JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1EXAMINATION- 2025

B.Tech-IV Semester (CSE)

COURSE CODE (CREDITS): 24B11CI411 (3)

MAX. MARKS: 15

COURSE NAME: ARTIFICIAL INTELLIGENCE: RECENT TRENDS AND APPLICATIONS

COURSE INSTRUCTORS: AAYUSH SHARMA

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q.No	Q	uestion		CO	Marks
Q1	A hospital deploys an AI system to prioritize emergency patients. One day, it must			[CO 1]	3
•	choose between treating a young patient with low survival chances or an elderly				
	patient with higher survival chances. How does AI make such decisions, and how				
	does it compare to human ethical reasoning?				
Q2	A rescue robot is deployed in a collapsed building to find survivors. The robot can			[CO 1] [CO 2]	3
	either use Depth-First Search (DFS) or Breadth-First Search (BFS) to explore				
	rooms. Given that some paths may lead to dead ends and time is critical, which				i
	algorithm would be more suitable in each case and why?				
	Note that: R = Robot initial position, F = Fire, V = Victim Position Action sequence of the robot: Left, Right, Down, Up Case A Case B				
,					
	R				
]					
<u></u>					
Q3	An AI-powered maze solver is tested on two different heuristics:				3
i	• h ₁ = Euclidean Distance to the goal				
{	• h ₂ = Manhattan Distance to the goal The following data is collected:				
	Heuristic Nodes Total Path Execution				
Ì	1 1 40° NI	+	l l		
}		SL	Time (ms) 120		
	H1 85 50 H2 95 48		110		
	Answer the following: 1. Which heuristic is admissible (if any)? 2. Which heuristic performs better overall, considering path cost vs. computational efficiency?				
4					
1	3. If the maze had diagonal movement allowed, which heuristic would be more				
	appropriate?				
Q4	Write the pseudo code for the following problem:			[CO 2]	3
🖓	Given a string s consisting of lowercase and/or uppercase letters, the task is to return			[CO 2])
	the length of the longest palindrome that can be built with those letters. Letters are				
L	the length of the longest pannulome that can be built with those letters. Letters are				L

```
case-sensitive, so "Aa" is not considered a palindrome. For example, if the input is s
        = "abccccdd", the output will be 7, as the longest palindrome that can be formed is
        "decaced". In another example, if the input is s = "a", the output will be 1, as the
        longest palindrome is the single character "a".
Q5
         What is the output of the following code:
                                                                                                                         [CO 2]
                                                                                                                                          3
        defalpha_beta(node, depth, alpha, beta, maximizing player):
           global nodes_visited
        nodes_visited += 1
           if depth == 0:
             return node['value']
           if maximizing player:
              value = -float('inf')
              for child in node['children']:
                value = max(value, alpha beta(child, depth-1, alpha, beta, False))
                alpha = max(alpha, value)
                if alpha >= beta:
                  break
             return value
           else:
              value = float('inf')
             for child in node['children']:
                value = min(value, alpha beta(child, depth-1, alpha, beta, True))
                beta = min(beta, value)
                if alpha >= beta:
                  break
             return value
        tree = {
           'children': [
                'children': [
                  {'children': [{'value': 5}, {'value': 8}, {'value'. 3}]},
                  {'children': [{'value': 2}, {'value': 7}, {'value': 1}]},
                  {'children': [{'value': 6}, {'value': 4}, {'value': 9}]}
             },
                'children': [
                  {'children': [{'value': 15}, {'value': 2}, {'value': 10}]},
                   {'children': [{'yalue': 4}, {'value': 5}, {'value': 6}]},
                  {'children': [ {\value': 7}, {\value': 8}, {\value': 9}]}
                'children': [
                  {'children': [{'value': 1}, {'value': 12}, {'value': 11}]},
                  {'children': [{'value': 3}, {'value': 2}, {'value': 6}]},
                {children: [{ value: 3}, { value: -3}, { value: 4}]}
        nodes visited = 0
        result = alpha beta(tree, 3, -float('inf'), float('inf'), True)
        print(f'Final value: {result}, Nodes visited: {nodes_visited}")
```