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Summary

CUDA is a parallel computing platform and programming model that enables dramatic increases
in computing performance by harnessing the power of the graphics processing unit
(GPU). Traditionally parallel processing implied setting up a Distributed system but, with the
advent of CUDA the power of parallel processing can be harnessed by a single standalone J

machine. Anyone with a basic knowledge of C/C++ and good programming skills can exploit

CUDA.

The biometrics trait iris - the colored circle that surrounds the pupil - contains many randomly
distributed immutable structures, which makes each iris distinct from another. Like fingerprint,
iris does not change with time. Iris recognition is a relatively new biometric recognition
technique. Among the various traits, iris recognition has attracted a lot of attention because it has |

various advantageous factors like simplicity and accuracy compared to other biometric traits. Iris

recognition relies on the unique patterns of the human iris to identify or verify the identity of an
individual. Tt uses camera technology with subtle infrared illumination to acquire images of the

detail-rich, intricate structures of the iris.

However, due to the large databases that the governments around the world intent to keep the

biometric recognition techniques are not sufficiently fast. Analyzing the data of millions of
people could take hours or may be days. Hence, we have created a system that speeds up this

process by utilizing the immense potential of parallel processing using CUDA.




Chapter 1: Introduction

with today’s fast growing computational requirements, the current hardware has reached the
limits of integration capabilities on a single chip using known technologies. If it is increased any

further increase it will put constraints of working conditions on the chips.

As a result, since 2003, the semiconductor industry has settled on two main directions for
designing microprocessor. The multicore microprocessor aims at maintain the execution speed of
sequential programs while moving into multiple cores. The multicores began as two-core
processors, with the number of cores approximately doubling with each semiconductor process
generation. A current example is the recent Intel Core i7microprocessor, which has four
Processor cores, cach of which is an out-of-order, multiple-instruction issue processor
implementing the full x86 instruction set; the microprocessor supports hyperthreading with two

hardware threads and is designed to maximize the execution speed of sequential programs.

However, the many-core microprocessors focus more on the execution throughput of parallel
applications. The many-cores started as a large number of much smaller cores, and, once again,
the number of cores doubles with each generation. A current example is the NVIDIA GeForce
GTX 280 graphics processing unit (GPU) with 240 cores, each of which is a heavily
multithreaded, in-order, single-instruction issue processor that shares its control and instruction
cache with seven other cores. Many-core processors, especially the GPUs, have led the race of
floating-point performance since 2003. While the performance improvement of general-purpose
microprocessors has slowed significantly, the GPUs have continued to improve relentlessly. As
of 2009, the ratio between many-core GPUs and multicore CPUs for peak floating-point
calculation throughput is about 10 to 1. These are not necessarily achievable application speeds
but are merely the raw speed that the execution resources can potentially support in these chips:

I teraflops (1000 gigaflops) versus 100 gigaflops in 2009.

€ompute Unified Device Architecture (CUDA)-is-a-parallel computing architecture developed
by Nvidia for graphics processing. CUDA is the computing engine in Nvidia GPUs(Graphics
Processing Units) which is accessible to software developers through a variety of industry
standard programming languages. Programmers can use 'C for CUDA’ which is C with Nvidia
tXtensions and certain restrictions. CUDA gives developers access to the virtual instruction

%t and memory of the parallel computational elements in CUDA GPUs. Using CUDA, the latest
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Nvidia GPUs become accessible for computation like CPUs. Unlike CPUs however, GPUs have
a parallel throughput architecture that emphasizes executing many concurrent threads slowly,
rather than executing a single thread very quickly. This approach of solving general purpose

problems on GPUs is known as GPGPU.

