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Abstract

Fuzzy sets, introduced by L.A. Zadeh (1965), provide a flexible framework for

handling the uncertain situations, containing ambiguity and vagueness. Fuzzy

sets find applications in several fields, such as reliability, marketing, image pro-

cessing, pattern recognition, artificial intelligence, etc. However, fuzzy sets do

not handle the situation, where the vague/incomplete/uncertain information in-

volves some degree of hesitation. Atanassov (1986) introduced the concept of

Intuitionistic Fuzzy Set (IFS) as a generalization of fuzzy set, which is found to

be more useful in capturing the vague, incomplete or uncertain information that

involves some degree of hesitation and applicable in various fields of research.

The objective of this thesis entitled, “Information and Similarity Measures of

Intuitionistic Fuzzy and Soft Sets” is to study new intuitionistic fuzzy information

measures, similarity measures, fuzzy linear regression model, intuitionistic fuzzy

reliability and complex intuitionistic fuzzy soft sets with their entropies.

We present fundamental background of fuzzy set, intuitionistic fuzzy set,

soft set and complex intuitionistic fuzzy set with their definitions and various

properties. In addition to this, we have also presented application of these theories

in statistical regression analysis, decision making and reliability evaluation of a

system along with a brief literature survey in chapter 1.

In chapter 2, a new R-norm intuitionistic fuzzy entropy and R-norm intu-

itionistic fuzzy directed divergence measure have been proposed with their proof

of validity. Further, empirical study on the proposed information measures has

also been done which explains monotonic nature of the information measures

with respect to R as well as the λ involved. Computational applications of these

information measures in the field of pattern recognition and image thresholding

has been proposed with discussion.

In chapter 3, a fuzzy linear regression model with some restrictions in the

form of prior information has been considered. The estimators of regression coef-

ficients have been obtained with the help of fuzzy entropy for the restricted/ un-

x



restricted fuzzy linear regression model by assigning some weights in the distance

function. Some numerical examples have also been provided in order to illustrate

the proposed model along with the obtained weighted estimators. Further, in

order to compare the performance of unrestricted estimator and restricted esti-

mator, a simulation study has been conducted by using two fundamental criteria

of dominance-mean squared error matrix and absolute bias.

In chapter 4, we have proposed new similarity measures for intuitionistic

fuzzy sets and interval-valued intuitionistic fuzzy sets based on ‘NTV’ metric

along with their weighted form. The proposed similarity measures have been

analogously extended to obtain new entropies for intuitionistic fuzzy sets and

interval-valued intuitionistic fuzzy sets along with their proofs of validity. A new

algorithm for multi-criteria group decision making has been provided using the

proposed weighted similarity measure in which the weights have been calculated

using the proposed entropies. Further, numerical example for illustrating the pro-

posed methodology has also been provided by taking interval-valued intuitionistic

fuzzy sets.

In chapter 5, we compute the reliability of k-out-of-n : G-system (particu-

larly, series and parallel system) with independent and non-identically distributed

components, where the reliability of the components are unknown. The reliabil-

ity of each component has been estimated using statistical confidence interval

approach. Then we converted these statistical confidence interval into triangular

intuitionistic fuzzy numbers. Based on these triangular intuitionistic fuzzy num-

bers, the reliability of the k-out-of-n : G-system has been calculated. Further,

in order to implement the proposed methodology and to analyze the results of

k-out-of-n : G-system, a numerical example has been provided.

In chapter 6, we introduce the concept of complex intuitionistic fuzzy soft sets

which is parametric in nature. However, the theory of complex fuzzy sets and

complex intuitionistic fuzzy sets are independent of the parametrization tools.

Some real life problems, for example, multi-criteria decision making problems,

involve the parametrization tools. In order to get their new entropies, some

xi



important properties and operations on the complex intuitionistic fuzzy soft sets

have also been discussed. On the basis of some well-known distance measures,

some new distance measures for the complex intuitionistic fuzzy soft sets have

also been obtained. Further, we have established correspondence between the

proposed entropies and the distance measures of complex intuitionistic fuzzy soft

sets.

In chapter 7, we present the conclusions.

xii
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Chapter 1

Introduction

1.1 Background and Motivation

Fuzzy sets, introduced by Zadeh (1965), provide a flexible framework for handling

non-statistical imprecision or vague concepts. It has been designed to represent

uncertainty and vagueness mathematically to provide formalized tools for dealing

with the imprecision intrinsic to many real world problems. Fuzzy set theory has

found wide applications in many areas of science and technology, e.g., clustering,

image processing, decision making etc. because of its capability to describe the

uncertain situations, containing ambiguity and vagueness.

However, fuzzy sets do not handle the situation, where the uncertain infor-

mation involves some degree of hesitation which mainly arises from the imprecise

and/or imperfect nature of the information. Atanassov (1986) introduced the

concept of Intuitionistic Fuzzy Set (IFS) as a generalization of fuzzy set, which

is found to be more useful in capturing the vague, incomplete or uncertain in-

formation that involves some degree of hesitation and applicable in various fields

of research. A prominent characteristic of IFS is that it assigns to each ele-

ment a membership degree and a non-membership degree with certain amount

of hesitation degree. Therefore, due to the feasibility and effectiveness of IFSs

1



in various engineering applications, intuitionistic fuzzy sets techniques have been

more popular than fuzzy sets techniques in recent years.

1.2 Basic Concepts of Fuzzy Sets

The concept of fuzzy set was first proposed by Lofti A. Zadeh (1965) as a gener-

alization of a crisp set. A crisp set is characterized by a characteristic function

while a fuzzy set is characterized by a membership function where an object be-

longs to a fuzzy set with a continuum grade of membership ranging between zero

and one.

Definition 1 (Fuzzy Set): Let X be the universal set. A fuzzy set A in X is

characterized by its membership function

µA : X → [0, 1]

and denoted by

A = {x, µA(x) : x ∈ X},

where µA(x) denotes the degree of membership of an element x in fuzzy set A.

Definition 2: (Support of a Fuzzy Set) The support of a fuzzy set A is the

set of all points x in X such that µA(x) > 0, i.e., Supp(A)= {x ∈ X |µA(x) > 0}.

Definition 3: (α-cut) The α-cut or α-level set of A is a crisp set defined by

Aα = {x|µA(x) ≥ α}, α ∈ [0, 1].

Similarly, the strong α-cut is defined as A′
α = {x|µA(x) > α}, α ∈ [0, 1].

Definition 4 (Convexity): A fuzzy set A is convex if

µA(λx1 + (1− λ)x2) ≥ min {µA(x1), µA(x2)}, x1, x2 ∈ X, λ ∈ [0, 1].

Alternatively, a fuzzy set is convex if all α-cuts are convex.

Mathematically, a fuzzy number is a convex and normalized fuzzy set whose

membership function is at least segmentally continuous having bounded support

2



and has the functional value µA(x) = 1 at precisely one element which is called

modal value of the fuzzy number. Among the various shapes of fuzzy number in

the literature of fuzzy set theory, triangular fuzzy number (TFN) is one of the

most popular type of fuzzy number.

A triangular fuzzy number Ã is defined by the membership function:

µÃ(x) =


(x−a)
(b−a) , where x ∈ [a, b]
(c−x)
(c−b) , where x ∈ (b, c]

0 , otherwise,

where b is known as the model value for which µÃ(b) = 1 and b− a > 0 and

c− b > 0 are the left and right spread of Ã, respectively.

Definition 5 (t-norm): A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is contin-

uous t-norm if ∗ satisfies the following properties:

(i) ∗ is commutative and associative;

(ii) ∗ is continuous;

(iii) a ∗ 1 = a, ∀a ∈ [0, 1];

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

Some examples of continuous t-norm are a∗ b = ab, a∗ b = min{a, b}, a∗ b =
max{a+ b− 1, 0}.

Definition 6 (s-norm): A binary operation ⋄ : [0, 1]× [0, 1] → [0, 1] is contin-

uous s-norm if ⋄ satisfies the following properties:

(i) ⋄ is commutative and associative;

(ii) ⋄ is continuous;

(iii) a ⋄ 1 = a, ∀a ∈ [0, 1];

(iv) a ⋄ b ≤ c ⋄ d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

3



Some examples of continuous s-norm are a⋄b = a+b−ab, a⋄b = max{a, b}, a⋄
b = min{a+ b, 1}.

1.3 Intuitionistic Fuzzy Sets

Out of several generalizations of fuzzy set for various objectives, the notion of

intuitionistic fuzzy set introduced by Atanassov [(1986), (1989)] has become more

popular and highly useful in dealing with vague and imprecise information. The

idea of intuitionistic fuzzy set provides a flexible mathematical framework to

handle the vagueness having hesitancy originating from imperfect or imprecise

information. For example, in decision making problems, particularly in the case

of medial diagnosis, sales analysis, new product marketing, financial services, etc.

there is a fair chance of the existence of a non-null hesitation part at each moment

of evaluation of an unknown object. Thus, a prominent characteristic of IFS is

that it assigns to each element in the universe a membership degree and a non-

membership degree with certain amount of hesitation degree. Since intuitionistic

fuzzy sets allow two degrees of freedom into a set description, and fuzzy sets

only allow one, this generalization gives us an additional possibility to represent

the lack of information that leads when we try to describe many real problems.

Thus, it becomes more convenient to model the situations where human answers

are present as ‘yes’, ‘no’ or ‘does not apply’. A good example of these kind of

situations is voting, since human voters can be divided into three groups: vote

for, vote against or abstain. Intuitionistic fuzzy sets are characterized by the

membership and non-membership functions expressing the degree of member-

ship (belongingness) and the degree of non-membership (non-belongingness) of

elements of the universe to the IFS with some degree of hesitation.

Definition 7 (Intuitionistic Fuzzy Set): Atanassov’s Intuitionistic Fuzzy Set

over the universal set X, is given by

Ã = {⟨x, µÃ(x), νÃ(x)⟩ : x ∈ X},

4



where µÃ : X → [0, 1] and νÃ : X → [0, 1] with the condition 0 ≤ µÃ(x) +

νÃ(x) ≤ 1, ∀x ∈ X. The numbers µÃ(x) and νÃ(x) denotes the degree of mem-

bership and non-membership of an element x to a set Ã respectively. For each

element x ∈ X, the amount πÃ(x) = 1 − µÃ(x) − νÃ(x) is called the degree of

indeterminacy (hesitancy). It is the degree of uncertainty whether x belongs to

Ã or not. We denote IFS(X) the set of all the IFSs on X.

Definition 8 (Basic Operations and Relations on Intuitionistic Fuzzy

Sets): Let Ã and B̃ are two IFSs belonging to IFS(X), then the following

operations have been defined as

• Union: Ã ∪ B̃ = {⟨x, max {µÃ(x), µB̃(x)}, min {νÃ(x), νB̃(x)}⟩|x ∈ X};

• Intersection: Ã∩B̃ = {⟨x, min {µÃ(x), µB̃(x)}, max {νÃ(x), νB̃(x)}⟩|x ∈ X};

• Complement: Ãc = {⟨x, νB̃(x), µÃ(x)⟩|x ∈ X};

• Inclusion: Ã ⊆ B̃ ⇔ µÃ(x) ≤ νB̃(x), νÃ(x) ≥ µB̃(x), ∀x ∈ X;

• Equality: Ã = B̃ ⇔ µÃ(x) = νB̃(x), νÃ(x) = µB̃(x), ∀x ∈ X.

Definition 9 (Vague Set): A vague set V = {⟨x, [µṼ (x), 1− νν̃(x)]⟩ : x ∈ X} ,
on the universal set X is characterized by a true membership function µṼ : X →
[0, 1] and a false membership (non-membership) function νṼ : X → [0, 1]. The

values µV (x) and νV (x) represents the degree of truth membership and degree of

false membership of x and always satisfies the condition 0 ≤ µṼ (x) + νṼ (x) ≤ 1,

for all x ∈ X. The value 1− µṼ (x)− νṼ (x) represents the degree of hesitation of

x ∈ X.

The value µṼ (x) is considered as the lower bound of the grade of membership

of x derived from the evidence for x and νṼ (x) is the lower bound of the grade

of membership of the negation of x derived from the evidence against x. Thus,

the grade of membership of x in the vague set Ã is bounded by a sub-interval

[µ(x), 1− ν(x)] of [0, 1]. For example, if the membership value of x in vague set

Ṽ on the universal set X is [0.5, 0.7], then µṼ (x) = 0.5 and 1 − νṼ (x) = 0.7 or

5



νṼ (x) = 0.3. This means that x belongs to vague set Ṽ with accept evidence is

0.5, decline evidence is 0.3.

We can see that the difference between vague set and intuitionistic fuzzy set

is due to the definition of membership intervals. We have [µṼ (x), 1− νṼ (x)] for

x in Ṽ but ⟨µÃ(x), νÃ(x)⟩ for x in Ã. Here the semantics of µÃ is same as with

µṼ and νÃ is the same as with νṼ . However, the boundary (1− νṼ (x)) is able to

indicate the possible existence of a data value, as already mentioned by Bustince

and Burillo (1996b). This subtle difference gives rise to a simpler but meaningful

graphical view of data sets. We now depict a vague set in figure 1.1 and an IFS

in figure 1.2, respectively. It can be seen that the shaded part, formed by the

boundary in a given vague set in figure 1.1, represents the possible existence of

data. Thus, this “hesitation region” corresponds to the intuition of representing

the vague data.
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Figure 1.1: Vague Set
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Figure 1.2: Intuitionistic Fuzzy Set

Definition 10 (α-Cut of Vague Set or IFS): The α-cut of a membership

function, is a crisp set which consists of elements of Ã having at least degree α.

It is denoted by Ãµ(α) and is defined mathematically as

Ãµ(α) = {x : µÃ(x) ≥ α, x ∈ X}, α ∈ [0, 1],

while for the non-membership function, it is defined as

Ãν(α) = {x : 1− νÃ(x) ≥ α, x ∈ X}, α ∈ [0, 1].

Definition 11 (Intuitionistic Fuzzy Number): An intuitionistic fuzzy subset

Ã = {⟨x, µÃ(x), νÃ(x)⟩ : x ∈ X} of the real line R is called an intuitionistic fuzzy

number if the following axioms hold:

(i) Ã is normal, i.e., there exist at least two points x1, x2 ∈ R such that

µÃ(x1) = 1 and νÃ(x2) = 0;

(ii) The membership function µÃ is fuzzy-convex, i.e.,

µÃ(λ · x1 + (1− λ) · x2) ≥ min {µÃ(x1), µÃ(x2)} ∀x1, x2 ∈ X, λ ∈ [0, 1];
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(iii) The non-membership function νÃ is fuzzy-concave, i.e.,

νÃ(λ · x1 + (1− λ) · x2) ≤ max {νÃ(x1), νÃ(x2)} ∀x1, x2 ∈ X, λ ∈ [0, 1];

Definition 12 (Triangular Intuitionistic Fuzzy Number): A Triangular

Intuitionistic Fuzzy Number (TIFN) Ã is an intuitionistic fuzzy set in R with

following membership function µÃ(x) and non-membership function νÃ(x):

µÃ(x) =


x−a1
a2−a1 , for a1 ≤ x ≤ a2
a3−x
a3−a2 , for a2 ≤ x ≤ a3

0, otherwise

and

νÃ(x) =


a2−x
a2−a′1

, for a′1 ≤ x ≤ a2
x−a2
a′3−a2

, for a2 ≤ x ≤ a′3

1, otherwise

where a′1 < a1 < a2 < a3 < a′3 and µÃ(x), νÃ(x) ≤ 0.5 for µÃ(x) = νÃ(x), ∀x ∈ R,

and TIFN is denoted by ÃTIFN = (a1, a2, a3, a
′
1, a

′
2, a

′
3).

Definition 13 (α-Cut of Intuitionistic Fuzzy Number): The α-cut repre-

sentation of an IFN Ã = ⟨(a, b, c);µ, ν⟩ defined on R, is given by the following

pair of intervals and denoted by(
Ã(αµ) =

[
Al(αµ), A

r(αµ)
]
; Ã(αν) =

[
Al(αν), A

r(αν)
])
,

where Al(αµ), A
l(αν) are the increasing functions and Ar(αµ), A

r(αν) are de-

creasing functions of αµ and αν , respectively.

The intervals of confidence defined by the α-cut of TIFN Ã are given by

Ã(αµ) =

[
a+

αµ
µ
(b− a), c− αµ

µ
(c− b)

]
, ∀αµ ∈ [0, µ],

and

Ã(αν) =

[
a+

αν
(1− ν)

(b− a), c− αν
(1− ν)

(c− b)

]
, ∀αν ∈ [0, 1− ν].
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1.4 Intuitionistic Fuzzy Information Measures

Szmidt and Kacprzyk (2001) extended the axioms of De Luca and Termini (1972)

and proposed the following definition for an entropy measure of intuitionistic

fuzzy set Ã ∈ IFS(X):

• (IFS1) : H(Ã) = 0 iff Ã is a crisp set, i.e., µÃ(xi) = 0 & νÃ(xi) = 1 or

µÃ(xi) = 1 & νÃ(xi) = 0, ∀xi ∈ X.

• (IFS2) : H(Ã) = 1 iff µÃ(xi) = νÃ(xi),∀xi ∈ X.

• (IFS3) : H(Ã) ≤ H(B̃) iff Ã is less fuzzy than B̃, i.e., µÃ(xi) ≤ µB̃(xi) &

νÃ(xi) ≥ νB̃(xi), for µB̃(xi) ≤ νB̃(xi) or µÃ(xi) ≥ µB̃(xi) & νÃ(xi) ≤ νB̃(xi), for

µB̃(xi) ≥ νB̃(xi), ∀xi ∈ X.

• (IFS4) : H(Ã) = H(Ãc), where Ãc is complement of Ã.

Vlachos and Sergiadis (2007) proposed the following intuitionistic fuzzy en-

tropy of Ã and cross-entropy between two IFSs Ã & B̃:

I(Ã, B̃) =

n∑
i=1

[
µÃ(xi) ln

µÃ(xi)
1
2µÃ(xi) +

1
2νB̃(xi)

+ νÃ(xi) ln
νÃ(xi)

1
2µÃ(xi) +

1
2νB̃(xi)

]

and

HLT (Ã) = −
1

n ln 2

n∑
i=1

[
µÃ(xi) ln

(
µÃ(xi)

µÃ(xi) + νÃ(xi)

)
+ νÃ(xi) ln

(
νÃ(xi)

µÃ(xi) + νÃ(xi)

)
− πÃ(xi) ln 2

]
,

respectively.

Hung & Yang (2006) introduced the following axiomatic definition of IFS

entropy in a probabilistic setting as a real valued functional H : IFS(X) → R+:

• IE1(Sharpness): H(Ã) = 0 iff Ã is a crisp set.

• IE2(Maximality): H(Ã) assumes a unique maximum if

µÃ(xi) = νÃ(xi) = πÃ(xi) =
1
3 , ∀xi ∈ X.

• IE3(Resolution): H(Ã) ≤ H(B̃) if Ã is crisper than B̃, i.e., if µÃ(xi) ≤ µB̃(xi)

& νÃ(xi) ≤ νB̃(xi), for max{µB̃(xi), νB̃(xi)} ≤ 1
3 and µÃ(xi) ≥ µB̃(xi) &

νÃ(xi) ≥ νB̃(xi), for min{µB̃(xi), νB̃(xi)} ≥ 1
3 , ∀xi ∈ X.
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• IE4(Symmetry): H(Ãc) = H(Ã).

Under the above axioms, Hung and Yang (2006) proposed two families of

fuzzy entropies of an IFS Ã given by

Hα
hc(Ã) =


1

(α−1)n

∑n
i=1

[
1−

(
µα
Ã
(xi) + να

Ã
(xi) + πα

Ã
(xi)

)]
; α ̸= 1(α > 0)

− 1
n

∑n
i=1 (µÃ(xi) log µÃ(xi) + νÃ(xi) log νÃ(xi) + πÃ(xi) log πÃ(xi)) ;α = 1,

and

Hβ
r (Ã) =

1

1− β

n∑
i=1

log
(
µβ
Ã
(xi) + νβ

Ã
(xi) + πβ

Ã
(xi)

)
; 0 < β < 1.

1.5 Interval-valued Intuitionistic Fuzzy Sets

In many real-world decision problems the values of the membership function and

the non-membership function in an IFS are difficult to be expressed as exact

numbers. Instead, the ranges of their values can usually be specified. In such

cases, Atanassov and Gargov (1989) generalized the concept of IFS to interval-

valued intuitionistic fuzzy set (IVIFS), and define some basic operational laws

of IVIFSs. In this section, we present the basics of interval-valued intuitionistic

fuzzy sets and interval-valued intuitionistic fuzzy numbers which are well known

in literature.

Definition 14 (Interval-Valued Intuitionistic Fuzzy Number): Let X be

a universe of discourse and int (0, 1) be the set of all closed subintervals of the

interval [0, 1]. An interval-valued intuitionistic fuzzy set (IVIFS) Ã∗ in X is an

object having the form:

Ã∗ =
{⟨

x, mµ

Ã∗
(x), nν

Ã∗
(x)
⟩
|x ∈ X

}
where mµ

Ã∗
: X → int (0, 1), nν

Ã∗
: X → int (0, 1), with the condition

0 ≤ sup
(
mµ

Ã∗
(x)
)
+ sup

(
nν
Ã∗
(x)
)
≤ 1, ∀x ∈ X.
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Here, the intervals mµ

Ã∗
(x) = [µL

Ã∗
(x), µU

Ã∗
(x)] and nν

Ã∗
= [νL

Ã∗
(x), νU

Ã∗
(x)]

denote the degree of the membership and the non-membership of an element

x belonging to IVIFS Ã∗, respectively. For each IVIFS Ã∗ in X, the amount

πÃ∗
(x) =

[
1− µU

Ã∗
(x)− νU

Ã∗
(x), 1− νL

Ã∗
(x)− νL

Ã∗
(x)
]
, is called the interval-valued

intuitionistic index of x in Ã∗, which is a hesitancy degree of x to Ã∗. It is the

degree of uncertainty whether an element x belongs to Ã∗ or not. We denote

IVIFS(X) the set of all the IVIFSs on X.

Definition 15 (Basic Operations and Relations on IVIFSs): For all x ∈
X and Ã∗, B̃∗ ∈ IVIFS(X), the following relations and operations have been

defined as follows:

• Union: Ã∗ ∪ B̃∗ =
{⟨

x, mµ

Ã∗∪B̃∗
(x), nν

Ã∗∪B̃∗
(x)|x ∈ X

⟩
|x ∈ X

}
,

where

mµ

Ã∗∪B̃∗
(x) =

[
min

{
inf
(
mµ

Ã∗
(x)
)
, inf

(
mµ

B̃∗
(x)
)}
, max

{
sup

(
mµ

Ã∗
(x)
)
, sup

(
mµ

B̃∗
(x)
)}]

,

nν
Ã∗∪B̃∗

(x) =
[
max

{
inf
(
nν
Ã∗

(x)
)
, inf

(
nν
B̃∗

(x)
)}
, min

{
sup

(
nν
Ã∗

(x)
)
, sup

(
nν
B̃∗

(x)
)}]

.

• Intersection: Ã∗ ∩ B̃∗ =
{⟨

x, mµ

Ã∗∩B̃∗
(x), nν

Ã∗∩B̃∗
(x)
⟩
|x ∈ X

}
,

where

mµ

Ã∗∩B̃∗
(x) =

[
max

{
inf
(
mµ

Ã∗
(x)
)
, inf

(
mµ

B̃∗
(x)
)}
, min

{
sup

(
mµ

Ã∗
(x)
)
, sup

(
mµ

B̃∗
(x)
)}]

,

nν
Ã∗∩B̃∗

(x) =
[
min

{
inf
(
nν
Ã∗

(x)
)
, inf

(
nν
B̃∗

(x)
)}
, max

{
sup

(
nν
Ã∗

(x)
)
, sup

(
nν
B̃∗

(x)
)}]

.

• Addition: Ã∗ + B̃∗ =
{⟨

x, mµ

Ã∗+B̃∗
(x), nν

Ã∗+B̃∗
(x)
⟩
|x ∈ X

}
,

where

mµ

Ã∗+B̃∗
(x) =

[
inf
(
mµ

Ã∗
(x)
)
+ inf

(
mµ

B̃∗
(x)
)
− inf

(
mµ

Ã∗
(x)
)
· inf

(
mµ

B̃∗
(x)
)
,

sup
(
mµ

Ã∗
(x)
)
+ sup

(
mµ

B̃∗
(x)
)
− sup

(
mµ

Ã∗
(x)
)
· sup

(
mµ

B̃∗
(x)
)]
,

nν
Ã∗+B̃∗

(x) =
[
inf
(
nν
Ã∗

(x)
)
+ inf

(
nν
B̃∗

(x)
)
, sup

(
nν
Ã∗

(x)
)
+ sup

(
nν
B̃∗

(x)
)]
.

• Product: Ã∗ · B̃∗ =
{⟨

x, mµ

Ã∗·B̃∗
(x), nν

Ã∗·B̃∗
(x)
⟩
|x ∈ X

}
,

where

mµ

Ã∗·B̃∗
(x) =

[
inf
(
mµ

Ã∗
(x)
)
+ inf

(
mµ

B̃∗
(x)
)
, sup

(
mµ

Ã∗
(x)
)
+ sup

(
mµ

B̃∗
(x)
)]
,

nν
Ã∗·B̃∗

(x) =
[
inf
(
nν
Ã∗

(x)
)
+ inf

(
nν
B̃∗

(x)
)
− inf

(
nν
Ã∗

(x)
)
· inf

(
nν
B̃∗

(x)
)
,

sup
(
nν
Ã∗

(x)
)
+ sup

(
nν
B̃∗

(x)
)
− sup

(
nν
Ã∗

(x)
)
· sup

(
nν
B̃∗

(x)
)]
.
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• Complement: Ãc
∗ =

{⟨
x, [νL

Ã∗
(x), νR

Ã∗
(x)], [µL

Ã∗
(x), µR

Ã∗
(x)]

⟩}
;

• Subset: Ã∗ ⊆ B̃∗ ⇔ µL
Ã∗
(x) ≤ µL

B̃∗
(x), µU

Ã∗
(x) ≤ µU

B̃∗
, νL

Ã∗
(x) ≥ νL

B̃∗
(x) and

νU
Ã∗
(x) ≥ νU

B̃∗
.

• Domination: Ã∗ ≼ B̃∗ ⇔ µL
Ã∗
(x) ≤ µL

B̃∗
(x), µU

Ã∗
(x) ≤ µU

B̃∗
, νL

Ã∗
(x) ≤

νL
B̃∗
(x) and νU

Ã∗
(x) ≤ νU

B̃∗
.

• Equality: Ã∗ = B̃∗ ⇔ µL
Ã∗
(x) = µL

B̃∗
(x), µU

Ã∗
(x) = µU

B̃∗
, νL

Ã∗
(x) = νL

B̃∗
(x)

and νU
Ã∗
(x) = νU

B̃∗
.

1.6 Complex Intuitionistic Fuzzy Sets

Ramot et al. [(2002), (2003)] introduced a new innovative concept of complex

fuzzy set (CFS), where the membership function µ instead of being a real valued

function with the range of [0, 1] is replaced by a complex-valued function of the

form rA(x) · eiΩA(x), (i =
√
−1), where rA(x) is a real valued function such that

rA(x) ∈ [0, 1] and ΩA(x) is a periodic function. The key feature of complex

fuzzy sets is the presence of phase and its membership. Several examples are

given in Ramot et al. (2003), which demonstrate the utility of these complex

fuzzy sets. They also defined several important operations such as complement,

union, intersection and discussed fuzzy relations for such complex fuzzy sets. On

the other hand, Jun et al. (2012) used the complex fuzzy set to represent the

information with uncertainty and periodicity, where they introduced a product-

sum aggregation operator based prediction (PSAOP) method to find the solution

of the multiple periodic factor prediction (MPFP) problems. Further, Chen et

al. (2011) proposed a neurofuzzy system architecture to implement the complex

fuzzy rule as a practical application of the concept of complex fuzzy logic.

Definition 16 (Complex Fuzzy Set): A complex fuzzy set A, defined on

universal set X, is characterized by the membership function µA(x), which assign

to each element x ∈ X a complex-valued grade of membership in A.
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The a complex fuzzy set A may be represented as the set of ordered pairs

A = {⟨x, µA(x)⟩ : x ∈ X},

where µA(x) : X → {a|a ∈ C, |a| ≤ 1}.

