JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

Ph.D. (Mathematics)

COURSE CODE (CREDITS): 13P1WMA232 (3)

MAX. MARKS: 35

COURSE NAME: MATHEMATICAL ANALYSIS

COURSE INSTRUCTOR: Pradeep Kumar Pandey

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No.	Question	Marks
Q1	(i) Consider the metric space (\mathbb{R}, d) with standard metric given by $d(x, y) = x - y , \forall x, y \in \mathbb{R}$. Find the interior of $\mathbb{Q} \subset \mathbb{R}$.	3
pa bowards and the description	(ii) Consider the metric space (\mathbb{Q}, d) with standard metric given by $d(x, y) = x - y , \forall x, y \in \mathbb{Q}$. Find the interior of \mathbb{Q} .	
Q2	Prove or disprove that $f(x) = \begin{cases} x^2 \sin(1/x), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is differentiable $\forall x \in \mathbb{R}$.	3
Q3	Obtain the singularities of $f(z) = \frac{1}{(z-1)^2} + \frac{\sin z}{z} + e^{1/(z-2)}$ and sub-classify	3
- 100 W W W	them according to number of terms in principal part of the Laurent's series.	
Q4	State and prove Cauchy's Inequality $ f^{(n)}(z_0) \leq Mn!/r^n$, $n = 1,2,3,\cdots$	3
Q5	Define harmonic conjugate of a function $u(x,y)$. Given that $u(x,y) = x^3$	3
	$3xy^2 + x$ find its harmonic conjugate using Milne-Thomson method.	
Q6	Show that $f(z) = \begin{cases} \frac{z^5}{ z ^4}, z \neq 0 \\ 0, z = 0 \end{cases}$ is not differentiable at the origin though	4
	Cauchy-Riemann equations are satisfied at the origin.	
Q7	Define a bounded linear operator between normed linear spaces. Suppose X and Y are normed linear spaces, then show that the collection $L(X,Y)$ of all bounded linear operators from X to Y is a normed linear space.	3
Q8	(i) State the Hahn Banach theorem.	3
	(ii) Give an example of a sublinear functional.	ACCUMENTAL CONTROL
Q9	Define a Hilbert space. Consider \mathbb{C}^3 with the inner product $\langle z, w \rangle = \sum_{i=1}^3 z_i \overline{w_i}$,	
1000	where $z = (z_1, z_2, z_3)$ and $w = (w_1, w_2, w_3) \in \mathbb{C}^3$. Is $(\mathbb{C}^3, \ \cdot\)$ is a Hilbert	3
	space. Also compute $ z $ for $z = (1 + i, 2i, -1) \in \mathbb{C}^3$.	
Q10	Using contour integral evaluate $\int_0^{2\pi} \frac{1}{7+6\cos\theta} d\theta$.	3
Q11	State and prove the Closed Graph Theorem.	4