JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -1 EXAMINATION- 2025

B.Tech-VIII Semester (Open Elective)

COURSE CODE (CREDITS): 24B1WPH831 (03)

MAX. MARKS: 15

COURSE NAME: Biomaterials

COURSE INSTRUCTORS: Ragini Raj Singh

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of calculator is allowed

Q.No	Question	CO	Marks
Q1	(a) Discuss the essential fields of knowledge required for development of	1	1.5
	biomaterials; and how they are connected?		
	b) How you can differentiate between transplant and Implant?		1.5
Q2	(a) Classify the biomaterials with their advantages.	1	1.5
	(b) Based on your understanding what are the criteria to select biomedical		
	materials?	<u></u>	1.5
Q3	(a) Discuss friction and wear failure in biomaterials.	1	1.5
	(b) What are some applications of visco-elastic Materials?		1.5
Q4	The following data were recorded during the tensile test of a 14-mm-	2	3
	diameter mild steel rod. The gage length was 50 mm.		
	Load (N) Elongation (mm) Load (N) Elongation (mm)		
	0 46 200 1.25		
	6 310 0.010 52 400 2.50 12 600 0.020 58 500 4.50		
	12 600 0.020 58 500 4.50 18 800 0.030 68 000 7.50		
	25 100 0.040 59 000 12.5		
	31 300 0.050 67 800 15.5		
	37 900 0.060 65 000 20.0		
	40 100 0.163 65 500 Fracture		
	41 600 0.433		
	Plot the stress-strain diagram and determine the following mechanical		
	properties: (a) proportional limits; (b) modulus of elasticity; (c) yield point;		
05	(d) ultimate strength; and (e) rupture strength (Fracture). (a) A steel rod having a cross-sectional area of 600 mm ² and a length of	2	1.5
Q5	300 m is suspended vertically from one end. It supports a tensile load of 30	2	1.5
	kN at the lower end. If the unit mass of steel is 7850 kg/m ³ and $E = 200 \times 10^{-3}$		
	10^3 MN/m ² , find the total elongation of the rod.		
	10 MIN/III, IIIId tile total eloligation of the rod.		1.5
	(b) A rod 200 cm long and of diameter 3.0 cm is subjected to an axial pull		1.0
	of 20 kN. If the modulus of electricity of the meterial of the rod is 2 × 10 ⁵		
	of 20 kN. If the modulus of elasticity of the material of the rod is 2×10^5		
	N/mm ² , determine:		
	(i) the stress; (ii) the strain, and (iii) the elongation of the rods.		