It may be noted that the membership function µA(x) receives the values lying

within the unit circle in the complex plane and are of the form

µA(x) = rA(x) · eiΩA(x), (i =
√
−1),

where rA is a real valued function such that rA(x) ∈ [0, 1] and ΩA is a periodic

function whose periodic law and principal period are respectively, 2π and 0 ≤
ωA(x) ≤ 2π, i.e., ΩA(x) = ωA(x) + 2kπ, k = 0, ±1, ±2, . . . , where ωA(x) is the

principal argument.

Definition 17 (Operations on Complex Fuzzy Set): Let A and B be two

complex fuzzy sets on X, where µA(x) = rA(x) ·eiωA(x) and µB(x) = rB(x) ·eiωB(x)

are their membership functions, respectively. Then their set theoretic operations

have been defined as follows:

• Complement: µĀ(x) = (1− rA(x)) · eiωĀ(x);

• Union: A
∪

B =
{
⟨x, rA(x) ⋄ rB(x) · eωA∪B(x)⟩|x ∈ X

}
;

• Intersection: A
∩

B =
{
⟨x, rA(x) ∗ rB(x) · eωA∪B(x)⟩|x ∈ X

}
,

where the ⋄ and ∗ are s-norm and t-norm operators, respectively.

Ramot et al. (2002) obtained several possible methods for calculating the

membership phase of complex fuzzy complement, ωC̄(x). For example, ωC̄(x) may

be defined as ωC̄(x) = ωC(x) or ωC̄(x) may be defined by the relation ωC̄(x) =

2π − ωC(x), which is described by Zhang et al. (2009) to define the complement

for the phase component, also the rotation of ωC(x) by π radians, may be a good

method to calculate the complement for a phase term as ωC̄(x) = π + ωC(x).
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Definition 18 (Phase Union and Intersection): Let A and B be two complex

fuzzy sets in X. Then complex fuzzy union and intersection are specified by the

functions u and v as follows:

u : {a|a ∈ C, |a| ≤ 1} × {b|b ∈ C, |b| ≤ 1} → {c|c ∈ C, |c| ≤ 1},

v : {a|a ∈ C, |a| ≤ 1} × {b|b ∈ C, |b| ≤ 1} → {c|c ∈ C, |c| ≤ 1},
where u satisfies at least the following axiomatic requirements:

• (boundary conditions): u(a, 0) = a;

• (monotonicity): |b| ≤ |d| ⇒ |u(a, b) ≤ |u(a, d)|;

• (commutativity): u(a, b) = u(b, a);

• (associativity): u(a, u(b, d)) = u(u(a, b), d).

In some cases, it may be desirable that u also satisfies the following axiomatic

requirements:

• (continuity): u is a continuous function;

• (superidempotency): |u(a, a)| > |a|;

• (strict monotonicity): |a| ≤ |c| and |b| ≤ |d| ⇒ |u(a, b)| ≤ |u(c, d)|.

and v must satisfies the following axiomatic requirements:

• (boundary conditions): if |b| = 1, then v(a, b) = |a|;

• (monotonicity): |b| ≤ |d| ⇒ |v(a, b) ≤ |v(a, d)|;

• (commutativity): v(a, b) = v(b, a);

• (associativity): v(a, v(b, d)) = v(v(a, b), d).

In some cases, it may be required that v also satisfies the following axiomatic

requirements:
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• (continuity): v is a continuous function;

• (superidempotency): |v(a, a)| < |a|;

• (strict monotonicity): |a| ≤ |c| and |b| ≤ |d| ⇒ |v(a, b)| ≤ |v(c, d)|.

The following are several possibilities for calculation of ωA∪B(x) and ωA∩B(x)

which, if combined with an appropriate function for determining rA∪B(x) and

rA∩B(x), satisfies the above axiomatic requirements.

(i) Sum: ωA(x) + ωB(x);

(ii) Max: max(ωA(x), ωB(x));

(iii) Min: min(ωA(x), ωB(x));

(iv) “Winner Take All”:

 ωA(x), if rA(x) > rB(x)

ωB(x), if rA(x) ≤ rB(x).

Further, Alkouri and Salleh [(2012), (2013)] gave the generalization of com-

plex fuzzy set to the complex intuitionistic fuzzy set by adding the non-membership

term to the definition of CFS. The range of values are extended to the unit circle

in complex plane for both membership and non-membership functions instead of

[0, 1] as in the conventional intuitionistic fuzzy sets.

Definition 19 (Complex Intuitionistic Fuzzy Set): A complex intuitionistic

fuzzy set Ã, defined on a universal set X, is characterized by the membership

and non-membership functions µÃ(x) and νÃ(x), respectively that assign to each

element x ∈ X a complex-valued grade of membership & non-membership in Ã.

The complex intuitionistic fuzzy set Ã may be represented as

Ã = {⟨x, µÃ(x), νÃ(x)⟩ : x ∈ X},

where µÃ(x) : X → {a|a ∈ C, |a| ≤ 1} and νÃ(x) : X → {a′|a′ ∈ C, |a′| ≤ 1}.

It may be noted that the values of µÃ(x), νÃ(x) and their sum are lying

within the unit circle in the complex plane and are of the form µÃ(x) = rÃ(x) ·
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eiω
r
Ã
(x) and νÃ(x) = kÃ(x) · e

iωk
Ã
(x), where rÃ(x), kÃ(x) are real valued functions

such that rÃ(x), kÃ(x) ∈ [0, 1] and satisfies the condition 0 ≤ rÃ(x)+ kÃ(x) ≤ 1.

The phase terms ωr
Ã
(x) and ωs

Ã
(x) belong to (0, 2π].

1.7 Intuitionistic Fuzzy Soft Sets

Molodtsov (1999) pointed out that the important existing theories viz. proba-

bility theory, fuzzy set theory, intuitionistic fuzzy set theory, rough set theory

etc., which can be considered as mathematical tools for dealing with uncertain-

ties, have their own difficulties. The inadequacy of the parametrization tools

of these theories make them very limited and difficult. In order to overcome the

above stated difficulties, Molodtsov (1999) introduced the concept of Soft Sets for

dealing with uncertainties in parameterized form. Later on Maji et al. [(2001),

(2004a), (2004b)] extended Soft Sets to Fuzzy Soft Sets and Intuitionistic Fuzzy

Soft Sets (IFSSs). Pei and Miao (2005) and Chen et al. (2005) have studied and

extended the work of Maji et al. [(2002), (2003)]. Also, Majumdar and Samanta

(2010) have further generalized the concept of fuzzy soft sets.

Definition 20 (Soft Sets): Let X be the universal set, E be the set of param-

eters under consideration and P(X) denotes the power set of X. A soft set may

be represented by the set of ordered pairs as

⟨F, E⟩ = {⟨ε, F (ε)⟩|ε ∈ E, F (ε) ∈ P(X)},

where F is a mapping given by

F : E → P(X).

In other words, the soft set is a parameterized family of subsets of the universe

X. For each ε ∈ E, F (ε) may be considered as a set of ε-elements or as a set of

ε-approximate elements of the soft set ⟨F, E⟩.

Definition 21 (Fuzzy Soft Sets): Let X be the universal set, E be the set of

parameters under consideration and FS(X) denotes the set of all fuzzy subset of
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X. A fuzzy soft set may be represented by the set of ordered pairs as

⟨F, E⟩ = {⟨ε, F (ε)⟩|ε ∈ E, F (ε) ∈ FS(X)},

where F is a mapping given by F : E → FS(X) such that F (ε) = ϕ, i.e.,

µF (ε)(x) = 0, ∀x ∈ X, if ε /∈ E.

Definition 22 (Intuitionistic Fuzzy Soft Sets): Let X be the universal set,

E be the set of parameters under consideration and IFS(X) denotes the set

of all intuitionistic fuzzy subset of X. An intuitionistic fuzzy soft set may be

represented by the set of ordered pairs as

⟨F̃ , E⟩ = {⟨ε, F̃ (ε)⟩|ε ∈ E, F̃ (ε) ∈ IFS(X)},

where F̃ is a mapping given by F̃ : E → IFS(X) such that F̃ (ε) = ϕ, i.e.,

µF̃ (ε)(x) = 0 and νF̃ (ε)(x) = 1, ∀x ∈ X, if ε /∈ E.

Definition 23 (Operations on IFSSs): Suppose that ⟨F̃ , E⟩ and ⟨G̃, E⟩ are
two intuitionistic fuzzy soft sets over a universal set X. Then in view of the above

definition, the following operations have been defined as:

• Union: ⟨F̃ , E⟩ ∪ ⟨G̃, E⟩ = ⟨H̃, E⟩,
where H̃(ε) =

{⟨
x, µF̃ (ε)(x) ⋄ µG̃(ε)(x), νF̃ (ε)(x) ∗ νG̃(ε)(x)

⟩
|x ∈ X, ∀ε ∈ E

}
.

• Intersection:⟨F̃ , E⟩ ∩ ⟨G̃, E⟩ = ⟨H̃, E⟩,
where H̃(ε) =

{⟨
x, µF̃ (ε)(x) ∗ µG̃(ε)(x), νF̃ (ε)(x) ⋄ νG̃(ε)(x)

⟩
|x ∈ X, ∀ε ∈ E

}
.

Here ⋄ and ∗ are s-norm and t-norm operators respectively.

• Complement: (F̃ , E)c = (F̃ c, ¬E),

where mapping F̃ c : ¬E → IFS(X) is given by

F̃ c(¬ε) =
{⟨

x, νF̃ (¬¬ε)(x), µF̃ (¬¬ε)(x)
⟩
|x ∈ X

}
=

{⟨
x, νF̃ (ε)(x), µF̃ (ε)(x)

⟩
|x ∈ X

}
, ∀¬ε ∈ ¬E.

• Subset: ⟨F̃ , E⟩ ⊆ ⟨G̃, E⟩, if and only if µF̃ (ε)(x) ≤ µG̃(ε)(x) and

νF̃ (ε)(x) ≥ νG̃(ε)(x),∀x ∈ X, and ε ∈ E.
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• Equality: ⟨F̃ , E⟩ = ⟨G̃, E⟩, if and only if µF̃ (ε)(x) = µG̃(ε)(x) and

νF̃ (ε)(x) = νG̃(ε)(x), ∀x ∈ X, and ε ∈ E,

1.8 Literature Survey

The concept of fuzzy entropy has been widely used in different areas, e.g., ma-

chine learning, pattern recognition, image processing, decision making, finance

and medical diagnosis etc. A large number of generalizations of fuzzy entropy

are available in the literature, among them some famous generalizations are given

by De Luca and Termini (1972), Kaufman [(1975), (1980)], Yager (1979), Kosko

[(1986), (1990)], Pal and Pal (1989). Further, Bhandari and Pal (1993) made a

survey on entropy of fuzzy sets and gave some new measures of fuzzy informa-

tion. Vlachos and Sergiadis (2007) extended the De Luca and Termini’s (1972)

non-probabilistic entropy for fuzzy sets in the study of the intuitionistic fuzzy

information measure.

Tanaka et al. [(1980), (1982)] initiated the research in the area of linear

regression analysis in a fuzzy environment, where a fuzzy linear system is used

as a regression model. Tanaka and Warada (1988), Tanaka et al. (1989), Tanaka

and Ishibuchi (1991) considered more general models in fuzzy regression. The

comparison among various fuzzy regression models and the difference between

the approaches of fuzzy regression analysis and conventional regression analysis

have been presented by Redden and Woodall (1994). Chang and Lee (1994)

& Redden and Woodall (1994) pointed out some weaknesses of the approaches

proposed by Tanaka et al. (1989).

Further, Cai et al. (1993) developed the fuzzy system reliability based on

the basis of fuzzy state and probability assumptions. Next, Cai et al. (1995)

also discussed the system reliability for coherent system based on the fuzzy-

state and probability assumptions. Cai et al. (1993) presented a fuzzy set-based

approach to failure rate and reliability analysis. Cheng and Mon (1993) used
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interval of confidence in order to analyze fuzzy system reliability. Chen (1994)

presented a new method for fuzzy system reliability analysis using fuzzy number

arithmetic operations in which the reliability of each component is considered as

fuzzy number and used simplified fuzzy arithmetic operations rather than com-

plicated interval fuzzy arithmetic operations of fuzzy numbers. Mahapatra and

Roy (2009) presented a method to analyze the fuzzy reliability of the series and

parallel system using triangular intuitionistic fuzzy numbers (TIFNs) arithmetic

operations. Yao et al. (2008) applied a statistical methodology in fuzzy system

reliability analysis.

Szmidt and Kacprzyk (2001) showed that intuitionistic fuzzy sets are useful in

situations when description of a problem by a linguistic variable given in terms of a

membership function only seems too rough. De et al. (2001) gave an intuitionistic

fuzzy sets approach in medical diagnosis. Burillo and Bustince (1996a) introduced

the notions of entropy of IFSs and interval-valued fuzzy sets (IVFS) to measure

the degree of intuitionism of an IFS and IVFS, respectively. Further, Szmidt

and Kacprzyk (2005) defined a similarity measure using distance measure of

IFSs and applied these measures in group decision making problems and medical

diagnostic reasoning. Xu (2007a) defined some similarity measures for IVIFSs and

applied these similarity measures in pattern recognitions. Hung and Yang (2004)

presented a similarity measure of IFSs based on Hausdorff metric and applied it

to pattern recognition problems. In the study of fuzzy sets, Wang (1997) defined

two similarity measures and Pappis and Karacapilidis (1993) defined three kinds

of similarity measures. Hung and Yang (2008) extend these similarity measures

from the fuzzy sets to IFSs.

Xu and Yager (2006) developed some geometric aggregation operators, such

as the intuitionistic fuzzy weighted geometric (IFWG) operator, the intuitionis-

tic fuzzy ordered weighted geometric (IFOWG) operator and the intuitionistic

fuzzy hybrid geometric (IFHG) operator, and gave an application of the IFHG

operator to multi-criteria decision-making problems with intuitionistic fuzzy in-

formation. Xu (2007a) developed some arithmetic aggregation operators, such

19



as the intuitionistic fuzzy weighted averaging (IFWA) operator, the intuitionis-

tic fuzzy ordered weighted averaging (IFOWA) operator and the intuitionistic

fuzzy hybrid aggregation (IFHA) operator. Xu (2007b) defined the concept of

interval-valued intuitionistic fuzzy number (IVIFN), and gave some basic oper-

ational laws of IVIFNs. He gave an interval-valued intuitionistic fuzzy weighted

averaging operator and an interval-valued intuitionistic fuzzy weighted geometric

operator and defines the score function and the accuracy function of IVIFNs.

Xu and Chen (2007) developed some arithmetic aggregation operators, such as

the interval-valued intuitionistic fuzzy weighted averaging (IIFWA) operator, the

interval-valued intuitionistic fuzzy ordered weighted averaging (IIFOWA) oper-

ator and the interval-valued intuitionistic fuzzy hybrid aggregation (IIFHA) op-

erator, and gave an application of the IIFHA operator to multi-criteria decision

making problems with interval-valued intuitionistic fuzzy information by using

the score function and accuracy function of interval-valued intuitionistic fuzzy

numbers.

Chen et al. (2011) proposed a neurofuzzy system architecture to implement

the complex fuzzy rule as a practical application of the concept of complex fuzzy

logic. Alkouri and Salleh (2012) introduced the concept of Complex Intuitionistic

Fuzzy Set (CIFS) to represent the information which is happening repeatedly over

a period of time. Further, as an application, Alkouri and Salleh (2013) presented

an example of suppler selection model which is based on the distance measure of

complex intuitionistic fuzzy sets.

1.9 Outline of Thesis

We presented fundamental background of fuzzy set, intuitionistic fuzzy set, soft

set and complex intuitionistic fuzzy set with their definitions and various prop-

erties along with a brief literature survey in chapter 1.

In chapter 2, a new R-norm intuitionistic fuzzy entropy and R-norm intu-
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itionistic fuzzy directed divergence measure have been proposed with their proof

of validity with their monotonic behavior. Computational applications of these

information measures in the field of pattern recognition and image thresholding

has been proposed with discussion.

In chapter 3, the estimators of regression coefficients of the proposed fuzzy

linear regression model (restricted/unrestriced) have been obtained with the help

of fuzzy entropy. Some numerical examples have also been provided in order

to illustrate the proposed model. Further, in order to compare the performance

of unrestricted estimator and restricted estimator, a simulation study has been

conducted by using two fundamental criteria of dominance-mean squared error

matrix and absolute bias.

In chapter 4, new similarity measures for intuitionistic fuzzy sets and interval-

valued intuitionistic fuzzy sets based on ‘NTV’ metric along with their weighted

form has been proposed. The proposed similarity measures have been analogously

extended to obtain new entropies for intuitionistic fuzzy sets and interval-valued

intuitionistic fuzzy sets along with their proofs of validity. A new algorithm

for multi-criteria group decision making has been provided using the proposed

weighted similarity measures and entropies.

In chapter 5, we compute the reliability of k-out-of-n : G-system (particu-

larly, series and parallel system) with independent and non-identically distributed

components, where the reliability of the components are unknown. The reliabil-

ity of each component has been estimated using statistical confidence interval

approach. Then we converted these statistical confidence interval into triangu-

lar intuitionistic fuzzy numbers. Based on these triangular intuitionistic fuzzy

numbers, the reliability of the k-out-of-n : G-system has been calculated.

In chapter 6, we introduce the concept of complex intuitionistic fuzzy soft

sets which is parametric in nature. In order to get their new entropies, some

important properties and operations on the complex intuitionistic fuzzy soft sets

have also been discussed. On the basis of some well-known distance measures,
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some new distance measures for the complex intuitionistic fuzzy soft sets have

also been obtained. Further, we have established correspondence between the

proposed entropies and the distance measures of complex intuitionistic fuzzy soft

sets.

Finally, the conclusions have been presented in chapter 7.
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Chapter 2

R-norm Intuitionistic Fuzzy

Information Measures and their

Computational Applications

2.1 Introduction

Intuitionistic Fuzzy Set (IFS), developed by Atanassov (1986) is a controlling tool

to deal with vagueness and uncertainty. A prominent characteristic of IFS is that

it assigns to each element a membership degree and a non-membership degree

with certain amount of hesitation degree. Thus, the IFS constitutes an extension

of Zadeh’s fuzzy set (1965), which only assigns to each element a membership

degree. Szmidt and Kacprzyk (2001) showed that intuitionistic fuzzy sets are

useful in situations when description of a problem by a linguistic variable given

in terms of a membership function only seems too rough. Due to the flexibil-

ity of IFS in handling uncertainty, they are tool for a more human consistent

reasoning under imperfectly defined facts and imprecise knowledge [Szmidt and

Kacprzyk (2004)]. De et al. (2001) gave an intuitionistic fuzzy sets approach in

medical diagnosis. Intuitionistic fuzzy set is a tool in modeling real life problems

like sale analysis, new product marketing, financial services, negotiation process,

23



psychological investigations etc. since there is a fair chance of the existence of

a non-null hesitation part at each moment of evaluation of an unknown object

[Szmidt and Kacprzyk, (1997), (2001)]. In the context of pattern recognition,

Dengfeng and Chuntian (2002) and Mitchell (2003) applied similarity measures

for IFSs to perform classification.

In this chapter, a new R-norm intuitionistic fuzzy entropy and R-norm intu-

itionistic fuzzy directed divergence measure for intuitionistic fuzzy sets have been

proposed with their proof of validity in section 2.2 and section 2.3 respectively.

Further, in section 2.4, empirical study on the proposed information measures

has also been done which explains the monotonic nature of the information mea-

sures with respect to the parameters involved. Applications of the proposed new

information measures in the field of pattern recognition and image thresholding

have also been discussed and suggested in section 2.5.

2.2 R-norm Information Measure of IFS

Hung & Yang (2006) introduced the following axiomatic definition of IFS entropy

in a probabilistic setting as a real valued functional H : IFS(X) → R+:

• IE1(Sharpness): H(Ã) = 0 iff Ã is a crisp set;

• IE2(Maximality): H(Ã) assumes maximum value if

µÃ = νÃ = πÃ = 1
3 , ∀xi ∈ X ;

• IE3(Resolution): H(Ã) ≤ H(B̃) if Ã is crisper than B̃, i.e., if µÃ(xi) ≤ µB̃(xi)

& νÃ(xi) ≤ νB̃(xi), for max{µB̃(xi), νB̃(xi)} ≤ 1
3 and µÃ(xi) ≥ µB̃(xi) &

νÃ(xi) ≥ νB̃(xi), for min{µB̃(xi), νB̃(xi)} ≥ 1
3 , ∀xi ∈ X;

• IE4(Symmetry): H(Ãc) = H(Ã).

Let △n = {P = (p1, p2, . . . , pn), 0 ≤ pi ≤ 1;
n∑
i=1

pi = 1} be the set of all

probability distributions associated with a discrete random variable X. Boekee
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and Lubbe (1980) defined R-norm information measure of the probability distri-

bution P for R ∈ R+ as given by

HR(P ) =
R

R− 1

1−( n∑
i=1

pRi

) 1
R

 ; R > 0, R ̸= 1. (2.2.1)

The measure (2.2.1) is a real function from △n to R+ and is called R-norm

information measure. The most important property of this measure is that when

R → 1, it approaches to Shannon’s entropy (1948) and when R → ∞, HR(P ) →
(1−max pi); i = 1, 2, . . . , n.

For an IFS Ã in X, we have 0 ≤ µÃ(xi), νÃ(xi), πÃ(xi) ≤ 1 and µÃ(xi) +

νÃ(xi) + πÃ(xi) = 1, ∀xi ∈ X. This implies that ⟨µÃ(xi), νÃ(xi), πÃ(xi)⟩ may

be regarded as a probability distribution. Therefore, corresponding to R-norm

information measure (2.2.1), we propose the following intuitionistic fuzzy entropy:

HR(Ã) =
R

(R− 1)

n∑
i=1

1

n

[
1−

(
(µR
Ã
(xi) + νR

Ã
(xi) + πR

Ã
(xi))

) 1
R

]
, R > 0, R ̸= 1.

(2.2.2)

It may be observed that when R → 1, the R-norm intuitionistic fuzzy entropy

HR(Ã) → − 1
n
log

(
n∑
i=1

µ(xi)
µ(xi) ·

n∑
i=1

ν(xi)
ν(xi) ·

n∑
i=1

π(xi)
π(xi)

)
.

We present following properties for proving the validity of the above proposed
measure:
Property 2.2.1: Under the condition of IE3, we have

∣∣∣∣µÃ(xi)−
1

3

∣∣∣∣+ ∣∣∣∣νÃ(xi)−
1

3

∣∣∣∣+ ∣∣∣∣πÃ(xi)−
1

3

∣∣∣∣ ≥ ∣∣∣∣µB̃(xi)−
1

3

∣∣∣∣+ ∣∣∣∣νB̃(xi)−
1

3

∣∣∣∣+ ∣∣∣∣πB̃(xi)−
1

3

∣∣∣∣ (2.2.3)

and (
µÃ(xi)−

1

3

)2

+

(
νÃ(xi)−

1

3

)2

+

(
πÃ(xi)−

1

3

)2

≥
(
µB̃(xi)−

1

3

)2

+

(
νB̃(xi)−

1

3

)2

+

(
πB̃(xi)−

1

3

)2

. (2.2.4)

Proof.

If µÃ(xi) ≤ µB̃(xi) and νÃ(xi) ≤ νB̃(xi) for max{µB̃(xi), νB̃(xi)} ≤ 1
3
, then

µÃ(xi) ≤ µB̃(xi) ≤ 1
3
, νÃ(xi) ≤ νB̃(xi) ≤ 1

3
and πÃ(xi) ≥ πB̃(xi) ≥ 1

3
, which

implies that∣∣∣∣µÃ(xi)−
1

3

∣∣∣∣ ≥ ∣∣∣∣µB̃(xi)−
1

3

∣∣∣∣, ∣∣∣∣νÃ(xi)− 1

3

∣∣∣∣ ≥ ∣∣∣∣νB̃(xi)− 1

3

∣∣∣∣ and ∣∣∣∣πÃ(xi)− 1

3

∣∣∣∣ ≥ ∣∣∣∣πB̃(xi)− 1

3

∣∣∣∣.
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This implies that the equation (2.2.3) and (2.2.4) hold.

Similarly, if µÃ(xi) ≥ µB̃(xi) and νÃ(xi) ≥ νB̃(xi) for max{µB̃(xi), νB̃(xi)} ≥ 1
3
,

then equation (2.2.3) and (2.2.4) hold.

Theorem 2.2.1: HR(Ã) is a valid intuitionistic fuzzy information measure.

Proof.

In order to prove that the measure (2.2.2) is a valid intuitionistic fuzzy informa-

tion measure, we shall show that four properties (IE1-IE4) are satisfied.

(IE1)(Sharpness): Since R(̸= 1) > 0, therefore this is possible only in the

following cases:

• Either µÃ(xi) = 1, i.e., νÃ(xi) = πÃ(xi) = 0 or

• νÃ(xi) = 1, i.e., µÃ(xi) = πÃ(xi) = 0 or

• πÃ(xi) = 1, i.e., νÃ(xi) = µÃ(xi) = 0.

In all the cases, HR(Ã) = 0 implies that Ã is a crisp set. Conversely, if Ã be

a crisp set, i.e., either µÃ(xi) = 1, or νÃ(xi) = πÃ(xi) = 0 and either νÃ(xi) = 1

or µÃ(xi) = πÃ(xi) = 0 and either πÃ(xi) = 1 or νÃ(xi) = µÃ(xi) = 0.

It implies that µR
Ã
(xi) + νR

Ã
(xi) + πR

Ã
(xi))

1
R = 1 for R( ̸= 1) > 0, which gives

HR(Ã) = 0. Hence HR(Ã) = 0 if and only if Ã is a crisp set.

(IE2)(Maximality): Since µÃ(xi) + νÃ(xi) + πÃ(xi) = 1 , therefore to obtain

the maximum value of intuitionistic fuzzy entropy, we write

g(µÃ, νÃ, πÃ) = µÃ(xi) + νÃ(xi) + πÃ(x)− 1

and taking the Lagrange’s multiplier λ, we consider

G(µÃ, νÃ, πÃ) = HR(µÃ, νÃ, πÃ) + λg(µÃ, νÃ, πÃ). (2.2.5)

To find the maximum value of HR(Ã), we differentiate (2.2.5) partially with

respect to µÃ, νÃ, πÃ and λ and equating them to zero, we get

µÃ(xi) = νÃ(xi) = πÃ(xi) =
1
3
.

It may be noted that all the first order partial derivatives vanish if and only
µÃ(xi) = νÃ(xi) = πÃ(xi) =

1
3
.

Hence HR(Ã) has the stationary point µÃ(xi) = νÃ(xi) = πÃ(xi) =
1
3
.
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Next, we show that HR(Ã) is a concave function on the IFS Ã ∈ IFS(X) by
calculating its Hessian at the stationary point. The Hessian of HR(Ã) is given by

Ĥ =
R · 3

1
R

−1

n


−2 1 1

1 −2 1

1 1 −2



For any R > 0, Ĥ is a negative semi-definite matrix and henceHR(Ã) is a concave

function and has its maximum value at the point µÃ = νÃ = πÃ = 1
3
, ∀xi ∈ X.

(IE3)(Resolution): SinceHR(Ã) is a concave function on the IFS Ã ∈ IFS(X),

therefore if max{µÃ(x), νÃ(x)} ≤ 1
3
, then µÃ(xi) ≤ µB̃(xi) and νÃ(xi) ≤ νB̃(xi),

which implies that

µÃ(xi) ≤ µB̃(xi) ≤ 1
3
, νÃ(xi) ≤ νB̃(xi) ≤ 1

3
and πÃ(xi) ≥ πB̃(xi) ≥ 1

3
.

According to the result of property 2.2.1, we conclude that (µB̃(xi), νB̃(xi), πB̃(xi))

is more around
(
1
3
, 1

3
, 1

3

)
than (µÃ(xi), νÃ(xi), πÃ(xi)).

Hence, HR(Ã) ≤ HR(B̃).

Similarly, if min{µÃ(x), νÃ(x)} ≥ 1
3
, then µÃ(xi) ≥ µB̃(xi) , and νÃ(xi) ≥ νB̃(xi).

By property 2.2.1, we again conclude that HR(Ã) ≤ HR(B̃).

(IE4)(Symmetry): It may be noted that from the definition of the complement

of intuitionistic fuzzy set, it is clear that HR(
¯̃A) = HR(Ã).

Hence HR(Ã) satisfies all the properties of intuitionistic fuzzy entropy.

