JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- FEB-2025

COURSE CODE(CREDITS): 21B1WMA831 (3)

MAX. MARKS: 15

COURSE NAME: Soft Computing & Optimization Algorithms

COURSE INSTRUCTORS: Dr. B. K. Pathak

MAX. TIME: 1 Hour

Note: (

(a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

01		CO	Marks
Q1	Consider a fuzzy set A defined on the universal set $X=\{1,2,3,4,5,6\}$ with		
	the following membership function:		
i	$A = \{(1,0),(2,0.6),(3,1),(4,1),(5,0.4),(6,0)\}$	~~ 1	
	(a) Determine the core of the fuzzy set A.	CO-1	3
	(b) Find the support of A.		
	(c) Identify the boundary of A.		
Q2	Imagine that two restaurants, restaurant A and restaurant B, are evaluated		
	based on customer satisfaction for five key aspects:		
	1-Food Quality, 2-Service Speed, 3-Cleanliness, 4-Ambience and 5-		
	Pricing		
	Each aspect is rated between 0 and 1, where 0 represents very poor		
	satisfaction and 1 represents maximum satisfaction.		
	Restaurant A's customer satisfaction levels across the five aspects		
	are represented as fuzzy set A:		
	A={(1,0.2),(2,0.5),(3,0.8),(4,1.0),(5,0.6)}		
	Restaurant B's customer satisfaction levels for the same aspects are	CO-1	4
	given by fuzzy set B:		
	$B=\{(1,0.7),(2,0.4),(3,0.9),(4,0.5),(5,0.3)\}$		
ŧ.,	Compute the following:		
	(a) The best possible experience if we pick the highest satisfaction from		
	both restaurants.		
	(b) The most conservative experience, considering only aspects where both		
	restaurants perform well.		. *
	(c) The dissatisfaction levels with restaurant A.	į	
	(d)The aspects where restaurant A is superior to restaurant B		

Q3	Let a fuzzy set A be defined on the interval $X=[0,10]$ with the following membership function:		
	$\mu_A(x) = \frac{x}{10} \; ; \; 0 < x < 10$	CO-2	4
	(a) Compute the cardinality of the fuzzy set A.		
	(b) Determine the relative cardinality of A with respect to the universal		
	set X=[0,10].		
Q4	Plot and write the trapezoidal membership function for a fuzzy set A		
	with the following breakpoints: a=2, b=4, c=6, d=8.		
	Also, find $\mu_A(\mathbf{x})$ for:	CO-2	4
	$(a) x_1 = 3$		
	(b) $x_2 = 7$	r	