JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-VI Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS):18B1WCE639

MAX. MARKS: 35

COURSE NAME: Open Channel Flow and Hydraulic Machine

COURSE INSTRUCTORS: Ashish Kumar

MAX. TIME: 2 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required

for solving problems

Q.No				Que	stion				21	CO	Marks
Q1 (a)	Differentiate between inward flow and outward flow reaction turbine									CO4 CO4	1
Q1 (b)	A Francis turbine with an overall efficiency of 70% and hydraulic										6
Θ	efficiency of 80% is required to produce 150 kW. It is working under										
	a head of 8 me	eter. Tl	he peri	ipheral v	elocity	is $0.3\sqrt{2}$	2gHand	velocity	of		enton police proporte year
	flow at inlet is $0.96\sqrt{2gH}$. The wheel runs at a speed of 200 rpm.										
	Assuming radial discharge at outlet, determine										
	(a) guide blade angle (α)										
	(b) wheel vane angle at inlet (Θ)										
	(c) diameter of wheel at inlet (d) width of wheel at inlet										
	(d) widt	iii oi w	meer a	t miet	(14, 1)	1, 1,					
Q2	A trapezoidal	channe	el with	side sl	ope of 1	to 1 has	s to be d	lesigned	to	CO2	5
Q2	A trapezoidal channel with side slope of 1to 1 has to be designed to carry 10 m ³ /s of water at a velocity of 2 m/s so that the amount of										
	concrete lining for bed and side is minimum. Compute the area of										
	lining required for one metre length of canal.										
Q3	A current meter was used to measure the point velocity in the centre									CO 3	5
	line of river across the depth of flow of river. The velocity measured										
	are shown as per details in table below. If the average cross-sectional area of the river is 32.5 m ² , compute the discharge of the river. Take										nicket Sections and Commission
	depth of river 3.0 m.										
	Depth from		0.5	1.0	1.5	2.0	2.5	3.0]		
	bottom of			-							
	channel (m)										
	Point	0	0.5	1.25	1.75	1.85	1.87	1.9			
	Velocity	Emirod									
04(-)	(m/s)	V anda		Dolton	vulsaal t	, mb in oa	highlig	hting th	oin	CO4	2
Q4 (a)	Compare the Kaplan and Pelton wheel turbines, highlighting their differences. Also, specify the range of head conditions under which									CO4	2
	each turbine is typically used for power generation.										
Q4 (b)	The hub diameter of a Kaplan turbine, working under a head of 12 m, is 0.35 times the diameter of the runner. The turbine is running at 100								CO4	6	
	rpm. If the vane angle of extreme edge of the turbine at outlet is 15°										
	and the flow ratio 0.6 find										

	(a) Diameter of the runner		
	(b) Diameter of the boss		
	(c) Discharge through the runner		
Q5	A reciprocating pump is being used — what type of system should be	CO5	5
	integrated into the pipeline to ensure a continuous and uniform flow of		
	water? Briefly explain its function with neat sketch.	Marine Commence	
Q6	A single acting reciprocating pump running at 40 rpm is discharging	CO5	5
	0.01 m ³ per sec. The pump has a stroke of 400 mm. The diameter of		
	piston is 200 mm. The delivery and suction heads are 20 m and 5 m	de de la companya de	
	respectively. Find the theoretical discharge, slip of the pump and the	Section 1	100
	power required to drive the pump.	1000	- 1 1