.31251±0.0483 0.0397±0.0131 
F11 0.36365±0.0594 0.47909±0.0271 0.1126±0.0195 
F12 0.76060±0.2669 0.94852±0.0784 0.8571±0.0418 
F13 0.40082±0.0184 0.27288±0.0242 0.1101±0.0188 
    

Note: F1 – Mean,  F3- Mode,  F5- Minima,  F6- Skew,  F7- Kurtosis,  F9 – Energy, F11- Maxima,  F12- Entropy F13- 
Standard deviation. 

Due to inter-variability present in EEG signals, individual features may differ in several 

orders of magnitude. In order to avoid biased results due to  inadequate scaled features, 

normalization is performed in the range of [0,1]. The comparable mean and variance of 

all the parameters for the three classes are tabulated in Table 3.1 for comparative 

outlook.  
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3.3.3. Characterization of EEG signals in terms of box plots 

Box-plots are employed in order to graphically present  number of statistical parameters 

of a distribution. Variation in samples of a statistical population are displayed with box 

plots without making any assumptions of the underlying statistical distribution. 

Consequently, they are preferred over mean and standard deviation parameters for 

population distributions that are asymmetric or irregularly shaped and for samples with 

extreme outliers [165]. Information about the centre and spread is preserved in these 

plots and moreover, quartiles are insensitive to outliers. Box plots of some of the 

selected features are depicted in Figure 3.3. The box plots of various features provide a 

visual aid which allows the variance, degree of dispersion (spread) and skewness in the 

data to be easily visualised. The box-plot is employed for our work because it facilitates 

immediate quantification of the Inter Quartile Range (IQR) ranges, median, etc. The 

box plots of the mean feature clearly indicate the overlapping values for three different 

classes of EEG signals.. 

 
Figure 3.3 (a). Box plot of mean function for three different classes, 

S: ictal, F-inter-ictal, Z-normal 
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Figure 3.3 (b) Box plot of entropy function for three different classes, 

S: ictal, F-inter-ictal, Z-normal 

           

 
Figure 3.3 (c) Box plot of standard deviation function for three different classes, 

S: ictal, F-inter-ictal, Z-normal 
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3.4. STATISTICAL ANALYSIS OF SFV 

 
For the statistiacl analysis,  estimates of variance are computed by ANOVA test. The 

purpose of analysis of variance is to test differences in means (for groups or variables) 

for statistical significance. This test is accomplished by analyzing the variance of the 

data. Total variance due to true random error (i.e., within-group SS) is partitioned into 

the components and the components that are due to differences between means. These 

latter variance components are then tested for statistical significance, keeping in mind 

the hypothesis. If results are significant, the null hypothesis of no differences between 

 
        Figure 3.3 (d) Box plot of skew function for three different classes, 

S: ictal, F-inter-ictal, Z-normal 
 .        

 
It is found that skew vlaue associated with the ictal EEG overlaps with the inter-

ictal state and normal state of EEG signals. It is also observed that standard 

deviation of ictal state is large as compared to normal and inter-ictal state. 

Similar observations are recorded for all the feature set of the different 

classes[166]. 
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means is rejected, and the alternative hypothesis (the means in the population) are 

different from each other) is accepted. The effectiveness or “fitness” of each individual 

feature when classes are Gaussian and uncorrelated is measured using Fisher’s 

discriminant ratio (FDR) that determines feature effectiveness[167]. Table 3.2 

illustrates the output of the ANOVA analysis depicting F value with parameter p 

(significance level) to provide statistically significant difference between attributes. 

 
Table 3.2: Summary of ANOVA analysis for linear features in terms of  F value for every extracted 
attribute 

      Feature    F value p value 
 

F1 41.986 0.000 

F2 22.96 0.011 

F3 58.09 0.000 

F4 10.55 0.035 

F5 49.29 0.000 

F6 31.47 0.000 

F7 35.28 0.000 

F8 45.43 0.063 

F9 49.96 0.000 

F10 12.81 0.027 

F11 99.33 0.000 

F12 41.575 0.000 

F13 51.145 0.000 

Note: F value = Fisher's Discrimination ratio, p= significant value<0.05 F1 -Mean,  F2- Median, F3- 
Mode, F4- Cov, F5- Minima,  F6- Skew,  F7- Kurtosis,  F8- SNR, F9 – Energy, F10-Nle, F11- Maxima,  
F12- Entropy F13- Standard deviation.  

On  inspecting Table 3.2, some features in particular, standard deviation, mean, minima 

of the signal  have relatively higher value of F. Consequently, they are more significant 

compared to remaining features. The features having significance value > 0.05                

(median, SNR, non linear energy and cov) have less significance for our problem at 

hand. To verify whether the extracted features are distinct and uncorrelated to each 

other or not, prediction importance of each feature, in terms of rank and importance 
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parameter is extracted. The inter correlation between these extracted features used in the 

prediction model was calculated based on variance inflation factor (VIF) indicating 

multi-collinear analysis.  

The VIF value for each feature was calculated using 

 2

1VIF
1 R j




,     2Tolerance 1- R j                                                             (3.21)  

where Rj
2 is the multiple correlation coefficient of one feature’s effect regressed onto 

the remaining features. Tolerance value obtained less than 1 for these features indicate 

that the variable under consideration is almost a perfect linear combination of the 

independent variables[168]. Figure 3.4 depicts the prediction importance of each 

attribute arranged in the increasing order of importance for this particular problem at 

hand. 

 

 
Figure 3.4. Prediction importance of extracted features by calculating VIF for the feature set. 

The features are statistical analyzed further by Kruskal Wallis Test, a non-

parametric method for testing whether samples are independent, or not related. Table 3 

provides chi-square value and significance (p < 0.05) of each feature. 
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3.5. k MEANS CLUSTERING  

 
The goal of the k-means algorithm is to find the optimum "partition" for dividing a 

number of objects into k clusters. This procedure will move objects around from cluster 

to cluster with the goal of minimizing the within-cluster variance and maximizing the 

between-cluster variance. The descriptive statistics are formulated separately for each 

cluster using every feature and a few of them are displayed in Figure 3.5. In this figure  

probability density function is plotted for particular feautre for two classes of EEG. The 

variation between two classes with that particular feature is clearly visible in all the 

figures. 

Table 3.3: Value of Chi- square from Kruskal Wallis Test with significance value < 0.05 for all 
features 

 

Feature ID Chi-square Significance 
F1 36.32 0.001 

F2 79.306 0.000 

F3 252.220 0.000 

F4 132.922 0.000 

F5 97.964 0.000 

F6 44.382 0.001 

F7 134.661 0.000 

F8 94.818 0.000 

F9 54.907 0.000 

F10 83.632 0.000 

F11 16.340 0.012 

F12 25.149 0.001 

F13 25.202 0.000 

Note:  F1 -Mean,  F2- Median, F3- Mode, F4- Cov, F5- Minima,  F6- Skew,  F7- Kurtosis,  F8- SNR, F9 
– Energy, F10-Nle, F11- Maxima,  F12- Entropy F13- Standard deviation. 
 
 
From all the above figures it can be inferred that selected features are capable of 

discriminating samples that belong to different classes to a certain extent. as there is  
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large overlap between the PDFs the metric which does not facilitate good class 

separation.  

Graph of distributions for variable: ent_s
Number of clusters: 2

Cluster 1 ~ normal(x,0.806089,0.516635)
Cluster 2 ~ normal(x,0.848518,0.279982)
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Figure 3.5 (a) The distribution of ictal and normal classes around feature F12(Entropy) 

 
 

Graph of distributions for variable: kur_s
Number of clusters: 2

Cluster 1 ~ normal(x,0.188531,0.152119)
Cluster 2 ~ normal(x,0.306588,0.173235)
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Figure 3.5 (b) The distribution of ictal nad normal classes around feature F7(Kurtosis) 

 

If a large differences exist between the means of the two curve, there is an  indication 

that the feature might be a suitable candidate for separation between normal and 

abnormal subjects. The features whose predictor importance parameter and F value was 

calculated in the previous sections represent the capability of distinguishable clustering, 

confirming the relevance of features for assessing the capability of distinguishing 

different classes. 

3.6. CONCLUSION 

The objective of this study was to identify appropriate specific features for predicting 

seizures.  An exhaustive preliminary evaluation was conducted, based on quantitative 

EEG analysis, to determine if a generic search process is capable of from a large set of 

candidate features. The proposed methodology focuses on what features delineates the 

Graph of distributions for variable: sd_s
Number of clusters: 2

Cluster 1 ~ normal(x,0.400820,0.285350)
Cluster 2 ~ normal(x,0.272880,0.155461)
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Figure 3.5 (c) The distribution of classes around feature F13(Standard deviation) 
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EEG signals of a normal patient from an epileptic patient. The list of features chosen for 

this work may not be considered to be exhaustive, nonetheless it was chosen to be 

sufficient for proof of computationally efficient classification. These chosen feature set 

has potential for on-line implementation of the predictor system in low power, 

implantable environments. In this objective, an efficient statistical analysis is presented 

to extract useful feature set for classification of EEG signals. The novelty of the 

proposed methodology lies in the exhaustive statistical analysis of extracted features to 

come up with prominent feature set for classification purposes. This type of study is 

instrumental in finding feature extraction algorithm and type of features that can best 

represent the data. 
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CHAPTER 4 

DESIGN AND DEVELOPMENT OF PREDICTION MODEL 
TO DETECT SEIZURE ACTIVITY  

  

4.1. INTRODUCTION 

Increasing power of computing and enhanced processing capabilities has made analysis 

of EEG signals efficient and effective. It has become a fundamental tool for diagnosing 

neural problems, and useful for both physiological research and medical applications. 

The diagnosis and prediction of epileptic seizures is a daunting challenge, even for the 

experienced neurologist, due to overlap of the appearances of the normal and abnormal 

signals. Therefore an automated Computer Aided Diagnostic (CAD) system for 

classification of the epileptic stages from EEG signals is highly desirable. In light of 

this fact, present research aims at developing an automated predictive model to 

diagnose the state of an epileptic patient using EEG signals. A CAD system design is 

proposed in the current chapter that can detect abnormal disorder and malfunctioning of 

the brain during the seizure and before the onset of seizure. The potential of two 

different algorithms of neural network techniques have also been investigated for design 

of CAD system.  This work also includes evaluation of the performance of different 

classifiers for two-class seizure classification. A novel approach of hierarchical CAD 

system is proposed for seizure classification. 

Two primary considerations for developing any prediction model for detection and 

classification are the type and nature of features to be extracted from the EEG input 

signal and the choice of analysis techniques to be applied on these extracted features 

[169]. The previous research work has dealt with selection of features, different 

domains of feature selection, artifact handling and concluded with optimum set of 

features constituting SFV, which can be used further for classification. Extracted 

features constituting SFV are utilized as the input data for learning algorithm and same 
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set is used in the prediction phase. The chosen set of features is simple but robust for the 

morphology of EEG data needed for the classification problem. 

4.2.  PROPOSED CAD SYSTEM DESIGN 

The block diagram of the proposed CAD system design for two-class and three-class 

seizure classification using statistical features is shown in Figure 4.1. Statistical features 

depicting morphology of EEG signals are utilized to develop an automated soft 

computing diagnostic system. The quantitative and statistical analysis of the selected 

features is elaborated in Chapter 3 and the approach is implemented on the same data 

set. All 300 signals are represented in the form of a vector comprising of thirteen odd 

features, framing SFVj
i, where i = 1 to 100 and j = 1 to 3. 

4.2.1. Experimental Workflow  

Rigorous experimentation has been carried out for designing and evaluating the 

performance of the proposed CAD system design. The flow of the proposed design is 

implemented through number of experiments (detailed in Table 4.1). 
 

Table 4.1: Description of experiments carried out for design of CAD system for seizure classification. 

Experiment 1 Exhaustive experiments are carried out to develop the architecture of 
prediction model by varying the number of neurons in the hidden layer 
and signal feature vector length for deciding the best network topology 
and ascertain the CAD system with highest overall classification 
accuracy. 

Experiment 2 For evaluating the performance of the proposed CAD system design, 
rigorous experimentation has been carried out for comparison with 
other available classifier for the same architecture. 

Experiment 3            This experiment deals with two class classification problems with 
proposed topology and with available binary classifiers to recognize an 
optimal soft computing paradigm for seizure classification. 

 Experiment 4 In this work, the focus is on modeling the seizure classification by a 
hierarchical framework, a variation of the classifier system; HCAD 
system is proposed. 
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Figure 4.1. Proposed CAD system design using statistical features for two-class and three-class seizure 
classification 
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4.2.2. Experiment 1. To develop the architecture of prediction model to ascertain the CAD 

system with highest overall classification accuracy. 

4.2.2.1 Design of System Architecture 

To analyze the EEG signals with enhanced accuracy and precision, various 

computational techniques such as neural networks, support vector machines, Bayes 

classifiers could be useful. However, neural networks have been successfully employed 

to process EEG signals because of its quality of generalization and great predictive 

power [26]. There is always a possibility of the network's free parameters adapting to 

special features of the training data, as there are large number of training samples and 

relatively larger number of synaptic weights.  

