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Chapter 1

Introduction

1.1 Background and Motivation

During the last few years, global competition in the market place has become
more complicated. Customers generally prefer the product which has higher
quality and reliability (durability and maintainability). Engineering systems,
components and devices are not perfect. A car battery go dead, a floppy disk
drive go bad, a TV remote control quit functioning, a stereo amplifier quit, an
automatic engine starter fail and a house roof leak. In order to achieve high

product reliability, one has to understand the definition of the term reliability.

Additionally, in order to select a product, the role of human behaviour which
is influenced by some interrelating factors is an important factor in a consumer
decision making process. The external characteristics such as price, brand, ca-
pability etc. are also concerned in making a decision. Everyone make decision
on their beliefs, and the beliefs depend on the information gathered from exper-

iments, experts and experience.

Reliability refers “Quality over Time”. Reliability is the probability of a



product performing its intended function over its specified duration of usage and
under specified working conditions, in a manner that meets or exceeds customers
expectations. In reliability we study various reliability notations such as the
failure rate, reverse failure rate, the mean residual life and the likelihood ratio
order etc. The concepts of residual life time and inactivity time are extensively
used in reliability theory for modelling life time data. Block et. al. (1998),
Chandra & Roy (2001), Li & Zhang (2003), Li & Lu (2003), Li & Zuo (2004),
Misra et al. (2008) and Pellerey & Petakos (2002) studied reliability properties
of residual life/inactivity time. The stochastic comparisons of residual life time
and inactivity time in series and parallel systems is discussed by Li and Lu (2003)

and Li & Zhang (2003).

Decision making generally depends on two factors : the amount of informa-
tion associated with an alternative and the reliability of information. Fuzzy set
theory, developed by Zadeh (1965) has capability to describe the uncertain situa-
tions, containing ambiguity and vagueness. Fuzziness is likely to be present in our
decisions, in our thoughts, in processing the information and particularly in our
language. Among various extensions of fuzzy sets such as intuitionistic fuzzy set
(IFS), vague set, interval-valued fuzzy set, IFSs are found to be more consistent
with human behaviour. Intuitionistic fuzzy set introduced by Atanassov (1986)
has been found to be more useful to deal with ambiguity /vagueness/imprecision.
Intuitionistic fuzzy set is characterized by two functions - the degree of member-
ship function and a non membership function. It may be noted that the sum
of membership function and non membership function must be smaller than or
equal to one. The theory of intuitionistic fuzzy sets has been used to build soft de-
cision making models that can accommodate imprecise information and analyze

the extent of agreement in a group of experts.

(N}



1.2 Probabilistic Descriptions in Reliability and
Life Testing

In reliability and life testing, the probabilistic descriptions includes distribution
functions, survival functions, densities, hazard rates, mean residual lives and total
time on test transforms. Upon existence of any of these functions, we can obtain
any other function theoretically. We include below some definitions which are

standard in the literature [cf. Albert W. Marshall & Ingram Olkin (2007)].
I. Distribution Functions and Survival Functions

If X is a continuous random variable function with probability density function

f{x), then the function
tn
Fe(t) — P{X <t} — /f(:z:)dx, Y

is called distribution function of the random variable X. Distribution functions

are also known as “cumulative distribution functions”.

A distribution function F'is non-decreasing and right continuous (lim,; F(z) = F(t)).
Moreover, lim,_,_., F(z) = 0and lim,. F(z) = 1. Any function with these

properties is a distribution function for some random variable.

The basic quantity employed to describe time-to-event phenomena is the survival
function. If X is a continuous random variable with probability density function

Sf{x), then the survival function F' (t) is defined by
Ft) = P{X >t} —[f(a:)dx
'.!'.

The survival function is sometimes called the “survivor function” or the “relia-
bility”. It is found that for non-negative random variables, the survival function

is more meaningful and takes a more convenient form than the better known dis-



tribution function. Thus, we have the following relationship between reliability

function and distribution function
F(t) 1 — F(t)

Differentiating both sides with respect to t, we get

1

SEW = —f©

I1. Probability Mass Functions and Density Functions

For any random variable, the distribution function and survival function always
exist. Suppose that the random variable X take only a finite or countable number
of values, e.g., X might be the number of trials required to obtain “heads” in

repeated tosses of a coin. Then X is said to be discrete random variable.

If 1, xa,... is the set of possible values of X and p(x;) = P{X =ux;},i =

1,2,3,..., then

F) = 3 pla),

Trisr
and p is called the probability mass function of X. It may be noted that the

discrete distribution functions are step functions.

On the other hand, when X takes on all values in some (possibly infinite) interval
of the real line, then X is said to be continuous random variable. It is often

possible to write I as
F(x) / f(z)dz,

for all real z. Then [ is called a probability density of X (or F).
III. Hazard Functions and Hazard Rates

The function R defined on (—oo,00) by R (xr) = —log I’ () is called the hazard

function of F', or of X. For a non-negative random variable, R (0—) 0, R

4



is increasing, and lim,_., R(x) = oo; any function with these properties is a

hazard function.

If F'is an absolutely continuous distribution function with density f, then the

function r defined on (—oo, o0) by

is called a hazard rate of F', or of X.

When F'is absolutely continuous and the hazard function R is differentiable, then
its derivative is a hazard rate.

Pla<X<atd|X>a}

Therefore, r (z) = limgyg 5

Hence, 07 (z) ~ Plr < X <x+46|X > x}.

Thus, it is the probability that the item will fail in the next ¢ time unit given

that the item is functioning properly in time x.

In other words, failure rate or hazard rate function is defined as the conditional
probability, given survival up to time x, of death or failure in the next small

increment o of time.
IV. Reverse Hazard Functions and Reverse Hazard Rates

The reverse hazard function is defined in a manner similar to the hazard function
R{x) = —log F (x), but with the distribution function F replacing the survival

function F.

The function S defined on (—oo, 00) by S (x) log F'(z) is called the reverse
hazard function of F', or of X. If I’ is an absolutely continuous distribution
function with density f, then a function s defined on (—o0, c0) by

[ (x)

is called a reverse hazard rate of F', or of X.

s(x) =



V. The Residual Life Distribution

The distribution of remaining life for an unfailed item of age ¢ is often of interest.
Let IV be a distribution function such that F'(0) = 0. the residual life distribution

F; of F at t is defined for all ¢ > 0 such that F'(t) > 0 by

mx):%(;”, x>0,

If F has density f, then F; has density f; and hazard rate r; given by

et Sy

ri(w) = %:T(w’ ey, x > 0.

Thus, the residual life distribution Fj is a conditional distribution of the remaining

life given survival up to time .
V1. The Mean Residual Life Function

In order to understand the concept of residual life distribution, it is necessary to
define “mean” or “expectation” of a random variable. Suppose that the random
variable X has the distribution function F' and that the integral

o0

/ |x| dF(x)

—20

exists (is finite). Then, the expected value of X exists and is given by integral
E(X) f:f: dF (x).
The expected value of X is also called the mean of X, or the expectation of X,

and is often denoted by p.

The mean residual life function m(t) is the mean of residual life distribution F;

as a function of t. More explicitly, when F has finite mean p and F (z) = 0, for

6



x < 0, the mean residual life function is given by

t—2) .,
dz / A0 dF (2)

_ i Fle+t) i F(z)
m (t) U/ T dx !

for ¢ such that F () > 0, and is equal to 0 if F (¢) 0.
VII. Equilibrium Distribution

Let F' be a distribution function with finite mean p such that F(x) 0 for

r < 0, and let

0, x<0.

The density function f; arises in the context of renewal theory where the cor-
responding distribution is called the equilibrium distribution or the stationary

renewal distribution.

VIII. Moment Generating Functions and Laplace Transforms

= =] . N
T . T o X3 . .
T'he function mgf(p) = E(eP¥) S ";TX is called the moment generating
i—0
function of X. The moment generating function is finite for all p in some interval

of the form (—o0,a) where a > 0. In case a > 0 and 7 is a positive integer, the

r" derivative of the moment generating function evaluated at p = 0 yields the

T‘th’ moment:

d"
dp”

E(X") = ——mgf (p)|,_o-

The laplace transform ¢ of X is defined as

o(p) — E(eP%).

For non-negative random variables, the laplace transform exists for all p > 0 and

may exists for some or all values of p < 0.

7



The moment generating function mgf(p) of X is related to the laplace transform

through the equation mgf(p) = ¢ (—p).
IX. Parametric Families of Life Distributions

The Exponential Distribution:

For exponential distribution, the parameter x > 0 is a scale parameter and

fx) = ge ™™, x>0.
For the exponential distribution, we have

Flxtt)
WO I (x),

Thus, exponential distribution is the conditional probability of surviving an ad-
ditional period of x, given survival up to time ¢, is the same as the unconditional

probability of survival to time .

The Gamma Distribution:

For gamma distribution, we have the scale parameter £ > 0 and shape parameter
7 >0 and
-1 _—&Kx
ol e KxT e .
f(z|k, ) = /F('r)v x> 0.

For 7 = 1, above equation reduces to the exponential distribution.

The Weibull Distribution:

For Weibull distribution, we have the scale parameter x > 0 and shape parameter

7 > (. The survival function for Weibull distribution has a simple form given by
F(z)= e "7 >0,
Therefore, the density function for Weibull distribution is given by
[(@) = 7r(kx) e DT 2 >0.

8



The Gompertz Distribution:

For Gompertz distribution, we have the scale parameter x > 0 and frailiy param-
eter £ > 0. The survival function for Gompertz distribution has a simple form
given by

Flz)= e te™D  2>0.

Therefore, the density function for Gompertz distribution is given by

/() .*afem_g(”m_'), x>0

X. Residual Life Time and Inactivity Time:
The residual life of X with age/time ¢ > 0 is given by
Xy = (X —t| X >1t), t>0,
and inactivity time of X at time ¢ > 0 is given by
Xy = =X | X <t), t>0.

For a fixed ¢t > 0, the survival functions of X; and X are given by

Sru(z) — P(X, > z) — 1P if <0 |
‘f(:r)”, ifx>0
and
] ifzx <0
Spu(r) = P(X > ) = § S5, ifo<z<t,
0 ifx>1

respectively. We denote Fry(x) = | — Sge(x) and Fri(x) = 1 — Sri(x) be the

corresponding cumulative distribution functions.
XI. Systems of Components

The state of a system is determined completely by the states of the components.

Therefore, ¢ = ¢ (x); where x = (21, x,,...,2,). The function ¢ (x) is called the

9



structure function of the system. The number of components n in the system is

called the order of the system.

Series System:

A series system functions il and only if all of its components function. The
structure function of a series system is given by
T
(rf)(x) - Hxi = min (JI,’[,JI:2, T ,JI:?;)
i=1

Parallel System:

A parallel system functions if and only if at least one component functions. The
structure function of a parallel system is given by

T

¢(x) = ]:[x@‘: max (1, T2, ..., T,)

i=1

Also

T

[z 1-1]0 =)

=1

The concepts related to residual life time and inactivity time are extensively

used in the reliability theory for modelling life time data.

1.3 Intuitionistic Fuzzy Sets: Preliminaries

The theory of Intuitionistic Fuzzy Sets is well suited to dealing with imprecise or
uncertain decision information, image edge detection, medical diagnosis, pattern
recognition, human expressions like perception, knowledge and behaviour, by
reflecting and modelling the hesitancy present in real life situations and decision
making. In this section, we present the basics of intuitionistic fuzzy sets and

intuitionistic fuzzy numbers which is well known in literature.

10



Definition 1 Atanassov’s (1986,1989) intuitionistic fuzzy set (IFS) over a finite
non empty fized set X , is a set A = {< x, 1i(x),vi(x) > | x € X} which
assigns to each element x € X to the set A, which is a subset of X having
the degree of membership pz(x) : X — [0,1] and degree of non-membership

vilx) + X = [0,1], satisfying 0 < pa(x) + valx) < 1, forallz € X.

For each IFS in X, a hesitation margin 7 4(z), which is the intuitionistic fuzzy
index of element x in the IFS A, defined by 7 5(z) = 1— () — v4(z), denotes
a measure of non-determinancy. We denote IFS(X), the set of all the IFSs on

X.

Definition 2 An intuitionistic fuzzy subset A = {(x, u(x),v5(x)) : x € X} of
the real line R is called an intuitionistic fuzzy number if the following axioms

hold:

(i) A is normal, i.e., there exist a real numbers b (called the mean value of A)

such that ju5(b) = 1 and v4(b) = 0.
(it) The membership function iz is fuzzy-conver i.e.
iAoz + (1= A) - 2p) > min {pg(zq), pilae)} Vo, xo € X, A€ 0, 1]
(iii) The non-membership function vz is fuzzy-concave i.e.
vild x4+ (1 = A) <max{vi(x1), vi(r2)} Vo, z2 € X, A€ [0, 1].

(iv) The membership and the non-membership function of A satisfying the con-
dition 0 < fi(x) + q1(x) < 1, 0 < folx) + g2(x) < 1 have the following

Jorm:
fi(x) for ay < x < ay,

1 for x = as,

fo(x) for as < x < as,

0 otherwise

.



and

U/II(ZE) = {4

4

.

gi{x) for a’l <z < ay,
0 for x = as,
ga(x) for az < x < ag

1 otherwise

respectively, where fi(x) and fy(x) are strictly increasing and decreasing

Junctions in [ay, as] and [az, as|,; and g1(x) and g2(x) are strictly decreasing

. . . P ! ! P .
and increasing functions in |ay, ap| and |ay, as], respectively. Symbolically

. .y s . s i ! !
the intuitionistic fuzzy number is represented as Ajpn = (ahag, az; @y, as, as) .

Shu & Cheng (2006) defined triangular intuitionistic fuzzy numbers (TTFNs)

which have a greater capability to handle more ample and flexible information

than triangular(trapezoidal) fuzzy numbers.

Definition 3 Triangular intuitionistic fuzzy number Y

< (L.t t)iug, wy >

(TIFN) is a special intuitionistic fuzzy set, whose membership function and non-

membership function are defined by Atanassov’s (1999) as follows:

4

e
pg(r) = < *

0

and

4

Wy
%67 (J?) = 4 X

1

.

ug(e —0)/(t—1)

ug(f — )/ (E — 1)

[t —a+ wg(x -]/t -1

[ =t +wg(t —2)]/(t—1)

ift<ax<t
if v=t
if t<ax<t

ife <torx>t

ift<x<t
if

if t<ax<t

r =1t

if e<tora>t

respectively, where the values ug and wy represent the mazimum degree of membership

and the minimum degree of non-membership, respectively, such that they satisfy

0<ug<1, 0<wg<l,

0<u; +wg <1.

12



Let mg(x) = 1 — pg(x) — vz(x), which is called as intuitionistic fuzzy index of
an element x in y. It is the degree of indeterminacy membership of the element
x in X. The TIFN § = < (¢, t,t); ug, wg > is called as a positive TIFN, denoted
by ¥ > 0, if £ > 0 and one of the three values ¢, ¢ and ¢ is not equal to zero.
Similarly, if ¢ < 0 and one of the three values ¢, ¢ and ¢ is not equal to zero, then

the TIFN § = < (&, t,1); ug, wy > is called as a negative TIFN, denoted by y < 0.

The concept of intuitionistic trapezoidal fuzzy numbers (ITFNs) was intro-
duced by Wang (2008) and it may be noted that intuitionistic trapezoidal fuzzy
numbers (ITFNs) express more flexible and abundant information than trape-

zoidal fuzzy numbers.

Definition 4 Intuitionistic trapezoidal fuzzy number (ITFN) X = {(a,b,c,d) ; pg, vz}
is a special intuitionistic fuzzy set, whose membership function and non-membership
function have been defined as follows:

taks  a<z <D,

L5 if b<ax<c,
px () = < (d—1) -
o Mx if ¢ <x<d,

0 otherwise.
s
% ifay < x <D,
Y5 if b S X S c,
KY}Z(T:) — < (:_v:—(:) I’T;((dl_m) % <
@ M Ye<rsd
; 0 otherwise.

where 0 < py < land 0 < 5 < 1. Also, puy + 95 < 1 for all a,b,¢,d € R.
The values py; and 5 represent the maximum membership degree and minimum

non-membership degree, respectively.



1.4 Measures of ‘Useful’ Fuzzy Information and

Directed Divergence

Though in many practical situations of probabilistic nature, subjective consid-
erations play its own role, Shannon entropy does not take into account the el-
fectiveness or importance of the events. Belis & Guiasu (1968) considered a
qualitative aspect of information called ’useful’ information by implementing a
utility distribution given by U = (uy,uz, us,. .., u,), where u; > 0, for each i
and is utility or importance of an event x; whose probability of occurrence is p;.
Also, it is assumed that wu; is independent of p;. It has also been suggested that
the occurrence of an event removes two types of uncertainty - the quantitative
type related to its probability of occurrence and the qualitative type related to
its utility (importance) for fulfillment of some goal set by the experimenter. In

view of this, they proposed the following 'useful” information measure as
H(U; P) = = wpilogp;.

In case u; = 1 Vi, the above equation reduces to H(P) = — ) p; log p;, which

is well known Shannon’s Entropy (1948).

Bhaker and Hooda (1993) obtained the generalized mean value characteriza-

tion of the useful information measures for incomplete probability distributions:

> wipi log ps
H(PU)y = -
> wip;
i1

and




Zadeh (1968) was the first to quantify the uncertainty associated with a fuzzy
event in the context of a discrete probabilistic framework, who defined the weighted
entropy of A with respect to (X, P) as

n

H(A, P) = = pa(x)p;log pi,

i—1
where ju4 is the membership function of A and p; is the probability of occurrence of
x;. It may be noted that the situation contains the different types of uncertainties,
e.g., randomness, ambiguity and vagueness. H (A, P) of a fuzzy event with respect

to I is less than Shannon’s entropy which is of I” alone.

