JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-II Semester (CE)

COURSE CODE (CREDITS): 18B11CE415

MAX. MARKS: 35

COURSE NAME: MECHANICS OF SOLIDS

COURSE INSTRUCTORS: Mr. Chandra Pal Gautam

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required

for solving problems

	for solving problems	6.45	1
Q.No	Question	CO	Marks
Q1	(i) Find the section modulus of the given cross section of the beam.	CO3	5+2 =
	x 300mm-1,	P. 48.	7
	Somm	5.	
	Loomm Loomm		lucoxa.y. we-
	(ii) Draw the bending stress diagram of a beam at a given cross section		
Q2	Find the general equation of deflection and slope of the given beam by using Double Integration Method.	CO5	7
	A 5m 5m B		
Q3	Find the slope at A and deflection at middle of the beam by using Singularity Function. 20KN 50KNm 40KN 20KN 20KNm 20KN	CO5	7
Q4	Draw the shear stress diagram of the given cross sections of beam.	CO4	6
Q5	Draw the shear force and bending moment diagram for the given beam. Also find the maximum bending stress in the beam. 100KN	CO3	8
	20 KN/m 5m B 200mm C/s of beam		