In this approach, feed-forward multi-layered perceptron Neural Network (MLPNN) 

algorithm is employed to obtain a predictive model as this classifier has good 

generalization performance even without feature space dimensionality reduction and is 

less prone to over fitting [170]. To solve this problem, multi-layer network of 

Perceptron is used as it offers explanation in relation to weights and activation  

functions and obeys  convergent  theory  to gives one solution to execute a problem. 

The performance of ANN lies in its empirically chosen structure of the network i.e., 

number of layers, number of neurons in hidden layer, their interconnections and the 

neurons in the output layer. Multi-layer Perception network can be used with any 

number of layers, but Kolmogrov Theorem indicates that a three layered perception 

network is able to separate any kind of space and it can be used for constructing neural 

networks 

The number of neurons in the input layer symbolizes the number of features presented 

to the network, followed by hidden layer with neurons which transforms the input into 

nonlinear combinations and passes the signals to the output layer. For the proposed 

design, the selected features SFV represent thirteen neurons in the input layer. As this is 

a three classification problem, three neurons are taken in the output layer to classify 

ictal (S), interictal (F) and normal (Z) categories. Number of neurons in the hidden layer 

of the neural network has significant effect on the performance of network [24]. More 
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neurons in the hidden layer require more computation; less number of neurons gives 

high training error and high generalization error due to under fitting. Many techniques 

have been used to optimize the hidden nodes. These techniques can be divided in to two 

categories. In the first category, network is generated with the small number of hidden 

nodes and number of nodes is increased until the maximum accuracy is reached. This 

method is called the constructive method. While second group of method includes 

generation of network with large number of hidden nodes initially and it is gradually 

decreases until the maximum accuracy is reached this is called the destructive method. 

Present work employs constructive method. Starting with five neurons in the hidden 

layer, number of neurons was incremented and decremented till maximum classification 

accuracy of the network was achieved. Each of the architecture with varying hidden 

neurons is trained, tested and validated; and the performance accuracies of all the tested 

models are depicted in Figure 4.2. 

 
Figure 4.2. Performance accuracies of proposed model in terms of training, testing and validating 
accuracies; with varying  number of neurons in hidden layer. 

It was observed that the best classification accuracy was obtained with six neurons in 

hidden layer. It gives 100% testing and validation accuracy and 99.5% training 

accuracy. This network performs significantly better and requires a smaller number of 

iterations to train a neural network. As the number of nodes are increased the training 

efficiency decreases. In some case even if validating and testing efficiencies are high, as 
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in case with 9 or 13 hidden nodes, the training efficiency is low. Keeping a balance all 

the three efficiencies, number of hidden nodes is selected as 6. For further 

experimentation, six hidden nodes will be considered for the designs. 

Further, exhaustive experimentation was done for the selection of number of input 

features or Feature Length (FL). For feature selection techniques two selection methods 

i.e., Sequential Forward Search (SFS) and Sequential Backward Search (SBS) are 

employed. In two feature subset selection methods, best combination of predefined 

selected features is obtained by using some class seperability criterions like FDR, 

divergence etc discussed in Chapter 3.  In SFS approach, a single most discriminatory 

feature is selected from all the available features based on adopted class seperability 

criterion that is permanently selected. Further, its combination with all other remaining 

features is tested, and amongst them the best pair is chosen again in terms of adopted 

class seperability criterion. This process of selecting features continues until the desired 

number of features is reached. 

 

Figure 4.3. Performance analysis with reference to classification efficiency of NN with varying number 
of feature length. 

In this procedure, subsets of features were used to train the network and classify the 

signals beginning from feature length of two prime features. This process was continued 

till all the available extracted features were used. After 10-fold cross validation, the 

prediction model was evaluated for classification with the proposed architecture [171]. 
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For all the designed classifier models, the performance was evaluated in terms of 

training, testing and validating efficiencies. The classification accuracy with different 

FL is tabulated in Table 4.2 and summarized in the form of graph in Figure 4.3. 

 

It was observed that high classification ability for epileptic seizure detection was 

obtained from NN classifier by feature vector of length 13 in comparison with feature 

size of lengths 2, 3, 4 and so on as clearly depicted in Table 4.2.  Although, testing and 

validating efficiencies dramatically increases to 100% after the feature length of nine 

but the classification accuracy does not show much improvement. The variation in the 

classification accuracy with thirteen features and with 10, 11 and 12 features is very 

wide. The prime facia of the problem in hand is high classification accuracy and good 

training efficiency, so the model depicting higher value of these two parameters is to be 

preferred as compared to the others. Thus, 13 features computed from EEG signal are 

considered for further analysis with predefined nodes in the hidden layer and required 

nodes in the output layer of NN. Thus, the final architecture of neural network 

Table 4.2: Classification summary for the CAD system with varying number of features. 
 
Features                                              FV  Tr. Effi.     Tst. Effi.      Vald. Effi.    CA  

Mean-std    200  61.43            71.11  68.88  61.42  

Mean-std-eng  300  84.28                82.22   86.66  76.65  
Me-std-eng-ent  400 88.15             88.64        88.64  88.29  
Me-std-eng-ent-Sk  500 88.32            86.66           88.95           88.94  
Me-std-eng-ent-Sk-ku       600 88.63             86.36  90.91  88.68  
Me-std-eng-ent-Sk-ku-sn  700  93.36           88.64  86.36  91.63  
Me-std-eng-ent-Sk-ku-sn-cov  800  93.84            95.45      95.45  94.31  
Me-std-eng-ent-Sk-ku-sn-cov-
med  

900    95.32          99.55  100  96.72  

Me-std-eng-ent-Sk-ku-sn-cov-
med-mod    

1000                 96.21             100  100  97.32  

Me-std-eng-ent-Sk-ku-sn-cov            
med-mod-max  

1100  98.58              100  100  98.99  

Me-std-eng-ent-Sk-ku-sn-cov         
med-mod –max-min  

1200 98.88              100  100  99.01  

All  1300 99.80              100         100  99.3  

Note: Tr. Effi: Training Efficiency, Tst. Effi: Testing Efficiency, Vald. Effi: Validation Efficiency,  
FV: Feature vector, CA: Classification Accuracy, All efficiencies are in %. 
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comprises thirteen input nodes, six hidden nodes and three output nodes as depicted in 

Figure 4.4 with fully connected architecture. 

 

 
Figure 4.4. Architecture of the proposed neural network for design of CAD system for seizure 
classification with thirteen nodes in the input layer, six neurons in the hidden layer and three neurons in 
the output layer. 

The overall classification system consist of three layers of artificial NN with tan-

hyperbolic and softmax function as the activation function for hidden and output layers 

respectively with Cross Entropy as error function and BFGS (Broyden-Fletcher-

Goldfarb-Shanno) as the technique used for training neural network[170]. To reduce the 

bias of training and testing data set, bootstrapping technique and 10-fold cross-

validation technique are preferred. These techniques provide information about how 

well the classification model will operate on new data stream. For this work, 70 % data 

set is used for training, 15% data set for testing and 15% for validation using 

bootstrapping method with 1000 seed points is used for effective training of the network 

(primarily to avoid over fitting), to evaluate the average predictive ability of the method 

and for enhancing prediction accuracy.  
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4.2.2.2 Results and discussion 

The most important aspect of a prediction method is its ability to make correct 

predictions. Performance metrics for classification and validity of any classifier are: 

sensitivity, specificity, classification accuracy and ROC curves (discussed in Chapter 

1). The confusion matrix and classification summary are useful tools for evaluating the 

effectiveness of a classification network. 

 After all the exhaustive experiments undertaken, the prediction model was evaluated 

for classification with the proposed architecture. The confusion matrix and 

classification summary for the model are depicted in Table 4.3 and Table 4.4. For 

medical applications, Individual Classification Accuracy (ICA) should also be high as 

Overall Classification (OCA) and Individual Misclassification Accuracy (IMA) should 

be as low as possible. For clinical applications, diagnosis system should not only give 

high sensitivity and high specificity but also should give almost zero false positive and 

false negative events [138]. 
  

Table 4.3: Classification summary for three class classification using proposed architecture 

  Interictal Ictal  Normal  OCA 

Total 99 100 100 299 

Correct 98 99 100 297 

Incorrect 1 1 0 2 

ICA(%)  98.98 99 100 99.33(%) 

IMA (%) 1.01 1 0 0.67(%) 

 Note:  IMA- Individual Misclassification Accuracy, ICA-Individual Classification Accuracy. 

 
 
Strategically, we have designed a fully automated neural network model, capable of 

classifying the seizure activity into ictal, interictal and normal state with classification 

accuracy as high as 99.3% with misclassification error of 0.67%. The ICA for ictal 

condition is 99% and IMA is 1%, ICA for normal condition is 100% and IMA is 0% 

and lastly ICA for interictal is 98.9% with IMA as 1.01%. 
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The correct classification accuracy is 99.3% and misclassification accuracy is 0.67%. 

For the different set of parameters and optimum number of neurons in hidden layer, 

ANN model revealed a superior model for validating the classification. This network 

performs significantly better and requires a smaller number of iterations to train a neural 

network. The promising performances observed are demonstrative of the efficiency and 

efficacy of systems developed for classification and prediction of normal, ictal and 

interictal conditions of epileptic patients. 

4.2.3. Experiment 2   Comparison of Machine Learning Methods for Prediction of 

Epilepsy  

4.2.3.1 Methodology 

In this approach, potential of two different algorithms (back propagation and radial 

basis function) of neural network technique have been investigated for classification of 

EEG signals. Classification is based on quantitative parameters obtained from 

neurophysiologic signals used to train the networks and the performance of the 

networks is analyzed to confirm the efficacy of the network. To classify the subjects for 

state of epilepsy using EEG signals and for design of an effective model workflow as 

shown in Figure 4.5 was maintained.  

 

 

 

 

Table 4.4: Confusion Matrix for the selected prediction model for three class classification using 
designed network architecture. 

 Inter-ictal Ictal Normal OCA Sen(Ictal) 

Inter-ictal 98 0 0  

99.33% 

 

99% Ictal 0 99 0 

Normal 1 1 100 

Note: OCA – Overall Classification Accuracy, Sen- Sensitivity 
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Figure 4.5. Work Flow for comparison of two machine learning methods for three class classification 
problem 

The comparative analysis is based on variation in network topology and in feature 

vector used for training the networks. The method of selecting feature length is adapted 

systematically by enumerating all combinations of feature vectors. For defining the 

topology, the number of neurons in the input layer was taken as thirteen corresponding 

to FL and number of neurons in the output layer is three to classify three different 

classes. The number of hidden nodes was varied from 5 to 25 to find out the 

architecture giving the better performance with high accuracy. To validate predictive 

model with a good generalization performance, dataset is divided randomly into 70% 

for training the network, 15% for validation and 15% for testing to assess the predictive 

performance of the model. For each sequence in the training and testing sets, around 20 

networks were trained and best five networks were averaged to get the performance 

parameters. 

4.2.3.2 Results and Discussions 

Performance analysis was evaluated for both the networks for different architecture by 

varying the number of nodes in hidden layer. Varying nodes from five to twenty five in 

hidden layer, different architectures were trained and their performance and results are 

as shown in Figure 4.6. Wide variation during training, testing and validating accuracy 

was observed with two different types of networks with different topology. It is 

interesting to note that as number of nodes increases, efficiency increases in case of 

RBF from 50% to around 95% whereas the efficiency does not vary much in case of 
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MLPNN with increasing number of nodes. Next, the discrimination ability of different 

features sets are investigated. By varying the FL, efficiency and sensitivity of the 

methods for classification is determined. Figure 4.7 depicts the comparison of the two 

methods in terms of sensitivity by considering different length of FL with different 

number of hidden nodes. It is observed that combined FL consisting of all the features 

has more efficiency and discrimination ability. Maxima and minima sensitivities 

obtained are 99.3% and 61.4% for MLPNN and 96.9% and 59.9% respectively for RBF 

as depicted in Figure 4.6. All the results obtained, used the discrimination ability of all 

the selected features from all the 300 signals. 

 

Figure 4.6.Comparative performance analysis for two machine learning methods for three class 
classification of seizure activity 

As observed from the previous results, MLPNN has an edge over RBF for this problem 

of classification; hence another comparative performance analysis was done. The 

models were formulated and their efficiencies were calculated by varying number of 

features but with the same number of hidden nodes. The various comparisons for 

varying FL are reported in Figure 4.7 in terms of sensitivity of prediction. 
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Figure 4.7.Performance Analysis of MLPNN and RBF in terms of sensitivity with same network 
topology and varying feature index. 
 

Figure 4.8 depicts selected results of subsets of feature vector sets used for classification 

Figure 4.8 (a) depicts the comparison with two features and same number of hidden 

nodes for both the models; similarly Figures 4.8 (b-d) depicts the comparative figures 

for different FL. It can be visualized from the graph that training accuracy is always 

better with MLPNN as compared to RBF, but once training is done; there is small 

variation in testing and validation efficiency accuracy. 

 

Figure 4.8. Classification Efficiency Analysis of MLPNN and RBF  (a) Two features with same 
number of hidden nodes  (FL:2)  (b) Four features (FL:4) 

 



                                                                                     Development of Prediction Model 
 

MEENAKSHI SOOD, JUIT, 2015  76 
 

 

 

 

Figure 4.8. Classification Efficiency Analysis of MLPNN and RBF  (c) Six features with same 
number of hidden nodes  (FL:6)  (d) Ten features (FL:10) 

A comparative analysis is done for both the models for seizure classification CAD 

system. Figure 4.9 represents the training, testing and classification efficiency for the 

best two models.  For these networks the network architecture revealed that number of 

hidden nodes is different for both the methods. 