Let P and @ be two probability distributions of a random variable X having
utility distribution U. Bhaker and Hooda (1993) characterized the following
measure of 'useful” directed divergence:

2 u;p; log %

DP:Q:U)=*“—
> Ui
=1

1.5 Literature Survey

Block et. al. (1998), Chandra & Roy (2001), Li & Zhang (2003), Li & Lu (2003),
Li & Zuo (2004), Misra et al. (2008) and Pellerey & Petakos (2002) studied
reliability properties of residual life/inactivity time. The stochastic comparisons
of residual life time and inactivity time in series and parallel systems is discussed

by Li & Lu (2003) and Li & Zhang (2003).

Let ns(x) = —f'(x)/f(x), = € S, and ny(x) = —¢'(x)/g(x), * € S de-
note the eta functions of random variable X and Y respectively. Glaser (1980)
demonstrated that the eta functions play a vital role in the study of the failure

rates.

Li & Zhang (2003) proved that if X and Y are independent and identically



distributed then, for all ¢ > 0, (max(X,Y)), <4 max(X,,VY;): similar results
are also proved for inactivity time. Li & Lu (2003) strengthen the results of Li
& Zhang (2003) and proved that if X and Y are independent and identically
distributed then, for all £ > 0,

(i) (max(X,Y)), <; max(Xy,Yy);
(i) (max(X,Y)), <ir max(X), Y); and

(iil) min(Xg), Vi) <er (min(X,Y)), -

Li & Lu (2003) also proved that, if X and Y are independent (not necessarily
identical distributed) then, for all ¢ > 0,

(i) (max(X,Y)), <jr max(Xy,Yy);
(i) (max(X,Y)), <gpr max(Xq), Y(y); and

(iii) min(Xy. ) < (min(X?Y))(t).

By the method of ascertainment, the concept of weighted distribution has
been introduced by C.R. Rao in 1965. Weighted distribution have been widely
used as a tool in various practical problems in the selection of appropriate models
for observed data drown without a proper frame, analysis of data relating to
human populations and wild life management, investigation of human heredity,
line transcend sampling and renewal theory, study of statistical ecology, albinism

and reliability modelling.

Let f(-) be the probability density function of original random variable X. Let
wi(+) : R — [0,00), where R = (—o00,00) and the recovered random variable
be X,, with the probability density function given by
. wy(x) f(x
.]TU] (:B) M; T E R;
w)
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where w; = E(w;(X)) > 0.

The random variable X,,, is called the weighted version of X and its distribution
in relation to that of X is called the weighted distribution of X with weighted

function wy(.).

Jain et. al. (1989), Nanda & Jatin (1999), Misra et. al. (2008), Barlow et.
al (1981), and Bartoszewicz et. al (2006) have studied the reliability properties of
weighted distributions in relation to corresponding reliability measures of parent

distributions.

Equilibrium distribution which is also known as integrated tail function orig-
inated in the context of renewal processes and acting as the limiting distribution
of the forward recurrence time in a renewal process. Equilibrium distribution has
wide applications in insurance, financial investment, reliability, stochastic pro-
cesses, repairable systems and many areas of applied probability such as renewal
risk model, tail distributions of ladder heights of random walk, limiting distribu-
tions of waiting time and busy model of queueing model ete [cf. Embrechts et.
al. (1997), Asmussen (2000) and Rolski et. al. (1999)]. For a detailed survey
of equilibrium distribution one may refer Abouammoh et. al. [(1993),(2000)],
Mugdadi and Ahmad (2005), Bon and Illayk (2005), Su and Tang (2003), Bon
and lllayk (2002), Mi (1988), Bhattacharjee et. al. (2000), and Li and Xu (2008).

In literature many researchers provides characterization of stochastic orders
in terms of ordering of equilibrium distributions.

Whitt (1985) proved that
X Shr('mr.’.,h?nri) Y & )2 Sir(hr,sf,) }N/

Bon and Illayk (2005) proved that if X; and X, are independent DMRL random

variables, then

e ——

min( Xy, X;) <, min(X,, X5).
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Li and Xu (2008) proves that X <,, Y = X <. Y; and shows that reverse

implication may not be true. Additionally, it has also been proved that if X <.

Y, then
— —_—
min X; <., min Y.
1<i<n TR et

The theory of stochastic orders provides various tools for the stochastic com-
parison of probability distributions. For a detailed study on the theory of stochas-
tic orders one may refer Muller and Stoyan (2002) and Shaked and Shanthikumar
(2007). Some of these orders are moment generating function (or exponential)
order and Laplace transform order and their residual life and inactivity time (or
reversed residual life) (cf. Ahmed and Kayid (2004), Elbatal (2007), Kayid (2011)
and Kayid and Alamoudi (2013)).

Belzunce et al (1999), Ahmed and Kayid (2004) and Elbatal (2007) stud-
ied several preservation properties of the Laplace transform ordering of residual
lives/inactivity times under the reliability operations of convolutions, mixtures
and weak convergence. Further, Kayid (2011) and Kayid and Alamoudi (2013) es-
tablished the preservation properties of the moment generating function ordering
of residual lives/inactivity times under the reliability operations of convolutions

and mixtures.

Zadeh (1965) introduced the concept of fuzzy set, which is capable of repre-
senting human knowledge, perception ete. As an extension of fuzzy set, Atanassov
(1986,1989) introduced the concept of intuitionistic fuzzy set (IF'S), which is found
to be more useful in capturing the vague, incomplete or uncertain information
that includes some degree of hesitation and applicable in various fields of research.
Gau and Buehrer in 1993, introduced the concept of vague set. Grattan-Guinness
(1976), Jahn (1975) and Sambuc (1975) introduced the theory of interval valued
fuzzy set , which is well known generalization of ordinary fuzzy set. Among vari-
ous extensions of fuzzy sets such as II'S, vague set, interval-valued fuzzy set, IFSs

are found to be more consistent with human behaviour. Many researchers such
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as Chen & Tan (1994), Hong and Choi (2000), Szmidt & Kacprzyk (2002) shown

great interest in IFS theory and its applications in decision making.

In literature, Burillo, Bustince & Mohedano (1994), Liu & Shi (2000) , Grze-
gorzewski (2003), Shih, Su & Yao (2009) etc. have proposed various research

works on intuitionistic fuzzy numbers.

Shu & Cheng (2006) defined triangular intuitionistic fuzzy numbers (TTFNs)
which have a greater capability to handle more ample and flexible information

than triangular fuzzy numbers.

The concept of intuitionistic trapezoidal fuzzy numbers (ITFNs) was intro-
duced by Wang (2008) and it may be noted that intuitionistic trapezoidal fuzzy
numbers (ITFNs) express more flexible and abundant information than trape-

zoidal fuzzy numbers.

Shannon (1948) entropy does not take into account the effectiveness or im-
portance of the events. Belis & Guiasu (1968) considered a qualitative aspect
of information called useful” information by implementing a utility distribution
given by U = (uy, ug, us, ..., u,), where u; > 0, for each i and is utility or impor-

tance of an event x; whose probability of occurrence is p;.






Chapter 2

Reliability Properties of Residual
Life Time and Inactivity Time of

Series and Parallel System

2.1 Introduction

Let X and Y be two statistically independent random variables with an absolutely
continuous distribution function F(-) and G(-), survival function F(-) = 1 — F()
and G(-) = 1 — G(-) and probability density function f(-) and g(-) respectively.

Suppose that
{reR: flx) >0} ={xzeR: glx)> 0} = (0,00) = S (say),

where R = (—o0, 00).

Let X and Y denote the lifetimes of two components, say € and C;. A
series (parallel) system comprising of components C; and C5 functions if and
only if all (at least one) of its component function(s). Clearly, min(X,Y") and

max (X, Y') are respectively the lifetime of series and parallel systems comprising

.)]



of components C; and C5; here min(X,Y) (max (X,Y)) denotes the minimum
(maximum) of X and Y respectively. The residual life of X with age/time t > 0
is given by

Xy = (X —=t| X >1), t >0,

and inactivity time of X at time ¢ > 0 is given by
Xy = t—-X|X<H), t>0.

For a fixed ¢ > 0, the survival functions of X; and X, are given by

Spi(x) = P(X; > x) lf ifx <0 |
T ifx 20
and
1 ifx <0
Siue) = P(Xe >x) = ¢ g2, o<z <t
0 ifx >t

respectively. We denote Fri(x) = 1 — Sge(x) and Fr(x) = 1 — S;(x) as the

corresponding cumulative distribution functions.

For reliability engineers, the study of reliability properties of series and par-
allel systems is of great importance. Block et. al. (1998), Chandra & Roy (2001),
Pellerey & Petakos (2002), Li & Zhang (2003), Li & Lu (2003), Li & Zuo (2004)
and Misra et al. (2008) studied reliability properties of residual life/inactivity
time. The stochastic comparisons of residual life time and inactivity time in se-
ries and parallel systems is discussed by Li & Lu (2003) and Li & Zhang (2003).

It may be noted that
e the residual life of series (parallel) system having components X and Y is
(min(X,Y)), ((max(X,Y)),);

e the inactivity time of series (parallel) system having components X and Y

is (min(X,Y)) ) (max(X,Y)) )



e the lifetime of the series (parallel) system having residual lives X, and Y} is

min(X, ¥;) (max(X,Y1));

e the lifetime of series (parallel) system having inactivity times X and Yy

is min( Xy, Y ) ((max( X, Yie))-

Let ni(x) = —["(x)/f(x), x € S and n,(x) = —¢'(x)/g(x), x € S denote the
eta functions of random variable X and Y respectively. Glaser (1980) demon-
strated that the eta functions play a vital role in the study of the failure rates.
We use the terms increasing and decreasing instead of non-decreasing and non-
increasing, respectively. Next, we include below some definitions of stochastic

orders which are standard in the literature [cf. Shaked & Shanthikumar (2007)].
Definition 2.1.1:

The random variable X is said to be smaller than random variable Y in the

(a) likelihood ratio (Ir) ordering (X <. Y) if % increases in x € S,

(b) reversed failure rate (rfr) ordering (X <, Y) if % increases in x € S,

(¢) usual stochastic (st) ordering (X <, Y)if F(z) < G(z), for all z € R.
Now we present some notions of ageing (cf. Barlow and Proschan (1981)):

Definition 2.1.2:

The random variable X is said to have

£)
F(x)

(d) increasing failure rate (IFR) if the failure rate function is increasing in

r € S;
flz) -

(e) decreasing failure rate (DIFR) if the failure rate function ) 18 decreasing in

x €S,



(f) decreasing reversed failure rate (DRFR) if the reversed failure rate function
(@)

oy 18 decreasing in x € S.

Li & Zhang (2003) proved that if X and Y are independent and identically
distributed, then for all ¢ > 0, (max(X,Y")), <y max(X,,Y;). Similar results for
inactivity time have also been proved. Li & Lu (2003) strengthen the results of
Li & Zhang (2003) and proved that if X and Y are independent and identically
distributed, then for all £ > 0,

(i) (max(X,Y)), <ir max(Xy,Yy);
(i) (max(X,Y)), <i max(Xq), Yy); and

(i) min(X), Vi) <o (min(X,Y)) .

Li & Lu (2003) also proved that, if X and Y are independent (not necessarily

identical distributed), then for all ¢ > 0,

(i) (max(X,Y)), <jr max(Xy,Yy);
(i) (max(X,Y)), <s max(Xq), Y(y); and

(iii) min(Xwy. Yiy) <pr (min(X,Y))(L) .

In section 2.2 of the chapter, we obtain some new results on stochastic com-
parisons of residual life time and inactivity time in series and parallel systems.
Assuming that X and Y are independent, but not necessarily identical distributed
and letting X <,;, Y, ny <0and n, >0, (or Y <, X, 5y >0 and n, > 0), we
proved that the parallel system of used components, i.e., max(X;,Y;), is better

than the used parallel system, i.e., (max(X,Y)),, in the sense of likelihood ratio

it

order. Further, assuming X and Y are independent, but not necessarily identical

distributed and letting X <;, Y, (or Y <. X), we proved that for any ¢ > 0,
(max(X,Y)) ) <ir max(Xe), Yip);
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and

min( Xy, Yiy) < (min(X,Y) )(t) :

In section 2.3, we prove various ageing properties of used/inactive paral-
lel /series systems and the parallel /series system of used/inactive components.
Finally, some examples are provided to support the obtained results of sections
2.2 and 2.3 in section 2.4 by taking Weibull and Gompertz distributions into

consideration.

2.2 Stochastic Comparison

Li & Lu (2003) proved that if X and Y are independent and identical distributed
then for any ¢t > 0, (max(X,Y)), <; max(X, ¥(y). They also proved that if
X and Y are independent, but not necessarily identically distributed, then for
any L >0, (max(X,Y)), <p max(X Y(y). In the following theorem, we find
the sufficient conditions for (max(X,Y)) <i max(X, Y(y) to hold when X

and Y are independent, but not necessarily identically distributed.

Theorem 2.2.1:
If X <; Y orY <, X then for any ¢ > 0, (max(X,Y))
Proof:

w Sir 1'1'1;1X(X(U,Y(L)).
Let ¢t > 0 be fixed. Let H,,(x) and hy,(x) denote respectively the cumula-
tive distribution function and probability density function of random variable

(max (X,Y))w. Then for 0 < <t,

Hy () Plmax(X,Y )y < z|
F)G(t) — F(t —2)G(t — x)
FIOHG(1) ’

(2.2.1)

and
F(t—x)g(t —x) + f(t —2)G(t — x) -

hue(z) = FOG(t)
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Let My (x) and m,,(z) denote the cumulative distribution function and prob-

ability density function of random variable max(X , Y(z). For 0 < x < ¢, we

have
M 4(z) P ((max(Xq, Vi) < J;)W
- (;«(f,) —Fa)(t—x) ) ( G(1) —;g)(t—x) ) (223
and
ey = O = Flt=2)glt—2) + (GO) = Gl=2) [(t=2) ),

For 0 < x < t, we consider

 my(x)

Fag(r) = hy ()
(K@) - Fit—z))g(t —x) + (Gt) — Gt —x)) f(t — )

F(t—x)g(t —x) + f(t — 2)G(t — x)
_ 14 F(t) gt —x) + G(t) f(t —x)
Ft —2)g(t —a) + ft —2)G(t —x)
For 0 <z < ¢, it is easy to verify that
o [t = )g(t — ) Pt o el
R T o e sy g PR [2; (gt — ) + 2G() f(t — )

gt = 2) = n(t = )HGOF(t — ) — Gt — ) F)}]]. (2.25)

We will prove the assertion for the case X <;. Y. Similarly, the assertion follows

for the case Y <, X. It may be noted that

t
X<, Y <eln (%) is increasing in t € (0, 00) < n4(t) > n,(t), vVt > 0.
(2.2.6)

Also,
X<pY=X<nY e FuG) > Fo)Gu), VO<u<v<oo.  (2.2.7)

Using (2.2.6) and (2.2.7) in (2.2.5), we conclude that I} () > 0, VO < = < ¢,
ie., (max(X, Y))(f-) < max(Xy, Yi)-
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The following corollary is an immediate consequence of Theorem 2.2.1.

Corollary 2.2.1:
If X =4 Y, then (max(X,Y)), <i max(X), Y)-

Remark 2.2.1:

The result stated in Corollary 2.2.1 is in by Li and Lu (2003).

Li & Lu (2003) proved that if X and Y are independent and identically dis-
tributed, then for any ¢ > 0, (min(X,Y)) >y min(X, Y()). They also proved
that if X and Y are independent, but not necessarily identically distributed, then
for any t > 0, (min(X,Y)) >y min(Xyy, Yy). In the following theorem, we
find the sufficient conditions for (min(X,Y))y =i min(Xy), Yy) to hold when

X and Y are independent, but not necessarily identically distributed.

Theorem 2.2.2:
If X <, Y orY <, X, then for any ¢t > 0, (min(X,Y)) >, min(Xy), Yy).

Proof:
We fix t > 0. Let Hy(x) and hy () denote respectively the cumulative distribu-
tion function and probability density function of random variable (min(X,Y)).

For 0 < a < t, we have

Hyy(z) = P ((min(X,Y))y < )

(- Fi—a)(-G(t—x) - - FW)(1 - GY) (2.2.8)
1—(1— F@)(1 - G{t))

and

(1= Ft—2)g(t—a) + (1= Gt =) f(t = 7).

ha () 1 —(1—F®)(1—-G@1)

(2.2.9)

For 0 < x <'t, let My (x) and mg,(x) denote respectively the cumulative distribu-

tion function and probability density function of random variable min(X, Y) .
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Then, for 0 <z < t,

Mz,t(«’ff) P(min(X(t), Y(t}) < ;;;)
F(t —2)G(t —x)

- = oce (2.2.10)
and
na(i) — ft—x)G(t _;:(){’)—I;:agt —x)g(t — :{:)‘ (2.2.11)

For 0 < x < t, we consider

. hg,t({{:)
If-ze,{(.’l,) = T]I.Q,;'(m)
( F(H)G(t) ) ((l —Ft—a)gt —o) + (1 =Gl —a))f(t - J“))
1 —(1—=F({)(1—-G(t) F(t—x)g(t —x) + f(t —2)G(t —x)
= A(t)Zi(x),
where
B F(t)G(t)
AT R - coy

and, for 0 <z < ¢,

) 14— =2+ =)

F(t —x)g(t —x) + f(t — x)G(t — x)

Clearly, for 0 <z < t,

oy 1 Bt — —_p YW — -
Zi(x) [F(t —a)g(t —x) + Gt —a)F(t —x)]? [ [t =2)g(t — ) + [t — 2)G(t — )]

g/t =) + [t —2)] + gt — @) + f(t = D)|[F(t - 2)g'(t — @) + f(t - 2)g(t — )
1= 0)G(E - 2) + glt —2) f(t - )]

[F(t —x)g(t — ) |1 Gt —a)f(t— )2 [292(’*’_"7”(”_”’) F2L3(t - 2)g(t - @)

HIF( —a){—g(t =) ['(t =) + J(t —2)g'(t —2)}] + [G(t —2){g(t — 2)f'(t — @)

— ft—2)g'(t —2)}]

_ J({t—2)g(t — ) polr -
[F(t —a)g(t —2) + Gt —2) f(t — 2)]? [Z.J(t x)+2f(t—x)

Fnst —a) —ng(t — ) H{F({t —x) — Gt — a)}]|.
(2.2.12)




We will prove the assertion for the case X <;, Y. Similarly, the assertion follows

for the case Y <;, X. It may be noted that, as in the proof of the Theorem 2.2.1,

X <i Y ©np(t) = ny(t), Yt > 0. (2.2.1:

[N
[N
p—
(V]
S

Also,

X< Y=2X<4V&Fu)>Gu), V0 <u< co. (2.2.14)

Using (2.2.13) and (2.2.14) in (2.2.12), we conclude that Z]{x) > 0, VO <z <,
i.e., (min(X,Y))y =i min(Xy), Yi).