Therefore, HR(Ã) is a valid measure of intuitionistic fuzzy entropy. �

2.3 R-norm Intuitionistic Fuzzy Directed

Divergence Measure

Based on the parametric fuzzy directed divergence measure given by Hooda and

Bajaj (2008), we propose the following measure of intuitionistic fuzzy directed

divergence of IFS Ã from IFS B̃:

IλR(Ã, B̃) = λMR(Ã, B̃) + (1− λ)NR(Ã, B̃); 0 < λ < 1, R > 0, R ̸= 1, (2.3.1)
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where

NR(Ã, B̃) =
R

R− 1

n∑
i=1


 (µÃ(xi) + πÃ(xi))

R(µB̃(xi) + πB̃(xi))
1−R

+(1− (µÃ(xi) + πÃ(xi))
R(1− (µB̃(xi) + πB̃(xi))

1−R

 1
R

− 1


and

MR(Ã, B̃) =
R

R− 1

n∑
i=1


 (νÃ(xi) + πÃ(xi))

R(νB̃(xi) + πB̃(xi))
1−R

+(1− (νÃ(xi) + πÃ(xi))
R(1− (νB̃(xi) + πB̃(xi))

1−R

 1
R

− 1

.

Also, the proposed R-norm intuitionistic fuzzy directed divergence measure

may be used to define a symmetric intuitionistic fuzzy directed divergence, de-

noted by Jλ
R(Ã, B̃) and defined as Jλ

R(Ã, B̃) = IλR(Ã, B̃) + IλR(B̃, Ã).

Theorem 2.3.1: Divergence measure IλR(Ã, B̃) is a valid intuitionistic fuzzy

directed divergence measure between Ã and B̃.

Proof. It may be noted that linear combination of two valid fuzzy directed

divergence measures is a valid fuzzy directed divergence measure. Therefore,

in order to prove that (2.3.1) is a valid measure of intuitionistic fuzzy directed

divergence, it is sufficient to show that MR(A, B) ≥ 0 with equality if

µA(xi) = µB(xi), ∀xi ∈ X, as MR(A ,B) and NR(A, B) are defined in similar

way.

Let
n∑
i=1

µA(xi) = s,
n∑
i=1

µB(xi) = t, then

n∑
i=1

[(
µA(xi)

s

)R(
µB(xi)

t

)1−R

− 1

]
≥ 0

n∑
i=1

µRA(xi)(µB(xi))
1−R ≥ sRt1−R. (2.3.2)

Similarly, we write

n∑
i=1

(1− µA(xi))
R(1− µB(xi))

1−R ≥ (n− s)R(n− t)1−R. (2.3.3)

28



Adding (2.3.2) and (2.3.3), we get

n∑
i=1

µRA(xi)(µB(xi))
1−R + (1− µA(xi))

R(1− µB(xi))
1−R

≥ sRt1−R + (n− s)R(n− t)1−R. (2.3.4)

Case 1: When 0 < R < 1

Let µRA(xi)(µB(xi))
1−R + (1− µA(xi))

R(1− µB(xi))
1−R = xi,

then xi < 1 and 1
R
> 1, implies that, xi − 1 > (xi)

1/R − 1.

Since R
R−1

< 0, therefore
n∑
i=1

xi − 1 > (xi)
1
R − 1.

Thus, we have

MR(A, B) =
R

R− 1

[
sRt1−R + (n− s)R(n− t)1−R − n

]
. (2.3.5)

Further, let φ(s) = R
R−1

[
sRt1−R + (n− s)R(n− t)1−R − n

]
,

then φ
′
(s) = R

R−1

[
R(s/t)R−1 −R((n− s)/(n− t))R−1

]
and

φ
′′
(s) = R2

[
(1/t)(s/t)R−2 − (1/n− t)((n− s)/(n− t))R−2

]
> 0.

This shows that φ(s) is a convex function of s whose minimum value arises when

(s/t)(= (n− s)/(n− t)) = 1 and is equal to zero. Hence, φ(s) > 0 and vanishes

only when s = t.

Case 2: When R > 1, In this case, equation (2.3.4) can be written as(
n∑
i=1

µRA(xi)(µB(xi))
1−R + (1− µA(xi))

R(1− µB(xi))
1−R

)1/R

≥
(
sRt1−R + (n− s)R(n− t)1−R

)1/R
. (2.3.6)

also

n∑
i=1

[(
µRA(xi)(µB(xi))

1−R + (1− µA(xi))
R(1− µB(xi))

1−R)1/R − 1
]

≥

(
n∑
i=1

µRA(xi)(µB(xi))
1−R + (1− µA(xi))

R(1− µB(xi))
1−R − 1

)1/R

.

(2.3.7)
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Now equations (2.3.6) and (2.3.7) implies that

MR(A, B) ≥ R

R− 1

(
sRt1−R + (n− s)R(n− t)1−R − n

)1/R
.

If φ(s) = 1
R−1

[
sRt1−R + (n− s)R(n− t)1−R − n

]
,

then

φ
′
(s) =

R

R− 1

[(s
t

)R−1

−
(
n− s

n− t

)R−1
]

(2.3.8)

and

φ
′′
(s) = R2

[(
1

t

)(s
t

)R−2

−
(

1

n− t

)(
n− s

n− t

)R−2
]
> 0. (2.3.9)

Therefore, φ(s) is a convex function of s whose minimum value arises when

(s/t)(= (n− s)/(n− t)) = 1 and is equal to zero. Hence, φ(s) > 0 and vanishes

only when s = t, i.e., ∀R ̸= 1(> 0), MR(Ã, B̃) ≥ 0 and vanishes only when Ã =

B̃. Thus MR(A, B) is a valid intuitionistic fuzzy directed divergence measure.

Hence, measure (2.3.1) is a valid intuitionistic fuzzy directed divergence measure

for intuitionistic fuzzy sets. �

2.4 Monotonicity of R-norm Intuitionistic Fuzzy

Information Measures

Let Ã1 and Ã2 be two intuitionistic fuzzy sets over X = {x1, x2, x3, x4}, where

Ã1 = {(x1, 0.2, 0.5), (x2, 0.4, 0.4), (x3, 0.5, 0.2), (x4, 0.6, 0.3)},

Ã2 = {(x1, 0.3, 0.4), (x2, 0.2, 0.6), (x3, 0.5, 0.3), (x4, 0.6, 0.2)},

Considering various values of R, and using (2.2.2), we compute and tabulate all

the values. On the basis of the tabulated data, we plot the figure 2.1.
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Figure 2.1: Monotonicity of Intuitionistic Fuzzy Information Measure HR

Let Ã and B̃ be a pair intuitionistic fuzzy sets over X = {x1, x2, x3, x4},
where

Ã = {(x1, 0.2, 0.5), (x2, 0.4, 0.4), (x3, 0.3, 0.4), (x4, 0.5, 0.3)},

B̃ = {(x1, 0.3, 0.4), (x2, 0.2, 0.6), (x3, 0.5, 0.3), (x4, 0.6, 0.2)}.

Considering various values of R & λ, we compute IλR(Ã, B̃) by using (2.3.1) and

tabulate them. On the basis of the tabulated data, we plot figure 2.2.

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1 1 10 100 1000

V
a

lu
e

 o
f 

In
tu

it
io

n
is

ti
c

 F
u

z
z
y
 D

ir
e

c
te

d
 

D
iv

e
rg

e
n

c
e

Lambda=0.1

Lambda=0.3

Lambda=0.5

Lambda=0.7

Lambda=0.9

Value of R

Figure 2.2: Monotonicity of Intuitionistic Fuzzy Directed Divergence Measure IλR

Empirically, it may be observed that HR(Ã) is monotonically decreasing function

of R and IλR(Ã, B̃) is monotonically increasing function of R and λ.
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2.5 Computational Applications in Pattern

Recognition and Image Thresholding

In the field of pattern recognition, divergence measure describes dissimilarity

between pairs of probability distribution which is widely used for the process of

statistical inference. It may be noted that the divergence measure and similarity

measure are dual concepts. The similarity measure may be defined as a decreasing

function of divergence measure, especially when the range of divergence measure

is [0, 1].

Let f be any monotonic decreasing function. Since 0 ≤ JλR(Ã, B̃) ≤ G(R);

where G(R) is a calculated upper bound of the symmetric divergence measure

JλR(Ã, B̃), therefore f(G(R)) ≤ f(JλR(Ã, B̃)) ≤ f(0), provided that f(G(R)) <

f(0). This implies that the similarity measure between IFSs Ã and B̃ is defined

as

SλR(Ã, B̃) =
f(JλR(Ã, B̃)))− f(G(R))

f(0)− f(G(R))
, where 0 ≤ SR(Ã, B̃) ≤ 1. (2.5.1)

For example, if we choose f(x) = 1
1+x

, then our similarity measure can be defined

as follows:

SλR(Ã, B̃) =
G(R)− JλR(Ã, B̃)

(1 + JλR(Ã, B̃)) ·G(R)
.

On the basis of the proposed similarity measure (2.5.1) between two IFSs, the

concept of similarity based clustering method (SCM) can be explored and the

structure of the considered data set may be studied.

Another application of the theory of intuitionistic fuzzy sets may be found in

the field of image thresholding, where an image is considered as a intuitionistic

fuzzy set. The membership degree of a pixel to the image is in proportion with

their gray level, the non-membership degree of the pixel to the image is in inverse

proportion with their gray level having a certain amount of hesitation degree.

Let us consider the original image as an IFS Ã, the degraded image as an IFS

B̃, and the reconstructed image as an IFS C̃. We wish to transformed the B̃ to
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denoised version image as C̃ by an algorithm. Pasha et al. (2006) introduced a

cost function with the help of fuzzy entropy to choose a threshold value for the de-

noising the degraded image. In order to accomplish the task, they used Euclidian

distance and Kaufmann’s entropy. Further, Fatemi (2011) used stochastic fuzzy

entropy in place of fuzzy entropy and stochastic fuzzy discrimination informa-

tion for the Euclidean distance. The algorithm first finds the noised pixels then

change them with mean of 8 neighbor pixels. The problem is chose a threshold

h as unexpected jumping of gray level in the algorithm to find the noised pixels.

Here, it is being suggested that a new cost function which includes the intu-

itionistic fuzzy theory may be used to find the best threshold by using R-norm

intuitionistic fuzzy entropy in place of fuzzy entropy and R-norm intuitionistic

fuzzy symmetric directed divergence for the Euclidean distance. The basic and

fundamental equation for the algorithm is C(Ã) = HR(C̃) + JλR(Ã, C̃).

2.6 Conclusions

The validity of the proposed R-norm intuitionistic fuzzy entropy and R-norm

intuitionistic fuzzy directed divergence measure has been checked and found cor-

rect. Further, after empirical study on the proposed information measures we find

that R-norm fuzzy intuitionistic fuzzy entropy is a decreasing function of R, while

the R-norm intuitionistic fuzzy directed divergence measure is increasing function

of R as well as the λ involved. The computational applications of the proposed

intuitionistic fuzzy information measures in the field of pattern recognition and

image processing have been discussed and suggested.
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Chapter 3

Fuzzy Weighted Linear

Regression Model under Linear

Restrictions

3.1 Introduction

In statistical analysis, regression is a used to explore the relationship between k in-

put variables x1, x2, . . . , xk (also known as independent variables or explanatory

variables) and the output variable y (also called dependent variable or response

variable) from n sets of observations. In linear regression, the method of least-

squares is applied to find the regression coefficients βj, j = 0, 1, . . . , k which

describe the contribution of the corresponding independent variable xj in ex-

plaining the dependent variable y. The aim of regression analysis is to estimate

the parameters on the basis of available/observed empirical data. Traditional

studies on regression assume the observations to have crisp values. In the crisp

linear regression model, the parameters (regression coefficients are crisp) appear

in a linear form, i.e.,

y = β0 + β1x1 + β2x2 + · · · + βkxk + random error. (3.1.1)
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Once the coefficients β0, β1, β2, . . . , βk are determined from the observed sam-

ples, the responses are estimated from any given sets of x1, x2, . . . , xk values.

The regression models are used frequently in various areas of researches wher-

ever we deal with the relations among several variables in a system. In literature,

linear regression has been studied rigorously and used extensively. One of the

important reasons to study these models which depend linearly on their unknown

parameters is that they are easier to fit than the models which are non-linearly

related to their parameters. In addition, the statistical properties of the resulting

estimators are also easier to determine. Linear regression has wide applications

in biological, behavioral and social sciences to describe possible relationships be-

tween the variables. It ranks as one of the most important tools used in these

disciplines.

Vague or fuzzy data find application in several fields, such as psychometry,

reliability, marketing, quality control, ballistics, ergonomics, image recognition,

artificial intelligence, etc. A typical problem where vague data arise is that of

assigning numbers to subjective perceptions or to linguistic variables (such as

“enough”, “good”, “sufficiently”, etc.). In fact, there are many cases where ob-

servations cannot be known or quantified exactly, and, thus, we can only provide

an approximate description of them, or intervals to enclose them. For instance,

“in measuring the influence of character size on the reading ability from a video

display terminal [. . . ] the reading ability of the subject, which is essentially the

experimental output, depends on his/her eyesight, age, the environment, individ-

ual responses, and even how tired is the individual. Some of these factors cannot

be described accurately and [. . . ] the best description of these kinds of output

is that they are fuzzy outputs” [Chang et al. (1994)]. Also, if a system un-

der consideration is not governed by random variables and/or crisp observations

but is governed by possibility variables and/or imprecise observations, it is more

beneficial to use fuzzy regression analysis for such a system.

Tanaka et al. [(1980), (1982)] initiated the research in the area of linear

regression analysis in a fuzzy environment, where a fuzzy linear system is used
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as a regression model. They consider a regression model in which the relation of

the variables are subject to fuzziness, i.e., the model with crisp input and fuzzy

parameters. In general, fuzzy regression can be classified into two categories:

• when the relations of the variables are subject to fuzziness,

• when the variables themselves are fuzzy.

There exist several conceptual and methodological approaches to fuzzy regres-

sion with respect to the characterization mentioned above. Tanaka and Warada

(1988), Tanaka et al. (1989), Tanaka and Ishibuchi (1991) considered more gen-

eral models in fuzzy regression. In the approaches of Tanaka et al. they consid-

ered the L-R fuzzy data and minimized the index of fuzziness of the fuzzy linear

regression model. As described by Tanaka and Warada (1988), “A fuzzy number

is a fuzzy subset of the real line whose highest membership values are clustered

around a given real number called the mean value; the membership function is

monotonic on both sides of this mean value”. Hence, fuzzy number can be de-

composed into position and fuzziness, where the position is represented by the

element with the highest membership value and the fuzziness of a fuzzy number

is represented by the membership function. The comparison among various fuzzy

regression models and the difference between the approaches of fuzzy regression

analysis and conventional regression analysis have been presented by Redden and

Woodall (1994). Chang and Lee (1994) & Redden and Woodall (1994) pointed

out some weaknesses of the approaches proposed by Tanaka et al. (1989). A

fuzzy linear regression model based on Tanaka’s approach by considering the

fuzzy linear programming problem has also been introduced by Peters (1994).

In fuzzy set theory, the entropy is a measure of degree of fuzziness which ex-

presses the amount of average ambiguity/difficulty in making a decision whether

an element belongs to a set or not. The following are the four properties intro-

duced in De Luca and Termini (1972), which are widely accepted as a criterion

for defining any new fuzzy entropy measure H(·) of the fuzzy set Ã:
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• P1 (Sharpness): H(Ã) is minimum iff Ã is a crisp set, i.e., µÃ(x) = 0 or

1; ∀x ∈ X;

• P2 (Maximality): H(Ã) is maximum iff µÃ(x) = 0.5; ∀x ∈ X;

• P3 (Resolution): H(Ã∗) ≤ H(Ã), where Ã∗ is sharpened version of Ã;

• P4 (Symmetry): H(Ã) = H(Ãc), where Ãc is the complement of Ã, i.e.,

µÃc(x) = 1− µÃ(x).

Dubosis and Prade (1980) interpreted the measure of fuzziness H(Ã) as quantity

of information which is being lost in going from a crisp number to a fuzzy number.

It may be noted that the entropy of an element with a given membership function

µÃ(x) is increasing if µÃ(x) is in [0, 0.5] and decreasing if µÃ(x) is in [0.5, 1].

We accept the definition of fuzzy number given by Tanaka and Warada (1988),

where the mean value is also called apex.

Let X = (x1, x2, . . . , xn) is a discrete random variable with probability

distribution P = (p1, p2, . . . , pn) in an experiment, then according to Shannon

(1948), the information contained in this experiment is given by:

H(P ) = −
n∑
i=1

pi log pi.

Based on this famous Shannon’s entropy, De Luca and Termini (1972) indicated

the following measure of fuzzy entropy:

H(Ã) = −K

∫
x∈X

[µÃ(x) log µÃ(x) + (1− µÃ(x)) log(1− µÃ(x))]dx. (3.1.2)

However, we have other fuzzy entropies but (3.1.2) can be regarded as one of

the most fundamental measure of ambiguity of a fuzzy set. In addition, Yager

(1979) also defined entropy of a fuzzy set based on the distance from the set to

its complement set. Similarly, Kosko [(1986), (1990)] introduced another kind

of fuzzy entropy by considering the distance from a set to its nearest non-fuzzy

set and the distance from the set to its farthest non-fuzzy set. Another kind of

fuzzy entropy with an exponential function was introduced by Pal and Pal (1989).
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Later on, they introduced the concept of higher rth order entropy of a fuzzy set in

their paper Pal and Pal (1992). Further, Bhandari and Pal (1993) made a survey

on entropy of fuzzy sets and gave some new measures of fuzzy information.

The concept of fuzzy regression model was first introduced in Tanaka et.al.

(1980) and its general form in triangular fuzzy setup is given by

ỹ = β̃0 + β̃1x̃1 + · · ·+ β̃kx̃k + random error , (3.1.3)

where the value of the output variable ỹ defined by (3.1.3) is a fuzzy number;

β̃0, β̃1, . . . , β̃k is a vector of fuzzy parameters where βj = (aj, bj, cj) is a fuzzy

number for j = 0, 1, . . . , k and x̃1, x̃2, . . . , x̃k are triangular fuzzy (explanatory)

variables.

Among the various shapes of fuzzy number in the literature of fuzzy set

theory, triangular fuzzy number (TFN) is one of the most popular type of fuzzy

number. A general triangular fuzzy number is represented by three points Ã =

(a, b, c); where a is the left vertex, b is the apex and c is the right vertex. This

representation is interpreted by a membership function which can be defined as:

µÃ(x) =


(x−a)
(b−a) , where x ∈ [a, b]
(c−x)
(c−b) , where x ∈ (b, c]

0 , otherwise.

(3.1.4)

The entropy calculated from equation (3.1.2) for the triangular fuzzy number

given by (3.1.4) can be expressed as follows:

H(Ã) = −K

 ∫
x∈[a, b]

[µĀ(x) log µĀ(x) + (1− µĀ(x)) log(1− µĀ(x))]dx

+

∫
x∈[b, c]

[µĀ(x) logµĀ(x) + (1− µĀ(x)) log(1− µĀ(x))]dx


= HL(Ã) +HR(Ã), (3.1.5)

where HL(Ã) = K(b − a)/2 and HR(Ã) = K(c − b)/2. It follows that H(Ã) =

K(c − a)/2, which does not depend on b. It may be observed that in case of

symmetrical triangular fuzzy number (TFN), the left and the right entropies are
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identical. On the other hand, in case of non-symmetric TFN, the left entropy is

a function of (b− a) and the right entropy is a function of (c− b). As described

by Pedrycz (1994), the position, the left entropy, and the right entropy uniquely

determine the triangular fuzzy number.

Sometimes experimenter’s past experiences may be available as prior informa-

tion about unknown regression coefficients to estimate more efficient estimators.

Here, we assume that such prior information is provided in the form of exact

linear restrictions on regression coefficients. In this chapter, we first find the

unrestricted estimators of regression coefficients with the help of fuzzy entropy.

Next, we introduce the restricted linear regression model with fuzzy entropy.

Further, the restricted estimators of the regression coefficients are obtained by

incorporating the prior information in the form of linear restrictions. In order

to illustrate the proposed model along with the obtained weighted estimators,

few numerical examples have also been provided. A simulation study has been

conducted to compare the performance of unrestricted estimator and restricted

estimator using two basic criteria of dominance: mean squared error matrix and

absolute bias.

3.2 Restricted FLR Model with Fuzzy Entropy

Without loss of generality, suppose that all observations (ỹi, x̃i1, x̃i2, . . . , x̃ik), i =

1, . . . , n in the regression analysis are triangular fuzzy numbers. The idea of re-

gression using entropy is to construct three conventional regression equations

(one for apex, one for left entropy, and one for right entropy) for the response

variable ỹ using the corresponding attributes of the k fuzzy explanatory vari-

ables x̃j. In order to be specific, we denote ya, xa
1 , x

a
2 , . . . , x

a
k as the apexes

of ỹ, x̃1, x̃2, . . . , x̃k, respectively; ely, e
l
x1
, elx2

, . . . , elxk
as the left entropy of

ỹ, x̃1, x̃2, . . . , x̃k, respectively; and ery, e
r
x1
, erx2

, . . . , erxk
as the right entropy

of ỹ, x̃1, x̃2, . . . , x̃k, respectively. Therefore, the three fundamental regression
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equations in a non-recursive(non-adaptive) setup may be written as:

ya = Aa
0 +

k∑
i=1

(Aa
ix

a
i +Ba

i e
l
xi
+ Ca

i e
r
xi
) + εya ; (3.2.1)

ely = Al
0 +

k∑
i=1

(Al
ix

a
i +Bl

ie
l
xi
+ C l

ie
r
xi
) + εely ; (3.2.2)

ery = Ar
0 +

k∑
i=1

(Ar
ix

a
i +Br

i e
l
xi
+ Cr

i e
r
xi
) + εerY ; (3.2.3)

where εya , εely and εerY are the error vectors of dimension n × 1. The compact

form of the above mentioned non-recursive or non-adaptive equations is given by:

ya = Xβ + εya ,

ely = Xα+ εely , (3.2.4)

ery = Xγ + εerY ,

where

X =

(
1
...xa

1 , x
a
2 , . . . , x

a
k

... elx1
, elx2

, . . . , elxk

... erx1
, erx2

, . . . , erxk

)
n×(3k+1)

,

β =

(
Aa

0

...Aa
1, A

a
2, . . . , A

a
k

...Ba
1 , B

a
2 , . . . , B

a
k

...Ca
1 , C

a
2 , . . . , C

a
k

)T
(3k+1)×1

,

α =

(
Al

0

...Al
1, A

l
2, . . . , A

l
k

...Bl
1, B

l
2, . . . , B

l
k

...C l
1, C

l
2, . . . , C

l
k

)T
(3k+1)×1

,

γ =

(
Ar

0

...Ar
1, A

r
2, . . . , A

r
k

...Br
1, B

r
2, . . . , B

r
k

...Cr
1 , C

r
2 , . . . , C

r
k

)T
(3k+1)×1

.

In many real life situations, where the measurements are carried out (e.g., car

speed or astronomical distance), it is natural to think that the spread (vague-

ness) in the measure of a phenomenon is proportional to its intensity. D’Urso

and Gastaldi (2000) have done several simulations and observed that even if we

consider an adaptive or recursive regression model along with non-adaptive or

non-recursive regression model, they yield identical solutions when there is only

one independent variable. But, if there are more than one independent vari-

able, then the estimated values of the left entropies and right entropies obtained
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through the recursive fuzzy regression model will have a less variance as com-

pared to the non-recursive fuzzy regression model. With this consideration, we

rewrite the proposed fuzzy regression model in a recursive/adaptive setup where

dynamic of the entropies is dependent on the magnitude of the estimated apexes

as follows:

ya = ya∗
+ εya ; where ya∗

= Xβ,

ely = el
∗

y + ε∗ely ; where el
∗

y = Xβb+ 1d, (3.2.5)

ery = er
∗

y + ε∗ery ; where er
∗

y = Xβf + 1g,

where X is the n× (3k + 1)-matrix containing the values of the input variables

(data matrix), β is a column 3k + 1-vector containing the regression parame-

ters for the apexes of the first model (referred to as core regression model), ya

and ya∗ are the vector of the observed apexes and the vector of the interpolated

apexes, respectively, both having dimension n × 1, ely and ely
∗
are the vector

of the observed left entropies and the vector of the interpolated left entropies,

respectively, both having dimension n × 1, ery and ery
∗ are the vector of the

observed right entropies and the vector of the interpolated right entropies, re-

spectively, both having dimension n × 1, and 1 is a (n × 1)-vector of all 1’s, b

and d are regression parameters for the second regression model (referred to as

left entropy regression model), f and g are regression parameters for the third

regression model (referred to as right entropy regression model). The error term

in the regression equation of apexes will remain the same while the error terms

in the regression equations of entropies may be different. The error vectors in

left and right entropies are (n × 1) dimensional vectors denoted by ε∗
ely

and ε∗ery

respectively.

If some prior information about unknown regression coefficients is available

on the basis of past experiences, then it may be used to estimate more efficient

estimators. We assume that such prior information is in the form of exact linear

restrictions on regression coefficients. In the present model, we associate such

restrictions in the equations for the estimation of regression coefficients in the

linear regression model with fuzzy entropy. Therefore, we make the model capable
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to take into account possible linear relations between the size of the entropies and

the magnitude of the estimated apexes. Moreover, we assume that the regression

coefficients β are subjected to the j(j < 3k + 1) exact linear restrictions, which

are given by

h = Hβ, (3.2.6)

where h and H are known and the matrix H is of full row rank.

3.3 Estimation of Regression Coefficients

In many applications, it is possible that the values of the variables are on com-

pletely different scales of measurement. Also, the possible larger variations in

the values will have larger inter-sample differences, so they will dominate in the

calculation of Euclidean distances. Therefore, some form of standardization is

necessary to balance out the individual contributions. Consider the Euclidean

distance between two fuzzy numbers yi = (yai , e
l
yi
, eryi) and y∗i = (ya

∗
i , el

∗
yi
, er

∗
yi
)

along with weights w1, w2 andw3 as follows:

δi ≡ δ(yi, y
∗
i ) =

√
w1(yai − ya

∗
i )2 + w2(elyi − el∗yi)

2 + w3(eryi − er∗yi )
2. (3.3.1)

It may be observed that we compute the usual squared differences between the

values of variables on their original scales, as in the usual Euclidean distance, but

then multiply these squared differences by their corresponding weights.

Next, similar to common linear regression (based on crisp data), the regres-

sion parameters are estimated by minimizing the following sum of square errors
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(we use a compact matrix notation):

φ(β, b, d, f, g)

=
n∑
i=1

δ2i

=
n∑
i=1

w1(y
a
i − ya∗i )2 +

n∑
i=1

w2(e
l
yi
− el∗yi)

2 +
n∑
i=1

w3(e
r
yi
− er∗yi )

2

= w1(y
a − ya∗)

′
(ya − ya∗) + w2(e

l
y − ely

∗
)
′
(ely − ely

∗
)

+ w3(e
r
y − er

∗

y )
′
(ery − er

∗

y )

= w1

(
ya′

ya − 2ya′
ya∗ + ya∗′

ya∗
)
+ w2

(
ely

′
ely − 2ely

′
ely

∗
+ ely

∗′

ely
∗
)

+ w3

(
ery

′
ery − 2ery

′
ery

∗ + ery
∗′
ery

∗
)

= w1

(
ya′

ya − 2ya′
Xβ + β

′
X

′
Xβ
)
+ w2

(
ely

′
ely − 2ely

′
(Xβb+ 1d)

)
+ w2

(
(Xβb+ 1d)

′
(Xβb+ 1d)

)
+ w3

(
ery

′
ery − 2ery

′
(Xβf + 1g)

)
+ w3

(
(Xβf + 1g)

′
(Xβf + 1g)

)
= w1

(
ya′

ya − 2ya′
Xβ
)
+ β

′
X

′
Xβ(w1 + w2b

2 + w3f
2)

+ w2

(
ely

′
ely − 2ely

′
Xβb− 2ely

′
1d
)
+ 2β

′
X

′
1(w2bd+ w3fg)

+ w3

(
ery

′
ery − 2ery

′
Xβf − 2ery

′
1g
)
+ n(w2d

2 + w3g
2). (3.3.2)

Differentiating φ(β, b, d, f, g) i.e., (3.3.2) partially with respect to β and equat-

ing it to zero, we get

∂φ(β, b, d, f, g)

∂β
= 0

⇒ −w1X
′
ya +X

′
Xβ(w1 + w2b

2 + w3f
2)− w2X

′
elyb+X

′
1(w2bd+ w3fg)− w3X

′
eryf = 0

⇒ β =
1

(w1 + w2b2 + w3f2)
(X

′
X)−1X

′[
w1y

a + w2e
l
yb+ w3e

r
yf − 1(w2bd+ w3fg)

]
. (3.3.3)

Similarly, differentiating (3.3.2) partially with respect to b, d, f and g, we get

b =
(
β

′
X

′
Xβ
)−1 [

ely
′
Xβ − β

′
X

′
1d
]
; (3.3.4)

d =
1

n

[
ely

′
1− β

′
X

′
1b
]
; (3.3.5)

f =
(
β

′
X

′
Xβ
)−1 [

ery
′
Xβ − β

′
X

′
1g
]
; (3.3.6)

g =
1

n

[
ery

′
1− β

′
X

′
1f
]
; (3.3.7)
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respectively.