CUDA provides both a low level API and a higher level APIL. The initial CUDA SDK was made
public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later
added in version 2.0, which supersedes the beta released February 14, 2008. CUDA works with
all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line.
CUDA is compatible with most standard operating systems. Nvidia states that programs
developed for the G8x series will also work without modification on all future Nvidia video

cards, due to binary compatibility.
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Chapter 2: The CUDA Architecture

Figure 2.1 shows the architecture of a typical CUDA-capable GPU. It is organized into an array
of highly threaded streaming multiprocessors (SMs). In Figure 2.1, two SMs form a building
plock; however, the number of SMs in a building block can vary from one generation of CUDA

GPUs to another generation. Also, each SM in Figure 2.1 has a number of streaming processors

e

(SPs) that share control logic and instruction cache. Each GPU currently comes with up to 4

gigabytes of graphics double data rate (GDDR) DRAM, referred to as global memory in Figure

b i i ket s b

2.1. These GDDR DRAMs differ from the system DRAMs on the CPU motherboard in that they

o o

are essentially the frame buffer memory that is used for graphics. For graphics applications, they
1 hold video images, and texture information for three-dimensional '(3D) rendering, but for
computing they function as very-high-bandwidth, off-chip memory, though with somewhat more

latency than typical system memory. For massively parallel applications, the higher bandwidth

makes up for the longer latency.

Figure 2.1: Architecture of a CUDA capable GPU
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The G80 that introduced the CUDA architecture had 86.4 GB/s of memory bandwidth, plus an 8-
GB/s communication bandwidth with the CPU. A CUDA application can transfer data from the
system memory at 4 GB/s and at the same time upload data back to the system memory at 4
GB/s. Altogether, there is a combined total of 8 GB/s. The massively parallel G80 chip has 128
gps (16 SMs, each with 8 SPs). Each SP has a multiply—add (MAD) unit and an additional
multiply unit. With 128 SPs, that’s a total of over 500 gigaflops. In addition, special function
units perform floating-point functions such as square root (SQRT), as well as transcendental
functions. With 240 SPs, the GT200 exceeds 1 teraflops. Because each SP is massively threaded,
it can run thousands of threads per application. A good application typically runs 5000-12,000
threads simultaneously on this chip. For those who are used to simultaneous multithreading, note
that Intel CPUs support 2 or 4 threads, depending on the machine model, per core. The G80 chip
supports up to 768 threads pér SM, which sums up to about 12,000 threads for this chip. The
GT200 supports 1024 threads per SM and up to about 30,000 threads for the chip. The latest

architecture from Nvidia, the Fermi architecture, supports billions of threads.

Transistors 681 million 1.4 billion 3.0 billion
CUDA Cores 128 240 512
Double Precision Floating None 30 FMA ops / clock | 256 FMA ops /clock
Point Capability ;
Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /clock
Point Capability ops/clock clock :
Special Function Units 2 2 4
(SFUs) / SM :
Warp schedulers (per SM) 1oi 1 2
Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
' 16 KB
L1 Cache (per SM) None None Configurable 16 KB or
48 KB
| L2 Cache None None 768 KB
B ECCMemorySupport | No 1 ~ No | Yes
| Concurrent Kernels No No Up to 16
Load/Store Address Width 32-bit 32-bit ~ 64-bit

Source: Fermi Whitepaper

Table 2.1 A comparison between G80, GT200 & Fermi architectures
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Chapter 3: The CUDA program Structure

A CUDA program consists of one or more parts that are executed on either the CPU(i.e. the
Host) or a GPU (i.e. a device) . The parts that show little or no data parallelism are implemented
in host code. The parts that show rich amount of data parallelism are implemented in the device
code. A CUDA program is a unified source code containing both host and device code. The
Nvidia C compiler (nvce) separates the two during the compilation process. The host code is
straight ANSI C code, which is compiled with the host’s standard C compilers and runs as an
ordinary CPU process. The device code is written using ANSI C extended with keywords for
labeling data-parallel functions, called kernels, and their associated data structures. The device
code is typically further compiled by the nvce and executed on a GPU device. The kernel
functions (or, simply, kernels) typically generate a large number of threads to exploit data
parallelism. The execution of a typical CUDA program is illustrated in Figure 3.1. The execution
begins with CPU (host) execution. When a kernel f is invoked, the execution is moved to a GPU,
where a large number of threads are generated that are able to take advantage of abundant data
parallelism. All the threads that are generated by a kernel during an invocation are collectively

called a grid.