 

 

Figure 4.9.  Classification Efficiency (in %) for MLPNN and RBF for the final network topology. 



                                                                                     Development of Prediction Model 
 

MEENAKSHI SOOD, JUIT, 2015  77 
 

In the present work, an elaborative comparison has been performed between two 

machine learning methods for the classification of ictal, inter-ictal and normal state of 

epileptic patients. Even as prototype, both the ANNs have shown practical performance 

as demonstrative of the efficiency of the machine learning methods.  

We have demonstrated the feasibility of choosing number of features for classification 

and concluded that MLPNN revealed a superior model in terms of higher efficiency and 

number of hidden nodes.  

MLPNN could be a very good candidate to achieve the efficiency of 99.3% as 

compared to 96.9% achieved by RBF with less number of hidden nodes leading to less 

complexity of the architecture. Results from this study indicate that a classification 

system based on ANN help in automation of analysis of neurophysiologic signals and 

the number and type of parameters used as feature set decide the type of network to be 

used for the better efficiency of the system. RBF gave comparative accuracies in all the 

experiments. The evaluation parameters for RBF giving maximum accuracy of 

classification is tabulated in Table 4.5 and confusion matrix for the finalized model is 

Table 4.5: Classification Summary for prediction model with RBFNN providing  highest 

accuracy with topology of 13-30-3 

 
Normal(Z) Intict(F) Ict(S) Sen Z Sen F Sen S OCA 

Normal 97 3 0 97 

93.9 

100 

 

INTICT 4 93 2 96.9 

ICT 0 0 100  

Note:  Sensitivity, OCA  values in %. 

Table 4.6: Confusion Matrix for RBF network with proposed topology 

 Normal Intict Ict 
Total 100 99 100 

Correct 97 93 100 
Incorrect 3 6 0 
ICA (%) 97 93.9 100 
IMA(%) 3 6 9 
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illustrated in Table 4.6. The highest classification accuracy of 96.8% was obtained for 

30 hidden nodes with larger number of hidden neurons.  Performance of classification 

techniques is measured in terms of Classification Accuracy and misclassification. The 

individual classification accuracy is 97%, 93.9% and 100% for normal and interictal 

and ictal classes with 3%, 6% and 9% misclassification rate. The sensitivity obtained 

for inter-ictal condition is 93.9% for ictal 100% and for normal 97%. The overall 

classification obtained is 96.9% for the three class classification problem. 

4.2.4. Experiment 3 This experiment deals with two class classification problems with 

proposed topology and available binary classifiers for seizure classification. 

4.2.4.1 Methodology  

Advanced methods of signal and data analysis as well as increasing powers of 

computing, provide improved computing tools to record and analyze the EEG signals. 

The new techniques present a detailed insight to study brain mechanisms; 

computationally strong signal processing techniques have enhanced the accuracy and 

precision of analysis of signals. The present methodology studies a bi-class problem to 

show the generalizability of soft computing paradigm technique. The deployment of the 

techniques could be used to get deeper information of EEG associated to epilepsy 

events in an automatic way. In this work thirteen statistical features as extracted and 

selected from raw signals are chosen in order to investigate the adequacy for the 

discrimination of two classes of epileptic subject. The results obtained by various 

classifiers and their classification results are reported. 

Support Vector Machine (SVM) as classifier 

SVM primarily performs classification tasks by handling multiple continuous and 

categorical variables by constructing hyper planes in a multidimensional space to 

differentiate between separates cases of different class labels [31]. It first tries to map 

the input feature vector into high dimensional feature space, either linearly or by 

methods depending on kernel type chosen; such that error is minimized over the 

training dataset. An optimized division is sought so as two classes are separated by the 
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largest margin. It provides users to choose from a number of available modes and kernel 

functions. In our work we have used primarily Gaussian RBF and polynomial kernels 

functions because of their localized and finite responses across the entire range of the 

real x-axis. For our problem the cut-off value used for prediction is 0, i.e. a query vector 

is regarded as member of positive dataset if its score is greater than 0 and is regarded as 

member of negative dataset if its score is less than 0 [172]. For polynomial kernel with 

degree=3.000, gamma=0.077 number of support vectors were found to be 91 (84 

bounded). For SVM with radial basis function as kernel with gamma=0.077, number of 

support vectors was found to be 26. For the performance evaluation and validity of the 

classifier, three key parameters are considered: Sensitivity, Selectivity and Accuracy 

which are evaluated by examining the confusion matrix tabulated in Table 4.7. 

Evaluation of each confusion matrix is done by computing the efficiency parameters for 

SVM using every kernel. Considering the problem at hand, the best performance was 

obtained with SVM with RBF kernel with 98.0% classification accuracy for seizure 

classification. On analyzing the CM of SVM, the other two prominent results are the 

sensitivity as 97% and specificity as 99%. Only 2% of cases deviate from the actual 

classification. 

 Naive Bayes as classifier 

Naive Bayes models are easy to use and interpret and are effective classification tools 

that incorporate a variety of methods for modelling the conditional distributions of the 

inputs including normal, lognormal, gamma, and Poisson. It can be clearly interpreted 

Table 4.7 Classification performance with SFV using SVM classifier for two-class seizure 
classification 

Feature 
vector 

Classifier  CM Acc.     Sen.  Spec. Miss rate 

 

SVM 

 NOR ICT     

SFV NOR 97 3 98.0% 97.0% 99.0% 0.02 

 ICT 1 99     

Note: CM: Confusion Matrix, Acc. Accuracy for binary classification, Sen: Sensitivity, Spec:  
Specificity  expressed in percentage. 
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from Table 4.8 that 97.5% of the subjects are rightly classified into three classes with 

97% of sensitivity and 98% of specificity. Only 2.5% of subjects are misclassified and 

give ambiguous results. 

 Radial Basis Function neural network (RBFNN) as classifier 

In this study, for RBFNN, the Gaussian function and the least squares (LS) criterion are 

selected as the activation function and the objective function. The inputs to the network 

are passed to the middle layer kernels followed by output layer. The number of hidden 

neurons chosen is result of exhaustive training and testing. Seizures are correctly 

classified with 95.5 % accuracy. The rate of true positive is 96% with true negative rate 

as 95.0% as depicted in Table 4.9.   

Table 4.8: Classification performance with SFV using Naive Bayes classifier for two-class 
seizure classification 

Feature 
vector 

Classifier        CM Acc.    Sen.     Spec.        Miss rate 

 

Naive 
Bayes   

 NOR ICT     

SFV  NOR 98 2 97.5% 97.0% 98.0% 2.5% 

 ICT 3 97     

Note: SFV: Signal Feature Vcetor, CM: Confusion Matrix for classification. 

Table 4.9: Classification performance with SFV using RBF classifier for two-class seizure 
classification 

Feature 
vector 

Classifier         CM Acc.     Sen.    Spec.          Miss rate 

 

RBF   

 NOR ICT     

SFV  NOR 95 5  95.5%   96.0% 95.0%          4.5% 

 ICT 4 96     
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K nearest neighbors (KNN) as classifier 

KNN algorithm is a supervised non-parametric classification algorithm that does not 

require a priori process of training, as it is not necessary to set the value of the 

parameters. In this algorithm, comparison is carried out with an example set one by one. 

The pattern is selected in particular class based on the distance function as similarity 

measure including K nearest neighbors of that class. The optimum values for parameter 

‘K’ is determined empirically by repeated experimentation, in this case k being equal to 

three and the Euclidean metric is used to calculate the distance between neighboring 

classes 

The classification results obtained with the classifier are tabulated in Table 4.10. The 

CA obtained is 94.5% for the problem at hand with 96% sensitivity and 93% specificity 

and error rate came out to be 5%. kNN algorithm has great applicability and has been 

successfully used in lot of biomedical problems. 

Multi layer perceptron neural network (MLPNN) as classifier 

The neural network architecture employed in this study is feed-forward network with 

thirteen neurons in the input layer and two neurons in the output layer. The activation 

functions used are tan-hyperbolic and softmax for hidden and output layers, with 

Entropy as error function.  BFGS (Broyden-Fletcher-Goldfarb-Shanno) is used for 

training neural networks. These methods perform significantly better and require a  

Table 4.10: Classification performance with SFV using KNN  classifier for two-class seizure 
classification 

Feature 
vector 

Classifier         CM Acc. Sen. Sepc.          Miss rate 

 

KNN  

 NOR ICT     

SFV  NOR 96 4 94.5% 96.0% 93.0% 5% 

 ICT 7 93     
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smaller number of iterations to train a neural network given their fast convergence rate 

and more intelligent search criterion. A clear inference can be drawn from Table 4.11, 

MLPNN succeeded in classifying the epileptic subjects with the total classification 

accuracy of 98.5% with misclassification rate of 1.5%. The other two performance 

metrics are 98.0% and 99.0%. 

4.2.4.2  Discussions 

The classification results obtained for various algorithms as discussed in the previous 

sections are collectively depicted in Figure 4.10. It shows all variations achieved in 

performance metrics for different soft computing techniques for this research work.  

Analyzing the results comparatively it can be inferred that out of all the tested models 

MLPNN gave the best results in terms of CA, sensitivity, specificity and 

misclassification rate followed by SVM and Naive Bayes, and lower classification for 

the same architecture is given by KNN and RBF. The experimental results show that 

this classifier promises high classification accuracy, good sensitivity and specificity for 

two class classification. The proposed model can assist clinicians for diagnosing 

different epileptic stages in their earlier stage as it has the potential in designing EEG 

based diagnostic system for detection of electroencephalographic changes 

Table 4.11:  Classification performance with SFV using MLPNN classifier for two-class seizure 
classification  

Feature 
vector 

Classifier            CM Acc. Sen. Spec.          Miss rate 

 

MLPNN  

 NOR ICT     

SFV  NOR 98 2 98.5% 98.0% 99.0% 1.5% 

 ICT 1 99     
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Figure 4.10. Comparative performance analysis for the classification of normal and epileptic subject with 
various  soft computing paradigms. 

4.2.5. Experiment 4 Hierarchical computer aided diagnostic system for seizure 

classification 

4.2.5.1 Methodology 

In the present work, hierarchical computer aided diagnostic system (HCAD) for 

classification of normal, ictal and inter-ictal of EEG signals is proposed. In this 

objective, the focus is on modelling the seizure classification by a hierarchical 

framework, a variation of the classifier system. The proposed HCAD system for seizure 

classification comprises of feature extraction and selection module and hierarchical 

classification module. In continuation with the previous objective, the block diagram of 

the proposed CAD system is shown in Figure 4.11. The design of classification module 

is carried out using a hierarchical framework consisting of two stages. 
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The first stage yields prediction for normal and abnormal class and the second stage 

yields further classification of abnormal class into ictal or inter-ictal classes. The block 

diagram of two stage hierarchical classification module is shown in figure 4.11. 

 

 
(b) 

Figure 4.11.(b) Two stage hierarchical classification module for classification of Ictal, Inter-ictal and 
normal classes  

The proposed model is a two step formulation of classification. The optimally reduced 

SFV obtained after the feature selection module were passed to the classification 

module.  In first module the classification is to classify signals into normal and 

abnormal class. If the signal is predicted as belonging to normal class, no further 

processing is done, and if it is predicted to belong to abnormal class, it is passed to the 

second classifier for further classification of abnormal class into ictal or inter-ictal class. 

For the proposed HCAD system, three classifiers SVM, KNN and PNN are extensively 

used for the classification task as we have inferred from the previous objectives that 

SVM and NN are best suited for our problem in hand. The mathematical and theoretical 

 
Figure 4.11. (a) Proposed HCAD system for classification of seizure using EEG signals 
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details of the classifiers are covered in Chapter 1. The results obtained by these HCAD 

systems in term of accuracy for binary classification obtained at each stage and the 

overall classification accuracy (OCA) of HCAD system values are reported in the 

following section 

4.2.5.2 Results and Discussion 

HCAD system with kNN Classifier 

The unknown data is classified as a class that is most common among its nearest 

neighbours. The contribution of the nearest samples is more than the farthest samples. 

The optimum values for parameter ‘k’ are determined empirically by repeated 

experimentation for values of ‘k’ ε {1,2,...,9}, and the Euclidean metric is used to 

calculate the distance between neighboring classes. HCAD system with kNN classifier 

was capable of providing classification accuracy of 93.3% as depicted in Table 4.12. 

100 cases were taken as abnormal case for first stage of prediction model and 50 cases 

for normal condition. Second stage considers these 100 abnormal cases to be classified 

into ictal and interictal stages giving 94% classification accuracy. 

Table 4.12.Confusion matrix and classification accuracy using kNN classifier for HCAD system. 