The equations (3.3.3-3.3.7) are recursive solutions for the problem of least square

estimation with fuzzy data. Therefore, we rewrite the system of equations ex-

plicitly in a recursive way as follows:

βi+1 =
(X

′
X)−1X

′

(w1 + w2b2i + w3f 2
i )

[
w1y

a + w2e
l
ybi + w3e

r
yfi − 1(w2bidi + w3figi)

]
(3.3.8)

b i+1 =
(
β

′

i+1X
′
Xβi+1

)−1 [
ely

′
Xβi+1 − β

′

i+1X
′
1di

]
; (3.3.9)

di+1 =
1

n

[
ely

′
1− β

′

i+1X
′
1bi

]
; (3.3.10)

f i+1 =
(
β

′

i+1X
′
Xβi+1

)−1 [
ery

′
Xβi+1 − β

′

i+1X
′
1gi

]
; (3.3.11)

gi+1 =
1

n

[
ery

′
1− β

′

i+1X
′
1fi

]
. (3.3.12)

In order to initiate the recursive process of obtaining the estimators, we take

some initial values for b, d, f, g and β. After several number of iterations, the

values of estimators get corrected to a pre-defined error of tolerance. We denote

these values by b̂, d̂, f̂ , ĝ and β̂ in order to differentiate them from the eventually

obtained restricted estimator β̃ in the next commutation.

In a more general setup, if in the linear regression model (3.2.5), we consider

k1 crisp and k2 fuzzy input variables then the dimensions of X and β will be

n × (k1 + 3k2 + 1) and (k1 + 3k2 + 1) × 1 respectively. It may further be noted

that the core of the solution’s structure will remain the same and we will have

similar kind of estimators.

Remark: If we take w1 = 2, w2 = 1, w3 = 1, b = f and d = g, then

our non-symmetric fuzzy regression model reduces to symmetric fuzzy regression

model defined as in Bajaj et al. (2009).

Next, we assume that the regression coefficients are subjected to the linear

restrictions which are given by (3.2.6). It may be noted that the unrestricted

estimator obtained above in (3.3.3) does not satisfy the given restrictions (3.2.6).

We aim to obtain the restricted estimator which satisfies the given restrictions
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under the regression model (3.2.5). For this, we propose to minimize the following

score function:

S(λ, β, b, d, f, g) = φ(β, b, d, f, g)− 2λ(Hβ − h)

= w1

(
ya′

ya − 2ya′
Xβ
)
+ β

′
X

′
Xβ(w1 + w2b

2 + w3f
2)

+ w2

(
ely

′
ely − 2ely

′
Xβb− 2ely

′
1d
)
+ 2β

′
X

′
1(w2bd+ w3fg)

+ w3

(
ery

′
ery − 2ery

′
Xβf − 2ery

′
1g
)
+ n(w2d

2 + w3g
2)

− 2λ(Hβ − h), (3.3.13)

where 2λ is the vector of Lagrange’s Multiplier.

Differentiating S(λ, β, b, d, f, g) partially with respect to β and equating it to

zero, we get

⇒ −w1X
′
ya +X

′
Xβ(w1+w2b

2+w3f
2)−w2X

′
elyb−w3X

′
eryf+X

′
1(w2bd+w3fg)−H

′
λ = 0

(3.3.14)

Here, we again relabel the computed restricted estimator by β̃. Therefore, in

view of equations (3.3.3) and (3.3.14), we get

⇒ β̃ =
1

(w1 + w2b2 + w3f 2)
(X

′
X)−1X

′[
w1y

a + w2e
l
yb+ w3e

r
yf − 1(w2bd+ w3fg)

]
+

1

(w1 + w2b2 + w3f 2)
(X

′
X)−1H

′
λ

⇒ β̃ = β̂ +
1

(w1 + w2b2 + w3f 2)
(X

′
X)−1H

′
λ. (3.3.15)

Similarly, differentiating S(λ, β, b, d, f, g) partially with respect to λ and equat-

ing it to zero, we get

⇒ Hβ̃ = h

⇒ Hβ̂ +
1

(w1 + w2b2 + w3f 2)
H(X

′
X)−1H

′
λ = h

⇒ λ̂ = (w1 + w2b
2 + w3f

2)
[
H(X

′
X)−1H

′
]−1 (

h−Hβ̂
)
. (3.3.16)

From equation (3.3.15) and (3.3.16), we have

⇒ β̃ = β̂ + (X
′
X)−1H

′
[
H(X

′
X)−1H

′
]−1 (

h−Hβ̂
)
. (3.3.17)
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Also, differentiating (3.3.13) partially with respect to b, d, f , g and equating all

to zero, we get

b̃ = b̂, d̃ = d̂, f̃ = f̂ , g̃ = ĝ,

respectively. From equation (3.3.17) we see that

⇒ Hβ̃ = Hβ̂ +
[
H(X

′
X)−1H

′
] [

H(X
′
X)−1H

′
]−1 (

h−Hβ̂
)

⇒ Hβ̃ = Hβ̂ +
(
h−Hβ̂

)
= h.

Therefore, the estimator β̃ satisfies the given restrictions (3.2.6).

3.4 Numerical Examples

We take the following examples to illustrate the theory discussed:

Example 3.4.1: We apply our procedure to estimate the fuzzy output value for

a data consisting of the crisp input and fuzzy output (where left entropy and

right entropy are equal) and tabulate the data in the following table 3.1:

Table 3.1: Crisp Input-Int. Fuzzy Output Data 

Object
i

Crisp Input 

( , , ) 
1 2 3

X x x x

Fuzzy Output 

 !, , 
l a r

y y
y e y e

Estimated Fuzzy Output 

 !, , 
* l * a* r *

y y
y e y e

1
x

2
x

3
x l

y
e a

y
r

y
e

l *

y
e a*

y
r *

y
e

1 3 5 9 42 96 42 42.3763 93.8615 42.3763 

2 14 8 3 47 120 47 50.6310 122.0379 50.6310 

3 7 1 4 33 52 33 29.5587 50.1105 29.5587 

4 11 7 3 45 106 45 45.3840 104.1280 45.3840 

5 7 12 15 79 189 79 71.5124 193.3134 71.5124 

6 8 15 10 65 194 65 71.2972 192.5788 71.2972 

7 3 9 6 42 107 42 47.5526 108.1166 47.5526 

8 12 15 11 78 216 78 76.9011 211.7069 76.9011 

9 10 5 8 52 108 52 47.8304 112.4784 47.8304 

10 9 7 4 44 103 44 44.9563 102.6679 44.9563 

We obtain β̂ = (−3.1355, 3.4314, 7.6158, 5.4027)′, b̂ = 0.2930, d̂ = 14.8779,

f̂ = 0.2930, ĝ = 14.8779 where the number of iterations required is 106.
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Example 3.4.2: We apply our procedure to estimate fuzzy output value for a

data consisting of crisp input and fuzzy output (where left and right entropy are

not equal) and tabulate the data in the following table 3.2:

Table 3.2: Crisp Input-Fuzzy Output Data 

Object
i

Crisp Input 

( , , ) 
1 2 3

X x x x

Fuzzy Output 

 !, , 
l a r

y y
y e y e

Estimated Fuzzy Output 

 !, , 
* l * a* r *

y y
y e y e

1
x

2
x

3
x l

y
e a

y
r

y
e

l *

y
e a*

y
r *

y
e

1 3 5 9 42 96 47 42.8709 96.0280 45.6421 

2 14 8 3 47 120 43 50.1534 120.5313 52.2050 

3 7 1 4 33 52 50 29.8881 52.3450 33.9421 

4 11 7 3 45 106 45 45.7137 102.2286 47.3028 

5 7 12 15 79 189 80 72.9202 197.1349 72.7223 

6 8 15 10 65 194 60 70.7116 189.7035 70.7319 

7 3 9 6 42 107 40 45.3219 104.2749 47.8509 

8 12 15 11 78 216 88 77.1474 211.3582 76.5318 

9 10 5 8 52 108 50 48.9491 116.4793 51.1197 

10 9 7 4 44 103 42 44.3237 100.9164 46.9514 

We obtain β̂ = (−5.0772, 3.6423, 7.2026, 5.9013)′, b̂ = 0.2952, d̂ = 14.5913,

f̂ = 0.2645, ĝ = 20.3551 where the number of iterations required is 109.

Example 3.4.3: We apply our procedure to estimate the fuzzy output value for

a data consisting of the fuzzy explanatory and fuzzy response variables where left

entropy and right entropy are equal. We take weights for computing the distance

as w1 = 2, w2 = 1, w3 = 1 and tabulate the data in the following table 3.3:

We obtain β̂ = (5.9349, 4.9782, −3.3014, 1.5408, 1.5394)′, b̂ = −0.1311, d̂ =

17.9292, f̂ = −0.1311, ĝ = 17.9292, where the number of iterations required is

252.

Example 3.4.4: We apply our procedure to estimate the fuzzy output value for

a data consisting of the fuzzy explanatory and fuzzy response variables where left

entropy and right entropy are equal. We take weights for computing the distance

as w1 = 2, w2 = 1, w3 = 1 and tabulate the data in the following table 3.4:
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Table 3.3: Crisp and Fuzzy Input-Fuzzy Output Data 

Object
i

Crisp and Fuzzy 

Input

 !, , , 
1 1

l a r

1 x 1 x
X x e x e

Fuzzy Output 

 !, , 
l a r

y y
y e y e

Estimated Fuzzy Output 

 !, , 
* l * a* r *

y y
y e y e

1
x

1

l

x
e

a

1
x

1

r

x
e

l

y
e a

y
r

y
e

l *

y
e a*

y
r *

y
e

1 6 2.0 4.2 2.0 11.7 41.8 11.7 12.649 40.291 12.649

2 7 1.0 6.0 1.0 12.7 50.4 12.7 11.604 48.266 11.604

3 8 1.1 5.0 1.1 12.1 49.9 12.1 11.176 51.527 11.176

4 9 1.0 4.0 1.0 12.3 53.9 12.3 10.703 55.140 10.703

5 10 1.5 3.6 1.5 9.8 57.7 9.8 10.146 59.391 10.146

6 11 2.0 3.0 2.0 8.2 60.5 8.2 10.032 60.255 10.032

7 12 1.9 3.5 1.9 8.7 69.1 8.7 8.832 69.412 8.832 

8 13 0.9 3.5 0.9 6.7 74.3 6.7 7.767 77.541 7.767 

9 14 0.6 4.0 0.6 6.4 84.3 6.4 7.348 80.736 7.348 

10 15 1.7 8.0 1.7 7.8 90.6 7.8 6.142 89.941 6.142 

Table 3.4: Fuzzy Input-Fuzzy Output Data 

Object
i

Fuzzy Input 

 !, , 
1 1

l a r

x 1 x
X e x e

Fuzzy Output 

 !, , 
l a r

y y
y e y e

Estimated Fuzzy Output 

 !, , 
* l * a* r *

y y
y e y e

1

l

x
e

a

1
x

1

r

x
e

l

y
e a

y
r

y
e

l *

y
e

a*
y

r *

y
e

1 3 4 5 4 12 4 4.3573 10.1808 4.3573 

2 6 7 8 5 7 5 4.3629 10.1948 4.3629 

3 3 6 8 3 9 3 3.2566 7.4409 3.3566 

4 2 7 9 1 4 1 2.1164 4.6026 2.1164 

5 2 5 7 2 6 2 3.2547 7.4362 3.2547 

6 3 6 7 4 8 4 3.2189 7.3471 3.2189 

7 2 4 9 3 9 3 3.9369 9.1345 3.9369 

8 5 8 13 5 10 5 3.3734 7.7316 3.3734 

9 7 12 27 3 5 3 2.6156 5.8453 2.6156 

10 23 30 45 2 3 2 1.5072 3.0862 1.5072 
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We obtain β̂ = (11.4898, 1.4215, −1.5106, 0.0938)′, b̂ = 0.4017, d̂ = 0.2674,

f̂ = 0.4017, ĝ = 0.2674, where the number of iterations required is 97.

For example, let us assume that the regression coefficients β are subjected

to three exact linear restrictions (j = 3; k = 1; j < 3k + 1), which are given by

(3.2.6), where h = [3, 5, 7]T and H =


2 3 5 6

1 4 7 3

3 6 8 9

 . On the basis of computa-

tion, we get the restricted estimator β̃ = (2.2679,−1.6056, 0.9924, 0.2208)T . For

the sake of verification, it may be noted that the obtained restricted estimator

satisfies the assumed linear restrictions, i.e.,

Hβ̃ =


2 3 5 6

1 4 7 3

3 6 8 9




2.2679

−1.6056

0.9924

0.2208

 =


3

5

7

 = h.

3.5 Simulation Study and Results

In this section, we conduct a simulation study in order to compare the perfor-

mance of unrestricted estimator β̂ and restricted estimator β̃. For this purpose,

we adopt two criteria of dominance mean squared error matrix and absolute bias.

We have obtained absolute bias and mean squared error matrices of both of the

estimators empirically using 5000 repetitions for various set of weights w1, w2 and

w3. We adopted many values of β to generate the observations. Some important

outcomes of simulation study are presented below:

Case1: When w1 = 1, w2 = 1 and w3 = 1:

Absolute Bias (AB) of the estimators: AB(β̂) = 0.0151 and AB(β̃) = 0.0012.

Mean Squared Error Matrices (MSEM) of the estimators:
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MSEM(β̂) =



0.0442 −0.0585 0.0011 −0.0078 −0.0064

−0.0585 0.5166 −0.0806 0.0122 −0.0118

0.0011 −0.0806 0.0259 −0.0084 0.0059

−0.0078 0.0122 −0.0084 0.0084 −0.0085

−0.0064 −0.0118 0.0059 −0.0085 0.0700


,

MSEM(β̃) =



0.0000 −0.0003 −0.0001 −0.0001 0.0004

−0.0003 0.0025 0.0007 0.0010 −0.0033

−0.0001 0.0007 0.0002 0.0003 −0.0009

−0.0001 0.0010 0.0003 0.0004 −0.0014

0.0004 −0.0033 −0.0009 −0.0014 0.0045


.

Case 2: When w1 = 2, w2 = 1 and w3 = 1:

Absolute Bias (AB) of the estimators: AB(β̂) = 2.1465 and AB(β̃) = 0.1704.

Mean Squared Error Matrices (MSEM) of the estimators:

MSEM(β̂) =



1.9155 −1.2358 1.0290 −1.3777 0.8558

−1.2358 1.0505 −0.6992 0.8806 −0.5498

1.0290 −0.6992 0.5746 −0.7524 0.4715

−1.3777 0.8806 −0.7524 1.0029 −0.6303

0.8558 −0.5498 0.4715 −0.6303 0.4323


,

MSEM(β̃) =



0.0001 −0.0012 −0.0003 −0.0005 0.0016

−0.0012 0.0108 0.0029 0.0045 −0.0145

−0.0003 0.0029 0.0008 0.0012 −0.0040

−0.0005 0.0045 0.0012 0.0019 −0.0061

0.0016 −0.0145 −0.0040 −0.0061 0.0196


.

Case 3: When w1 = 1/3, w2 = 1/3 and w3 = 1/3:

Absolute Bias (AB) of the estimators: AB(β̂) = 0.0118 and AB(β̃) = 0.0001.

Mean Squared Error Matrices (MSEM) of the estimators:
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MSEM(β̂) =



0.0457 −0.0582 −0.0001 −0.0075 −0.0082

−0.0582 0.5036 −0.0768 0.0110 −0.0030

−0.0001 −0.0768 0.0254 −0.0081 0.0048

−0.0075 0.0110 −0.0081 0.0081 −0.0079

−0.0082 −0.0030 0.0048 −0.0079 0.0700


,

MSEM(β̃) =



0.0000 −0.0003 −0.0001 −0.0001 0.0003

−0.0003 0.0023 0.0006 0.0010 −0.0031

−0.0001 0.0006 0.0002 0.0003 −0.0009

−0.0001 0.0010 0.0003 0.0004 −0.0013

0.0003 −0.0031 −0.0009 −0.0013 0.0042


.

It may be noticed that in all the cases,

• AB(β̂) >AB(β̃);

• all the eigen values of (MSEM(β̂) - MSEM(β̃)) are non-negative.

Therefore, the restricted estimator β̃ is better than unrestricted estimator β̂ in

the sense of absolute bias as well as MSEM. Thus, when some prior information

is available in terms of exact linear restrictions on regression coefficients β, it is

advised to use restricted estimator β̃ in place of unrestricted estimator β̂.

3.6 Conclusions

A fuzzy linear regression (FLR) model with and without some linear restrictions

in the form of prior information have been studied. The estimators of regres-

sion coefficients have also been obtained with the help of fuzzy entropy for the

restricted/unrestriced FLR model by assigning some weights in the distance func-

tion. Some numerical examples illustrating the outcomes of the studied models

have been provided. Further, simulation study over the obtained estimators has

been conducted to compare their performance. It has been observed that the
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restricted estimator is better than unrestricted estimator in the sense of absolute

bias as well as mean square error matrix. Thus, whenever some prior information

is available in terms of exact linear restrictions on regression coefficients, it is

advised to use restricted estimator β̃ in place of unrestricted estimator β̂.
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Chapter 4

‘NTV’ Metric based Entropies of

Interval Valued Intuitionistic

Fuzzy Sets and their

Applications in Decision Making

4.1 Intorduction

In many real-world decision problems the values of the membership function and

the non-membership function in an IFS are difficult to be expressed as exact num-

bers. Instead, the ranges of their values can usually be specified. In such cases,

Atanassov and Gargov (1989) generalized the concept of Intuitionistic Fuzzy Set

(IFS) to Interval Valued Intuitionistic Fuzzy Set (IVIFS) and studied its various

properties. It may be noted that the entropy and similarity measures are two

important concepts in the field of fuzzy set theory and are widely investigated

by many researchers from different point of view. The similarity measure of IFSs

indicates the degree of similarity between two IFSs and plays a significant role

in many applications such as pattern recognition, approximate reasoning and
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decision making.

Vlachos and Sergiadis (2007) extended the De Luca and Termini’s (1972)

non-probabilistic entropy for fuzzy sets in the study of the intuitionistic fuzzy

information measure. Burillo and Bustince (1996a) introduced the notions of

entropy of IFSs and interval-valued fuzzy sets (IVFS) to measure the degree of

intuitionism of an IFS and IVFS, respectively. Hung and Yang (2006) gave their

axiomatic definitions and characterization of entropy of IFSs and IVFSs with

the help of probability theory. Dengfeng and Chuntian (2002) proposed some

similarity measures on IFSs and applied them in pattern recognition problems.

Further, Liang and Shi (2003) pointed out the drawbacks of Li and Cheng (2002)

methods and to overcome them, they proposed several new similarity measures

and also discussed relationships between these measures. Further, Szmidt and

Kacprzyk (2005) defined a similarity measure using distance measure of IFSs

and applied these measures in group decision making problems and medical di-

agnostic reasoning. Xu (2007a) defined some similarity measures for IVIFSs and

applied these similarity measures in pattern recognitions. Hung and Yang (2004)

presented a similarity measure of IFSs based on Hausdorff metric and applied

it to pattern recognition problems. In the study of fuzzy sets, Wang (1997) de-

fined two similarity measures and Pappis and Karacapilidis (1993) defined three

kinds of similarity measures. Hung and Yang (2008) extend these similarity mea-

sures from the fuzzy sets to IFSs. Further, Xu and Chen (2008) generalized

some formulas of similarity measures of IFSs to IVIFSs. Zeng and Guo (2008)

proved that some similarity measures and entropies of IVFSs can be deduced by

normalized distances of IVFSs based on their axiomatic definitions. Zeng and

Li (2006), Zhang et al. (2009) showed that similarity measures and entropies of

IVFSs can be obtained by the transformation from each other. Zeng et al. (2009)

put straight forward some entropy formulas of IFSs according to the relationship

between entropies and similarity measures of IFSs. Later on, Wei et al. (2011)

proposed the entropy for the IVIFSs and obtained the similarity measure for the

IVIFSs on the basis of proposed entropy.
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Xu and Yager (2006) developed some geometric aggregation operators, such

as the intuitionistic fuzzy weighted geometric (IFWG) operator, the intuitionis-

tic fuzzy ordered weighted geometric (IFOWG) operator and the intuitionistic

fuzzy hybrid geometric (IFHG) operator, and gave an application of the IFHG

operator to multi-criteria decision-making problems with intuitionistic fuzzy in-

formation. Xu (2007b) developed some arithmetic aggregation operators, such

as the intuitionistic fuzzy weighted averaging (IFWA) operator, the intuitionis-

tic fuzzy ordered weighted averaging (IFOWA) operator and the intuitionistic

fuzzy hybrid aggregation (IFHA) operator. Xu (2007c) defined the concept of

interval-valued intuitionistic fuzzy number (IVIFN), and gave some basic oper-

ational laws of IVIFNs. He gave an interval-valued intuitionistic fuzzy weighted

averaging operator and an interval-valued intuitionistic fuzzy weighted geometric

operator and defines the score function and the accuracy function of IVIFNs.

Xu and Chen (2007) developed some arithmetic aggregation operators, such as

the interval-valued intuitionistic fuzzy weighted averaging (IIFWA) operator, the

interval-valued intuitionistic fuzzy ordered weighted averaging (IIFOWA) oper-

ator and the interval-valued intuitionistic fuzzy hybrid aggregation (IIFHA) op-

erator, and gave an application of the IIFHA operator to multi-criteria decision

making problems with interval-valued intuitionistic fuzzy information by using

the score function and accuracy function of interval-valued intuitionistic fuzzy

numbers.

In this chapter, we study some basic definitions related to the intuitionistic

fuzzy sets and the interval-valued intuitionistic fuzzy sets in section 4.2. New

similarity measures for intuitionistic fuzzy sets and interval-valued intuitionis-

tic fuzzy sets based on ‘NTV’ metric along with their weighted form have been

proposed in section 4.3. The proposed similarity measures have also been anal-

ogously extended to obtain new intuitionistic fuzzy entropies for intuitionistic

fuzzy sets and interval-valued intuitionistic fuzzy sets with the proof of their va-

lidity in section 4.4. Further, a new algorithm for multi-criteria group decision

making has been provided using the proposed weighted similarity measures in

which the weights have been calculated using the proposed entropies in section
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4.5. Numerical example by taking interval-valued intuitionistic fuzzy sets has

been illustrated in section 4.6.

4.2 Preliminaries

In this section, we present some axiomatic definitions of the similarity measure,

entropy measure for intuitionistic fuzzy set and interval-valued intuitionistic fuzzy

set which are well known in literature.

Similarity Measure on IFSs:

Hung and Yang (2004) proposed that a real-valued function S : IFS(X) ×
IFS(X) → [0, 1], is called the similarity measure on IFS(X), if S satisfies the

following axiomatic requirements:

(S1) If Ã is a crisp set, then S(Ã, Ãc) = 0;

(S2) S(Ã, B̃) = 1 ⇔ Ã = B̃, i.e., µÃ(x) = µB̃(x) & νÃ(x) = νB̃(x);

(S3) S(Ã, B̃) = S(B̃, Ã);

(S4) If Ã ⊆ B̃ ⊆ C̃, then S(Ã, C̃) ≤ S(Ã, B̃) and S(Ã, C̃) ≤ S(B̃, C̃).

Similarity Measure on IVIFSs:

Xu and Chen (2008) proposed that a real-valued function S : IVIFS(X) ×
IVIFS(X) → [0, 1], is called the similarity measure on IVIFS(X), if S satisfies

the following axiomatic requirements:

(S1) 0 ≤ S(Ã∗, B̃∗) ≤ 1;

(S2) S(Ã∗, B̃∗) = 1 ⇔ Ã∗ = B̃∗;

(S3) S(Ã∗, B̃∗) = S(B̃∗, Ã∗);

(S4) If Ã∗ ⊆ B̃∗ ⊆ C̃∗, thenS(Ã∗, C̃∗) ≤ S(Ã∗, B̃∗) and S(Ã∗, C̃∗) ≤ S(B̃∗, C̃∗).
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Apart from similarity measures for IFSs, we have the entropies (information

measures) for intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets.

These entropies play an important role in many fields of research such as pattern

recognition, approximate reasoning, decision making etc.

Entropy Measure on IFSs:

Szmidt and Kacprzyk (2001) proposed that a real-valued function E : IFS(X) →
[0, 1] is called the entropy measure on IFS(X), if E satisfies the following prop-

erties:

(E1) E(Ã) = 0 ⇔ Ã is crisp set;

(E2) E(Ã) = 1 ⇔ µÃ(x) = νÃ(x), ∀x ∈ X;

(E3) E(Ã) ≤ E(B̃) if Ã is less fuzzy than B̃, i.e., µÃ(x) ≤ µB̃(x) and

νÃ(x) ≥ νB̃(x) for µB̃(x) ≤ νB̃(x) or µÃ(x) ≥ µB̃(x) and νÃ(x) ≤ νB̃(x) for

µB̃(x) ≥ νB̃(x), ∀x ∈ X;

(E4) E(Ã) = E(Ãc), where Ãc is the complement of Ã.

Entropy Measure on IVIFSs:

Liu et al. (2005) proposed that a real-valued function E : IVIFS(X) → [0, 1] is

called the entropy measure on IVIFS(X), if E satisfies the following properties:

(E1) E(Ã∗) = 0 ⇔ Ã∗ is crisp set;

(E2) E(Ã∗) = 1 ⇔ µL
Ã∗
(x) = µU

Ã∗
(x) and νL

Ã∗
(x) = νU

Ã∗
(x), ∀x ∈ X;

(E3) E(Ã∗) ≤ E(B̃∗) if Ã∗ is less fuzzy than B̃∗, i.e., Ã∗ ⊆ B̃∗, for

µL
B̃∗
(x) ≤ νL

B̃∗
(x) and µU

B̃∗
(x) ≤ νU

B̃∗
(x), or B̃∗ ⊆ Ã∗ for µL

B̃∗
(x) ≥ νL

B̃∗
(x)

and µU
B̃∗
(x) ≥ νU

B̃∗
(x),∀x ∈ X;

(E4) E(Ã∗) = E(Ãc
∗), where Ãc

∗ is the complement of Ã∗.
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4.3 ‘NTV’ Based Similarity Measures for IFSs

and IVIFSs

In this section, we propose similarity measures for IFSs and IVIFSs along with

their weighted form based on the ‘NTV’ metric defined by Neito et al. (2003) on

n-dimensional unit hypercube In.

Neito et al. (2003) defined ‘NTV’ metric, dNTV (p, q), on In as follows:

dNTV (p, q) =

n∑
i=1

|pi − qi|
n∑
i=1

max {pi, qi}
,

where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are n-dimensional vectors in

In.

Let Ã = {⟨x, µÃ(x), νÃ(x)⟩} and B̃ = {⟨x, µB̃(x), νB̃(x)⟩} are two single-

element IFSs. Based on the ‘NTV’ metric, we propose a new similarity measure

between Ã and B̃ as follows:

S1
NTV (Ã, B̃) = 1−

|µÃ(x)− µB̃(x)|+ |νÃ(x)− νB̃(x)|+ |πÃ(x)− πB̃(x)|
max {µÃ(x), µB̃(x)}+max {νÃ(x), νB̃(x)}+max {πÃ(x), πB̃(x)}

. (4.3.1)

Also, we know that

|µÃ(x)− µB̃(x)| = max {µÃ(x), µB̃(x)} −min {µÃ(x), µB̃(x)},

|νÃ(x)− νB̃(x)| = max {νÃ(x), νB̃(x)} −min {νÃ(x), νB̃(x)},

|πÃ(x)− πB̃(x)| = max {πÃ(x), πB̃(x)} −min {πÃ(x), πB̃(x)}.