CPU serial code
CGrid 0

GPU parallel kernel
KernelA<<< nBIK, nTid >>>(args);

CPU serial code

GPU parallel kernel
KemelA<<< nBIK, nTid >>>(args);

Source: Programming massively parallel processors

Figure 3.1: Execution of a typical CUDA program
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Chapter 4: Hardware & Tools

System Configuration

: o Intel Core i3 Processors
‘ o 4GB RAM
2k o Cooler Master GX650 SMPS
e GTX 460
= 336 CUDA Cores
» 1.3GHz at each Core
= 768MB GDDRS5
s  86.4GB/s Memory Bandwidth
» 3D Display Enabled

Tools & Libraries

ﬂ e CUDA toolkit & SDK 3.2
Microsoft Visual Studio 2008

OpenCV 3.0

Matlab R2008

Thrust library

CUVI library

Windows 7 32bit




Chapter 5: Initial Work

Negative of an image

Images have a finite set of digital values, called picture elements or pixels. A digital
image consists of a fixed number of rows and columns of pixels. Pixels are the smallest
individual element in an image, holding quantized values that represent the brightness of

a given color at any specific point.

Typically, the pixels are stored in computer memory as a raster image or raster map, a
two-dimensional array of small integers. These values are often transmitted or stored in

a compressed form.

Raster images can be created by a variety of input devices and techniques, such as digital
cameras, scanners, coordinate-measuring machines, seismographic profiling, airborne
radar, and more. They can also be synthesized from arbitrary non-image data, such as
mathematical functions or three-dimensional geometric models; the latter being a major
sub-area of computer graphics. The field of digital image processingis the study of

algorithms for their transformation.

The number of distinct colors that can be represented by a pixel depends on the number
of bits per pixel (bpp). A 1 bits per pixel image uses 1-bit for each pixel, so each pixel
can be either on or off, which is mostly the case with black & white images. Each
additional bit doubles the number of colors available, so a 2 bpp image can have 4 colors,

and a 3 bpp image can have 8 colors:

1 bpp, 2' =2 colors (monochrome)
= 2 bpp, 2> =4 colors
= 3 bpp, 2° = 8 colors

g | = 8 bpp, 28 =256 colors
« 16 bpp, 2'° = 65,536 colors ("Highcolor" )
= 24 bpp, 2?4 =~ 16.8 million colors ("Truecolor")
For color depths of 15 or more bits per pixel, the depth is normally represents the sum of
the bits allocated to each of the three components red, green, and blue. The highcolor,
which usually means 16 bpp, normally has five bits for red and blue, and six bits for
9
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green, as the human eye is more sensitive to errors in green than in the other two primary
colors. For applications involving transparency, the 16 bits may be divided into five bits
cach of red, green, and blue, with one bit left for transparency. A 24-bit depth allows 8
bits per component. On some systems, 32-bit depth is available: this means that each 24-
bit pixel has an extra 8 bits to describe its opacity (for purposes of combining with

another image).

Portable Network Graphicsis a bitmapped image format that employs lossless data
compression. PNG was created to improve upon and replace GIF (Graphics Interchange
Format) as an image-file format not 'requiring a patent license. PNG supports palette-
based images (with palettes of 24-bit RGB or 32-bit RGBA colors), grayscale images
(with or without alpha channel), and full-color non-palette-based RGB[A] images (with
or without alpha channel). PNG was designed for transferring images on the Internet, not
for professional-quality print graphics, and therefore does not support non-RGB color

spaces such as CMYK.

The negative of an image is computed by inverting each of its pixel values (RGB).

Inversion means subtracting each of the Components of each pixel from 255

Yo get staried, right chick o » clons b Chyan Yigw o fhe Clinx Diaigos by srpate 2 bestance,

Figure 5.1: Negative of image

10




Rank SOl‘t

/

For each element of the list to be sorted, the Rank Sort algorithm is computing the total
number of elements that are lower than that number. This value is called the rank of the
element and to compute it the algorithm needs to compare the element with all other
values form the list. In a fully sorted list in increasing numerical order, the rank of each
element will just be its actual position in the list. Finally, the algorithm uses the rank of

cach element to place it in its proper sorted position.