Classifier              CM  Acc. Bin-Class(%) OCA(%) 

 
KNN 1  Normal Abnormal 

97.3% (146/150) 

93.3% 
(140/150) 

 Normal 46 4 
 Abnormal 0 100 

KNN 2  Ictal Interictal 

94.0% (94/100)  Ictal 46 4 
 Interictal 2 48 

Note: Acc.( Bin-Class): Accuracy for binary classification, OCA: Overall Classification Accuracy 

 

HCAD system with PNN Classifier 

The algorithm defines a probability density function for each class based on the 

training dataset and the optimized kernel width parameter. Spread parameter (Sp) 

determines the width of the radial basis kernel function that covers the space of the 
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PNN based HCAD designs yield the binary class classification accuracy values of 

97.3% for classification between normal and abnormal classes and 95% for 

classification of abnormal cases into ictal and inter-ictal cases respectively. The OCA 

values obtained for PNN based HCAD design is 95.3% that is comparable to OCA 

obtained with KNN based HCAD design. 

 HCAD system with Support Vector Machine (SVM) Classifier 

A crucial step for obtaining good generalization performance with SVM classifier is the 

correct choice of the regularization parameter C and kernel parameter γ. The 

regularization parameter C attempts to maximize the margin while keeping low value 

for training error. In the present work, extensive grid search is carried out in the 

parameter space for the values of C and γ using ten-fold cross-validation to obtain 

optimal values of C and γ for training the SVM model. The SVM classifier has been 

implemented using LibSVM library [173]. It can be observed from the Table 4.14, that 

input features. In the present work, the optimum values for spread parameter ‘Sp’ is 

determined empirically by repeated experimentation for values of ‘Sp’ε {1,2, . . 

,9,10}and the best accuracy results obtained with the proposed algorithm are 

tabulated in table 4.13. 

 

Table 4.13. Confusion matrix and classification accuracy using PNN classifier for HCAD system.  

Classifier                                          CM                                    Acc. Bin-Class(%)         OCA(%) 

PNN 1  Normal Abnormal   

 

95.3% 
(143/150) 

 Normal 48 2 97.3% (146/150) 

 Abnormal 2 98  

PNN 2  Ictal Interictal  

 Ictal 47 3 95%  (95/100) 

 Interictal 2 48  
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the SVM based HCAD system results in 98% classification accuracy for classifying 

normal and abnormal cases in the first stage and 97% classification accuracy for 

classification of abnormal cases into ictal and inter-ictal cases in the second stage. The 

overall classification accuracy for SVM based HCAD design is 96.6 % which is quiet 

high as compared to the previous results. Finally, MLPNN was used to design HCAD 

system, following the same algorithm. It can be observed from Table 4.15, OCA 

obtained with MLPNN is almost same as OCA obtained with SVM, but accuracy 

obtained for first stage is more for MLPNN, and for second stage value is more for 

SVM classifier.  

Table 4.14: Confusion matrix and classification accuracy using SVM classifier for HCAD system. 

Classifier                 CM      Acc. (%) OCA(%) 

SVM 1 

 Normal Abnormal   

Normal 48 2 
98%  (147/150) 

96.6% (145/150) 

Abnormal 1 99 

SVM 2 

 Ictal Interictal  

Ictal 48 2 
97%  (97/100) 

Interictal 1 49 

. 

Table 4.15: Confusion matrix and classification accuracy using MLPNN classifier for HCAD 
system.  

Classifier   CM  Acc. (%)  OCA(%)  

 
 Normal  Abnormal  

 
 

     
MLPNN1 

Normal  49 1 
98.6%(148/150) 

 

      
96.6%(145/150) 

 Abnormal  1 99 

 
 Ictal  Interictal  

 
   MLPNN 2 Ictal  49 1 

96%(96/100) 
 Interictal  3 47 

Note: CM: Confusion Matrix for classification, Acc.: Accuracy in percentage, OCA: Overall 
Classification Accuracy.  

 



                                                                                     Development of Prediction Model 
 

MEENAKSHI SOOD, JUIT, 2015  88 
 

From the exhaustive experimentation carried out in the present work, it is observed that 

the MLPNN based CAD system results in highest classification accuracy of 97% and 

SVM based CAD system gave 96.6% in comparison with 93.3% and 95.3% as obtained 

from KNN and PNN based HCAD systems. The promising results obtained from the 

present work indicate that the proposed MLPNN and SVM based HCAD system can be 

routinely used for seizure classification in clinical practice. It also provides a direction 

towards implementation of Hybrid Hierarchical CAD system. The deployment of the 

techniques could be used to get deeper information of EEG associated to epilepsy 

events in an automatic way. 

4.3.  CONCLUSION 

This objective aims at developing an automated robust and efficient predictive model to 

diagnose the state of an epileptic patient using EEG signals. Classification is based on 

quantitative parameters obtained from neurophysiologic signals which are used to train 

the networks and the performance of the networks is analyzed to confirm the efficacy of 

the network. The comparative analysis is based on variation in network topology and in 

feature vector used for training the networks. Strategically, we have designed a fully 

automated neural network model, capable of classifying the seizure activity into ictal, 

interictal and normal state with classification accuracy as high as 99.3% with 

misclassification error of 0.67%. The stress is also laid on comparison of two machine 

learning methods (MLM) for prediction of epilepsy with the same dataset. In the field of 

mathematical modelling, perceptron neural network and radial basis function neural 

networks have an edge for the classification purposes. In this research work, both the 

algorithms are tested and evaluated for two class and three class classification and 

comparative results are analyzed exhaustively. 

The accurate classification of the features within two classes is also an important factor 

to improve the performance of detector.  Thus, this objective also aims to develop a 

computer aided diagnostic system for binary classification of EEG signals. Various 

methodologies that could be implemented in hardware for monitoring an epileptic patient 

are checked. The selected classifier must be capable to set a nonlinear decision boundary 



                                                                                     Development of Prediction Model 
 

MEENAKSHI SOOD, JUIT, 2015  89 
 

between the seizure and non-seizure feature vectors Efficacy of techniques is evaluated 

on the basis of performance measures, sensitivity, specificity and accuracy. It has been 

observed that artificial neural network and support vector machine with radial basis 

function kernel are more successful as compared to other soft computing paradigms.  

Results from this research work strongly indicate towards classification system based 

on ANN for automation of analysis of neurophysiologic signals. The number and type 

of parameters used as feature set are deciding factor to design the topology of network 

to be used for the better efficiency of the system. The promising results obtained by the 

proposed SVM based HCAD system in the presence of a diversified dataset used in the 

present study indicate its usefulness in a clinical environment to assist neurologist for 

the diagnosis of epileptic seizure during routine clinical practice. CAD system designs 

with hierarchically placed classifiers improvise the performance by going stepwise from 

the general classification problem, normal versus abnormal EEG signal to the more 

particular classification problem which is the identification of exact abnormality. The 

promising performances observed are demonstrative of the efficiency and efficacy of 

systems developed for classification and prediction of normal, ictal and interictal 

conditions of epileptic patients.  
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         CHAPTER 5 
 

DESIGN OF ENSEMBLE CAD SYSTEM FOR 
CLASSIFICATION OF SEIZURE ACTIVITY 

 
 

5.1. INTRODUCTION 
 
EEG is a pathological phenomena that has chaotic properties and characterized as a 

nearly random signal [135] as the neurons are theoretically highly non linear. The non-

linear analysis method is effectively applied to electroencephalogram signals to study 

the dynamics of the complex underlying behavior. Analyzing EEG signals with the aid 

of nonlinear dynamics takes the advantage of requiring much lower quantity of data. 

These techniques are superior to traditional linear methods such as Fourier transforms 

and power spectral analysis [136]. Nonlinear measures like Sample Entropy (SampEn), 

Hurst Exponent (HE), Approximate Entropy (ApEn), Correlation Dimension (CD), 

Largest Lyapunov exponent (LLE), Complexity, Mobility  quantify the degree of 

complexity in a time series and help in understanding EEG dynamics and chaotic nature 

of brain signals [144]. These features can provide additional information about 

investigated signals and possibly point out characteristics that are not otherwise 

obvious, but may have clinical relevance. The CAD systems designed and discussed in 

the previous chapter focused on time domain and frequency domain features. The next 

objective of our research is to analyze the acquired EEG signals for non linearity by 

applying signal processing tools and use the non linear features for design of CAD 

system to classify epileptic seizures. The nonlinear properties of the time series are 

investigated by calculating Entropy, Hurst exponents and Hjorth parameters during 

epileptic seizures, and in the interval between the seizures. Ensemble of features 

including linear and non linear, time and frequency domain and higher order statistics is 

framed and used for training and testing classifiers. The approach utilized to achieve 

this objective is depicted in Figure 5.1 and detailed in next section. 
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5.2. PROPOSED METHODOLOGY  

The proposed approach as depicted in Figure.5.1 is potentially applied for the nonlinear 

analysis and design of CAD system utilizing ensemble of features. The objective of 

designing CAD systems using feature vectors SFV1 and SFV2 are achieved in 

objective2. Some features, in particular energy, entropy, skewness, are statistically more 

significant than the other features as signal to noise ratio, covariance etc. Therefore a 

reduced set of features comprising contributing features is framed as RSFV for 

classification purpose. Classification is performed with three classifiers MLPNN, SVM 

and kNN with RSFV as input vector. The EEG signals are chaotic and non linear in 

nature, so next step leads to extraction of non linear features as Hurts exponent, activity, 

mobility, entropy to describe the non linearity exhibited by EEG signals. These features 

after stringent statistical analysis are framed as Non Linear Feature Vector (NLFV) set. 

To exploit hidden dynamics of EEG signals all the contributing features are ensemble 

together to obtain a Combined Signal Feature Vector set (CSFV). CSFV is then utilized 

to design the CAD system using three classifiers which have given better classification 

results in the previous objectives.  

Training set is formed with instances corresponding to all categories with the 

corresponding labels and remaining instances are framed as testing and validating sets 

in order to assess the performance of the model. 10-fold cross-validation approach has 

been used to train the classifier and after all seizure cases are tested once, we compare 

the predictions and choose the most efficient one for all samples. The model giving the 

best overall classification is picked and analyzed for performance metrics from 

confusion matrix. The final step results in evaluating the performance of the classifiers 

with SFV, RSFV, and CSFV in terms of Accuracy, Specificity and Sensitivity and is 

tabulated as Confusion Matrix. The same procedure is followed for designing the 

ECAD system for classification of three classes. The proposed algorithm ensures the 

soundness and robustness of the design of Ensemble CAD system for seizure 

classification. 

 



                                                                                                     Design of ECAD System 

MEENAKSHI SOOD, JUIT, 2015                                                                                                     92 
 

 
 
Figure. 5.1 Proposed Methodology for design of ECAD system for seizure classification using EEG 
signals. 
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5.2.1. Experimental Workflow  
 
Rigorous experimentation has been carried out for designing and evaluating the 

performance of the proposed ECAD system for classification. The flow of the proposed 

design is implemented through two experiments detailed in Table 5.1 

 
Table 5.1: Description of experiments carried out for design of ECAD system for seizure 

classification 
 

Experiment 1 In this set of experiments, non linear features; Entropy, Hurst 
exponents and Hjorth parameters for each class of EEG are 
computed 

Experiment 2               This experiment deals with fusion of features to encompass 
CSFV, to be utilized for three classifiers. 

 
 

5.2.2. Experiment 1 Extraction of Non-Linear Features  
 

The underlying dynamics of epilepsy and chaotic nature of brain function is 

investigated by non-linear analysis[174]. Through this work, we intend to present that 

non-linear analysis can provide a promising tool for detecting relative changes in the 

human brain signals, which may not be detected by conventional linear analysis. A brief 

overview of the theoretical background for these features is presented and discussed 

along with results of the analysis based on these exponents.  

5.2.2.1 Entropy 

Entropy is a measure of predictability and randomness, higher the values of entropy, the 

less are system order or more is the system randomness [129]. Entropy provides 

recognizable variation for physiological signals as EEG signals are considered chaotic 

and is time varying. ApEn is a statistical parameter, widely used in the analysis of 

physiological signals, such as epileptic seizure time series data. It is researched that the 

synchronous discharge of large groups of neurons during an epileptic activity reduces 

the value of ApEn abruptly. This parameter makes it suitable feature to characterize the 

EEG signals.  
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Approximate Entropy Estimator ApEn (m, r, N) of a series is calculated by eqn 5.1 and 

5.2 as given below 

 
1( , , ) ( ) ( )m mApEn m r N r r                     (5.1) 
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  m is run length, r is tolerance window, N represents number of sample points and Cr(i) 

value measures the frequency of occurrence of patterns similar to a given one of 

window length m [129].  

5.2.2.2  Hurst  Exponent  (HE) 

Hurst Exponent is a valuable asset in analysis of EEG signal as it provides a means of 

classifying time series in terms of predictability."Representation of signals by Hurst 

exponent, both in numerical or visual form, makes a good basis for the development of 

stage recognition algorithms as well as for visualization that could ease the work of medical 

doctors"[175 ]. Hence, Hurst exponent is proven to be an effective analysis tool for better 

understanding of the nature of EEG.  

It is defined as the relative tendency of a time series to either regress to a longer term 

mean value or 'cluster' in a direction. It is the measure of similarity between 

observations as a function of the time lag between them and also a measure of 

autocorrelation (persistence and long memory). The value of the HE ranges between 0 

and 1. A value of HE lying between 0 and 0.5 indicates a time series with negative 

autocorrelation, meaning thereby, a decrease between values will be followed by 

another decrease. The value of HE lying between 0.5 and 1 indicates a time series with 

positive autocorrelation indicating an increase of values will be followed by another 

increase, and value of H=0.5 indicates a "true random walk", that any particular value of 

the signal will be arbitrarily followed by a decrease or an increase in the signal [176]. 
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The method which was introduced by Hurst, for the problem stated in the previous 

paragraph, is known as rescaled range analysis or the R/S statistics or analysis. A brief 

description of R/S analysis is given in the following section. 