Hence, the similarity measure (4.3.1) reduces to

S1
NTV (Ã, B̃) =

min {µÃ(x), µB̃(x)}+min {νÃ(x), νB̃(x)}+min {πÃ(x), πB̃(x)}
max {µÃ(x), µB̃(x)}+max {νÃ(x), νB̃(x)}+max {πÃ(x), πB̃(x)}

. (4.3.2)

The similarity measure (4.3.2) is defined for single-element IFS. Further, we

define similarity measure of two IFSs Ã and B̃ under the universe of discourse

X = {x1, x2, . . . , xn}.
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Let Ã = {⟨xi, µÃ(xi), νÃ(xi)⟩|xi ∈ X} and B̃ = {⟨xi, µB̃(xi), νB̃(xi)⟩|xi ∈ X}
are two IFSs, then similarity measure between Ã and B̃ is defined as

SNTV (Ã, B̃) =
1

n

n∑
i=1

(
min {µÃ(xi), µB̃(xi)}+min {νÃ(xi), νB̃(xi)}+min {πÃ(xi), πB̃(xi)}
max {µÃ(xi), µB̃(xi)}+max {νÃ(xi), νB̃(xi)}+max {πÃ(xi), πB̃(xi)}

)
.

(4.3.3)

Theorem 4.3.1: SNTV (Ã, B̃) is a valid similarity measure.

Proof. In order to prove that similarity measure (4.3.3) is a valid similarity

measure, we prove the four properties (S1) to (S4) as listed by Hung and Yang

(2006):

(S1) By the definition of equality of two IFSs, it is easy to show that

SNTV (Ã, B̃) = 1 if and only if Ã = B̃.

(S2) If Ã is a crisp set, then either µÃ(xi) = 1, νÃ(xi) = 0, πÃ(xi) = 0 or

µÃ(xi) = 0, νÃ(xi) = 1, πÃ(xi) = 0, ∀xi ∈ X.

Moreover, for Ãc, either µÃc(xi) = 0, νÃc(xi) = 1, πÃc(xi) = 0

or µÃc(xi) = 1, νÃc(xi) = 0, πÃc(xi) = 0,∀ xi ∈ X;

⇒ SNTV (Ã, Ã
c) = 0.

(S3) In view of the proposed similarity measure, it is easy to verify that

SNTV (Ã, B̃) = SNTV (B̃, Ã).

(S4) Let Ã ⊆ B̃ ⊆ C̃, then, we have

µÃ(xi) ≤ µB̃(xi) ≤ µC̃(xi), νÃ(xi) ≥ νB̃(xi) ≥ νC̃(xi) and

πÃ(xi) ≤ πB̃(xi) ≤ πC̃(xi), ∀xi ∈ X which implies

min {µÃ(xi), µB̃(xi)} = min {µÃ(xi), µC̃(xi)};

max {µÃ(xi), µB̃(xi)} ≤ max {µÃ(xi), µC̃(xi)};

min {νÃ(xi), νB̃(xi)} ≥ min {νÃ(xi), νC̃(xi)};

max {νÃ(xi), νB̃(xi)} = max {νÃ(xi), νC̃(xi)};

min {πÃ(xi), πB̃(xi)} = min {πÃ(xi), πC̃(xi)};

max {πÃ(xi), πB̃(xi)} ≤ max {πÃ(xi), πC̃(xi)},
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which further implies that

min {µÃ(xi), µB̃(xi)}
max {µÃ(xi), µB̃(xi)}

≥
min {µÃ(xi), µC̃(xi)}
max {µÃ(xi), µC̃(xi)}

;

min {νÃ(xi), νB̃(xi)}
max {νÃ(xi), νB̃(xi)}

≥
min {νÃ(xi), νC̃(xi)}
max {νÃ(xi), νC̃(xi)}

;

min {πÃ(xi), πB̃(xi)}
max {πÃ(xi), πB̃(xi)}

≥
min {πÃ(xi), πC̃(xi)}
max {πÃ(xi), πC̃(xi)}

.

Hence, we have

min{µÃ(xi), µB̃(xi)}+min{νÃ(xi), νB̃(xi)}+min{πÃ(xi), πB̃(xi)}
max{µÃ(xi), µB̃(xi)}+max{νÃ(xi), νB̃(xi)}+max{πÃ(xi), πB̃(xi)}

≥ min{µÃ(xi), µC̃(xi)}+min{νÃ(xi), νC̃(xi)}+min{πÃ(xi), πC̃(xi)}
max{µÃ(xi), µC̃(xi)}+max{νÃ(xi), νC̃(xi)}+max{πÃ(xi), πC̃(xi)} .

(4.3.4)

Similarly, we have

min {µB̃(xi), µC̃(xi)} ≥ min {µÃ(xi), µC̃(xi)};

max {µB̃(xi), µC̃(xi)} = max {µÃ(xi), µC̃(xi)};

min {νB̃(xi), νC̃(xi)} = min {νÃ(xi), νC̃(xi)};

max {νB̃(xi), νC̃(xi)} ≤ max {νÃ(xi), νC̃(xi)};

min {πB̃(xi), πC̃(xi)} ≥ min {πÃ(xi), πC̃(xi)};

max {πB̃(xi), πC̃(xi)} = max {πÃ(xi), πC̃(xi)},

which implies that

min {µÃ(xi), µB̃(xi)}
max {µÃ(xi), µB̃(xi)}

≥ min {µÃ(xi), µC̃(xi)}
max {µÃ(xi), µC̃(xi)}

,

min {νÃ(xi), νB̃(xi)}
max {νÃ(xi), νB̃(xi)}

≥ min {νÃ(xi), νC̃(xi)}
max {νÃ(xi), νC̃(xi)}

,

min {πÃ(xi), πB̃(xi)}
max {πÃ(xi), πB̃(xi)}

≥ min {πÃ(xi), πC̃(xi)}
max {πÃ(xi), πC̃(xi)}

.

Hence, we have

min{µÃ(xi), µB̃(xi)}+min{νÃ(xi), νB̃(xi)}+min{πÃ(xi), πB̃(xi)}
max{µÃ(xi), µB̃(xi)}+max{νÃ(xi), νB̃(xi)}+max{πÃ(xi), πB̃(xi)}

≥ min{µÃ(xi), µC̃(xi)}+min{νÃ(xi), νC̃(xi)}+min{πÃ(xi), πC̃(xi)}
max{µÃ(xi), µC̃(xi)}+max{νÃ(xi), νC̃(xi)}+max{πÃ(xi), πC̃(xi)}

(4.3.5)
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From equation (4.3.4) and (4.3.5), we have SNTV (Ã, B̃) ≥ SNTV (Ã, C̃)

and SNTV (B̃, C̃) ≥ SNTV (Ã, C̃).

Therefore, SNTV (Ã, B̃) is a valid similarity measure between IFSs Ã and B̃. �

Further, we associate some weights depending upon importance of the ele-

ments of the universal set to define the weighted form of the similarity measure

(4.3.3).

Let w = (w1, w2, . . . , wn) be the weight vector of the elements xi, i = 1, 2, . . . , n.

We propose the following weighted similarity measure:

S
′

NTV (Ã, B̃) =

n∑
i=1

wi

(
min {µÃ(xi), µB̃(xi)}+min {νÃ(xi), νB̃(xi)}+min {πÃ(xi), πB̃(xi)}
max {µÃ(xi), µB̃(xi)}+max {νÃ(xi), νB̃(xi)}+max {πÃ(xi), πB̃(xi)}

)
,

(4.3.6)

where wi ≥ 0 and
n∑
i=1

wi = 1.

Remark: If w = (1/n, 1/n, . . . , 1/n) , then the weighted similarity measure

(4.3.6) reduces to the similarity measure (4.3.3).

Next, we consider two IVIFSs as

Ã∗ =
{⟨
x,
[
µL
Ã∗

(x), µU
Ã∗

(x)
]
,
[
νL
Ã∗

(x), νU
Ã∗

(x)
]⟩

|x ∈ X
}

and

B̃∗ =
{⟨
x,
[
µL
B̃∗

(x), µU
B̃∗

(x)
]
,
[
νL
B̃∗

(x), νU
B̃∗

(x)
]⟩

|x ∈ X
}
.

Analogous to the ‘NTV’ similarity measure for IFS in (4.3.3), we propose the

following similarity measure for IVIFSs:

SNTV (Ã∗, B̃∗) =
1

n

n∑
i=1

(
ML(µ, ν) +MU (µ, ν)

NL(µ, ν) +NU (µ, ν)

)
, (4.3.7)

and the weighted form of the similarity measure (4.3.7) is given by

S
′

NTV (Ã∗, B̃∗) =
n∑

i=1

wi

(
ML(µ, ν) +MU (µ, ν)

NL(µ, ν) +NU (µ, ν)

)
, (4.3.8)

where

ML(µ, ν) = min
{
µL
Ã∗

(xi), µ
L
B̃∗

(xi)
}
+min

{
νL
Ã∗

(xi), ν
L
B̃∗

(xi)
}
+min

{
πL
Ã∗

(xi), π
L
B̃∗

(xi)
}
,

NL(µ, ν) = max
{
µL
Ã∗

(xi), µ
L
B̃∗

(xi)
}
+max

{
νL
Ã∗

(xi), ν
L
B̃∗

(xi)
}
+max

{
πL
Ã∗

(xi), π
L
B̃∗

(xi)
}
,

MU (µ, ν) = min
{
µU
Ã∗

(xi), µ
U
B̃∗

(xi)
}
+min

{
νU
Ã∗

(xi), ν
U
B̃∗

(xi)
}
+min

{
πU
Ã∗

(xi), π
U
B̃∗

(xi)
}
,
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NU (µ, ν) = max
{
µU
Ã∗

(xi), µ
U
B̃∗

(xi)
}
+max

{
νU
Ã∗

(xi), ν
U
B̃∗

(xi)
}
+max

{
πU
Ã∗

(xi), π
U
B̃∗

(xi)
}
.

Theorem 4.3.2: Similarity measure SNTV (Ã∗, B̃∗) is a valid similarity measure.

Proof. The proof of the theorem follows on the similar lines as the proof of

theorem 4.3.1. �

4.4 Entropy Measures based on Proposed

Similarity Measures

In this section, we introduce entropy measures based on the proposed similarity

measures for IFSs and IVIFSs, respectively. We first recall some entropy formulas

for IFSs.

For an IFS Ã = {⟨xi, µÃ(xi), νÃ(xi)⟩|xi ∈ X}, Szmidt and Kacprzyk (2001)

defined two kind of cardinalities of Ã. The least cardinality or min-sigma-count

of Ã given by

min
∑

count(Ã) =
n∑
i=1

µÃ(xi),

and the biggest cardinality or max-sigma-count of Ã given by

max
∑

count(Ã) =
n∑
i=1

µÃ(xi)+πÃ(xi).

Using these two cardinalities, Szmidt and Kacprzyk (2001) proposed an entropy

measure for Ã as

ESK(Ã) =
1

n

n∑
i=1

max count(Ãi ∩ Ãc
i)

max count(Ãi ∪ Ãc
i)
, (4.4.1)

where for each i, Ãi denote the single-element IFS corresponding to the element

xi in X, and described as Ãi = {⟨xi, µÃ(xi), νÃ(xi)⟩}, Also,

Ãi ∩ Ãc
i = {⟨xi, min{µÃ(xi), νÃ(xi)}, max{µÃ(xi), νÃ(xi)}⟩},

Ãi ∪ Ãc
i = {⟨xi, max{µÃ(xi), νÃ(xi)}, min{µÃ(xi), νÃ(xi)}⟩}.
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For an IFS Ã, Wang et al. (1997) gave a different entropy formula

EWL(Ã) =
1

n

n∑
i=1

min {µÃ(xi), νÃ(xi)}+ πA(xi)

max {νÃ(xi), µÃ(xi)}+ πA(xi)
. (4.4.2)

Hung and Liu et al. (2005) introduced fuzzy entropy for a vague sets. Using the

equivalence of two theories of vague sets and IFSs [Bustince and Burillo (1996b)],

Wei et al. (2011) transform the Hung and Liu (2005) fuzzy entropy for a vague

set to fuzzy entropy for an IFS Ã as

EHL(Ã) =
1

n

n∑
i=1

1− |µÃ(xi)− νÃ(xi)|+ πA(xi)

1 + |µÃ(xi)− νÃ(xi|+ πA(xi)
. (4.4.3)

Wei et al. (2011) also proved that all these entropies given by (4.4.1), (4.4.2) and

(4.4.3) are equivalent. In fuzzy set theory, Kosko (1990) gave the idea to drive

entropies from the distance and similarity measures. Xuecheng (1992) found

various entropies from the similarity measures for the fuzzy sets by the relation

E(Ã) = S(A, Ac).

Similarly, we derive entropies for IFSs and IVIFSs from the proposed simi-

larity measures (4.3.3) and (4.3.7) as follows:

ET (Ã) = SNTV (Ã, Ã
c)

= 1
n

n∑
i=1

(
min{µÃ(xi), νÃ(xi)}+0.5πÃ(xi)

max{µÃ(xi), νÃ(xi)}+0.5πÃ(xi)

)
(4.4.4)

and

ET (Ã∗) =
1
n

n∑
i=1

(
min

{
µL
Ã∗

(xi), ν
L
Ã∗

(xi)
}
+min

{
µU
Ã∗

(xi), ν
U
Ã∗

(xi)
}
+0.5

(
πL
Ã∗

(xi)+π
U
Ã∗

(xi)
)

max
{
µL
Ã∗

(xi), νL
Ã∗

(xi)
}
+max

{
µU
Ã∗

(xi), νL
Ã∗

(xi)
}
+0.5

(
πL
Ã∗

(xi)+πU
Ã∗

(xi)
)
)
.

(4.4.5)

Theorem 4.4.1: ET (Ã) is a valid information measure for the intuitionistic fuzzy set.

Proof. In order to prove that the entropy (4.4.4) is a valid measure, we prove all the

four properties (E1) to (E4) as listed by Szmidt and Kacprzyk (2001).

(E1) If Ã is a crisp set, then either µÃ(xi) = 1, νÃ(xi) = 0, πÃ(xi) = 0 or

µÃ(xi) = 0, νÃ(xi) = 1, πÃ(xi) = 0, ∀xi ∈ X.

From this we have S(Ã, Ãc) = 0 ⇒ ET (Ã) = 0.
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Conversely, if ET (Ã) = 0, then min
{
µÃ(xi), νÃ(xi)

}
+0.5×πÃ(xi) = 0, ∀xi ∈ X;

which implies either µÃ(xi) = 1, νÃ(xi) = 0, πÃ(xi) = 0 or

µÃ(xi) = 0, νÃ(xi) = 1, πÃ(xi) = 0, ∀xi ∈ X;

⇒ Ã is a crisp set.

(E2) Let µÃ(xi) = νÃ(xi), ∀xi ∈ X

⇔ µÃc(xi) = νÃ(xi) = µÃ(xi), νÃc(xi) = µÃ(xi) = νÃ(xi),

⇔ Ãc = Ã⇔ SNTV (Ã, Ã
c) = 1 ⇔ ET (Ã) = 1.

(E3) It is easy to verify that, SNTV (Ã, Ã
c) = SNTV (Ã

c, A) ⇔ ET (Ã) = ET (Ã
c).

(E4) Suppose that µB̃(xi) ≤ νB̃(xi) for each xi ∈ X, then Ã ⊆ B̃, i.e.,

µÃ(xi) ≤ µB̃(xi), νÃ(xi) ≥ νB̃(xi);

⇒ µÃ(xi) ≤ µB̃(xi) ≤ νB̃(xi) ≤ νÃ(xi);

⇒ Ã ⊆ B̃ ⊆ B̃c ⊆ Ãc.

Therefore, we have SNTV (Ã, Ã
c) ≤ SNTV (B̃, Ã

c) ≤ SNTV (B̃, B̃
c).

Similarly, if µÃ(xi) ≥ µB̃(xi), νÃ(xi) ≤ νB̃(xi), for µB̃(xi) ≥ νB̃(xi),

then we have νÃ(xi) ≤ νB̃(xi) ≤ µB̃(xi) ≤ µÃ(xi),

⇒ Ãc ⊆ B̃c ⊆ B̃ ⊆ Ã,

⇒ SNTV (Ã
c, Ã) ≤ SNTV (B̃

c, Ã) ≤ SNTV (B̃
c, B̃),

⇒ SNTV (Ã, Ã
c) ≤ SNTV (Ã, B̃

c) ≤ SNTV (B̃, B̃
c),

⇒ ET (Ã) = SNTV (Ã, Ã
c) ≤ SNTV (B̃, B̃

c) = ET (B̃),

⇒ ET (Ã) ≤ ET (B̃).

Since ET (Ã) satisfies all the four properties of an entropy measure, therefore, it is a

valid entropy for the IFSs. �

Theorem 4.3.2: ET (Ã∗) is a valid information measure for the interval-valued intu-

itionistic fuzzy set.

Proof. In order to prove that the entropy (4.4.5) is a valid measure, we prove all the

four properties (E1) to (E4) as listed by Liu et al. (2005).

(E1) Let Ã∗ be a crisp set. Then either we have

[µL
Ã∗

(xi), µ
U
Ã∗

(xi)] = [1, 1], [νL
Ã∗

(xi), ν
U
Ã∗

(xi)] = [0, 0]& [πL
Ã∗

(xi), π
U
Ã∗

(xi)] = [0, 0]
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or

[µL
Ã∗

(xi), µ
U
Ã∗

(xi)] = [0, 0], [νL
Ã∗

(xi), ν
U
Ã∗

(xi)] = [1, 1]& [πL
Ã∗

(xi), π
U
Ã∗

(xi)] = [0, 0]

for each xi ∈ X.

Hence, we have S(Ã∗, Ã
c
∗) = 0 ⇒ ET (Ã∗) = 0.

Conversely, suppose that ET (Ã∗) = 0, then we have

min
{
µL
Ã∗

(xi), ν
L
Ã∗

(xi)
}
+min

{
µU
Ã∗

(xi), ν
U
Ã∗

(xi)
}
+ 0.5

(
πL
Ã∗

(xi) + πU
Ã∗

(xi)
)
= 0;

Since each term in the above equation is non-negative, therefore,

min
{
µL
Ã∗

(xi), ν
L
Ã∗

(xi)
}
= 0,min

{
µU
Ã∗

(xi), ν
U
Ã∗

(xi)
}
= 0

and πL
Ã∗

(xi) + πU
Ã∗

(xi) = 0 for each xi ∈ X;

which further implies that Ã∗ is a crisp set.

(E2) If [µL
Ã∗

(x), µU
Ã∗

(x)] = [νL
Ã∗

(x), νU
Ã∗

] for each xi ∈ X, then from equation (4.4.5)

we obtain ET (Ã∗) = 1.

Conversely, if we suppose that ET (Ã∗) = 1, then we get

min
{
µL
Ã∗

(xi), ν
L
Ã∗

(xi)
}
+min

{
µU
Ã∗

(xi), ν
U
Ã∗

(xi)
}

= max
{
µL
Ã∗

(xi), ν
L
Ã∗

(xi)
}
+max

{
µU
Ã∗

(xi), ν
L
Ã∗

(xi)
}
;

which implies that [µL
Ã∗

(x), µU
Ã∗

(x)] = [νL
Ã∗

(x), νU
Ã∗

], ∀xi ∈ X.

(E3) It is easy to verify that, SNTV (Ã∗, Ã
c
∗) = SNTV (Ã

c
∗, A∗) ⇒ ET (Ã∗) = ET (Ã

c
∗).

(E4) Let Ã∗ is less fuzzy than B̃∗, i.e., Ã∗ ⊆ B̃∗

⇒ µL
Ã∗

(xi) ≤ µL
B̃∗

(xi), µ
U
Ã∗

(xi) ≤ µU
B̃∗

(xi)& νL
Ã∗

(xi) ≥ νL
B̃∗

(xi), ν
U
Ã∗

(xi) ≥ νU
B̃∗

(xi)

for µL
B̃∗

(xi) ≤ νL
B̃∗

(xi) and µ
U
B̃∗

(xi) ≤ νU
B̃∗

(xi), ∀xi ∈ X.

Then it follows that µL
Ã∗

(xi) ≤ µL
B̃∗

(xi) ≤ νL
B̃∗

(xi) ≤ νL
Ã∗

(xi)

and µU
Ã∗

(xi) ≤ µU
B̃∗

(xi) ≤ νU
B̃∗

(xi) ≤ νU
Ã∗

(xi), ∀xi ∈ X;

⇒ Ã∗ ⊆ B̃∗ ⊆ B̃c
∗ ⊆ Ãc∗.

Therefore, we have SNTV (Ã∗, Ã
c
∗) ≤ SNTV (B̃∗, Ã

c
∗) ≤ SNTV (B̃∗, B̃

c
∗).

Similarly, if µL
Ã∗

(xi) ≥ µL
B̃∗

(xi), µ
U
Ã∗

(xi) ≥ µU
B̃∗

(xi) and ν
L
Ã∗

(xi) ≤ νL
B̃∗

(xi),

νU
Ã∗

(xi) ≤ νU
B̃∗

(xi) for µ
L
B̃∗

(xi) ≥ νL
B̃∗

(xi) and µ
U
B̃∗

(xi) ≥ νU
B̃∗

(xi), ∀xi ∈ X;

which follows that νL
Ã∗

(xi) ≤ νL
B̃∗

(xi) ≤ µL
B̃∗

(xi) ≤ µL
Ã∗

(xi)

and νU
Ã∗

(xi) ≤ νU
B̃∗

(xi) ≤ µU
B̃∗

(xi) ≤ µU
Ã∗

(xi), ∀xi ∈ X;

⇒ Ãc∗ ⊆ B̃c
∗ ⊆ B̃∗ ⊆ Ã∗;

⇒ SNTV (Ã
c
∗, Ã∗) ≤ SNTV (B̃

c
∗, Ã∗) ≤ SNTV (B̃

c
∗, B̃∗);

⇒ SNTV (Ã∗, Ã
c
∗) ≤ SNTV (Ã∗, B̃

c
∗) ≤ SNTV (B̃∗, B̃

c
∗);
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⇒ ET (Ã∗) = SNTV (Ã∗, Ã
c
∗) ≤ SNTV (B̃∗, B̃

c
∗) = ET (B̃∗);

⇒ ET (Ã∗) ≤ ET (B̃∗).

Since ET (Ã∗) satisfies all the four properties of an entropy measure, therefore, it

is a valid entropy for the IVIFS. �

4.5 Multiple-Criteria Decision Making with IFS

and IVIFS

In this section, we present a new method which is based on the proposed weighted

similarity measures, where the objective weights are calculated using the proposed

entropies to deal with the Multiple-Criteria Decision Making (MCDM) problems under

the intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets. Ratings of the

alternatives, importance/weights of criteria and importance of decision makers in a

group decision committee are the three most significant factors which can affect on the

results of decision making problems.

LetA = {A1, A2, . . . , Am} be the set of possible alternatives,D = {D1, D2, . . . , Dl}

be the set of decision makers and C = {C1, C2, . . . , Cn} be the set of criteria with which

the performance of alternatives are measured. Assume that the weight information of

the criteria and the decision makers are completely unknown. Let ([aij , bij ] , [cij , dij ])

be the interval-valued intuitionistic fuzzy number, where [aij , bij ] indicates the degree

that alternative Ai satisfies the criterion Cj , [cij , dij ] indicates the degree that alterna-

tive Ai does not satisfies the criterion Cj and [aij , bij ] ⊂ [0, 1], [cij , dij ] ⊂ [0, 1] such

that bij + dij ≤ 1, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Now, we propose the following algorithm to solve the above multiple-criteria deci-

sion making problem:

Step 1: Determine the weights of decision makers in the decision group.

Assume that decision group contains l decision makers. The importance/weights

of the decision makers in the selection committee may not be equal. The

importance/weights of decision makers are considered as linguistic variables
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expressed by interval-valued intuitionistic fuzzy numbers (IVIFNs).

Let Dk = ([ak, bk], [ck, dk]) be an interval-valued intuitionistic fuzzy number

for rating of kth decision maker. Then the subjective weight of kth decision

maker can be defined as:

λk =

(
ak + bk + (1− bk − dk)

(
ak

ak+ck

)
+ (1− ak − ck)

(
bk

bk+dk

))
∑l

k=1

(
ak + bk + (1− bk − dk)

(
ak

ak+ck

)
+ (1− ak − ck)

(
bk

bk+dk

))
(4.5.1)

and
∑l

k=1 λk = 1. The linguistic variables for the importance of the decision

makers are provided in the Table 4.1. If the importance of all the decision

makers is same namely extremely importance, the rating of the kth decision

maker can be expressed as ([1, 1], [0, 0][0, 0]). Then the weight of each decision

maker will be 1/l.

Step 2: Construct the aggregated interval-valued intuitionistic fuzzy decision matrix

by pulling the individual decision opinions into a group opinions.

Let Dk =
(
r
(k)
ij

)
m×n

is an interval-valued intuitionistic fuzzy decision matrix

for kth (k = 1, 2, . . . , l) decision maker and λ = λ1, λ2, . . . , λl is the weight

vector for decision makers,
∑l

k=1 λk = 1, λk ∈ [0, 1]. In group decision-

making process, all the individual decision opinions need to be fused into group

opinions to construct aggregated interval-valued intuitionistic fuzzy decision

matrix. In order to do, we utilize interval-valued intuitionistic fuzzy weighted

average (IIFWA) operator due to Xu and Chen (2007) as follows:

rij = IIFWAλ

(
r
(1)
ij , r

(2)
ij , . . . , r

(l)
ij

)
=

([
1−

l∏
k=1

(1− a
(k)
ij )λk , 1−

l∏
k=1

(1− b
(k)
ij )λk

]
,

[
l∏

k=1

(c
(k)
ij )λk ,

l∏
k=1

(d
(k)
ij )λk

])
.

The aggregated interval-valued intuitionistic fuzzy decision matrix can be

defined as:

D =


r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
. . .

...

rm1 rm2 · · · rmn


Step 3: Determine the aggregated interval-valued intuitionistic fuzzy weights of the

criteria using IIFWA operator.
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All criteria may not be assumed to be of equal importance. Let W represents

a set of grades of importance for given criteria’s. In order to obtain W , all the

individual decision maker opinions for the importance of each of criterion need

to be combined. Let w
(k)
j =

([
a
(k)
ij , a

(k)
ij

]
,
[
c
(k)
ij , d

(k)
ij

])
be an IVIFN assigned

to criterion Cj by the kth decision maker. Then the aggregated weights of the

criteria are calculated using the IIFWA operator due to Xu and Chen (2007)

as follows:

wj = IIFWAλ

(
w

(1)
j , w

(2)
j , . . . , w

(l)
j

)
=

([
1−

l∏
k=1

(1− a
(k)
ij )λk , 1−

l∏
k=1

(1− b
(k)
ij )λk

]
,

[
l∏

k=1

(c
(k)
ij )λk ,

l∏
k=1

(d
(k)
ij )λk

])
.

(4.5.2)

The aggregated weights of the criteria can be defined as:

W = [w1, w2, . . . , wn]
T , here wj = ([aj , bj ] , [aj , bj ]) , j = 1, 2, . . . , n.

Step 4: Construct the aggregated weighted interval-valued intuitionistic fuzzy decision

matrix.

After the aggregated weights of criteria and the aggregated interval valued

intuitionistic fuzzy decision matrix are determined, the aggregated weighted

interval-valued intuitionistic fuzzy decision matrix can be defined as follows:

D′ = D ⊗W =
(
r′ij
)
m×n , (4.5.3)

where r′ij =
([
a′ij , a

′
ij

]
,
[
c′ij , d

′
ij

])
is an element of the aggregated weighted

interval-valued intuitionistic fuzzy decision matrix.

Step 5: Determine the objective weights of criteria using the proposed interval-valued

intuitionistic fuzzy entropy measure (4.4.5).