Unsorted Sorted
List _List
Processor 1 Processor 2 Processor n
Element 1: Element 2: Element n:
Compute rank Compute rank it Compute rank
Copy it to sorted list Copy it to sorted list Copy it to sorted list

Figure 5.2: Parallel Rank Sort
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Chapter 6: Iris Recognition

jmage maiching is a very important concept in image processing. Its applications include
piometric authentication, face-recognition etc. It has a vast scope for parallelization as every
pixel is manipulated separately and hence can be done parallely. Our algorithm is based on the

puclidean Distance Classifier. Euclidean distance is simply the distance between two points. It is

calculated as

D (p,a)= \/((fh —~ ?1)2 + (g2 — p2)?)

Itis recognition is an automated method of biometric identification that uses mathematical
pattern-recognition techniques on images of the iris of an individual's eyes, whose complex

random patterns are unique and can be seen from some distance.

Many millions of persons in several countries around the world have been enrolled in iris
recognition systems, for convenience purposes such as passport-free automated border-crossings,
and some national ID systems based on this technology are being deployed. A key advantage of
itis recognition, besides its speed of matching and its extreme resistance to false matches is the

stability of the iris as an internal, protected, yet externally visible organ of the eye.

The majority of iris recognition cameras use Near Infrared (NIR) imaging by emitting 750nm
wavelength low-power light. This is done because dark-brown eyes, possessed by the majority of
the human population, reveal rich structure in the NIR but much less in the ;risible band (400 -
700nm), and also because NIR light is invisible and unintrusive. A further important reason is
that by allowing only this selected narrow band of illuminating light back into the camera via its
filters, most of the ambient corneal reflections from a bright environment. are blocked from

contaminating the iris patterns
Advantages

The iris of the eye is considered to be the ideal part of the human body for biometric

identification for several reasons:

12

e




E =

E

[t is an internal organ & thus it is well protected against damage and wear by a highly
transparent and sensitive membrane (the cornea). This distinguishes it from fingerprints,

which can be difficult to recognize after years of certain types of manual labor.

The iris is mostly flat, and its geometric configuration is only controlled by two
complementary muscles (the sphincter pupillae and dilator pupillae) that control the
diameter of the pupil. This makes the iris shape far more predictable than, for instance,

that of the face.

The iris has a fine texture that, like fingerprints, is determined randomly during
embryonic gestation. Like the fingerprint, it is very hard (if not impossible) to prove that
the iris is unique. However, there are so many factors that go into the formation of these
textures (the iris and fingerprint) that the chance of false matches for either is extremely

low. Even genetically identical individuals have completely independent iris textures.

An iris scan is similar to taking a photograph and can be performed from about 10 cm to a
few meters away. There is no need for the person being identified to touch any equipment
that has recently been touched by a stranger, which eliminats the objection that has been
raised in some cultures against fingerprint scanning, where a finger has to touch a surface,
or retinal scanning, where the eye must be brought very close to an eyepiece (like looking

into a microscope).

The intricate textures are remarkably stable over many decades and are not even
susceptible to the medical and surgical procedures that can affect the shape & colour of

the iris. Some iris identifications have succeeded over a period of about 30 years.

| Shortcomings

However, this method has the following shortcomings:

Many commercial Iris scanners can be easily decieved by a high quality image of an iris

or face in place of the real thing.

13
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The scanners are usually very difficult to adjust and can become bothersome for multiple

people of different heights to use in succession.

« Changes in lighting can also affect the accuracy of the Scanners.

« Iris scanners are significantly expensive than some other forms of biometrics or
passwords.

» The Law enforcements & immigration authorities have already made a substantial
investment in finger print recognition and this technology is incompatible with the
existing hardware.

» As in case of other photographic biometric technologies, iris recognition is also prone to

poor image quality, with associated failure to enroll rates.

- Security considerations

Methods that have been suggested to provide some defense against the use of fake eyes and irises

include:

» Changing ambient lighting during the identification (switching on a bright lamp), such
that the pupillary reflex can be verified and the iris image be recorded at several
different pupil diameters

* Using spectral analysis instead of merely monochromatic cameras to distinguish iris
tissue from other material

* Observing the characteristic natural movement of an eyeball (measuring nystagmus,
tracking eye while text is read, etc.)