Considering a time series of full length N and divide it into a number of shorter time 

series of length n = N, N/2, N/4. Hurst exponent is defined in terms of the Rescaled 

Range as given by eqn 5.3 as follows: 
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 is the Rescaled Range, E[x] is the expected value, n is the time of the last 

observation (e.g. it corresponds to Xn in the input time series data.) and H is a constant. 

The Rescaled Range For a (partial) time series of length n, is calculated for a time 

series, X=XI, X2, X3,…Xn  as follows: 

 1. Calculate the mean of the observations; 
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2. Create a mean-adjusted series;  
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3. Calculate the cumulative deviate series Z;  
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Figure 5.2 Computation of Hurst Exponent of EEG signals  
 

The Hurst values were plotted for the acquired signals in which a unique trend in the 

EEG activity was observed. The plots of HE for different classes show significant 
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changes before and after the seizure. The results clearly indicate that the brain 

undergoing epileptic seizure is shows long term positive correlation whereas; the 

normal brain exhibits randomness, the signals are more or less stochastic. 
 

 
 
Figure 5.3 Value of Hurst Exponent for different classes for number of patients   
                    f-inter-ictal, z - normal, s-ictal. 

 
 

It was also observed that the HE values of EEG seizure activity decreases before 

initiation of ictal activity, and the HE value increased during ictal attacks. From Figure 

5.3 it is seen that Hurst exponent values obtained for ictal period denoted by S (seizure) 

is in the range of 0.65-0.78, whereas the HE value for Z (normal) and HE value for 

(inter-ictal) F period is between 0.57-0.69. The results clearly indicate an increase in the 

HE values during seizures, pointing to an increase in the degree of self-similarity. The 

inference drawn from these results are: that an increasing or a decreasing trend of the 

time series is present during the seizure activity, increase in HE represents the reduction 

in brain system complexity, and number of the dynamic equations required for 

description of brain in the seizure state decreases. 

5.2.2.3 Hjorth Parameters 

The Hjorth parameter is one of the ways of indicating statistical property of a signal and 

is represented by three parameters shown in Table 5.2 Activity, Mobility, and 

Complexity. The first parameter, Activity is the variance of the time function that 

indicates measure of the mean power of the signal. The value of this parameter returns a 
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large value if many high frequency components of the signal exist. Second parameter, 

Mobility is defined as the square root of the ratio of variance of first derivative of the 

signal and that of the signal. Mobility can be computed as the ratio of standard deviation 

of the slope and standard deviation of the amplitude. Complexity parameter indicates 

change in frequency; it gives the variation in the shape of a signal with reference to pure 

sine wave. It is expressed as number of standard slopes actually seen in the signal 

during the average time required for one standard amplitude. The value of Complexity 

converges to 1 as the shape of signal gets more similar to pure sine wave [177]. Table 

5.2 represents high-informative feature in test EEG signals and their significance.  
 

Table 5.2 Hjorth parameters representation 
 

FID Feature Formulae 

F14 
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Figure 5.4 (a) Comparative graph of Activity for all the three different condition of epileptic 
subjects 
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Figure 5.4 (b)  Comparative graph of Mobility for all the three different condition of epileptic subjects 
 
 

 
   
  

Figure 5.4  (c) Comparative graph of Complexity for all the three different condition of epileptic   
                         subjects 
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All these parameters are comparatively depicted for three classes in Figures 5.4. Signals 

of twenty subjects are taken to represent the complete set. Figure 5.4 (a) represents the 

activity of signals for the three classes of EEG signals. Activity during seizure is more 

as compared to activity of a normal patient. Figure 5.4 (b) depicts mobility, does not 

give clear cut distinction between normal and ictal conditions.  

 

 

 
 
Figure 5.5. (a)  Comparative graph of all the three Hjorth parameters for ictal condition of the 

subjects 
 

 

Figure 5.4 (c) represents complexity feature of Hjorth parameters for three conditions 

for different subjects and it is observed that ictal state has lower value of complexity as 

compared to normal. Further, Figure 5.5 depicts comparative graphs of all conditions 

with respect to three parameters. 
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Figure 5.5 (b)  Comparative graph of all the three Hjorth parameters for  normal condition of the 

subjects 

5.2.3. Statistical Analysis of Non linear feature set 

Normalization of the parameters is done with max–min approach in order to avoid 

possible problems caused by inadequately scaled features. This method allows variables 

to have diverging means and standard deviations but equal ranges (in this case (0, 1)).  
 

Table 5.3: ANOVA analysis of non linear feature set in terms of F ratio and p value. 
 

  SS df MS F P 

Activity Between Groups 2.082 2 1.041 29.827 0.000 
Within Groups 10.26 294 0.035   

Total 12.342 296    
Mobility Between Groups 1.223 2 0.612 109.298 0.000 

Within Groups 1.645 294 0.006   
Total 2.869 296    

Complexity Between Groups 4.748 2 2.374 151.893 0.000 
Within Groups 4.595 294 0.016   

Total 9.343 296    
Hurst Between Groups 1.223 2 0.612 362.365 0.000 

Within Groups 0.496 294 0.002   
Total 1.719 296    

Note: F value = Fisher's Discrimination ratio, p= significant value<0.05, SS=Sum of Squares, 
MS=Mean Square 
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For this work, ANOVA test and Wilcoxon tests were conducted (as we were not sure 

about the gaussianity of the variables) and the results are tabulated in Table 5.3. From 

ANOVA analysis, it is well known that if FDR of the extracted feature is high, two 

classes are distinguishable. The p-value obtained using analysis of variance between 

groups to decide whether the means are different. This test uses the variation (variance) 

within the groups and translates into variation (i.e. differences) between the groups, 

taking into account how many subjects there are in the groups.  

It is evident from the table that all these extracted features have high F ratio and low   p-

value. The p value is less than 0.05, confidence range and F value is quite high, this 

provides sufficient substance to reject the null hypothesis of equal means. This 

investigation represents statistically significant features and prominent enough to be 

used for distinguishing the various classes of EEG signals [178]. Box plots without 

making any assumptions of the underlying statistical distribution display the variation in 

samples of distribution. For each subject, obtained values of Mobility and Complexity 

for each class were used to create box plots. These plots are presented in Figure 5.6. 

Every figure illustrates values of these components for ictal, interictal and normal stages 

separately. Again, it can be identified from these figures, how values of Hjorth 

components differ for three classes. Summarizing Table 5.4 represents the mean values 

for all non linear features for three conditions. 

Table 5.4: Mean values for all non linear features 
 

Feature ID Ictal Normal Inter-ictal 

F13 0.76060 0.94852 0.85712 

F14 0.23625 0.10008 0.03536 

F15 0.32967 0.33987 0.198906 
F16 0.49741 0.79078 0.697027 

F18 0.69288 0.52559 0.8078 

Note: F13-Entropy,   F14- Activity, F15- Mobility,  F16-Complexity, F18 Hurst exponent 
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Figure 5.6 (a) Box plots for Complexity attribute for three different datasets 
(Class1: ictal, class 2: inter-ictal, class 3: Normal) 

 
Figure 5.6 (b) Box plots for the Mobility  attribute for three different datasets 

(Class1: ictal, class 2: inter-ictal, class 3: Normal). 
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5.2.4. Classification using non linear parameters 

The extracted features are framed as vectors, are used as inputs to the three classifiers 

that were trained to classify these EEG recordings. The classification analysis was 

performed on each of the aforementioned parameters and all classifiers were compared 

based on their performances as illustrated in Table 5.5.  

 
Table 5.5:  Classification accuracy of normal and ictal signals using NLFV with MLPNN, KNN and SVM 
classifiers. 
 
Feature 
vector 

Classifier             CM     Acc.           Sen.             Spc. Miss rate 

 

SVM 

 NOR ICT        

NLFV NOR 28 1 96.5% 96.50% 96.50% 3.4% 
  ICT 1 28     
 

KNN 

 NOR ICT     
 NOR 28 1 94.80% 93.00% 96.50% 5.0% 
  ICT 2 27     
 

 
 NOR ICT     

 MLPNN NOR 97 1 98.40% 97.90% 99% 
 

1.5% 
    ICT 2 96         

 

Highest classification accuracy was obtained with MLPNN classifier with high 

sensitivity and specificity. But, the obtained results are not very encouraging to be used 

exclusively for detection of epileptic seizures. So we go further to combine non linear 

features with already assessed attributes in the previous objectives for the same 

problem. Experiment 2 deals with design of CAD system with ensemble set of linear 

and non linear features to determine which of these parameters with best classifier yield 

optimal results. 

5.2.5. Experiment 2. Ensemble of feature set 

The building components of this proposed methodology are divided into two sections; 

fusion of the features in the first and the classification technique in the second. This 
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experiment involves a preliminary evaluation to identify appropriate specific features 

from a large set of candidate features significant to account for variations exhibited by 

normal and abnormal signals.  

As discussed in Chapter 3, with a large feature set, it is likely that the information 

captured by some features may be redundant, duplicate and add to computational 

complexity, so it is beneficial to reduce the number of features by selecting a smaller 

feature subset. The promising, prominent, statistically analyzed features framed in 

Chapter 4 used for classification of brain signals into ictal and normal conditions are 

further improvised by selecting the feature to reduce dimensionality of the data and to 

improve classification accuracy by framing Reduced Signal Feature Vector (RSFV). 

Feature reduction is important because it leads to decreases in computational speed, 

increase in learning accuracy and enhancing learning comprehensibility leads to 

increased accuracy of the classification. 

Fusion of information from EEG signals can be performed at the feature level or at the 

classifier level. Fusion at the classifier level employs different classifiers for each signal 

and combines the results thereafter [179]. Feature fusion method is utilized in this 

approach and features from different modalities are concatenated for further usage. The 

features from earlier objectives and non linear features from this objective are ensemble 

together to frame Combined Signal Feature Vector (CSFV). In the attempt to achieve 

the optimal results of maximum sensitivity on the training data and maximum 

specificity the proposed combination of consolidated parameters is framed into simple 

but effective matrix. 

As shown in Chapter 4, the simplicity of linear discriminate classifiers provides good 

results for our problem at hand. Therefore, to investigate the feasibility of using 

ensemble of features for seizure classification three main classifiers were trained and 

tested on a subset of the features as outlined in chapter 4. The classification 

performance and results obtained are discussed in the next section. 
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5.3. RESULTS AND DISCUSSION 

5.3.1. Classification Analysis  

The two most important criteria of choosing a best classifier method are accuracy and 

computational efficiency, so we investigate the recital of our approach in terms of 

accuracy and computational efficiency. To evaluate the performance of ECAD system; 

classifiers are designed utilizing RSFV and CSFV. The dataset is divided into subsets 

for training, testing and validating the classification.  As part of the training, 70% of the 

feature vectors were used to train each classifier in order to prevent the network from 

being trapped in a local minimum and to rule out the possibility that any differences in 

the results were obtained just by chance. 30% of data was used then for testing and 

validating the results with 10-fold cross validation. The performance evaluation for the 

classification of seizures is performed with three classification algorithms ANN, KNN 

and SVM, in terms of sensitivity, specificity and accuracy.  

To start with, classifiers are trained with RSFV as input and results obtained are 

tabulated in Table 5.6. It is observed from the results, the highest classification accuracy 

of 99% is achieved with MLPNN with 99% sensitivity and 99% specificity. Taking 

SVM as classifier 98.7% of accuracy is obtained with 100% sensitivity and 97.5% 

specificity.KNN as classifier provides lower value of performance metrics. 

Classification with different classifiers with CSFV data set result in higher value of 

performance measure parameters as reported in Table 5.7. 100% classification accuracy 

is obtained with MLPNN and SVM with highest value of sensitivity and specificity 

being 100%, with 0% misclassification rate. KNN classifier provides better results as 

compared to the previous obtained results. 
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On observing the achieved results, we can infer that there is net increase of 1.3% in 

classification accuracy with SVM and an increase of 1% with MLPNN. The 

misclassification rate has reduced to 0% giving optimal results. We are able to achieve 

100% classification accuracy on the EEG epileptic database for the pair of healthy 

subjects and epileptic patients during seizure activity. Based on these results, it can be 

concluded that non linear features can differentiate well between normal and epileptic 

patients, providing high classification accuracy, and zero misclassification rate and thus 

can be used in the field EEG analysis.  

Table 5.6: Classification accuracy  of normal and ictal signals using  RSFV  with MLPNN, KNN and 
SVM classifiers 
Feature 
vector 

Classifier          CM Acc.        Sen.  Spec. Miss rate 

 
SVM 

 NOR ICT  
98.7% 

 

   
RSFV NOR 40 0 100% 97.5% 1.3% 
 ICT 1 39    
 

KNN 
 NOR ICT  

95.0% 
 

   
 NOR 39 1 97.5% 92.5% 5.0% 
 ICT 3 37    
   NOR ICT 

99.0% 
   

 MLPNN NOR 39 1 99% 99% 1% 
  ICT 1 39    

Note: RSFV: Reduced Signal Feature Vector, CM: Confusion Matrix for classification. 

