JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION-2025

B.Tech-IV Semester (CSE/IT)

COURSE CODE (CREDITS): 18B11CI413 (2)

MAX. MARKS: 35

COURSE NAME: Modeling and Simulation Techniques

COURSE INSTRUCTORS: Dr. Vikas Baghel, Dr. Salman Raju Talluri MAX. TIME 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Mark
Q1	A student claims to have implemented a linear congruential generator (LCM) but forgot	[CO4]	[5]
	to record the multiplier a. You observe the following successive outputs:		
0	$K_0=217, K_1=2104, K_2=8987$ The full-period modulus and increment are known: $m=9973, \ c=351$.		
	 a) Determine the unknown multiplier a. b) Verify your a by generating K₃ and showing it satisfies the recurrence. c) If the student now changes c to 0 while keeping the same a and m what is the 		en French en
	maximum possible period? Briefly justify.		
Q2	Given the feasible set defined by: $x \ge 0, y \ge 0, z \ge 0$ $x + y + z = 1$	[CO5]	
0	(a) Describe the geometric shape of this feasible set in 3D space.		[2]
	(b) Determine which point in the feasible set maximizes the objective function $x + 2y + 3z$, and explain your reasoning.		[3]
Q3	Maximize the objective function $z=3x_1+2x_2$ subject to the following constraints: $x_1+x_2 \le 4$ $2x_1+x_2 \le 5$	[CO5]	[5]
-	$x_1 \ge 0, \ x_2 \ge 0$		
n contraction	Use the simplex method to find the values of x_1 and x_2 that maximize z, and determine	And the state of t	EU-HI TOWN
	the maximum value of z.		

Q4	Solve the following linear program using the Primal-Dual Interior-Point Algorithm:	[CO5]	[5]
par masses	Maximize $2x_1 + x_2$	[000]	
out Systems	subject to		
	$x_1 + x_2 = 2$		
	$x_1, x_2 \geq 0$		
	Given Initial Point:	\$ assum	
	$x^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ s^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ y^{(0)} = 3$		
Q5	a) Calculate the Hessian matrix for given function:	[CO3]	[2]
	$g(x) = -5x_1^2 + 3x_1x_2 + x_2^3 - x_3^2.$		
	Comment on whether $g(x)$ is a quadratic function or not.		
	b) Consider the function $f(x) = (2x-1)^2$. Verify the convexity of the function.		
	Assume two points $x_1 = 1$ and $x_2 = 3$, and $\theta = 0.4$.		[3]
Q6	Consider a zero-sum game between two players:	[CO6]	[5]
A MARK TO ANALYSIS	• Player X (the row player) chooses one of the rows.		
4.5,000,000	• Player Y (the column player) chooses one of the columns.		
	The payoff matrix, which shows Player X's gain (and Player Y's loss), is $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.		
	-J 71		
	a) Explain how Player X calculates the maximin value and chooses an optimal		
	strategy.		
	b) Explain how Player Y calculates the minimax value and chooses an optimal strategy.		
	c) Determine the optimal strategies x^* for Player X and y^* for Player Y.		
Q7	a) What is the dual of the following problem: Maximize y_2 subject to $y_1 \ge 0$, $y_2 \ge 0$,	[CO1]	[2]
	$y1+y2\leq 3?$		
	b) What is Taylor's Theorem? Explain its statement and significance in approximating functions.		[2]
	c) Explain the method of Lagrange multipliers for finding the extrema of a function		[1]
	subject to equality constraints.		[*]