JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B.Tech. - VI Semester (CSE/IT)

COURSE CODE (CREDITS): 18B1WCI635 (2)

MAX. MARKS: 15

COURSE NAME: Data Mining and Data Warehousing

COURSE INSTRUCTORS: Ekta Gandotra

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Calculator is allowed.

Q.			Quest	ion		CO	Marks
No. Q1.	a. Analyze the key characteristics of a data warehouse and evaluate how i supports the KDD process in extracting valuable insights for decision making.					CO1	[3]
	b. Consider the data: 25, 30, 45, 50, 60. Apply Min-Max normalization method on this data to scale the values between 1 and 1.						[2]
Q2.	a. Consider two text documents represented as term frequency vectors in a 6-dimensional space: Doc1 = (2,3,0,5,7,1), Doc2 = (4,1,2,6,3,2) Compute the cosine similarity of these two documents. Also interpret the results.					CO3	[2]
	b. Consider the daily step count (in thousands) of two fitness enthusiasts over five days: Person A = (7, 10, 12, 9, 11), Person B = (8, 9, 14, 10, 12) Compute the Manhattan distance between their step counts. Interpret the results in terms of the similarity of their physical activity levels.						[2]
Q3.	 a. How do you determine the value of k in the k-NN algorithm? What are the drawbacks of choosing a value of k that is too small? b. Given the dataset below, apply ID3 algorithm to determine the root node for the decision tree. 					CO4	[2]
							[4]
· ·	18 July 18 18 18 18 18 18 18 18 18 18 18 18 18	Age	Income	Buy Product?			
	3	Young	High	No			
		Young	Low	Yes			
		Middle	High	Yes			
		Middle	Low	Yes			
İ		Old	High	Yes	_		
		Old	Low	No			