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SUMMARY

Even though a lot of effort is made to secure our networks by various mechanisms, they
still remain vulnerable to a number of crafty attacks. There is a particular type of attack in which
the attackers try to confuse the network security systems by introducing ambiguities in the
network i.e. sending inconsistent TCP retransmissions. Our effort will be to design a normalizer
that buffers only the hashes of incoming packets, to detect any inconsistent retransmissions in
any TCP byte stream. In this way, the memory requirements are less and thus it can be

implemented on high speed networks without affecting the performance. Our normalizer shall

also be robust to attacks that attempt to prevent its correct operation or exhaust its resources.
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1.) OBJECTIVE

The objective of this project is to implement a network element that detects and blocks

inconsistent retransmissions in any TCP byte stream, in a manner that takes care of the memory

requirements and is also resistant to attacks.

The programs will run on Linux operating system and the entire project will be developed

and coded using C language and socket programming.
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2.) SCOPE OF THE PROJECT

We have envisaged our normalizer to work on a Linux platform on a three node network with
a simple client-server architecture. Our endeavor is to implement the functionality of this
essential network element, the normalizer in software using the C programming language. The
game can be extended to hardware implementation with the aid of assembly language. The scope
of this normalizer can be extended to other dynamic network configurations and on other

platforms (Windows, Mac etc.).

‘There are still possibilities of exploring a different approach to defending against evasion
attacks in which the network monitor may proactively determine how specific end systems and
network paths will resolve potential ambiguities. While this approach can be a valid point in the
overall design space, eliminating ambiguities, rather than attempting to correctly guess their

outcome, seems to provide a more robust foundation for security monitoring technology.
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3.) INTRODUCTION

3.1. What is a Normalizer?

Network intrusion detection systems’ fundamental property is the ability of a skilled attacker to
ovade detection by exploiting ambiguities in the traffic stream as seen by the monitor. Network
intrusion detection and prevention systems are widely used to improve the security of networks
used by providers, enterprises, and even home users. Such monitors usually operate on the path
between the protected network and the rest of the Internet. They observe all traffic coming in and

out of the network and flag or block activities that appear malicious.

A normalizer is a network element that prevents evasion attempts by removing ambiguities in
network traffic. It sits directly in the path of traffic into a site and observes the packet stream to

eliminate potential ambiguities before going into the network.

Normalizer differs from a firewall in several ways. It does not prevent access to services on
internal hosts, but ensures that access to these hosts takes place in a secure manner that is
unambiguous to the site’s Network Intrusion Detection System. Normalizers can prevent known
attacks, or shut down access to internal machines from an external host when it detects a probe or
an attack. It can shut down and discard state for flows that do not appear to be making progress,

while passing and normalizing those that do make progress.

In the next section we briefly discuss the possible ways in which a normalizer can be
implemented, the various types of normalizers as well as the techniques which are used to

develop them.
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3.2. Various types of Normalizers implemented and related
research done in this field

» Recent work done by G. Varghese, J. A. Fingerhut, and F. Bonomi, “Detecting
Evasion Attacks at High Speeds without Reassembly,” addresses one type of evasions, namely
an attacker attempting to prevent a specific signature match against text they transmit. The
authors developed a scheme based on introducing a modest change in end-system TCP behavior
in order to allow a monitor to detect attempts to ambiguously transmit byte sequences that match
a given set of signatures. Their scheme is appealing in that by exploiting the introduced end-
system change, they avoid needing to reassemble TCP byte streams. However, their scheme is
also significantly limited in that it only applies to evasions that correspond to directly
manipulating a known byte-sequence signature. As such, the scheme does not handle cases
where the ambiguity does not constitute an actual attack in itself, but only confuses the monitor’s

protocol parsing and obscures the occurrence of an attack later in the stream.

> Y. Sugawara, M. Inaba, and K. Hiraki in their paper “High-speed and Memory
Efficient TCP Stream Scanning Using FPGA,” describe an FPGA-based solution to efficient
TCP stream-level signature detection. Their system detects inconsistent retransmissions by
storing hashes of transmitted packets. To handle retransmissions that do not overlap with original
segment boundaries, the authors simply propose holding onto the partial overlaps till other
packets that “fill the gap” arrive. However, our trace evaluation shows that such an approach will
result in a significant number of connections stalling on pending consistency checks, RoboNorm

addresses this problem with the ACK promotion mechanism.

» Normalization as a general feature has been incorporaied intc secure operating
systems and commercial products. Some of these latter include explicit options to check for
inconsistent retransmissions, but do not provide technical details as to how such detection works.
From informal discussions with other vendors, it appears that a common approach is to use
payload hashes, but without addressing the crucial problem of misaligned retransmissions for

which the hashes cannot be matched.

ey~ VR




o | emsemm————

TCP STREAM NORMALIZATION

» Shankar and Paxson explored a different approach to defending against evasion
attacks which they term “Active Mapping”. Here, the idea is for the network monitor to
proactively determine how specific end systems and network paths will resolve potential
ambiguities. While this approach is a valid point in the overall design space, we argue that
eliminating ambiguities rather than attempting to correctly guess their outcome, provides a more

robust foundation for security monitoring technology.

» Work by Levchenko et al. demonstrates in formal terms that many security
detection tasks (e.g., detecting SYN flooding, port scans, connection hijacking and evasion
attacks) fundamentally require maintaining per-connection state. This finding highlights the

importance of reducing the amount of per-connection state.