Hwang and Yoon (1981) introduced a method based on information entropy

to determine the weights of attributes. Rao (2007), Rao and Singh (2012)

methods also suggested the calculation of objective weights using entropy. Xu

(2004), Xu and Hui (2009) assigns a small weight to an attribute with similar

attribute values across alternatives because such attribute does not help in

differentiating alternatives. Furthermore, the method requires all elements in

a decision matrix to be normalized to the range [0, 1] so that each column of

the decision matrix sums to one.
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The entropy of the jth criterion Cj , j = 1, 2, . . . , n for the m available alter-

natives can be obtained from entropy measure (4.4.5) as follows:

Ej =
1

m

m∑
i=1

(
min {aij , cij}+min {bij , dij}+ (1− (aij + bij + cij + dij)/2)

max {aij , cij}+max {bij , dij}+ (1− (aij + bij + cij + dij)/2)

)
and the attribute weight wj for each criterion Cj based on entropy value can

be defined as

wj =
1− Ej

n−
n∑
j=1

Ej

, j = 1, 2, . . . , n.

Step 6: Obtain the interval-valued intuitionistic fuzzy positive-ideal solution

(IVIFPIS) and the interval-valued intuitionistic fuzzy negative-ideal solution

(IVIFNIS).

Let J1 and J2 be benefit criteria and cost criteria, respectively. The interval-

valued intuitionistic fuzzy positive-ideal solution, denoted as A+, and the

interval-valued intuitionistic fuzzy negative-ideal solution, denoted as A− ,

are defined as follows:

A+ =
(([

a+1 , b
+
1

]
,
[
c+1 , d

+
1

])
,
([
a+2 , b

+
2

]
,
[
c+2 , d

+
2

])
, . . . ,

([
a+n , b

+
n

]
,
[
c+n , d

+
n

]))
,

A− =
(([

a−1 , b
−
1

]
,
[
c−1 , d

−
1

])
,
([
a−2 , b

−
2

]
,
[
c−2 , d

−
2

])
, . . . ,

([
a−n , b

−
n

]
,
[
c−n , d

−
n

]))
,

where for each j = 1, 2, . . . , n,([
a+j , b

+
j

]
,
[
c+j , d

+
j

])
= (⟨[max aij , max bij ] , [min aij , min bij ] |j ∈ J1⟩,

⟨[min aij , min bij ] , [max aij , max bij ] |j ∈ J2⟩)

([
a−j , b

−
j

]
,
[
c−j , d

−
j

])
= (⟨[min aij , min bij ] , [max aij , max bij ] |j ∈ J1⟩,

⟨[max aij , max bij ] , [min aij , min bij ] |j ∈ J2⟩) .

Step 7: Calculate the similarity of alternatives with the IVIFPIS and IVIFNIS based

on proposed weighted similarity measure (4.3.8), respectively as follows:.

The similarity between alternatives can be found based on the proposed weighted

similarity measure (4.3.8) as follows:

S(Ai, A
+) =

n∑
j=1

wj

(
p+ q

s+ t

)
,
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and

S(Ai, A
−) =

n∑
j=1

wj

(
p′ + q′

s′ + t′

)
,

where

p = min
{
aij , a

+
j

}
+min

{
cij , c

+
j

}
+min

{
1− bij − dij , 1− b+j − d+j

}
,

q = min
{
bij , b

+
j

}
+min

{
dij , d

+
j

}
+min

{
1− aij − cij , 1− a+j − c+j

}
,

s = max
{
aij , a

+
j

}
+max

{
cij , c

+
j

}
+max

{
1− bij − dij , 1− b+j − d+j

}
,

t = max
{
bij , b

+
j

}
+max

{
dij , d

+
j

}
+max

{
1− aij − cij , 1− a+j − c+j

}
,

p′ = min
{
aij , a

−
j

}
+min

{
cij , c

−
j

}
+min

{
1− bij − dij , 1− b−j − d−j

}
,

q′ = min
{
bij , b

−
j

}
+min

{
dij , d

−
j

}
+min

{
1− aij − cij , 1− a−j − c−j

}
,

s′ = max
{
aij , a

−
j

}
+max

{
cij , c

−
j

}
+max

{
1− bij − dij , 1− b−j − d−j

}
,

t′ = max
{
bij , b

−
j

}
+max

{
dij , d

−
j

}
+max

{
1− aij − cij , 1− a−j − c−j

}
,

Step 8: Calculate the relative closeness coefficient to the interval-valued intuitionistic

fuzzy ideal solution.

The relative closeness coefficient of an alternative Ai with respect A+ and A−

is defined as follows:

Ci∗ =
S(Ai, A

+)

S(Ai, A+) + S(Ai, A−)
, i = 1, 2, . . . , m. (4.5.4)

Step 9: Rank all the alternatives.

After the relative closeness coefficient of each alternative is determined, al-

ternatives are ranked according to descending order of Ci∗ ’s and select one

that has largest rank, denoted by Ck∗ among the values Ci∗ , i = 1, 2, . . . , m.

Hence, Ci∗ is the best choice.

Remark 4.5.2: Since the intuitionistic fuzzy set is a particular case of interval-valued

intuitionistic fuzzy set, therefore above proposed algorithm for IVIFSs may similarly

be outline for IFSs. For this, we will have to make the following changes:
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• In step 1, the subjective weight given by the equation (4.5.1) will be replaced by

the weight as suggested in Boran et al. (2009).

• In step 2 and 3, the interval-valued intuitionistic fuzzy weighted average (IIFWA)

operator due to Xu and Chen (2007) will be replaced by the Xu (2007b) intu-

itionistic fuzzy weighted average (IFWA) operator.

• In step 5, the entropy measure given by the equation (4.4.5) will be replaced by

the entropy measure given by the equation (4.4.4).

• In step 5, the weighted similarity measure given by the equation (4.3.8) will be

replaced by the weighted similarity measure given by the equation (4.3.6).

Table 4.1: Importance of Decision Makers with their Weights.

DM1 DM2 DM3

Linguistic terms Very Important Medium Important

Weight 0.393 0.236 0.372

Table 4.2: Linguistic Terms for Rating the Criteria by Decision Makers

Linguistic terms IFNs IVIFNs

Very Important (VI) (0.90, 0.10) ([0.90, 0.95], [0.00, 0.05])

Important (I) (0.85, 0.10) ([0.85, 0.90], [0.05, 0.10])

Medium (M) (0.50, 0.40) ([0.50, 0.55], [0.35, 0.40])

Unimportant (U) (0.20, 0.70) ([0.20, 0.25], [0.65, 0.70])

Very Unimportant (VU) (0.05, 0.90) ([0.05, 0.10], [0.85, 0.90])

4.6 Numerical Examples

Example 4.6.1: An automobile company desires to select the most appropriate sup-

plier for one of the key elements in its manufacturing process. After pre-evaluation,

five suppliers (A1, A2, A3, A4, A5) have remained as alternatives for further evalua-

tion. In order to evaluate alternative suppliers, a committee of three decision makers

DM1, DM2 and DM3 has been formed. Four criteria are considered as:
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Table 4.3: Linguistic Terms for Rating the Alternatives

Linguistic terms IFNs IVIFNs

Extremely Good (EG)/Extremely High (EH) (0.95, 0.05) ([0.90, 95.00], [0.00, 0.05])

Very Very Good (VVG)/Very Very High (VVH) (0.85, 0.10) ([0.85, 0.90], [0.05, 0.10])

Very good (VG)/Very High (VH) (0.80, 0.15) ([0.80, 0.85], [0.10, 0.15])

Good (G)/High (H) (0.75, 0.20) ([0.75, 0.80], [0.15, 0.20])

Medium Good (MG)/Medium High (MH) (0.60, 0.25) ([0.60, 0.65], [0.20, 0.25])

Fair (F)/Medium (M) (0.50, 0.35) ([0.50, 0.55], [0.30, 0.35])

Medium Poor (MP)/Medium Low (ML) (0.40, 0.55) ([0.40, 0.45], [0.50, 0.55])

Poor (P)/Low (L) (0.30, 0.65) ([0.30, 0.35], [0.60, 0.65])

Very Poor (VP)/Very Low (VL) (0.20, 0.75) ([0.20, 0.25], [0.70, 0.75])

Very Very Poor (VVP)/Very Very Low (VVL) (0.10, 0.85) ([0.10, 0.15], [0.80, 0.85])

• X1: Product quality.

• X2: Relationship closeness.

• X3: Delivery performance.

• X4: Price.

The proposed method is currently applied to solve this problem and the compu-

tational procedure is as follows:

Importance degree of the decision makers on group decision is shown in Table 4.1.

Linguistic terms used for the ratings of the decision makers and criteria are given in

Table 4.2. In order to obtain the weights of the decision makers, equation (4.5.1) is

utilized:

λDM1 = 0.393, λDM2 = 0.372, λDM2 = 0.236.

Now the aggregated interval-valued intuitionistic fuzzy decision matrix based on

the opinions of decision makers is constructed using IIFWA operator. The linguistic

terms shown in Table 4.3 are used to rate each alternative supplier with respect to each

criterion by three decision makers. The ratings given by the decision makers to five

alternatives is shown in Table 4.4.
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Table 4.4: Rating of the Alternatives

Criteria Suppliers Decisions makers Criteria Suppliers Decisions makers

DM1 DM2 DM3 DM1 DM2 DM3

X1 A1 G G G X3 A1 VG G VG

A2 MG G F A2 G MG MG

A3 VVG VG VG A3 VG VG G

A4 MG G G A4 VG G G

A5 F MG MG A5 G G MG

X2 A1 MG G MG X4 A1 H H H

A2 F MG G A2 MH M MH

A3 VG G VG A3 VH VH H

A4 F F MG A4 H MH MH

A5 MP F F A5 M MH M

Table 4.5: Importance Weight of the Criteria

Criteria DM1 DM2 DM3

X1 VI VI I

X2 I I I

X3 I I M

X4 M I M

The aggregated interval-valued intuitionistic fuzzy decision matrix based on ag-

gregation of decision makers opinions is constructed as follows:

D =


([0.750, 0.800], [0.150, 0.120]) ([0.642, 0.694], [0.187, 0.237]) ([0.790, 0.840], [0.110, 0.160]) ([0.750, 0.800], [0.150, 0.200])

([0.611, 0.664], [0.217, 0.268]) ([0.634, 0.687], [0.210, 0.262]) ([0.668, 0.719], [0.178, 0.229]) ([0.579, 0.629], [0.220, 0.270])

([0.822, 0.872], [0.076, 0.128]) ([0.790, 0.840], [0.110, 0.160]) ([0.783, 0.833], [0.116, 0.167]) ([0.783, 0.833], [0.116, 0.167])

([0.700, 0.751], [0.168, 0.218]) ([0.540, 0.591], [0.258, 0.309]) ([0.771, 0.822], [0.128, 0.178]) ([0.668, 0.719], [0.178, 0.229])

([0.564, 0.614], [0.234, 0.285]) ([0.463, 0.514], [0.366, 0.418]) ([0.703, 0.754], [0.167, 0.217]) ([0.526, 0.576], [0.272, 0.323])



The importance weights of the criteria provided by decision makers can be linguis-

tic terms. These linguistic terms is represented as interval-valued intuitionistic fuzzy

numbers in Table 4.5 and opinions of decision makers on criteria are aggregated using

equation (4.5.2) to determine the aggregated weights of criteria. The interval-valued

intuitionistic fuzzy weights of criteria after aggregation of opinions of decision makers
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is:

W =


([0.884, 0.936], [0.000, 0.065])

([0.850, 0.900], [0.050, 0.100])

([0.766, 0.825], [0.103, 0.167])

([0.624, 0.685], [0.221, 0.288])


After the weights of the criteria and the rating of the alternatives has been deter-

mined, the aggregated weighted interval-valued intuitionistic fuzzy decision matrix is

constructed utilizing equation (4.5.3) as follows:

D′ =


([0.663, 0.749], [0.150, 0.251]) ([0.546, 0.624], [0.227, 0.313]) ([0.605, 0.693], [0.201, 0.301]) ([0.468, 0.548], [0.338, 0.430])

([0.540, 0.621], [0.217, 0.316]) ([0.539, 0.618], [0.250, 0.336]) ([0.511, 0.594], [0.263, 0.358]) ([0.361, 0.431], [0.392, 0.481])

([0.726, 0.816], [0.076, 0.184]) ([0.671, 0.756], [0.154, 0.244]) ([0.600, 0.688], [0.207, 0.306]) ([0.489, 0.571], [0.311, 0.407])

([0.619, 0.703], [0.168, 0.268]) ([0.459, 0.532], [0.295, 0.378]) ([0.591, 0.678], [0.217, 0.316]) ([0.417, 0.493], [0.360, 0.451])

([0.498, 0.575], [0.234, 0.331]) ([0.394, 0.462], [0.398, 0.476]) ([0.538, 0.623], [0.252, 0.348]) ([0.328, 0.395], [0.433, 0.518])


The entropy of the jth criterion Xj , j = 1, 2, . . . , 4 for the available alternatives

can be obtained from entropy measure (4.4.5). The objectives weights of criteria based

on entropy are w1 = 0.359, w2 = 0.230, w3 = 0.303, w4 = 0.108.

Product quality, relationship closeness and delivery performance are benefit cri-

teria J1 = {X1, X2, X3} and price is cost criteria J2 = {X4}. Then interval-valued

intuitionistic fuzzy positive-ideal solution and interval-valued intuitionistic fuzzy neg-

ative ideal solution are

A+ = {([0.726, 0.816], [0.076, 0.184]), ([0.671, 0.756], [0.154, 0.244]),

([0.605, 0.693], [0.201, 0.301]), ([0.328, 0.395], [0.433, 0.518])}

and

A− = {([0.498, 0.575], [0.234, 0.331]), ([0.394, 0.462], [0.398, 0.476]),

([0.511, 0.594], [0.263, 0.358]), ([0.489, 0.571], [0.311, 0.407])} .

Similarity of each alternative with the IVIFPIS and IVIFNIS based on proposed

weighted similarity measure (4.3.8) is calculated in Table 4.6.

Finally, using equation (4.5.4), the value of relative closeness of each alternative

for the final ranking is shown in Table 4.7.

Thus, the preference order of alternatives is A1, A2, A3, A4 and A5 according to

decreasing order of Ci∗ is

A3 > A1 > A4 > A2 > A5.
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Table 4.6: Similarities with the IVIFPIS and IVIFNIS

Alternatives S+ S−

A1 0.873 0.772

A2 0.769 0.883

A3 0.966 0.711

A4 0.818 0.818

A5 0.722 0.953

Table 4.7: Relative Closeness Coefficients

Alternatives Ci∗

A1 0.531

A2 0.465

A3 0.576

A4 0.500

A5 0.431

4.7 Conclusions

The proposed new similarity measures for intuitionistic fuzzy sets and interval-valued

intuitionistic fuzzy sets based on ‘NTV’ metric along with their weighted form are valid

similarity measures. The new intuitionistic fuzzy entropies for intuitionistic fuzzy sets

and interval-valued intuitionistic fuzzy sets analogously obtained through the proposed

similarity measures are also valid information measures. Further, a new algorithm for

MCDM using the proposed weighted similarity measures in which the weights have

been calculated using the proposed entropies, has been illustrated through a numerical

example.
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Chapter 5

Reliability Analysis of

k-out-of-n : G System Using

Triangular Intuitionistic Fuzzy

Numbers

5.1 Introduction

In various disciplines of science and engineering, analysis the reliability of a system

which is assembled to perform a certain function play an important role. In general,

reliability is defined as the probability that an element (that is, a component, subsys-

tem or full system) will accomplish its assigned task within a specified time, which

is designated as the interval t = [0, tm]. There is a great interest in evaluating the

reliability of k-out-of-n : G (or k-out-of-n : F ) systems, mainly because such systems

are more general than series or parallel systems and some interconnection networks can

be modeled using this technique. A system is said to be a k-out-of-n : G-system if it

works, if and only if at least k out of n components work. A dual concept called k-out-

of-n : F -system defined as that it fails, if and only if at least k out of n components

fail. Based on these two definitions, a system is k-out-of-n : G-system if and only if it
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is (n − k + 1)-out-of-n : F -system. Likewise, a system is k-out-of-n : F -system if and

only if it is (n− k + 1)-out-of-n : G-system.

It is well known that the conventional reliability analysis has been found to be inad-

equate to handle uncertainty of failure data and modeling. To overcome this problem,

Onisawa and Kacprzyk (1995) used fuzzy set theory in the evaluation of the reliabil-

ity of a system. From a long period of time, efforts have been made in the design

and development of reliable large-scale systems. In that period of time, considerable

work has been done by researchers to build a systematic theory of reliability based on

the probability theory. Cai et al. (1991a) presented the following two fundamental

assumptions in the conventional reliability theory, i.e.,

• Binary state assumption: The system is precisely defined as functioning or

failing; and

• Probability assumption: The system behavior is fully characterized in the

context of probability measures.

In order to understand the fuzzy states, consider a computer system that consists

of three independent processing units. The system is fully functioning when all the

three processing units are functioning simultaneously, and is fully failed when all three

processing units are failed completely. However, when just one or two processing units

are failed, the system will operate in a degraded situation. In this stage, the system

is neither fully functioning nor fully failed, but is in some intermediate state. It may

be noted that the assumption of the binary state for describing the system failure and

success may be no longer appropriate. Consequently, we can fuzzify the definitions for

system failure and success, and then characterize them in terms of the fuzzy sets. Now

we are naturally in a position to consider the following two assumptions [cf. Cai and

Wen (1990), Cai et al. (1991a), (1991b), (1993), (1995)]:

• Fuzzy-state assumption: The meaning of system failure cannot be precisely

defined in a reasonable way. At any time, system may be in one of the following

two states: fuzzy success state or fuzzy failure state.

• Possibility assumption: The system behavior can be fully characterized in the

context of possibility measures.
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5.2 Literature Survey

Profust reliability theory is based on the probability and fuzzy-state assumptions. In

profust reliability theory, the system success and failure are characterized by fuzzy

states, i.e., the meaning of system failure is not defined in a precise way, but in a fuzzy

way. Cai and Wen (1990) introduced the fuzzy success state and fuzzy failure state in

which a transition between two fuzzy states was regarded as a fuzzy event. With the

concept of fuzzy reliability, they made a comparison between two replacement policies,

i.e., the block replacement policy under a non-fuzzy environment and the periodic

replacement policy without repair at failures under a fuzzy environment. In the work

of Cai et al. (1991a), the fuzzy system reliability was established based on the binary

state and possibility assumptions. However, in the work of Cai et al. (1991b), the fuzzy

system reliability was established based on the three-state and possibility assumptions.

Further, Cai et al. (1993) developed the fuzzy system reliability based on the basis

of fuzzy state and probability assumptions. Next, Cai et al. (1995) also discussed

the system reliability for coherent system based on the fuzzy-state and probability

assumptions. Cai et al. (1993) presented a fuzzy set-based approach to failure rate

and reliability analysis, where profust failure rate is defined in the context of statistics.

Further, Singer (1990) used a fuzzy set approach for fault tree and reliability analysis

in which the relative frequencies of the basic events are considered as fuzzy numbers.

Cheng and Mon (1993) used interval of confidence in order to analyze fuzzy system

reliability. Chen (1994) presented a new method for fuzzy system reliability analysis

using fuzzy number arithmetic operations in which the reliability of each component

is considered as fuzzy number and used simplified fuzzy arithmetic operations rather

than complicated interval fuzzy arithmetic operations of fuzzy numbers [Cheng and

Mon (1993)] or the complicated extended algebraic fuzzy numbers [Singer (1990)].

Mahapatra and Roy (2009) presented a method to analyze the fuzzy reliability of

the series and parallel system using triangular intuitionistic fuzzy numbers (TIFNs)

arithmetic operations. Yao et al. (2008) applied a statistical methodology in fuzzy

system reliability analysis.

We studied some basics of k-out-of-n system with identical or non-identical com-

ponents in section 5.3. In section 5.4, we use the concept of the statistical confidence

interval to estimate the reliability of each component of the system. In literature, the
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domain of the confidence level is taken to be one which is of less practical significance

because highest level of confidence of domain experts lies in between [0, 1] according to

the experts knowledge. Therefore, in order to handle the problem in a broader sense,

the statistical confidence intervals is being converted to a triangular intuitionistic fuzzy

numbers. Then we analyze and discussed the reliability of the k-out-of-n : G-system

in the intuitionistic fuzzy sense. In section 5.5, we compare the obtained results using

proposed methodology and existing methodology with the help of a numerical example.

5.3 Preliminaries

There are several efficient algorithms available for computing the reliability of a non-

repairable k-out-of-n system with identical or non-identical components. For more

details, we refer to Misra (1992), Rushdi [(1986), (1993)], Dutuit and Rauzy (2001),

and Kuo and Zuo (2003). These algorithms are independent of the failure distribution

of the components, i.e., the reliability of each component is considered to be known,

but they use the independent assumption among the components’s failure behavior and

in order to evaluate the reliability of k-out-of-n the following assumptions were made:

1. System consists of n mutually statistically independent components.

2. Initially (at time t = 0), all components are working and all are new.

3. The system function if and only if there are at least k working components.

4. There is no repair policy.

5. Reliability of each component is known and the components of the system are

numbered from 1 to n.

6. Failure time of each component can follow any arbitrary distribution and con-

sidered the following two cases:

(i) Identical components: all components are identical and follow the same

failure distribution.

(ii) Non-identical components: Non-identical components: all or some of the

components are non-identical and may follow different failure distributions
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5.3.1 Independent Identically Distributed k-out-of-n

System

Consider a system with n independent and identically distributed (i.i.d.) compo-

nents, and the system reliability R can be determined by component reliability pi,

i = 1, 2, . . . , n. We write R a function of p1, p2, . . . , pn as

R = ϕ(p1, p2, . . . , pn),

where the structure function ϕ is decided by the structure of the system.

In a k-out-of-n : G-system with i.i.d. components, the number of working compo-

nents follows the binomial distribution with parameter (n, p). Then the reliability of

the k-out-of-n : G-system with exactly i components work is:

Prob(exactly i components work) =

 n

i

 piqn−i.

Thus, reliability of the k-out-of-n : G-system is equal to the probability that the

number of working components is greater than or equal to k:

RG(n, p) =

n∑
i=k

 n

i

 piqn−i.

The reliability of a k-out-of-n : F -system with independently and identically dis-

tributed (i.i.d.) components is equal to the probability that the number of failing

components is less than or equal to k − 1.

RF (n, p) =

k−1∑
i=0

 n

i

 pn−iqi,

As a k-out-of-n : F -system is equivalent to a n−k+1-out-of-n : G-system, equation

5.3.1 is equivalent to

n∑
j=n−k+1

 n

j

 pjqn−j .

If we denote RG(n, k; t) the reliability of a k-out-of-n : G-system and RF (n, n −

k + 1; t) the reliability of a k-out-of-n : F -system, then we have

RG(n, k; t) = RF (n, n− k + 1).
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Both series and parallel systems are special cases of the k-out-of-n : F (or k-out-

of-n : G)-system. A series system is equivalent to 1-out-of-n : F (or n-out-of-n : G)

system, while a parallel system is equivalent to n-out-of-n : F (or 1-out-of-n : G)

system.

In particular, the reliability of the series system is given by

R(t) =
n∏
i=1

pi.

The reliability of the parallel system is given by

R(t) = 1−
n∏
i=1

(1− pi).

5.3.2 A Non-i.i.d. k-out-of-n System

For the general case with non-identical components, computing the system reliability

is somewhat more difficult. There are several algorithms to compute the reliability of

a k-out-of-n system with non-identical components [Kuo and Zuo (2003)]. We consider

a well known algorithm that was originally proposed by Barlow and Heidtmann (1984)

and Rushdi [(1986), (1993)]. We also utilize the iterative implementation provided in

the algorithm given Dutuit and Rauzy (2001). The iteratively implemented algorithm

has O(n(nk+1)) computational complexity and requires less memory than algorithms

by Kuo and Zuo (2003). The algorithm is based on the following recursive relationship.

Let H(k, n) be the probability of at least r components out of the n components are

good. Then the reliability of k-out-of-n : G-system with non-identical components is

given by

RG(k, n) = H(k, n),

where

H(k, n) =


pn ·H(k − 1, n− 1) + qn ·H(k, n− 1) if 1 ≤ k ≤ n,

1 if k = 0, n ≥ 0,

0 if k = n+ 1, n ≥ 0.

Although H(r, n) is a two-dimensional array, at any given time, we need to store

only a few of these values. In the following iterative algorithm, only k + 1 values of H

are stored in the one-dimensional array K.
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Algorithm 5.1

K[0] = 1;

for j = 1 to k do K[j] = 0;

done

for i = 1 to n

for j = k down to 1 do

K[j] = pi ·K[j − 1] + qi ·K[j]

done

done

At the end of the algorithm, for 1 ≤ j ≤ k, the reliability results for a j-out-of-n

system will be accumulated in K[j]. Hence, the reliability of a k-out-of-n system is

equivalent to K[k].

5.4 Reliability Analysis using TIFNs

In this section, we presented an intuitionistic fuzzy statistical approach for evaluating

the reliability of a k-out-of-n : G-system with independent and non-i.i.d. components,

where the reliability of the components are unknown.

Since the values of reliability of the components are not fixed as they are extracted

from various sources such as historical records, reliability databases, and system relia-

bility experts opinion, therefore uncertainty in these values is an undeniable fact. For

example, based on an independent sample, the intervals between consequent failures

are measured of the ith component and the result is {45, 230, 105, 150, 115}. Then

λi = 5/45 + 230 + 105 + 150 + 115 = 0.0077519 and reliability of the component asso-

ciated with the exponential distribution at time t = 30 is 0.79250. But, if we have new

observation of failure like 30 hour, then λi = 6/45+230+105+150+115+30 = 0.0088889

and the reliability of the component at t = 30 is 0.76593 which is very different. If we

use the point estimate R̄i to estimate Ri from the statistical data in the past, then we

don’t know the probability of the error R̄i−Ri. Moreover, the reliability of the system

may fluctuate around the estimated value R̄i during a time interval.
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It may be noted that the use of point estimation technique to estimate the re-

liability of the components is not suitable for such real cases. Therefore, it is more

desirable to use interval estimation to obtain (statistical confidence interval) the prob-

ability distribution of the error between the estimated value R̄i and the actual value

Ri.

The (1− γ)% confidence interval of Ri is

[R̄i − tni−1(γ1)
si√
ni
, R̄i + tni−1(γ2)

si√
ni

], i = 1, 2, . . . , n, (5.4.1)

where γ1 + γ2 = γ, 0 < γ1, γ2, γ < 1 and s2i =
1

(ni−1)

ni∑
j=1

(Rij − R̄i)
2.

Let T be a t-distributed random variable with ni − 1 degree of freedom. Then

tni−1(γk) satisfies the condition p(T ≥ tni−1(γk)) = γk, k = 1, 2.

The decision maker not only chooses γ1 and γ2 to satisfy the condition

γ1 + γ2 = γ, 0 < γ1, γ2, γ < 1, but also satisfies the following conditions:

0 < R̄i − tni−1(γ1)
si√
ni
< 1

and

0 < R̄i + tni−1(γ2)
si√
ni
< 1, i = 1, 2, . . . , n.

Yao et al. (2008) transferred the statistical confidence intervals into the triangular fuzzy

numbers. Through these triangular fuzzy numbers, fuzzy reliability of the system is

computed at zero degree of hesitation between the membership functions. Moreover,

the domain of the confidence level is taken to be one, that is, α = 1. Therefore, the

results computed by fuzzy numbers have not practically significance, because highest

level of confidence of domain experts lies in between [0, 1] according to the experts

knowledge. Therefore, we could not consider this problem using fuzzy point of view

only. In our approach, we transferred the statistical confidence interval into triangular

intuitionistic fuzzy number to overcome the above-mention shortcoming by considering

some degree of hesitation between the degree of membership and non-membership

functions.

Therefore, we transferred the confidence interval in equation (5.4.1) to the intu-

itionistic fuzzy numbers as follows:

R̃i =

⟨(
R̄i − tni−1(γ1)

si√
ni
, R̄i, R̄i + tni−1(γ2)

si√
ni

)
;µi, νi

⟩
. (5.4.2)
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The α-level sets of R̃i, i = 1, 2, . . . , n generates the following pair of intervals:(
R̃i(αµ) = [Rli(αµ); R

u
i (αµ)], R̃i(αν) = [Rli(αν), R

u
i (αν)]

)
,

where

Rli(αµ) = R̄i −
(
1− αµ

µi

)
tni−1(γ1)

si√
ni
,

Rui (αµ) = R̄i +

(
1− αµ

µi

)
tni−1(γ2)

si√
ni
,

Rli(αν) = R̄i −
(
1− αν

(1− νi)

)
tni−1(γ1)

si√
ni
,

Rui (αν) = R̄i +

(
1− αν

(1− νi)

)
tni−1(γ2)

si√
ni
,

for all αµ ∈ [0, µi], αν ∈ [0, 1− νi].