The following corollary is an immediate consequence of Theorem 2.2.2.

Corollary 2.2.2:
If X =4 Y, then (min(X,Y))) = min(Xy), Yi).

Remark 2.2.2:

) &

The result stated in Corollary 2.2.2 is in by Li and Lu (2003).

Li & Lu (2003) proved that if X and Y are independent and identically dis-
tributed, then for any ¢t > 0, (max(X,Y)), <, max(X,,Y;). They also proved
that if X and Y are independent, but not necessarily identically distributed, then
for any ¢t > 0, (max(X,Y)), <;r max(X;,Y;). In the following theorem, we find
the sufficient conditions for (max(X,Y)), <;, max(X;,Y;) to hold when X and

Y are independent, but not necessarily identically distributed.

Theorem 2.2.3:
X <. Y n<0andn, >0o0rY <,r, X, 1y > 0 and 5, <0, then for any
t >0, (max(X,Y)), < max(X,,Yy).

Proof:
Let ¢t > 0 be fixed. Let Hj,(x) and hs,(x) denote respectively the cumula-

tive distribution function and probability density function of random variable
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(max (X,Y));. Then for x > 0,

Hsi(x) = Pl(max(X,Y)); < x|
F(t+x2)G(t + ) — F{)G(t)
1 — F(t)G(t) ’

(2.2.15)

and
ft+x)G(t+ x) + gt + ) F(t + x)
= PG

Let Ms(x) and ms(x) denote the cumulative distribution function and proba-

hs () = (2.2.16)

bility density function of random variable max(X,, Y;).

For & > 0, we have

M () P ((max (X, Y;)) 5 x)

- ( (t+ ) —f )(Gtrjglfm)j (2217

and

(Gt +x) — G) f(t+x) + (F{t +x) — F(t)) g(t + x)
(1-F@) 1 -G®)

For x > 0, we consider

Ry () 1:%3,:((55))

33,3 &

( L= FH)G() )(wulm—cuyu|M)uwulm—rumalmg

(1-=F) (1 -G(t) (1=F@) (1 -G(#)

= B(t)U(x),
where
1= FWGQ)
PO = a=Fmya - ooy
and
Uy(e) =1 — S+ 2)G(t) + gt + ) F(t)

ft+x)Gt+x) +glt+x)F(t+x)
For x > 0, it may be easily verified that

S+ x)g(t + x) o |
U@+@G@+@+gu+@F@+@FP@ﬂuu|@|gu|@rm)

H(G{+ ) F(t) = G F(E A+ 2)) (ng(t -+ x) — 1yt fc))}

(2.2.19)

Ul(x) =
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We will prove the assertion for the case X <.;. Y, n; < 0 and 5, > 0. Similarly,
the assertion follows for the case Y <,;. X, 7y > 0 and 7, < 0. It may be noted
that

X <o Y o Fu)Gv) > F(u)G(u), VO <u <o < oo. (2.2.20)

Using (2.2.20), ny < 0 & ny > 01in (2.2.19), we conclude that Uj(x) > 0, Ya > 0,
i.e., (max(X,Y)); >, max(Xy, Yi).

2.3 Ageing Properties

In this section, we discuss the various ageing properties of the residual life time
and inactivity time in series and parallel systems. The following property proves
that if the random variables X and Y have DRFR, then this property is preserved

by the random variable max (X;, Y}).

Property 2.3.1:
Suppose that the random variables X and Y have DRFR. Then for any ¢ > 0,

the random variable max (X, Y;) has DRFR.

Proof:

Fix t > 0. Let A\(x) and p;(x) denote respectively the reversed failure rates of X;
and Y; and let M, ¢(x) denote the cumulative distribution function of max (X3, Y;).
Let I'p+(x) and Gr(x) denote respectively the cumulative distribution functions
of X; and Y;. Then for x > 0,

g(x +1)
Glx+1t) - G(t)

flx+1)
Flz +t) — F()

Ae() ,and My (x) = Fpx)Gr(x).

, ()

X has DRFR implies that F'(x) f'(x) < f*(x), Y > 0, which in turn implies that
A(x) <0, Vx > 0 (i.e.,, X; has DRFR or equivalently In (g, (x)) is concave in
x € (0,00)). Similarly, ¥ has DRFR implies that Y; has DRFR (i.e., In (Gg(x))
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is concave in x € (0,00)). Thus if X and Y have DRFR then
In (My,(z)) = In (Fri(x)Gre(z)) = In(Fpi(x)) + In (Grlz))

is concave in x € (0,00), i.e., max (X;, Y;) has DRFR.

In the following property, we prove that if the random variables X and Y

have DRFR, then the random variable (max(X,Y’)),, has IFR.

Property 2.3.2:
Suppose that the random variables X and Y have DRFR. Then for any ¢ > 0,

the random variable (max(X,Y’)), has IFR.

Proof:

Fix ¢ > 0. It is obvious that if the random variables X and Y have DRFR, then
max (X, Y) also has DRFR. Also it is easy to verify that if a non-negative random
variable Z has DRFR, then for any s > 0, the random variable Z) = (s— Z|Z <
s) has IFR. Thus under the hypothesis of the theorem, max(X,Y’) has DRFR,

which in turn implies that (max(X,Y)), has IFR.

In the following property, we prove that if the random variables X and Y

have IFR, then the random variable max(X ), Y{;)) has DRFR.

Property 2.3.3:
Suppose that the random variables X and Y have IFR. Then for any t > 0, the

random variable max(X, Y{;) has DRFR.

Proof:

Fix t > 0. It is obvious that if the random variables X and Y have IFR, then ran-
dom variables X ;) and Y;) have DRFR. This in turn implies that max(X, Y))
has DRFR.

In the following property, we prove that if the random variables X and Y

have DRFR, then the random variable min( X, Y;)) has IFR.



Property 2.3.4:
Suppose that the random variables X and Y have DRFR. Then for any ¢ > 0,

the random variable min(X, Y{y)) has IFR.

Proof:

Fix t > 0. It is obvious that if random variables X and Y have DRFR, then
random variables X, and Y{;) have IFR. This in turn implies that (min(X,Y)),
has TFR.

The following property proves that if the random variables X and Y have

IFR, then this property is preserved by the random variable min( Xy, Y;).

Property 2.3.5:
Suppose that the random variables X and Y have IFR. Then for any ¢ > 0, the

random variable min(X,, ¥;) has IFR.

Proof:
Fix ¢t > 0. It is obvious that if random variables X and Y have IFR, then random

variables X; and ¥; have IFR. This in turn implies that min(X;, Y;) has IFR.

The following property proves that if the random variables X and Y have

IFR, then this property is preserved by the random variable (min(X,Y)),.

Property 2.3.6:
Suppose that the random variables X and Y have IFR. Then, for any ¢ > 0, the

random variable (min(X,Y)), has IFR.

Proof:

Fix ¢t > 0. It is obvious that if random variables X and Y have IFR, then
min(X,Y) also has IFR. Also it is easy to verify that if a non-negative random
variable Z has TFR, then for any s > 0, the random variable Z; = (Z — s|Z > s)
has IFR. Thus under the hypothesis of the theorem, min(X,Y’) has IFR, which
in turn implies that (min(X,Y)), has IFR.



2.4 Examples

Weibull and Gompertz distribution are important life distributions which are
used in reliability modelling. In this section, we provide some examples to sup-
port the theory developed in Sections 2.2 and 2.3. For the detailed study of these

distributions, Marshall and Olkin (2007) may be referred.

Weibull distribution

Consider that the random variable X has Weibull distribution with param-

eters (a, A\) and with survival function

F(x) e~ >0, A>0, a>0.
The corresponding probability density function is given by

flx) = Al =AD" e S0, A > 0, a >0,
and
j'!(T) a/\rl-g:rl-—Qe—(Am}" (((1’ o 1) o amﬂ-/\n) )

Clearly, f'(xz) <0, if a < 1. Similarly, let ¥ follows Weibull (3, ;). It may be
noted that f' < 0and ¢’ <0<« F and G are concave = In I and In GG are concave
< X and Y have DRFR. Hence, if X and Y follows Weibull(a, A), a < 1, and
Weibull(3, ), 8 < 1, then the sufficient conditions of Property 2.3.1, 2.3.2 and
2.3.4 are satisfied.

It is well known that the random variable X, which follows Weibull(a, A),
has IFR if @ > 1 (Barlow and Proschan (1981)). Therefore, if X and Y follows
Weibull(a, A} @ > 1 and Weibull (3, 1), 8 > 1, then the sufficient conditions of
Property 2.3.3, 2.3.5 and 2.3.6 are satisfied.

[n order to observe when X <;, Y (Y <, X), we consider

glx) By’
flx) ax (),
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where ¢ (x) = pB—ee(Ma)® o—(pux)”

Further,

i/ (x) = 2770710 =)’ ((B— ) + aX*a® — pu’z?)

gP=o1 00 o= ()’ (a(X2™ = 1) + (1 — p’2”)).

It may be noted that if we take a = 8, A > u (a = 3, A < p), then ¢/(x) >
0 (?!}r(x) < 0)1 i-C-; X <ir Y (Y <ir X)

Hence, if X and Y follows Weibull(a, A) and Weibull(53, 1) respectively such that

a = f3, it is clear from the above arguments (cf. Theorems 2.2.1 and 2.2.2) that,
(max(X,Y))y <ir max(X , Yip),

and

(min(X,Y)) sy = min( Xy, Yip).

Gompertz distribution

[f we consider the random variable X which has Gompertz distribution with
scale parameter A and frailiy parameter &, i.e., X follows Gompertz(\, ). Then,

the random variable X has survival function
F(x) e_f(“m_n, x>0, A>0,£>0,
its probability density function is
Fl) = XM 80 1 >0, A>0, €0,

and

f(x) )\2&:’“75(6”7')(1 - fe’\m). (2.4.1)

On applying the Maclaurin’s series to e in expression (2.4.1), we have

ff(?") o )\2&‘3)&1‘—&(6*1—1) (1 _ 6 (1 + A\ + (/\;)2 T .. )) )
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If we choose & > 1, then f'(x) < 0. Similarly, let Y follows Gompertz(u,n). It

may be noted that

f'<0and ¢ <0<« F and G are concave = In I and In G are concave <

X and Y have DRFR.

Clearly, if X and Y follows Gompertz(\,§), & > 1, and Gompertz(u,n),
n > 1, respectively, then the sufficient conditions of Property 2.3.1, 2.3.2 and

2.3.4 are satisfied.

In order to observe when X <;, Y (Y <. X)), we consider for the case when

A= p,

gl@)  pee D
f@) e
_ -1y (g-m)
§
which is increasing (decreasing) in z if € > n (£ < n). Therefore, if we take A = p,

E>n(N=pu, £<n), then X <, YV (Y <, X).

Hence, if X and Y follows Gompertz(\, &) and Gompertz(, n) respectively
such that A\ = g, it is clear from the above arguments (cf. Theorems 2.2.1 and
2.2.2) that,

(max(X,Y)),,, <; max (X(r.},y(i) ),

()
and
(min(X, Y ) = min( Xy, Yi).

2.5 Conclusions

The stochastic comparison of residual life and inactivity time of series and parallel
systems had been studied in the literature when the random variables are inde-

pendent and identically distributed. In this chapter, such results are extended
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when the condition of identically distribution is omitted. By assuming that X
and Y are independent, but not necessarily identically distributed and letting
X <Y, np<0and n, >0, (or Y <, X, ny >0 and 7, < 0) we proved that
the parallel system of used components, i.e., max(Xy, Y;), is better than the used
parallel system, i.e., (max(X,Y)),, in the sense of likelihood ratio order. Also, by
assuming X and Y are independent, but not necessarily identically distributed

and letting X <, Y, (or Y <, X), we proved that, for any { > 0,
(]"I]‘ch(X?Y))(” S;,. max(X(L)? Y(;'));

and

min(X, Yy) < (min(X,Y) )(.‘.) :

Also, we proved various ageing properties of used /inactive parallel /series sys-
tems and the parallel/series system of used/inactive components. The obtained
results are supported by well known distributions, such as weibull and gompertz

distributions.






Chapter 3

Reliability Properties under
Weighing and Equilibrium

Distribution

3.1 Introduction

Weighted Distribution and Equilibrium Distribution are important life distri-
butions which are widely used in reliability modelling. By the method of as-
certainment, the concept of weighted distribution has been introduced by C.R.
Rao (1965). The fundamental concepts of weighted distribution and equilibrium
distribution have been presented below. For a detailed study of equilibrium dis-
tribution one may refer Abouammoh et. al. [(1993),(2000)], Bhattacharjee et.
al. (2000), Bon & Illayk (2002), Su & Tang (2003), Mugdadi & Ahmad (2005),
Bon & Illayk (2005) and Li & Xu (2008).

Weighted Distribution:

Weighted distribution has been widely used as a tool in various practical problems
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in the selection of appropriate models for observed data drown without a proper
frame, analysis of data relating to human populations and wild life management,
investigation of human heredity, line transcend sampling and renewal theory,
study of statistical ecology, albinism and reliability modelling. The properties of
weighted random sample corresponding to original random sample is required to
study when the observations can be recorded as a weighted random sample with

some weight attached to the original random sample.

Let f(-) be the probability density function of original random variable X. Let
wi(-) : R = [0,00), where R = (—00,00) and the recovered random variable

be X, with the probability density function given by

w) T k

()
where wy = E(w (X)) > 0.

The random variable X, is called the weighted version of X and its distribution
in relation to that of X is called the weighted distribution of X with weighted

function wy (.).

Equilibrium Distribution:

Equilibrium distribution which is also known as integrated tail function originated
in the context of renewal processes and acting as the limiting distribution of the
forward recurrence time in a renewal process. Equilibrium distribution has wide
applications in insurance, financial investment, reliability, stochastic processes,
repairable systems and many areas of applied probability such as renewal risk
model, tail distributions of ladder heights of random walk, limiting distributions
of waiting time and busy model of queueing model etc [cf. Embrechts et. al.

(1997), Rolski et. al. (1999) and Asmussen (2000)].

Consider a random variable X with probability density function

" 1
fx) = 20X

F(x), € S,
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the distribution function

and the survival function

}:*‘(:r:)

B0X) /; F(u)du, x € S.

Then, X is called the equilibrium random variable of the original random variable

X, and its distribution as equilibrium distribution of original random variable X.

In this chapter, we have discussed the reliability properties of mean inactivity
time under weighing and reliability properties of series and parallel systems under

equilibrium distribution.

3.2 Reliability Properties of Mean Inactivity Time

under Weighing

Jain et. al. (1989), Nanda & Jatin (1999), Misra et. al. (2008), Barlow et. al
(1981), and Bartoszewicz et. al (2006) have studied the reliability properties of
weighted distributions in relation to corresponding reliability measures of par-
ent distributions. Here, we further derive some results on preservation of mean

inactivity time ordering by weighted distributions.

Let w;, wy be two functions where w; : R — R*, ¢ = 1,2 such that 0 <

Elu (X)] <00, 0 < Ewy(Y)] < oo and wy = Elw (X)],wy = Elws(Y)].

Let X, and Y, be the weighted versions of Xand Y with weight functions
w (+) and wsy(-) respectively. Then X, and Y, have probability density functions

given by
fo () = R (x)"’(x), reR

w
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and

wy(x)g(x
g’tog(«'f;) 72( )Q( ), relR
wWo
respectively.

Let Fi(z) (G2(x)), x € R be the distribution function of X, (Y.,) and let

be the survival function of X, (Y, ).

Let us consider a random variable X with absolutely continuous distribution
function

F(x) = P(X <x), x € R,
survival (reliability) function
Fx)=1-F(x), r€eR

and the probability density function f(x), x € R, to provide definitions of notions
of reliability classes, statistical dependence, stochastic orders etc.
Let the reverse failure rate (rfr) of a random variable X is given by

[(x)
F(x)

rx(z) x> 0.

The residual life of random variable X with fixed age/time t(¢ > 0) is

Xy = (X —t| X > 1),

and inactivity time of random variable X with fixed age/time s(s > 0) is
Xy = (s — X[ X < ).

The conditional distribution of X — ¢ given X > ¢t and s — X given X < s are

the distributions of X; and X4 respectively. The mean residual life function and
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mean inactivity time function when the random variable X has finite mean are

defined as

}O? (u)du
mx(t) = B(X,) = = Ol
and .
| F(u)du
px(s) = E(X(g) = _OOF(S)
respectively.

Next, we present the following definitions which are standard in literature |[cf.

Shaked, M. & Shanthikumar (2007) and Ahmad & Kayid (2005)):

Definition 3.2.1:

(a) Let Q = (a,b) € R, where —oc <a<b<ocandh : Q — R*. The
function A (+) is said to be log-concave (log-convex) on Q if, Va,y € Q and

Vo € (0,1),
haz + (1 —a)y) > (<) (W)™ (h(y)' ™

(b) Random Variable X is said to have decreasing (increasing) reversed failure
rate (DRFR (IRFR)) if F(-) is log-concave (log-convex) on [0, oo}, or equiv-
alently if the reversed failure rate function rx(-) is decreasing (increasing) on

[0, co).

(¢) Random variable X is said to have decreasing (increasing) mean residual life

(DMRL (IMRL)) if [ F (¢)dt is log-concave (log-convex) on [0, oc).