Table 5.7:  Classification accuracy  of normal and ictal signals using  CSFV  with MLPNN, KNN and 
SVM classifier  

Feature 
vector  

Classifier             CM  Acc.  Sen.  Spc.  Miss 
rate  

 

SVM 

 NOR ICT 

100% 100% 100% 0.00 CSFV NOR 40 0 
ICT 0 40 

  
 

 NOR ICT 
 

   
 KNN NOR 39 1 96.2% 97.5% 95.0% 4.0 
  ICT 2 38     
 

 
 NOR ICT     

 MLPNN NOR 40 0 100% 100% 100% 0.00 
  ICT 0 40     

Note: CSFV: Combined signal feature vector, CM: Confusion Matrix for classification. 
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5.3.2. Comparative Performance Analysis 

The proposed approach uses ensemble of linear and non linear parameter selection for 

the design of ECAD system. It is evident from Figures 5.7 and 5.8, that there is much 

influence on performance of the proposed approach when CSFV is utilized as compared 

to RSFV. As a result of statistical analysis of all the extracted features and appropriate 

choice of features, the proposed methodology is able to capture the variations more 

effectively. More importantly; the proposed approach for classification of seizure and 

seizure-free EEG signals outperforms the existing methods. 

 
 

 
 
 

Figure 5.7.  Performance analysis of different classifiers in terms of performance metrics with reduced signal 
feature vector (RSFV). 

 
To ensure the soundness of the proposed method key steps were taken.  

 The choice of features selected and the suitability of these parameters by lying focus 

on a statistical analysis of these descriptor components.  

 Fusion of features so as to ensure inclusion of all variations of EEG signals.  

 Choosing the best three classifiers in order to assess linear seperability between all 
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epileptic and non-epileptic cases.  

 Test the results using the classifier based on the three performance metrics used 

(accuracy, sensitivity, specificity) 

 To evaluate the performance of the classifiers based on ROC parameters 
 

 
Figure 5.8.  Performance analysis of different classifiers in terms of performance metrics with combined signal 

feature vector (CSFV). 

 

Classification results of the algorithm are displayed by a Confusion Matrix for whole 

dataset for MLPNN in Table 5.8. It is clearly depicted in Table 5.8, that the proposed 

design is 100% efficient in classifying the EEG signals into normal and epileptic 

patients. The classification rate is 100% for class 1 and 100% for class 2 and overall 

classification of the system is 100%. According to the confusion matrix, no 

misclassification has occurred for any of the classes. 
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Figure 5.9 (a)-(b) depict the comparative analysis of ECAD system designed with 

MLPNN classifier and SVM classifier based on performance measures with respect to 

the variations in the feature vector. The comparison is made on the basis of accuracy; 

sensitivity and specificity. The figures are self explanatory, showing the variation in 

results achieved due to variation in the feature set chosen for classifying the signals.  

 

 

 
 

Figure 5.9 (a) Comparative depiction of classification efficiency with SFV, RSFV and CSFV for the 
design of ECAD system 

 

 

 

 

Table 5.8. Confusion Matrix for designed ECAD system for complete dataset. 
 

Actual class 
Predicted 

class 
NOR ICTAL Sensitivity Specificity Accuracy 

NOR 100 0 
100% 100% 100% 

ICTAL 0 100 
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It can be inferred from the results presented in Figure 5.9 that the proposed ECAD 

system with CSFV as feature vector outperforms the CAD systems with RSFV and SFV 

with same classifier. A consistent improvement in classification accuracy is observed in 

both the cases. These results also demonstrate the effect of parameter selection on 

overall performance of CAD design. The effect on accuracy is found to be more 

positive, encouraging and convincing to the fact that non linear features are more 

effective in capturing variations. 

One of the advantages of the proposed methodology is the computational efficiency and 

usability. The experimental results obtained demonstrate that the ECAD design is 

efficient for extracting and selecting features to represent the EEG signals and MLPNN 

and SVM classifier have the inherent ability to solve a classification task for these EEG 

signals. 

 

 

 

 
Figure 5.9 (b): Comparative depiction of classification efficiency with SFV, RSFV and CSSFV for the 
design of PS based CAD system 
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5.3.3. Receiver Operating Characteristic (ROC) curve  

Receiver Operating Characteristic (ROC) curve is a graphical plot of the sensitivity of 

the classifier (“True Positive Rate”) against (1-specificity) (“False Positive Rate”) [34]. 

A diagonal line corresponds to no seperability at all; any line far from diagonal line 

depicts seperability between classes. The area below the curve (between 0 and 1) gives 

an impression of the discrimination ability of the classifier. A good test for seperability 

with ROC curve is; sensitivity rises rapidly and 1-specificity hardly increases at all until 

sensitivity becomes high, in graphical terms the coordinate (0,1) give the maximum 

seperability. 

Receiver Operating Characteristic (ROC) Curve
 Samples: Train, Test, Validation
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Figure 5.10. Receiving operating characteristic (ROC) curve for the designed CAD system with 
RSFV. 
 

The Receiving operating characteristic (ROC) curve for the CAD system with RSFV is 

shown in Figure 5.10 on the testing and validating vector set of EEG data set. The area 

values under ROC curve is 0.967 for all pairs of EEG data sets. The curve on the y axis 

is accurate but there is slight change is on x-axis, which is in conformity with the results 

obtained and depicted in Figure 5.9 (b). 
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Figure 5.11. Receiving operating characteristic (ROC) curve for the designed ECAD system 

 

The Receiving operating characteristic curve for the designed ECAD system with 

CSFV is drawn in Figure 5.11 on the testing and validating vector set of EEG data set. 

The area values under ROC curve is 0.998 for all pairs of EEG data sets. There is 3% 

increase in Area Under Curve (AUC) in ROC curve as indicated in the figures. Hence it 

is concluded that the proposed approach has a high discriminating capability to classify 

EEG signals. The models proposed in this work produces excellent results and 

demonstrates the superiority of our approach for classifying EEG brain signals into 

normal and ictal signals. 

 

5.4. CONCLUSION 
 

In this work, we have proposed a novel ensemble CAD system to detect the epilepsy 

condition using EEG signals. The time domain and feature domain features are 

ensemble with non linear features and coupled with MLPNN and SVM classifier to 

yield high classification accuracy results. Experimental results show that the resulting 
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attributes when used for classification results in 100 % classification accuracy with 

CSFV, 99.5% with RSFV and 98.5% classification with SFV with MLPNN as 

classifier. The net increase in percentage classification accuracy is 1.5% with MLPNN, 

2% with SVM and 1.8% with KNN with CSFV when compared to efficiency obtained 

with SFV. The increase in the area under ROC curve is 3%. The results obtained are 

clear indicators of the great potential in classifying epileptic signals and normal signals 

with 100% classification accuracy. The study presents a unique analysis, both in the 

identification of the effective features from among the features used for the 

representation of the problem and also in the identification of effective classification 

algorithms from among the 5 most popular classification algorithms. The feature 

extraction and selection are meant to reduce dimensionality without the loss of 

important information embedded in the signal and to simplify the amount of resources 

needed to describe a huge set of data accurately. As features selected for the present 

work were chosen with an eye towards real-time implementation, this method has the 

potential to be applied in prototype implantable devices for treating epilepsy. 

.  
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CHAPTER 6 
 

DESIGN OF A MODULE BASED CAD SYSTEM (MCAD)   
 
 
6.1. INTRODUCTION 

A stochastic process is known to be stationary if its statistical properties do not change 

over time.  A strictly stationary stochastic process is one where for given t1, . . . , tℓ the 

joint statistical distribution of Xt1 , . . . ,Xtℓ is the same as the joint statistical distribution 

of Xt1+τ , . . , Xtℓ+τ for all ℓ and τ; that implies that all moments of all degrees 

(expectations, variances, third order and higher) of the process, anywhere are the same. 

It also means that the joint distribution of (Xt, Xs) is same as (Xt+τ, Xs+τ) and hence 

cannot depend on s or t but only on s-τ. For the purely random process, the mean and 

variance are constant functions in time. Weak stationarity of signals imply that mean 

and variance of a stochastic process do not depend on t (that is they are constant) and 

auto covariance between Xt and Xt+τ depends only on lag τ (τ is an integer, the quantities 

also need to be finite) [180]. EEG distribution is mutivariate Gaussian process even if 

mean and covariance properties change from segment to segment, thus exhibiting non-

stationary signal properties. One of the methods that have been used to test stationarity 

is to divide the signal into segments that fulfill the criterion of shorter stationary time 

series [181]. To comply, time series is divided into number of epochs or sub samples 

and dynamics is assumed to be approximately stationary termed as quasi-stationary. 

 EEG segments chosen from the dataset are recorded from a single channel and are a 

sequence of time samples, chosen under an inclusion criterion of weak stationarity [16]. 

One approach for analyzing a time series is to divide the time series into small 

subsamples (termed as epochs) and inspect whether there are certain underlying 

dynamics in a particular epoch. In this objective, we intend to work on effect of non 

stationarity dynamics of EEG signals by dividing complete data set into small segments 

(epochs) where the stationarity of the signals can be checked. This method encompasses 

the quantification and analysis of nonstationary neurophysiologic signals. Classification 
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accuracy can be adaptively enhanced, if the underlying reasons for the nonstationarity 

are known a prior. In this objective a novel framework for nonstationary data analysis 

and design is presented. The key contribution of this work is introduction of a novel 

modular approach that aims to identify an algorithm that provides highest level of 

classification accuracy with selected features and selected epoch size. This type of 

analysis may also contribute to the better understanding of signals nature and 

characteristics. 

 
6.2. PROPOSED METHODOLOGY 
 

Two signal processing steps are typically required before the classification of obtained 

bio signals: signal preprocessing and feature extraction. The signals are prepared for 

further processing, in the preprocessing step that include filtering out unnecessary 

frequencies, artifact rejection, signal scaling, and signal transformations [36]. Feature 

extraction and selection is the most crucial step in a successful bio signal algorithm. 

Both of these steps are already covered in the previous chapters.  

In Chapter 4 and 5, CAD models for the classification of EEG signals have been 

developed. The experimental results show that the algorithm works well to solve a 

classification task using representative features for classification. The sample size was 

taken as the complete signal of 4096 samples. Continuing with the same algorithm, the 

recorded EEG segments having fixed samples of each class are segmented into different 

sizes of non overlapping modules (M); that comprises the samples based on binary 

relation, to ensure reasonable time resolution. For each module, several features are 

extracted that characterize the dynamics of signals and statistically analyzed as already 

discussed in previous chapters. The features those were deemed significant as inferred 

by the previous algorithm are extracted from the segments and reframed to reduce 

signal feature vector (MxRSFV) of module Mx, where x is the size of module. These 

feature vectors are used as inputs for the classifiers which were found to be efficient for 

this problem; and performance measures; accuracy, sensitivity and specificity are 

determined [33] as elaborated in the previous chapters. 
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It is not clear what segment length best captures the signal characteristics and sufficient 

for stationary check. So, to investigate what epoch length would be most appropriate for 

classifying epileptic seizure, classification task was performed for different epoch size 

‘n’ resulting into modules of size ‘m’ and comparative system performance was 

subsequently evaluated.  Figure 6.1 depicts the work flow of the proposed method with 

clear and distinct stages followed in this approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Proposed algorithm for design of Module based CAD system 

Divide the signal samples into modules with 
epoch length of 2048 framing M2SFV      

 

  Clinically acquired EEG Signals 

Pre-processing of Signals, Sample to 
obtain 4096 samples forming 
M1SFV 

Divide the signal samples into modules 
with epoch length of 1024 framing M3SFV     

 
Divide the signal samples into   
modules with epoch length of 
512 framing M4SFV      

 

Divide the signal samples into 
modules with epoch length of 

256 framing M5SFV 

Compute features for all modules of every epoch, frame 
SFV, and perform statistical analysis to frame RSFV 

Design BPNN,KNN, and SVM classification 
models using instances of   MxSFV(training data), 
test and validate using instance of testing data  

Obtain RSFV of all modules, and divide the whole 
dataset of every module into training and testing sets.   
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This objective aims at designing Module based Computer Aided Diagnostic (MCAD) 

system for the classification of EEG signals. The algorithm is epoch based technique in 

which decision making is performed in two stages. In the first stage, representative 

features from each epoch are extracted and framed as feature vector, and the second 

stage utilizes these feature vectors as input to classifiers to classify EEG signals in two 

or three classes.  

6.2.1. Work Flow 

To elucidate the proposed algorithm to design ECAD system, workflow is depicted in 

Figure 6.2. EEG signal is segmented into epochs whose duration is capable of capturing 

the characteristics of the event to be detected. Data set contains 100 data files of each 

class with 4096 data samples. Although free to choose the size of epoch, values were 

chosen according to the binary relation. In proposed method, we have considered size of 

subsamples n = 256, 512, 1024, 2048 and 4096 for each EEG data of a class 

corresponding to module size m = 16, 8, 4, 2 and1 matching to time resolution of 1.5, 3, 

6, 12 and 23.6 sec. The segment size is decided so as to provide a balance between data 

segment long enough to provide good frequency resolution and short enough to satisfy 

the condition of stationarity.  

