JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2025

B Tech - IVth Semester (CE)

COURSE CODE (CREDITS): 18B11CE411

MAX. MARKS: 15

COURSE NAME: Geotechnical Engineering

COURSE INSTRUCTORS: Saurabh Rawat

MAX. TIME: 1 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems

Q No	Question	CO	Marks
Q1 Q1	Justify the statements with reasons:		
\c -	a) 'Clays containing montmorillonite show high volume expansion and shrinkage.'	1	1+1
	b) 'Clay - water interaction results in a flocculated structure.'		= 2
Q2	Earth is required to be excavated from borrow pits for building an embankment. The		
~-	wet unit weight of undisturbed soil is 18 kN/m ³ and its water content is 8%. To build a		
	4 m high embankment with top width 2m and side slopes 1:1, estimate the quantity of		
	earth required to be excavated per meter length of embankment. If the required dry unit	1, 2	3+1+1
		1, 2	= 5
	weight of the embankment is 15 kN/m^3 , moisture content is 10% with $G = 2.67$, then		
	determine the void ratio (e) and degree of saturation (S) of soil in both the pit and		
	embankment.		
Q3	Derive the expression for Relative Density (R_D) in terms of Dry Unit Weight (γ_d) .	2	2
Q4	Five different particle sizes are mixed in proportion shown below and water is added		
	to make a soil suspension of volume of 1000 cc.		
	Particle size (mm) Weight of solids (g)		
	0.060		
	0.020		
	0.010 20		
	0.005		
	0.001	1, 2	2+3+1
		-7-	= 6
	The particles have $G = 2.65$ and viscosity of water = 0.00895 poise. The suspension		
	was thoroughly shaken, and sedimentation was allowed. Determine:		
	a) The largest size present at a depth of 10 cm after 8 minutes from the start of the		
	sedimentation?		
	b) The specific gravity of the soil suspension at a depth of 10 cm after 8 minutes from the start of the sedimentation?		
	c) The time (in mins.) taken by all the particles to settle down after the start of the sedimentation below the depth of 10 cm.		
	seumentation below the depth of 10 cm.	J	l