(d) Random Variable X is said to have increasing (decreasing) mean inactivity
xT

time (IMIT (DMIT)) if [ F(u)du is log-concave (log-convex) on [0, co) or
0

equivalently if the mean inactivity time function px(+) is decreasing (increas-

ing) on |0, co).
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(e) Random variable X is said to be smaller than Y in the down shifted likelihood

g(t+z)
F(t)

x > 0, where f and g denote the density functions of X and Y respectively.

ratio order (written as X <, V) if is increasing in t > 0 for all

(f) Random Variable X is said to be smaller than random variable Yin the

reversed failure rate ordering (written as X <,;. V) if
G)F(t) < GU)F(s),
whenever —oo < s < t < o0, or equivalently, if rx(x) < ry(z), Vo € (0, 00).

(g) Random variable X is said to be smaller then random variable Y in the mean

inactivity time ordering (X <, Y) if

£ L £ L
/G’(u)d’u /F(u)(iu < /F(u)du f(?(u)riu

whenever —oo < s < t < oo, or equivalently, pux(t) > py(t), ¥V t € (0,00).

3.2.1 Ageing Properties and Stochastic Dependence

Let X and Y be non-negative random variables.
Lemma 3.2.1.1 (Misra et. al. (2008), Theorem 2.3(a)).

If X has DRFR, w,(-) is decreasing on [0, 0o} and log-concave on [0, 00) then

X, has DRFR.
Lemma 3.2.1.2 (Misra et. al. (2008), Theorem 3.2(c)).

If X <,.p Y, wi(t) is decreasing on [0, co) and wy(t)/w,(t) is increasing on

[0: OO); then Xy, S'rfr Yo -

Here we obtain the conditions on weight function w(-) under which such preser-

vation of property of IMIT under weighing is possible.
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Theorem 3.2.1.1:
Xw, has IMIT if X has IMIT and Ai(-) is decreasing and log-convexr on [0, 0o)
where Ay(x) Elw(x) | X <x].

Proof:
Let 7, and Z, be random variables having probability density function

F(x)

Iz, () = ——,
J F(u)du
0
and
. Foy, (T
I2,(x) oo#ﬂ
| Fu, (u)du
0
respectively.

7y has weighted version Z, with weight function A;(-). The random variable 7,
has DRFR since X has IMIT. Under the premise of the contention, using Lemma
3.2.1.1, it follows that random variable 7, has DRIFR which follows that X, has
IMIT.

Consider

Fifa) — 2100,

un

where

Ay(x) = Blun (X)| X < 2.

From above, it is clear that X,, has DRFR (IRFR), if X has DRFR (IRFR).

The following theorem provides conditions on the weight function w,(-) and the
mean inactivity time function px(t), under which a random variable X having

IMIT, yield a weighted version which is DRFR (and hence IMIT).

Theorem 3.2.1.2:
X, has DRFR if X has IMIT, wy(-) is decreasing and log-concave on [0, co)

and the mean inactivity time function ux(t) is log-convex on |0, o).
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Proof:

In view of Lemma 3.2.1.1, it is enough to show that X <, 7Z; where 7Z; has
probability density function f(t— @), i.e., X has DRFR and mean inactivity time
function gz, (t) = px(t — 0).

Consider
I—ply (81— ()
ra(t) —rx(t) = <t — s
[ﬂi\;(l)_p’x(l—ﬂ)} -I-[ 11 }
px (t) pnx (1—06) pnx (t—0) pnx(t)

> 0,
since pux(t) is log-convex on [0, co) and X has IMIT. Therefore, X <,;, Z; and

hence X has DRFR. Now contention follows using Lemma 3.2.1.1.

Theorem 3.2.1.3:
Xy Somit Yo if X <t Y, A1(4) is decreasing and Ax(-)/AL(+) is increasing on
10, 00), where Ay(x) = Elw(X) | X < x| and Ax(x) = Elw(Y) | Y < z|.

Proof:
We have
Fu(a) = 20 1@
u
and

Let X* and Y™* be random variables with probability density functions given by

Fx
fe(a) — —L@)
[ F(u)du
0
and
G(x
fro(w) — =@
J G(u) du
0
respectively.
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Now X <, Y implies that X* <, Y*. Let X} and Y}, be weighted version of
X* and Y* with weight functions A;(-) and A,(-) respectively. Hence by Lemma

3.2.1.2,

X" Srfr Y.

Also, X* <,p Y™ if and only if Xy, <pit Y-

Proposition:

Ay(+) is increasing (decreasing) if wy(-) is increasing (decreasing).

Proof:

Consider

I

Fa) w(z) — / w(t) f(Oydt > (<)0

0
if and only if Al (x) > (<) 0.

It may be noted that w;(-) is increasing (decreasing) implies that A;(-) is

increasing (decreasing). Hence, the result follows by using the above argument.
Corollary:

IfX <,ue Y, w(-)is decreasing and wo(-) is increasing on [0, co), then X, <,

Y;.ug .
Example:

If f(x) = e and w; = 17" where a; > 1, wy, = 2°27! where a; < 1 then

Xy it Yoy

Theorem 3.2.1.4:

If f(-) is log-convex and w(-)is increasing on [0, 00), then X <;,; X,,.
Proof:

For fixed a > 0. consider
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fulx +a) w(x +a) flxr +a)
J(x) Elw(X + a)] f(x)

. w(x +a) - M
FwX 7oy “E@+a !

which is an increasing function, since f(-) is log-convex and w(-) is increasing.

Hence X' <jp X

Theorem 3.2.1.5:

If X <p Y and w(-) is log-convex, then X,, <; Y.
Proof:

For fixed a > 0, consider

go@ta) wxta)glxta)  Elw(z)
folz)  ElwY +a) w(x) f(x)

Bl w@ta) glxta)

- Elw(Y +a)] w(x) f(x)

which is an increasing function, since w(:) is log-convex and X <, Y.

Hence X, <iry Y.

3.3 Reliability Properties of Series and Parallel

Systems under Equilibrium Distribution

Let X and Y be two statistically independent random variables with an absolutely

continuous distribution function F(-) and G(-), survival function F(-)
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and G(-) = 1—G(-), probability density function f(-) and ¢(-), the reversed hazard

function Ap(-) and Ag(-) and the eta function np(-) and ng(-), respectively.

Here \p(x) = 1{((;)) and np(xr) = _J;((;)): r € R, where R = (—o00, c0).

Suppose that
{re R: flx) > 0} = (0,00) = S (say),

{reR: g(x)> 0} =S,

Let Xy, Xy,..., X, and Y1,Y5,...,Y, denote the n independently and iden-
tically distributed (i.i.d.) copies of random variables X and Y, respectively. A
series (parallel) system comprising of these n i.i.d components functions if and
only if all (at least one) of its component function(s). Clearly, I]éléiéh X; and

max X; are respectively the lifetime of series and parallel systems having the
1<i<n

components Xy, Xy, -+, X,,, where min X; | max X; | denote minimum (max-
1<i<n 1<i<n

imum) of Xy, Xa,..., X,.
The residual life of X with time ¢ > 0 is given by
Xe = (X —t| X >1t), t>0,
and inactivity time of X at time ¢ > 0 is given by
Xgy = (t—X|X <), t>0.
Next, we include below some definitions of stochastic orders which are stan-

dard in the literature [cf. Muller & Stoyan (2002) and Shaked & Shanthikumar
(2007)].

Definition 3.3.1:

The random variable X is said to be smaller than random variable Y in the

(a) likelihood ratio (Ir) ordering (X <; Y) if

g(x)

[(@)

increases in & € S;
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(b) hazard rate (hr) ordering (X <, Y) if

G(x
F(x)

increases in x € S

(¢) reversed hazard rate (rh) ordering (X <, Y) if

G(x)
F(x)

increases in x € S;
(d) usual stochastic (st) ordering (X <y Y)if

F(x) < G(x), for all x € R;

(e) mean residual life (mrl) ordering (X <, Y) if

B(X,) < B(Y,), forall t.

(f) harmonic mean residual life (hmrl) ordering

(X Shmr! Y) if

(é /U E(I}Q)d‘f)_l < (é /U E(lyi)dt)_l , Va > 0.

Various researchers provide the characterization of stochastic orders in terms

of ordering of equilibrium distributions.

Whitt (1985) proved that
X Sh’r(mf‘l,hmrﬂ} Y & X Sﬂr(hr,sl‘.) Y/

Bon & Illayk (2005) proved that if X; and X, are independent DMRL random

variables, then

e ——

min(iﬂ \ Xg) < min( Xy, X5).

Li and Xu (2008) proves that X <,, Y = X <g }7; and shows that reverse

implication may not be true. Additionally, it has also been proved that if X <.

Y, then
— —_—
min X; <,, min Y.
1<i<n TR et



In subsection 3.3.1, we establish some reliability properties of series and par-
allel systems under the equilibrium distribution. The likelihood ratio ordering
and the log-concavity properties of series and parallel system (s) having inde-
pendently and identically distributed (i.i.d.) components under the condition of

equilibrium have been studied.

3.3.1 Results on Reliability Properties

The following result provides the preservation of the likelihood ratio order for the
formation of series system under equilibrium:

Theorem 3.3.1.1:

Let Xy, Xo, ..., X,; Y1,Y5,....Y, be iid. copies of X and Y respectively. If
X <, Y then

—_— —
min X; <;, min Y;.
1<i<n 1<i<n

Proof:

It is sufficient to show the result for n = 2, as the result for any n will follow

e ——

similarly. The random variable min(X,, X,) has the survival function
Iy g(x) — P (min(Xl,X2) > :.r)

1 o
= — [ F*(u)du, = € S,
E (1‘1‘111‘1()(1 . Xg)) z

and the probability density function
[2(x)

hy s(x)
E (1‘1‘1i1‘1(X1, Xg))

, x €S (3.3.1)

T

Similarly, the random variable min(Y, ¥2) has the survival function

_ 1 o
Hy () = — [ G*(u)du, = € S,
E (1ni11(Y|,Y2)) Ja




and the probability density function
G2(a)
E (1‘1‘1i1‘1(Y1,Y2))

hy s(x) = , xr €S

For fixed > 0, consider

ho () E (min(Xth)) G2(x)

h’l (IL') E (]'l'li];’(—ETYQ)) f_f_"z(x’) )

which is clearly increasing in x, if X <, Y.

Now the result follows by observing that X <, Y if and only if X<,Y.

The following result provides the conditions for which the parallel system

have likelihood ratio order under equilibrium:
Theorem 3.3.1.2:

Let Xy, Xo,..., X,: Y1,Y5,....Y, be iid. copies of X and Y respectively. If
X <5 YV oand g(2)G(x) < f(x)F(x), x € R, then

max X; <, max Y.
1<i<n 1<i<n

Proof:

[t is sufficient to show the result for n = 2, as the result for any n will follow

——

similarly. The random variable max(X;, X;) has the survival function

——

Hyp(x) =P (max()(l, X5) > :r:)
1

—— h 1 — F?(u)) du, = € S,
E (max(Xl, X-z)) /;; ( )

and the probability density function

1 — 7
th(ZEJ) = (:B) , I = S.

E (ma.x(Xl , Xg))

;.
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Similarly, the random variable max(Y7, ¥2) has the survival function

Hyp(x) = P (max(YL, Ys) > x)

l o0
— — / (1 - G*w)) du, x € S,
L (n‘lax(Y], Yg)) 2

and the probability density function

1 —G*(x
ha.p(x) = (z) , xeds.

E (ma.x(}ﬁ, Yg))

For fixed > 0, consider

h,2 p(T)
‘ Cip(x),
h‘I,P(CC) (/( )
where o
E (1nax(X|,X2)) 1 — G2(x
C = — and ¥ (x) 72("{)
B (ma.x(Yl, Yg)) 1 — F*(x)
It is easy to verify that for any fixed x € R,
! 2 12 .
(1) = ———— (1 - G(x)) f(@) P(@)

(1— F2(z))
— (1= (@) g(2)G()
2

U@y (@) F(x) — g(x)G(x)

+G*(2) F*(2) (A (z) — Ap(2)))

>0

3

since X <, Y and g(v)G(x) < f(x)F(x), v € R.

Hence the result follows.



In order to study the log-concavity of series and parallel systems under equi-

librium, here we present some of the ageing notions:
Definition 3.3.1.1:

The random variable X is said be

(a) log-concave if In (f(-)) is concave on S;

(b) increasing hazard rate (IHR) if F'(-) is log-concave on S.
It is well known that

X is log-concave on S = X is [HR on S.

In the following theorem we provide the conditions under which a series

system with i.i.d. components have log-concave life-time.

Theorem 3.3.1.3:

Let Xy, Xs,..., X, beiid. copies of X. Then X is I[HR if and only if min X;

1<i<n

is log-concave.

Proof:

It is sufficient to show the result for n = 2, as the result for any n will follow

similarly. The random variable min(X;, X;) has the probability density function
(3.3.1).
Therefore,

In (hy,s(x)) = 2In (F(z)) —In (b (minf()}:/Xg)))

is concave in S if and only if In (F'(x)) is concave in S. Hence the result.
y

In the following theorem we provide the conditions under which a parallel

system with i.i.d. components have log-concave life-time.



Theorem 3.3.1.4:

T

Let Xy, Xo, ..., X, beii.d. copiesof X. If np(-) < 0then, max X is log-concave.

1<i<n
Proof:
The random variable max X; has the probability density function
<i<n
1 — F*(x
hp(x) T(‘T)’ xres.
E (1‘1‘1&){ Xz)
1<i<n
Consider
(@) = In (hp(2))

In(l1— F"(x)) —In (h (lngl;ig}i XJ) .

Then
D) — — nf(x)F" () ‘
1 — F"(x)
and
1

" (x) —W (r;-;, (1 — F*(x)) ((” _ l)fz(ff:)

@) = ne() f (@) F" @) = (nf (@) F* (@)°)

<0, as nr(x) < 0.

Hence max X; is log-concave.
1<i<n }

3.4 Conclusions

In context of reliability and life testing problems, reliability properties of mean
inactivity time under weighting and reliability properties of series and parallel
systems having independently and identically distributed (i.i.d.) components un-
der the equilibrium distribution have been studied. The conditions of stochastic

comparison of weighted distributions in terms of mean inactivity time and shifted

i |

e
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likelihood ratio order has been obtained. Further, it has been found that the like-
lihood ratio order is preserved between equilibrium random variable under the
formation of series system. Some conditions are provided under which a parallel
system under equilibrium distribution have likelihood ratio order. If the life-
times of i.i.d. components have IHR then a series system composed of these i.i.d.
components have log-concave life-time. It has also been established that if the
eta function of i.i.d. components is negative then a parallel system composed of

these i.i.d. components have log-concave life-time.



Chapter 4

Preservation Properties of
Moment Generating Function &
Laplace Transform ordering of

Residual Life and Inactivity Time

4.1 Introduction

Stochastic comparison of probability distributions plays a fundamental role in
the probability theory, the decision theory and the related disciplines. It also
finds various applications in the field of reliability theory, survival analysis, actu-
arial sciences etc. The theory of stochastic orders provides various tools for the
stochastic comparison of probability distributions. For a detailed study on the
theory of stochastic orders, one may refer Muller & Stoyan (2002) and Shaked &
Shanthikumar (2007). Some of these orders are moment generating function (or
exponential) order and laplace transform order and their residual life and inac-

tivity time (or reversed residual life) [cf. Ahmed & Kayid (2004), Elbatal (2007),
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Kayid (2011) and Kayid & Alamoudi (2013)].

Throughout the chapter, we use the terms increasing and decreasing in place
of non-decreasing and non-increasing, respectively. Let X be a non-negative
random variable with an absolutely continuous distribution function Fy (), the
survival function Fy (-) = 1 — Fx (-), the probability density function fx (-), the
moment generating function ¢x (-) and the Laplace-Stieltjes transform Ly (),

respectively; here ¢y (s) = E (e*¥), s >0, and Ly (s) = E (e7*¥), s > 0.

Let the residual life and inactivity time (or reversed residual life) of X with

time/age t € (0,1lx), such that [x = sup{t: Fx(t) <1}, be
X, = (X —t|X >t) and Xy = (t— X|X <1),
respectively.

We include below some definitions of stochastic orders which are standard in
the literature (cf. Marshall & Olkin (1979), Barlow & Proschan (1981), Belzunce
et al (1999), Muller & Stoyan (2002), Ahmed & Kayid (2004), Elbatal (2007),
Shaked & Shanthikumar (2007), Wang & Ma (2009), Kayid (2011) and Kayid &
Alamoudi (2013)).

Definition 4.1.1:

The random variable X is said to be smaller than random variable Y in the

(a) Moment generating function (mg) order (or exponential (exp) order) (written

as X Smg Y) if”pX (") < ’fﬁy (S)? Vs> 0;

(b) Laplace transforms (Lt) order (written as X <, Y') if
Lx(s) =2 Ly(s), Vs> 0;

(¢) Moment generating function of residual life (mg-rl) order (written as X <,,5—n V)

?}cs“i:'x(u)du

if Xy <y Y, Vi, or equivalently =———— is decreasing in ¢ € (0,{x) N
[ et Fy (u)du
t

(0,ly), ¥V s>0;



(d) Moment generating function of inactivity time (mg-it) order (written as X <,,,_4 Y)
L

Je " Fx(u)du
if Xy >mg Y, ¥V t, or equivalently 5——— is decreasing in ¢ €

[e s Fy (u)du
0

(0,-‘:)() M (0,-‘:)/), Vs>0;

(e) Laplace transforms of residual life order (Lt-rl) order (written as X <;,_ Y)

oo _
Je S Fx(u)du
L

if Xy <pi Yi, Vi, or equivalently &=——— is decreasing in ¢t € (0,lx) N
[ e s Fy(u)du
3

(0,ly), ¥ s >0;

(f) Laplace transforms of inactivity time (Lt-it) order (written as X <p,_; Y') if

j‘e"’“FX (u)du

Xy >t Yy, VL, or equivalently §————— is decreasing in ¢t € (0,1x) N
J et Py (u)du
1]

(U,-‘fy), Vs> 0.

Definition 4.1.2:

A function f(x) is said to be a Polya function of order 2 (PF,) in —oo < & < oo,

if

(a) f(x) > 0for —oco < x < oo, and

Jxi—w) [flxr—y2)

(b) > () for all —co < 21 < 25 < 00 and
Jxa—w) f(x2—1y2)

—00 < i1 < Y2 < 00, or equivalently, log (g(x)) is concave on (—o0, 00).

