JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025 M.Tech.-II Semester (Biotechnology)

COURSE CODE (CREDITS): 14M11BT215 (3)

MAX. MARKS: 15

COURSE NAME: Metabolic Engineering

COURSE INSTRUCTORS: Dr. Jitendraa Vashistt

MAX. TIME, 1 Hour

Note: (a) All questions are compulsory. (b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

Q. No.	Question	T 3 0 1
Q1.	Explain the metabolic versatility of acetyl COA with respect to catabolism	Marks
	and anabolism. Define the energy state of an organism to get shifted from	3
	cotabatic mathematical and the same of an organism to get smitted from	
	catabolic pathway to anabolic state for higher molecules formation. Justify	
	your answer with suitable example.	I
Q2	How do you differentiate between primary metabolite and secondary	3
	metabolite? Also define the relation of both of the metabolites.	
Q3	Explain the following with suitable example.	3
	a) Directed improvement of product formation using metabolic engineering.	
	b) Metabolic control using enzyme repression and inhibition	
Q4.	How do you calculate the number of ATP generated after complete beta-	$-{3}$
	oxidation of Palmitic acid? Explain the sequence of above mentioned	
	molecular process.	
Q5.	Why liver and heart produces more number of ATPs as compared to the	3
	Skeletal muscle and brain after complete oxidation of glucose.	
l_		