19/2 1.30 pm

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-6th Semester (ECE)

COURSE CODE (CREDITS):19B1WEC633 (3)

MAX. MARKS: 15

COURSE NAME: Computer Vision

COURSE INSTRUCTORS: Lt. Praggya Gupta

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Question	CO	Marks
Q1	Explain any three real-world applications of computer vision in modern technology.	CO 4	1.5
Q2	 a) What are the main steps involved in the Canny edge detection algorithm? b) In the context of edge detection, what is the purpose of the "non-maximum suppression" step? c) The gradient magnitude at a point in an image is calculated as: G = √G_x² + G_y² 	CO 1	1+1.5+
	Where $G_x = 30$, and $G_y = 40$ Find the gradient magnitude G and determine if this edge is strong or weak if the threshold values are: • Low Threshold = 20 • High Threshold = 50		
Q3	 a) Briefly explain how the region-growing algorithm identifies regions and how the selection of a seed point affects the process. b) Divide the given image into two regions using the region growing algorithm if the threshold condition is mod (pixel-seed) < threshold. Choose seed pixel accordingly 1	CO 1	2+3
	4 0 8 8 8 9 5 1 2 8 8 9		

Q4	a) Differentiate between global and adaptive thresholding.	СО	2+3
	b) Consider the following 5×5 grayscale image with pixel intensities:	1	
	$\begin{bmatrix} 10 & 50 & 80 & 100 & 200 \\ 20 & 60 & 90 & 110 & 210 \\ 30 & 70 & 100 & 120 & 220 \\ 40 & 80 & 110 & 130 & 230 \\ 50 & 90 & 120 & 140 & 240 \end{bmatrix}$		
	Calculate the mean intensity of the image and use it as the global threshold T . Using the threshold T , classify each pixel as belonging to the object (if its intensity is $\geq T$) or the background (if its intensity is $\leq T$). Represent the result as a binary image where I represents the object and 0 represents the background.		