» In work done by S. Dharmapurikar and V. Paxson, “Robust TCP Stream
Reassembly in the Presence of Adversaries,” explores how to robustly reassemble TCP byte
streams when faced with adversaries who attempt to overwhelm the accompanying state
management. Reassembly involves maintaining out-of-order data only until sequence “holes” are
filled, while normalization requires maintaining data until it is acknowledged and hence requires

a different solution.
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4) LITERATURE REVIEW |

4.1. Evasion Attacks

The reviewed literature presents a keen insight into another important class of network
security attacks i.e. the evasion attacks. Evasionis a term used to describe techniques of
bypassing  an information ~ security devicein order to deliver an exploit, attack or
other malware to a target network or system, without detection. Evasions are typically used to
counter network-based intrusion detection and prevention systems (IPS, IDS) but can also be
used to by-pass firewalls. A further target of evasions can be to crash a network security device,
rendering it in-effective to subsequent targeted attacks. Evasions can be particularly nasty .'
because a well-planned and implemented evasion can enable full sessions to be carried forth in |
packets that evade IDS. Attacks carried in such sessions will happen right under the nose of the
network and service administrators. The security systems are rendered ineffective against weli-
designed evasion techniques, in the same way a stealth fighter can attack without detection by

radar and other defensive systems. ?1
1

Network attackers often use network IPS evasion techniques to attempt to bypass the
intrusion detection, prevention, and traffic filtering functions provided by network IPS sensors.

Some commonly used network IPS evasion techniques are listed below:

Encryption and Tunneling
o Timing Attacks

e Resource Exhaustion il
e Traffic Fragmentation E j

;' ' * Protocol-level Misinterpretation

o Traffic Substitution and Insertion I '.
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4.1.1, Encryption and Tunneling

One common method of evasion used by attackers is to avoid detection simply by encrypting
the packets or putting them in a secure tunnel. As discussed now several times, IPS sensors
monitor the network and capture the packets as they traverse the network, but network based
sensors rely on the data being transmitted in plaintext. When and if the packets are encrypted, the
sensor captures the data but is unable to decrypt it and cannot perform meaningful analysis. This
is assuming the attacker has already established a secure session with the target network or host.

Some examples that can be used for this method of encryption and tunneling are:
o Secure Shell (SSH) connection to an SSH server

Client-to-LAN IPSec (IP Security) VPN (virtual private network) tunnel

Site-to-site IPSec VPN tunnel

L ]

SSL (Secure Socket Layer) connection to a secure website

There are other types of encapsulation that the sensor cannot analyze and unpack that
attackers often use in an evasion attack. For example, GRE (Generic Route Encapsulation)

tunnels are often used with or without encryption.
4.1.2. Timing Attacks

Attackers can evade detection by performing their actions slower than normal, not
exceeding the thresholds inside the time windows the signatures use to correlate different packets
together. These evasion attacks can be mounted against any correlating engine that uses a fixed
time window and a threshold to classify multiple packets into a composite event. An example of
this type of attack would be a very slow reconnaissance attack sending packets at the interval of
a couple per minute. In this scenario, the attacker would likely evade detection simply by making

thie scan possibly unacceptably Tong.
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4.1.3. Resource Exhaustion

A common method of evasion used by attackers is extreme resource consumption, though
this subtle method doesn't matter if such a denial is against the device or the personnel managing
the device. Specialized tools can be used to create a large number of alarms that consume the
resources of the IPS device and prevent attacks from being logged. These attacks can overwhelm
what is known as the management systems or server, database server, or out-of-band (OOB)
network. Attacks of this nature can also succeed if they only overwhelm the administrative staff,
which does not have the time or skill necessary to investigate the numerous false alarms that

have been triggered.

Intrusion detection and prevention systems rely on their ability to capture packets off the
wire and analyze them quickly, but this requires the sensor has adequate memory capacity and
processor speed. The attacker can cause an attack to go undetected through the process of
flooding the network with noise traffic and causing the sensor to capture unnecessaiy packets. If
the attack is detected, the sensor resources may be exhausted but unable to respond within a

timely manner due to resources being exhausted.
4.1.4. Traffic Fragmentation

Fragmentation of iraffic was one of the early network IPS evasion techniques used to attempt
to bypass the network IPS sensor. Any evasion attempt where the attacker splits malicious traffic

to avoid detection or filtering is considered a fragmentation-based evasion by:
» Bypassing the network IPS sensor if it does not perform any reassembly at all.

e Reordering split data if the network IPS sensor does not correctly order it in the

reassembly process.

* Confusing the network IPS sensor's reassembly methods which may not reassemble split

data correctly and result in missing the malicious payload associated with it.

* A few classic examples of fragmentation-based evasion are below:
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. TCP segmentation and reordering, where the sensor must correctly reassemble the entire
TCP session, including possible corner cases, such as selective ACKs and selective

retransmission.

o IP fragmentation, where the attacker fragments all traffic if the network IPS does not
perform reassembly. Most sensors do perform reassembly, so the attacker fragments the
IP traffic in a manner that it is not uniquely interpreted. This action causes the sensor to

interpret it differently from the target, which leads to the target being compromised.

In the same class of fragmentation attacks, there is a class of attacks involving overlapping
fragments. In overlapping fragments the offsei values in the IP header don't match up as they
should, thus one fragment overlaps another. The IPS sensor may not know how the target system
will reassemble these packets, and typically different operating systems handle this situation

differently.
4.1.5. Protocol-level Misinterpretation

Attackers also evade detection by causing the network IPS sensor to misinterpret the end-
to-end meaning of network protocols. In this scenario the traffic is seen differently from the
target by the attacker causing the sensor either to ignore traffic that should not be ignored or vice
versa. Two common examples are packets with bad TCP checksum and IP TTL (Time-to-live)

attacks.

A bad TCP checksum could occur in the following manner: An attack intentionally

corrupts the TCP checksum of specific packets, thus confusing the state of the network IPS
sensor that does not validate checksums. The attacker can also send a good payload with the bad
checksum. The sensor can process it, but most hosts will not. The attacker follows with a bad
payload with a good checksum. From the network IPS sensor this appears to be a duplicate and

will ignore it, but the end host will now process the malicious payload.

The IP TTL field in packets presents a problem to network IPS sensor because there is no
easy way to know the number of hops from the sensor to the end point of an IP session stream.
Attackers can take advantage of this through a method of reconnaissance by sending a packet

that has a very short TTL which will pass through the network IPS fine, but be dropped by a

9
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the network IPS sensor ignored or missed the attack.