Belzunce et al (1999), Ahmed & Kayid (2004) and Elbatal (2007) studied several
preservation properties of the laplace transform ordering of residual lives /inactivity
times under the reliability operations of convolutions, mixtures and weak conver-
gence. Further, Kayid (2011) and Kayid & Alamoudi (2013) established the
preservation properties of the moment generating function ordering of residual
lives /inactivity times under the reliability operations of convolutions and mix-

tures.



In this chapter, we study the concept of laplace transform ordering of resid-
ual life/inactivity time and the moment generating function ordering of residual
life /inactivity time. The preservation properties of these ordering have been stud-
ied under the reliability operations of convolution. These results are in addition

to the existing of Ahmed & Kayid (2004) and Kayid (2011).

4.2 Preservation Properties

In reliability theory, studying preservation properties of an stochastic order under
the reliability operations such as convolution, mixture, transformations etc. is of

much importance.

4.2.1 MGPF Ordering of Residual life and Inactivity Time

Let X, Xy and Y be non-negative random variables, such that Y is independent
of X, as well as Xy, such that YV has the density function g. Then the following

theorem provides the conditions for preservation of mg-rl order under convolution.
Theorem 4.2.1:

If Xy <g—ni X2 and g is log-concave then

Xl -Y Smg—-rﬂ X2 =Y.
Proof:
[t may be noted that for fixed t and 7 = 1,2

[6” P(X;—Y >u)du e“/ e P(X; =Y >x+t)de
t 0

>0 >0

f:"tf e*” fP (X; > x+u) glu—1t)du | de.

0 i
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Now, in view of definition 4.1.1(c), it is enough to show that for all 0 < #; <

ty and x > 0,

J[e" P(X1> x+u) glu—t))dude [ [e P(X; > x+u) g(u—t) dudr
0 0 to

= =lie o] Z >0 00 "
J [es P(Xy> x+u) glu—t))dude [ [e* P(Xy > x+u) g(u—t) dudx
0 0 to

Since Yis non-negative, therefore, g(u — t) 0 when u < t. Hence the above

inequality is equivalent to

e Fx, (x +u) glu—t;) dudz e Fy, (x +u) g(u — to) dudx

>

bl

e Fx, (x +u) g(u — to) dudx

e Fy, (x +u) glu— t)) dudz

o
8“‘“8 8""=8
=g
g 8|8 "3

or equivalently,

[ [ e (x+u) glu—ta)dudr [ [ e Fy, (x+u) g(u—ts)dudz
o5 N > 0.
| ] e Fy, (x+u) glu—t1)dudr [ [ e Fx, (x+u) g(u—t))dudzr
0 —co 0 —oco
(4.2.1)

Applying the basic composition formula (cf. Karlin (1968), p-17), the left side of
equation (4.2.4) is

T Fx, (x +uy) dx ff""’”FX (x +uy)dr

[ ’- g(ur — t2) glua —t3) (o!; duy dug.
f

w<us | g(uy —t1) glug — ty) 5T I, (2 + ug) da fe""” Fx, (x + up) dx

It may be noted that since g (-) is log-concave, the first determinant is non-positive
and the second determinant is non-positive as X <41 X2. Hence, the result

follows.

Let X;, X5 and Y be non-negative random variables, such that Y is inde-
pendent of X, as well as X5, such that Y has the density function ¢g. Then the
following theorem provides the conditions for preservation of mg-it order under

convolution.
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Theorem 4.2.2:

If Xi <,g—it X2 and g is log-concave then

Xl -Y S'mg—'it X? -y

Proof:
It may be noted that for fixed t and 7 = 1,2

t o0
/ e P(X; =Y <u)du e~ st / e P(X;-Y < t—y)dy
-0 0

o0 o0

= c—““/ e / P(X;< u—vy) glu—1t)du | dy.
0

i

Now, in view of definition 4.1.1(d), it is enough to show that for all 0 < ¢; < ¢,
and y > 0,

= =lie o] = =lie o]
J e P(Xy < u—y) glu—ty)dudy [ [eP(X; < u—1y) glu—ty)dudy
0 # > 0 tg
= o0 — o ’
JJevP(Xo < u—y) glu—ti)dudy [ [evP(Xy < u—vy) g(u—1tz)dudy
0 1‘1 0 l‘z

Since Y is non-negative, therefore, g(u — t) 0 when «w < t. Hence the above

inequality is equivalent to

[ e Fy, (u—y) glu—t;)dudy
0o >
[ eV Fy, (u—vy) glu—t) dudy

— o0

e Fy, (u—1y) glu—t3)dudy

?

eV I'x, (u —y) glu— ty) dudy

1S
i

c*‘-_.._g :'“-"‘8
c*‘-_.._g :'“-"‘8

or equivalently,

e Fyx, (u—1vy) glu—t3) dudy e Fy, (u—1vy) g(u—t3) dudy

I
oo oS > 0.
eV Fy, (u—vy) glu—t)dudy [ [ e Fx, (u—1y) glu—t;)dudy
0 —cc

CL__89~__18

L
(4.2.2)
Applying the basic composition formula (cf. Karlin (1968), p-17), the left side of

62



equation (4.2.2) is

-SY I ; _ -SY I / —
I. ’ g(ul . fg) g(u2 - t2) E{(, FX._, (I.‘,l y) dy E{(, FX] (I.‘,[ y) dy

9 9 duydus.
w<u | g(ug —t1) gluz — 1) Je¥ Fx, (ug —y)dy [e* Fx, (us — y) dy
0 0

It may be noted that since g (-) is log-concave, the first determinant is non-positive
and the second determinant is non-positive as X; <,y Xo. Hence, the result

follows.

4.2.2 Laplace Transform Ordering of Residual Life Time

and Inactivity Time

Let X, Xy and Y be non-negative random variables, such that Y is independent
of X as well as X5, such that Y has the density function g. Then the following

theorem provides the conditions for preservation of Li-rl order under convolution.

Theorem 4.2.3:

If X1 <pi—m X2 and g is log-concave then

X1 =Y <ppn X2 =Y.

Proof:

It may be noted that for fixed t and 7 = 1,2

fe““"’P (Xi =Y >u)du e‘”[ e P(X; =Y >x+t)de
t 0
e [ e f P(X;> x+u) glu—t)du | dr.
0 i
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Using definition 4.1.1(e), it is enough to show that for all 0 < ¢; < ty and x > 0,

8

—_

e P (X > 2+ u) glu—ty)dudx

g

e P(Xy 2 x+u) glu—t)dude

3

8:¢

Z .
e P(Xy > x+u) glu—ty) dude

—38

e P(Xy > o+ u) glu—1t)dude

<:'L.___8 <:'L.___8
<:'L.___8 <:'L.___8

1«

=
-

Since Y is non-negative, therefore, g(u — t) 0 when u < ¢, hence the above

inequality is equivalent to

e Fy, (x +u) glu—t,) dudx e Fy, (x + u) g(u — tp) dudx
>

e Fy, (x + u) g(u — t1) dude

3

ST 'FXQ (J; + u) g(u — tg) dudx

—38[g—3
CL"‘S :&-..58
—38|g =3

or equivalently,
| [ e Fx, (x+u) glu—t)dude [ [ e Fx, (x +u) g(u—t2) dudz
= - > 0.
[T e Pt gu—t)dude | | e Fy, (@ +u) glu—t) duda
0 —oo 0 —co
(4.2.3)
Applying the basic composition formula (cf. Karlin (1968), p-17), the left side of
equation (4.2.3) is
o st | s e
I 0 - 0o B duy dus.
w<uz | g(uy —t1) g(uz —t) Je™* Fx, (x + ug)dx [ e Fx, (x + uy) dx
0 0

It may be noted that since g (-) is log-concave, the first determinant is non-positive
and the second determinant is non-positive as X; <p;_ X2. Hence, the result

follows.

Let X;, X5 and Y be non-negative random variables, such that Y is inde-
pendent of X, as well as X5, such that Y has the density function ¢g. Then the
following theorem provides the conditions for preservation of Lt-it order under

convolution.
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Theorem 4.2.4:

If Xi <pi—it Xy and g is log-concave then

X1 =Y <peae Xo =Y.

Proof:
It may be noted that for fixed t and 7 = 1,2

i o0
[ M P(X; =Y <u)du [f_qTP X;—Y <t—ux)de
—o0 0
— c““/ e /P(Xi < u—ux)glu—1t)du | dx.
0 t

Now, in view of definition 4.1.1(f), it is enough to show that for all 0 < ¢, < ¢,

and x > 0,

q""-8

e P (X, < u—1x) glu—t) dudz e P (X < u—x) glu—ty)dudr

o
l-?‘c"--\g

Z .
e—sx P (Xg S U — y{,) g(u —_ tg) du (f:t?

q""=8

e P(Xy < u—1xu) g(u—t;)dude

CL..=8 CL..=8
.q_____:g

i

ol
(%)

Since Y is non-negative, therefore, g(u — t) 0 when «w < t. Hence the above

inequality is equivalent to

ST FXI (u — g;) g(u — {'1) dudx
>
e=st Py, (u— ) glu —t,) dudx

e~ Fy, (u—x) glu—t) dudzr

g 38

1

e~ Iy, (uw—x) g(u — t2) dudx

g

1S
i

c*‘-_.._g :'“-"‘8

8

or equivalently,

— 8T

x, (u—1x) glu—ty) dudx e Fy, (u—1x) glu —t3) dudx
> 0.

e~ JFX1 (’U, — IL') g(u - tl) du dx

—gg =3

e Iy, (u—x) g{u—ty) dudx

8§38

|
8

c*"_..rgc't—._sg

|
2

(4.2.4)
Applying the basic composition formula (cf. Karlin (1968), p-17), the left side of
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equation (4.2.4) is
o0 o0

Je ¥ Fx, (ug —x)dx [ e Fx, (uy — x)dx

g(uy — t2) glus —t2) 0

IS 2 duy dus.
w<uz | guy —t1) glug —t1) [ e Fx, (uz — x)dx [ e " Fx, (upg — ) dx
0 0

[t may be noted that since g (-) is log-concave, the first determinant is non-positive
and the second determinant is non-positive as X| <p;_; Xo. Hence, the result

follows.

4.3 Conclusions

In the context of reliability, we have studied some preservation properties of
the Laplace transform ordering and the moment generating function ordering
of residual life and inactivity time under the reliability operation of convolution
with their proofs. These results are in addition to the existing results available

in the literature.
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Chapter 5

Sorting of Decision Making Units
in Data Envelopment Analysis
with Intuitionistic Fuzzy

Weighted Entropy

5.1 Introduction

In the fuzzy environment, Data Envelopment Analysis (DEA) was first intro-
duced by Sengupta in 2005 as a linear programming based technique used for
measuring and evaluating the relative performance of activities in organizations
e.g. hospital, bank etc., where the presence of multiple inputs generate multiple
outputs. This makes the comparison complex and difficult. DEA is a useful man-
agement tool to the assessment and evaluation of decision making units. DEA
defines the relative efficiency of decision making unit and has clear advantages
over competing approaches. DEA involves identification of units and uses this in-

formation to construct efficiency frontiers over the data of available organization
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units. Noura & Saljooghi (2009) computed the fuzzy efficiency scores of decision
making units (DMUs) and maximum entropy as a special class weighting function
to rank DMUs. Decision making process is very important for functions such as
investments, new product development, delivery personnel selections, allocation
of resources and many others. Atanassov [(1986),(1989)] introduced the concept
of intuitionistic fuzzy set (IFS) which is generalization of the theory of fuzzy set.
Li (2005) proposed multicriteria decision making methods with [FS using various

linear programming approaches to generate optimal weights.

[t may be recalled that the intuitionistic fuzzy set is characterized by two
functions - the degree of membership function and a non membership function.
[t may be noted that the sum of membership function and non membership func-
tion must be smaller than or equal to one. The theory of IFS is well suited in
dealing with imprecise or uncertain decision information, image edge detection,
uncertainty, incompleteness and vagueness in decision making. It has been used
to build soft decision making models that can accommodate imprecise informa-
tion and analyze the extent of agreement in a group of experts. Feasibility and
effectiveness of II'Ss are illustrated in its applications of decision making by many
researchers [cf. Szmidt & Kacprzyk (2001), Atanassov et.al (2005) , Liu & Wang
(2007), Xu & Yager (2008) and Jian-Zhang & Qiang Zhang (2011)]. Next, we

present some basic definitions which are well known in literature.

Definition 5.1.1: Atanassov’s intuitionistic fuzzy set (IFS) over a finite non
empty fixed set X, is a set A = {< x,pz(x),vi(x) > | x € X} which assigns
to each element z € X to the set A, which is subset of X having the degree of
membership p;(x) : X — [0,1] and degree of non-membership v;(x) : X —
10,1], satisfying 0 < ps(x) +v4(x) < 1, forall z € X. For each IFS in X,
a hesitation margin 7 ;(x), which is the intuitionistic fuzzy index of element x
in the IFS A, defined by 74(x) 1 — pa(x) — va(x), denotes a measure of

non-determinacy.
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Definition 5.1.2:

Let a; = (ui, ), = 1,2, ..... . n, be a collection of intuitionistic fuzzy values,

the intuitionistic fuzzy weighted averaging operator is defined as

[FW Ay (@1, G onns @) — i:wi&;: (.,_ﬁ(.l_m).wijﬁﬁi);
i=1 1 i=1

where w; is the weight of a;, w; € [0,1] and > w; = 1.
=1
Definition 5.1.3:

Let a; = (ugy %), = 1,2, ..... , n, be a collection of intuitionistic fuzzy values,

the intuitionistic fuzzy weighted geometric operator is defined as

T T T
TFWG, (ay, az, ..., ay) >oa;" ( [Tpd, 1= 10— %_)w,:) :
i=1 i=1

i1
where w; is the weight of a;, w; € [0,1], and > w; = 1.

i1
Definition 5.1.4:

Let a (i, v) be an intuitionistic fuzzy value, the score of @ is defined by
s(@) = p — 7, s is called score function. The degree of accuracy of @ is defined

by p(a) = p + 7, p is called accuracy function.

Let a; = (1, m), a2 = (u2, ¥2) be two intuitionistic fuzzy values,

o If s(a;) < s(as), then a; < ay ;

o If s(a;) = s(ay), then

(i) plar) <plaz) = a < a;

(ii) play) = plaz) = ay = a.
In section 5.2, we have presented and studied the fuzzy CCR Data Envel-
opment Analysis Model. A brief discussion on Intuitionistic Fuzzy Entropy and
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weighted entropy in subsections 5.2.1 and 5.2.2, respectively, has been given. Fur-
ther, we have proposed a new algorithm for decision making units in context of
intuitionistic fuzzy weighted entropy in order to rank decision making units in
data envelopment analysis in section 5.3. In section 5.4, we provide illustrative
examples to show the validity of the proposed algorithm. Finally, we conclude

the chapter in section 5.5.

5.2 The Fuzzy CCR DEA Model

Charnes, Cooper & Rhodes (1978) (CCR) first introduced the DEA into the
operations research literature. DEA is a nonparametric method of measuring the
efficiency of decision-making unit(DMU). The original CCR model was applicable
only to technologies characterized by constant returns to scale globally. Let us
consider the following fuzzy CCR DEA model which consists of n decision making
units and each requires varying amounts of m different fuzzy inputs to produce

s different fuzzy outputs [cf. Guo and Tanaka (2001)]:

s
max Fy E U Orp
r=1

such that

Tr

Z Ui 1 io T,

=1
& ) . e )
E UT()”' — E ’Uifgj < 0, j = I, , n,
r=1 i1
U, v; > 0, r = 1,2,...,8 and 7 = 1,2,...,m,

where I;,; i = 1,2,...,m and O,,; r = 1,2,...,s, are input and output values

for DMU,, the decision making unit under consideration.
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The a-cuts of E;; and (3:; are defined as

(Iij)of (.’I,‘ €X |1{sz'j(-r) 2 (I) [Iz‘ljﬂ :;]
and (()”)a = (ve€X|uo,w = a) = [0L,08].

On applying the a-level of fuzzy data envelopment analysis, the following model

is formed:

5

max Fy = Z Uy [Oioa ();Lo}

r=1
such that
m
Zm [Ifﬂ, I::,} T;
i=1
Zur [Of,j, ij} — Z’U@ [Iij, I:ﬂ < 0; j 1, ..., n,
r=1 i1

up, v > 0 r=1,2,...,s and 1=1,2,...,m.

For measuring the lower and the upper bounds of the best relative efficiency

of each decision making units with interval input and output data, the following

DEA model is achieved:

8

max (Fy)s = E tr (Oro)

r=1
such that

e

Z vi(1 iﬂ)fx T

7=1
s m
Zur(()r()):i - Zvé (‘r’io fx S 01
r=1 =1
s m
S u(On)y = Y wi(l)h < 05 G = 1, yny j £ 0;
r=1 i=1

U, v; = 0 r=12...,s and i=1,2,...,m.
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Also

E]
max(Fy), = Z Uy (Oyo)!,
r=1
such that
> willo)s = T
i=1
E] T
an(()ro)fx - Z Ui (Ié())g S []1
r=1 i=1
Zu'f“(()’-‘”j):: - ZU‘@- (Ii‘?){{v S 01 J -la rees ”1 f / 01
r=1 i—1
U, v; =2 0; r=1,2,...,8 and 1=1,2,...m.

[t may be noted that for every a, Eg < EYandif a; < ap, then

[F}ig, Hgg] - [F}il, H;l].

5.2.1 Intuitionistic Fuzzy Entropy Measure

Let us consider that Atanassov’s intuitionistic fuzzy set (IFS), A, over a finite
non empty fixed set X = {xy, z,,...,2,}. The concept of the intuitionistic
fuzzy entropy measure for IFSs has been characterized and discussed by Szmidt
& Kacprzyk [(2001), (2002)] and a set of following four properties, which an

intuitionistic fuzzy entropy should satisfy, was introduced:
e (IFS1) : H(ﬁ) — 0iff A is a crisp set, i.c. pi(x:) = 0and yz(z;) = 1
or pi(x;) = Land y3(x;) = 0 forall 2; € X.
o (IFS2) : H(A) = 1iff py(x;) = v(z) forall z; € X.
o (IFS3): H(A) < H(B)if A is less fuzzy then B, i.c . pz(x;) < pp(x:)

and 73(22) 2 7p(e) for () < T(r)or pi(e) > ppla)and vz(z) <
i) for pg(a;) > vyg(x) for all 2; € X.
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o (IFS4) : H(A) H(A), where Ais complement of A.