Finally, the intuitionistic fuzzy reliability of the k-out-of-n : G-system is calculated

by the algorithm 5.1 given in section 5.3.2, for both left and right end points of the

α-level sets for different values of α. By the decomposition theorem, we constructed

intuitionistic fuzzy reliability of the k-out-of-n : G-system as

R̃s =

 ∪
0≤αµ≤µs

[Rls(αµ), R
u
s (αµ)];

∪
0≤αν≤1−νs

[Rls(αν), R
u
s (αν)]

 .

5.5 Numerical Example

Example 5.5.1: Consider the following statistical data (Yao et al. (2008)) for each

component in Table 5.1 of the k-out-of-n : G-system consisting three non-i.i.d. compo-

nents.

Table 5.1: Statistical Data

Components Sample size Sample mean Sample standard deviation

C1 n1 = 10 R̄1 = 0.80 s1 = 0.02

C2 n2 = 20 R̄2 = 0.75 s2 = 0.03

C3 n2 = 15 R̄3 = 0.90 s3 = 0.01
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Let γ = 0.02, γ1 = 0.011 and γ2 = 0.009. Then from the table of the t-distribution

with ni − 1 degrees of freedom, i = 1, 2, 3, we get the following data: t9(γ1) =

2.7017, t19(γ1) = 2.5212, t14(γ1) = 2.5921, t9(γ2) = 2.9068, t19(γ2) = 2.6034, t14(γ2) =

2.6946.

Using the above statistical information, we found end points of the statistical

confidence interval for each component which is given in Table 5.2.

Table 5.2: Two end points.

i Degree of freedom R̄i − tni−1(γ1)
si√
ni

R̄i + tni−1(γ2)
si√
ni

1 9 0.7829 0.8184

2 19 0.7331 0.7675

3 14 0.8933 0.9070

Using the Table 5.2, we construct triangular intuitionistic fuzzy numbers by con-

sidering 0.2 degree of hesitation as follows:

R̃1 = ⟨(0.7829, 0.80, 0.8184) ; 0.6, 0.2⟩ ,

R̃2 = ⟨(0.7331, 0.75, 0.7675) ; 0.4, 0.4⟩ ,

R̃3 = ⟨(0.8933, 0.90, 0.9070) ; 0.7, 0.1⟩ ,

The α level sets of R̃i, i = 1, 2, 3 are given by

R̃1(αµ) = [0.7829 + 0.0285αµ, 0.8184− 0.0307αµ], ∀αµ ∈ [0, 0.6],

R̃2(αµ) = [0.7331 + 0.0423αµ, 0.7675− 0.0438αµ], ∀αµ ∈ [0, 0.4],

R̃3(αµ) = [0.8933 + 0.0096αµ, 0.9070− 0.0100αµ], ∀αµ ∈ [0, 0.7],

and

R̃1(αν) = [0.7829 + 0.0214αν , 0.8184− 0.0230αν ], ∀αν ∈ [0, 0.8],

R̃2(αν) = [0.7331 + 0.0282αν , 0.7675− 0.0292αν ], ∀αν ∈ [0, 0.6],

R̃3(αν) = [0.8933 + 0.0074αν , 0.9070− 0.0078αν ], ∀αν ∈ [0, 0.9].

Using the algorithm 5.1 given in section 5.3.2, we obtained intuitionistic (vague)

fuzzy reliability of the k-out-of-3 : G, k = 1, 2, 3 in both existing methods and proposed
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method for different values of α and results are shown in Tables 5.3, 5.4 and 5.5,

respectively.

Table 5.3: Results of 1-out-of-3 System

α Crisp
Yao et.al.(2008) Proposed approach

a b c a′ a b c c′

0.0 0.9950 0.9938 0.9950 0.9961 0.9938 0.9938 0.9950 0.9961 0.9961

0.1 0.9950 0.9939 0.9950 0.9960 0.9940 0.9940 0.9950 0.9959 0.9959

0.2 0.9950 0.9941 0.9950 0.9959 0.9943 0.9941 0.9950 0.9958 0.9957

0.3 0.9950 0.9942 0.9950 0.9958 0.9945 0.9943 0.9950 0.9957 0.9955

0.4 0.9950 0.9943 0.9950 0.9957 0.9947 0.9945 0.9950 0.9955 0.9953

0.5 0.9950 0.9944 0.9950 0.9956 0.9949 0.9946 0.9950 0.9954 0.9951

0.6 0.9950 0.9945 0.9950 0.9954 – 0.9948 0.9950 0.9952 –

0.7 0.9950 0.9947 0.9950 0.9953 – 0.9949 0.9950 0.9951 –

0.8 0.9950 0.9948 0.9950 0.9952 – – 0.9950 – –

0.9 0.9950 0.9949 0.9950 0.9951 – – 0.9950 – –

1.0 0.9950 0.9950 0.9950 0.9950 – – 0.9950 – –

Table 5.4: Results of 2-out-of-3 System

α Crisp
Yao et.al.(2008) Proposed approach

a b c a′ a b c c′

0.0 0.9150 0.9028 0.9150 0.9271 0.9028 0.9028 0.9150 0.9271 0.9271

0.1 0.9150 0.9040 0.9150 0.9259 0.9052 0.9045 0.9150 0.9255 0.9249

0.2 0.9150 0.9053 0.9150 0.9248 0.9076 0.9062 0.9150 0.9239 0.9226

0.3 0.9150 0.9065 0.9150 0.9236 0.9099 0.9079 0.9150 0.9222 0.9202

0.4 0.9150 0.9078 0.9150 0.9224 0.9123 0.9096 0.9150 0.9206 0.9179

0.5 0.9150 0.9090 0.9150 0.9212 0.9146 0.9113 0.9150 0.9189 0.9155

0.6 0.9150 0.9102 0.9150 0.9199 – 0.9129 0.9150 0.9172 –

0.7 0.9150 0.9114 0.9150 0.9187 – 0.9146 0.9150 0.9155 –

0.8 0.9150 0.9126 0.9150 0.9175 – – 0.9150 – –

0.9 0.9150 0.9138 0.9150 0.9162 – – 0.9150 – –

1.0 0.9150 0.9150 0.9150 0.9150 – – 0.9150 – –
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Table 5.5: Results of 3-out-of-3 System

α Crisp
Yao et.al.(2008) Proposed approach

a b c a′ a b c c′

0.0 0.5400 0.5127 0.5400 0.5697 0.5127 0.5127 0.5400 0.5697 0.5697

0.1 0.5400 0.5154 0.5400 0.5667 0.5181 0.5165 0.5400 0.5655 0.5637

0.2 0.5400 0.5181 0.5400 0.5637 0.5235 0.5203 0.5400 0.5612 0.5577

0.3 0.5400 0.5208 0.5400 0.5607 0.5290 0.5242 0.5400 0.5570 0.5518

0.4 0.5400 0.5235 0.5400 0.5577 0.5345 0.5280 0.5400 0.5528 0.5459

0.5 0.5400 0.5262 0.5400 0.5547 0.5400 0.5319 0.5400 0.5486 0.5401

0.6 0.5400 0.5290 0.5400 0.5518 – 0.5358 0.5400 0.5445 –

0.7 0.5400 0.5317 0.5400 0.5488 – 0.5397 0.5400 0.5404 –

0.8 0.5400 0.5345 0.5400 0.5459 – – 0.5400 – –

0.9 0.5400 0.5372 0.5400 0.5429 – – 0.5400 – –

1.0 0.5400 0.5400 0.5400 0.5400 – – 0.5400 – –

The true membership and false membership functions corresponding to the ob-

tained results (k-out-of-3 : G, k = 1, 2, 3 system) are shown in figure 5.3.

90



Figure 5.1: Reliability of k-out-of-3 System: k = 1, 2, 3
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5.5.1 Comparison and Discussion

The intuitionistic fuzzy reliability results using the existing method and proposed

method compared as follows:

• Using the point estimate method, the reliability of the series (3-out-of-3 : G)

system is equal to 0.54 for all values of α, its means that in this method any

vagueness does not consider in the data. Moreover, point estimate method can

be suitable where the data are precise and certain, also it does not consider the

confidence level of the domain experts.

• Using the table 5.3 in Yao et al. (2008) method, it can be be easily seen that the

degree of truth membership and false membership correspond to the reliability

value 0.9943 are 0.4 and 0.6 respectively. It may be noted that the degree of

hesitation has not been considered in the computation. Moreover, Yao et al.

(2008) do not consider the confidence level of domain experts that lies in the

interval [0, 1].

• Using the table 5.3 in the proposed method, it can be seen that the degree

of truth membership and false membership values corresponding to the crisp

reliability 0.9943 are 0.2 and 0.3 respectively. There is 0.10 degree of hesitation

that the value of reliability is 0.9943 which was not considered in Yao et al. (2008)

method. Moreover, the reliability of the system in view of the Yao et al. (2008)

is being represented just by one number (which represents the evidences both in

favor/against for reliability of the system). On the other hand, the computed

reliability of the system by proposed method is being represented by two numbers

(which represent the evidence in favor/against and an indeterminacy part for

reliability of the system). As the proposed method also considers the confidence

level of domain experts (α ≤ 0.8), therefore, the proposed method is more flexible

and realistic.
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5.6 Conclusions

The intuitionistic fuzzy reliability of k-out-of-n : G-system with independent and non-

identically distributed components, where the reliability of the components are un-

known, has been analyzed. The reliability of each component has been estimated using

statistical confidence interval approach. Considering the highest level of confidence

of domain experts that belongs to the interval [0, 1], we converted these statistical

confidence interval into triangular intuitionistic fuzzy numbers. The reliability of the

k-out-of-n : G-system has been calculated and discussed on the basis of these triangular

intuitionistic fuzzy numbers with the help of a numerical example.
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Chapter 6

Complex Intuitionistic Fuzzy Soft

Sets with Distance Measures and

Entropies

6.1 Introduction

Ramot et al. [(2002), (2003)] introduced a new concept of Complex Fuzzy Set (CFS),

where the membership function µ instead of being a real valued function with the range

of [0, 1] is replaced by a complex-valued function of the form rA(x) ·eiΩA(x), (i =
√
−1),

where rA(x) is a real valued function such that rA(x) ∈ [0, 1] and ΩA(x) is a periodic

function. The key feature of complex fuzzy sets is the presence of phase and its mem-

bership. This gives those complex fuzzy sets wavelike properties which could result in

constructive and destructive interference depending on the phase value. Several exam-

ples are given by Ramot et al. (2003), which demonstrate the utility of these complex

fuzzy sets. They also defined several important operations such as complement, union,

intersection and discussed fuzzy relations for such Complex Fuzzy Sets (CFSs). On the

other hand, Jun et al. (2012) used the complex fuzzy set to represent the information

with uncertainty and periodicity, where they introduced a product-sum aggregation op-

erator based prediction (PSAOP) method to find the solution of the multiple periodic
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factor prediction (MPFP) problems. Further, Chen et al. (2011) proposed a neurofuzzy

system architecture to implement the complex fuzzy rule as a practical application of

the concept of complex fuzzy logic.

Alkouri and Salleh (2012) introduced the concept of Complex Intuitionistic Fuzzy

Set (CIFS) to represent the information which is happening repeatedly over a period

of time. Further, as an application, Alkouri and Salleh (2013) presented an example of

suppler selection model which is based on the distance measure of complex intuitionistic

fuzzy sets.

Molodtsov (1999) pointed out that the important existing theories viz. probability

theory, fuzzy set theory, intuitionistic fuzzy set theory, rough set theory etc., which

can be considered as mathematical tools for dealing with uncertainties, have their

own difficulties. The inadequacy of the parametrization tools of these theories make

them very limited and difficult. In order to overcome the above stated difficulties,

Molodtsov (1999) introduced the concept of Soft Sets for dealing with uncertainties in

parameterized form. Later on Maji et al. [(2001), (2004a), (2004b)] extended Soft Sets

to Fuzzy Soft Sets and Intuitionistic Fuzzy Soft Sets (IFSSs). Pei and Miao (2005) and

Chen et al. (2005) have studied and extended the work of Maji et al. [(2002), (2003)].

Also, Majumdar and Samanta (2010) have further generalized the concept of fuzzy soft

sets.

In this chapter, we introduced the concept of Complex Intuitionistic Fuzzy Soft

Sets (CIFSSs) along with their basic operations in section 6.2. New Distance measures

for CIFSSs have been obtained on the basis of some well known distance measures

and a general way to find the entropies of complex intuitionistic fuzzy soft sets have

also been proposed in section 6.3. An application in the area of multi-criteria decision

making problem on the basis of the proposed CIFSSs has also been suggested in section

6.4. Finally, the conclusion is provided in section 6.5.

6.2 Complex Intuitionistic Fuzzy Soft Sets

In this section, we introduce the concept of complex intuitionistic fuzzy soft sets with

its definition, various operations and properties. Let X be the universal set, E be the
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set of parameters under consideration and CIFS(X) denotes the set of all complex

intuitionistic fuzzy subsets of X.

Definition 6.3.1 (Complex Intuitionistic Fuzzy Soft Set): A complex Intuition-

istic Fuzzy Soft Set (CIFSS) may be represented by the set of ordered pairs as

⟨F̃ , E⟩ = {⟨ε, F̃ (ε)|ε ∈ E, F̃ (ε) ∈ CIFS(X)},

where F̃ : E → CIFS(X) such that F̃ (ε) = ϕ (i.e., µF̃ (ε)(x) = 0 and

νF̃ (ε)(x) = 1 for all x ∈ X), if ε /∈ E.

Definition 6.3.2 (Operations on CIFSSs): Suppose that ⟨F̃ , E⟩ and ⟨G̃, E⟩ are

two CIFSSs over the universal set X, then we define the following operations:

• Union: ⟨F̃ , E⟩ ∪ ⟨G̃, E⟩ = ⟨H̃, E⟩,

where

H̃(ε) =
{⟨
x, µF̃ (ε)(x) ⋄ µG̃(ε)(x), νF̃ (ε)(x) ∗ νG̃(ε)(x)

⟩
|x ∈ X, ε ∈ E

}
;

• Intersection: ⟨F̃ , E⟩ ∩ ⟨G̃, E⟩ = ⟨H̃, E⟩,

where

H̃(ε) =
{⟨
x, µF̃ (ε)(x) ∗ µG̃(ε)(x), νF̃ (ε)(x) ⋄ νG̃(ε)(x)

⟩
|x ∈ X, ε ∈ E

}
;

• Complement: (F̃ , E)c = (F̃ c, ¬E), where F̃ c : ¬E → IFS(X) is mapping

given by

F̃ c(¬ε) =
{⟨
x, νF̃ (¬¬ε)(x), µF̃ (¬¬ε)(x)

⟩
|x ∈ X

}
=

{⟨
x, νF̃ (ε)(x), µF̃ (ε)(x)

⟩
|x ∈ X

}
, ∀¬ε ∈ ¬E;

• Inclusion: ⟨F̃ , E⟩ ⊆ ⟨G̃, E⟩, if and only if µF̃ (ε)(x) ≤ µG̃(ε)(x) and

νF̃ (ε)(x) ≥ νG̃(ε)(x), ∀x ∈ X and ε ∈ E;

• Equality: ⟨F̃ , E⟩ = ⟨G̃, E⟩, if and only if µF̃ (ε)(x) = µG̃(ε)(x) and

νF̃ (ε)(x) = νG̃(ε)(x), ∀x ∈ X and ε ∈ E.

where the ⋄ and ∗ are s-norm and t-norm operators, respectively.
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In order to propose the intuitionistic entropy of complex intuitionistic fuzzy soft

sets, we need to introduce some important properties of complex intuitionistic fuzzy

soft sets.

Definition 6.3.3 (Sharpness of CIFSSs): Let E be the set of parameters and

suppose that ⟨F̃ , E⟩ and ⟨G̃, E⟩ are two complex intuitionistic fuzzy soft sets over

the universal set X, then we say that ⟨G̃, E⟩ is a sharpened version of ⟨F̃ , E⟩, i.e.,

⟨F̃ , E⟩ ≼ ⟨G̃, E⟩ if and only if µF̃ (ε)(x) ≤ µG̃(ε)(x) and νF̃ (ε)(x) ≤ νG̃(ε)(x) (i.e.,

rF̃ (ε)(x) ≤ rG̃(ε)(x) and kF̃ (ε)(x) ≤ kG̃(ε)(x), for the amplitude terms and for the phase

terms ωr
F̃ (ε)

(x) ≤ ωr
G̃(ε)

(x) and ωk
F̃ (ε)

(x) ≤ ωk
G̃(ε)

(x)), ∀x ∈ X and ∀ε ∈ E.

Definition 6.3.4 (Transformation from CIFSS to Complex Fuzzy Soft Set):

To every element f ∈ {c|c ∈ C, |c| ≤ 1}{a|a∈C, |a|≤1}×{b|b∈C, |b|≤1},

we associate a mapping

fα : CIFSS(X) → CFSS(X); α ∈ [0, 1],

given by

fα : ⟨F̃ , E⟩ → ⟨Fα, E⟩,

where Fα is defined as follows:

Fα(ε) = fα(F̃ (ε))

= fα

(
{⟨x, µF̃ (ε)(x), νF̃ (ε)(x)⟩|x ∈ X}

)
= {⟨x, µF (ε)(x) = rF (ε)(x) · e

i2πωr
F (ε)

(x)⟩|x ∈ X}, ∀ε ∈ E.

Here

rF (ε)(x) =
(
rF̃ (ε)(x) + α ·

(
1− rF̃ (ε)(x)− kF̃ (ε)(x)

))
and

ωrF (ε)(x) =

[(
ωr
F̃ (ε)

(x)

2π

)
+ α ·

(
1−

ωr
F̃ (ε)

(x) + ωk
F̃ (ε)

(x)

2π

)]
.

The proposed operator fα defined in definition 6.3.4 is to assign a complex intu-

itionistic fuzzy soft set to a complex fuzzy soft set. The following theorem provides the

properties of the operator fα:

Theorem 6.3.1: If α, β ∈ [0, 1] and ξ, ξ̃ ∈ CIFSS(X), then the following holds:
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(i) if α ≤ β, then fα(ξ) ⊆ fβ(ξ);

(ii) if ξ ⊆ ξ̃, then fα(ξ) ⊆ fα(ξ̃);

(iii) fα (fβ(ξ)) = fβ(ξ);

(iv) (fα(ξ
c))c = f1−α(ξ). �

Proof. Let ξ = ⟨F̃ , E⟩ = [aij ]m×n and ξ̃ = ⟨G̃, E⟩ = [bij ]m×n are two complex

intuitionistic fuzzy soft sets.

Let fα

(
⟨F̃ , E⟩

)
= ⟨Fα, E⟩, where F̃ (ε) = {⟨x, µF̃ (ε), νF̃ (ε)⟩|x ∈ X}, and

Fα(ε) = fα(F̃ (ε))

= fα

(
{⟨x, µF̃ (ε)(x), νF̃ (ε)(x)⟩|x ∈ X}

)
= {⟨x, rFα(ε)(x) · e

i2πωr
Fα(ε)

(x)⟩|x ∈ X}, ∀ε ∈ E.

Here

rFα(ε)(x) =
(
rF̃ (ε)(x) + α ·

(
1− rF̃ (ε)(x)− kF̃ (ε)(x)

))
;

ωrFα(ε)
(x) =

[(
ωr
F̃ (ε)

(x)

2π

)
+ α ·

(
1−

ωr
F̃ (ε)

(x) + ωk
F̃ (ε)

(x)

2π

)]
.

Let fβ

(
⟨F̃ , E⟩

)
= ⟨Fβ, E⟩, where F̃ (ε) = {⟨x, µF̃ (ε), νF̃ (ε)⟩|x ∈ X}, and

Fβ(ε) = fβ(F̃ (ε))

= fβ

(
{⟨x, µF̃ (ε)(x), νF̃ (ε)(x)⟩|x ∈ X}

)
= {⟨x, rFβ(ε)(x) · e

i2πωr
Fβ(ε)

(x)
⟩|x ∈ X}, ∀ε ∈ E.

Here

rFβ(ε)(x) =
(
rF̃ (ε)(x) + β ·

(
1− rF̃ (ε)(x)− kF̃ (ε)(x)

))
;

ωrFβ(ε)
(x) =

[(
ωr
F̃ (ε)

(x)

2π

)
+ β ·

(
1−

ωr
F̃ (ε)

(x) + ωk
F̃ (ε)

(x)

2π

)]
.

(1) In the following, we have to prove that µFα(ε)(x) ≤ µFβ(ε)(x), i.e,

rFα(ε)(x) ≤ rFβ(ε)(x) and ω
r
Fα(ε)

(x) ≤ ωrFβ(ε)
(x), ∀x ∈ X and ε ∈ E.

Since α ≤ β, therefore, we have rFα(ε)(x) ≤ rFβ(ε)(x) and ω
r
Fα(ε)

(x) ≤ ωrFβ(ε)
(x),

⇒ µFα(ε)(x) ≤ µFβ(ε)(x), ∀x ∈ X and ε ∈ E.

Hence, fα(ξ) ⊆ fβ(ξ).
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(2) Let fα(ξ̃) = fα

(
⟨G̃, E⟩

)
= ⟨Gα, E⟩, where G̃(ε) = {⟨x, µG̃(ε), νG̃(ε)⟩|x ∈ X},

Gα(ε) = fα(G̃(ε))

= fα

(
{⟨x, µG̃(ε)(x), νG̃(ε)(x)⟩|x ∈ X}

)
= {⟨x, µGα(ε)(x) = rGα(ε)(x) · e

i2πωr
Gα(ε)

(x)⟩|x ∈ X}, ∀ε ∈ E,

Here

rGα(ε)(x) =
(
rG̃(ε)(x) + α ·

(
1− rG̃(ε)(x)− kG̃(ε)(x)

))
ωrGα(ε)

(x) =

[(
ωr
G̃(ε)

(x)

2π

)
+ α ·

(
1−

ωr
G̃(ε)

(x) + ωk
G̃(ε)

(x)

2π

)]
.

In the following, we have to prove that µFα(ε)(x) ≤ µGα(ε)(x), i.e.,

rFα(ε)(x) ≤ rGα(ε)(x) and ω
r
Fα(ε)

(x) ≤ ωrGα(ε)
(x), ∀x ∈ X and ε ∈ E.

Since ξ ⊆ ξ̃, therefore µF̃ (ε)(x) ≤ µG̃(ε)(x) and νF̃ (ε)(x) ≥ νG̃(ε)(x), i.e.,

rF̃ (ε)(x) ≤ rG̃(ε)(x) and kF̃ (ε)(x) ≥ kG̃(ε)(x), for the amplitude terms and for the

phase terms ωr
F̃ (ε)

(x) ≤ ωr
G̃(ε)

(x) and ωk
F̃ (ε)

(x) ≥ ωk
G̃(ε)

(x),∀x ∈ X and ε ∈ E.

Thus, (1− α) · rF̃ (ε)(x) ≤ (1− α) · rG̃(ε)(x), α · kF̃ (ε)(x) ≥ α · kG̃(ε)(x), and
(1−α)
2π · ωr

F̃ (ε)
(x) ≤ (1−α)

2π · ωr
G̃(ε)

(x), α
2π · ωk

F̃ (ε)
(x) ≥ α

2π · ωk
G̃(ε)

(x),

which implies

α+ (1− α) · rF̃ (ε)(x)− α · kG̃(ε)(x) ≤ α+ (1− α) · rG̃(ε)(x)− α · kF̃ (ε)(x) and

α+

[
(1− α)

2π
· ωr

F̃ (ε)
(x)− α

2π
· ωk

G̃(ε)
(x)

]
≤ α+

[
(1− α)

2π
· ωr

G̃(ε)
(x)− α

2π
· ωk

F̃ (ε)
(x)

]
,

⇒ rFα(ε)(x) ≤ rGα(ε)(x) and ω
r
Fα(ε)

(x) ≤ ωrGα(ε)
(x).

Thus, we have µFα(ε)(x) ≤ µGα(ε)(x). Hence, fα(ξ) ⊆ fα(ξ̃).

(3) fα (fβ(ξ)) = fα(⟨Fβ, E⟩) = ⟨(Fβ)α, E⟩, where (Fβ)α(ε) = fα(Fβ(ε)) = fα(fβ(F̃ (ε))),

∀ε ∈ E.

Next, we have to prove that fα(fβ(F̃ (ε))) = (fβ(F̃ (ε)).

We have

fβ(F̃ (ε)) = fβ

(
{⟨x, µF̃ (ε)(x), νF̃ (ε)(x)⟩|x ∈ X}

)
= {⟨x, rFβ(ε)(x) · e

i2πωr
Fβ(ε)

(x)
⟩|x ∈ X}, ∀ε ∈ E. (6.2.1)
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Here

rFβ(ε)(x) =
(
rF̃ (ε)(x) + β ·

(
1− rF̃ (ε)(x)− kF̃ (ε)(x)

))
ωrFβ(ε)

(x) =

[(
ωr
F̃ (ε)

(x)

2π

)
+ β ·

(
1−

ωr
F̃ (ε)

(x) + ωk
F̃ (ε)

(x)

2π

)]
.

Thus

fα(fβ(F̃ (ε))) = fα({⟨x, rFβ(ε)(x) · e
i2πωr

Fβ(ε)
(x)

⟩|x ∈ X})

= {⟨x, rFβ(ε)(x) · e
i2πωr

Fβ(ε)
(x)

⟩|x ∈ X}, ∀ε ∈ E. (6.2.2)

From the equation (6.2.1) and (6.2.2), we have fα (fβ(ξ)) = fβ(ξ).

(4) Let ξc = ⟨F̃ , E⟩c = ⟨F̃ c, ¬E⟩,

where F̃ c(ε) = {⟨x, νF̃ (¬ε)(x), µF̃ (¬ε)(x)⟩|x ∈ X}, ∀ε ∈ E.

Then we have

fα(ξ
c) = fα(⟨F̃ c, ¬E⟩) = ⟨(F c)α, ¬E⟩, where

(F c)α(ε) = fα(F̃
c(ε))

= fα

(
{⟨x, νF̃ (¬ε)(x), µF̃ (¬ε)(x)⟩|x ∈ X}

)
= {⟨x, (1− rFα(¬ε)(x)) · e

i2πω̄r
Fα(¬ε)

(x)⟩|x ∈ X}, ∀ε ∈ ¬E.

Here

1− rFα(¬ε)(x) =
(
kF̃ (¬ε)(x) + α ·

(
1− rF̃ (¬ε)(x)− kF̃ (¬ε)(x)

))
ω̄rFα(¬ε)(x) =

[(
ωk
F̃ (¬ε)(x)

2π

)
+ α ·

(
1−

ωr
F̃ (¬ε)(x) + ωk

F̃ (¬ε)(x)

2π

)]
.

Thus, we have (fα(ξ
c))c = ⟨(F c)α, ¬E⟩c = ⟨((F c)α)c, ¬¬E⟩ = ⟨((F c)α)c, E⟩,

∀ε ∈ E.

((F c)α)
c(ε) = ({⟨x, (1− rFα(¬ε)(x)) · e

i2πω̄r
Fα(¬ε)

(x)⟩|x ∈ X})c

= {⟨x, rFα(¬¬ε)(x) · e
i2πωr

Fα(¬¬ε)
(x)⟩|x ∈ X}, ∀ε ∈ ¬¬E,

= {⟨x, rFα(ε)(x) · e
i2πωr

Fα(ε)
(x)⟩|x ∈ X}, ∀ε ∈ E.

Here

rFα(ε)(x) =
(
1− kF̃ (ε)(x)− α ·

(
1− rF̃ (ε)(x)− kF̃ (ε)(x)

))
;

ωrFα(ε)
(x) = 1−

[(
ωk
F̃ (ε)

(x)

2π

)
+ α ·

(
1−

ωr
F̃ (ε)

(x) + ωk
F̃ (ε)

(x)

2π

)]
.
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Since f1−α(ξ) = f1−α(⟨F̃ , E⟩) = ⟨F1−α, E⟩, where

F1−α(ε) = f1−α(F̃ (ε))

= f1−α

(
{⟨x, µF̃ (ε)(x), νF̃ (ε)(x)⟩|x ∈ X}

)
= {⟨x, rF1−α(ε)(x) · e

iωr
F1−α(ε)

(x)⟩|x ∈ X}, ∀ε ∈ E,

Here

rF1−α(ε)(x) =
(
1− kF̃ (ε)(x)− α ·

(
1− rF̃ (ε)(x)− kF̃ (ε)(x)

))
ωrF1−α(ε)

(x) =

[(
ωr
F̃ (ε)

(x)

2π

)
+ (1− α) ·

(
1−

ωr
F̃ (ε)

(x) + ωk
F̃ (ε)

(x)

2π

)]

= 1−

[(
ωk
F̃ (ε)

(x)

2π

)
+ α ·

(
1−

ωr
F̃ (ε)

(x) + ωk
F̃ (ε)

(x)

2π

)]
.