» Testing for retinal retroreflection (red-¢ye effect)

* Testing for reflections from the eye's four optical surfaces (front and back of both cornea
and lens) to verify their presence, position and shape

* Using 3D imaging (e.g., stereo cameras) to verify the position and shape of the iris

relative to other eye features

14




The Approach

The first step in the process of Iris matching is iris image acquisition. This is generally done by
near infrared cameras. For the purpose of simplicity, we are using an Iris database. While
opening the database we are forcing the images to grayscale because the color of the eye is
insignificant in iris recognition. The patterns are more significant than the color of the éye. Next
we find the mean image of the database by parallely finding the mean of corresponding pixels in
the database images. Then we center each image in the database by subtracting the
corresponding pixel values of the mean image from each database image. This gives us the
centered database. Similarly the input image is also centered. The next step is comparing the
centered input image and the centered database using the Euclidean distance classifier method.

The image with the least Euclidean distance is checked against a threshold value. If the value is

less than the threshold the matched image is displayed.

Pseudocode

for each thread t, in block b

take corresponding pixels from each image, find mean.
for each thread t, in block b

subtract corresponding mean values ﬁbm pixels of database images.
for each thread t, in block b

subtract corresponding mean values from pixel values of input image. :
for each thread t, in block b

subtract each centered database image from the centered input image.
calculate total difference between input image and each database image.

find matched image according to the threshold value

15




Figure 6.1: Test Image

Figure 6.2: Image Centered about the mean
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Figure 6.3: Iris Recognition Design Flow
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¢ﬂ ;mage multiple times. The Parallel algorithm took 435.75 ms.
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Chapter 7: Results & Conclusion

1€ able to find the negative of 72 images at a time using 1-D blocks. When increased to
3-D, we can have even more images. For simplicity We calculated the negative of the
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Figure 7.1 Image Negative Snapshot

2 Rank sort algorithm, using 5000 numbers, the CPU took 82ms where as the GPU took
tg, thus giving a speedup of 90.7x.
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Figure 7.2 Rank Sort Snapshot
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Considerable speed up was observed for iris recognition also.
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Figure 7.4 Iris Recognition Output Screen
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when compared with a similar serial algorithm.

3 ;. ~ The table below shows the speedup observed for iris recognition by using parallel processing

e
No. of Images | CPU Time(in ms.) | GPU Time(in ms.) Speedup (CPU Time/ GPU time)
[ 10 0 31.3702 0
20 1000 61.5245 16.25368756
30 1000 107.3763 9.313042077
50 1000 192.5209 5.194241249
75 2000 302.0339 6.621773251
Table 7.1: Observed Speedup
CPU time vs. GPU time
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Figure 7.5 CPU time vs. GPU time
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Chapter 7: Future Work

though efficient, iris scanning is a relatively new technology and is susceptible to frauds using
gh quality iris or face image. The current algorithms can be modified to check for the
authenticity of the eye being presented to the scanner. Using 3D scanners and spectral analysis

instead of monochromatic cameras the presence of actual eye tissue can be confirmed.

he Iris Recognition code requires computation to be done for each pixel on the image. So, when

“the number of images is too large, we can either use batch processing or some data reduction

algorithm needs to be applied.

omplex Zernike moments is one of the ways to reduce image data. The advantages of
-considering orthogonal moments are that they are shift, rotation and scale invariant and very
-; robust in the presence of noise. The invariant properties of moments are utilized as pattern
- ~ sensitive features in classification and recognition applications. The kernel of Zernike moments
is a set of orthogonal Zernike polynomials defined over the polar coordinate space inside a unit

1 circle. Applying this algorithm can considerably increase the efficiency of the program.

22
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3, Serial Iris

*/

// Heade
finclude
#include
#include
#include
#include

tincludge

#define
tdefine
——#deline
#define
using na

// Main

S

Recognition

the same dimensicnality,

r files
"stdafx.h"
<cv.h>
<cxcore.h>
<highgui.h>
<iostream>

<ctime>

VERTEX 442368
IMGN 790
SIZEl 768
SIZEZ2 576
mespace std;

Function

CODE

i .. /* The following code inputs a database of images and a test

image, and matches them using the euclidian classifier.

All the images in the database and the test image should be of

The prompt requires for the user to enter an image name-- Please

enter the name as "imgOXX.png".