It may be noted that the above four axiomatic requirements, i.e, sharpness,
maximality, resolution and symmetry of intuitionistic fuzzy entropy are widely
accepted and have become a criterion for defining any new intuitionistic fuzzy

entropy.

Corresponding to IFS A with n elements (intuitionistic fuzzy values) a;
(pi,7v:), i = 1,2,...,n, Szmidt & Kacprzyk (2001) introduced the following en-

tropy measure of IFS A:

n
max count(a; A at)
Iiak E

— max count(a; V )

T

where max count(A) = 3" (uz(x:) + 75(x:)), A € F(X). Here F(X) is set of
=1
all the IFSs on X.

Also, corresponding to De Luca —Termini (1972) entropy, we have the fol-

lowing measure of IFS A of n elements (intuitionistic fuzzy values) a; = (j, ),

_ 1 n 14 Y
EE T 11 - - 1 l i l — i l 2 .
vr(A) nln2 ; {,u " (,ui + ’Ys?) i (#i + ’Ys?) o }

The concept of De Luca —Termini entropy for [FSs has been properly derived

Vlachos & Sergiadis (2007) from Intuitionistic fuzzy cross-entropy of the IFSs.

5.2.2 Intuitionistic Fuzzy Weighted Entropy Measure

The concept of Intuitionistic Fuzzy Weighting function can be seen as the decision
function representing the attitude of decision maker for many real life problems
such as investments, new product development, delivery personnel selections,
allocation of resources and especially in multicriteria decision making and many

others.
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Let ¢ be a real valued function defined as
¢ e — [0,1], where e = {(a,5) : o, 8 € [0,1],a+ 8 <1},
be the set of all intuitionistic fuzzy values.

Consider two intuitionistic fuzzy values such as p = (up, %), ¢ = (5. 73) €
€. ¢ is an entropy measure of IFSs, characterised as the intuitionistic fuzzy

weighted entropy, if following four properties are satisfied:
e (IFWE1l) : ¢(p) = 0iff 3 = Oand 7 = 1 (or py = 1 and 73 = 0).

e (IFWE2) :¢(p) = 1iff uy = 5.

e (IFWE3): ¢(p) < ¢(q),if pislessthan q, ie., uy < pz and v > 5

for g < vz (or py > pg and vy < 7 for g > 7).

o (IFWE4) : ¢ () < ¢ (7).

Above four axiomatic requirements, i.e., sharpness, maximality, resolution
and symmetry of intuitionistic fuzzy weighted entropy are widely accepted and

have become a criterion for defining any new intuitionistic fuzzy weighted entropy.

Let ¢ be a function defined as ¢ : ¢ — [0,1], and A = {G,.d,, ..., @

where @; = (ui, ), i = 1,2, ... . n, we have

- 1 & i Yi ;
i) — Mg — ——= * i | i Ir ; 5.2.1
(@) T 2 ; [ﬂ ! (Pﬂz‘ | %’) i (ﬂz‘ | %’)} ( )

¢(a;) fulfils the requirement for intuitionistic fuzzy value entropy measure.

T
Hence, we get F, 1 21 & ().
=

From above equation we get the weighted De Luca-Termini entropy for IFSs

T

EWLT (‘zf) Z Wy (f’(ai);

i=1

T
where w; € (0,1], ¢ = 1,2, ...,nand Y w; = lie wy = = w, = —
i1
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5.3 Algorithm for Sorting of DMUs

As multicriteria decision making problems are defined on set of alternatives, so
in this section we will discuss how to utilize the efficiency of DMUs to identify
the best alternative according to some criteria. The procedure for intuitionistic
fuzzy multicriteria decision making (IFMCDM) based on efficiency of DMUs and

intuitionistic fuzzy weighted entropy consists of following steps:

Step 1: Take multiple inputs and multiple outputs. Estimate the efficiency of
DMUs by using Fuzzy DEA model.

Step2: Convert efficiency of DMUs to decision matrix by considering mean of ef-

ficiency interval as degree of membership of the alternatives y; (j = 1,2, ... ., m)
according to the criterion x; (i = 1,2, ..... , n), and is denoted by intuitionistic
fuzzy valued decision matrix M [M455], s Where my; (ptij. vij). Here

iz, 7vij are the degree of membership and non-membership of the alternatives.

Step 3: Make use of the principle of minimum entropy value to get the weight

vector, which is defined as
T e T
min £, E e (Aj) E E wid(Mej);
-1 =1 i=1

such that
I{'H?:‘
wy +wy + . w, = 1

w; > n(i=1,2,...,n),

where K, is the set of known information about the weight vector, A; is the
estimation given by decision maker and 7 is a small positive real number.

After calculating minimum value of E,,, we calculate optimal weight vector,
which is given by

w* = argmin F,.
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Step 4: Amassed the estimation of alternatives by intuitionistic fuzzy weighted
averaging operator (I FW A,) or intuitionistic fuzzy weighted geometric operator

(IFWGy,).

Step 5: Final and most important step is to rank the alternatives y; (j
1,2, ... , m) and select the best one in accordance with the comparison method

which is given by the definition 5.1.4.

5.4 Illustrative Example

Let us consider an example related to a software company, searching the best

supplier for one of its most important software used in assembling of Laptops.

Table 5.1: Data Table consisting of two fuzzy inputs and two fuzzy outputs

Decision Making Units Supplier A Supplier B Supplier C Supplier D Supplier E
I/P-1 4, 3.5, 4.5 2.9, 2.9, 2.9 4.9, 4.4, 5.4 4.1, 3.4, 4.8 6.5, 5.9, 7.1
I/P-2 2.1, 1.9, 2.3 1.5, 1.4, 1.6 2.6, 2.2, 3.0 2.3, 2.2, 2.4 4.2, 3.6, 4.6
0/P-1 2.6, 2.4, 2.8 2.2, 2.2, 2.2 3.2, 2.7, 3.7 2.9, 2.5, 2.3 5.1, 4.4, 5.8
O/P-2 4.1, 3.8, 4.4 3.5, 3.3, 3.7 5.1, 4.3, 5.9 5.7, 5.5, 5.9 7.4, 6.5, 8.3

Efficiency of DMUs is calculated by using DEA model. For a = 0, we have

max Eg' = "iu‘,]()ﬁllo | UQ(;U

such that

’ULULo)E | "!»'2(3r2o)lE = 1

w O + up 0% — vy 1L, — vy 1Ly < 0;
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and

’iu‘,[()';'] | ?tg()& — f%!’]

0% + ugOby — vy I, —

Oy + up0hs — vy 1Y

w04y + u 0Ly — vy 1Y,

’iu‘,l()';";; | ’itg()g.g — Ii!’;

va I3 < 0

vy I35 < 0

— v I3 < 0
— I3 < 0

— U2 I-gr) < 0.

On substituting all values from Table 5.1, we get upper bound of efficiency
when o = 0. In the similar manner we get the other efficiencies of DMUs as

follows in Table 5.2:

Table 5.2: Efficiency of DMUs

Decision Making Units Supplier A Supplier B Supplier C Supplier D Supplier E
o 0 0.654, 1 0.836, 1 0.571, 1 0.855, 1 0.638, 1
a — 0.25 0.702, 1 0.908, 1 0.642, 1 0.043, 1 0.735, 1
a = 0.50 0.758, 0,963 0.99, 1 0.716, 1 1,1 0.845, 1
a = 0.75 0.807, 0.904 1,1 0.791, 0.932 1,1 0.969, 1
& = 1.00 0.855, 0.855 1,1 0.861, 0.861 1,1 1,1

Coversion of Efficiency DMUSs to Decision Matrix Table:

Looking at the efficiency interval, we consider mean of efficiency interval as degree
of membership of the alternatives y; (A, B,C, D and F), satisfying the criterion
x; (a0 = 0,0.25,0.50,0.75,1). The intuitionistic fuzzy index m;; = 1 — i — Y5
shows the decision maker’s hesitation of the alternatives y; with respect to crite-
1. Therefore, the decision matrix

rion x; and is zero whenever alternatives ;

M obtained from efficiency of DMUs is given by

[ (827,.173) (.918,.082) (.785,215) (.927,.073) (.819,.181) \
(851,.149) (.954,.046) (.821,.179) (.971,.029) (.867,.133)
M (.860,.103) (.995,.005) (.858,.142)  (1,0)  (.922,.07%)
(855,.049)  (1,0)  (861,.071)  (1,0)  (.984,.016)

\ (.855,0) 1,0) (.861,0) (1,0) (L,o) )
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Let K, the set of known information about the weight vector given by:

K wp 03,01 €w €£02,02 < w; <0501 <uy 0.3, ws <04,
w

Wy — We = Wy — Wy, Wy = Wy, w3 —uwy; < 0.1
By using (5.2.1), we get the De Luca - Termini entropy of the intuitionistic fuzzy

values as under:

( 0.6645 0.4092 0.7509 0.3770 0.6882 \
0.6073 0.2691 0.6779 0.1893 0.5656
0.5095 0.0454 0.5894 0 0.3951
0.3708 0 0.4301 0 0.1183

\ 0.1450 0 0.1390 0 0 /
Therefore,
b'm Z E’m (ﬁj) Z Z (u}é(/)(?ﬁ'éj)
j=1 j=1 i=1

2.8898 wy + 2.3092ws + 1.539%4ws3 + 0.9192w, + 0.2840 ws.

Hence, we have the following linear programming problem:
min I, = 2.8898w; + 2.3092w; + 1.539%4ws + 0.9192w, + 0.2840 ws

subject to

(

w; < 03,01 wy, 02,02 <wy <0501 <y <03, ws < 0.4,
—wy +ws + wy —ws =20, —wy +wy 20, —wy +ws <01,
wy +we + ... + wy 1,

| wi > 0.001 (i — 1,2,3,4,5).

Its optimal solution is wy = 0.1, wq = 0.1, ws = 0.2, wy = 0.25, ws = 0.35.

Now apply either ITFW A,, or [ FWG,, operator (Definition 5.1.2 and Defi-

nition 5.1.3). Here we have applied I FW G, operator to get
a (0.8527, 0.0671), s (0.9858, 0.0142), a3 (0.8484, 0.0888),
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Gy = (0.9895, 0.0105), @5 — (0.9469, 0.0530).

By applying Definition 5.1.4, we calculate score function s(a;)(j = 1,2,3,4,5),
s(ay) = 0.7856, s(az) = 0.9716, s(az) = 0.7596,

s{aqg) = 0.9790, s(as) = 0.8939.

Therefore, we can say that alternative D is best choice and the optimal ordering

SYs > Y2 > Ys > Y1 > Y3, l.e,

D>B>F>A>C.

5.5 Conclusions

Under the new algorithm proposed, the sorting of decision making units in data
envelopment analysis has been accomplished and an optimal ranking order has
been found out with the help of intuitionistic fuzzy weighted entropy according
to minimum entropy model. The efficiency of the proposed methodology may
be applied in regard of information measure for pattern recognition, medical

diagnosis, and image segmentation.
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Chapter 6

Intuitionistic Trapezoidal and
Triangular Fuzzy Multiple

Criteria Decision Making

6.1 Introduction

In order to select a product, the role of human behaviors which is influenced by
some interrelating factors is an important factor in a consumer decision making
process. The external characteristics such as price, brand, capability etc. are also
concerned in making a choice. The concept of multiple criteria decision making
(MCDM) involves a committee of decision makers assessing various alternatives
versus selected criteria and has been extensively applied in real life decision sit-
uations such as public administration, engineering, society, management science,
economics, military research, professional journals and conferences of diversified
disciplines [cf. Wang et. al. (2006), Yang et. al. (2009) and Cavallaro (2010)].
MCDM is a suitable method for the evaluation and selection of most appropriate

alternative and selecting their performance based on quantitative criteria (eco-
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nomical) as well as qualitative criteria (market reputation, relationship closeness
etc.). In many realistic cases, the values of certain alternatives is usually difficult
to judge accurately; instead, importance of criteria is usually expressed through
linguistic judgement such as ‘good’, ‘poor’, ‘excellent’ and so on.

In decision making problems, particularly in the case of sales analysis, new prod-
uct marketing, financial services, etc. there is a fair chance of the existence of
a non-null hesitation part at each moment of evaluation of an unknown object.
Therefore, in various engineering applications, intuitionistic fuzzy sets techniques
have been more popular than fuzzy sets techniques in recent years. Feasibility
and effectiveness of IFSs are illustrated in its applications of decision making
by many researchers such as Szmidt and Kacprzyk (2001), Atanassov and Pasi
(2005), Liu and Wang (2007), Bottani and Rizzi (2008) and Cavallaro (2010).
[n this chapter, we have applied the concept of intuitionistic trapezoidal fuzzy
number (ITFN) and triangular intuitionistic fuzzy numbers (TIFNs) to the study
of multiple criteria decision making (MCDM) problem for finding the best alter-
native where the linguistic variables for the criteria are intuitively pre-defined in

the form of I'TFNs and TIFNs.

The concept of intuitionistic trapezoidal fuzzy numbers (ITFNs) was introduced
by Wang (2008) and it may be noted that intuitionistic trapezoidal fuzzy numbers
(ITFNs) express more flexible and abundant information than trapezoidal fuzzy

numbers.
Definition 6.1.1

Intuitionistic trapezoidal fuzzy number (ITFN) ¢ = {(a,b,¢,d); s, 75} is a

special intuitionistic fuzzy set, whose membership function and non-membership



function have been defined as follows:

4

Cduy  ifa<a<b,
Hex if b<ax<e,
ne() =9 ‘
(d—o) Mx if ¢ < <d,
0 otherwise.
% ifa <o <0b,
(z) = < V% ifb<ax<e,
T Ggsth=n g <d
(d1—c) Py e <x = d,
0 otherwise.

\

where 0 < puy < lTand 0 < 5 < 1. Also, pug + v < 1 for all a,b,c,d € R.

The values pi; and 5 represent the maximum membership degree and minimum

non-membership degree, respectively.

Shu & Cheng (2006) defined triangular intuitionistic fuzzy numbers (TIFNs)
which have a greater capability to handle more ample and flexible information

than triangular fuzzy numbers.

Definition 6.1.2

Triangular intuitionistic fuzzy number ¥ = < (¢, ¢, 1); ug, wy > (TIFN) is a special
intuitionistic fuzzy set, whose membership function and non-membership function

have been defined as follows:

,

ug(x —1)/(t—1) ift<a<t

Ug if w—=1
pr (@) = 4
ug(t—a)/(t—1t) if t<a<t

0 ife<torx>t

and

4

-+ wg(x—-0))/(t-1) if t<az<t
Wy it x—1

[ —t+wg(t —x)]/(t—1) if t<a<t

1 if 2<torx>1
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respectively, where the values uy; and wy represent the maximum degree of
membership and the minimum degree of non-membership, respectively, such that
they satisfy
0<uz <1, 0<wzg<1l, O0<uytwg<l

Let mg(x) = 1 — pg(x) — vg(x), which is called as intuitionistic fuzzy index
of an element x in y. It is the degree of indeterminacy membership of the element
x in . The TIFN § = < (¢, t,1); ug, wy > is called as a positive TIFN, denoted
by ¥ > 0, if t > 0 and one of the three values t, ¢t and ¢ is not equal to zero.
Similarly, if £ < 0 and one of the three values ¢, ¢ and ¢ is not equal to zero, then

the TIFN { = < (L,t,1); ug, wy > is called as a negative TIFN, denoted by ¥ < 0.

6.2 Intuitionistic Trapezoidal Fuzzy MCDM

The concept of intuitionistic trapezoidal fuzzy numbers (ITFNs) was introduced
by Wang (2008) and it may be noted that intuitionistic trapezoidal fuzzy num-
bers (ITFNs) express more flexible and abundant information than trapezoidal
fuzzy numbers. In this section of the chapter, we have implemented the concept
of intuitionistic trapezoidal fuzzy numbers (ITFNs) to the study of multiple cri-
teria decision making (MCDM) problem for evaluating the best vendor/supplier
whose information take the form of ITFNs. We propose a new algorithm for
ITF-MCDM problem where the weights of the involved attributes are supposed
to be completely unknown. These weights have been calculated on the basis
of the decision maker’s qualitative opinion to the attributes with the help of
pre-defined linguistic variables and an entropy measure. Finally, the ranking of
the vendors/suppliers has been determined by calculating the hamming distance

between the ideal alternative and all the available alternatives.
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6.2.1 Preliminaries

Here, we describe the basic aspects of intuitionistic trapezoidal fuzzy numbers
(ITFNs), which is well known in literature.

Definition 6.2.1.1

Let X1 = {(a1,b1,c1,dh); psy, v0 b and X2 = {(az2, b2, c2,d2) 5 sy, V3ot be two
trapezoidal intuitionistic fuzzy numbers and 4 is a real number. Some basic

arithmetical operations (addition, multiplication etc.) are defined as follows:

X1 ® Xe = {(a1 +az,by +ba,c1 + ca,dy +da) ;
fis 1o = HsiHxo s Y Vxe )
X1 © X2 = {({ar.az,b1.ba,c1.c0,dy. do); sy fgo s
Yo+ Ve = Vi Vxe )
5%1 = {(dar, by, dc1,0d1); 1 — (1 — pg,)’s A2, }

Definition 6.2.1.2
Intuitionistic trapezoidal fuzzy ideal solution is defined as

It {(a',b',c',d'); ,u',';('} {(1,1,1,1); 1,0}.
Definition 6.2.1.3 (Normalized Hamming Distance)

Let X1 = {(a1.b1,¢1,d1) ; pg, . 5, b and
X2 = {(G'Q}b?;CQ;d'Z) 3 )["’)2217}22}
be two intuitionistic trapezoidal fuzzy number. The normalized hamming dis-

tance between y; and y» is defined as

4 A

|1+ gy, — v dar — (1 + pg, — v, az]
_o L) gy = )b = (U g — vz
fi(XlaX‘Z) §<

H I+ gy — v)er — (L + pg — )l
HIL+ iy — va)di = (U pgy — v del |




6.2.2 Method for Evaluating Weights of Attributes with
ITFNs

A multiple criteria decision making problem includes a discrete set of m possi-
ble alternatives A = {Ay, As, ..., A}, which is based on a set of n evaluation

criterions C' = {C},Cy, ..., C,}.

