JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2025

B.Tech-VIII Semester (CSE)

COURSE CODE (CREDITS): 18B1WCI847 (2)

MAX. MARKS: 25

COURSE NAME: Social and Information Network Analysis

COURSE INSTRUCTORS: Seema Rani

MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

		² C.	
Q.No	Question	CO	Marks
Q1	Discuss the steps in importing a dataset and exporting a graph in	CO-4	5
	Gephi.		ļ
Q2	Write down the algorithm for Eigen vector centrality along with	CO-3	4
	time complexity.		
Q3	What is Eccentricity in a graph? How does it relate to the	CO-2	5
	concept of network diameter? Explain with example.	,3	
Q4	Consider the undirected network with 6 nodes A, B, C, D, E,	CO-6	[1+2+2
7	and F. The edges are as follows:		i
	 A is connected to B and C,]
	B is connected to A, C, and D		
	 C is connected to A, B, and E 		
	 D is connected to B and E 		
	 E is connected to C, D, and F 		
	• F is connected only to E		
	Compute the degree centrality of each node.		
	Identify the node with the highest closeness centrality and		
	justify		
	Compute the betweenness centrality of node C.		
Q5	Given the following 3×3 adjacency matrix A, representing an	CO-6	6
	undirected network of 3 nodes. Calculate the eigenvector		
	centrality for each node, showing all steps in detail.		
,	,		
	[o 1 1]		
	$A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$		
	$A = egin{bmatrix} 2 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 2 \end{bmatrix}$		
	L ⁺ + "]		
			·