4.1.6. Traffic Substitution and Insertion

qubstitution is when that attacker attempts to substitute payload data with other data in a

examples of substitution attacks are below:

o Using Unicode instead of ASCII strings and characters inside HT'TP requests.

the same meaning and thus consequences on the end host or target.

network IPS sensor is configured with case-sensitive signature.

insertion of spaces or tabs into protocols that ignore such sequences.

10

Another class of evasion attacks includes traffic substitution and insertion.

couter between the sensor and the target host due to a TTL equaling zero. The attacker may then
follow by sending a malicious packet with a long TTL, which will make it to the end host or
target. The packet looks like a retransmission or duplicate packet from the attacker, but to the

host or target this is the first packet that actually reached it. The result is a compromised host and

Traffic
different

format, but the same meaning. A network TIPS sensor may miss such malicious payloads if it

looks for data in a particular format and doesn't recognize the true meaning of the data. Some

o Substitution of spaces with tabs, and vice versa, for example inside HTTP requests.

o Exploit mutation, where specific malicious shell code (executable exploit code that forces

the target system to execute it) can be substituted by completely different shell code with

o Exploit case sensitivity and changing case of characters in a malicious payload, if the

Insertion attacks act in the same manner in that the attacker inserts additional information

that does not change the payload meaning into the attack payload. An example would be the

e _”'\.,,_'—""-' S e
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4.2. Network Intrusion Detection Systems

Intrusion detection is a security technology that attempts to identify and isolate
“intrusions" against computer systems. Different ID systems have differing classifications of
“intrusion"; a system attempting to detect attacks against web servers might consider only
malicious HTTP requests, while a system intended to monitor dynamic routing protocols might
only consider RIP spoofing. Regardless, all ID systems share a general definition of *intrusion"

as an unauthorized usage of or misuse of a computer system.

Intrusion detection is an important component of a security system, and it complements
other security technologies. By providing information to site administration, ID allows not only
for the detection of attacks explicitly addressed by other security components (such as firewalls
and service wrappers), but also attempts to provide notification of new attacks unforeseen by
other components. Intrusion detection systems also provide forensic information that potentially
allow organizations to discover the origins of an attack. In this manner, ID systems attempt to

make attackers more accountable for their actions, and, to some extent, act as a deterrent to

e

future attacks.

4.2.1. The Need for Reliable Intrusicn Detection

Because of its importance within a security system, it is critical that intrusion detection
systems function as expected by the organizations deploying them. In order to be useful, site
administration needs to be able to rely on the information provided by the system; flawed
systems not only provide less information, but also a dangerously false sense of security.
Moreover, the forensic value of information from faulty systems is not only negated, but

potentiaily misleading.

Given the implications of the failure of an ID component, it is reasonable to assume that
E )] systems are themselves logical targets for attack. A smart intruder who realizes that an 1DS
has been deployed on a network she is attacking will likely attack the IDS first, disabling it or
forcing it to provide false information (distracting security personnecl from the aciual aftack in

Progress, or framing someone else for the attack).

11
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In order for a software component to resist attack, it must be designed and implemented
with an understanding of the specific means by which it can be attacked. Unfortunately, very
little information is publicly available to IDS designers to document the traps and pitfalls of

implementing such a system. Furthermore, the majority of commercially available ID systems

have proprietary, secret designs, and are not available with source code. This makes independent i

third-party analysis of such software for security problems difficult.

The most obvious aspect of an IDS to attack is its ““accuracy". The “‘accuracy" of an IDS
is compromised when something occurs that causes the system to incorrectly identify an
intrusion when none has occurred (a *‘false positive" output), or when something occurs that
causes the IDS to incorrectly fail to identify an intrusion when one has in fact occurred (a " false
negative"). Some researchers discuss IDS failures in terms of deficiencies in “‘accuracy” and
“‘completeness", where “‘accuracy" reflects the number of false positives and ""completeness”

reflects the number of false negatives.

e

Other attacks might seek to disable the entire system, preventing it from functioning

e

effectively at all. We say that these attacks attempt to compromise the “availability” of the

system. 4

12
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5) REQUIREMENT SPECIFICATION AND

ANALYSIS

5.1. Requirements

In order to develop and implement this project a study of following topics was done in

detail of:

Basic knowledge of network and transport layer protocols
Detailed working of TCP/IP protocol

Linux based C Programming

Socket TCP/IP Programming in Linux

Packet Sniffer

SHA-1 (Secure Hash Standard)

A, /et 0 U A, AR, T BN T

Implementation knowledge of a normalizer

NNl

A brief introduction to all the topics mentioned above is given in the next subsection.

S.2. Study

5.2.1. Basic Knowledge of network and transport layer protocols

The network layer offers its services to the transport layer which deals with the end-to-end
communication in any network. The network layer deals with the transmission of packets from
the source to the destination. More particularly, it is concerned with how to route the packets

from one router to the other. The network layer may provide two types of services to the

L transport layer — connectionless and connection oriented. In the former, each packet travels on a
' different path based on the traffic conditions to maximize throughput. The packets may thus
arrive out of order but are delivered to the higher layers in perfect order. In case of connection-
oriented service, connection first needs to be established which sets up a virtual circuit i.e. a |

Predetermined path which all packets must follow. It is thus a more reliable form of transmission g

13
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and the packets also arrive in order but it generally tends to consume more bandwidth and is
prone to fatal errors. Their usage depends on the application and the higher level protocois. i
An application of network and transport layer working is the Internet. Communication in the |
[nternet works as follows. The transport layer takes data streams and breaks them up into il
datagrams. In theory, datagrams can be up to 64 Kbytes each, but in practice they are usually not .‘Lju
more than 1500 bytes (so they fit in one Ethernet frame). Each datagram is transmitted through
the Internet, possibly being fragmented into smaller units as it goes. When all the pieces finally
get to the destination machine, they are reassembled by the network layer into the original
datagram. This datagram is then handed to the transport layer, which inserts it into the receiving f

\
process' input stream. \i

The ultimate goal of the transport layer is to provide efficient, reliable, and cost-effective service I

to its users, normally processes in the application layer. To achieve this goal, the transport layer ai

makes use of the services provided by the network layer. The hardware and/or software within i‘ |
the transport layer that does the work is called the transport entity. The transport entity can be !)
located in the operating system kernel, in a separate user process, in a library package bound into all

network applications, or conceivably on the network interface card. The (logical) relationship of

the network, transport, and application layers is illustrated in the following figure.