Signal feature vectors comprising thirteen features as discussed in Chapter 3, are 

extracted from every module and statistically analyzed. The analysis result in RSFV 

framed out of prominent seven features (mean, mode, standard deviation, skew, 

kurtosis, power and entropy) from each sub-sample. For n sub samples or epochs, m 

modules are formed with seven features of every module resulting in vector set of size 

[n x m x 7]. The three different classifiers are engaged to design MxCAD systems, 

where Mx denote the module of size x. To achieve this objective and to improve the 

classification performance of CAD systems, and to understand the underlying dynamics 

of nonstationarity of the signals, I have restricted myself to the comparison of distinct 

module size taken from same time series. 
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Figure 6.2.  Work flow of the proposed classification strategy 
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To comply with the proposed methodology, we have utilized MLPNN, SVM, and KNN 

classifiers. The complete feature vector is divided into two sets of training and testing; 

the classifier is trained with the training vectors, whereas the testing vectors are used to 

find out classification accuracy and the effectiveness of the trained classifier for the 

classification of EEG signals [122]. Sensitivity, specificity and classification accuracy 

of the proposed method are calculated with every module size with bootstrap method. 

For the classification purpose it not clear what epoch size is most appropriate, therefore, 

a number of epoch size are investigated and overall system performance is subsequently 

evaluated. Henceforth, analysis of all of these sets of epochs will qualify whether 

seizure classification is better obtained with longer or shorter-duration epoch lengths. 

 

6.3. DESIGN OF VARIOUS MCAD SYSTEMS  

To investigate whether our method is applicable to a short time series and whether our 

method depends strongly on the length of data segment, the epoch size respectively 

takes the value of 256, 512, 1024 and 2048 samples, and the approaches used in the 

previous sections are employed for classifying EEG epileptic dataset into two or three 

classes depending upon the chosen module size. The complexity of the classification 

task increases exponentially with the dimension of the data, so it becomes worthwhile to 

extract the features and also limit the number of features to only those which are most 

discriminative for the classification task.  

6.3.1. Performance analysis of CAD system with module size of 16 (M16RSFV) 

Starting with the largest module size, the complete dataset is divided into epochs of 256 

samples. As there are 4096 samples in total for each set, epoch size of 256 samples (n) 

result in 16 modules (m) giving 1600 samples. Every module is represented by seven 

features, consequently resulting in feature vector set of size [256 16 7]x x  for 100 data 

files of one class. For two class classification problem, the feature vector set is 

employed for input to the classifiers for training with 75% of dataset and remaining 

25% of samples for testing purpose with four chosen classifiers. Overall classification 

accuracy of the four classifiers is achieved with 5-cross validation and results obtained 
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are tabulated in Table 6.1. It can be observed that classification accuracy obtained with 

MLPNN classifier is high as 89.25% as compared to OCA obtained with SVM 

(86.37%), KNN (73.37%), and RBF (79.87%). Sensitivity and specificity obtained with 

all the classifiers are represented in the table. 

Table 6.2 describes the performance with three vector matrices created from data set of 

healthy subjects, subjects with epileptic activity and inters epileptic activity in order to 

classify three classes in the study. Out of the 4800 signals, obtained from SFV of 

module size of 16, 70 % of data samples are used to train the classifiers and remaining 

30% of the samples are used to test the validity of the classifier. The OCA and ICA for 

the three cases with four different classifiers are reported and tabulated in Table 6.2. 

 
Table 6.1: Performance of MCAD system of module size of 16, with four classifiers for two classes 

 

Module 
 (Epoch)       
Size 

Classifier      Confusion        
      Matrix 

    OCA    Sen  Spec  

 
16(256) 

SVM 

 NOR  ICT     

 NOR  330 70 86.37%  90.25%  82.50%  

 ICT  39 361    

 

KNN 

 NOR ICT    

 NOR  273 127  73.37%  78.52%  68.25%  

 ICT  86 314   

               NOR ICT    

 
MLPNN NOR  338 62 86.87% 89.25% 84.5% 

 
 ICT  43 357    

      NOR ICT    
  RBF NOR  310 90 79.87% 82.25% 77.5% 
  ICT  71 329    

Note: CM- Confusion Matrix, OCA – Overall Classification Accuracy,  
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Table 6.2: Performance of MCAD system for three classes with module size of 16, epoch size of 256 
samples. 
 
Classifier  L(M16SFV)                          Confusion Matrix     ICA (%)  OCA (%)  

MLPNN  256*16*7  

 NOR INT ICT  
 

NOR  311 30 59 77.7 
78.02 INT  32 284 84 71.0 

ICT  11 48 341 85.2 

RBF  256*16*7  

 
NOR INT ICT  

70.58 
NOR 298 78 24 74.5 
INT  62 260 78 65.0 
ICT  51 60 289 72.2 

KNN  256*16*7  

 NOR INT  ICT   

 68.40 
NOR  289 64 47        72.3 
INT  39 276 85        69.0 
ICT  78 66 256        64.0 

SVM  256*16*7  

 NOR INT  ICT  
 

 72.08 
NOR 293 55 52        73.2 
INT  57 268 75        67.0 
ICT  66 30 304        76.0 

Note: OCA – Overall Classification Accuracy, ICA- Individual classification Accuracy. 

 

From the results obtained for three class classification problem, out of four classifiers, 

MLPNN gives the better overall classification accuracy of 78.02% with ICA of 85.25%, 

77.7% and 71% for the three different classes. SVM provides 72.08% OCA followed by 

RBF giving 70.58% and KNN providing 68.40% overall classification accuracy. RBF 

and KNN do not provide good classification results as compared to SVM and MLPNN, 

continuing the trend of classification algorithm for two class classification problem. 

6.3.2. Performance analysis of MCAD system with module size of 8(M8CAD) 

Following the technique discussed in the previous section, dataset is divided into epochs 

of 512 samples resulting in 8 modules giving 800 samples of each class. Every module 

when represented by seven features, result in feature vector of size [512 8 7]x x  for 100 
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data files of data set. In all 1600 samples are used for training and testing of the various 

classifiers. The classification results obtained from MCAD system for two class 

problem are tabulated in Table 6.3. The classification accuracy results obtained with 

different classifiers do not vary much as compared to the results obtained with epoch 

size of 256. MLPNN gives 86.87% of OCA, followed by SVM with 84.58%, RBF with 

79.75% and KNN classifier provides 73.54% of OCA. Accuracy obtained with this 

module size is comparable with module size of 16. 

 
 Table 6.3: Performance of MCAD system of module size of 8, with four classifiers for two classes 
 

Module 
  (Epoch)    
   Size 

Classifier   Confusion Matrix      Acc.  Sen  Spec  

 
8(512)  

SVM  
 NOR ICT    

 NOR 198 42 84.58% 86.66% 82.5% 
 ICT 32 208    
 

KNN  
 NOR ICT    

 NOR 178 61 73.54% 74.16% 72.9% 
 ICT 65 175    
 

  NOR ICT    
 MLPNN NOR 203 37 86.87% 89.16% 84.58% 
 

 ICT 26 214    
 

  NOR ICT    
 RBF NOR 198 42 79.75% 77.08% 82.5% 
 

 ICT 55 185    

 
 

Following the previous steps for three class problem, the classifiers are trained with 

70% of samples and tested and validated with 30% of dataset, with results depicted in 

Table 6.4. The highest accuracy is again obtained with MLPNN and the lowest is 

obtained with KNN. These observations follow the same trend as for module size of 16. 

The OCA obtained with MLPNN is 79.16% followed by SVM (78.61%), RBF (70.7%) 

and lastly by KNN (67.76%). 
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Table 6.4: Classification performance of MCAD system for three classes with module size of 8and epoch 
size of 512 samples.  

Classifier  L (M8SFV)                       Confusion Matrix     ICA (%)       OCA (%)  

MLPNN 512*8*7 

 NOR  INT  ICT   
 

NOR  193 34 13 80.4 

79.16 INT  32 165 43 68.75 

ICT  16 12 212 88.33 

RBF 512*8*7 

 NOR  INT  ICT   
 

NOR  168 22 50 59.7 

70.70 INT  21 149 70 62.08 

ICT  20 28 192 80.1 

KNN 512*8*7  

 NOR  INT  ICT   
 

NOR  140 42 58 58.33 

67.76 INT  38 158 44 65.83 

ICT  27 23 190 79.16 

SVM 512*8*7  

 NOR  INT  ICT   
 

NOR  184 17 39 76.66 

78.61 INT  14 188 38 78.33 

ICT  18 28 194 80.83 

 

6.3.3. Classification results of CAD system with module size of 4 (M4CAD) 

Following the proposed methodology, complete dataset is further divided into epochs of 

1024 samples resulting in 4 modules giving 400 samples of each class. Every module 

result in feature vector set of size [1024 4 7]x x  for 100 data files of data set. The results 

obtained are tabulated in Table 6.5 in terms of accuracy, sensitivity and specificity.  The 

obtained results can be compared with the results obtained with different module size 
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and with the same classifiers. Accuracy of 87.50% was obtained with SVM and 

MLPNN classifier whereas classification accuracy obtained with KNN is 76.6% and 

84.16% with RBF following the similar trend.  

 

 
Table 6.5: Performance of MCAD system of module size of 4, with four classifiers for two classes. 
 
Module 

 (Epoch)  
  Size 

        
Classifier  

     Confusion     
    Matrix  

      Acc.  Sen  Spec  

 
4(1024) 

SVM 
 

NOR ICT 
   

 
NOR 105 15 90.41% 93.33% 87.5% 

 
ICT 8 112 

   

   
NOR ICT 

   

 
KNN NOR 92 28 79.58% 82.5% 76.6% 

  
ICT 21 99 

   

   
NOR ICT 

   

 
MLPNN NOR 105 15 89.5% 91.66% 87.5% 

  
ICT 10 110 

   

   
NOR ICT 

   

 
RBF NOR 101 19 84.98% 85.8% 84.16% 

  
ICT 17 103 

   
Note: NOR-Normal, ICT- Ictal, OCA –Overall Classification Accuracy, Sen- Sensitivity, Spec-Specificity 

 
 
 

MCAD systems with module size of 4 were tested for three class problem, whose 

results are tabulated in Table 6.6. The highest accuracy obtained is with MLPNN and 

the lowest accuracy is obtained with KNN. These observations follow the same trend as 

for module size of 16 and 8. The OCA obtained with MLPNN is 86.43% followed by 

SVM (80.26%), RBF (79.73%) and lastly by KNN (75.25%). The ICA for ictal and 

normal conditions are more as compared to the interictal class complying with the 

previous results. 
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Table 6.6: Classification performance of MCAD system for three classes with module size of 4and epoch 
size of 1024 samples. 

Classifier  L (M4SFV)                                Confusion Matrix      ICA (%)             OCA (%)  

MLPNN  1024*4*7  

 NOR  INT  ICT   
 

NOR  102 12 6 85.00  

                 86.43 INT  9 100 11         83.53  

ICT  4 7 109 90.83  

RBF  1024*4*7  

 NOR  INT  ICT   
 

NOR  97 12 11 80.08  

                   79.73 INT  9 92 19 76.6  

ICT  13 9 98 81.6  

KNN  1024*4*7  

 NOR  INT  ICT   
 

NOR  79 19 22 65.83  

                 75.25 INT  11 94 15 78.33  

ICT  8 14 98 81.66  

SVM  1024*4*7  

 NOR  INT  ICT   
 

NOR  98 9 13 81.66  

                   80.26 INT  21 91 8 75.80  

ICT  8 14 98 83.33  

 

6.3.4. Classification results of CAD system with module size of 2 (M2CAD) 

Lastly, the same steps were followed for the design of MCAD system with epochs of 

2048 samples resulting in 2 sets of individual modules. Every module represented by 

seven features, result in feature vector set of size[2048 2 7]x x . The results obtained with 

the same set of classifiers are tabulated in Table 6.7. Accuracy of 91.66% was obtained 
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with MLPNN and 90.83% with SVM classifier and 87.5% of classification accuracy is 

obtained with KNN. The obtained results can be compared with the results obtained 

with different module size but with same classifiers in the coming section. 

 
Table 6.7: Performance of MCAD system of module size of 2, with four classifiers for two classes 

 
Module 
(Epoch) 

Size 

Classifier  Confusion Matrix  Acc. Sen Spec 

 
2(2048) 

SVM 

 NOR ICT 

90.83% 95.0% 86.66%  NOR 52 8 
 ICT 3 57 
 

KNN 

 NOR ICT 

87.50% 91.66% 83.33%  NOR 50 10 
 ICT 5 55 
 

 
 NOR ICT 

 
  

 MLPNN NOR 53 7 91.66% 95.0% 88.33% 
 

 
ICT 3 57    

 
 

 NOR ICT 
 

  

 RBF NOR 47 13 85.08% 91.66% 78.33% 
 

 
ICT 5 55    

 
 
Classification results of MCAD system with two modules for three class classification 

are tabulated in Table 6.8. The highest accuracy obtained is with MLPNN and the 

lowest accuracy is obtained with KNN following the same trend of results as followed 

by the classifier with different module size. The OCA obtained with MLPNN is 98.33% 

followed by SVM (90.1%), RBF (88.63%) and lastly by KNN (84.45%). The OCA has 

shown an increasing trend with the increase of epoch size. 