Thus, ((F c)α)
c(ε) = F1−α(ε). Consequently, (fα(ξ

c))c = f1−α(ξ).

�

6.3 Distance Measures and Entropies of

Complex Intuitionistic Fuzzy Soft Set

Based on various well known distance functions, we introduce some distance measures

between complex intuitionistic fuzzy soft sets and propose a general way to find the

entropies of complex intuitionistic fuzzy soft set. We also give the structure of intu-

itionistic entropy of complex intuitionistic fuzzy soft sets by extending the structure of

intuitionistic entropy on intuitionistic fuzzy soft sets Jiang et al. (2013).

6.3.1 Distance Measures for Complex Intuitionistic Fuzzy

Soft Sets

The axiomatic definition of the distance measure for complex intuitionistic fuzzy soft

sets has been reframed and proposed as follows:
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Definition 6.4.1.1 (Distance Measures on CIFSSs): Suppose that ξ = ⟨F̃ , E⟩

and ξ̃ = ⟨G̃, E⟩ are two complex intuitionistic fuzzy soft sets over the universal set X.

A real valued non-negative function

d : CIFSS(X)× CIFSS(X) → [0, 1]

is called distance measure on CIFSS(X), if d satisfies the following properties:

(D1) 0 ≤ d(ξ, ξ̃) ≤ 1;

(D2) d(ξ, ξ̃) = d(ξ̃, ξ);

(D3) d(ξ, ξ̃) = 0 if and only if ξ = ξ̃;

(D4) for any η = ⟨H̃, E⟩ = [cij ]m×n ∈ CIFSS(X), d(ξ, ξ̃) + d(ξ̃, η) ≥ d(ξ, η).

Now we extend and write the Hamming and Euclidean distance measures between two

CIFSSs ξ and ξ̃.

• Hamming Distance:

dh(ξ, ξ̃) =
1

4

n∑
j=1

m∑
i=1

[
|rF̃ (εj)

(xi)− rG̃(εj)
(xi)|+ |kF̃ (εj)

(xi)− kG̃(εj)
(xi)|

+
1

2π

(
|ωr

F̃ (εj)
(xi)− ωr

G̃(εj)
(xi)|+ |ωk

F̃ (εj)
(xi)− ωk

G̃(εj)
(xi)|

)]
• Normalized Hamming Distance:

dnh(ξ, ξ̃) =
1

4mn

n∑
j=1

m∑
i=1

[
|rF̃ (εj)

(xi)− rG̃(εj)
(xi)|+ |kF̃ (εj)

(xi)− kG̃(εj)
(xi)|

+
1

2π

(
|ωr

F̃ (εj)
(xi)− ωr

G̃(εj)
(xi)|+ |ωk

F̃ (εj)
(xi)− ωk

G̃(εj)
(xi)|

)]
• Euclidean Distance:

dne (ξ, ξ̃)
2 =

1

4

n∑
j=1

m∑
i=1

[
(rF̃ (ej)

(xi)− rG̃(εj)
(xi))

2 + (kF̃ (εj)
(xi)− kG̃(εj)

(xi))
2

+
1

4π2

(
(ωr

F̃ (εj)
(xi)− ωr

G̃(εj)
(xi))

2 + (ωk
F̃ (εj)

(xi)− ωk
G̃(εj)

(xi))
2
)]

• Normalized Euclidean Distance:

dne (ξ, ξ̃)
2 =

1

4mn

n∑
j=1

m∑
i=1

[
(rF̃ (ej)

(xi)− rG̃(εj)
(xi))

2 + (kF̃ (εj)
(xi)− kG̃(εj)

(xi))
2

+
1

4π2

(
(ωr

F̃ (εj)
(xi)− ωr

G̃(εj)
(xi))

2 + (ωk
F̃ (εj)

(xi)− ωk
G̃(εj)

(xi))
2
)]
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6.3.2 Entropies on Complex Intuitionistic Fuzzy Soft Sets

Here, we present the axiomatic definition for the entropy of a complex intuitionis-

tic fuzzy soft sets. The following conditions give the intuitive idea for the degree of

fuzziness of a complex intuitionistic fuzzy soft set, i.e., for the entropy of a complex

intuitionistic fuzzy soft set:

(i) It will be null when the complex intuitionistic fuzzy soft set is a complex fuzzy

soft set;

(ii) It will be maximum if the complex intuitionistic fuzzy soft set is completely

intuitionistic;

(iii) An intuitionistic entropy of a complex intuitionistic fuzzy soft set will be equal

to its complement;

(iv) If the degree of membership and the degree of non-membership of each element

increase, the sum will do so as well, and therefore, this complex intuitionistic

fuzzy soft set becomes less fuzzy, and therefore the entropy should decrease.

In view of the above stated points and the definition of entropy for an intuitionistic

fuzzy soft set given in Jiang et al. (2013), we propose the following definition for the

entropy of a complex intuitionistic fuzzy soft set:

Definition 6.4.2.1 (Intuitionistic Entropy of CIFSSs): A real-valued function

H : CIFSS → R+ is called an intuitionistic entropy on CIFSS(X), if H has the

following properties:

• P1 (Sharpness): H(ξ) = 0 iff ξ is a complex fuzzy soft set;

• P2 (Maximality): Let ξ = ⟨F̃ , E⟩ = [aij ]m×n, H(ξ) = mn iff

µF̃ (ε)(x) = νF̃ (ε)(x) = 0, ∀x ∈ X and ε ∈ E;

• P3 (Symmetry): H(ξ) = H(ξc), for all ξ ∈ CIFSS(X);

• P4 (Resolution): if ξ∗ is sharpened version of ξ that is, if ξ ≼ ξ∗,

then H(ξ) ≥ H(ξ∗).
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In the following theorem, we prove P2 property of the definition 6.4.2.1.

Theorem 6.4.2.1: H(ξ) is maximum if and only if ξ = ⟨F̃ , E⟩ = [aij ]m×n = [0]m×n,

that is, aij = µF̃ (εj)
(xi) = νF̃ (εj)

(xi) = 0, ∀εj ∈ E, xi ∈ X, where 0 ≤ i ≤ m and

0 ≤ j ≤ n.

Proof. Necessary part: Let ξ = ⟨F̃ , E⟩ = [aij ]m×n = [0]m×n. Let ξ̃ = ⟨G̃, E⟩ be

any complex intuitionistic fuzzy soft set. Since µG̃(εj)
(xi) ≥ 0 and νG̃(εj)

(xi) ≥ 0, ∀εj ∈

E, xi ∈ X, where 0 ≤ i ≤ m and 0 ≤ j ≤ n, therefore, by the definition 6.3.3, we have

ξ ≼ ξ̃. Thus, H(ξ) ≥ H(ξ̃) by the property P4 of the definition 6.4.2.1 for all ξ̃, then

H(ξ) is maximum.

Sufficient part: Let H(ξ) is maximum. We assume that ξ = ⟨F̃ , E⟩ = [aij ]m×n ̸=

[0]m×n, then there is a εj ∈ E and xi ∈ X such that µF̃ (εj)
(xi) ̸= 0 and νF̃ (εj)

(xi) ̸= 0,

where 0 ≤ i ≤ m and 0 ≤ j ≤ n. We construct the following complex intuitionistic

fuzzy soft set ξ̃ = ⟨G̃, E⟩ with µG̃(εj)
(xi) = 1

2µF̃ (εj)
(xi) and νG̃(εj)

(xi) = 1
3νF̃ (εj)

(xi)

for all εj ∈ E and xi ∈ X, then by the definition 6.3.3 we have H(ξ̃) ≥ H(ξ) which

contradicts the hypothesis H(ξ) is maximum. Therefore, ξ = [0]m×n.

Definition 6.4.2.2: Let D = {(x, y) ∈ [0, 1] × [0, 1]|x + y ≤ 1} and construct ψD :

D → [0, 1], which satisfies the following conditions:

(i) ψD(x, y) = 1 if and only if x+ y = 1;

(ii) ψD(x, y) = 0 if and only if x = 0 = y;

(iii) ψD(x, y) = ψD(y, x);

(iv) if x ≤ x′ and y ≤ y′, then ψD(x, y) ≤ ψD(x
′, y′).

Theorem 6.4.2.2: Let ξ = ⟨F̃ , E⟩ = [aij ]m×n ∈ CIFSS(X)
and H : CIFSS(X) → R+ such that

H(ξ) =
1

2

n∑
j=1

m∑
i=1

[(
1− ψ(rF̃ (εj)

(xi), kF̃ (εj)
(xi))

)
+
(
1− ψ(ωr

F̃ (εj)
(xi)/2π, ω

k
F̃ (εj)

(xi)/2π)
)]
,

where ψ satisfies the conditions (i)–(iv) of definition 6.4.2.2, then H is an intuitionistic

entropy on CIFSS(X).

Proof.
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1. H(ξ) = 0 if and only if, for all εj ∈ E, xi ∈ X,

1
2

n∑
j=1

m∑
i=1

[(
1− ψ(rF̃ (εj)

(xi), kF̃ (εj)
(xi))

)
+
(
1− ψ(ωr

F̃ (εj)
(xi)/2π, ω

k
F̃ (εj)

(xi)/2π)
)]

= 0,

⇔ ψ(rF̃ (εj)
(xi), kF̃ (εj)

(xi)) = 1 and ψ(ωr
F̃ (εj)

(xi)/2π, ω
k
F̃ (εj)

(xi)/2π) = 1,

⇔ rF̃ (εj)
(xi)+kF̃ (εj)

(xi) = 1 and ωr
F̃ (εj)

(xi)+ω
k
F̃ (εj)

(xi) = 2π,⇔ ξ ∈ CFSS(X).

Thus, H satisfies property P1 of the definition 6.4.2.1.

2. H(ξ) = mn if and only if, for all εj ∈ E, xi ∈ X,

1
2

n∑
j=1

m∑
i=1

[(
1− ψ(rF̃ (εj)

(xi), kF̃ (εj)
(xi))

)
+
(
1− ψ(ωr

F̃ (εj)
(xi)/2π, ω

k
F̃ (εj)

(xi)/2π)
)]

= mn,

⇔ rF̃ (εj)
(xi) + kF̃ (εj)

(xi) = 0 and ωr
F̃ (εj)

(xi) + ωk
F̃ (εj)

(xi) = 0,

⇔ rF̃ (εj)
(xi), kF̃ (εj)

(xi) = 0 and ωr
F̃ (εj)

(xi), ω
k
F̃ (εj)

(xi) = 0,

which implies ξ is completely intuitionistic. Thus, H satisfies property P2 of the

definition 6.4.2.1.

3. Since ξc = ⟨F̃ , E⟩c = ⟨F̃ c, ¬E⟩,
where F̃ c = {⟨xi, νF̃ (ε)(xi), µF̃ (ε)(xi)⟩|xi ∈ X}, ∀¬ε ∈ ¬E,
then

H(ξ) =
1

2

n∑
j=1

m∑
i=1

[(
1− ψ(rF̃ (εj)

(xi), kF̃ (εj)
(xi))

)
+
(
1− ψ(ωr

F̃ (εj)
(xi)/2π, ω

k
F̃ (εj)

(xi)/2π)
)]

=
1

2

n∑
j=1

m∑
i=1

[(
1− ψ(kF̃ (εj)

(xi), rF̃ (εj)
(xi))

)
+
(
1− ψ(ωk

F̃ (εj)
(xi)/2π, ω

r
F̃ (εj)

(xi)/2π)
)]

= H(ξc).

Thus, H satisfies property P3 of the definition 6.4.2.1.

4. Let ξ̃ = ⟨F̃ , E⟩ = [bij ]m×n, if ξ ≤ ξ̃, then we have

rF̃ (εj)
(xi) ≤ rG̃(εj)

(xi) and kF̃ (εj)
(xi) ≤ kG̃(εj)

(xi), for the amplitude terms and

for the phase terms ωr
F̃ (εj)

(xi) ≤ ωr
G̃(εj)

(xi) and ω
k
F̃ (εj)

(xi) ≤ ωk
G̃(εj)

(xi)), ∀xi ∈ X

and ∀εj ∈ E.

Thus, we have

ψ(rF̃ (εj)
(xi), kF̃ (εj)

(xi)) ≤ ψ(rG̃(εj)
(xi), kG̃(εj)

(xi)),

and

ψ(ωr
F̃ (εj)

(xi)/2π, ω
k
F̃ (εj)

(xi)/2π) ≤ ψ(ωr
G̃(εj)

(xi)/2π, ω
k
G̃(εj)

(xi)/2π).

⇒(
1− ψ(rF̃ (εj)

(xi), kF̃ (εj)
(xi))

)
≥
(
1− ψ(rG̃(εj)

(xi), kG̃(εj)
(xi))

)
,

and(
1− ψ(ωr

F̃ (εj)
(xi)/2π, ω

k
F̃ (εj)

(xi)/2π)

)
≥
(
1− ψ(ωr

G̃(εj)
(xi)/2π, ω

k
G̃(εj)

(xi)/2π)

)
.
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⇒ H(ξ̃) ≤ H(ξ),

Thus, H satisfies property P4 of the definition 6.4.2.1.

Therefore, H is an intuitionistic entropy of complex intuitionistic fuzzy soft set. �

Burillo and Bustince (1996a) gave some expressions for intuitionistic entropy of

intuitionistic fuzzy soft sets. Jiang et al. (2013) extended these expressions for intu-

itionistic entropy of intuitionistic fuzzy soft sets. On similar pattern, we are extending

these expressions for intuitionistic entropy of complex intuitionistic fuzzy soft sets.

Let ξ = ⟨F̃ , E⟩ = [aij ]m×n ∈∈ CIFSS(X). It is easy to verify that the following

expressions are the intuitionistic entropies of ξ :

H1(ξ) =
1

2

n∑
j=1

m∑
i=1

[(
1− (rF̃ (εj)

(xi) + kF̃ (εj)
(xi))

)
+
(
1− (ωr

F̃ (εj)
(xi) + ωk

F̃ (εj)
(xi))/2π

)]
;

H2(ξ) =
1

2

n∑
j=1

m∑
i=1

[(
1− (rF̃ (εj)

(xi) + kF̃ (εj)
(xi))

n
)

+
(
1−

(
(ωr

F̃ (εj)
(xi) + ωk

F̃ (εj)
(xi))/2π

)n)]
, n = 2, 3, . . . ;

H3(ξ) =
1

2

n∑
j=1

m∑
i=1

[(
1− (rF̃ (εj)

(xi) + kF̃ (εj)
(xi)) · e

1−(rF̃ (εj)
(xi)+kF̃ (εj)

(xi))
)
,

+

(
1− (ωr

F̃ (εj)
(xi) + ωk

F̃ (εj)
(xi))/2π · e1−(ωr

F̃ (εj)
(xi)+ωk

F̃ (εj)
(xi))/2π

)]
;

H4(ξ) =
1

2

n∑
j=1

m∑
i=1

[(
1− (rF̃ (εj)

(xi) + kF̃ (εj)
(xi)) · sin

(
(π/2)

(
rF̃ (εj)

(xi) + kF̃ (εj)
(xi)

)))
+
(
1−

(
ωr
F̃ (εj)

(xi) + ωk
F̃ (εj)

(xi)
)
/2π

)
· sin

((
ωr
F̃ (εj)

(xi) + ωk
F̃ (εj)

(xi)
)
/4
)]
.

In the following definition, we introduce a function from CIFSS(X) to R+, which

is an extension of the Hϕ, ϕ′-function from IFSS(X) to R+ given in Jiang et al. (2013),

which is also an extension of the Hϕ, ϕ′-function from FSS(X) to R+ given in Burillo

and Bustince (1996a).

Definition 6.4.2.3: Let ϕ, ϕ′ : [0, 1] → [0, 1] be such that if x+ y ≤ 1,

then ϕ(x) + ϕ′(y) ≤ 1, with x, y ∈ [0, 1]. We define function Hϕ, ϕ′(·) of the complex
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intuitionistic fuzzy soft set ξ = ⟨F̃ , E⟩ = [aij ]m×n ∈ CIFSS(X) to R+ as follows:

Hϕ, ϕ′(ξ) = mn− 1

2

n∑
j=1

m∑
i=1

[(
ϕ(rF̃ (εj)

(xi)) + ϕ′(kF̃ (εj)
(xi))

)
+
(
ϕ(ωr

F̃ (εj)
(xi)/2π) + ϕ′(ωk

F̃ (εj)
(xi)/2π)

)]
Obviously, 0 ≤ Hϕ, ϕ′(ξ) ≤ mn for all ξ = [aij ]m×n belonging to CIFSS(X).

Theorem 6.4.2.3: Let ξ = ⟨F̃ , F ⟩ = [aij ]m×n, ξ̃ = ⟨G̃, E⟩ = [bij ]m×n ∈ CIFSS(X),

then the function Hϕ, ϕ′ satisfies the following property.

Hϕ, ϕ′(ξ ∪ ξ̃) +Hϕ, ϕ′(ξ ∩ ξ̃) = Hϕ, ϕ′(ξ) +Hϕ, ϕ′(ξ̃).

Proof. By the definition 6.4.2.3, we have the following

Hϕ, ϕ′ (ξ ∪ ξ̃) = mn−
1

2

n∑
j=1

m∑
i=1

[(
ϕ(rF̃ (εj)

(xi) ⋄ rG̃(εj)
(xi)) + ϕ′(kF̃ (εj)

(xi) ∗ kF̃ (εj)
(xi))

)
+ϕ
(
ωr
F̃ (εj)

(xi)/2π ∪ ωr
G̃(εj)

(xi)/2π
)
+ ϕ′

(
ωk
F̃ (εj)

(xi)/2π ∩ ωk
G̃(εj)

(xi)/2π
)]

and

Hϕ, ϕ′ (ξ ∩ ξ̃) = mn−
1

2

n∑
j=1

m∑
i=1

[(
ϕ(rF̃ (εj)

(xi) ∗ rG̃(εj)
(xi)) + ϕ′(kF̃ (εj)

(xi) ⋄ kF̃ (εj)
(xi))

)
+ϕ
(
ωr
F̃ (εj)

(xi)/2π ∪ ωr
G̃(εj)

(xi)/2π
)
+ ϕ′

(
ωk
F̃ (εj)

(xi)/2π ∩ ωk
G̃(εj)

(xi)/2π
)]

Thus, we have

Hϕ, ϕ′(ξ ∪ ξ̃) +Hϕ, ϕ′(ξ ∩ ξ̃) = Hϕ, ϕ′(ξ) +Hϕ, ϕ′(ξ̃).

�

It may be noted that there are Hϕ,ϕ′-functions which are not intuitionistic en-

tropies, e.g.,

Hϕ, ϕ′(ξ) = mn− 1

2

n∑
j=1

m∑
i=1

[(
rF̃ (εj)

(xi) + kF̃ (εj)
(xi)

)
+

1

2π

(
ωr
F̃ (εj)

(xi) + ωk
F̃ (εj)

(xi)
)]

On the other hand, it may also be easily verified that there are entropies which are not

Hϕ,ϕ′- functions, e.g.,

Hϕ, ϕ′(ξ) = mn− 1

2

n∑
j=1

m∑
i=1

[(
rF̃ (εj)

(xi) + kF̃ (εj)
(xi)

)2
+

(
1

2π

(
ωr
F̃ (εj)

(xi) + ωk
F̃ (εj)

(xi)
))2

]
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Also, there are entropies which are also Hϕ,ϕ′-functions, e.g.,

Hϕ, ϕ′(ξ) = mn− 1

2

n∑
j=1

m∑
i=1

[(
1−

(
rF̃ (εj)

(xi) + kF̃ (εj)
(xi)

))
+

(
1− 1

2π

(
ωr
F̃ (εj)

(xi) + ωk
F̃ (εj)

(xi)
))]

Next, we introduce a property which defines entropies in a general way, as follows:

Theorem 6.4.2.4: If ϕ : [0, 1] → [0, 1] satisfies the following conditions:

(i) ϕ is increasing,

(ii) ϕ(x) = 0 if and only if x = 0,

(iii) ϕ(x) + ϕ(y) = 1 if and only if x+ y = 1,

then ϕ(x) + ϕ(y) satisfies the conditions (i)–(iv) of the ψ function in definition 6.4.2.2.

�

We denote the Hϕ, ϕ′-function as Hϕ, ϕ-function if ϕ = ϕ′. The following theorem

characterizes the intuitionistic entropy of complex intuitionistic fuzzy soft sets in a

general way:

Theorem 6.4.2.5: Let H : CIFSS → R+, ϕ : [0, 1] → [0, 1] and ξ = ⟨F̃ , E⟩ =

[aij ]m×n ∈ CIFSS(X). H is an intuitionistic entropy as well as Hϕ, ϕ-function if and

only if

H(ξ) =
1

2

n∑
j=1

m∑
i=1

[(
1−

(
ϕ(rF̃ (εj)

(xi)) + ϕ(kF̃ (εj)
(xi))

))
+(

1−
(
ϕ(ωr

F̃ (εj)
(xi)/2π) + ϕ(ωk

F̃ (εj)
(xi)/2π)

))]
,

where ϕ satisfies the conditions(i)–(iii) of theorem 6.4.2.4. �

Based on the definitions and properties stated above, it may be easily verified that

there is a correspondence between the proposed entropies and the distance measures

of complex intuitionistic fuzzy soft sets.

Theorem 6.4.2.6: Let ξ = ⟨F̃ , E⟩ = [aij ]m×n ∈ CIFSS(X) and fα(ξ) = {ξα}α∈[0, 1]
be the family of complex fuzzy soft sets associated to ξ by the operator fα defined in

definition 4. Then
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(i) H1(ξ) = 2 · dh(ξ, ξα);

(ii) H1(ξ) = 2 · dh(ξ0, ξ1);

(iii) dh(ξα, ξβ) = (α− β) ·H1(ξ).

�

6.4 Application in Multi-criteria Decision

Making problems

Suppose that a car dealer X decides to purchase cars from a car company Y . The car

company provides some information to car dealer on four models of cars with different

manufacturing dates for each model. So, car dealer X wants to select four models

Car1, Car2, Car3 and Car4 with its manufacturing date simultaneously. Suppose that

a team of experts (decision makers) agreed that five parameters should be considered

in the selection process. They can be: reliability, maximum payload, purchasing cost,

maximum speed and durability. But these parameters will get affected and changed if

the production date is different for the same model of cars. The decision made by the

expert team will also depend on the knowledge and experience of its members. The

best way to represent this kind of information may be by using CIFSS, in which for each

car model, the experts have different opinions and mentalities. For instance, suppose

that at least 60% experts believe that the Car1 is suitable at the first parameter and

not more than 15% of the experts that the Car1 is poor at the first parameter, in this

way we can calculate the amplitude terms for both membership and non-membership

functions, respectively in CIFSS. The phase terms that represent the production date

for first parameter of the Car1 can be calculated as follows: if at least 70% experts

believe that the production date of car1 is suitable at the first parameter and not more

than 20% of them believe that the production date of car1 is poor. Therefore, the

information based on experts about car1 on the first parameter can be represented in

form of CIFSS as ⟨0.6 ·e2π0.70, 0.15 ·e2π0.20⟩. In this way, all data can be obtained in the

form of CIFSS, where both amplitude and phase terms can represent the information

on experts’s decision which happens periodically. Assume that the expert team had
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suggested an ideal car (i.e., a car that is in demand) before getting the characteristic

information from car maker Y . The aim of the expert team is to select a suitable car

listed by car maker Y that is most likely to be the ideal car. Using this information,

a car dealer X can take decision to purchase cars from the car company Y that are in

demand in the market to gain profit.

6.5 Conclusions

The introduced concept of Complex Intuitionistic Fuzzy Soft Sets (CIFSSs) which is a

parametric tool has been well proposed and studied in detail along with its important

properties and fundamental operations. Based on various well known distance mea-

sures, some new distance measures for CIFSSs have been obtained and extended to find

the entropies of complex intuitionistic fuzzy soft sets. A correspondence between the

proposed entropies and the distance measures of complex intuitionistic fuzzy soft sets

has been well established. An application in the area of Multi-criteria Decision Mak-

ing problem on the basis of the proposed CIFSSs, distance measures and information

measures has also been suggested.
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Chapter 7

Conclusions

The conclusions are summarized as under

• A new R-norm intuitionistic fuzzy entropy and a weighted R-norm intuitionistic

fuzzy directed divergence measure have been proposed with their proof of va-

lidity. Further, after empirical study on the proposed information measures we

find that R-norm fuzzy intuitionistic fuzzy entropy is a decreasing function of

R, while the weighted R-norm intuitionistic fuzzy directed divergence measure is

increasing function of R as well as λ. The proposed intuitionistic fuzzy informa-

tion measures have found many applications in the field of pattern recognition

and image processing.

• The estimators of regression coefficients have also been obtained with the help

of fuzzy entropy for the restricted/unrestriced fuzzy linear regression model by

assigning some weights in the distance function. Some numerical examples illus-

trating the outcomes of the model have been provided. Further, simulation study

over the obtained estimators has been conducted to compare their performance.

It has been observed that the restricted estimator is better than unrestricted es-

timator in the sense of absolute bias as well as mean square error matrix. Thus,

whenever some prior information is available in terms of exact linear restrictions

on regression coefficients, it is advised to use restricted estimator β̃ in place of

unrestricted estimator β̂.
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• The proposed new similarity measures for intuitionistic fuzzy sets and interval-

valued intuitionistic fuzzy sets based on ‘NTV’ metric along with their weighted

form are valid similarity measures. The new intuitionistic fuzzy entropies for

intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets analogously

obtained through the proposed similarity measures are also valid information

measures. Further, a new algorithm for MCDM using the proposed weighted

similarity measures, in which the weights have been calculated using the proposed

entropies, has been illustrated through a numerical example.

• The intuitionistic fuzzy reliability of k-out-of-n : G system with independent and

non-identically distributed components, where the reliability of the components

are unknown, has been computed. The reliability of each component has been

estimated using statistical confidence interval approach. Considering the high-

est level of confidence of domain experts that belongs to the interval [0, 1], we

converted these statistical confidence interval into triangular intuitionistic fuzzy

numbers. The reliability of the k-out-of-n : G system has been calculated and dis-

cussed on the basis of these triangular intuitionistic fuzzy numbers with the help

of a numerical example. On similar pattern, the intuitionistic fuzzy reliability of

the real-time repairable k-out-of-n system may be computed.

• The concept of complex intuitionistic fuzzy soft sets which is a parametric tool

have been well proposed with their important properties and operations. Based

on some well known distance measures, new distance measures for CIFSSs have

been obtained and are used to propose the entropies of complex intuitionistic

fuzzy soft sets.

114



Bibliography

[1] Alkouri, A. & Salleh, A. (2012), “Complex intuitionistic fuzzy sets”, International

Conference on Fundamental and Applied Sciences, AIP Conference Proceedings,

1482, 464–470.

[2] Alkouri, A. and Salleh, A. (2013), “Complex Atanassov’s intuitionistic fuzzy rela-

tion”, Hindawi Publishing Corporation: Abstract and Applied Analysis, 2013, Article

ID: 287382 18 pages.

[3] Atanassov, K.T. (1986), “Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, 20(1),

87–96.

[4] Atanassov, K.T. (1989), “More on intuitionistic fuzzy sets”, Fuzzy Sets and Systems,

33(1), 37–45.

[5] Atanassov, K.T. and Gargov, G. (1989), “Interval-valued intuitionistic fuzzy sets,”

Fuzzy Sets and Systems, 31(3), 343–349.

[6] Barlow, R.E. and Heidtmann, K.D. (1984), “Computing k-out-of-n system reliabil-

ity”, IEEE Trans. on Reliability, R-33, 322–323, 1984.

[7] Bajaj, R.K., Garg, G. and Hooda, D.S. (2009), “On restricted fuzzy linear regression

model”, International Review of Fuzzy Mathematics, 4(1-2), 11–23.

[8] Bhandari, D. and Pal, N.R. (1993), “Some new information measures for fuzzy

sets”, Information Sciences, 67(3). 209–228.

[9] Boekee, D.E. and Van der Lubbe, J.C.A. (1980), “The R-norm information mea-

sures”, Information and Control, 45(2), 136–155.

115
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