Host 1 Host 2
Application Application g
{or sesslon) Applicationfiransport (or session) ‘r
layer  gransport | interface layer |
" address E
i
TPDU |
Transport VS oo Transport "i.
entity T Transport entity i
protocol I
|
Network = bE ;‘
address :l'rapspm!!nawmrk
Natwark tayer interface Network layer

Figure 1: Relationship between network, transport and application layers

14
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5.2.2. Detailed working of TCP/IP Protocol

A key feature of TCP, and one which dominates the protocol design, is that every byte on a TCP
connection has its own 32-bit sequence number. The sending and receiving TCP entities
exchange data in the form of segments. A TCP segment consists of a fixed 20-byte header (plus
an optional part) followed by zero or more data bytes. The TCP software decides how big
segments should be. It can accumulate data from several writes into one segment or can split data
from one write over multiple segments. Two limits restrict the segment size. First, each segment,
including the TCP header, must fit in the 65,515-byte IP payload. Second, each network has a
maximum transfer unit, or MTU, and each segment must fit in the MTU. In practice, the MTU is
generally 1500 bytes (the Ethernet payload size) and thus defines the upper bound on segment

size.

The basic protocol used by TCP entities is the sliding window protocol. When a sender transmits
a segment, it also starts a timer. When the segment arrives at the destination, the receiving TCP
entity sends back a segment (with data if any exist, otherwise without data) bearing an
acknowledgement number equal to the next sequence number it expects to receive. If the sender's
timer goss off before the acknowledgement is received, the sender transmits the segment again.

Segments can arrive out of order, so bytes 3072—4095 can arrive but cannot be acknowledged
because bytes 2048—3071 have not turned up yet. Segments can also be delayed so long in
transit that the sender times out and retransmits them. The retransmissions may include different
byte ranges than the original transmission, requiring a careful administration to keep track of
which bytes have been correctly received so far. However, since each byte in the stream has its

own unique offset, it can be done.

TCP must be prepared to deal with these problems and solve them in an efficient way. A
considerable amount of effort has gone into optimizing the performance of TCP streams, even in

the face of network problems.

Figure 2 shows the layout of a TCP segment. Every segment begins with a fixed-format, 20-byte
header. The fixed header may be followed by header options. After the options, if any, up to

15
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65,535 - 20 - 20 = 65,495 data bytes may follow, where the first 20 refer to the IP header and the

gecond to the TCP header. Segments without any data are legal and are commonly used for

acknowledgements and control messages.

- 32 Bits

[]Illi Lok ! | SN S W SOOE 4 i E | S R ISR BRES O0 l L 3 R ) - IV l.l.;

Source port Destination port

Sequence number

Acknovdledgement number

TcP Alp[r[s[F
headar RICIS ISIY I Window size
length KIHIT NIN

Urgent pointer

13

Options (0 or more 32-bit words)

it

44
i

{
¥

Data (optional)

£

Figure 2: TCP Header

The Source port and Destination port fields identify the local end points of the connection. The

TCP header length tells how many 32-bit words are contained in the TCP header. This

information is needed because the Options field is of variable length, so the header is, too. The

ACK bit is set to 1 to indicate that the Acknowledgement number is valid. If ACK is 0, the

segment does not contain an acknowledgement so the Acknowledgement number field is

ignored. The SYN bit is used to establish connections. The connection request has SYN = 1 and

ACK = 0 to indicate that the piggyback acknowledgement field is not in use. The connection

reply does bear an acknowledgement, so it has SYN = 1 and ACK = 1. In essence the SYN bit is
used to denote CONNECTION REQUEST and CONNECTION ACCEPTED, with the ACK bit

used to distinguish between those two possibilities. The other data fields are not of direct

conscquence to the scope of our project so we have primarily focused on these.

16
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[Pv4 Protocol:

The underlying protocol working on the network layer is the IPv4 protocol. An IP datagram
consists of a header part and a text part. The header has a 20-byte fixed part and a variable length
optional part. The header format is shown in Figure 3. Since the header length is not constant, a
field in the header, IHL, is provided to tell how long the header is, in 32-bit words. The Total
length includes everything in the datagram—both header and data. The maximum length is
65,535 bytes. The Identification field is needed to allow the destination host to determine which
datagram a newly arrived fragment belongs to. All the fragments of a datagram contain the same
Identification value. When the network layer has assembled a complete datagram, it needs to
Kknow what to do with it. The Protocol field tells it which transport process to give it to i.e. TCP

or UDP. The Source address and Destination address indicate the network number and host

number.

1

Woslon | HL | Typeof senvice Tetal length
Identification Fragment offset
Tima to live Protocol Header checksum
Source address
Destination address
feen Options (0 or more words) :!2
Tt }

Figure 3: IP (version 4) Header
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5,2.3. Linux

T In order to gain expertise on Linux OS following topics were covered in detail:

v Linux commands

v Text Editors: vi and gedit

o Vi: The VI editor is a screen-based editor used by many UNIX users. The VI editor has
powerful features to aid programmers. It lets a user create new files or edit existing files. The
command to start the VI editor is vi, followed by the filename. It operates in either insert
mode or command mode. In the command mode, every character typed is a command that
does something to the text file being edited; a character typed in the command mode may
even cause the vi editor to enter the insert mode. In the insert mode, every character typed is
added to the text in the file; pressing the <Esc> (Escape) key turns off the Insert mode.

o Gedit:gedit is a text editor for the GNOME desktop environment, Mac OS X and Microsoft
Windows. Designed as a general purpose text editor, gedit emphasizes simplicity and ease of

use. It includes tools for editing source code and structured text such as markup languages. It

e i

is designed to have a clean, simple graphical user interface according to the philosophy of the

GNOME project, and it is the default text editor for GNOME.

v File system: Linux has hierarchical file system. Any file system in Linux must be mounted
before it can be accessed, either through mount() or mount root(). There are four types of
files in Linux
o Oudinary files (text files, data files, command text files, executable files)

o Directories
o Links
o Special device file (physical Hardware)

_ ¥ Directory structure:

Directory is group of files. Directory is divided into two types:

18
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Root directory - Strictly speaking, there is only one root directory in your system, which
is denoted by / (forward slash). It is root of your entire file system and cannot be renamed

or deleted.