The intuitionistic trapezoidal fuzzy decision matrix is expressed as

D = |-f‘£j|mx1_£ — {|a£jabz‘jacijadij|; ﬂz‘j:’“ﬁj}mm;

Jth

where 7, is the rating of i alternative meeting the j™ criteria which is jointly

provided by the decision makers, 7 = 1,2,...,m; j = 1,2,...,n.

Weight measure plays an important role in multiple criteria decision making
problems and have a direct relationship with the distance measure between two
fuzzy numbers. In order to deal with decision information with intuitionistic
trapezoidal fuzzy numbers, we use the normalized hamming distance between

intuitionistic trapezoidal fuzzy numbers as given in definition 6.2.1.3.

Let w; represents the weight vector of 7' attribute and let the information

about these weights is unknown. However, the weights of the attributes have been
provided by the decision maker’s qualitative opinion. For the sake of intuitionistic

formulation of the qualitative opinions, we define the following table 6.1:

Table 6.1: Linguistic Variables and I'TFNS

Sr. No. | Linguistic variables ITFNs
1 Very Poor (VP) {10.2,0.3,0.4,0.5| ; 0.7,0.1}
2 Poor (P) {[0.3,0.4,0.5,0.6] ; 0.8,0.1}
3 Satisfactory (SF) | {[0.4,0.5,0.6,0.7] ; 0.2,0.7}
4 Good (G) {[0.5,0.6,0.7,0.8] ; 0.5,0.4}
5 Very Good (VG) {[0.6,0.7,0.8,0.9] ; 0.7,0.3}
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[f there are p persons in a decision making committee, who qualitatively
define the weights of the n criterions, then the effective weight of each criteria in
the form of intuitionistic trapezoidal fuzzy number can be evaluated as:

1

Wy = ;('@; +wF + ..+ ah).

If d(wj, I') is distance between the weight ITFN @; and the intuitionistic trape-

zoidal fuzzy ideal solution I'", then the distance vector is given by

N [d’(?i}] AN d(wg, T, d(wn, T )] .
. . . .
Further, the normalized distance vector on vector N is given by

d(w;, I'
N ;] (@, — )~ . ] 1,2,...... M.
(max); d(w;, 1)

The entropy measure of the j% criteria (C;) for m available alternatives can be

obtained from:

1 Ej E_.'i
e — — In .
In(m n 2

SEN DRI Dol

=1 =1

Finally, the crisp value of weight for j* criterion, which is based on the above

entropy measure, can be calculated as follows:

1—63'

Wy = —— j
7 N T N .
n— > k_1€k

1,2,...,n.

6.2.3 Algorithm for Intuitionistic Trapezoidal Fuzzy Mul-

tiple Criteria Decision Making

The ranking procedure for a discrete set of m possible alternatives based on a set
of n evaluation criteria in case of intuitionistic trapezoidal fuzzy multi criteria

decision making (ITF-MCDM) problem is given below:
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Input A discrete set of m possible alternatives A = {A, Ay, ..., A}, a set of
n evaluation criteria C = {C4,Cs,...,C,} and weights of criteria in terms of

qualitative opinions of decision makers.

Step 1 : If there are p persons in a decision making committee, then construct
the decision matrix D by calculating the rating of each alternative meeting the

criteria as follows:

oS E! -p
Tij = » (Fiy + 755 + ...+ 7).

Step 2 : Since the information about the weights of attributes is unknown, we

find the attribute weights using the entropy method as discussed in section 6.2.2.

Step 3 : Make use of definition 6.2.1.3 and the obtained weight vector in step 2

to compute the distances d(A;, I1) for each i as follows:
A(A, 1) = w;d(It 7))
=1

Step 4 : Finally, the ranking of the alternatives is performed using the values of
the distances d(A;, I ) where i = 1,2,...,m. The basic idea of ranking the alter-
natives used is - smaller the value of d(A;, I') better the performance/closeness

of an alternative to intuitionistic trapezoidal fuzzy ideal solution.

6.2.4 Illustrative Example

Let us consider an example concerning with a communication system, searching
for the best global supplier (G'S, GSy, GS3) for one of its most critical parts (e.g.
chip) used in assembling process by three decision makers (DM, DMy, DMs).
Criteria used for evaluating global suppliers are (C') economical, (C;) function-

ing, (C's3) on time performance, (Cy) quality, (Cs) risk factors.

Decision makers use the linguistic variables such as very poor, poor, sat-

isfactory, good, very good to describe the weights of the criteria and rating of
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Table 6.2: Linguistic Variables for Weight of Criteria

Criteria/Decisions | DM | DMy | DMy

Cy VG SF SF
Cy G P G

Cg VG G SF
Cy G a VG
Cs SF | VP | VP

Table 6.3: Rating of Alternatives in Different Criterion

Criteria | Supplier | DMy DMy DMz
GS G ve | va
C1 GSy SF SF G
GSs G P SF
s, p a a
C2 GS, G a SF
GSs ve | sF | va
GS G SF a
Cs GSs SF a a
GSs SF SF a
s G SF | SF
Cq G Sy VG G VG
GSs SF G SF
G p SF p
Cs GSy G SF a
GSs G VG | SF

the alternatives qualitatively. The linguistic variables for weights of criteria is
provided in the above table 6.2.
The rating of the alternatives with respect to various criterion as given by

the decision makers is provided in the above table 6.3.

In order to solve the problem, we first evaluate the weight of each criterion with
the help of pre-defined linguistic variables in the form of ITIF'Ns and tabulate

them in the following table 6.4:
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Table 6.4: Conversion of Linguistic Variables into Summated Weight ITFN

Criteria Weight
Cy {[0.47,0.57,0.67,0.77] ; 0.27,0.05}
Cy {[0.43,0.53,0.63,0.73] ; 0.32,0.01}
Cy {[0.5,0.6,0.7,0.8] ; 0.29,0.03}
Cy {[0.53,0.63,0.73,0.83] ; 0.31,0.02}
Cp {]0.27,0.37,0.47,0.57] ; 0.31,0.002}

Based on the normalized decision matrix given in table 6.5, the attribute

weights can be calculated by using the entropy method with I'TFNs:

Table 6.5: Decision Matrix for ITFNs

GS, GS,y G Sy

[ [.57,.67,.77,.87]; .10,.01 | [.43,.53,.63,.73]; .23,.06 | [.40,.50,.60,.70]; .31,.01

,,,,,

Co | [.43,.53,.63,.73]; .32,.01 | [.47,.57,.67,.87]; .27,.11 | [.53,.63,.73,.83]; .31,.02
Cq | [.47,.57,.67,.87); .27,.11 | [.47,.57,.67,.87]; .27,.11 | [.43,.53,.63,.73]; .23,.06
Cy | [.43,.53,.63,.73]; .23,.06 | [.57,.67,.77,.87]; .19,.01 | [.43,.53,.63,.73]; .23,.06
Cy | [.33,.43,.53,.63); .32,.00 | [.47,.57,.67,.87]; .27,.11 | [.50,.60,.70,.80]; .29,.03

The computed weights are as follows:
wy = 0.19987; wsy = 0.2000; w3 — 0.2015; wy = 0.2032; and ws = 0.1954.
[t may be noted that
D wi = 0.9999 ~ 1.

i

By using the weight vector, we get the distances
d(GSy, IT) = 0.63576
d(GS,, It = 0.59069
d(GSs, 1) = 0.6240

Finally, based on the idea of ranking given in step 4 of the algorithm, we conclude

that desirable order of selecting a global supplier is
?192 > 6193 > GS].
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6.3 Triangular Intuitionistic Fuzzy MCDM

Shu & Cheng (2006) defined triangular intuitionistic fuzzy numbers (TIFNs)
which have a greater capability to handle more ample and flexible information
than triangular fuzzy numbers. The main aim of this section of the chapter is
to study triangular intuitionistic fuzzy multiple criteria decision making (TTF-
MCDM) problem for finding the best alternative where the linguistic variables
for the criteria are intuitively pre-defined in the form of TIFNs. Here, in addition
to the decision maker’s qualitative opinions, we also consider the management’s
opinions to the criteria for the ranking of the available alternatives. In view of
this, the weight of each criterion has been calculated with the help of parametric
entropy as well as "useful” parametric entropy under a—cut/(a, 8)—cut based dis-
tance measures for different possible values of parameters. Further, this method-
ology in a multi-criteria decision making problem related to a pre-defined survey
structure for the purchase of a car has been implemented. Also, an algorithm
for Triangular Intuitionistic Fuzzy Multi-criteria Decision Making (TIF-MCDM)
problem where the ranking of the available alternatives by calculating the various
distances between the ideal alternative and all the available alternatives has been
provided. An illustrative example to rank the alternatives in view of different

opinions has also been provided.

6.3.1 Preliminaries

Here, we present the basics of triangular intuitionistic fuzzy numbers (TIFNs),

which is well known in literature.
Definition 6.3.1.1

Let ¥ — < (t,t,0);ug, ws > and A\ = < (s,s,5); us, w5 > be two TIFNs and § is

a real number. Some arithmetical operations (addition, multiplication etc.) are
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defined by Wang and Zhang (2009) as follows:
/\EG)E\ =< (t+s, t+s, t+8); ug +ug — ugus, wgws, >;

< (0L, 0t, 0t); ug, wg > 6 >0,

ox
< (0, 0t,0t); ug,wy > if § <0 ;

and

< (Ls,ts,t8); ug ANug, wg Vws > if)"(>0and;\>0?
O < (ts,ts,ts); ug Auy, wg Vws > if ¥ <0 and >0,

< (t§,ts,t8); ug Aus, wg Vws > if ¥ <0 and A< 0:
where the symbols “A” and “ V7 are the min and max operators, respectively.

Obviously, if uy = 1 and wy = 0, i.e. ¥ =< (L,t,1);1,0 > and A=<
(s,8,8);1,0 > are Triangular Fuzzy Numbers (TFNs), then above equations de-
generate to the arithmetic operations of the TFNs. Hence arithmetic operations

of TIFNs are the generalization of those of the TFNs.
Definition 6.3.1.2

(i) Triangular intuitionistic fuzzy positive ideal solution is

It =< (et et wt >=< (1,1,1);1,0 > .

(ii) Triangular intuitionistic fuzzy negative ideal solution is

Im =< (@t )u",w >=<(0,0,0):0,1>.

Definition 6.3.1.3

An (a, f)-cut set of ¥ =< (L. ¢,1): ug, wy > is a crisp subset of R, which is defined |
Refer Liet. al. (2010) and Guhaet. al. (2010) Jas X5 = {x|pg () > a, vg(r) < 8}

where 0 < a<wug, wy <fg<land0<a+ <1



Definition 6.3.1.4

A a-cut set of ¥ =< (L,t,1); ugz, wy > is a crisp subset of R, which is defined as
= {z|pz (@) =2 a}.

From the definitions of TIFNs and a-cut set, it follows that y* is a closed interval,

denoted by y* = [L*(x), R*(Y)|, which can be calculated as

[L%R), R*(R)] = |t+ &(t;,— B ;_al-t

(i % ’U,}Z

Definition 6.3.1.5

A [-cut set of ¥ =< (L, 1,1); ug, wy > is a crisp subset of R, which is defined as

Xz = {z|rg(x) < B}

Using the definitions of TIFNs and F-cut set, it follows that Yz is a closed interval,

denoted by vz [ Ls(X), Rs(x)], which can be calculated as

(1= B)t + (B —welt] [(1=B)t+ (B —wet]]

bl
I —wyg I —wy

[L5(X), B5(X)]

Definition 6.3.1.6

Let ¥ =< t;ug,wy > n and A =< §; ug, w5 > be two arbitrary triangular
intuitionistic fuzzy numbers where ¢ and 3 are two triangular fuzzy numbers
with a-cut representations, t, = [tF(a), t"(a)] and 3, = [s*(a), s®(a)]. The

distance between ¥ and ) is defined by Chen & Li (2011) is as follows :

|
d(%N) \JJ [H a) — sL(a))® 4 (LR(Q)—SR(O.*))Q](J!& |
0

o/ A = )7+ (oo = s)” + (g g 5 = ws)’]

Definition 6.3.1.7

Let ¥ =< &; ug,wy > and A=< 3; uy, w5 > be two arbitrary triangular in-

tuitionistic fuzzy numbers where ¢ and § are two triangular fuzzy numbers with
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,tR(a)] and 3, = [sk(a), sE(a)] and B-cut

representations, ig = [t{_,(3), tf, (B)]and 55 = [s{_,(B), 57", (8)]. The dis-

tance between ¥ and A defined by Grzegorzewski (2003) is as follows :

a-cut representations, 1, — [t£(a)

1 1
J|ti(e) = si@)|"da + [ [tif(e) — siH(@)[*dort
0 0

1 1
+[ |t () = st (@) da + [ [t (@) — s ()| da
0 0

where 1 < 2 < oo.

6.3.2 [Evaluating Weights of Criteria

In this section, we explain the methodology to use the entropy method for evalu-
ating weights of attributes with triangular intuitionistic fuzzy numbers and utility

distribution related information.

Let us consider a multiple criteria decision making problem where a discrete set
of m possible alternatives A = {A;, Ay, ...... , A}, which is based on a set
of n evaluation criteria C = {Cy,Cy, ...... , Ch}. We represent the triangular

intuitionistic fuzzy multiple criteria decision matrix is as follows:

‘U [?ij ]m X { [t ijs t"j H fﬁj ]; u"j H ’UJ@‘_;; }mx n;

where 7;; is the rating of the " alternative (i = 1,2,...,m) meeting the j

criteria (j = 1,2,...,n) which is jointly provided by the decision makers. It may
be noted that weight measure has a direct relationship with the distance measure
between two fuzzy numbers. In order to deal with decision information with
triangular intuitionistic fuzzy numbers, we use the distance between triangular

intuitionistic fuzzy numbers as given in definitions 6.3.1.6 & 6.3.1.7.

Let 1@; represents the weight vector of j™ criteria, where the weights of the
criteria have been provided by the decision maker’s qualitative opinion. For the
sake of formulation of the qualitative opinion, we intuitively define the following

Table 6.6:
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Table 6.6: Linguistic Variables ~ TIFNs

Sr. No. | Linguistic Variables TIFNs
1 Very Poor (VP) < (0.2308,0.3,0.4286);0.8,0.1 >
2 Poor (P) < (0.3,0.4286,0.75); 0.8,0.1 >
3 Satisfactory (SF) < (0.55,0.7,0.85);0.6443,0.252 >
4 Good (G) < (0.7,0.8667,0.9667); 0.7846, 0.1587 >
5 Very Good (VG) < (0.8,1,1);0.8413,0.126 >

If there are p persons in a decision making committee, who qualitatively
define the weights of the n criteria, then the effective weight of each criteria in

the from of triangular intuitionistic fuzzy number can be evaluated as:
w; = — (0} + w? 4 )
J y Fol e /-

If d(i;, 1) is distance between the weights @, (TIFN) and the triangular intu-
itionistic fuzzy ideal solution T, then the distance vector is given by

N = [d(ﬂ)l: FI ): (f(ﬁ?g} I ):\ LR d(ﬁ}?h fl )] .

. . L .
Further, the normalized distance vector on vector N is given by

d(i;, I)
max d(;, I ):i7=1,2,3,...,n

'

N = g] 7= 1,2,...,n.

For a discrete random variable with probability distribution P = (p1, pa2,...,pn)
associated with an experiment, Renyi (1961) defined the parametric probabilistic

entropy measure as
7] 1 - 7
el — T logz (pe)"; 0<np< L
k=1

The entropy measure of the j% criteria (C}) can be obtained from Renyi’s (1961)

entropy in an analogous way as follows:

1 £k
e} —— log Z — b
-7 ey

(':c.
o



Finally, the crisp value of weight for j% criterion in view of positive ideal solution

(I'"), which is based on the above entropy measure, can be calculated as follows:

1—e
ant J . - . -
wj — = J = L2 N
n— k—1 €k

Similarly, the crisp value of the weight for j# criterion in view of negative ideal

solution (I7) can be calculated. Thereafter, both the calculated weights are being

used in the proposed algorithm in section 6.3.4.

It may be noted that a general probabilistic entropy does not take into ac-
count the effectiveness or importance of the events, while in some practical sit-
uations of probabilistic nature these subjective considerations also play an im-
portant role. Here, we assume that the MCDM process is not completely depen-
dent on the deputed decision makers, but also there is some other management
authority whose opinion/importance for different criteria have been taken into

consideration.

Belis & Guiasu (1968) considered a qualitative aspect of information called
‘useful” information by implementing a utility distribution given by U = (uy, us, us
s+ Up), where u; > 0, for each 7 and is utility or importance of an event z; whose
probability of occurrence is p;. Also, it is assumed that u; is independent of p;.
It has also been suggested that the occurrence of an event removes two types of
uncertainty - the quantitative type related to its probability of occurrence and
the qualitative type related to its utility (importance) for fulfillment of some goal
set by the experimenter. In view of this, they proposed the following 'useful’

information measure as
H(U; P) = — Z w;p; log ;.
In case u; = 1Vi, the above equation reduces to H(FP) = — > p;logp;, which
is well known Shannon’s Entropy (1948).
We propose to take the following generalized ‘useful” information measure of
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the 7% criteria (C}) as

n

, 1 £
ej (U) = log Z ue | - k

I —n o S ek
k=1

where pp = —%—. If ux = 1,k then €](U) reduces to Renyi’s entropy.

Next, the procedure for finding the weights for further calculations is similar

as it is with the non-utility part of this section discussed earlier.

