JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech-III Semester (ECE)

COURSE CODE (CREDITS): 23B11EC411 (3)

MAX. MARKS: 15

COURSE NAME: AUTOMATIC CONTROL SYSTEMS

COURSE INSTRUCTORS: Dr Rajiv Kumar

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

		· · · · · · · · · · · · · · · · · · ·	
Q.No	Question	CO	Marks
Q1	Find the transfer function of the following block diagrams using block diagram reduction technique $R(s) + \bigcirc G_1 + \bigcirc G_2 + \bigcirc G_3 + \bigcirc Y(s)$ $R(s) + \bigcirc G_1 + \bigcirc G_2 + \bigcirc G_3 + \bigcirc Y(s)$	CO-1	3
Q2	A thermometer requires 1 min to indicate 98% of the response to a step input. Assuming the thermometer to be a first-order system, find the time constant.	CO-2	3
Q3	For the system shown in figure below, find the expected steady state errors for the standard step and ramp inputs. $R(s) = \frac{100(s+2)(s+5)}{s^2(s+8)(s+12)} $ c(s)	CO-2	3