Sub directory - Directory under root (/) directory is subdirectory which can be created,

renamed by the user.

Directories are used to organize your data files, programs more efficiently.

v" LAN and Internet Exploration tools: telnet, ftp, netstat, who, ifconfig, whois, nslookup,

dig, finger, ping, traceroute, fip.

(o]

Telnet: Telnet allows you to login remotely from a remote computer to a host
serverrunning any unix or unix clone system.

Ftp:Ftp is the user interface to the Internet standard File Transfer Protocol. The
program allows a user to transfer files to and from a remote network site.

Netstat: This command shows all sorts of statistics for your LAN, including al! internet
connections.

Ifconfig: Ifconfig is used to configure the kernel-resident network interfaces. It is used
at boot time to set up interfaces as necessary. After that, it is usually only needed when
debugging or when system tuning is needed.

Ping: This command is used to find out if a distant computer is alive and runs diagnostic
tests.

Traceroute: This command is similar to ping. It maps internet connections, reveals

routers and boxes running firewalls.

v Inter Process Communication Mechanisms: Signals, Pipes, Message queues, Semaphores

and shared memory ( can be used for furiher enhaced performance in the next version of the

project)

5.2.4. Socket Programming in Linux

Sockets are interfaces that can "plug into" each other over a network. Once so "plugged in", the

programs so conitected communicate.

19
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A computer network is composed of a number of "network layers", each providing a different
restriction and/or guarantee about the data at that layer. The protocols at each network layer

gcnerally have their own packet formats, headers, and layout.

The seven traditional layers of a network
are divided into two groups: upper layers
and lower layers. The sockets interface
provides a uniform API to the lower
layers of a network, and allows
implementing upper layers within your

sockets application.

Fig 4:- Network Layers and socket

Interface

For doing Socket Programming in Linux study about the various libraries and functions that were

required to create a server-client program to transfer file.
List of functions used for socket programming is given below:

v socket(): The sockei() function creates an endpoint for communications and returns a socket

descriptor that represents the endpoint.
int socket(intprotocolFamily, int type, int ptotocol)

a) The first parameter protocolFamily determines the protocol family of the socket; we will
always supply PF_INET for the protocol family specifying that the socket uses protocols

from the internet family.

b) The type determines the semantics of data transmission with the socket--for example,
whether transmission is reliable, whether message boundaries are preserved, and so on. The
constant SOCK_STREAM specifies a socket with reliable byle-stream semantics, whereas

SOCK_DGRAM specifies a best-effort datagram socket.

20
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¢) The third parameter specifies the particular end-to-end protocol to be used. For the
PF_INET protocol family, we want TCP (identified by the constant IPPROTO_TCP) for a
stream socket and UDP (identified by IPPROTO_UDP) for a datagram socket.

v bind(): When an application has a socket descriptor, it can bind a unique name to the socket.

Servers must bind a name to be accessible from the network.
intbind (intsocket, structsockaddr*localAddress, unsigned intaddressLength)
a) The first parameter is the descriptor returned by an earlier call to socket().

b) The address parameter is declared as a pointer to a sockaddr, but for TCP/IP applications, it
will actually point to a sockaddr_in containing the Internet address of the local interface and

the port to listen on.

¢) The third parameter addressLengthis the length of the address structure, invariably passed as

sizeof(structsockaddr _in).

v listen(): function indicates a willingness to accept client connection requests. When a listen()
is issued for a socket, that socket cannot actively initiate connection requests. The listen()
API is issued after a socket is allocated with a socket() function and the bind() function binds

a name to the socket. A listen() function must be issued before an accept() function is issued.
int listen(int socket, int queueLimit)
a) The first parameter is the descriptor returned by an earlier call to socket().

b) The queueLimitparameter specifies an upper bound on the number of incoming connections

that can be waiting at any time.

v Connect(): The client application uses a connect() function on a stream socket to establish a

connection to the server.

int connect(int socket, struct sockaddr*foreignAddress, unsigned int

addressLength)

a) socketis the descriptor created by socket ().

21
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b) foreignAddressis declared to be a pointer to a sockaddr because the sockets API is generic;
for our purposes, it will always be a pointer to a sockaddr_in containing the Internet address

and port of the server.

¢) addressLengthspecifies the length of the address structure and is invariably given as

sizeof(structsockaddr _in).

v Accept():The server application uses the accept() function to accept a client connection
request. The server must issue the bind() and listen() functions successfully before it can
issue an accepi(); accept() dequeues the next connection on the queue for socket. If the queue

is empty, accept() blocks until a connection request arrives.
int accept(intsocket, structsockaddr*clientAddress, unsigned int*addressLength)
a) The first parameter is the descriptor created by socket().
b) The second parameter is the address of the client at the other end of the connection.

¢) The third parameter addressLengthspecifies the maximum size of the clientAddressaddress

stiucture and contains the number of bytes actually used for the address upon return.

When a connection is established between stream sockets clients and servers can transfer

data using send() and recv().
v Send(): The function sends data to the connected machine on the other end.
Recv(): The function receives data sent from the machine connected on the other end.

int send(intsocket, const void *msg, unsigned intmsgLength, int flags)

intrecv(int socket, void *rcvBuffer, unsigned intbufferLength, int flags)
a) The first parameter of send() function msg points to the message to send.
b) The second parameter of send() function msgLength is the length (bytes) of the message.

¢) The first parameter of the recv() function is the descriptor created by socket().

22
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The second parameter of the recv() function recvBufferpoints to the buffer--that is, an area in

memory such as a character array-where received data will be placed.