6.3.3 Survey Structure

In order to apply the methodology of evaluating the weights of different criteria
in a multi-criteria decision making shown in section 6.3.2, a small survey has been
conducted among a certain domain of intellectual people. The survey comprises
of a short priority sheet for finding the ranking of various evaluation criteria under

different category while purchasing a car.

The priority from a customer (decision maker) for a particular criterion has
been taken in terms of linguistic variables - Very Good(VG), Good(G), Satis-
factory (SF), Poor(P) and Very Poor(VP) are used in this research paper to
determine the satisfaction level of the customer. For a particular criterion, the

customers have been asked to indicate the degree of priority level on discrete scale

of 1(VP) to 5 (VG).

The broad categories of the priority sheet have been chosen to be perfor-
mance, style, comfort, safety, specifications and after sale services. Further, in
the priority sheet, these categories have been sub-divided into twenty different

evaluation criteria from top to bottom in the framework presented below:
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_ : o MILEAGE
PERFORMANCE 'L o QUALITY/ POWER OF ENGINE

o EXTERIOR DESIGN (SHAPE OF CAR)
e L4 EXTERIOR COLOR OF THE CAR
STYLE > o INRERIOR DESIGN
o INTERIOR COLOR SCHEME

f e STEERING ADJUSTMENTS
- e SEAT ADJUSTMENT

o CAR INSIDE SPACE

o LUGGAGE SPACE

COMFORT |

e "‘;(_ e PASSENGER SAFETY FEATURES (AIR BAGS ETC.
SAFETY > { !
* ABS LOCKING

e BOOST ASSIST SYSTEM (BAS BRAKING)

o FUEL TANK CAPACITY
o DIMENSIONS OF THE CAR
e TYRE/WHEELSIZE

SPECIFICATIONS

\

e SPARE PARTS COSTS

o LOCATION OF SERVICE CENTERS

o PROMPTNESS OF SERVICE CENTER STAFF

e GUEST FACILITIES (WAITING SPACE/
REFRESHMENTS)

AFTER SALE SERVICES |

On compiling all the data obtained through the brief survey conducted and
applying the methodology of evaluating the weights of criteria as discussed in sec-
tion 6.3.2, we present the following table 6.7 showing the ranking of the evaluation

criteria.

From the table 6.7, we observe that the criterion ‘location of service centres’
scores the highest rank and the criterion ‘interior colour scheme’ was ranked as

the least.
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Table 6.7: Ranking of the Evaluation Criteria

Evaluation Criteria | Weights (3 = 0.1) | Ranking | Weights (3 = 0.5) | Ranking
(&3] 0.05012 6 0.05035 6
Co 0.05019 4 0.05058 4
Cg 0.05022 2 0.05065 2
Cy 0.04977 18 0.04931 18
Cs 0.05016 5 0.05048 5
Cg 0.04985 16 0.04953 16
Cr 0.04997 11 0.04993 11
Cg 0.04995 13 0.04985 13
Cy 0.05008 9 0.05023 9
Cip 0.05011 7 0.05033 7
C1p 0.05011 8 0.05033 8
Cio 0.04986 14 0.04959 14
Ciz 0.04975 19 0.04926 19
Cy 0.04984 17 0.04952 17
Cig 0.05002 10 0.05006 10
Cig 0.04986 15 0.04959 15
Ci7 0.04996 12 0.04989 12
Cig 0.05044 1 0.05133 1
Cig 0.05021 3 0.05062 3
Cap 0.04952 20 0.04856 20
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6.3.4 Ranking Algorithm for Triangular Intuitionistic Fuzzy
MCDM

The ranking procedure for a discrete set of m possible alternatives based on a set
of n evaluation criteria in case of triangular intuitionistic fuzzy multiple criteria

decision making (TIF-MCDM) problem is given below:

Input A discrete set of m possible alternatives A = {A;, A, ...... , Am}, aset of
n evaluation criteria C {C,Cy, ... , C,} and computed weights of criteria

based on qualitative opinions of decision makers.

Step 1 : If there are p persons in a decision making committee, then construct
the decision matrix DM by calculating the rating of each alternative meeting the

criteria as follows:

Step2: Since the information about the weights of attributes is unknown, we

find the attribute weights using the entropy method as discussed in section 6.3.2.

Step3: Make use of definitions 6.3.1.6 & 6.3.1.7and the obtained weight vector
to compute the distances d(A;, I'T) and d(A;, I7) for each i as follows:

d(A, TY) = Swd(It,7y) and d(A, ) = 3wy d(I-,7y).

Step 4: ('Jalc:d:;]:a,te the closeness coefficient, C’C':_l(?l 1,2,...,m) of all alter-
natives and rank all alternatives, according to the closeness coefficient as follows:

d(‘/lév j:_)

CC; = =
d(x‘fl‘;, I+) + d(Ai, I_)

Stepb: Finally, the ranking of the alternatives is performed using the values of
the closeness coefficient, C'C; where i = 1,2....,m. The basic idea of ranking the
alternatives used is — higher the value of C'C; better the performance/closeness

of an alternative to the triangular intuitionistic fuzzy ideal solution.
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6.3.5 Illustrative Example

The applicability and effectiveness of triangular intuitionistic fuzzy multiple cri-

teria decision making (TIF-MCDM) model is illustrated by a numerical example.

Let us consider an example of company which desires to hire an adminis-
trator (ADMN). Let there be three short-listed candidates ADMN,, ADMN,
and ADM N3 after preliminary screening. A group of three decision makers is
formed, which will assess the three candidates based upon the criteria includ-
ing stability(C), experience (Cg), functioning (C3), personality (C4) and self-

confidence (Cg).

Decision makers use the linguistic variables such as very poor, poor, satisfac-
tory, good, very good to describe the weights of criteria and rating of alternatives

qualitatively.

The linguistic variables for weights of criteria have been provided in Table
6.8. The rating of the alternatives with respect to various criterion as given by the
decision makers has been tabulated in Table 6.9. In order to solve the problem, we
first evaluate the weights of each criterion with the help of pre-defined linguistic

variables in the form of TIFNs and tabulate them in the following Table 6.10.

Table 6.8: Linguistic Variables for Weight of Criteria

Criteria/Decisions | DMy | DMy | DM3
Cy VG SEF SF
Co G p G
’3 VG G SF
Cy G G VG
Cs SF VP VP

101



Table 6.9: Rating of Alternatives in Different Criterion

Criteria | Alternative | DM| | DMy | DMy
ADMN; a va | va
€1 ADMN, SF | SF G
ADMN3 Ie P SF
ADMN, p G G
Ca ADM N, a G SF
ADM N3 ve | sF | va
ADMN,; G SF G
C3 ADM N, SF G a
ADM N3 SF | sF G
ADMN, a SF | sF
Cq ADMN, va a VG
ADMN3 SF G SF
ADMN, P SF P
Cs ADMN, a SF a
ADMN3 e ve | sr

Table 6.10: Linguistic Variables ~ Summated Weight (TIFN)

Criteria Weight
ol < (0.63,0.80, 0.90); 0.327,0.003 >
Cy < (0.57,0.72,0.89);0.330,0.001 >
Cy < (0.68, 0.86,0.94); 0.329,0.002 >
Cy < (0.73,0.91,0.98);0.331,0.001 >
Cx < (0.34,0.43,0.57);0.329,0.001 >




Based on the normalized decision matrix given in Table 6.11, the criteria

weights can be calculated by using the entropy method with TIFNs:

Table 6.11: Decision Matrix for TIFNs

ADM N, ADMN, ADM N3
C-] < (0.77,0.96,0.99); 0.33,0.001 > < (0.60,0.76,0.89); 0.32,0.003 > < (0.52,0.67,0.86); 0.32, 0.001 >
Cg < (0.57,0.72,0.89); 0.33,0.001 > < (0.65,0.81,0.93); 0.33,0.002 > < (0.72,0.90,0.95); 0.33, 0.001 >

Cqg < (0.65,0.81,0.93);0.33,0.002 > < (0.65,0.81,0.93); 0.33,0.002 > < (0.60,0.76,0.80); 0.32, 0.003 >
Cy < (0.60,0.76, 0.89); 0.32,0.003 > < (0.77,0.96,0.99); 0.33,0.001 > < (0.60,0.76,0.89); 0.32, 0.003 >
Cp < (0.38,0.52,0.78); 0.32, 0.0001 > < (0.65,0.81,0.93); 0.33,0.002 > < (0.68,0.86,0.94); 0.32, 0.002 >

The computed weights with triangular intuitionistic fuzzy positive ideal so-
lution and triangular intuitionistic fuzzy negative ideal solution using definition

6.3.1.6 are as follows:

aprt p t t 1 ant 4
dl}l dl}l 'H'Jg 'H'Jg 'H'J3 'H'J3 'HJ4 'HJ4 dl}s dl}s

B =10.1 2013 | L1991 1992 | 2004 | L2029 | L1982 | L2038 | L1976 | L1927 | .2051

B =0.5 | 20564 | 1959 | .1968 | .2013 | 2118 | .1924 | .2154 | .1900 | .1705 | .2204

A =109 | .2082 | 1938 | .1952 | .2020 | .2178 | .I1885 | .2233 | .1849 | .1555 | .2309

By using the weight vector, we get the distances, closeness coefficients and
ranking order of selecting an administrator for different values of 3 as shown in

the following Table 6.12:

Table 6.12: Ranking Results Obtained by TIF-MCDM using Chen and Li (2011)

and Parametric Entropy

For 8=0.1 | d(ADMN;, I") | d(ADMN;, 1) CCy Ranking

ADM Ny 1.09421 1.97896 0.6439 3
ADM N2 1.08705 2.09335 0.6582 2
ADM N3 1.02884 2.03923 0.6647 1
For 3=0.5 | d{ADMN;, I*t) | d(ADMN;, I7) | €C; | Ranking
ADM N, 1.0838 1.9709 0.6452 3
ADMNo 1.0917 2.0906 0.6569 2
ADM N3 1.0328 2.0412 0.6640 1

For 8=0.9 | d(ADMN;, I") | d(ADMN;, 1) CCy Ranking

ADMN, 1.0769 1.9664 0.6461 3
ADMN» 1.0952 2.0895 0.6561 2
ADMN3 1.0357 2.0437 0.6637 1
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Further, the computed weights with triangular intuitionistic fuzzy positive

ideal solution and triangular intuitionistic fuzzy negative ideal solution using

definition 6.3.1.7 are as follows:

wy wy wy wy wy wy w, wy wa Wy
£ =0.1].2005 | .1980 | .1942 | .2000 | .2091 | .1966 | .2152 | .1956 | .1811 | .2097
B =0.5 | 2018 | .1920 | .1776 | .2001 | .2349 | .1864 | .2583 | .1822 | .1274 | .2392
£ =091 .2026 | .1879 | .1673 | .2002 | .2510 | .1795 | .2852 [ .1733 | .0939 | .2591

By using the weight vector, we get the distances, closeness coefficients and

ranking order of selecting an administrator for different values of 3 as shown in

the following Table 6.13.

Table 6.13: Ranking Results Obtained by TIF-MCDM using Grzegorzewski’s

(2003) Method and Parametric Entropy

For 3=0.1 | d(ADMN;, It) | d(ADMN;,I7) | CC; | Ranking
ADM N, 0.2461 0.7510 0.7532 3
ADMN, 0.1737 0.8294 0.8268 1
ADM N3 0.2099 0.7916 0.7904 2
For 3=0.5 | d(ADMN;, It) | d(ADMN;,I7) | CC; | Ranking
ADM N, 0.2311 0.7423 0.7626 3
ADMN, 0.1683 0.8277 0.8310 1
ADM N3 0.2185 0.7952 0.7845 2
For $=0.9 | d(ADMN;, I*) | d(ADMN;,I7) | CC; | Ranking
ADM N, 0.2217 0.7363 0.7685 3
ADMN, 0.1652 0.8267 0.8335 1
ADM N3 0.2238 0.7976 0.7809 2

The values of closeness coefficients in Table 6.13 is more distinguishable than

in Table 6.12. Thus, we conclude that results obtained by Grzegorzewski’s dis-

tance measure are better then the results obtained by Chen and Li distance

measure.
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As we discussed earlier that if the MCDM process is not completely depen-
dent on the deputed decision makers, but also there is some other management
authority whose opinion/importance for different criteria can be associated with

the criteria.

For example, if we take u; = 6; uo = 7; us = 8 uy = 8 and us = 9
to be the utilities of criteria - stability, experience, functioning, personality and
self confidence respectively on a 10-point scale, then the computed weights with
triangular intuitionistic fuzzy positive ideal solution and triangular intuitionistic

fuzzy negative ideal solution using definition 6.3.1.7 are presented.

1 + + 1 +
Wy wy Wy Wy g g Wy Wy We We,

B =0.1|.1510 | .1547 | 1912 | .1847 | .2024 | .2165 | .1954 | 2176 | .2599 | .2265

B =05|.1212 | 1501 | 2281 | .1789 | .1389 | .2431 | .0846 | .2510 | 4273 | .1769

/=0T |.1240 | .1602 | 2462 | .1808 | .1116 | .2485 | .0398 | .2

[

585 | 4784 | .152]

By using the weight vector, we get the distances, closeness coefficients and
ranking order of selecting an administrator for different values of 3 as shown in

the following Table 6.14:

Table 6.14: Ranking Results Obtained by TIF-MCDM Using Grzegorzewski’s
(2003) Method and ‘Useful” Parametric Entropy

For g=0.1 | d(ADMN;, It Y| dADMN; ) CCy Ranking

ADM N, L2738 7400 7299 3
ADMN- 1736 .8349 8279 1
ADMN3 1967 .T951 8017 2

For g=0.5 | d(ADMN;, it Y| dlADMN;, [7) CCy Ranking

ADMN, 3238 7526 L6992 3
ADMN2 AB5T 8402 8190 2
ADMN3 1696 TROT 8232 1
For 8=0.7 | d(ADMN; It) | d(ADMN;.I7) | €C; | Ranking
ADM N, 3377 7607 .6926 3
ADM Nq 1913 8408 8146 2
ADMN3 1615 7865 8207 1




6.4 Conclusions

The study of multiple criteria decision making (MCDM) problem for evaluating
the best alternative has been done with the concept of intuitionistic trapezoidal
fuzzy numbers (ITFNs). A new algorithm for ITF-MCDM problem has been
proposed where the weights of the involved attributes are unknown. On the ba-
sis of the decision maker’s qualitative opinion to the attributes with the help
of pre-defined linguistic terms and an entropy measure, these weights have been
calculated. Finally, the selection on the basis of ranking of the vendors/suppliers
has been done by calculating the hamming distance between the ideal alterna-
tive and all the available alternatives. Triangular intuitionistic fuzzy multiple
criteria decision making (TIF-MCDM) problem for finding the best alternative
where the linguistic variables for the criteria are intuitively pre-defined in the
form of TIFNs. We have implemented the concept of management’s opinions
to the criteria as a 'useful” information - utility distribution in addition to the
decision maker’s qualitative opinions for the ranking of the available alternatives.
On the basis of this approach, the weight of each criterion has been well calcu-
lated with the help of parametric entropy as well as "useful’ parametric entropy
under a—cut/(a, f)—cut based distance measures for different possible values of
parameters. Also, the ranking of the evaluation criteria involved in the survey
structure based on a questionnaire for the purchase of a car has been presented. A
new ranking algorithm for Triangular Intuitionistic Fuzzy Multi-criteria Decision
Making (TIF-MCDM) problem for the available alternatives by calculating the
various distances between the ideal alternative and all the available alternatives
has been described. Finally, an example to rank the alternatives in view of the

different opinions has also been illustrated.
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Chapter 7

Conclusions

The stochastic comparison of residual life and inactivity time of series and par-
allel systems had been studied in the literature when the random variables are
independent and identically distributed. By assuming that X and Y are inde-
pendent, but not necessarily identical distributed and letting X <, Y, n, <0
and 7, >0, (or Y < X, 1y >0 and 1, < 0) we proved that the parallel system
of used components, i.e., max(X;,Y;), is better than the used parallel system,

i.e., (max(X,Y)),, in the sense of likelihood ratio order.

It has been found that, by assuming X and Y are independent, but not
necessarily identical distributed and letting X <, Y, (or Y <, X), for any
L >0,

(max(X,Y)) <ir max(X), Yip);

and
min()((t) , Y(r.)) <ir (min(X,Y) )(t} :

Also, various aging properties of used/inactive parallel/series systems and
the parallel/series system of used/inactive components has been proved. These
results are supported by well known distributions, such as Weibull and Gompertz

distributions.
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In context of reliability and life testing problems, we obtain reliability proper-
ties of mean inactivity time under weighting. The conditions of stochastic com-
parison of weighted distributions in terms of mean inactivity time and shifted

likelihood ratio order has been obtained.

[t has been found that the likelihood ratio order is preserved between equilib-
rium random variable under the formation of series system. Also some conditions
are provided under which a parallel system under equilibrium distribution have

likelihood ratio order.

If the life-times of i.i.d. components have increasing hazard rate (IHR) then
a series system composed of these i.i.d. components have log-concave life-time.
Further if the eta function of i.i.d. components is negative then a parallel system

composed of these i.i.d. components have log-concave life-time.

We further studied some preservation properties of the Laplace transform or-
dering and the moment generating function ordering of residual life and inactivity

time under the reliability operation of convolution with their proofs.

The sorting of decision making units in the data envelopment analysis has
been accomplished and an optimal ranking order has been found out with the help
of intuitionistic fuzzy weighted entropy according to minimum entropy model. An
illustrative example has been provided in order to show the implementation of

the proposed algorithm.

The study of multiple criteria decision making (MCDM) problem for evalu-
ating the best alternative has been carried out with the concept of intuitionistic
trapezoidal fuzzy numbers (ITFNs) and triangular intuitionistic fuzzy numbers
(TTFNs). An example based on a short survey and questionnaire has been con-
sidered. Further, a new methodology to implement the management’s opinions to
the criteria as a ‘useful” information in addition to the decision maker’s qualitative

opinions for the ranking of the available alternatives has been introduced. In or-
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der to show the implementation of the proposed algorithm, illustrative examples

have been provided.
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