24
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#tmain(int arge; - TCHAR® argw[])

IplImage *imgp, *imgdbp [IMGN] ;

fleat *img; *dbimg,*mean,sum[IMGN],mini}
img=(float*)malloc (VERTEX*sizeof (float)):
dbimg=(float*)malloc (IMGN*VERTEX*sizeof (float));
mean={float*)malloc (VERTEX*sizeof (float));
chat Junk,ipimg[20];

LN—1p4

int n=2,m=0;

CvMat *matl[IMGN], *mat;

char name[]= "img000.png";

name[10]="'\0";

cout<<"\n\n\n \Nt\E\t Iris Image Database’;
cout<<"\n\n\n \tEnter Input image :\t ";
cin>>ipimg;

imgp = cvLoadImage(ipimg,0);

mat = cvCreateMat (imgp->height, imgp->width,CV_8UC1 );

Oenyert(ingytat=ir=

int c=0;

for(long 1=0;i<8TRE2 ;1++)

for(int 4=0:;]<8IZEL: j++)
25




CvScalar scal = cvGet2D( mat,i,Jj):;
img{c] = scal.val[OQ];

c=c+1;

// Inputing images from database

for (i=0; 1<IMGN ;i++)

J++;

switch (name[5])

case '9': switchfname[4])

case '9':

switch (namef{9]}

case '9':

name [5]="0";name[4]="0"';name[3]="'0";

break;
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default : name[5]='0";

name[4]1='0";
name[3]++;
tereak;

default : name(5]='0'; name[4]++;break;

break:;

default : name[5]++;break:

imgdbp[i] = cvLoadImage (name,0);

matl[i] = cvCreateMat (imgdbp[i]~->height, imgdbp(i]-
JA>width,cv guct ) ;

cvConvert ( imgdbp[i], matl[i] );

// Converting images to 1-D Arrays

27
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for (int m=0;m<IMGN;m-++)

for{long 1=0;1i<SIZEZ2;i++}

for (int j=0;])<SIZEl;j++)

CvScalar scal = cvGet2D({ matl[m],i,]):

dbimg[c] = scal.val([0];

c=c+1;

time t t,tZ;
t=time (&t} :
// Calculating the Mean

for({ 1i=0;i<VERTEX;i++)

mean[i]=dbimg([i];

for (j=1; J<IMGN;j++)

mean [i]+=dbimg[i+ (VERTEX*])];
' 28
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mean[i]=mean[1}/IMGN;

// Subtracting Mean from Database
for (i=0; 1<VERTEX*IMGN; 1++)
{

dbimg[i]=dbimg[i]-mean [1%VERTEX] ;

// Subtracting Mean from Input Image

for (1=0:1i<VERTEX; it++)

img(i)=img(i)-mean[i];
}
// Subtracting Input image‘from each database image

for (1i=0; 1<VERTEX*IMGN; i++)

dbimg[i])=dbimg[i] -img[i%VERTEX] ;

// Calculating the total difference between
// Input & Database images.

for (i=0;1<IMGN;1++)
' 29




sum([1]=0;

for {j=i*VERTEX; j< (1*VERTEX) +VERTEX; j++)

sum[1]+=dbimg[j];

if (sum([i]<0)

sum[i]*=-1;

"<<sum[i];

// Calculating the minimum difference

mini=sum[0];

for (i=0;i<IMGN; i++)

if (mini>sum[i])

mini=suml[i];

cout<<endl<<"\nThe minimum difference is "<<mini;

for (1=0; i<IMGN; i++)
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cout<<endl<<"The difference for image "<<i+l<<" 1is:
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1if (sum[i]==mini)

cout<<endl<<"For Image:"<<i+l;

t2=time (&t2);

float rtim=difftime(t2,t);

printE ("\n\nExecution Time: %£ second(s)”,rtim); // Print

Elapsed time

cin>>i;

return 0;

B. Parallel Iris Recognition

/*

The following code inputs a database of images and a test image,

and matches them using the euclidian classifier.

All the images in the database and the test image should be of the

same dimensionality.

The prompt requires for the user to enter an image name-- Please

tnter the name as "imgO0XX.png".