¢) The third parameter bufferLengthgives the length of the buffer, which is the maximum

number of bytes that can be received at once.

f) The parameterflags parameter in both send() and recv() provides a way to change the default

behavior of the socket call. Setting flagsto 0 specifies the default behavior.

v Close(): close() tells the underlying protocol stack to initiate any actions required to shut

down communications and deallocate any resources associated with the socket,

int close(intsocket)

a) The parameter socket is the descriptor created by socket().

b e nbans bial i e s

i [y e oot TGRS

e Fig 5:- Socket API’s used during server-client session
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5.2.5. Packet Sniffer

A packet sniffer is a computer program or a piece of computer hardware that can
intercept and log traffic passing over a digital network or part of a network. As data streams flow i

across the network, the sniffer captures each packet and, if needed, decodes the packet's raw

Jata, showing the values of various fields in the packet, and analyzes its content. It is effective on !
poth switched and non-switched networks. In a non-switched network environment packet

sniffing is an easy thing to do. This is because network traffic is sent to a hub which broadcasts it L

to everyone.

v Capabilities

On wired broadcast LANSs, depending on the network structure (hub or switch), one can
capture traffic on all or just parts of the network from a single machine within the network;
however, there are some methods to avoid traffic narrowing by switches to gain access to traffic
from other systems on the network (e.g., ARP spoofing). For network monitoring purposes, it
may also be desirable to monitor all data packets in a LAN by using a network switch with a so- ,
called monitoring port, whose purpose is to mirror all packets passing through all ports of the

switch when systems (computers) arc connected to a switch port. To use a network tap is an even

more reliable solution than to use a monitoring port, since taps are less likely to drop packets

during high traffic loads.
On wireless LANS, one can capture traffic ona particular channel.

On wired broadcast and wireless LANS, to capture traffic other than unicast traffic sent to
the machine running the sniffer software, multicast traffic sent to a multicast group to which that
machine is listening, and broadcast traffic, the network adapter being used to capture the traffic
must be put into promiscuous mode; some sniffers support this, others do not. On wireless
LANs, even if the adapter is in promiscuous mode, packets not for the service set for which the r
adapter is configured will usually be-ignored.To-see-those packets, the adapter must be in

monitor mode.

The captured information is decoded from raw digital form into a human-readable format

that permits users of the protocol analyzer to easily review the exchanged information. Protocol
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analyzers vary in their abilities to display data in multiple views, automatically detect errors,

determine the root causes of errors, generate timing diagrams, etc.

Some protocol analyzers can also generate traffic and thus act as the reference device;
these can act as protocol testers. Such testers generate protocol-correct traffic for functional
testing, and may also have the ability to deliberately introduce errors to test for the DUT's ability

to deal with error conditions.

Protocol Analyzers can also be hardware-based, either in probe format or, as is
increasingly more common, combined with a disk array. These devices record packets (or a slice
of the packet) to a disk array. This allows historical forensic analysis of packets without the users

having to recreate any fault.

v Types of Packet Sniffing
There are basically three types of packet sniffing:

» ARP Sniffing: ARP sniffing involves information packets that are sent to the
administrator through the ARP cache of both network hosts. Instead of sending the

network traffic to both hosts, it forwards the traffic directly to the administrator.

» P Sniffing: IP sniffing works through the network card by sniffing all of the information
packets that correspond with the IP address filter. This allows the sniffer to capture all of

the information packets for analysis and examination.

» MAC Sniffing: MAC sniffing also works through a network card which allows the
device to sniff all of the information packets that correspond with the MAC address filter.
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v Uses

The versatility of packet sniffers means they can be used to:

s Analyze network problems

s Detect network intrusion attempts

s Detect network misuse by internal and external users

» Documenting regulatory compliance through logging all perimeter and endpoint traffic

s Gain information for effecting a network intrusion

s Isolate exploited systems

= Monitor WAN bandwidth utilization

s Monitor network usage (including internal and external users and systems)

» Monitor data-in-motion

= Monitor WAN and endpoint security status

» Gather and report network statistics

»  Filter suspect content from network traffic

«  Serve as primary data source for day-to-day network monitoring and management

» Spy on other network users and collect sensitive information such as passwords
(depending on any content encryption methods that may be in use)

» Reverse engineer proprietary protocols used over the network

e Debug client/server communications

»  Debug network protocol implementations

» Verify adds, moves and changes

»  Verify internal control system effectiveness (firewalls, access control, Web filter, Spam

filter, proxy

26
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52.6. SHA-1

v Introduction
This Standard specifies a Secure Hash Algorithm, SHA-1, for computing a condensed

representation of a message or a data file. When a message of any length < 2% bits is input,

the SHA-1 produces a 160-bit output called a message digest. The message digest can then
be input to the Digital Signature Algorithm (DSA) which generates or verifies the signature
for the message. Signing the message digest rather than the message often improves the
efficiency of the process because the message digest is usually much smaller in size than the
message. The same hash algorithm must be used by the verifier of a digital signature as was
used by the creator of the digital signature.

The SHA-1 is called secure because it is computationally infeasible to find a message
which corresponds to a given message digest, or to find two different messages which
produce the same message digest. Any change to a message in transit will, with very high
probability, result in a different message digest, and the signature will fail to verify. SHA-1 is
a technical revision of SHA (FIPS 180).

The Secure Hash Algorithm (SHA-1) is required for use with the Digital Signature
Algorithm (DSA) as specified in the Digital Signature Standard (DSS) and whenever a
secure hash algorithm is required for federal applications. For a message of length < 264
bits, the SHA-1 produces a 160-bit condensed representation of the message called a message
digest. The message digest is used during generation of a signature for the message. The
SHA-1 is also used to compute a message digest for the received version of the message
during the process of verifying the signature. Any change to the message in transit will, with
very high probability, result in a different message digest, and the signature will fail to
verify.