6.3.5. Classification results of CAD system with module size of 1 (M1CAD) 

Finally, the epochs of 4096 samples are framed, resulting in single module. The results 

obtained with these features for two classes and three class classifications with the 

complete dataset as a whole are tabulated in Table 6.9. For two classes 100% 

classification accuracy is obtained with 100% sensitivity and specificity and 0% false 
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alarm rate.SVM also provides good results with 98.3% of accuracy followed by RBF 

with 96.6% and KNN exhibiting 93.3%.  

 
Table  6.8: Classification performance of MCAD system for three classes with module size of 2and epoch size 
of 2048 samples 

Classifier  L(M2SFV)            Confusion Matrix         ICA (%)  OCA (%)  

MLPNN  2048*2*7  

 NOR  INT  ICT   

      98.33  
NOR  128 73 14 98.33 

INT  90 142 11 96.66 

ICT  40 29 242 100.0 

RBF  2048*2*7  

 NOR  INT  ICT   

      88.63  
NOR  54 5 1 90.0 

INT  0 55 5 91.66 

ICT  2 7 51 85.01 

KNN  2048*2*7  

 NOR  INT  ICT   

       84.45  
NOR  52 5 3 86.66 

INT  11 47 2 78.33 

ICT  1 6 53 88.33 

SVM  2048*2*7  

 NOR  INT  ICT   

      90.1  
NOR  52 7 1 86.66 

INT  2 52 6 86.66 

ICT  0 2 58 96.66 

 
 

Presented empirical evidence suggests that by simply considering multiple samples in 

time, different level of accuracy can be achieved for the classification decision. 

Temporal structure of EEG yields variation in the classification rate. Accuracy is the 

mean value of sensitivity and specificity and is included here as a single-figure 
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indication of classification performance [126]. Specificity and sensitivity results from 

all the MCAD system indicate that the feature set is useful in separating between 

normal and abnormal EEG. Classification performance for all the CAD systems are 

compared in the following section and best suited epoch lengths is determined based on 

performance metrics. 

 
Table6.9: Performance of MCAD system of module size of 1, with four classifiers for two classes. 

Module 
(Epoch) 

Size 

Classifier  CM Acc. Sen Spec Miss rate 

 
1(4096) 

SVM 

 NOR ICT 
98.3% 100% 96.66% 1.66  NOR 29 1 

 ICT 0 30 
 

KNN 
 NOR ICT 

93.3% 97.0% 90.0% 6.6  NOR 27 3 
 ICT 1 29 
   NOR ICT     
 MLPNN NOR 30 0 100% 100% 100% 0.0 
  ICT 0 30     
   NOR ICT     
 RBF NOR 29 1 96.66% 96.66% 96.66% 1.66 
  ICT 1 29     

 
 
 
6.4.    RESULTS AND DISCUSSIONS  

 
 

6.4.1. Two class classification problem 
 
The results obtained for classification of two classes discussed in the previous sections 

are collectively represented in Figure 6.3. As a comparative study, we have evaluated 

the performance of the approach with the same attributes that summarizes entire set of 

dataset. It is observed that SFV of length seven with module size of 4096 yields highest 

OCA of 100% with MLPNN and 98.3% with SVM classifier. OCA obtained with 

different epoch size of 256, 512, 1024 and 2048 module size with same SFV with 

different classifiers are depicted in Figure 6.3. An interesting fact is that by use of 

optimal module size, sensitivity and specificity values for ictal and normal cases 



                                                                           MCAD Systems 
 

MEENAKSHI SOOD, JUIT, 2015  129 
 

increases. From the results obtained, it is observed that classification accuracies 

increase with increase in length of 'n' and best performance is achieved with sample size 

of n = 4096. Increasing the modules overload the classifiers, that affect the 

classification time and accuracy. 

 

Figure 6.3.  Comparative performance analysis of various classifiers with different module sizes. 

 
 
Figure 6.4. Classification Performance of MLPNN for different epoch size for two class classification. 

 

MLPNN SVM RBF KNN
256 86.87 86.37 79.87 73.37
512 86.87 84.58 79.75 73.54
1024 89.5 90.41 84.98 79.58
2048 91.66 90.83 85.03 87.5
4096 100 98.3 96.66 93.3
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All the classifiers show the similar trend of increase in accuracy with increase in epoch 

size. Nonetheless, MLPNN classifier outperforms the other algorithms and capable of 

providing highest OCA for almost all module sizes as depicted in Figure 6.4. 

6.4.2. Three class classification problem 

The results tabulated in the previous tables for three class classification problem are 

plotted in Figures 6.5 for comparative study. The comparison is based on the size of 

modules for various classifiers employed for the classification. The module size of 16 is 

represented by m5, and sizes of 8, 4, 2, and 1 corresponding to m4, m3, m2 and m1 in 

Figure 6.5.  

 

 
Figure 6.5. (a)  Classification accuracies achieved with various module sizes with MLPNN classifier 

  

 

Figure 6.5. (b)  Classification accuracies achieved with various module sizes with RBF classifier 
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 Figure 6.5 (d) Classification accuracies achieved with various module sizes with KNN classifier 

The proposed technique is evaluated through four classification problems, and the 

highest classification accuracies obtained for all module sizes is achieved by MLPNN 

followed by SVM. For highest epoch size, accuracy of these both classifiers is 

comparable. It is apparent that with increase in number of modules, classification 

accuracies for all the four classifiers decrease. The minimum performance metrics are 
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                Figure 6.5. (c)  Classification accuracies achieved with various module sizes with SVM 

classifier 
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achieved for larger size of modules and this trend is uniform for all the four classifiers. 

Based on these results and observations, important criteria of choosing efficient 

technique are accuracy and computational efficiency, which are used in this research 

work for assessment. 

6.5. CONCLUSIONS 
 
In this objective, we intended to design a CAD system for prognosis of epileptic seizure 

with less computational complexity and higher accuracy. The proposed Module based 

CAD method is employed for distinguishing normal and ictal signals and for 

classification of sets S, F and Z. The statistical approach is employed for the feature 

extraction and different classifiers are used for the classification of EEG signals. A 

practical issue in seizure detection is to determine the length of the signal and number 

of modules optimal for successful classification. In general, selection of features and 

module size ensure the best accuracy that can be achieved in practice. The longer the 

signal, better are chances to be discriminative as more is the information content in it. 

Moreover, abnormalities of background activity and slow activity in some regions, are 

much less evident in smaller segments and cannot be easily appreciated by looking at 

the EEG. A one and half second epoch is long enough to detect any significant changes 

but short enough to avoid redundancy in the signal and suitable for prognosis of EEG 

signals. That is why long EEG recordings require the use of reliable and accurate 

computer programs that are able to extract the hidden information, so that a better 

diagnosis can be provided. This assertion constitutes the main aim of this objective. 

From the results obtained, it is observed that classification accuracies increase with less 

number of modules and with increase in length of 'n' and best performance is achieved 

with sample size of n= 4096. The results obtained from MLPNN and SVM are quite 

encouraging and comparatively higher as compared to other classifiers in all aspects. 

With 100% OCA, high sensitivity and specificity with selected feature set, we infer that 

the chosen features and MLPNN classifier are more promising than any other proposed 

method. We conclude from the demonstrated results that the proposed technique can be 

used for epileptic seizure detection. 
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                                                                                                             CHAPTER 7 
 

CONCLUSION AND FUTURE WORK 
 

7.1. CONCLUSION 

EEG is an important measurement of brain activity and has great potential in helping in 

the diagnosis and treatment of neurophysiologic diseases and abnormalities. Automated 

CAD systems cannot, and are not intended to, fully replace neurologists, nonetheless, 

the primary aim is to support the evaluation of medical doctors and to take the decisions 

accurately and efficiently.  In this research work, an attempt has been taken to develop a 

robust prediction model for seizure detection which may  assist radiologists in making 

differential diagnosis and provide better prognosis by providing second opinion in case 

of voluminous and highly complex brain signals.  

The work in this thesis has approached the problem of designing of CAD system by 

considering the relevant features, morphology of brain signals, supervised machine 

learning methods and incorporating the statsitcal analysis in the procedure of 

classification of neurophysiological signals. The research work presents a new approach 

to the use of algorithm in this sense. The study presents a different analysis, both in the 

identification of the most effective features used for the representation of the problem 

and also in the identification of the most efficient algorithm in the classification of the 

problem from among the 6 most popular classification algorithms. This work includes 

inspection of a comprehensive feature set indicating their usefulness in the 

representation of EEG signals and to find out, what features delineates the EEG signals 

of a normal patient from an epileptic patient. The novelty of this objective lies in the 

exhaustive statistical analysis of extracted features to come up with prominent feature 

set for classification purposes and to the author’s knowledge is the first of its kind. 

Various statistical tests are applied exhaustively to verify that the extracted features are 

distinct and uncorrelated to each other. The chosen features are simple but robust for the 

morphology of EEG data for the classification problem. 
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The ambit of this thesis is design of different CAD systems for classification of seizure 

activity with highest accuracy, sensitivity and specificity. Strategically, a fully 

automated neural network model, capable of classifying the seizure activity into ictal, 

interictal and normal state with classification accuracy as high as 99.3% has been 

designed. The promising performances observed are demonstrative of the efficiency and 

efficacy of systems developed for classification and prediction of normal, ictal and 

interictal conditions of epileptic patients. A bi-class classification design is also 

incorporated to show generalizability of soft computing paradigm technique. A novel 

hierarchical CAD system is  modeled for seizure classification. We conclude that EEG 

based information is sufficient for the proposed method  that has higher potential in 

designing EEG based diagnostic system for detection of electroencephalographic 

changes. 

Further non-linear analysis method is efficasiously applied to EEG signals to study the 

non linear characteristics in the signals and to enhance the classification performance. 

The inclusion of non linear features in designing ECAD systems improved classifier 

performance prominently. It was found that the fusion of signals at both feature and 

classifier levels improved detection and classification leading to good separation 

between normal, ictal and interictal EEG signals. In this research work, a classification 

accuracy of 100% was achieved on EEG epileptic database for healthy subjects and 

epileptic patients. The experimental results demonstrated that the ensemble of features 

were good choice for capturing representative characteristics of EEG signals and 

MLPNN and SVM  were promising machine learning methods for the classification of 

these signals. Improvements in ROC area was observed for ECAD system  when 

compared to the normal CAD systems.  

The final part of this thesis demonstrates usage of epochs to assess the non stationarity 

of the signals. Selection of features and module size ensure the best accuracy that can be 

achieved in practice. A one and half second epoch is long enough to detect any 

significant changes but short enough to avoid redundancy in the signal and suitable for 

prognosis of EEG signals.  
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Using both epoch and classifier based metrics, it was clear that the use of MLPNN 

classifiers improved the performance of the automated epileptiform detection system. 

This type of analysis also contributes to the better understanding of signals nature and 

characteristics. These types of studies may be instrumental in finding effective solutions 

to the question “which feature algorithm should be used to acquire the feature that can 

best represent the data?” 

Table 7.1 summarizes all the proposed CAD system in this thesis with the 

performances. The research findings indicate that this proposed approach can 

distinguish the categories of EEG signals in two and three-class very efficiently. Taken 

together, on the basis of our results and our cooperation with medical doctors, it can be 

concluded that the research presented in this dissertation has found successful methods 

for the reliable classification of EEG signals and can facilitate more effective evaluation 

of the complex biomedical signals.  

 
 Table 7.1: Proposed CAD  Systems with their performance 

S.No.  CAD System  Classes  OCA (%)  

1.  NN based CAD  
S-F-Z  

S-Z  

99.3  

98.5  

2.  SVM based CAD  S-Z  98.5  

3.  SVM based hierarchical CAD S-F-Z  96.6  

4.  
SVM based Ensemble CAD  

NN based Ensemble CAD  
S-Z  100  

5.  NN based Ensemble CAD  S-F-Z  98.33  

6.  NN based MCAD system  S-F-Z  98.03  

7.  NN based MCAD system  S-Z  100  

Note: OCA- Overall Classification System, S - Ictal class, Z - Normal class, F - interictal class. 
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7.2. FUTURE WORK 

It is believed that the methods presented in this thesis would provide promising 

outcomes in the EEG signal classification area. Nevertheless, there are many research 

directions to explore; we intend to examine the possibility of using the proposed 

technique in the application of other biomedical signals. Moreover, it is, also highly 

promising idea to apply these methods to other neurophysiologic paradigms. 

Extensive future work will be directed in extending the algorithm for multi-channel 

EEG signal classification and would strive for the robustification of CAD systems. The 

performance of the classifier is to be augmented by adding more patients and creation of 

a larger database in cooperation with relevant medical institutions. Further on, the 

developed and tested methodology should be adjusted and modified to make it able to 

process EEG signal in the real time, for continuous non-invasive monitoring of brain 

activity. Exhaustive future work will be oriented towards development of suitable 

algorithms that can predict the onset of the seizures. 

A graphical user interface for the model is to be developed that shall increase the 

applicability of this algorithm. Extensive future work will examine the possibility of 

dealing with artifacts effectively; successfully removing artifacts to achieve significant 

improvement in proposed algorithms for diagnostic systems. Lastly, future research 

work will be eyeing on integrating modalities that  provide good time resolution (EEG 

and EMG) and good frequency resolution ( fMRI and PET), as these will be able to 

capture dynamic evolution of time varying connectivity patterns. 
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