4
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ﬁnclude <ev.h

Mnclude <cxcore.h>

¢include <highgui.h>

finclude <cuda.h>

tinclude "ouda runtime.h"

jinclude "device launch_parameters.h"
tinclude <iostream>

tinclude <math.h>

tdefine VERTEX 442368 //Total number of pixels per image (768X576)

idefine IMGN 6 %

{define SIZEl 768 //Dimensionality of
fdefine SIZE2 576 //the images
f{define NUMBER 864 // Vertex/512 (Used for the kernel

loing the addition)

lsing namespace std;

H—TrHis function finds the mean of the-database-
/ mean is calculated as the mean value of each pixel.

/ thereby generating a mean image of same dimentionality
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fglobal__ void devmean (float *devdb, float *mn)
=

(

int tx=threadIdx.x;

it bx=blocklIdx.x;

long id=(bx*blockDim.x)+tx;

for{int i=0;i<IMGN;i++)

mn[id] +=devdb [1d+VERTEX*1i] ;

mn[id]=mn[id]/IMGN;

{

F/Input image is centered by subtracting it from mean

liglobal  void devcenterimg(float *devimg, float *mn, long

hreads)

int tx=threadIdx.x;
int bx=blockIdx.x;

long id=bx*blockDim.x+tx;

Lttt hreades

devimg[id]=devimg[id]-mn[id];
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N centering of database with the mean

;global__ void devcenter (float *devdb, float *mn, long threads)
(
int tx=threadIdx.x;

int bx=blockIdx.x;

long id=bx*blockDim.x+tx;
shared  float smn [1024/IMGN] ;

if (1d$IMGN==0)

smn [tx/IMGN]=mn[id/IMGN] ;

__syncthreads () ;

if (id<threads)
'devdb[((id%IMGN)*(threads/IMGN))+(id/IMGN)]=devdb[((id%IMGN)*(th

teads /IMGN) ) + (id/IMGN) ] -smn [tx/IMGN] ;

|
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/! parallel addition program to calcuate the sum of differences

globalui void add(float *devdb, float *devsum)

[

int tx=threadIdx.x;

int bx=blockIdx.x;

.1ong id=bx*blockDim.x+tx;
__shared__ float tempsum([512];

tempsum[tx]=devdb(id];

F_syncthreads();

for (int 1=512/2;1i>0;1i=1/2)

if (tx<i)
tempsum[tx]+=tempsum[tx+i];

__syncthreads() ;

devsum{bx]=tempsum([tx];

{ f
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- img=(float*)malloc (VERTEX*sizeof (float));

// Variable declarations

IplImage *imgp, *imgdbp {IMGN];
int i,73;

float *img, *dbimg;

dbimg=(float*)malloc (IMGN*VERTEX*sizeof (float));

char junk,ipimg[20];

CvMat *matl[IMGN], *mat;
char name[]= "img000.png";
name [10]="\0";

float *sum;

int imageno=0;

// Entering The test image

cout<<"\n\n\n \t\t\t Iris Image Database";

cout<<"\n\n\n \tEnter Input image :\t ";

//loading the test image into float array, to be matched
36




cin>>ipimg;
imgp = cvLoadImage (ipimg,0);

int k,counter;

mat = cvCreateMat {(imgp->height, imgp->width,CV 8UC1 );

cvConvert ( imgp, mat };
int ¢=0;

for(long 1=0;1i<SIZEZ;i++)

for (int j=0;j<SIZEl;j++)

c=c+1l;

// Load The Database
ﬁzO;

3=0;
1 for(i=0;i<IMGN ;i++)

{

CvScalar scal = cvGet2D( mat,i,J):;

img[c] = scal.val[0];
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JEts
switch{name(5])
l9l:

case switch{name[4])

case '9':
switch{name[3])
case '9': name[5]
break;
default name[5]
name(4]='0";

name [ 3] ++;

}break;

default

break;

default name [5]++;:break;

if(3>48)

name[5]='0";

='0';name [4]='0"';name[3]="'0";

='0"';

name[4]++;break;
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name[4]='0";

name[5]='1";

name [1G]=Y\0";

