JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

M.Tech-II Semester (ECE)

COURSE CODE (CREDITS): 22M11CI211 (3)

MAX. MARKS: 15

COURSE NAME: SOFT COMPUTING

COURSE INSTRUCTORS: Munish Sood

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	Using Mamdani's approach, design a controller to determine the fuel consumption in liters of a petrol car engine. Assume the input as	2	4
	accelerator and gear shift. Use three descriptors for input variables and		
	five for output variable. Find out the fuel consumption for 80%		
·	acceleration and 20% gear shifts.		
Q2	Consider two fuzzy sets	1	4
	$A_{\sim =} \left\{ \frac{0.7}{3.0} + \frac{0.65}{5.0} + \frac{0.25}{7.0} + \frac{0.45}{9.0} + \frac{0.5}{11.0} \right\}$		
	$B_{\sim =} \left\{ \frac{0.3}{3.0} + \frac{0.85}{5.0} + \frac{0.5}{7.0} + \frac{0.75}{9.0} + \frac{0.7}{11.0} \right\}$		
	Calculate (i) $\overline{A_{\sim} \cup B_{\sim}}$ (ii) $A_{\sim} \cap \overline{A_{\sim}}$		
Q3	Find the membership value assignment for an isosceles right angle	1	4
	triangle given by $\mu = \{70,60,50\}$ in degrees.	٠	
Q4	Consider two fuzzy sets	1	3
	$A_{\sim} = \left\{ \frac{0.2}{50} + \frac{0.45}{70} + \frac{0.5}{90} + \frac{1}{110} \right\}$ $B_{\sim} = \left\{ \frac{0.4}{50} + \frac{0.9}{70} + \frac{0.2}{90} + \frac{0.65}{110} \right\}$ Using lambda cut method of de-fuzzification, find	1	
	(i) $\overline{A_{\sim}} \cap \overline{B_{\sim}}$ (ii) $\overline{A_{\sim}} \cap \overline{B_{\sim}}$		
	For $\lambda = 0.4$		
	1 U. /_U.\		i