The SHA-1 is designed to have the following properties: it is computationally infeasible
to find a message which corresponds to a given message digest, or to find two different

messages which produce the same message digest.
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6.) SYSTEM DESIGN AND IMPLEMENTATION

1) Design and implementation of Packet Sniffer
2) [mplementation of SHA-1
3) Implementation of Socket Programs of server and client

4) Design and implementation of normalizer

6.1. Implementation of Packet Sniffer

The first phase in the design and development of our normalizer was to implement a
packet sniffer module. The first step is to set a TCP connection between the server and a client.
The second step is to capture the data packet sent by the TCP client to TCP server. The packet is
captured by the normaiizer lying between client and server. Packet sniffing module can read
different types cf protocol such as TCP, IP, ICMP, UDP, however, it will extract header details

of TCP packets only. The values of TCP protocol header are éaved in the log file.

For the packet sniffer to work, it needs to listen constantly on the RAW socket. During
execution, administrative rights need to be given via command ‘sudo’. The packet sniffer can
catch the details of all the packets that are transmitted. We are primarily interested in the details
of the TCP and the IP header to know details like source port, destination port, packet size,

sequence number, identification number, data payload etc.

The program makes use of inbuilt library functions that capture the details of TCP header and IP
header in data structures. The program runs till the time there are packets coming through the

network after which the raw socket is closed.
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Descriptiou of Algorithm:

Introduction

The SHA-1 is designed to have the following properties: it is computationally infeasible to

find a message which corresponds to a given message digest, or to find two different messages

which produce the same message digest.

Bit Strings and Integers

The following terminology related to bit strings and integers will be used:

A hex digit is an element of the set {0, 1, ..., 9, A, ..., F}. A hex digit is the representation of
a 4-bit string. Examples: 7=0111, A =1010.

A word equals a 32-bit string which may be represented as a sequence of 8 hex digits.
Example

1010 0001 0000 0011 1111 11100010 0011 = A103FE23.

An integer between 0 and 2% - 1 inclusive may be represented as a word. The least
significant four bits of the integer are rcpresented by the right-most hex digit of the word
representation. Example: the integer 291 = 2%+2°+2'42° = 256+32+2+1 is represented by the
hex word, 00000123.

If z is an integer, 0 <=z < 2% thenz=2%x + y where 0 <=x < 2% and 0 <= y <2 Since x
and y can be represented as words X and Y, respectively, z can be represented as the pair of
words (X, Y).

Block = 512-bit string. A block {e.g., B) may be represented as a sequence of 16 words.

Operations on Word

L& The following logical operators will be applied to words:

Bitwise logical word operations

MY'Y = bitwise logical "and" of X and Y.
HARDE = bitwise logical "inclusive-or" of X and Y.
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X XORY = bitwise logical "exclusive-or" of X and Y.
SiX = bitwise logical "complement" of X.

The operation X + Y is defined as follows: words X and Y represent integers x and y, where
0<=x< 22 and 0 <=y < 2%, For positive integers n and m, let n mod m be the remainder
upon dividing n by m. Compute z = (x + y) mod 22,

Then 0 <= z < 2. Convert z to a word, Z, and define Z = X + Y.

The circular left shift operation S"(X), where X is a word and n is an integer with 0 <=n s
defined by

S"(X) = (X <<n) OR (X >> 32-n).

In the above, X << n is obtained as follows: discard the left-most n bits of X and then pad the
result with n zeroes on the right (the result will still be 32 bits). X >> n is obtained by
discarding the right-most n bits of X and then padding the result with n zeroes on the left.

Thus S"(X) is equivalent to a circular shift of X by n positions to the left.

Message Padding

Suppose a message has length 1 < 2% Before it is input to the SHA-1, the message is padded on

the right as follows:

"1" is appended. Example: if the original message is "01010000", this is padded to
"010100001".
"0"s are appended. The number of "0"s will depend on the original length of the message.

The last 64 bits of the last 512-bit block are reserved for the length 1 of the original message.

Functions used

A sequence of logical functions fy, fi,..., f79 is used in the SHA-1. Each f;, 0 <= t <= 79, operates
on three 32-bit words B, C, D and produces a 32-bit word as output. fi(B,C,D) is defined as

: _follows: for words B, C, D,

fi(B,C,D) = (B AND C) OR ((NOT B) AND D) (0 <=t <=19)
"

f(B,C,D) = B XOR C XOR D (20 <=t <= 39)

fi(B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59)
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ﬁ(B,C,D) =B XOR C XOR D (60 <=t <=179).

& Constants Used

- A sequence of constant words K(0), K(1), ... , K(79) is used in the SHA-1. In hex these are given

b
Y K= 5A827999 (0 <=t<=19)

K, = 6ED9EBAI (20 <= <= 39)
K, = 8F1BBCDC (40 <= t <= 59)
K, = CA62C1D6 (60 <= t <= 79).

Computing the Message Digest

The message digest is computed using the final padded message. The computation uses two
buffers, each consisting of five 32-bit words, and a sequence of eighty 32-bit words. The words
of the first 5-word buffer are labeled A,B,C,D,E. The words of the second 5-word buffer are
labeled Hy, H;, H, H3, Hy. The words of the 80-word sequence are labeled Wy, Wi,..., W79, A
single word buffer TEMP is also employed.

To generate the message digest, the 16-word blocks M, M,..., M, defined in Section 4 are

processed in order. The processing of each M; involves 80 steps.

Before processing any blocks, the {H;} are initialized as follows: in hex,

Hy = 67452301
H; = EFCDAB89
H, = 98BADCFE
Hj; = 10325476

H4 = C3D2EI1FO0.

Now M,, My, ..., M,, are processed. To process M;, we proceed as follows:

®
a. Divide M; into 16 words Wo, Wy, ..., W5, where Wy is the left-most word.

b. Fort= 16 to 79 let W, = S' (W3 XOR W5 XOR W,_ 14 XOR Wy ).

33
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C.LetA=H[],B:H1,C=H2,D=H3,E:H4.

d.Fort=0to 79 do
TEMP = S$°(A) + fi(B,C,D) + E + W, + K,

E=D;D=C;C=58"B); B=A; A=TEMP;

e.LetHy=Hp+A,H=H,+B,H,=H,+C,H;=H;+ D, Hy=H, + E.

