JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION-2025

B.Tech VIII Semester (CE)

COURSE CODE (CREDITS): 18B1WCE733 (3)

MAX. MARKS: 25

COURSE NAME: Advanced Foundation Engineering

COURSE INSTRUCTORS: Dr. Saurav

MAX. TIME: 1.5 Hour

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

Q.No		Ques	tion	() () () () () () () () () ()	C O	Marks
Q 1.	Calculate the net ultimate bearing capacity $q_{\rm nu}$, and the net allowable bearing pressure $q_{\rm na}$ (F, = 3), given the following with reference to Fig. 1. B= 3 m, $D_{\rm f}$ = 2.5 m, $D_{\rm l}$ = 0.5 m. The soil is assumed as clay and foundation square. Table 1 gives the value of limit pressure $p_{\rm l}$ at various depths					
	Depth below GL (m) 0.5 1.5 2.5 3.5 4.5 5.5		Depth below GL (m) 6.5 7.5 1.5 B 1.5 B 1.5 B 1.6 7 8 on and foundation on two	1.5 B		

Q2.	A square footing of size 8	x 8m is founded at	a depth of 2 m below the	ground surface in			
	loose to medium dense sand with $q_n = 120 \text{ kN/m}^2$. Standard penetration tests conducted at						
	the site gave the following corrected N ₆₀ values.						
- 5							
	Depth below GL (m)	N _{cor}	Depth below GL	Noor			
	2	8	10	H	3	7	
	4	8.	!2 .,	16		•	
	6	12 12	14 16	18 <i>3</i>			
	0	12	18	20			
	The water table is at the base submerged $v_k = 8.5 \text{ kN/m}^3$						
	submerged $\gamma_b = 8.5 \text{ kN/m}^3$, Compute the elastic settlement equation, given $E_s = 250 \text{ (N}_{cor} + 15)$ for computing the modulus of elasticity of the sand. Assume $\mu = 0.3$ and the depth of the compressible layer = $2B = 16 \text{ m}$ (=H).						
Q3.	The observed standard penetration test value in a deposit of fully submerged sand was 45 at						
- Zu	a depth of 6.5 m. The average effective unit weight of the soil is 9.69 kN/m ³ . The other data						
	given are: hammer efficiency = 0.8, drill rod length correction factor = 0.9 borehole						
	correction factor = 1.05. De	SPT value for standard en	nergy:				
	(a) $R_{es} = 60$ percent, and (b)	$P_{es} = 70\%$					
Q4.	Discuss the factors affecting the stability of boreholes during drilling operations. Explain the						
	causes and preventive mea	(ii) heaving of the	3	4			
	bottom of the hole. Illustrate your answer with suitable examples.						
Q5.	Explain the significance of						
	disturbed and undisturbed						
	tests, and limitations. Disc	urbed soil samples	3	4			
	and how these issues can b	e minimized.					
	d. 14 14						