=15

}

imgdbp[i] = cvLoadImage (name,0);

matl[i] = cvCreateMat (imgdbp[i]->height, imgdbp[i]->width,CV_8UC1
)i

cvConvert ( imgdbp[i), matl[i] ):

for (int m=0;m<IMGN;m++)

r{

farllong: 1=081<SI7E241++)

for (ink J=0; j<SLIEL ;4 ++]

€vScalar scal—=—cvGet2b{matiftml;i;3)
dbimg[c] = scal.val[0];

c=c+1;
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bR s,

//CUDA kernel calls
float *devimg:

" float *devdb:;
float *devsum;

- float *mn;

long threads, blocks;

cudaMalloc ({void**)} &devdb,

JoudaMemcpyHostToDevice) ;

tudaMemcpyHostToDevice) ;
cudaEvent t start, stop;

// Generate ecvents
cudakventCreate (&start);
cudaEventCreate (&stop) ;
cudaEventRecord(start, 0);

threads=VERTEX;

cudaMalloc( (void**) &devimg, VERTEX*sizeof (float));

IMGN*VERTEX*sizeof (float));

cudaMalloc ( (void**) &mn, VERTEX*sizeof(float));

cudaMemcpy (devdb, dbimg, IMGN*VERTEX*sizeof (float),

cudaMenmcpy (devimg, img,VERTEX*sizeof (float),
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blocks=threads%$1024==0?threads/1024:threads/1024+1;

// Calculating the mean of the images
devmean<<<blocks, 1024>>> (devdb, mn) ;
threads=VERTEX;

blocks=threads%1024==0?threads/1024:threads/1024+1;

// Centering the test image
devcenterimg<<<blocks, 1024>>> (devimg,mn, threads) ;
threads=VERTEX*IMGN;

| blocks=threads%1024==0?threads/1024:threads/1024+1;

// Centering the database images
devcenter<<<blocks, 1024>>> (devdb, mn, threads) ;
threads=VERTEX* IMGN;

blocks=threads%1024==0?threads/1024:threads/1024+1;

// Calculating Euclidian=distance
devcenter<<<blocks, 1024>>> (devdb, devimg, threads) ;
blockS:VERTEX%512==O?VERTEX/512:(VERTEX/512)+1;

blocks=blocks*IMGN;
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cudaMalloc ( (void**) &devsum, blocks*sizeof (float));
//Calculating the sum of elements present in each individual
pblock

add<<<blocks, 512>>>(devdb, devsum);
sum=(float*) malloc (blocks*sizeof (float))

cudaMemcpy (sum, devsum, blocks*sizeof (float),

cudaMemcpyDeviceToHost) ;

cudaMemcpy (img, devimg, VERTEX*sizeof (float),

‘cudaMemcpyDeviceToHost) ;

cudaFree (devimg) ;
cudalFree (devdb) ;
cudaFree (devsum) ;
cudaFree (mn) ;
//CUDA part end

//. Adding the final sums of the blocks that represent the image.

! for (1=0;i<IMGN;i++)

for(j=(i*NUMBER)+1;j<(i*NUMBER)+NUMBER;j++)
sum[1i*NUMBER] +=sum([]j] ;
if (sum[i*NUMBER]<0)

sum[1*NUMBER] *=-1;
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cout<<endl<<"The difference for image "<<i+l<<" is:

{"<<sum[i*NUMBER] ;

//Calculating the minimum of all the distances present.
float minimumval=sum[0*NUMBER] ;

for(int g=0;g<IMGN;g++)
1f (sum[g*NUMBER] <minimumval)

minimumval=sum[g*NUMBER] ;

imageno=qg;

cout<<endl<<"\nThe minimum difference is "<<minimumval;

for (i=0;1<IMGN; i++)

if (sum[i*NUMBER]==minimumval)

cout<<endl<<"For Image:"<<i+1;

cudakbventRecord(stop, 0); // Trigger Stop event

cudaEventSynchronize {stop); // Sync events (BLOCKS till last

(stop in this case) has been recorded!)
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float elapsedTime; // Initialize elapsedTime;

cudaEventElapsedTime (&elapsedTime, start, stop); // Calculate

runtime, write to elapsedTime -- cudaEventFlapsedTime returns

printf{"\n\n\nExecution Time: %f miliseconds™, elapsedTime);

Jprint Elapsed time
cin>>junk;

return (0);
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