After processing M, the message digest is the 160-bit string represented by the 5 words HO H;
H2 H3 H4.
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6.3. Implementation of Client-Server

=1 (Client

The working of the client is shown in the following module:

Connectittoa
_server

Create a socket

Receive
mand line

-

Transfer file in
fixed blocks

Close the socket

Server

The working of the server is explained by the following.

Calculate rate to
- L— transfer the file

Figure 8:- Flow diagram of the client side program to transfer file to a remote server

Bind the socket
 to an address

Create a socket

Listen for any

Accept any
l, t .

Close the client

——&——Pigure 9:- Flow diagramof the server side program-to receive file sent from a remote client

35




TCP STREAM NORMALIZATION

6.4. Implementation of Normalizer

The normalizer works on client/server end where the server/client tries to send a file through
TCP connection. TCP protocol ensures that no retransmissions are taken into account while
delivering the file to the application. So our concern is mainly to check for inconsistent
retransmissions i.e. packets having same sequence number (in the TCP header) and identification

(in the IP header) but different payloads.
We make the following assumptions while designing the working of our normalizer:-

7)  The attacker can listen onto the network to intercept packet information

8)  The attacker only attempt evasion attack by sending a different data payload for a
previously seen sequence number/identification number

9.) On a 3 node implementation, the channel between normalizer and client is safe (if the

server is sending a file)

The normalizer has a packet sniffing module integrated into it so that it can process the

information that the packets are carrying.

First of all, every packet is processed to find out three key pieces of information — sequence
number, identification and data payload. For packets carrying no data payload it is assumed that
these are either acknowledgements or connection establishment/termination packets and hence
we are not concerned with them. For all those packets containing some data payload, a hash code
is created for the same. If the sequence number is already present in the records, then the hash
codes will be matched. If they are identical, it is a genuine retransmission and can be logged onto
the file. Otherwise, it is a malicious packet sent by the attacker and need not be logged
(forwarded). The operation continues until the file has been completely transmitted and there are

no more packets to be detected on the raw socket.

The entire design has been explained with the help of a flowchart in Figure 8.
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Figure 10: Flowchart for design of normali;;r
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7)) TESTING

The SHA-1 algorithm guarantees that for even a single character change in the message, the
entire hash code changes. To test the same property, we applied a single character change to an
input string- TCP Stream Normalization:

i . . i 41 4 MonMayz8, 3:03AM nupo

nupoo-laﬁpy: ~fDesktop

Figure 11: Screenshot for the testing of SHA-1 program

The program successfully computed a hash code for it and when the same was applied to 1 new
string — TCP Stream Normalizations, a completely new hash code was generated. Thus the
working of SHA-1 program was verified via black box testing.

For the normalizer program, two different sets of files were sent from the client to the server.
~ The files get transferred completely and the hash codes of the packets are calculated as the
packet information is collected by the sniffer module.
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8.) LIMITATIONS

We have implemented the normalizer for TCP at user-level. For high performance a
production normalizer would need to run in the kernel rather than at user level, but our current
implementation makes testing, debugging and evaluation much simpler.

The application of this project seems more probable on a high speed network where the

internal network of a home user/ organization needs to be protected from any malicious activity

by an attacker. That would require full control on the transmission of packets so that the |

inconsistent retransmissions can be blocked and not allowed to pass by the normalizer.
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9.) SUMMARY

Defending networks against today's attackers is especially challenging for modern
intrusion detection/prevention systems for two reasons: the sheer amount of state they must
maintain, and the possibility of resource exhaustion attacks on the defense system itself. Our
work shows how to cope with these challenges in the context of a TCP stream normalizer whose
job is to detect all instances of inconsistent TCP retransmissions. The two currently used
methods to detect inconsistent retransmissions, maintaining complete contents of
unacknowledged data, or maintaining only the corresponding hashes suffer from a set of flaws
each. Systems that maintain complete contents consume an amount of memory problematic for
high-speed operation. Systems that maintain hashes cannot verify the consistency of the 20-30%
of retransmissions that fail to preserve original segment boundaries; as a result attackers can
easily encode their evasions in these unverified segments. Our normalizer stores hashes of data
and verifies the consistency of all retransmissions. The resulting design is necessarily somewhat
complex. In considering resource exhaustion attacks, the observation that provisioning for a
worst-case traffic pattern is simply impractical led us to develop a simple framework to cvict
connections when space is at a premium. Thus, our most important conclusion is that TCP
stream normalization does not have to choose between correctness and implement ability; it can

achieve both goals, while resisting a range of resource exhaustion attacks.
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10.) CONCLUSION

The work done in this semester brings us to the end of our Project. Having prepared the
three key components namely, the packet sniffer program, the SHA -1 implementation and
the setting up of a client server network through socket programming, we were able to
combine them to prepare our TCP stream normalizer. These three components essentially
form the major part of the requirements for implementing a robust and efficient network
normalizer. Next came the logical implementation of how the normalizer works to prevent
the typical kind of attack that we discussed i.e. the evasion attack. The client server
configuration served the purpose of simulating the actual working of a hardware
implementation of the normalizer where the normalizer helps prevent our internal network
from any inconsistent retransmissions. The packet sniffer allowed the capturing of essential
details required to track and distinguish genuine packets from the others. With the help of the
SHA-1 hashing algorithm, the memoiy requirements of our normalizer were reduced great
deal. Comparing the incoming packets with the hash codes of previously monitored packets
enabled the working of the normalizer that prepares a table for each incoming packet and
holds three key entities — the sequence number, identification field and the hash of data
payload. The normalizer was thus successful in demarcating genuine packets forwarded by
the TCP protocol from any malicious packet that an attacker may have introdnced in the TCP

stream.
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ANNEXURE- A

This appendix contains implementation of SHA-1 algorithm, the client server programs
and network normalizer.

ram 1: Implementation of SHA-1

“Pro
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Program 2: To create a client program using socket APIs to transfer file to a remote server and
calculate time taken to send a file
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Program 3: To create a server program using socket APIs to receive file sent from the client and

52




TCP STREAM NORMALIZATION

calculate time taken to receive the file
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